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Abstract
Data integration promises to be one of the main catalysts in enabling new insights to be

drawn from the wealth of biological data already available publicly. However, the heterogene-
ity of the existing data sources still poses significant challenges for achieving interoperability
among biological databases. Furthermore, merely solving the technical challenges of data in-
tegration, for example through the use of common data representation formats, leaves open
the larger problem. Namely, the steep learning curve required for understanding the data
models of each public source, as well as the technical language through which the sources
can be queried and joined. As a consequence, most of the available biological data remain
practically unexplored today.

In this thesis, we address these problems jointly, by first introducing an ontology-based
data integration solution in order to mitigate the data source heterogeneity problem. We
illustrate through the concrete example of Bgee, a gene expression data source, how relational
databases can be exposed as virtual Resource Description Framework (RDF) graphs, through
relational-to-RDF mappings. This has the important advantage that the original data source
can remain unmodified, while still becoming interoperable with external RDF sources.

We complement our methods with applied case studies designed to guide domain experts
in formulating expressive federated queries targeting the integrated data across the domains
of evolutionary relationships and gene expression. More precisely, we introduce two com-
parative analyses, first within the same domain (using orthology data from multiple, inter-
operable, data sources) and second across domains, in order to study the relation between
expression change and evolution rate following a duplication event.

Finally, in order to bridge the semantic gap between users and data, we design and im-
plement Bio-SODA, a question answering system over domain knowledge graphs, that does
not require training data for translating user questions to SPARQL. Bio-SODA uses a novel
ranking approach that combines syntactic and semantic similarity, while also incorporating
node centrality metrics to rank candidate matches for a given user question. Our results
in testing Bio-SODA across several real-world databases that span multiple domains (both
within and outside bioinformatics) show that it can answer complex, multi-fact queries, be-
yond the current state-of-the-art in the more well-studied open-domain question answering.





Résumé
L’intégration des données promet d’être l’un des principaux catalyseurs permettant d’extraire
des nouveaux aperçus de la richesse des données biologiques déjà disponibles publiquement.
Cependant, l’hétérogénéité des sources de données existantes pose encore des défis importants
pour parvenir à l’interopérabilité des bases de données biologiques. De plus, en surmontant
seulement les défis techniques de l’intégration des données, par exemple grâce à l’utilisation
de formats standard de représentation de données, on laisse ouvert un problème encore plus
grand. À savoir, la courbe d’apprentissage abrupte nécessaire pour comprendre la modéli-
sation des données choisie par chaque source publique, ainsi que le langage technique par
lequel les sources peuvent être interrogés et jointes. Par conséquent, la plupart des données
biologiques publiquement disponibles restent pratiquement inexplorés aujourd’hui.

Dans cette thèse, nous abordons l’ensemble des deux problèmes, en introduisant d’abord
une solution d’intégration de données basée sur ontologies, afin d’atténuer le problème d’hété-
rogénéité des sources de données. Nous montrons, à travers l’exemple de Bgee, une base de
données d’expression de gènes, une approche permettant les bases de données relationnelles
d’être publiés sous forme de graphes RDF (Resource Description Framework) virtuels, via
des correspondances relationnel-vers-RDF (« relational-to-RDF mappings »). Cela présente
l’important avantage que la source de données d’origine peut rester inchangé, tout en de-
venant interopérable avec les sources RDF externes.

Nous complétons nos méthodes avec des études de cas appliquées, conçues pour guider
les experts du domaine dans la formulation de requêtes fédérées expressives, ciblant les don-
nées intégrées dans les domaines des relations évolutionnaires et de l’expression des gènes.
Plus précisément, nous introduisons deux analyses comparatives, d’abord dans le même do-
maine (en utilisant des données d’orthologie provenant de plusieurs sources de données in-
teropérables) et ensuite à travers des domaines interconnectés, afin d’étudier la relation entre
le changement d’expression et le taux d’évolution suite à une duplication de gène.

Enfin, afin de mitiger le décalage sémantique entre les utilisateurs et les données, nous
concevons et implémentons Bio-SODA, un système de réponse aux questions sur des graphes
de connaissances domaine-spécifique, qui ne nécessite pas de données de formation pour
traduire les questions des utilisateurs vers SPARQL. Bio-SODA utilise une nouvelle ap-
proche de classement qui combine la similarité syntactique et sémantique, tout en incorporant
des métriques de centralité des nœuds, pour classer les possibles candidats en réponse à une
question utilisateur donnée. Nos résultats suite aux tests effectués en utilisant Bio-SODA
sur plusieurs bases de données à travers plusieurs domaines (tantôt liés à la bioinformatique
qu’extérieurs) montrent que Bio-SODA réussit à répondre à des questions complexes, en-
gendrant multiples entités, au-delà de l’état actuel de la technique en matière de systèmes de
réponses aux questions sur les données structures, en particulier graphes de connaissances.
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Chapter 1

Introduction

1.1 Motivation

Biological databases are growing at an exponential rate, both in number and in size,
currently being among the major producers of Big Data, almost on par with com-
mercial generators, such as YouTube or Twitter [2]. For instance, over one hundred
key resources are featured in the yearly Nucleic Acids Research annual database is-
sue [3]. While traditionally biological databases evolved as independent silos, each
purposely built by a different research group in order to answer specific research
questions, more recently significant efforts have been made toward integrating the
available sources. However, the heterogeneity of these data sources, both at the
syntactic and the semantic level, still poses significant challenges for achieving in-
teroperability among biological databases. As a consequence, the burden ultimately
remains on the end user to find the relevant sources, as well as the connections be-
tween them, in order to benefit from the data available publicly. This is today a
largely manual and time-consuming process.

Data integration promises to be one of the main catalysts in enabling new in-
sights to be drawn from the wealth of biological data available publicly. For in-
stance, by comparing disease phenotypes in humans with phenotypes produced by
particular mutations in model species, it is possible to infer which human genes
are involved in the disease [4]. Semantic Web technologies have been key enablers
for data integration, opening the path for new insights into the unified data, which
were not visible at the level of each independent database. In the first part of this
thesis, we propose an Ontology-Based Data Integration solution, that enables ex-
posing existing relational databases as virtual RDF graphs, in order to make these
interoperable with external RDF data sources.

However, merely solving the technical challenges of data integration, for exam-
ple by publishing all data in a standard format, such as RDF, does not automatically
render the data usable to the larger audience. This is because the technical query
languages required to access this data (in particular, SPARQL) remain outside the
realm of casual users and even of most domain experts. In addition, understanding
the data models of each source is also a time-consuming process, which must be re-
peated for each new data source. It has been shown [5] that in fact natural language
interfaces are a more suitable data access modality to the Semantic Web for casual
users. It is perhaps surprising that the progress in information retrieval over doc-
uments, made by commercial search engines, has not been yet paired with equally
powerful tools for exploring structured data, which still remains an open research
problem today.

In this thesis, we describe the challenges of question answering over knowledge
graphs (KGQA), focusing on domain knowledge graphs, such as scientific datasets.
To tackle these challenges, we design and implement Bio-SODA, a generic KGQA
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system, that does not rely on prior training data (which in many cases is scarce)
for translating user questions to SPARQL. More precisely, considering that many
databases have only recently been made available in RDF format, there are usually
few question-answer pairs which the system can be trained or fine-tuned on. Bio-
SODA overcomes this challenge by using a generic, graph-based approach, com-
bined with a new ranking algorithm that takes into account node centrality metrics
for scoring candidate query graphs. We demonstrate across three datasets that Bio-
SODA can answer complex, multi-fact queries, beyond the current state-of-the-art
in question answering over knowledge graphs. We conclude by outlining research
directions for future work, including desirable design goals to increase the adoption
of question answering systems in new domains in the future.

1.2 Contributions

This dissertation is a result of interdisciplinary research I have performed in the con-
text of a collaboration between the University of Lausanne (UNIL) and the Zurich
University of Applied Sciences (ZHAW). The thesis therefore has a strong applied
research focus. As a result, its contributions are two-fold:

I. Methods

This thesis brings contributions to two broad research topics, namely Data In-
tegration – which is a pre-requisite for semantic search over heterogeneous
data sources – and Question Answering over Domain Knowledge Graphs.

In the following, I outline my contributions to the published work on which
this dissertation is based (see List of Publications):

• I performed an experimental evaluation of the Ontology-Based Data Inte-
gration (OBDI) solution presented in Chapter 3 (Results section 3.4). The
evaluation showed that relational-to-RDF mappings result in reasonable
performance for practical applications and are therefore a feasible option
for interoperating relational databases with existing RDF stores, through
federated SPARQL queries.

• I designed and implemented, under the supervision of the Dessimoz group
at UNIL, hands-on tutorials to guide domain experts in making use of
the integrated data for comparative analyses, through federated SPARQL
queries. The tutorials cover use-cases both within the same domain (or-
thology, in Chapter 4.1), as well as at the intersection between connected
domains (gene expression and orthology, Chapter 4.2). Performing such
analyses was made possible through the integration of data from the Bgee
gene expression database and the OMA orthology database.

• I designed and implemented Bio-SODA (Chapter 5), a generic Question
Answering System over Domain Knowledge Graphs, that does not re-
quire training data to generate SPARQL queries from a user question in
natural language.

• I investigated new ranking algorithms that combine syntactic and seman-
tic similarity, as well as node centrality in the knowledge graph. Many ex-
isting question answering systems either rely on simple metrics for rank-
ing, such as the length of the answer query graph, or require extensive
training data in order to learn a ranking function. Through the Evalu-
ation in Section 5.5, I show that by taking into account all three factors
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for ranking candidate queries (syntactic and semantic similarity, as well
as node importance), Bio-SODA consistently outperforms existing state-
of-the-art Question Answering systems across three benchmark datasets
tested (both within and outside the Life Sciences).

• Finally, I provide an analysis of the limitations of Bio-SODA, outlining
desirable design goals for generic question answering systems over do-
main knowledge graphs, in Chapter 5. This complements existing studies
from literature, which have generally focused on open-domain question
answering, and can thus serve as both a research agenda for future work
and as a guideline for increasing the adoption of question answering sys-
tems in new domains in the future.

II. Software

For each method introduced in this thesis, I also made available, together with
my co-authors, an open-source prototype implementing the method in order
to facilitate reproducibility and re-use for future research. This is especially rel-
evant in the context of domain question answering, where not many systems
were publicly available for testing at the time of writing.

In more details, Chapter 3 proposes an ontology-based data integration ap-
proach, which relies on relational-to-RDF mappings in order to expose rela-
tional data as a virtual RDF graph, without requiring changes in the original
data source. The mappings created for our example case-study, using the Bgee
gene expression database, are made available in a github repository1. Further-
more, an intuitive template-based search interface that enables easy access to
the integrated data has been developed by co-authors of [6]. All the code for
this interface is available in the same github repository1, while a demo of this
is currently available at http://biosoda.expasy.org/.

Chapter 4 proposes two applied case studies, for which we make both data and
code available. More precisely, Section 4.1 is a hands-on introduction to query-
ing orthology databases using SPARQL. An accompanying Jupyter notebook,
which enables easy testing of all protocols proposed in this chapter, as well
as Supplementary Materials, are available at https://github.com/biosoda/
tutorial_orthology. Similarly, data and code for the case study of the cor-
relation between expression and evolutionary rates, presented in Section 4.2,
is available in the github repository https://github.com/anazhaw/tutorial_
branch_length.

Finally, the Bio-SODA system, introduced in Chapter 5, is available open-
source at https://github.com/anazhaw/Bio-SODA and a demo is currently de-
ployed for testing at http://biosoda.expasy.org/welcome/.

The software published has been reused in both academia (the INODE European
project2, where I am part of the INODE consortium at the time of writing and in
which Bio-SODA is used for exploring RDF datasets of various domains, such as
cancer research, policy research and astrophysics), as well as industry. The results
presented in this thesis have partly contributed to new collaborations with industrial
partners at both the University of Lausanne and the Zurich University of Applied
Sciences.

1https://github.com/biosoda/bioquery
2see http://www.inode-project.eu/

http://biosoda.expasy.org/
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1.3 Thesis Outline

This dissertation generally follows the order of publications I have co-written (either
as first or co-first author).

Chapter 2, largely based on the book chapter [7], offers an introduction to the top-
ics covered throughout the rest of this thesis. For example, the interested reader can
learn about different database models - in particular relational and graph databases
- as well as their advantages and limitations in the context of data integration. The
chapter also introduces basic Semantic Web Technologies, such as the Resource De-
scription Framework (RDF), the RDF schema (RDFS), ontologies and Ontology-Based
Data Integration (OBDI), definitions that provide the background for understanding
all subsequent chapters. Finally, the chapter also gives an overview of past and on-
going research efforts in data integration in the Life Sciences, therefore putting our
current work into context.

Chapter 3, based on the Database journal publication [6], presents an Ontology-
Based Data Integration solution, applied to the case of a relational database of gene
expression (Bgee). We illustrate relational-to-RDF mappings, which enable the orig-
inal relational data source to be exposed as a virtual RDF graph and by these means
made interoperable with several external RDF bio-datasets, such as OMA and UniProt.
This chapter also introduces BioQuery, a template-based search interface which en-
ables domain experts to re-use and refine questions from a catalog of federated
queries across the domains of gene expression, orthology and protein information.

Chapter 4 introduces two applied case studies illustrating the potential of data
integration in testing new biological hypotheses. Therefore, this chapter is mainly
addressed to domain experts across two fields of bioinformatics: evolutionary re-
lationships (orthology) and gene expression. In more details, the first part of this
chapter, Section 4.1, based on the publication [8], introduces a hands-on tutorial for
querying orthology data across multiple data sources (OMA, OrthoDB, MBGD and
EBI) using federated SPAQL queries. The second part of this chapter, Section 4.2
introduces a more in-depth case study on the correlation between gene expression
evolution and branch length following a duplication. Rather than presenting novel
results, Chapter 4 focuses on describing the relevant data models and exemplifying
federated SPARQL queries, both within the orthology domain, as well as in connec-
tion with the gene expression domain. The queries presented here can be used as a
starting point in testing new research hypotheses with the interoperable RDF data
available across multiple sources. Readers interested strictly in the computational
aspects of this thesis might skip this chapter and go directly to Chapter 5.

Chapter 5 introduces Bio-SODA, a question answering system for domain knowl-
edge graphs. Here, we first discuss the challenges of question answering over do-
main datasets, such as scientific datasets. Next, we present the design and imple-
mentation of the Bio-SODA system, as well as results obtained across three real-
world datasets, which we compare against state-of-the-art question answering sys-
tems. Finally, we conclude with lessons learned from our experience in using Bio-
SODA across real-world datasets and testing the system with early adopters. We
formulate design goals for generic question answering systems over domain knowl-
edge graphs, meant to highlight research directions that can help to increase the
practical utility and adoption of such systems in new domains in the future.

Chapter 6 provides a more general outlook into future work and Chapter 7 con-
cludes this dissertation.



5

Chapter 2

Semantic Integration and
Enrichment of Heterogeneous
Biological Databases

Biological databases are growing at an exponential rate, currently being among the
major producers of Big Data, almost on par with commercial generators, such as
YouTube or Twitter [2]. While traditionally biological databases evolved as inde-
pendent silos, each purposely built by a different research group in order to answer
specific research questions, more recently significant efforts have been made toward
integrating these heterogeneous sources into unified data access systems or inter-
operable systems using the FAIR [9], [10] principles of data sharing. Semantic Web
technologies have been key enablers in this process, opening the path for new in-
sights into the unified data, which were not visible at the level of each independent
database. In this chapter1, we first provide an introduction into two of the most used
database models for biological data: relational databases and RDF stores. Next, we
discuss ontology-based data integration, which serves to unify and enrich hetero-
geneous data sources. We present an extensive timeline of milestones in data inte-
gration based on Semantic Web technologies in the field of Life Sciences. Finally,
we discuss some of the remaining challenges in making ontology-based data access
systems easily accessible to a larger audience. In particular, we introduce natural
language search interfaces, which alleviate the need for database users to be familiar
with technical query languages. We illustrate the main theoretical concepts of data
integration through concrete examples, using two well-known biological databases:
a gene expression database, Bgee [11], and an orthology database, OMA [12].

2.1 Introduction

Biological databases have grown exponentially in recent decades, both in number
and in size, owing primarily to modern high-throughput sequencing techniques 2.
Today, the field of genomics is almost on par with the major commercial genera-
tors of Big Data, such as YouTube or Twitter, with the total amount of genome data
doubling approximately every seven months [2]. While most biological databases
have initially evolved as independent silos, each purpose-built by a different re-
search group in order to collect data and respond to a specific research question,
more recently significant efforts have been made towards integrating the different
data sources, with the aim of enabling more powerful insights from the aggregated
data, which would not be visible at the level of individual databases.

1Parts of this chapter have been published in [7]
2http://www.sciencenews.org/article/gene-sequencing-future-here

http://www.sciencenews.org/article/gene-sequencing-future-here
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Let us consider the following example. An evolutionary biologist might want to
answer the question "What are the human-rat orthologs, expressed in the liver, that are
associated with leukemia?". Getting an answer for this type of question usually re-
quires information from at least three different sources: an orthology database (e.g.
OMA [12], OrthoDB [13] or EggNog [14]), a gene expression database, such as Bgee
[11], ArrayExpress [15] or The Human Protein Atlas [16], and a proteomics database
containing disease associations (e.g. UniProt [17]). In the lack of a unified access
to the three data sources, obtaining this information is a largely manual and time-
consuming process. First, the biologist needs to know which databases to search
through. Second, depending on the interface provided by these databases, he or she
might need to be familiar with a technical query language, such as SQL or SPARQL
(note: a list of acronyms is provided at the beginning of this dissertation). At the
very least, the biologist is required to know the specific identifiers (IDs) and names
used by the research group that created the database, in order to search for relevant
entries. An integrated view, however, would allow the user to obtain this informa-
tion automatically, without knowing any of the details regarding the structure of the
underlying data sources nor the type of storage these databases use and eventually
not even specific IDs (such as protein or gene names).

Biological databases are generally characterized by a large heterogeneity, not
only in the type of information they store, but also in the model of the underly-
ing data store they use: examples would be relational databases, file-based stores,
graph-based etc. Some of the databases considered fundamental to research in the
life sciences can be found in the ELIXIR Europe’s Core Data Resources, available on-
line at https://www.elixir-europe.org/platforms/data. In this chapter, we will
mainly discuss two types of database models: the relational model (i.e. relational
databases) and a graph-based data model, namely RDF (the Resource Description
Framework).

Database systems have been around since arguably the same time as computers
themselves, serving initially as "digitized" copies of tabular paper forms, for exam-
ple in the financial sector, or for managing airline reservations. In biology, some of
the earliest examples include the 1965 Atlas of Protein Structures [18] and the 1971
Protein Databank [19]. Relational databases, as well as the mathematical formal-
ism underlying them, namely, the relational algebra, were formalized in the 1970s
by E.F. Codd, in a foundational paper that now has surpassed 10,000 citations [20].
The Relational Model is designed to structure data into so-called tuples, according
to a predefined schema. Tuples are stored as rows in tables (also called "relations").
Each table usually defines an entity, such as an object, a class or a concept, whose
instances (the tuples) share the same attributes. Examples of relations are "Gene",
"Protein", "Species", etc. The attributes of the relation will represent the columns of
the table, for example "gene name". Furthermore, each row has a unique identifier.
The column (or combination of columns) that stores the unique identifier is called a
Primary Key and can be used not only to uniquely identify rows within a table, but
also to connect data between multiple tables, through a Primary Key-Foreign Key
relationship. Doing such a connection is called a join. In fact, a join is only one of the
operations defined by relational algebra. Other common operations include projec-
tion, selection and others. The operands of relational algebra are the database tables,
as well as their attributes, while the operations are expressed through the Structured
Query Language (SQL). For a more in-depth discussion on relational algebra we
refer the reader to the original paper by E.F. Codd [20].

https://www.elixir-europe.org/platforms/data
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FIGURE 2.1: Sample Relational Database (extracted from the gene ex-
pression database Bgee). Tables are connected through Primary Key
- Foreign Key relationships. Two example relationships, based on the
SpeciesID, are higlighted in bold. The Primary Key attribute is under-
lined in red, while the two Foreign Keys are underlined with a dash
line in blue. The PK-FK relationships enable joining the connected
tables, for instance to retrieve information about the Species where a

given Gene can be found.

This chapter is structured as follows. In Section 2.2, we give a brief introduc-
tion to relational databases, through the concrete example of the Bgee gene expres-
sion database. We introduce the basics of Semantic Web technologies in Section 2.3.
Readers who are already familiar with the Semantic Web stack might skip Section
2.3 and jump directly to Section 2.4, which presents an applied use case of Semantic
Web technologies in the life sciences: modeling the Bgee and OMA databases. Sec-
tion 2.5 represents the core of this chapter. Here, we present Ontology Based Data
Integration (Section 2.5.1) and illustrate it through the concrete example of a unified
ontology for Bgee and OMA (Section 2.5.2), as well as the mechanisms required to
further extend the integrated system with other heterogeneous sources such as the
UniProt protein knowledge base (Section 2.5.3). We introduce natural language in-
terfaces, which enable easy data access even for non-technical users, in Section 2.5.4.
We present an extensive timeline of milestones in data integration based on Seman-
tic Web technologies in the field of Life Sciences in Section 2.6. Finally, we conclude
in Section 2.7.

2.2 Modeling a Biological Database with Relational Database
Technology

In this section we will demonstrate how to model a biological database with rela-
tional database technology.

Figure 2.1 illustrates the data model of a sample extracted from the Bgee database.
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The sample contains 5 tables and their relationships, shown as arrows, where the di-
rection of the arrow is oriented from the Foreign Key of one table to the Primary Key
of a related one. For example, the Primary Key (PK) of the Species table, underlined
in red, is the SpeciesID. Following the relationships highlighted in bold, we see that
the SpeciesID also appears in the two tables connected to Species: GlobalCond and
Gene. In these tables, the attribute plays the role of a Foreign Key (FK), highlighted
in the figure with dash underline in blue. The PK-FK relationships allow combining
or aggregating data from related tables. For example, by joining Species and Gene,
through the SpeciesID, we can find to which species a gene belongs. Concretely,
let’s assume we want to find the species where the gene "HBB" can be found. Given
that this information is stored in the SpeciesCommonName attribute, we can retrieve
it through the following SQL query:

1 SELECT SpeciesCommonName from Species JOIN Gene
2 WHERE Gene.GeneName = "HBB" and Species.SpeciesID = Gene.SpeciesID;

This query enables retrieving (via the ’SELECT’ keyword) the attribute corre-
sponding to the species name (SpeciesCommonName) by joining the Species and Gene
tables, based on their Primary Key - Foreign Key relationship, namely, via the SpeciesID,
on the condition that the GeneName exactly matches "HBB". For a more detailed
introduction to the syntax and usage of SQL, we refer the reader to an online intro-
ductory tutorial 3, as well as the more comprehensive textbooks [21], [22].

Taking this a step further, we can imagine the case where a second relational
database also stores information about genes, but perhaps with some additional
data, such as associations with diseases. Can we still combine information across
these distinct databases? Indeed, as long as there is a common point between the
tables in the two databases, such as the GeneID or the SpeciesID, it is usually pos-
sible to combine them into a single, federated database, and use SQL to query it
through federated joins. An example of using federated databases for biomedical
data is presented in [23].

2.2.1 Limitations and emerging solutions for data integration

So far, we have seen that relational databases are a mature, highly optimized tech-
nology for storing and querying structured data. Also, combined with a powerful
and expressive query language, SQL, they allow users to federate (join) data even
from different databases.

However, there are certain relationships that are not natural for relational databases.
Let us consider the relationship "hasOrtholog". Both the domain and the range
of this relationship, as defined in the Orthology Ontology [24], are the same – a
Gene. For example, the Hemoglobin (HBB) gene in human has the Hbb-bt orthol-
ogous gene in the mouse (expressed via the relation hasOrtholog). In the relational
database world, this translates into a so-called "self-join". As the name suggests,
this requires joining one table in this case, Gene, with itself, in order to retrieve the
answer. These types of "self-join" relations, while frequent in the real world (e.g. a
manager of an Employee is also an Employee; a friend of a Person is also a Person,
etc.), are inefficient in the context of relational databases. While there are sometimes
ways to avoid self-joins, these require even more advanced SQL fluency on the part
of the programmer 4.

3https://www.w3schools.com/sql/sql_intro.asp
4http://sqltouch.blogspot.ch/2013/07/self-join-incurs-more-io-activities-and.html

https://www.w3schools.com/sql/sql_intro.asp
http://sqltouch.blogspot.ch/2013/07/self-join-incurs-more-io-activities-and.html
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Moreover, relational databases are typically not well-suited for applications that
require frequent schema changes. Hence, NoSQL stores have gained widespread
popularity as an alternative to traditional relational database management systems
[25], [26]. These systems do not impose a strict schema on the data and are therefore
more flexible than relational databases in the cases where the structure of the data is
likely to change over time. In particular, graph databases, such as Virtuoso [27], are
very well suited for data integration, as they allow easily combining multiple data
sources into a single graph. We discuss this in more detail in Section 2.3.

These and other considerations have led to the vision of the Semantic Web, for-
malized in 2001 by Tim Berners Lee et al. [28]. At a high-level, the Semantic Web
allows representing the semantics of data in a structured, easy to interlink, machine-
readable way, typically by use of the RDF graph-based data model. The gradual
adoption of RDF stores, although widespread in the web context and in the life sci-
ences in particular, did not replace relational databases altogether, which lead to a
new challenge: how will these heterogeneous data sources now be integrated?

Initial integration approaches in the field of biological databases have been largely
manual: first, many of these sources (either relational or graph-based) have included
cross-references to other sources. For example, UniProt contains links to more than
160 other databases. However, this raises a question for the user: which of the pro-
vided links should be followed in order to find relevant connections? While a user
can be assumed to know the contents of a few related databases, we can hardly ex-
pect anyone to be familiar with more than 160 of them! To avoid this problem, other
databases have chosen an orthogonal approach: instead of referencing links to other
sources, simply copy the relevant data from those sources into the database. This
approach also has a few drawbacks. First, it generates redundant data (which might
result in significant storage space consumption) and, most importantly, it might lead
to the use of stale, outdated results. Moreover, this approach is contradictory to best
practices of data warehousing used widely across various domains in industry. For
a discussion on this we refer the reader to [29].

Databases such as UniProt are highly comprehensive, with new results being
added to each release, results that may sometimes even contradict previous results.
Duplication of this data into another database can quickly lead to missing out the
most recent information or to high maintenance efforts required to keep up with the
new changes. In the following sections, we discuss an alternative approach: inte-
grating heterogeneous data sources through the use of a unifying data integration
layer, namely, an integrative ontology, that aligns, but also enriches the existing data,
with the purpose of facilitating knowledge discovery.

Throughout the remainder of this chapter we will combine theoretical aspects
of data integration with concrete examples, based on the SODA project [1], which
aimed to enable keyword serch over data warehouses, as well as from our ongoing
research project, Bio-SODA, where we are currently building an integrated data ac-
cess system for biological databases (starting with OMA and Bgee), using a natural
language search interface. In the context of this project, Semantic Web technologies,
such as RDF, are used to enhance interoperability among heterogeneous databases
at the semantic level (e.g. RDF graphs with predefined semantics). Moreover, cur-
rently, several life science and biomedical databases such as OMA [30], UniProt [17],
neXtProt [31], The European Bioinformatics Institute (EMBL-EBI) RDF data [32], the
WorldWide Protein Data Bank [33] already provide RDF data access, which also jus-
tifies an RDF based approach to enable further integration efforts to include these
databases. A recent initiative for (biological) data sharing is based on the FAIR prin-
ciples [9], aiming to make data findable, accessible, interoperable and re-usable.

https://www.zhaw.ch/no_cache/en/research/research-database/project-detailview/projektid/1493/
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FIGURE 2.2: The Semantic Web stack (modified from [38]).

2.3 Semantic Web Technologies

The Semantic Web, as its name shows, emerged mainly as a means to attach seman-
tics (meaning) to data on the Web [28]. In contrast to relational databases, Semantic
Web technologies rely on a graph data model, in order to enable interlinking data
from disparate sources available on the Web. Although the vision of the Semantic
Web still remains an ideal, many large datasets are currently published based on the
Linked Data principles [34] using Semantic Web technologies (e.g. RDF). The Linked
Open Data Cloud illustrates a collection of a large number of different resources in-
cluding DBPedia, UniProt and many others.

In this section, we will describe the semantic web (SW) stack, focusing on the
technologies that enhance data integration and enrichment. For a more complete
description of the SW stack, we refer the reader to the comprehensive introductions
in [35], [36], [37].

The Semantic Web stack is presented in Figure 2.2. We will focus on the following
standards or layers of the stack: URI, the syntax layer (e.g. Turtle (TTL), an RDF
serialization format), RDF, OWL, RDFS and SPARQL. These layers are highlighted
in grey in Figure 2.2.

2.3.1 Unique Resource Identifier (URI)

A Uniform Resource Identifier (URI) is a character sequence that identifies an ab-
stract or physical resource. A URI is classified as a locator, a name, or both. The
Uniform Resource Locators (URLs) are a subset of URIs that, in addition to identi-
fying a resource, provide a means of locating the resource by describing its primary
access or network "location". For example, https://bgee.org is a URI that identifies
a resource (i.e. the Bgee gene expression website) and it implies solely a representa-
tion of this resource (i.e. an HTML web page). This resource is accessible through
the HTTPS protocol.
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FIGURE 2.3: An example of a UniProt URI with a fragment.

FIGURE 2.4: An RDF graph with two nodes (Subject and Object) and
an edge connecting them (Predicate).

The Uniform Resource Name (URN) is also a URI that refers to both the "urn"
scheme 5, which are URIs required to remain globally unique and persistent even
when the resource does not exist anymore or becomes unavailable, and to any other
URI with the properties of a name. For example, the URN urn:isbn:978-1-61779-581-7
is a URI that refers to a previous edition of this book by using the International Stan-
dard Book Number (ISBN). However, no information about the location and how to
get this resource (book) is provided.

The URI syntax consists of a hierarchical sequence of components referred to as
the scheme, authority, path, query, and fragment6. Figure 2.3 describes a UniProt
URI that includes these components.

An individual scheme does not have to be classified as being just one of "name"
or "locator". Instances of URIs from any given scheme may have the characteristics
of names (URN) or locators (URL) or both (URN + URL). Further examples of URIs
with variations in their syntax components are:

• ftp://ftp.bgee.org/current/download/calls/expr_calls/Sus_scrofa_expr_
simple_development.tsv.zip

• http://www.ensembl.org/Multi/Search/Results?q=BRCA2

• mailto:Bgee@sib.swiss

• urn:miriam:pubmed:26615188

• https://www.ncbi.nlm.nih.gov/pubmed/26615188

2.3.2 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a framework for describing informa-
tion about resources in the World Wide Web, which are identified with URIs. In the
previous section, we have seen that data in relational databases is organized into ta-
bles, according to some predefined schema. In contrast, in RDF stores data is mainly
organized into triples, namely <subject, predicate, object>, similarly to how sentences
in natural language are structured. An informal example would be: <Bob, isFriendOf,
Alice>. A primer on triples and the RDF data model, using this simple example, is
available online 7. Figure 2.4 illustrates the RDF triple: the Subject represents the
resource being described, the Predicate is a property of that resource and finally the
Object is the value of the property (i.e. an attribute of the subject).

5https://tools.ietf.org/html/rfc2141
6see https://tools.ietf.org/html/rfc3986
7https://www.w3.org/TR/rdf11-primer/

urn:isbn:978-1-61779-581-7
ftp://ftp.bgee.org/current/download/calls/expr_calls/Sus_scrofa_expr_simple_development.tsv.zip
ftp://ftp.bgee.org/current/download/calls/expr_calls/Sus_scrofa_expr_simple_development.tsv.zip
http://www.ensembl.org/Multi/Search/Results?q=BRCA2
mailto:Bgee@sib.swiss
urn:miriam:pubmed:26615188
https://www.ncbi.nlm.nih.gov/pubmed/26615188
https://tools.ietf.org/html/rfc2141
https://tools.ietf.org/html/rfc3986
https://www.w3.org/TR/rdf11-primer/
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Triples can be defined using the RDF framework. The data store for RDF data is
also called a "triple store". Moreover, in analogy to the data model (or the schema)
of a relational database, the high-level structure of data in a triple store can be de-
scribed using an ontology. According to Studer et al. [39], an ontology is a formal,
explicit specification of a shared conceptualization. "Formal" refers to the fact that
the expressions must be machine readable, hence natural language is excluded. In
this context, we can mention description logic (DL) [40] based languages, such as
OWL 2 DL (see Subsection 2.3.3 for further details) to define ontologies. A DL on-
tology is the equivalent of a knowledge base (KB). A KB is mainly composed of
two components that describe different statements in ontologies: the terminological
box (TBox, i.e. the schema) and the assertional box (ABox, i.e. the data). Therefore,
the conceptual statements form the set of TBox axioms, whereas the instance level
statements form the set of ABox assertions. To exemplify this, we can mention the
following DL axioms: Man ≡ Human u Male (a TBox axiom that states a Man is a
Human and Male) and john:Man (an ABox assertion that states john is an instance of
Man).

Given that one of the goals of the Semantic Web is to assign unambiguous names
to resources (URIs), an ontology should be more than a simple description of data
in a particular triple store. Rather, it should more generally serve as a description of
a domain, for instance Genomics (see Gene Ontology [41]) or Orthology (see Orth
Ontology [24]). Different instantiations of this domain, for example, by different re-
search groups, should reuse and extend this ontology. Therefore, constructing good
ontologies requires careful consideration and agreement between domain special-
ists, with the goal of formally representing knowledge in their field. As a conse-
quence, ontologies are usually defined in the scope of consortiums – such as the
Gene Ontology Consortium [42] or the Quest for Orthologs Consortium [43]. A
notable collaborative effort is the Open Biological and Biomedical Ontology (OBO)
Foundry [44]. It established principles for ontology development and evolution,
with the aim of maximizing cross-ontology coordination and interoperability, and
provides a repository of Life-Science Ontologies, currently, including about 140 on-
tologies.

To give an example of RDF data in a concrete life sciences use case, let us consider
the following RDF triples, which illustrate a few of the assertions used in the OMA
orthology database to describe the human hemoglobin protein ("HBB"), using the
first version of the ORTH ontology [24]:

1 oma:PROTEIN_HUMAN04027 rdf:type orth:Protein;
2 oma:geneName "HBB";
3 biositemap:description "Hemoglobin subunit beta";
4 obo:RO_0002162 <http :// www.uniprot.org/taxonomy /9606 >.

This simple example already illustrates most of the basics of RDF. The instance
that is being defined – the HBB protein in human has the following URI in the OMA
RDF store: http://omabrowser.org/ontology/oma#PROTEIN_HUMAN04027 .

The URI is composed of the OMA prefix, http://omabrowser.org/ontology/
oma# (abbreviated here as "oma:") and a fragment identifier, PROTEIN_HUMAN04027.
The first triple describes the type of this resource – namely, an orth:Protein – based
on the Orthology Ontology, prefixed here as "orth:", http://purl.org/net/orth#.
As mentioned previously, this is a higher-level ontology, which OMA reuses and
instantiates. It is important to note that other ontologies are used as well in the re-
maining assertions: for example, the last triple references the UniProt taxonomy ID
9606. This is based on the National Center for Biotechnology Information (NCBI)
organismal taxonomy [45]. If we follow the link in a Web browser, we see that

http://omabrowser.org/ontology/oma#PROTEIN_HUMAN04027
http://omabrowser.org/ontology/oma#
http://omabrowser.org/ontology/oma#
http://purl.org/net/orth#
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it identifies the "Homo Sapiens" species, while the property obo:RO_0002162 (i.e.
http://purl.obolibrary.org/obo/RO_0002162) simply denotes "in taxon" in OBO
[44]. Lastly, the concept also has a human-readable description, "Hemoglobin sub-
unit beta".

2.3.3 RDF Schema (RDFS)

RDF Schema (RDFS) provides a vocabulary for modelling RDF data and is a seman-
tic extension of RDF. It provides mechanisms for describing groups (i.e. classes)
of related resources and the relationships between these resources. The RDFS is de-
fined in RDF. The RDFS terms are used to define attributes of other resources such as
the domains (rdfs:domain) and ranges (rdfs:range) of properties. Moreover, the RDFS
core vocabulary is defined in a namespace informally called rdfs here and it is con-
ventionally associated with the prefix rdfs:. That namespace is identified by the URI
http://www.w3.org/2000/01/rdf-schema#.

In this section, we will mostly focus on the RDF and RDFS terms used in this
chapter. Further information about RDF/RDFS terms is available in [46].

Classes:

• rdfs:Resource all things described by RDF are called resources, which are in-
stances of the class rdfs:Resource (i.e. rdfs:Resource is an instance of rdfs:Class).

• rdfs:Class is the class of resources that are RDF classes. Resources that have
properties (attributes) in common may be divided into classes. The members
of a class are instances.

• rdf:Property is a relation between subject and object resources, i.e. a predicate.
It is the class of RDF properties.

• rdfs:Literal is the class of literal values such as textual strings and integers.
rdfs:Literal is a subclass of rdfs:Resource.

Properties:

• rdfs:range is an instance of rdf:Property. It is used to state that the values of a
property are instances of one or more classes. For example, orth:hasHomolog
rdfs:range orth:SequenceUnit (see Figure 2.5a). This statement means that the
values of orth:hasHomolog property can only be instances of orth:SequenceUnit
class.

• rdfs:domain is an instance of rdf:Property. It is used to state that any resource
that has a given property is an instance of one or more classes. For example,
orth:hasHomolog rdfs:domain orth:SequenceUnit (see Figure 2.5b). This state-
ment means that resources that assert the orth:hasHomolog property must be
instances of orth:SequenceUnit class.

• rdf:type is an rdf:Property that is used to state that a resource is an instance of
a class.

• rdfs:subClassOf is an rdf:Property to assert that all instances of one class are
instances of another. For example, if C1 rdfs:subClassOf C2 then an instance
of C1 is also an instance of C2 but not vice versa.

http://purl.obolibrary.org/obo/RO_0002162
http://www.w3.org/2000/01/rdf-schema#
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FIGURE 2.5: Examples of RDF/RDFS statements.

• rdfs:subPropertyOf is used to state that all resources related by one property
(i.e. the subject of rdfs:subPropertyOf) are also related by another (i.e. the ob-
ject of rdfs:subPropertyOf, the "super-property"). For example, all orthologous
relations are also homologous relations. Because of this, in the latest release
candidate of the Orthology ontology [24], it is stated that orth:hasOrtholog is
a sub-property of orth:hasHomolog. Figure 2.5c illustrates this statement.

2.3.4 Web Ontology Language (OWL)

The first level above RDF/RDFS in the Semantic Web stack (see Figure 2.2) is an
ontology language that can formally describe the meaning of resources8. If machines
are expected to perform useful reasoning tasks on RDF data, the language must go
beyond the basic semantics of RDF Schema. Because of this, OWL and OWL 2 (i.e.
Web Ontology languages) include more terms for describing properties and classes,
such as relations between classes (e.g. disjointness, owl:disjointWith), cardinality
(e.g. "exactly 2", owl:cardinality), equality (i.e. owl:equivalentClass), richer typing
of properties, characteristics of properties (e.g. symmetry, owl:SymmetricProperty),
and enumerated classes (i.e. owl:oneOf). The owl: prefix replaces the following URI
namespace: http://www.w3.org/2002/07/owl#.

As a full description of OWL and OWL 2 is beyond the scope of this chapter
we refer the interested reader to [47]. In the following, we focus solely on some
essential modeling features that the OWL languages offer in addition to RDF/RDFS
vocabularies.

• owl:Class is a subclass of rdfs:Class. Like rdfs:Class, an owl:Class groups in-
stances that share common properties. However, this new OWL term is de-
fined due to the restrictions on DL-based OWL languages (e.g. OWL DL and
OWL Lite; OWL 2 DL and its syntactic fragments EL, QL and RL). These re-
strictions imply that not all RDFS classes are legal OWL DL / OWL 2 DL
classes. For example, the orth:SequenceUnit entity in the ORTH ontology is
stated as an OWL class (i.e. orth:SequenceUnit rdf:type owl:Class Figure 2.5d
illustrates this axiom). Therefore, orth:SequenceUnit is also an RDFS class
since owl:Class is a subclass of rdfs:Class.

• owl:ObjectProperty is a subclass of rdf:Property. The instances of owl:Object-
Property are object properties that link individuals to individuals (i.e. members
of an owl:Class). For example, the orth:hasHomolog object property (see Fig-
ure 2.5e) relates one orth:SequenceUnit individual to another one. Figure 2.6a
illustrates this example.

8see https://www.w3.org/TR/owl-features/

http://www.w3.org/2002/07/owl#
https://www.w3.org/TR/owl-features/
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FIGURE 2.6: Examples of instances of orth:SequenceUnit and
orth:Gene and object and datatype property assertions.

• owl:DatatypeProperty is a subclass of rdf:Property. The instances of owl:Datatype-
Property are datatype properties that link individuals to data values. To illus-
trate a datatype property, we can mention the oma:ensemblGeneId (see Figure
2.5f and Figure 2.6b). This property asserts a gene identifier to an instance of
an orth:Gene.

Further information about OWL languages are available as World Wide Web
Consortium (W3C) recommendations in the OWL2 overview online 9 and the OWL
reference online 10.

2.3.5 RDF Serialization Formats

RDF is a graph based data model which provides a grammar for its syntax. Us-
ing this grammar, RDF syntax can be written in various concrete formats which are
called RDF serialization formats. For example, we can mention the following for-
mats: Turtle11, RDF/XML (an XML syntax for RDF)12 and JSON-LD (a JSON syntax
for RDF) footnotehttps://www.w3.org/TR/json-ld/. In this section, we will solely
focus on the Turtle format.

The Turtle language (TTL) allows for writing RDF graph in a compact textual
form. To exemplify this serialization format, let us consider the following turtle
document that defines the homologous and orthologous relations:

1 @prefix rdfs: <http :// www.w3.org /2000/01/ rdf -schema#> .
2 @prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .
3 @prefix owl: <http :// www.w3.org /2002/07/ owl#> .
4 @prefix orth: <http :// purl.org/net/orth#> .
5

6 # http :// purl.org/net/orth#SequenceUnit
7 orth:SequenceUnit rdf:type owl:Class .
8

9 orth:hasHomolog rdf:type owl:ObjectProperty ;
10 rdf:type owl:SymmetricProperty ;
11 rdfs:domain orth:SequenceUnit ;
12 rdfs:range orth:SequenceUnit .
13

14 orth:hasOrtholog rdf:type owl:ObjectProperty ;
15 rdfs:subPropertyOf orth:hasHomolog .

9https://www.w3.org/TR/owl2-overview/
10https://www.w3.org/TR/owl-ref/
11http://www.w3.org/TR/turtle/
12https://www.w3.org/TR/rdf-syntax-grammar/

https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdf-syntax-grammar/
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This example introduces many of features of the Turtle language: @prefix and
prefixed names (e.g. @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>); predi-
cate lists separated by ";" (e.g. orth:hasOrtholog rdf:type owl:ObjectProperty; rdfs:sub-
PropertyOf orth:hasHomolog.); comments prefixed with "#" (e.g. # http://purl.org/
net/orth#SequenceUnit ) and a simple triple where the subject, predicate and ob-
ject are separated by white spaces and ended with a "." (e.g. orth:SequenceUnit rdf:type
owl:Class.).

Further details about TTL serialization is available as a W3C recommendation in
the Turtle recommendation online 13.

2.3.6 Querying the Semantic Web with SPARQL

Once we have defined the knowledge base (TBox and ABox), how can we use it to
retrieve relevant data? Similar to SQL for relational databases, data in RDF stores
can be accessed by using a query language. One of the main RDF query languages,
especially used in the field of life sciences, is SPARQL 14. A SPARQL query essen-
tially consists of a graph pattern, namely, conjunctive RDF triples, where the values
that should be retrieved (the unknowns either subjects, predicates, or objects), are
replaced by variable names, prefixed by "?". Looking again at the previous example,
if we want to get the description of the "HBB" protein from OMA, we would simply
use a graph pattern, where the value of the ’description’ the one we want to retrieve
is replaced by a variable as follows:

1 SELECT ?description WHERE {
2 ?protein oma:geneName "HBB".
3 ?protein biositemap:description ?description.
4 }

The choice of variable name itself is not important (we could have used "?x",
"?var", etc. as well, albeit with a loss of readability). Essentially, we are interested in
the description of a protein about which we only know a name "HBB".

2.4 Modeling Biological Databases with Semantic Web Tech-
nologies

In this section we show a concrete example of how we can use Semantic Web tech-
nologies to model the two biology databases Bgee and OMA.

Figure 2.7 illustrates a fragment of a candidate ontology describing the relational
database sample from Bgee (see Figure 2.1). The ellipses illustrate classes of the
ontology, either specific to the Bgee ontology, such as AnatomicEntity (the equiv-
alent of the anatEntity table in the relational view), or classes from imported on-
tologies, such as the Taxon class (the prefix "up:" denoting the UniProt ontology,
http://purl.uniprot.org/core/). The advantage of using external (i.e. imported)
classes is that integration with other databases which also instantiate these classes
will be much simpler. For example, we will see that the class Gene serves as the
"join point" between OMA and Bgee. Arrows define properties of the ontology: ei-
ther datatype properties (similar to attributes of a table in the relational world), such
as the speciesName or the stageName, or object properties, which are similar to
Primary-Key/Foreign-Key relationships, given that they link instances of one class
to those of another. If we compare Figure 2.7 (the ontology view) against Figure

13http://www.w3.org/TR/turtle/
14see https://www.w3.org/TR/rdf-sparql-query/

http://purl.org/net/orth#SequenceUnit
http://purl.org/net/orth#SequenceUnit
http://purl.uniprot.org/core/
http://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdf-sparql-query/
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FIGURE 2.7: A portion of the ontology defined over the relational
database sample from Bgee. For readability purposes, we omitted

the namespace ("bgee:") for the ontology properties.

2.1 (the relational view), we notice that the object properties isExpressedIn and is-
AbsentIn only appear explicitly in the ontology. This is because the values of these
properties will actually be calculated on-the-fly, from multiple attributes in the re-
lational database. Given that Bgee is mainly used to query gene expression, these
properties are exposed as new semantic properties in the domain ontology, namely
expression or absence of expression of a gene in a particular anatomic entity. This
is one of the means through which the semantic layer can not only describe, but
also enrich the data available in the underlying layers (in this case, in the relational
database). The domain of both the isExpressedIn and isAbsentIn properties is in this
case a Gene, while the range is an anatomic entity, such that triples that instantiate
this relationship will have the structure: <Gene, isExpressedIn, AnatomicEntity>.

Given that the OMA ontology is significantly larger than the one for Bgee, we
only show here the class hierarchy in Figure 2.8. The most important concepts in the
ontology are shown in the top right corner, namely, the Cluster of Orthologs and the
Cluster of Paralogs, which store information about gene orthology (or paralogy) in a
hierarchical tree structure (the Gene Tree Node). Similarly to the Bgee ontology, the
Gene class in OMA is external. Arrows indicate the "rdfs:subClassOf" relationship
for example, both the ’Cluster of Orthologs’ and the ’Cluster of Paralogs’ classes are
subclasses of the ’Cluster of Homologs’ class. For a description of the ontology, as
well as a discussion regarding its design within the Quest for Orthologs Consortium,
we point the reader to [24]. Furthermore, the ontology can be explored or visualized
in WebVOWL [48] using the web page of the OMA SPARQL Endpoint [12] available
online at https://sparql.omabrowser.org/sparql.

Until here we have explored a few relatively simple examples in order to get fa-
miliar with the basics of Semantic Web technologies (URIs, RDF triples and SPARQL).
However, we can now introduce a more complex query, that will better illustrate the
expressivity of the SPARQL query language for accessing RDF stores that is, for in-
tegrating and joining data across different databases.

Since all RDF stores structure data using the same standard model for data inter-
change, the main requirements in order to efficiently join multiple sources are:

https://sparql.omabrowser.org/sparql
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FIGURE 2.8: The class hierarchy of the OMA ontology. Ellipses indi-
cate class labels, while arrows indicate the "rdfs:subClassOf" property.

Further details are available in [24].

1. that they each expose data through a SPARQL endpoint that supports federa-
tion (SPARQL 1.1) and

2. that the sources share URIs or ontologies.

This is the reason why already today we can jointly query for example OMA
and UniProt – essentially, integrating the two databases by means of executing a
federated SPARQL query.

To illustrate this, let us consider the following example: what are the human genes
available in the OMA database, that have a known association with leukemia? OMA does
not contain any information related to diseases, however, UniProt does. In this case,
since OMA already cross-references UniProt with the oma:xrefUniprot property, we
can write the federated SPARQL query shown in listing 2.4, which will be running
at the OMA SPARQL endpoint:

1 select distinct ?proteinOMA ?proteinUniProt
2 where {
3 service <http :// sparql.uniprot.org/sparql > {
4 ?proteinUniProt a up:Protein .
5 ?proteinUniProt up:organism taxon :9606 . # Homo Sapiens
6 # annotations of this protein entry
7 ?proteinUniProt up:annotation ?annotation .
8 ?annotation rdfs:comment ?text.
9 # only those containing the text "leukemia"

10 filter(regex(str(?text), "leukemia ") )
11 }
12

13 ?proteinOMA a orth:Protein.
14 ?proteinOMA oma:xrefUniprot ?proteinUniProt.
15 }

We skip the details regarding the prefixes used in the example and focus on
the new elements in the query. The main part to point out is the block "service
<http://sparql.uniprot.org/sparql>", delimited between the inner brackets. This enables
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using the SPARQL endpoint of UniProt remotely, as a service. Through this mech-
anism, the query will first fetch from UniProt all instances of proteins that are an-
notated with a text that contains "leukemia" (this is achieved by the filter keyword
in the service block). Then, using the cross-reference oma:xrefUniprot property, the
query will return all the equivalent entries from OMA. From here, the user can ex-
plore, either in the OMA browser or by further refining the SPARQL query, other
properties of these proteins: for example, their orthologs in a given species available
in the database. For a survey of federation techniques for RDF data, we refer the
reader to [49].

The mechanisms illustrated so far, while indeed powerful for federating distinct
databases, have a major drawback: they require the user to know the schema of
the databases (otherwise, how would we know which properties to query in the
previous examples?) and, more importantly, they require all users to be familiar with
a technical query language, such as SPARQL. While very expressive, formulating
such queries can quickly become overwhelming for non-programmer users. In the
following, we will look at techniques that aim to overcome these limitations.

2.5 Ontology-Based Integration of Heterogeneous Data Stores

So far we have seen some of the alternatives available for storing biological data
relational databases and triple stores. In this section, we look at how these hetero-
geneous sources can be integrated and accessed in a unified, user-friendly manner,
that does not require knowledge of the location or structure of the underlying data,
nor of the technical language (SQL or SPARQL) used to retrieve the data. The ar-
chitecture we present is inspired by work presented in [1], which focused strictly on
keyword search in relational databases.

2.5.1 A System’s Perspective

We start with a bottom-up description of the layers that make up an integrated
data access system, followed by a concrete example using the two bioinformatics
databases introduced above: the orthology database OMA, and the gene expression
database Bgee.

The main four layers of an integrated data access system, as shown in Figure 2.9,
are:

1. Base Data Layer

This represents the physical storage layer, where all the actual data, for ex-
ample experimental results, annotations, etc. are kept. Figure 2.1 illustrates
only a few of the possible storage types, namely relational databases, hierar-
chical data stores (e.g. HDF5) and RDF stores. At this low-level layer, the data
are usually structured so as to optimize machine parameters, such as storage
space, complexity of joins required to answer physical queries etc. Therefore,
it is not designed for human readability. Furthermore, tables, column names
or even IDs may not match any real terms. For example, the Bgee relational
database uses the table name ‘anatEntity’ to refer to the term ‘Anatomic Entity’,
while others may be even further away from the original terms.

2. Data Model Layer

This layer is used to describe, at a higher level of abstraction, the data con-
tained in the physical storage. Here, for example, original names for terms are
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FIGURE 2.9: Integrated Data Access System.

recovered, while also creating a mapping between these higher level terms
(‘Anatomical Entity’) and their corresponding physical layer location (table
‘anatEntity’ in schema Bgee). The data model layer can be viewed as the first
semantic layer in the system, as it allows representing the actual terms referred
to in the underlying physical storage, while abstracting away the details of the
actual structure of the physical storage. The data model layer can be under-
stood as an ontology, however, only applicable to the level of an individual
database.

3. Integration Layer

The integration layer performs a similar task to the data model layer, in that it
defines a mapping between high-level concepts (‘Anatomical Entity’) and all
the occurences where these concepts can be found in the physical storage (ta-
ble ‘anatEntity’ in schema Bgee, class ‘Anatomic Entity’ in UniProt, etc.). In
doing so, the integration layer also aligns the different data models, by defin-
ing which identifiers from one data model correspond to which ones from the
others. In the case of biological databases, this is usually done by taking into
account cross-references, which already exist between most databases, as we
have seen in the SPARQL query in Section 2.4.

While the data model layer can be seen as a local ontology, the integration
layer will serve as a global ontology. The integration layer can be queried
using, for example, SPARQL. However, in order to get the results from the
underlying sources, the SPARQL query needs be translated in the native query
languages of the underlying sources (e.g. SQL for relational databases). This is
achieved by using the mappings defined in the global ontology. For example,
the keyword "expressed in" does not have a direct correspondence in Bgee, but
it can be translated into an SQL procedure (in technical terms, it represents an
SQL view of the data). Without going into details, at a high-level, the property
"gene A expressed in anatomic entity B" will be computed by looking at the
number of experiments stored in the database, showing the expression of A
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in B. It is conceivable that in another database, which could also form part
of the integrated system, this information is available explicitly. In this case
the mapping would simply be a 1-to-1 correspondence to the property value
stored in the database. The role of the integration layer is to capture all the
occurrences where a certain concept (entity or property) can be found, along
with a mapping for each of the occurrences, defining how information about
this concept can be computed from the base data.

To summarize, the integration layer abstracts away the location and structure
of data in the underlying sources, providing users a unified access through
a global ontology. One of the drawbacks of this approach is that, in the lack
of a presentation layer, such as a user-friendly query interface (e.g. a visual
query builder or a keyword-based search interface), the data represented in
the global ontology is accessible mainly through a technical query language,
such as SPARQL. Therefore, in order to be able to access the data, users are
required to become fluent in the respective query language.

It is worth mentioning that most data integration systems available at the time
of this writing only offer the three layers presented so far. Examples of such
systems, generically denoted as Ontology Based Data Access Systems (OBDA),
are Ontop [50], Ultrawrap [51], or D2RQ [52].

4. Presentation Layer

The three layers presented so far already achieve data integration, but with a
significant drawback: the user is required to know a technical query language,
such as SPARQL. The role of the Presentation Layer is to expose data from all
integrated resources in an easy to access, user-friendly manner. The presen-
tation layer abstracts away the structure of the integration layer and exposes
data through a search interface that users (including non-programmers) are
familiar with, such as keyword search [1], [53], or even full natural language
search [54], [55].

The challenges in building the presentation layer are many-fold: first, hu-
man language is inherently ambiguous. As an example, let us assume a user
asks "Is the HBB gene expressed in the blood?". What does the user mean? The
hemoglobin gene (HBB) in general? Or just in the human? The system should
be proactive in helping the user clarify the semantics or intents of the question,
before trying to compute the underlying SPARQL query. Second, the presen-
tation layer should provide not only raw results, but also an explanation for
example, what sources were queried, how many items from each source have
been processed in order to generate the response etc. This enables the user to
validate the generated results or to otherwise continue refining the question.
Third, the presentation layer must also rank the results according to some rele-
vance metric, similarly to how search results are scored in web search engines.
Given that the number of results retrieved from the underlying sources can
easily become overwhelming (for example, searching for "HBB" in Bgee re-
turns over 200 results), it is important that the most relevant ones are shown
first.

From a technical point of view, the presentation layer maintains an index (i.e.,
the vocabulary) of all keywords stored in the lower-layers, both data and meta-
data (descriptions, labels, etc.), such that each keyword in a user query can be
mapped to existing data in the lower layers. An important observation is that
the presentation layer highly relies on the quality of the annotations available
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FIGURE 2.10: A sample global ontology for integrating OMA & Bgee
and an example assertion.

in the lower layers. In the lack of human readable labels and descriptions in
the global ontology, the vocabulary collected by the presentation layer will
miss useful terms that the user might search for. One way to detect and fix
this problem is to always log user queries and improve the quality of the an-
notations "on demand", whenever the queries cannot be solved due to missing
items in the vocabulary. For a more extended discussion on the topic of labels
and their role in the Semantic Web, refer to [56].

Finally, it is worth noting that none of these layers need to be centralized –
indeed, even in the case of the integration layer, although its role is to build a
common view of all data in the physical storage, it can be distributed across
multiple machines, just as long as the presentation layer knows which machine
holds which part of the unified view.

2.5.2 A Global Ontology to Unify OMA and Bgee

So far we have seen an abstract view of a system for data integration across hetero-
geneous databases. It is time to look at how this translates into a real-world example,
using the Bgee relational database and the OMA RDF database.

The top part of Figure 2.10, the Terminological Box, illustrates part of the global
ontology (layer 3, Integration Layer) for the two databases, with most of the terms
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being part of OMA, except for Anatomic Entity, which is specific to Bgee. As men-
tioned previously, OMA extends the ORTH ontology, which is why the correspond-
ing terms in the ontology are prefixed with "orth:". The Gene concept can actually
be found in both Bgee and OMA, therefore the global ontology will define map-
pings to both sources. As we can see in the ontology, the Gene is the common point
that joins together OMA and Bgee. The gene IDs used in both databases are En-
sembl IDs [57], stored in the ensemblGeneId string property. For example, the hu-
man hemoglobin gene, "HBB", which we previously showed as an example entry in
OMA, corresponds to the ENSG00000244734 Ensemble ID, and can also be found in
Bgee.

The lower part of Figure 2.10, the Assertional Box, illustrates an example asser-
tion – in this case, that the protein HUMAN22168 in OMA is orthologous to the
protein HORSE13872 and that furthermore, this protein is encoded by the gene with
the Ensemble ID ENSG000001639936. Moreover, this gene is expressed in the brain
(the Uberon ID for this being "UBERON:0000955"). The human readable description
is stored in the String literal label as, for example, the name of the anatomic entity,
"brain", shown in the bottom-right corner in the figure. Without labels, much of the
available data would not be easily searchable by a human user, nor by an informa-
tion retrieval system.

Note that with this sample ontology we can already answer questions related
to orthology and gene expression jointly, such as the first part of our introductory
query: "What are the human-rat orthologs, expressed in the liver. . . ?". This ques-
tion essentially refers to pairs of orthologous Genes (those in human and rat), and
their expression in a given Anatomic Entity (the liver). Apart from the Species class,
which is not explicitly shown, all of the information is already captured by the on-
tology in Figure 2.10. A similar mechanism can be used to further extend this to
UniProt (for instance, based again on gene IDs as the "join point", or by using exist-
ing cross-references, as we have shown in the previous section), therefore enabling
users to ask even more complex queries.

2.5.3 How to Link a Database with an Ontology?

One of the main challenges in implementing technologies for the Semantic Web was
recognized from early on (see the study published in 2001 by Calvanese et al [58])
to be the problem of integrating heterogeneous sources. In particular, one of the
observations made was that integrating legacy data will not be feasible through a
simple 1-to-1 mapping of the underlying sources into an integrative ontology (e.g.
mapping all attributes of tables in relational databases to properties of classes in an
ontology), but rather through more complex transformations, that map views of the
data into elements of the global ontology [58].

To illustrate this with a concrete example, let us consider again the unified ontol-
ogy for OMA and Bgee that we introduced in the previous section. Although Figure
2.10 shows properties such as "gene isExpressedIn" or "gene hasOrtholog", this data
is actually not explicitly stored in the underlying databases, but rather needs to be
computed on-the-fly based on the available data. For example, the "isExpressedIn"
property can be computed based on the number of experiments which show the ex-
pression of a gene in a certain anatomic entity in Bgee. Deciding the exact threshold
for when a gene is considered as "expressed" according to the data available is not
straightforward and needs to be agreed upon by domain specialists. Therefore, the
integration layer will also serve to enrich the data available in the underlying layers,
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by defining new concepts based on this data (e.g. the presence or absence of gene
expression in an anatomic entity).

At this point it is worth clarifying an important question: why are mappings
necessary? Why is it not enough to replicate the data in the different underlying
formats into a single, uniform way (for example, translate all RDB data into RDF)?
The answer is that not only would such a translation require a lot of engineering
effort, but more importantly, it would transform the data from a format that is highly
optimized for data access, into a format that is optimized for different purposes (data
integration and reasoning). Querying relational databases still is, today, the most
efficient means of accessing very large quantities of structured data. Transforming
all of it into RDF would in many cases mean downgrading the overall performance
of the system. In some cases storing RDF data in the relational format was proven to
be more efficient [59].

So how are mappings then created? One of the main mechanisms to achieve
this is currently the W3C standard R2RML, available as a W3C recommendation on-
line15. R2RML enables mapping relational data to the RDF model, as chosen by the
programmer. For a concrete example of how mappings can be defined and what are
the advantages of this approach, we refer the reader to [60]. A mapping essentially
defines a view of the data, which is a query (in this case, an SQL query) that allows
retrieving a relevant portion of the underlying data, in order to answer a higher-level
question (e.g. what is "expressed in"?). The materialization of this query (the answer)
will be returned in RDF format, on-demand, according to the mapping. This avoids
duplicating or translating data in advance from the underlying relational database
into RDF until it is really needed, in order to answer a user query.

For a discussion regarding the limitations of R2RML and alternative approaches
to define mappings from relational data to RDF, we refer the reader to [61].

2.5.4 Putting Things Together

So far we have seen how individual sources can be represented into a single, unified
ontology and we had a high-level view of a data access system that enables users to
ask queries and get responses in a unified way, without knowledge of where data
is located or how it is structured. In this section we finally look at how all of these
components can work together in answering natural language queries on biological
databases. Although there are multiple alternatives to natural language interfaces,
including visual query interfaces, or keyword-based search interfaces, it has been
showed that natural language interfaces are the most appropriate means to query
Semantic Web data for non-technical end-users [5]. As a consequence, natural lan-
guage querying, based on semantic web technologies, is currently one of the active
areas of research, examples of recent systems implementing an ontology-based nat-
ural language interface including the Athena [54] and TRDiscover [55] systems.

First, recall the user question we formulated in the beginning of this chapter:
"What are the human-rat orthologs, expressed in the liver, that are associated with
leukemia?" Let us assume the resources at hand to answer this question are the bio-
logical databases OMA, Bgee and UniProt. The four main steps required to translate
the natural language question into the underlying query languages of OMA, Bgee
and UniProt will be:

a) Identify entities in the query

15https://www.w3.org/TR/r2rml/

https://www.w3.org/TR/r2rml/
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This is the inverted index search, which extracts the main terms the user is
interested in, based on the keywords of the input query: orthologs, human,
rat, expressed, liver, associated, leukemia.

b) Identify matches of the entities in the integrative ontology

In this step, also known as entity linking, the extracted terms will be searched
for in the vocabulary of the presentation layer, resulting in one or multiple
URIs, given that a keyword can match multiple concepts. For example, the
keyword ‘orthologs’ can match either the entity ‘OrthologCluster’ or the prop-
erty ‘hasOrtholog’ of a gene in OMA. The index of the presentation layer will
also return the location the URI originates from (OMA or Bgee or UniProt).

c) Construct sub-queries for each of the matches

The extracted URIs will be used to construct subqueries on each of the under-
lying data sources. This step requires translating the original query into the na-
tive language of each underlying database, with specific mechanisms for each
type of database (relational or triple store). At a high-level, the translation pro-
cess involves finding the minimal sub-schema (or sub-graph in the case of RDF
data) that covers all the keywords matched from the input query. Taking the
example previously shown in Figure 2.10, the minimal subgraph that contains
"orthologs" and "expressed" will essentially contain only 2 nodes of the entire
graph: Gene (which is both the domain and the range of the "hasOrtholog"
property in the Orthology Ontology) and AnatomicEntity (which is the range
of the "isExpressedIn" property in the Bgee ontology). All the unknowns of the
query (for example, which ortholog genes) are replaced by variables. The final
sub-queries for OMA and Bgee might therefore (informally) look like this:

1 # OMA:
2 select ?gene1 ?gene2 where {
3 ?protein1 a Protein.
4 ?protein1 inTaxon "Homo Sapiens ".
5 ?protein1 isEncodedBy ?gene1.
6 ?protein1 hasOrtholog ?protein2.
7 ?protein2 inTaxon "Rattus Norvegicus ".
8 ?protein2 isEncodedBy ?gene2.
9 }

Note that we have simplified the actual query for readability purposes (using
the literals "Homo Sapiens" and "Rattus Norvegicus" instead of their corre-
sponding URIs). This subquery will cover the keywords: ortholog, human,
rat. Notice that the query should return genes, not proteins, because the join
point between OMA and Bgee is the Gene class.

1 # Bgee:
2 select ?gene where {
3 ?gene a Gene.
4 ?gene isExpressedIn ?anatomicEntity.
5 ?anatomicEntity rdfs:label "liver ".
6 }

This subquery will therefore cover the expressed and liver keywords. The final
step will be then to get the similar subquery for UniProt (which we omit here
for brevity) and to compute the joint result, namely, the intersection between
all the sets returned by the subqueries.

d) Join the results from each of the subqueries
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This final step is essential in keeping the performance of the system to an ac-
ceptable level. Joining (federating) the results of several subqueries into a uni-
fied result is not an easy task and requires a careful ordering of the operations
from all subqueries. To understand this problem, let us consider again our ex-
ample and try to see how many results each of the subqueries will return. First,
if we take a look at the OMA browser and try to find all orthologs between hu-
man and rat, this will amount to more than 21,000 results. However, is the user
really interested in all of them? Certainly not, as the input query shows – the
user is only interested in a small fraction of the orthologs, namely those that
are expressed in the liver and have an association with leukemia (according to
the data stored in Bgee and UniProt). How many are these? If we now refer to
UniProt and look for the disease leukemia, we will find that there are only 20
entries which illustrate the association with this disease. Clearly, getting only
the orthologs of these 20 entries will be much more efficient than retrieving all
21,000 pairs from OMA first, and then removing most of them to only keep
relevant ones.

However, note that in this case, we only know this information because we
constructed the queries and tried them out by hand first. How should the sys-
tem estimate the number of results (i.e. the cardinality of each subquery) in
advance? This question has been an active area of research for a long time.
Some of the methods used to tackle this problem are either to pre-compute
statistics regarding the number of results available in different tables of the
underlying sources [62], or to use statistics regarding previously asked queries
to optimize the new ones, for example via statistical machine learning [63].
In the first case, we would, for instance, store the individual counts of differ-
ent orthologous pairs, while also keeping statistics about diseases if we expect
these types of questions to be asked frequently, whereas in the second case we
would simply look at the number of results similar subqueries generated in the
past, to optimize which results to fetch first. For a recent study of optimization
methods for federated SPARQL queries, see [64].

e) Present the final results to the user

Finally, the joined results are returned to the user, ideally along with an expla-
nation regarding the constructed query and the entities that were matched in
order to construct it. In this way, the user has the opportunity to validate the
correctness of the answer or otherwise to further refine the question.

For a more in-depth discussion regarding natural language query interfaces
in ontology-based data access systems, we refer the reader to Athena [54] and
TRDiscover [55].

2.6 Timeline of Ontology-Based Data Integration Milestones
in Life Sciences

The field of Life Sciences has been an early adopter of Semantic Web technologies,
due to the need of interoperability and integration of biological data spread across
different databases. In this section, we provide a brief timeline (summarised in Fig-
ure 2.11), including the example ontologies introduced in this chapter.

1995: Davidson et al. [65] suggest basic steps to integrate bioinformatics data
(common data model, match semantically related objects, schema integration, trans-
form data into federated database, match semantically equivalent data).
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FIGURE 2.11: A selective timeline of data integration efforts in the
Life Sciences

2000: TAMBIS (Transparent Access to Multiple Bioinformatics Information Sources)
[66] proposes a unified ontology covering many aspects of the bioinformatics knowl-
edge space.

2000: The "Gene Ontology a tool for the unification of biology" [41] is the first sig-
nificant milestone in unifying diverse biological databases, focusing on gene func-
tions. Even before the publication of the Semantic Web paper by Tim Berners Lee (in
the following year), the GO highlighted the benefits of controlled vocabularies and
standardized naming, both precursors of Semantic Web technologies, which were
adopted in the GO in the year 2002 [67]. Today it is, arguably, the most comprehen-
sive resource of computable knowledge regarding gene functions and products.

2001: Launch of the BioMoby project [68] providing a unified registry of Web
Services for life scientists using a consensus driven approach. It listed, for instance,
all services converting gene names to GO terms, or all databases accepting GO terms.
The registry is currently no longer maintained.

2003: A Nature Reviews Genetics article on Integrating biological databases [69]
highlights the "database surfing" problem (i.e. the time-consuming process of man-
ually visiting multiple databases to answer complex biological research questions),
and argues for standardized naming of biological objects to overcome the problem.
Link integration, view integration and data warehousing are proposed for data inte-
gration. Arguably, link integration has since become the most adopted solution.

2003: Launch of UniProt [70] by the UniProt Consortium, a collaboration be-
tween the Swiss Institute of Bioinformatics (SIB), the European Bioinformatics Insti-
tute (EBI), and the Protein Information Resource (PIR). UniProt is the world’s most
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comprehensive freely accessible resource on protein sequences and functional anno-
tation. Since 2008 the data is published in RDF, and since 2013 a SPARQL endpoint
is provided [71].

2004: The first International Workshop on Data Integration in the Life Sciences,
held in Leipzig, promotes "a Bioinformatics Semantic Web" and highlights solutions
for heterogeneous data integration. The workshop continues to be held every year
and its proceedings (e.g. [72]) provide a good overview of advances in the field.

2005: The W3C Consortium launches the Semantic Web Health Care and Life
Sciences Interest Group (HCLS IG) to develop the use of Semantic Web technologies
to improve Health Care and Life Science research. Today, the HCLS Linked Data
Guide16 provides best practices for publication of biological Linked Data on the Web.

2006: The OBO Foundry [44] establishes principles for ontology development
and evolution to support biomedical data integration through a suite of orthogonal
interoperable reference ontologies.

2006: Publication of the Ontology Lookup Service (OLS), a repository for biomed-
ical ontologies with the aim to provide a single point of access (with controlled vo-
cabulary queries) to the latest ontology versions. It allows interactive browsing, as
well as programmatic access [73].

2007: Launch of the National Center for Biomedical Ontology (NCBO) BioPortal
[74], a web portal to biomedical ontologies. OBO ontologies are a central component.
The portal started with 50 ontologies; to date it is the most comprehensive repository
with currently 852 biomedical ontologies and more than 8 million classes.

2008: Launch of the BioMoby Consortium [75] and the first release of the BioMoby
Semantic Web Service, at the time providing interoperable access to over 1400 bioin-
formatics resources worldwide.

2008: BioGateway [76] provides a single SPARQL entry point to all OBO can-
didate ontologies, the GO annotation files, the SWISS-PROT protein set, the NCBI
taxonomy, and several in-house ontologies.

2008: The Briefings in Bioinformatics Journal launches a special issue dedicated
to Database Integration in Life Sciences [77], acknowledging the major challenge of
integrating data scattered over millions of publications and thousands of heteroge-
neous databases.

2008: Bio2RDF [78] applies semantic web technology to various publicly avail-
able databases (converting them into RDF format, and linking with normalized URIs
and a common ontology). Updates continue to be provided for increased interoper-
ability among bioinformatics databases [79], [80]

2009: Briefings in Bioinformatics publishes a review on Biological Knowledge
Management [81], highlighting the transforming role of ontologies and Semantic
Web technologies in enabling knowledge representation and extraction from hetero-
geneous bioinformatics databases.

2010: NCBO launches a SPARQL endpoint, available at http://sparql.bioontology.
org/.

2012: Publication of a survey highlighting the benefits of integration using Se-
mantic Web technologies in the field of Integrative Biology [82]

2016: Publication of the Orthology Ontology [24].

16see https://www.w3.org/2001/sw/hcls/notes/hcls-rdf-guide/

http://sparql.bioontology.org/
http://sparql.bioontology.org/
https://www.w3.org/2001/sw/hcls/notes/hcls-rdf-guide/
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2.7 Conclusions and Outlook

Data integration is arguably one of the most important enablers of new scientific
discoveries, given that research data is currently growing at an unprecedented rate.
This is especially true in the case of biological databases. While data integration
poses many challenges, the emergence of standards, integrative ontologies, as well
as the availability of cross-references between many of the biological databases make
the problem easier to tackle. This chapter has provided a brief introduction to the
methods that can be used to integrate heterogeneous databases using Semantic Web
Technologies, while also providing a concrete example of achieving this goal for
three well-known existing biological databases: OMA, Bgee and UniProt.

Although there would be many more aspects to cover and much of the work
for achieving wide-scale data integration still remains to be done, I would like to
end this chapter by reinforcing the following conclusion, extracted from a study of
Biological Ontologies for Biodiversity Knowledge Discovery [83]:

"We hope that current work will spur interest and feedback from scientists and
bioinformaticians who see data integration, interoperability, and reuse as the so-
lution to bringing the past 300 years of biological exploration of the planet into
currency for science and society."
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Chapter 3

Enabling Federated Queries Across
Bioinformatics Databases

Data integration promises to be one of the main catalysts in enabling new insights
to be drawn from the wealth of biological data available publicly. However, the
heterogeneity of the different data sources, both at the syntactic and the semantic
level, still poses significant challenges for achieving interoperability among biologi-
cal databases.

We introduce an ontology-based federated approach for data integration1. We
applied this approach to three heterogeneous data stores that span different areas
of biological knowledge: 1) Bgee, a gene expression relational database; 2) OMA, a
Hierarchical Data Format 5 (HDF5) orthology data store, and 3) UniProtKB, a Re-
source Description Framework (RDF) store containing protein sequence and func-
tional information. To enable federated queries across these sources, we first defined
a new semantic model for gene expression called GenEx. We then show how the re-
lational data in Bgee can be expressed as a virtual RDF graph, instantiating GenEx,
through dedicated relational-to-RDF mappings. By applying these mappings, Bgee
data are now accessible through a public SPARQL endpoint. Similarly, the mate-
rialised RDF data of OMA, expressed in terms of the Orthology ontology, is made
available in a public SPARQL endpoint. We identified and formally described inter-
section points (i.e. virtual links) among the three data sources. These allow perform-
ing joint queries across the data stores. Finally, we lay the groundwork to enable
non-technical users to benefit from the integrated data, by providing a natural lan-
guage template-based search interface, BioQuery.

Project URL: http://biosoda.expasy.org,
Project code: https://github.com/biosoda/bioquery

3.1 Introduction

One key promise of the postgenomic era is to gain new biological insights by in-
tegrating different types of data [e.g. 84, 85]. For instance, by comparing disease
phenotypes in humans with phenotypes produced by particular mutations in model
species, it is possible to infer which human genes are involved in the disease [4].

A wealth of biological data is available in public data repositories; over one
hundred key resources are featured in the yearly Nucleic Acids Research annual
database issue [3]. However, these databases vary in the way they model their data
(e.g. relational, object-oriented, or graph database models), in the syntaxes used to

1Parts of this chapter have been published in the Database journal [6]

http://biosoda.expasy.org
https://github.com/biosoda/bioquery
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represent or query the data (e.g. markup or structured query languages), and in their
semantics. This heterogeneity poses challenges to integrating data across different
databases.

Ontologies have been widely used to achieve data integration and semantic data
exchange [86–93]. In this thesis, by ontology, we adopt the broadly accepted defini-
tion in data and knowledge engineering of “a formal, explicit specification of a shared
conceptualization” [94]. The relevance of ontologies in life sciences can be illustrated
by the fact that repositories such as BioPortal [95] contain more than seven hundred
biomedical ontologies, and the OBO Foundry [96] more than 170 ontologies. More-
over, major life-sciences databases use ontologies to annotate and schematize data,
such as UniProt [97] or ChEBI [98]. Ontologies are important to enable knowledge
sharing.

Currently, however, even when resources describe their data with ontologies,
aligning these ontologies and combining information from different databases re-
main largely manual tasks, which require intimate knowledge of the way the data is
organised in each source. This is despite a plethora of existing literature on data inte-
gration approaches, in particular in biological research (surveys of these approaches,
as well as the challenges involved, include [99–101]). Projects such as KaBOB [102],
Bio2RDF [78] and Linked Life Data [103] link different life science resources using
a common ontology and data conventions. However, their centralised architecture
makes it difficult to remain up-to-date and to scale up. For example, when querying
the number of UniProt protein entries over the outdated and centralised Linked Life
Data approach, we can only count around 10% of the 230 million entries that are in
the current UniProt release (see Supplementary Material Section A.1 for further ex-
planations). To avoid this issue, federated approaches have recently been proposed
[104–107], but to the best of our knowledge, none of them proposes a vocabulary
and patterns to extensively, explicitly and formally describe how the data sources
can be interlinked further than only considering “same as”-like mappings; in effect,
they put the burden on the users to find out precisely how to write a conjunctive
federated query. An emerging research direction entails automatically discovering
links between datasets using Word Embeddings [108]. We did not pursue this ap-
proach, given that it is computationally expensive and that for our study writing the
relational-to-RDF mappings proved more straightforward. However, Word Embed-
dings would be important for the case of integrating more data sources for which
the connecting links (join points) are not clearly known.

To address the problem of semantic, syntactic and data model heterogeneity, we
propose an ontology-driven linked data integration architecture. We apply this ar-
chitecture to build a system that federates three bioinformatics databases containing:
evolutionary relationships among genes across species (OMA), curated gene expres-
sion data (Bgee), and biological knowledge on proteins (UniProt). In Supplementary
Material, we summarise the key data provided by Bgee, OMA and UniProt (Table
A.3). Each of the three databases uses a different technical approach to store in-
formation: a Hierarchical Data Format 5 (HDF5, http://www.hdfgroup.org/HDF5/) data
store for OMA [109]; a relational database for Bgee [11]; and a Resource Descrip-
tion Framework (RDF) store for UniProt [97]. Our main contribution is to enable re-
searchers to jointly query (i.e. conjunctive queries) the three heterogeneous databases
using a common query language, by introducing and leveraging “virtual links” be-
tween the three sources. Furthermore, we show how relational data can be made
interoperable with RDF data without requiring the original relational data to be du-
plicated into an RDF storage engine. This can be achieved by constructing dedicated
relational-to-RDF mappings, allowing the unmodified original data to be queried

http://www.hdfgroup.org/HDF5/
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via the structured query language SPARQL [110]. In our proposed architecture, we
illustrate this through the example of the Bgee relational database.

Moreover, for the purpose of building the federated data access system, we make
the following additional contributions: (i) a semantic model for gene expression; (ii)
an extension and adaptation of the Vocabulary of Interlinked Datasets (VoID) [111];
(iii) public SPARQL 1.1 [110] query endpoints for OMA and Bgee; and (iv) a user-
friendly search interface based on an extensible catalogue of query templates in plain
English.

This chapter is structured as follows. In Section 3.2, we describe the individual
databases, as well as our approach and the semantic models used in this work. In
Section 3.3, we provide the implementation details of the three layers of our pro-
posed architecture (data store, structured query interface, and application). In Sec-
tion 3.4, we evaluate the performance of the system on a catalogue of 12 representa-
tive federated biological queries. We conclude with a discussion and outlook.

3.2 System and Methods

To understand more concretely the problem of integrating data from multiple sources,
consider the following motivating example: “What are the human genes which have a
known association to glioblastoma (a type of brain cancer) and which furthermore have an
orthologous gene expressed in the rat’s brain?”. To answer this question, we would need
to integrate information currently found in different databases:

1. Human proteins associated with glioblastoma can be obtained from UniProt
Knowledge Base, a database providing a comprehensive, high-quality sequence
and functional information on proteins [97]. In the rest of the chapter, we will
use the name “UniProt” for readability.

2. The orthologs of these proteins in the rat can be obtained from OMA (Orthol-
ogous Matrix), a database of orthology inferences [109]. Orthologs are genes
in different species that evolved from a common ancestral gene by speciation.
The orthologs are normally thought to retain the same function in the course
of evolution. Other homology information, such as one-to-one orthology or
paralogy, can be derived from the Hierarchical Orthologous Groups (HOGs)
data structure [92, 112].

3. The genes expressed in the rat brain can be obtained from Bgee, a database of
curated gene expression patterns in animals [11]. Bgee version 14.0 includes
gene expression data for 29 species such as human, mouse, or hedgehog. Cur-
rently, Bgee data are stored in a MySQL relational database [113].

In the following, we first provide a high-level description of our approach, then
introduce the semantic models involved.

3.2.1 A federated, ontology-driven data integration approach

In order to achieve semantic interoperability between Bgee, OMA and UniProt, we
have chosen a federated approach based on ontologies (Figure 3.1). The advantage
of a federated approach is to avoid imposing a common global schema or meta-
model on all data sources, and to facilitate the integration of further resources in
the future. In doing so, we avoid, for example, the fastidious and time-consuming
task of maintaining a centralised, integrated knowledge base. Instead, we provide
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a homogeneous data access layer to query the heterogeneous data sources. This
homogeneous layer is part of a new generation of federated databases, such as
polystores [114], that provide seamless access to distinct data models of storage
engines (e.g. MySQL and RDF stores). Unlike that approach, we do not seek to
optimise query performance by transferring data on-the-fly between disparate stor-
age engines [114], but rather focus on solving syntactic and semantic heterogeneities
among data stores.

To solve the syntactic heterogeneity, we rely on a structured query language—
SPARQL—as the homogenous syntax to query all the data [110]. We favoured SPARQL
1.1 over alternatives because it is World Wide Web Consortium (W3C) compliant
and the data to be integrated are on the web; because it supports federated queries;
and because one of our target data stores, UniProt, is already accessible through a
SPARQL 1.1 endpoint, alongside a growing number of other biological databases
[115]. Indeed, although our initial prototype integrates data from Bgee, OMA and
UniProt, we plan to extend the system to include more data sources in the future.

To reduce semantic heterogeneity among the databases, we rely on ontologies
further described in section 3.2.2, which are defined with the Web Ontology Lan-
guage 2 (OWL 2), and thus based on the RDF model and syntax (https://www.w3.org/
TR/owl2-overview/). RDF-based modelling decisions were taken to mitigate this het-
erogeneity when adopting ontological terms and instances to structure and represent
the non-RDF data — OMA HDF5 and Bgee relational data. For example, by consid-
ering OMA, Bgee and UniProt databases, UniProt covers all of others with regard to
the taxonomic lineage information for an organism. Therefore, we rely on UniProt
classes and instance IRIs when representing and modelling taxonomy-related data
in the OMA and Bgee RDF serialisations. To further exemplify, we can also mention
the representation of genes among these three data sources. OMA genes completely
overlaps Bgee genes but not all OMA genes has a corresponding one in UniProt,
and vice-versa. Because of this, we decided to model Bgee genes the same way as in
OMA, thereby easing interoperability between gene expression and orthology data.
The next sections describe in more details the semantic models and the federated
architecture proposed.

3.2.2 Semantic models

Ontology-based data integration requires as a preliminary step that each of the in-
dividual resources composing the federated system provide an explicit ontological
description of their data. To minimise the need for semantic reconciliation—i.e. the
process of identifying and resolving semantic conflicts [116], for example, by match-
ing concepts from heterogeneous data sources [117]—we sought to rely as much as
possible on existing ontologies when defining new semantic models.

Prior to our current work, among the three databases considered in this chap-
ter, only UniProt provided an RDF representation of its data, as well as a SPARQL
endpoint. The current UniProt RDF release comprises over 55 billion triples, and is
based on the OWL 2 Full UniProt core ontology described in Redaschi, Consortium,
et al. [118].

For the orthology data in OMA, we adopted the Orthology (ORTH) ontology
[119], which was recently devised by the Quest for Orthologs Consortium [120]
as a common data schema for integrating Orthology databases, such as OMA. We
use ORTH to structure the OMA data, which is primarily stored in an HDF5 data
store. Furthermore, during the conception of a second version of ORTH, design de-
cisions such as the adoption of taxon-related terms from the UniProt ontology were

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
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FIGURE 3.1: Overview of the ontology-driven federated data integra-
tion architecture applied to Bgee, OMA, and UniProt. The application
layer depicts a Web search interface with editable templates to jointly
query the data stores. Available online at http://biosoda.expasy.

org.
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made in order to enhance interoperability, enabling us to establish links among the
data stores (section 3.3.2). Therefore, the work presented in this chapter also con-
tributed towards a new, improved version of the ORTH ontology, which is described
in Farias, Chiba, and Fernández-Breis [92].

In the case of Bgee, representing the original data in RDF proved to be a chal-
lenge, due to a general lack of a comprehensive ontology to serve as a data schema
for describing knowledge in the field of gene expression. This may seem surpris-
ing considering the ubiquity of gene expression analyses in molecular biology and
the existence of multiple well-established resources for gene expression—not only
Bgee, but also Expression Atlas (EA) [121], Genevestigator [122], or the Tissue Ex-
pression database [123]. We note here that different gene expression databases often
use distinct criteria to assert expressed in or absent in relations.

To the best of our knowledge, two semantic models currently exist as initial at-
tempts to structure gene expression related data: the Relation Ontology [124] and
the Expression Atlas model [125]. The Relation Ontology (RO) defines only a few
terms within the domain of gene expression and is not specifically designed for this
knowledge domain. Notably, it contains expressed in and expresses relations. The
Expression Atlas defines a semantic model related to gene expression that mainly
focuses on modelling the Expression Atlas (EA) data itself and not the domain of
gene expression generally. In this EA model, additional data interpretations (i.e.
semantics) are not explicitly represented, such as a given gene is expressed or lowly
expressed in some sample relative to others. Although it would be possible to obtain
this information through a more complex query on the Expression Atlas SPARQL
endpoint, we lack an explicit representation, which would allow us to compare gene
expression data from these different databases.

To provide a first step toward a general-purpose gene expression ontology, we
drafted a new semantic model called GenEx. GenEx is aligned with the Relation On-
tology and Expression Atlas models to facilitate interoperability with existing RDF
stores. We also included semantic rules and terms to address (i) the representation
of additional information related to gene expression, such as developmental stages,
as well as absent in and highly expressed relations; and (ii) the trade-off between virtu-
alisation and materialisation for the sake of query execution time and data storage.
Furthermore, we reuse parts of the data schemas of the ORTH and UniProt core on-
tologies to provide (iii) the capacity to interoperate with other biological databases
from different knowledge domains which are still relevant to the gene expression do-
main. For example, integrating orthology and gene expression data is relevant since
we might want to predict gene expression conservation for orthologous genes. The
draft GenEx is available online and documented in https://biosoda.github.io/genex/.

We stress that GenEx is currently in draft state. To become a standard, it needs
to be endorsed and supported by multiple key stakeholders. We plan to initiate
discussions with representatives of Bgee, Expression Atlas, Genevestigator, and Tis-
sue database teams, and intend to solicit involvement from others, for example, the
Model Organisms Databases (http://www.alliancegenome.org).

3.3 Implementation

Our federated data integration architecture comprises three layers: the data store
(DS) layer, the structured query interface (SQI) layer, and the application layer (Fig-
ure 3.1). The DS layer contains all data stores to be integrated, including ontologies

https://biosoda.github.io/genex/
http://www.alliancegenome.org


3.3. Implementation 37

and methods to solve semantic and data model heterogeneities, such as relational-
to-RDF mappings (Section 3.3.1). The SQI layer provides a homogeneous query
language syntax and exploits common instances and literals (i.e. virtual links) to
retrieve data from the DS layer (Section 3.3.2). The application layer includes any
software tools that access the data stores through the SQI layer, for example a web
search interface (Section 3.3.3). Figure 3.1 illustrates this architecture applied to our
use case: the Bgee, OMA and UniProt databases.

The three layers are described in the next subsections, and source code is avail-
able at https://github.com/biosoda/bioquery.

3.3.1 Data store layer

The UniProt data were already available in an RDF model and accessible through a
SPARQL endpoint at the start of our project. Therefore, we could use UniProt data
as is.

The core of our work on the data store layer consisted in exposing data from
Bgee and OMA as RDF, with the goal of solving data model heterogeneity. We fo-
cused our efforts on including the domain-specific, most “value-added” aspects of
Bgee and OMA to the data store layer—leaving out information already available
in UniProt. As a result, the Bgee and OMA data accessible through our system are
subsets of their original contents. We provide an overview of the types of infor-
mation available in the original sources versus in their RDF representation in the
Supplementary Material (Table A.3). This reduced the development work and data
duplication among the databases, without loss of information considering that our
federated approach enables directly retrieving this data from its original source (i.e.
UniProt).

The Bgee data are stored in a relational database, meaning that integration be-
tween RDF stores and relational databases would still require substantial effort.
There are two main methods to overcome this issue. First, the existing data could
be represented entirely as RDF, which consequently would replace the relational
model. A second approach would be to express the existing relational data as a vir-
tual RDF graph, defined over ontological concepts and relations. We have chosen
the latter approach, also referred to as ontology based data access (OBDA) [126]. Our
choice is justified by the fact that changing the Bgee data store into an RDF model
would either lead to data duplication or would require significant changes in the
current Bgee analysis pipeline [see 11]. This is because Bgee is now adapted to the
relational model for storing raw and preprocessed data from multiple data sources
such as Ensembl, GEO, ArrayExpress and others (https://bgee.org/?page=source).

To implement OBDA over the Bgee relational database, we used the Ontop plat-
form [126] version 3.0-beta-2. We defined several relational-to-RDF model map-
pings, which dynamically instantiate the gene expression semantic model described
in Section 3.2.2. Figure 3.2 shows a simplified example of OBDA mappings that
serve to express data from the relational model in the RDF model. Namespace
prefixes such as up: shown in Figure 3.2 and used in the rest of this chapter are
defined in Supplementary Table A.1. Some of the mappings can be simple 1-to-1
correspondences—for example, a gene name (shown in red color on the right) can
directly be used as a label of a orth:Gene class instance. Other mappings require trans-
forming the original attributes in the relational data for interoperability – for exam-
ple, replacing “:” with “_” in the case of anatomical entity identifiers from Bgee to be
compliant with the existing UBERON ontology IRI (Internationalized resource iden-
tifier) terms [127], as shown in green color with the example of UBERON:0000955 in

https://github.com/biosoda/bioquery
https://bgee.org/?page=source
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GlobalCond
globalConditionID
speciesID
anatEntityID   UBERON:0000955

Species
speciesID                9606
genus                   "Homo"
species              "sapiens"

Gene
bgeeGeneID                                    374147
geneID                                        NEUROD6
geneName         "Neurogenic differentiation 6"
speciesID                                             9606
ensemblGene              ENSG00000164600

AnatEntity
anatEntityID                 UBERON:0000955
anatEntityName                                "brain"
anatEntityDescription
"The brain is the center of the nervous system [..

genex:AnatomicalEntity genex:isExpressedIn orth:Geneup:Taxon

taxon:speciesId a up:Taxon; 
up:scientificName

{speciesConcatName}

GlobalExpression
globalConditionID
speciesID

bgeeGeneID
anatEntityID  UBERON:0000955

oma:GENE_{geneId} a orth:Gene; 
rdfs:label {geneName}

taxon:9606 

rdf:type

"Homo
sapiens"

up:scientificName

concat(genus, '  ', species)  
as speciesConcatName

obo:UBERON_0000955 

rdf:type

"brain"

rdfs:label

obo:{anatEntityIdSPARQL} a  
genex:AnatomicalEntity ; 

rdfs:label {anatEntityName } 

replace(anatEntityId,":","_")  
as anatEntityIdSPARQL 

oma:GENE_NEUROD6 

rdf:type

"Neurogenic
differentiation 6"

rdfs:label

Relational Model

OBDA  
mappings 

RDF Model

FIGURE 3.2: An illustration of relational-to-RDF mappings on a sam-
ple of the Bgee database. These mappings address both schema-level
heterogeneity (an example is shown in blue), as well as data-level het-
erogeneity (shown in green). A mapping can also be a simple 1-to-1
correspondence between a relational attribute (e.g. geneName, shown
in red) and its equivalent RDF property (in this case, an rdfs:label of
an orth:Gene instance). Namespace prefixes are defined in Supple-

mentary Table A.1.

Figure 3.2. Another type of transformation can be even combining multiple columns
to instantiate a concept, as in the case of expressing species data from Bgee in terms
of instances of up:Taxon. In this case, the OBDA mapping serves to concatenate the
genus and species columns from Bgee in order to form the scientific name in com-
pliance with the UniProt taxonomy. The scientific names of species in UniProt are
denominated through the up:scientificName property, composed of both genus and
species. This is illustrated in the left-most set of mappings (in blue color) in Fig-
ure 3.2. For further details of this OBDA mapping, see the Supplementary Material
(Section A.2). The full set of OBDA mappings used to expose Bgee relational data as
virtual RDF triples are provided in https://github.com/biosoda/bioquery.

The code fragment in Listing 3.1 illustrates a mapping expressed with the Ontop
relational-to-RDF mapping syntax, where the source is a SQL SELECT statement and
the target consists of the corresponding RDF-based properties and classes. While
direct and simple mappings (around 80% of the total) could in principle be auto-
matically generated, complex ones such as the isExpressedIn relationship shown in
Listing 3.1 can only be manually defined. Further explanations about this are avail-
able in Supplementary Material (Section A.2).

Once relational-to-RDF mappings have been defined with Ontop between the
Bgee MySQL database and GenEx, the original data can be queried with SPARQL,

https://github.com/biosoda/bioquery
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1 target oma:GENE_{geneId} genex:isExpressedIn
2 uberon :{ anatEntityIdSPARQL} .
3 source SELECT g.geneId ,
4 REPLACE(gc.anatEntityId ,":","_") AS anatEntityIdSPARQL
5 FROM globalExpression AS ge
6 JOIN globalCond AS gc
7 ON ge.globalConditionId = gc.globalConditionId
8 JOIN gene AS g ON g.bgeeGeneId = ge.bgeeGeneId

LISTING 3.1: Ontop mapping to infer the “is expressed in” GenEx
relation (i.e. target schema) based on the Bgee relational database (i.e.

data source). Prefixes are defined in Supplementary Table A.1.

through the Bgee RDF virtual model. At query time, Ontop will translate SPARQL
queries into SQL on-the-fly, using the mappings, and execute these over the Bgee
relational database. Ontop has the advantage of supporting federated queries as
part of SPARQL 1.1 and of being open source. In order to enable researchers to
directly use the RDF representation of Bgee, we made available a public SPARQL 1.1
endpoint at http://biosoda.expasy.org/rdf4j-server/repositories/bgeelight as a query
service (without any webpage associated to it). Nonetheless, the OBDA solution
with Ontop has some limitations – we discuss some of these in Section A.2 in the
Supplementary Material.

The OMA data are internally stored in an Hierarchical Data Format 5 (HDF5)
file. This is not a database management system (DBMS) such as MySQL, but rather a
data model and file format along with an API, libraries, and tools. Similarly to Bgee,
we have to homogenise the OMA database model and syntax in order to enable
integration with other biological RDF data stores (either virtual or materialised).
For OMA, we chose to materialise the key parts of OMA data as an RDF graph, by
implementing a hybrid approach, that combines materialisation and a possible RDF
graph virtualisation for the sake of semantic enrichment and knowledge extraction,
as described in detail in https://qfo.github.io/OrthologyOntology. The OMA RDF data
and ORTH ontology are stored in a Virtuoso 7.2 triple store and a SPARQL endpoint
is available at https://sparql.omabrowser.org/sparql. Further explanations regarding
the OMA RDF data materialisation are available in Supplementary Section A.6.

3.3.2 Structured query interface layer

Once the data stores are accessible through SPARQL endpoints, as depicted in sec-
tion 3.3.1, we can exploit means to link them at the data level. To do so, we iden-
tify common class instances and literals (e.g. strings) in order to establish “virtual
links”. We define a virtual link as an intersection data point between two data stores.
The links are required in order to enable performing federated queries, given that
they act as join points between the federated sources. Figure 3.3 illustrates vir-
tual links among UniProt, Bgee and OMA. For example, OMA and Bgee describe
complementary information about common genes (instances of the orth:Gene class),
as well as taxa (instances of the up:Taxon class), both of which can serve as vir-
tual links to connect the two sources. A federated SPARQL query written based
on the virtual links is described in Supplementary Material Section A.3. To for-
mally and explicitly describe virtual links, we adapted and extended the VoID RDF
schema vocabulary [111] to include the concept of virtual links. We call this vocab-
ulary Extended VoID (VoIDext). VoIDext is fully specified and exemplified in https:

//biosoda.github.io/voidext/. The entire metadata of virtual links among UniProt,

http://biosoda.expasy.org/rdf4j-server/repositories/bgeelight
https://qfo.github.io/OrthologyOntology
https://sparql.omabrowser.org/sparql
https://biosoda.github.io/voidext/
https://biosoda.github.io/voidext/
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FIGURE 3.3: Example of virtual links among UniProt, OMA and Bgee
data stores.

Bgee, and OMA RDF stores for the work depicted in this chapter are available at
http://purl.org/query/bioquery. In VoIDext specification, we also depict the SPARQL
queries to retrieve the virtual links among OMA, Bgee and UniProt that support the
writing of joint federated SPARQL queries. These queries can be executed on the fed-
erated SPARQL endpoint illustrated in Fig. 3.1 http://biosoda.expasy.org:8890/sparql.

To leverage virtual links between Bgee and the other databases, we took advan-
tage of the flexibility provided by Ontop when defining the Bgee OBDA mappings.
We aimed at mapping Bgee data into corresponding instance IRIs and literals that al-
ready exist in OMA and UniProt RDF graphs. For example, species-related instance
IRIs in the Bgee virtual graph are indeed exact matches of up:Taxon instance IRIs that
are stored in the UniProt database.

Likewise, the code fragment in Listing 3.1 asserts the (re)use of OMA gene in-
stances as part of the Bgee virtual RDF graph rather than creating new Bgee ones. In
this way, we avoid additional owl:sameAs assertions to state that the two instances are
actually the same. Thus, orth:Gene instances are intersection nodes (i.e. virtual links)
between the Bgee and OMA graphs. Figure 3.3 (left-hand side) illustrates a shared
orth:Gene instance between OMA and Bgee graphs. Further information about the
virtual links depicted in Figure 3.3 is available in Section A.7 in the Supplementary
Material.

Overall, we provide a federated SPARQL query endpoint along with an RDF
store that exclusively contains metadata about the virtual links, and the SPARQL
endpoints of the Uniprot, OMA and Bgee data stores. These metadata based on the
VoIDext schema precisely define and document how the distributed datasets can
be interlinked. Therefore, they may significantly facilitate the manual or automatic
writing of a SPARQL 1.1 federated query, given that users are no longer required
to discover the interlinks between the queried datasets on their own. In [128], we

http://purl.org/query/bioquery
http://biosoda.expasy.org:8890/sparql
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detail the drawbacks of the current VoID link sets to represent virtual links, and the
description of the novel VoIDext specification.

3.3.3 Application layer

The main goal of the application layer in our work is to enable users, even with no
prior technical training, easy access to the integrated information from the three bio-
logical databases. We developed a user-friendly interface (illustrated in the top part
of Figure 3.1), which is accessible at http://biosoda.expasy.org/. The interface presents
a catalogue of representative query templates drafted together with domain experts.
The queries are provided in natural language, with editable fields, and grouped in
a tree structure according to the target knowledge domain(s) and information re-
trieved for each query. A search bar is also provided, which enables filtering the
templates by keywords of interest (e.g. “disease”).

For users with more advanced technical expertise, we also provide the option to
show and modify the equivalent SPARQL queries. In doing so, our approach has
the potential to increase the productivity of domain scientists in exploring the three
heterogeneous data sets jointly. Additionally, the catalogue of questions is destined
to grow according to user needs and feedback.

Moreover, because of the federated architecture of our system, its performance
depends on that of the underlying data sources, e.g. UniProt. The availability of
the underlying data stores is indicated by green labels in the top right corner of the
webpage. For unavailable sources, the corresponding label is shown in yellow, as
illustrated in the application layer in Figure 3.1.

By default, our system limits the total number of results returned, which allows
for a faster response – the estimated response time is shown as a tag next to each
query. However, the user can turn the limit option off, in order to obtain the full
set of results. In this case, the response time may be significantly higher, which
can largely be attributed to the SPARQL query execution time on the underlying
sources. This has already been noted in similar previous systems [129]. In terms
of scalability, the UniProt SPARQL endpoint is a good example, having already an
active user base of more than one thousand users per month. As we directly rely on
the infrastructure of the underlying sources, we can therefore expect our system to
exhibit reasonable performance for approximately the same number of users.

3.4 Results

In this section, we first revisit our motivating example for integrated data access to
the three databases (UniProt, OMA and Bgee) and then present experimental results
based on a catalogue of 12 federated queries. All results are reproducible through
our public interface described in section 3.3.3.

Recall our motivating example from the start of Section 3.2: “What are the human
genes which have a known association to glioblastoma (a type of brain cancer) and which fur-
thermore have an orthologous gene expressed in the rat’s brain”. Answering the question
requires solving the following three subqueries:

1. Retrieve human proteins with a disease description related to glioblastoma
from UniProt.

2. Retrieve orthologs of these proteins in the rat from OMA.

http://biosoda.expasy.org/
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3. Only keep those orthologs for which there exists evidence of expression in the
rat’s brain from Bgee.

The above steps translate to the federated SPARQL query in Supplementary List-
ing 3.1. The query produces a set of 15 human-rat orthologous pairs and can be exe-
cuted in any SPARQL 1.1 endpoint. The full query, as well as a detailed list of results
is available in the Supplementary Material in Section A.3.

We further evaluated the performance, in terms of runtime, of 12 federated queries
that illustrate real use cases requiring information across the three databases (see
Table 3.1). The results are reproducible through our public template-based search
interface. A detailed analysis of the queries, including their natural language de-
scription, the equivalent federated SPARQL queries, as well as an explanation of the
complexity for each query, can be found at https://github.com/biosoda/bioquery.

TABLE 3.1: Descriptions of the 12 federated queries across OMA,
Bgee, UniProt used for evaluating our system. The queries can be
further refined and executed through our template search interface

available at http://biosoda.expasy.org/.

Query Description
Q1 Proteins in OMA encoded by the INS gene and their evidence type from UniProt.
Q2 Rabbit proteins encoded by genes orthologous to the HBB-Y gene in Mouse and their

associated information from UniProt.
Q3 Rattus Norvegicus proteins paralogous to Tp53 and their UniProt function annotations.
Q4 Mouse genes expressed in the liver which are orthologous to the human INS gene.
Q5 Genes orthologous to a gene expressed in the fruit fly brain.
Q6 Genes in Primates orthologous to a gene expressed in the fruit fly brain.
Q7 Anatomic entities where the ins zebrafish gene is expressed and the ins gene GO annota-

tions.
Q8 Genes expressed in the human pancreas and their annotation in UniProt.
Q9 Genes expressed in the human brain during the infant stage and their UniProt disease

annotation.
Q10 The orthologs of a gene that is expressed in the fruit fly brain and the UniProt annotations

of these orthologs.
Q11 The orthologs in Primates of a gene that is expressed in the fruit fly brain and the UniProt

annotations of the primate orthologs.
Q12 Proteins in humans, with a disease annotation, that are orthologous to a gene expressed

in the rat brain.

Table 3.2 shows that most of the queries can be executed in a few seconds – up
to 6 seconds for 9 out of 12 queries, with less than half a second for 3 out of these.
This holds even for queries with higher complexity (number of triple patterns). A
triple pattern is similar to a regular RDF triple, except that any part of the triple
can be replaced by a variable [110]. Although preliminary, the results in Table 3.2
are encouraging for the use of SPARQL queries in data exploration tasks or in an
interactive environment.

The outlier Q10 calls for discussion. By comparing the natural language descrip-
tion of Q10 against Q11 (see corresponding entries in Table 3.1, where the difference
between the two queries is highlighted in bold in the description of Q11), we can in-
tuitively deduce that the complexity stems from the high degree of generality of the
sub-query that targets orthology information (OMA). In the case of Q10, retrieving
an answer will require scanning the entire available orthology data and retrieving a
large intermediate result set (orthologs found in any species, a total of 2269 results).
By contrast, Q11 restricts the search space to the “primates” taxon only, which in
practice results in a much lower query execution time (and a total of only 81 results).
An important lesson derived from this example is that queries should always be

https://github.com/biosoda/bioquery
http://biosoda.expasy.org/
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TABLE 3.2: Tests performed to evaluate our approach in terms of
query execution time and the number of results. We evaluated 12
federated queries of varying complexity (measured in terms of num-
ber of triple patterns). Their description is provided in Table 3.1. All
queries were executed twenty times, providing an average runtime
and its standard deviation, given in seconds. The longest running

query, Q10, is highlighted in bold.

Query Sources #Results Mean run-time (s) Stdev run-time (s)
Q1 OMA, UniProt 27 5.13 0.13
Q2 OMA, UniProt 3 0.36 0.02
Q3 OMA, UniProt 1 0.47 0.05
Q4 OMA, Bgee 2 0.37 0.05
Q5 OMA, Bgee 5322 4.72 0.2
Q6 OMA, Bgee 38 2.38 0.09
Q7 Bgee, UniProt 16 68.18 105.85
Q8 Bgee, UniProt 58 33.17 25.23
Q9 Bgee, UniProt 6 2.37 0.04

Q10 Bgee, OMA, UniProt 2269 349.18 4.19
Q11 Bgee, OMA, UniProt 81 6.4 0.14
Q12 Bgee, OMA, UniProt 3 5.24 0.11

as specific as possible, in order to limit both the search space and the size of inter-
mediate results to the minimum necessary to obtain a relevant answer. Although
this query illustrates a worst-case scenario, the results are still returned in less than
6 minutes—a latency which is tolerable for investigations in a biological research
context.

3.5 Conclusions and outlook

Data integration across heterogeneous biological databases promises to be one of
the catalysts for gaining new biological insights in the postgenomic era. Here, we
introduced an ontology-driven approach to bioinformatic resource integration. This
approach enables complex federated queries across multiple domains of biological
knowledge, such as gene expression and orthology, without requiring data duplica-
tion. The integration of the three sources promises to open the path for novel com-
parative studies across species, for example through the analysis of orthologs (OMA)
of human disease-causing genes (UniProt) and their expression patterns in model
organisms (Bgee). Thanks to modelling decisions made at the semantic (ontology)
and data (assertions) levels, we established various virtual links among Bgee, OMA
and UniProt data stores. Moreover, making these virtual links available in VoIDext
facilitates the task of writing federated SPARQL queries, since users have an ex-
plicit representation of the connections (join points) between the three data sources.
We furthermore lay the groundwork for bringing the benefits of integrated data to
domain specialists through a template-based search engine available online, which
does not require users to know SPARQL in order to pose questions on the integrated
data.

The catalogue of federated queries across the three data sources can serve as
a starting point towards answering new biological questions that span across the
domains of evolutionary relationships and gene expression. The results presented
in this study can be easily reproduced through our template search interface. We
furthermore make available all source code, including the template search interface
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code, relational-to-RDF mappings and the catalogue of queries, with the goal of fa-
cilitating reuse of these components for further research. All resources are available
in our GitHub repository.

Our experiments show that most queries in our catalogue can be answered within
seconds. And although the more complex queries take several minutes to com-
plete, we expect this turnaround time to be tolerable for most interested users—
particularly considering the alternative of manually querying the resources and com-
bining the results. In the future, we plan to include more resources in the federated
system, focusing primarily on publicly available databases. We plan to start with
those that already provide SPARQL 1.1 endpoints, for which the main work would
entail defining virtual links to our existing integrated resources. In a second step,
we can envision integrating more relational databases, for which the main work re-
quired would be to define the relational-to-RDF mappings, analogous to those pre-
sented for Bgee in the current work. Our first aim is to make more of the publicly
accessible databases interoperable for the purpose of advancing research through
integrated data access. Nevertheless, we can envision also integrating access con-
trol policies in the future, which would enable including sensitive resources, such as
patient databases, in the federated system. A good starting point for understanding
the types of existing access controls for RDF data, in order to accommodate these in
our federation architecture, is the recent survey [130]. Finally, we plan to add a fed-
erated query optimiser to our system to further improve the response time. We also
note here that the application interface directly queries the underlying databases
without performing additional tasks, such as considering all gene name synonyms
to get broader results. We plan to support such features as part of future work.
To support virtual link evolution, we aim to develop a tool to automatically detect
broken virtual links because of either data schema changes or radical modifications
of instances’ IRIs and property assertions. Meanwhile, we encourage contributions
to the current query catalogue, which will serve in the study of a natural language
search interface for the integrated biological data as part of future work.
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Chapter 4

Applied Case Studies for Data
Integration in the Life Sciences

This chapter introduces two applied case studies that illustrate the benefits of se-
mantic data integration in the Life Sciences, particularly for comparative genomics.
These tutorials can be used as starting points in testing new research hypotheses,
using federated queries across multiple RDF data sources either within the same
domain (orthology, Section 4.1) or within connected domains (gene expression and
orthology, Section 4.2). The first part of this chapter therefore illustrates the data
models of four databases publicly available in RDF which include orthology infor-
mation: EBI, MBGD, OMA, OrthoDB and shows how these sources can be (jointly)
queried. The second part of this chapter is a more in-depth case study, focusing on
the relation between expression evolution and branch lengths of paralogous copies
following a gene duplication event, using federated queries across the gene expres-
sion database Bgee and the orthology database OMA.

4.1 Querying orthology data using SPARQL

The increasing use of Semantic Web technologies in the life sciences, in particular
the use of the Resource Description Framework (RDF) and the RDF query language
SPARQL, opens the path for novel integrative analyses, combining information from
multiple data sources. However, analyzing evolutionary data in RDF is not triv-
ial, due to the steep learning curve required to understand both the data models
adopted by different RDF data sources, as well as the equivalent SPARQL constructs
required to benefit from this data – in particular, recursive property paths. In this
chapter 1, we provide a hands-on introduction to querying evolutionary data across
several data sources that publish orthology information in RDF, namely: The Orthol-
ogous MAtrix (OMA), the European Bioinformatics Institute (EBI) RDF platform, the
Database of Orthologous Groups (OrthoDB) and the Microbial Genome Database
(MBGD). We present four protocols in increasing order of complexity. In these pro-
tocols, we demonstrate through SPARQL queries how to retrieve pairwise orthologs,
homologous groups, and hierarchical orthologous groups. Finally, we show how or-
thology information in different data sources can be compared, through the use of
federated SPARQL queries.

4.1.1 Introduction

Gene classification based on evolutionary history is essential for many aspects of
comparative and functional genomics - reviewed in [131]; [132]. On the one hand,

1This section is based on the tutorials published in [8]
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evolutionary relations are often described as binary relations. Two genes that share a
common ancestor are defined as homologs. We can classify homologs into orthologs,
which originate from a speciation event; paralogs, which originate from a gene du-
plication; and xenologs, which originate from horizontal gene transfer [133]. On the
other hand, Hierarchical Orthologous Groups (HOGs) are hierarchical clusters of
corresponding genes where each level in the hierarchy refers to a common ancestral
gene at a taxonomic level of reference [134]. Further details about orthology, paral-
ogy, xenology and various kinds of groupwise orthology relationships are described
in [135]. Identifying orthologs and HOGs is valuable in several contexts such as gene
function inference, gene evolution dynamics and comparative genomics. To query
and interoperate biological databases, Semantic Web Technologies are being increas-
ingly adopted, in particular the use of the Resource Description Framework (RDF)
and SPARQL protocol and RDF query language. However, despite the progress they
have enabled in several fields, particularly in the life sciences [136], [137], [138], there
are still significant challenges that limit their use for the larger scientific community.
In particular, analysing evolutionary relationship data in RDF poses the following
challenges:

1. complex data models - for example, while storing data in a hierarchical struc-
ture (HOGs) results in significant performance benefits for common analyses,
such as computing orthologs of a specific gene in a different model organism,
the hierarchy also results in requiring advanced knowledge of the SPARQL
language (in particular, recursivity) in order to benefit from the RDF represen-
tation of HOGs. In this chapter, we present a series of hands-on examples, in
increasing order of complexity, to familiarise the reader with the basic concepts
needed to query evolutionary relationships in orthology databases.

2. heterogeneous data models - understanding the data model of a single or-
thology database might not be sufficient in general, since different databases
have made different design decisions. We help overcome this challenge by
depicting how the following major Orthology Databases structure their data
in RDF, as well as how they can be queried using SPARQL: the Orthologous
MAtrix (OMA) [12], the European Bioinformatics Institute (EBI) RDF platform
[139], the Database of Orthologous Groups (OrthoDB) [140] and the Microbial
Genome Database (MBGD) [141]).

3. overhead of integration into existing analysis pipelines.

The limited rate of adoption of Semantic Web Technologies can be explained
by the reluctance of bioinformaticians to change their existing workflows in
order to accommodate new data formats based on the RDF framework. For
example, retrieving orthology information using public SPARQL endpoints in-
stead of the more traditional file-based data exchange or full database dumps.
A SPARQL endpoint is an access point for receiving and processing SPARQL
protocol requests. In this chapter, we show through concrete examples that
integrating the results of SPARQL queries into existing analyses is a straight-
forward task - more specifically, we show how to transform the results into
regular Pandas dataframes in Python. Furthermore, we provide an accompa-
nying Jupyter notebook where all the examples presented in this chapter can
be directly tested and further refined.

This chapter has several goals:

https://github.com/biosoda/tutorial_orthology/blob/master/Orthology_SPARQL_Notebook.ipynb
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1. Understanding Orthology Data Models. Become familiar with how evolution-
ary relationships are represented in RDF across several databases. Learn about
the data modelling decisions: common points as well as differences between
these data sources to support the choice of one or more of them for a given
analysis.

2. Understanding how to query orthology data using SPARQL. To this end, we
extend the introduction and examples in [142] [143], while also covering mul-
tiple, distributed orthology data sources.

3. Integrating external sources. Leverage connections to other external bioinfor-
matics resources that make their data available in public SPARQL endpoints
based on cross-references. In particular, learn about the role of UniProt cross-
references as a bridge between different data sources in integrative analyses.

In addition, we show how to use SPARQL to make meta-analyses combining
multiple orthology databases. For instance, for a given gene, which are the or-
thologs in a given database which are not present in another one? Finally, we show
how to leverage SPARQL aggregations in order to get useful statistics about orthol-
ogy data available in the sources. Finally, learn how to leverage SPARQL results in
downstream analyses by converting them to Pandas dataframes. This is illustrated
through a series of hands-on exercises in the accompanying Jupyter notebook (exer-
cises provided in Python).

The protocols presented in this chapter are aimed at bioinformaticians who are
already familiar with the basics of SPARQL and wish to learn how orthology data
can be integrated in their research analyses programmatically, through the use of
(federated) SPARQL queries.

4.1.2 Materials

In the following paragraphs, we briefly describe the orthology databases considered
in this chapter.

OrthoDB [140] contains orthologous genes along with evolutionary and func-
tional annotations. It relies on HOGs to enable different orthology information res-
olutions with regards to more closely related species. The 2018 OrthoDB version
covers thousands of eukaryotes, prokaryotes, and viruses. OrthoDB data is avail-
able in RDF through the public SPARQL endpoint at https://sparql.orthodb.org/
sparql. We note here that the timeout for the public SPARQL endpoint is limited to
100 seconds - more precisely, queries with longer estimated execution time will not
be allowed to run.

MBGD [141] is a comparative genomics database that contains orthology infor-
mation about bacteria, archaea and unicellular eukaryotes. The 2018 MBGD version
has more than six thousand genomes. The MBGD SPARQL endpoint is available
online at http://mbgd.genome.ad.jp/sparql/.

OMA [12] provides orthologous gene inferences covering all three domains of
life: Archaea, Bacteria, and Eukarya. Although mainly focusing on orthology infor-
mation, OMA also provides paralogy information (i.e. genes related by duplication).
Other homology information is not explicitly available but might be manually or au-
tomatically extracted from HOGs [143]. The 2020 OMA version has 2326 species and
can be queried through the SPARQL endpoint at https://sparql.omabrowser.org/
lode/sparql. OMA reports multiple kinds of pairwise and groupwise orthologous
relationships, described in [144].

https://github.com/biosoda/tutorial_orthology/blob/master/Orthology_SPARQL_Notebook.ipynb
https://sparql.orthodb.org/sparql
https://sparql.orthodb.org/sparql
http://mbgd.genome.ad.jp/sparql/
https://sparql.omabrowser.org/lode/sparql
https://sparql.omabrowser.org/lode/sparql
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EBI is one of the largest bioinformatics resource providers in Europe [145]. The
EBI RDF platform includes pairwise orthologous genes information from Ensembl
database [146]. The SPARQL endpoint to access the EBI data is available at https:
//www.ebi.ac.uk/rdf/services/sparql. For further details, see https://www.ebi.
ac.uk/rdf/documentation/ensembl/.

We group the aforementioned databases based on the orthology information
type they provide as follows:

I. Hierarchical Orthologous Groups (HOGs). The three data sources that pro-
vide evolutionary relationship data in RDF to represent HOGs are OrthoDB, MBGD
and OMA. Although the RDF data models of MBGD and OMA both rely on the
ORTH ontology [119], they use different ORTH versions. However, SPARQL queries
running over either of the two sources can be formulated in a very similar manner. In
the case of OrthoDB, data are organised according to their own internal data model,
while also providing cross-references to the UniProt RDF store.

II. Homologous groups are sets of homologous genes without any hierarchical
grouping ("flat"). All members are homologous to all other members, with no dis-
tinction of paralogy or orthology. However, the kind of homologous groups consid-
ered in this tutorial do not contain "out-paralogs" [147] —i.e. paralogs which result
from gene duplications which took place prior to the last common ancestor of all
species in the databases. Furthermore, each homologous group can still be asso-
ciated with a taxonomic level, which indicates to which species clade its members
belong. Example of orthology databases from which we can extract these homolo-
gous groups are OMA, OrthoDB and MBGD.

III. Pairwise orthology. Apart from the aforementioned orthologous groups,
evolutionary data can also be provided in the form of pairwise orthologous genes.
Among the sources that provide this type of information in RDF, we consider in this
chapter EBI, OMA, OrthoDB and MBGD.

We mention that the SPARQL endpoints of the databases may sometimes be
temporarily unavailable, for example, for maintenance purposes. In these cases,
the queries provided in this chapter may not be able to run or may become unre-
sponsive due to the unavailability of the corresponding SPARQL endpoint. Should
these issues persist for a longer period of time, it is advised to contact the respec-
tive database support through the email address indicated on the SPARQL endpoint
webpage.

4.1.3 Applicable Ontologies

The main existing ontology to represent and structure the orthology information is
the Orthology (ORTH) Ontology [119]that is recommended by the Quest for Or-
thologs Consortium (QfO). The second version of the ORTH ontology is further
described at https://github.com/qfo/OrthologyOntology) [92]. Both OMA and
MBGD rely on the Orthology Ontology. More precisely, OMA uses the ORTH ver-
sion 2, while MBGD version 1. In contrast, OrthoDB relies on an internal data model
while the fragment of EBI relevant to this chapter mainly reuses the "is orthologous
to" pairwise property from the Semanticscience Integrated Ontology (SIO). In the
context of the four databases depicted in this chapter, a way to possibly identify
relevant URIs (Uniform Resource Identifiers) for properties of interest such as "in
taxon", "is orthologous to", but also for taxonomic identifiers etc, is the Ontology
Lookup Service (OLS) [73], available online at https://www.ebi.ac.uk/ols/index.

https://www.ebi.ac.uk/rdf/services/sparql
https://www.ebi.ac.uk/rdf/services/sparql
https://www.ebi.ac.uk/rdf/documentation/ensembl/
https://www.ebi.ac.uk/rdf/documentation/ensembl/
https://github.com/qfo/OrthologyOntology
https://www.ebi.ac.uk/ols/index
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We note below the other main underlying ontologies, controlled vocabularies
and taxonomies used by at least one of the four data sources. Further details are
depicted in Table 1 in the Extended data available in our github repository.

• The Gene Ontology (GO) to specify molecular functions, for example.

• The Relation Ontology (part of the Open Biological and Biomedical Ontology
(OBO) Foundry) for properties such as "in taxon".

• SIO for properties such as "protein encoded by" and "gene encodes protein".

• ENSEMBL for gene identifiers.

• The National Center for Biotechnology Information (NCBI) taxonomy.

• Dublin Core Initiative Metadata (DCMI) terms to state identifiers and descrip-
tions in OMA and MBGD databases.

• UniProt core ontology – for scientific/common names of species, as well as
cross-references.

In the Section 4.1.4 we provide a more detailed introduction to how each of the
four data sources considered in this chapter structures orthology data. We illustrate
through concrete examples the commonalities as well as differences between the
data sources.

4.1.4 Data Models

In this section we provide a brief introduction to the data models of the orthology
databases considered in this chapter, in order to facilitate the understanding of the
SPARQL queries presented in the Protocols Section.

We first present a simple example to illustrate how SPARQL queries can be for-
mulated, starting from a given data model. Figure 4.1 illustrates a simplified graph
abstraction of an RDF data model targeting proteins and genes that encode these
proteins, and their related species (taxa). Furthermore, the model includes cross-
references to the corresponding UniProt entries. These cross-references can be useful
in formulating federated SPARQL queries. Federated queries can retrieve informa-
tion from multiple RDF data sources, using the UniProt entry as an intersection ("join
point").

Figure 4.1 can be used as a guide to formulate simple SPARQL queries that
aims to answer questions of interest. Such questions can be related to, for exam-
ple, proteins found in a given species, or those corresponding to a specific UniProt
accession number. For readability, we omitted specific namespaces and exact URIs.
Instead, we use the human readable labels of properties, such as "in taxon". The
URIs that represents these terms (e.g. Protein, Gene, in taxon) depend on the un-
derlying database being queried. Nevertheless, if the database is reusing existing
vocabularies to model their data, a reference for mapping these terms to their corre-
sponding identifiers (URIs), is the Ontology Lookup Service (OLS), and the Linked
Open Vocabularies (LOV) https://lov.linkeddata.es. For example, searching for
"in taxon" in OLS will result in the first answer returned being the OBO URI http:
//purl.obolibrary.org/obo/RO_0002162.

An example question for which the corresponding SPARQL query can be formu-
lated, based on the simplified query graph in Figure 4.1, could be: "What are Rattus
Norvegicus proteins available in the database?" In order to retrieve this information,

https://github.com/biosoda/tutorial_orthology/tree/master/Supplementary
https://lov.linkeddata.es
http://purl.obolibrary.org/obo/RO_0002162
http://purl.obolibrary.org/obo/RO_0002162
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FIGURE 4.1: Simplified query graph that can be used as support for
writing SPARQL queries to extract relevant information, such as pro-

teins in a particular species.

1 PREFIX up: <http :// purl.uniprot.org/core/>
2 PREFIX orth: <http :// purl.org/net/orth#>
3 SELECT ?protein1 WHERE {
4 ?protein1 a orth:Protein.
5 ?protein1 orth:organism ?organism.
6 ?organism <http :// purl.obolibrary.org/obo/RO_0002162 > ?taxon.
7 ?taxon up:scientificName "Rattus norvegicus ".
8 }

LISTING 4.1: SPARQL query to retrieve Rattus norvegicus proteins
from OMA

we can start from the ?protein1 variable, of type Protein, illustrated in the top right
corner of the figure, which we need to connect to the taxon scientific name ("Rat-
tus Norvegicus") via "organism". Note that the SPARQL users can define variable
names as they want by following the SPARQL syntax where the question mark (?)
means that is a variable. Following the arrows from ?protein1 to ?taxon (in Figure
4.1, from right to left) we can formulate the SPARQL query in listing 4.1, which can
be executed in the OMA SPARQL endpoint.

Changing the target species of interest only requires changing the corresponding
text in between quotes. For example, to find the human proteins available in the
data source, change "Rattus norvegicus" to "Homo sapiens" (note: the query is case-
sensitive). Any additional information can be retrieved by adding the corresponding
triple pattern to the query, while also making sure to add any relevant variables to
the select statement. For example, to also retrieve the corresponding UniProt entries
for the proteins, we can apply the following modification (see last line of the query
statement in listing 4.2):

For a more complete introduction to SPARQL and RDF in the context of bio-
logical databases see [7]. Next we will introduce the data models of the orthology
databases considered in this chapter.

Figure 4.2 illustrates a few of the members of a HOG, the main data structure
in MBGD. In particular, this MBGD cluster has the identifier 28799. Members of an
MBGD orthologous cluster can be either genes, domains or other clusters. These
nested orthologous clusters are built at specific taxonomic levels in the hierarchy.
For example, the cluster highlighted in blue in Figure 4.2 was built at taxonomic
level 32, Myxococcus. The hierarchy needs to be traversed in order to reach genes,
such as mxa:PL1911 that is highlighted in red in Figure 4.2, or domains (sub-gene
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1 PREFIX up: <http :// purl.uniprot.org/core/>
2 PREFIX orth: <http :// purl.org/net/orth#>
3 PREFIX lscr: <http :// purl.org/lscr#>
4 SELECT ?protein1 ?uniprot_entry WHERE {
5 ?protein1 a orth:Protein.
6 ?protein1 orth:organism ?organism.
7 ?organism <http :// purl.obolibrary.org/obo/RO_0002162 > ?taxon.
8 ?taxon up:scientificName "Rattus norvegicus ".
9 ?protein1 lscr:xrefUniprot ?uniprot_entry.

10 }

LISTING 4.2: SPARQL query modified to also retrieve the UniProt
entry corresponding to the variable ?protein1 (see last line)

1 ?hog_cluster a orth:OrthologsCluster.
2 ?hog_cluster orth:hasHomologous* ?gene_X.
3 ?hog_cluster orth:hasHomologous* ?orthologous_gene_Y.

level) which belong to an orthologous cluster at a given taxonomic level. The RDF
model is more suitable for representing such hierarchical data structures than the
relational data model [7], given that RDF is a graph data model. Moreover, querying
orthology RDF data can benefit from SPARQL 1.1 recursive graph patterns such as
property paths. The main construct in SPARQL required to retrieve the orthologous
genes of a gene of interest X will then be the following recursive pattern:

For example, we can replace ?gene_X with the URI of the human Hemoglobin
Subunit Beta (HBB) gene, namely: <http://mbgd.genome.ad.jp/rdf/resource/gene/
hsa:HSA_4504349>, which would enable retrieving all orthologs of human HBB through
the ?orthologous_gene_Y variable. The asterisk (*) following the "orth:hasHomologous"
property indicates that this property should be matched recursively.

Based on Figure 4.3, SPARQL queries can be formulated by following the direc-
tions and labels of arrows in order to formulate triple patterns. For example, to re-
trieve all genes (i.e. instances of the orth:Gene class) of a given HOG, we can follow
the graph structure from root to leaf members by performing the query as shown in
the code fragment below. In other words, the ?gene1 variable values illustrated as
the left-side member in the cluster ?hog_cluster (see Figure 4.3).

This SPARQL query will retrieve all the genes in the MBGD Hierarchical Orthol-
ogous Group represented with the identifier 28799.

Similarly, the HOG structure in OMA is abstracted in Figure 4.4. Both figures can
be used as a guide in formulating SPARQL queries, by following the directions of
the arrows in order to formulate triple patterns. Since both the MBGD and the OMA
models rely on the ORTH ontology [119], the two graph structures are very similar
and therefore SPARQL queries can be formulated with only minor differences for
both data sources. Figure 4.5 illustrates the data model of the portion of the EBI RDF

1 PREFIX orth: <http :// purl.org/net/orth#>
2 PREFIX cluster -id:<http :// mbgd.genome.ad.jp/rdf/resource/cluster/>
3 SELECT ?hog_cluster ?gene1 WHERE {
4 VALUES ?hog_cluster {cluster -id:2018 -01 _default_28799}
5 ?hog_cluster a orth:OrthologsCluster.
6 ?hog_cluster orth:hasHomologous* ?gene1.
7 ?gene1 a orth:Gene.
8 }

<http://mbgd.genome.ad.jp/rdf/resource/gene/hsa:HSA_4504349>
<http://mbgd.genome.ad.jp/rdf/resource/gene/hsa:HSA_4504349>
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FIGURE 4.2: A fragment of the hierarchical orthologous cluster no.
28799 in MBGD. A cluster can consist of genes, domains (sub-genes)
or further nested orthologous clusters. Multiple levels of the hierar-
chy may need to be traversed recursively in order to reach a given
orthologous gene. For example, the gene mxa:PL1911 (highlighted in
red) can be reached through the member orthologous cluster 2018-
01_tax32_8537 (shown in blue). This can be achieved in SPARQL
through a recursive graph pattern, using the hasHomologous prop-
erty path - a graphical abstraction of the RDF representation is pro-

vided in Figure 4.3.

graph describing orthology information. In contrast to OMA, OrthoDB and MBGD,
EBI only provides pairwise orthologous genes.

Figure 4.6 illustrates the structure of Orthologous Groups in the OrthoDB RDF.
Here, genes are direct members of OrthoGroups built at a given taxonomic level
(Clade), e.g. Cyanobacteria. We mention that OrthoDB provides information in RDF,
including sequence length, number of exons for gene members, as well as evolution-
ary rates, functional category and others for orthologous groups (for more details see
Extended data available online.

4.1.5 Choosing the relevant target gene identifier in RDF (URIs)

One of the challenges in formulating SPARQL queries is identifying the relevant
URIs for the resources of interest. In the case of queries targeting the orthology do-
main, the resources of interest will usually consist of target genes, for which the
orthologous genes need to be retrieved from the RDF data store. A simple way to
obtain the relevant URIs in the case of the four data sources considered in this chap-
ter, is to start from the UniProt accession numbers for the target gene of interest. This
accession number can be identified through the online search interface of UniProt at
www.uniprot.org, by searching for the gene name of interest, for example, "HBB" (or
"human HBB"). The column "Entry" in the result page contains the corresponding
UniProt accession number. From here, the URI can be obtained by concatenating the
UniProt namespace prefix: http://purl.uniprot.org/uniprot/ with this accession
number.

https://github.com/biosoda/tutorial_orthology/tree/master/Supplementary
www.uniprot.org
http://purl.uniprot.org/uniprot/
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FIGURE 4.3: Directed graph abstraction of a portion of the MBGD
RDF graph related to hierarchical orthologous groups. In all data
model figures, nodes are either classes or variables, and edges are
RDF properties. The terms preceded by a question mark (e.g. ?gene1)
represent variables assigned with either zero or more literals or URIs.
Dashed edges illustrate the orth:hasHomologous property that can
be stated zero or more times, recursively. URI prefixes were omitted.
MBGD is gene-centric and contains taxonomic ranges where HOGs
are built are not directly available in RDF - in some cases these can
be extracted from the cluster URI (e.g. http://mbgd.genome.ad.jp/
rdf/resource/cluster/2018-01_tax32_8537) corresponds to taxo-
nomic identifier 32, Myxococcus). By contrast, the taxonomic infor-
mation per gene entry is richer in MBGD than in OMA, including
explicit Superkingdom and Phylum information. Example SPARQL
queries based on this graph abstraction are provided in the "Proto-
cols" section, as well as in the accompanying Jupyter notebook. The
pairwise orthology information is not directly available (e.g. through
an RDF property), but can be extracted from the Orthologs Cluster (to
highlight this, the "isPairwiseOrthologous" is shown in green with a

dashed arrow).

http://mbgd.genome.ad.jp/rdf/resource/cluster/2018-01_tax32_8537
http://mbgd.genome.ad.jp/rdf/resource/cluster/2018-01_tax32_8537
https://github.com/biosoda/tutorial_orthology/blob/master/Orthology_SPARQL_Notebook.ipynb
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FIGURE 4.4: Directed graph abstraction of a portion of the OMA
RDF graph related to hierarchical orthologous groups. In this Fig-
ure, dashed edges illustrate the orth:hasHomologousMember prop-
erty that can be stated zero or more times, recursively. OMA is pro-
teincentric, however the corresponding genes that encode the pro-
teins are also available in RDF through the "is encoded by" property (a
cross-reference to Ensembl identifiers is also provided). Furthermore,
the taxonomic ranges where HOGs were built are asserted through
the "hasTaxonomicRange" property. The pairwise orthology informa-
tion is not directly available (e.g. through an RDF property), but can
be extracted from the Orthologs Cluster (to highlight this, the "isPair-
wiseOrthologous" is shown in green with a dashed arrow). Note: URI

prefixes were omitted.
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(obo:RO_0002162)

?orthologous?gene?taxon?scientific_name

a

?protein1_uniprot

Gene

UniProt RDF

e.g.: ?protein1_uniprot = <http://purl.uniprot.org/uniprot/P68871>

Gene
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"scientific name" " in taxon"
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" is orthologous to"
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?protein2_uniprot
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(sio:SIO_000558)(skos:prefLabel)

BioSource
(identifiers.org)

FIGURE 4.5: Directed graph abstraction of a portion of the EBI
RDF graph related to pairwise orthologous genes. Moreover, as op-
posed to the RDF representations in OMA and MBGD, here the pair-
wise orthology is explicitly asserted through the "is orthologous to"
property (more precisely, http://semanticscience.org/resource/
SIO_000558) as shown in this Figure. However, there is no in-
formation available regarding orthologous clusters. Moreover, the
Gene class here is in fact the OBO (not ORTH) class, i.e. http:
//purl.obolibrary.org/obo/SO_0000704. Instances of these genes
can be specified either through their cross-reference to UniProt (the
http://rdf.ebi.ac.uk/terms/ensembl/DEPENDENT property) or di-
rectly through their ENSEMBL identifier, by fixing the value of ?gene
to the concatenation of http://rdf.ebi.ac.uk/resource/ensembl/
and the corresponding Ensembl identifier. Finally, the taxonomic
identifiers are provided via instances of the BioSource class, http:

//www.biopax.org/release/biopax-level3.owl#BioSource.

For example, in the case of human HBB, the URI will be http://purl.uniprot.
org/uniprot/P68871. Using this information and the cross-reference properties avail-
able in each of the four databases (OMA, OrthoDB, MBGD and OrthoDB), the appro-
priate SPARQL queries can be formulated, according to the examples shown previ-
ously in Figure 4.3 – Figure 4.6. In the "Protocols" section we give concrete examples
of queries for each of the four data sources, which can be directly executed in the
corresponding SPARQL endpoints.

4.1.6 Protocols - SPARQL queries (OrthoDB, EBI, OMA, MBGD)

In this section, we provide four protocols to (i) retrieve pairwise orthologs through
SPARQL queries from EBI, OMA, MBGD, as well as (ii) homologous groups from
OMA, MBGD and OrthoDB (iii) restrict the search to a given taxonomic level (iv)
perform meta-analyses across multiple data sources providing orthology informa-
tion, and aggregations using the entire data available in a given data source. All
protocols presented below are included in the accompanying Jupyter notebook.

For the sake of simplicity, genes are identified with either their Ensembl identi-
fiers or their cross-reference to the UniProt accession number. In this chapter, we
assume the reader already knows the UniProt primary accession number of the
searched gene. In general, this number can be found by searching for the corre-
sponding gene name in the UniProt webpage, for example, "HBB" (i.e. "hemoglobin

http://semanticscience.org/resource/SIO_000558
http://semanticscience.org/resource/SIO_000558
http://purl.obolibrary.org/obo/SO_0000704
http://purl.obolibrary.org/obo/SO_0000704
http://rdf.ebi.ac.uk/terms/ensembl/DEPENDENT
http://rdf.ebi.ac.uk/resource/ensembl/
http://www.biopax.org/release/biopax-level3.owl#BioSource
http://www.biopax.org/release/biopax-level3.owl#BioSource
http://purl.uniprot.org/uniprot/P68871
http://purl.uniprot.org/uniprot/P68871
https://github.com/biosoda/tutorial_orthology/blob/master/Orthology_SPARQL_Notebook.ipynb
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FIGURE 4.6: Directed graph abstraction of a portion of the OrthoDB
RDF graph related to orthologous groups. Note that the abstract rela-
tion "?gene1 isPairwiseOrthologous ?gene2" is derived by considering
the concrete property path "?gene1 :memberOf / :hasMember ?gene2"
that further implies the following joint triples: "?gene1 :memberOf
?group. ?group :hasMember ?gene2.". In this Figure, genes are direct
members of OrthoGroups built at a given taxonomic level (Clade),
e.g. Cyanobacteria, available through the "ogBuiltAt" property. The
crossreferences to UniProt (as well as Ensembl and Entrez) are avail-
able through a 2-triple pattern (for examples see "Protocols" section).
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1 PREFIX : <http :// purl.orthodb.org/>
2 SELECT DISTINCT ?protein1 ?protein2 {
3 VALUES (? protein1){(<http :// purl.uniprot.org/uniprot/P68871 >)}
4 ?og a :OrthoGroup.
5 ?gene1 :memberOf ?og.
6 ?og :hasMember ?gene2.
7 ?gene1 :xref ?xref1.
8 ?xref1 :xrefResource ?protein1.
9 ?gene2 :xref ?xref2.

10 ?xref2 :xrefResource ?protein2.
11 ?protein2 a :Uniprot.
12 }

LISTING 4.3: Query Q0

subunit beta"). As a reminder, the UniProt protein identifier in RDF is a URI com-
posed of the UniProt accession number (e.g. P68871) appended to the UniProt names-
pace prefix: http://purl.uniprot.org/uniprot/. For instance, in the case of the
human HBB gene, the corresponding URI identifier is http://purl.uniprot.org/
uniprot/P68871.

Protocol 1: Retrieve pairwise orthologs

In this protocol we illustrate the basic task of retrieving the pairwise orthologs of a
given gene, for example the HBB (Hemoglobin subunit beta) human gene. This is
illustrated on the four orthology databases that provide pairwise orthology informa-
tion in RDF: OrthoDB, EBI, OMA and MBGD. The corresponding SPARQL queries
to retrieve the pairwise orthologs can be formulated as shown below. We note that
the resulting orthologs are also provided using their "clickable" cross-reference link
to UniProt. This can directly be used to find out more information about the re-
sulting genes (e.g. name, location, expression) and has the added advantage that
results originating from different orthology databases can then be compared against
each other. All Protocol 1 queries retrieve a set of 2-tuples (?a, ?b), where ?a is the
gene given as an input to look for its orthologous genes, which are assigned to ?b.
Therefore, the 2-tuple (?a, ?b) set represents the binary relation "?a is orthologous to
?b". In all queries except for Q2, these genes are represented with UniProt entries,
more specifically, UniProt URIs (see subsection "Choosing the relevant target gene
identifiers in RDF" for further details). In Q2, the input gene is represented with an
Ensembl gene URI as depicted in b

a) Retrieving OrthoDB pairwise orthologs

The code fragment displayed in listing 4.3 shows the SPARQL query to retrieve
pairwise orthologs of the human HBB gene from the OrthoDB database. The
following link http://purl.org/orthology/q0 is provided to directly execute
the query at the OrthoDB SPARQL endpoint. We denote this query as Q0.

The HBB gene is also represented in the latest code fragment with the UniProt
URI http://purl.uniprot.org/uniprot/P68871. However, differently to other
databases, OrthoDB states cross-references to UniProt by joining three triple
patterns: ?g :xref ?x and ?x :xrefResource ?p and ?p a :Uniprot.

b) Retrieving EBI pairwise orthologs

The code fragment shown in listing 4.4 and denoted here as Q1, depicts a
SPARQL query to retrieve pairwise orthologs of the human HBB gene from

http://purl.org/orthology/q0
http://purl.uniprot.org/uniprot/
http://purl.uniprot.org/uniprot/P68871
http://purl.uniprot.org/uniprot/P68871
http://purl.org/orthology/q0
http://purl.uniprot.org/uniprot/P68871
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1 PREFIX obo: <http :// purl.obolibrary.org/obo/>
2 PREFIX sio: <http :// semanticscience.org/resource/>
3 PREFIX ensembl: <http ://rdf.ebi.ac.uk/resource/ensembl/>
4 PREFIX ensemblterms: <http ://rdf.ebi.ac.uk/terms/ensembl/>
5 SELECT DISTINCT ?gene_uniprot_uri ?ortholog_uniprot_uri {
6 VALUES (? gene_uniprot_uri){(<http :// purl.uniprot.org/uniprot/P68871 >)

}
7 ?gene sio:SIO_000558 ?ortholog . # "is orthologous to"
8 ?gene obo:RO_0002162 ?taxon . # "in taxon"
9 ?ortholog obo:RO_0002162 ?ortholog_taxon.

10 ?ortholog ensemblterms:DEPENDENT ?ortholog_uniprot_uri.
11 ?gene ensemblterms:DEPENDENT ?gene_uniprot_uri.
12 FILTER (?taxon != ?ortholog_taxon
13 &&
14 STRSTARTS(STR(? ortholog_uniprot_uri),
15 "http :// purl.uniprot.org/uniprot /")
16 )
17 }

LISTING 4.4: Query Q1

Ensembl dataset at the EBI RDF platform (see Figure 4.5 for the respective data
schema). You can execute this query directly at the EBI SPARQL endpoint by
clicking on the following link: http://purl.org/orthology/q1.

The HBB gene is represented with the UniProt URI http://purl.uniprot.
org/uniprot/P68871. To retrieve the orthologs of other genes, we can re-
place this URI with one that corresponds to another gene, such as human INS
(i.e. http://purl.uniprot.org/uniprot/P01308). We can also provide a set of
URIs enclosed with parentheses such as follows: VALUES (?gene_uniprot_uri)
(<http://purl.uniprot.org/uniprot/P68871>) (<http://purl.uniprot.org/uniprot/P01308>)
. The sio:SIO_000558 is the « is orthologous to » property, while the obo:RO_0002162
represents the "in taxon" property (see Figure 4.6). We note here that not all
EBI gene entries have an assigned cross-reference to UniProt. For example,
"ENSG00000139618" identifies an Ensembl gene for which the UniProt cross-
reference is missing from the EBI RDF platform. In this case, the previous
SPARQL query can be adapted, by assigning in the VALUES statement of the
query, the ?gene variable to the corresponding Ensembl identifier, as depicted
in the code fragment shown in listing 4.5, which we denote as Q2. Q2 can
be executed at the EBI SPARQL endpoint by clicking on the following link:
http://purl.org/orthology/q2.

This code fragment illustrates the SPARQL query to retrieve orthologs for the
human BRCA2 gene from the Ensembl dataset. The BRCA2 gene is repre-
sented with the UniProt URI ensembl: ENSG00000139618 where ensembl is
a prefix that replaces http://rdf.ebi.ac.uk/resource/ensembl/. To retrieve
the orthologs of other genes, we can replace ensembl:ENSG00000139618 with a
URI that corresponds to another gene such as human INS (i.e. ensembl:ENSG00000254647).
We can also provide a set of URIs enclosed with parentheses such as follows:
VALUES(?gene) (ensembl:ENSG00000139618) (ensembl: ENSG00000254647).

c) Retrieving OMA pairwise orthologs

The code fragment in listing 4.6 shows a SPARQL query to retrieve pairwise
orthologs of the human HBB gene which are derived from the HOGs in the
OMA database (see Figure 4.4 for the respective data schema). The following

http://purl.org/orthology/q1
http://purl.org/orthology/q1
http://purl.uniprot.org/uniprot/P68871
http://purl.uniprot.org/uniprot/P68871
http://purl.uniprot.org/uniprot/P01308
http://purl.org/orthology/q2
http://rdf.ebi.ac.uk/resource/ensembl/
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1 PREFIX obo: <http :// purl.obolibrary.org/obo/>
2 PREFIX sio: <http :// semanticscience.org/resource/>
3 PREFIX ensembl: <http ://rdf.ebi.ac.uk/resource/ensembl/>
4 PREFIX ensemblterms: <http ://rdf.ebi.ac.uk/terms/ensembl/>
5 SELECT DISTINCT ?gene ?ortholog_uniprot_uri {
6 VALUES (?gene){( ensembl:ENSG00000139618)}
7 ?gene sio:SIO_000558 ?ortholog.
8 ?gene obo:RO_0002162 ?taxon.
9 ?ortholog obo:RO_0002162 ?ortholog_taxon.

10 ?ortholog ensemblterms:DEPENDENT ?ortholog_uniprot_uri.
11 ?gene ensemblterms:DEPENDENT ?gene_uniprot_uri.
12 FILTER (?taxon != ?ortholog_taxon
13 &&
14 STRSTARTS(STR(? ortholog_uniprot_uri),
15 "http :// purl.uniprot.org/uniprot /")
16 )
17 }

LISTING 4.5: Query Q2

1 PREFIX oma: <http :// omabrowser.org/ontology/oma#>
2 PREFIX orth: <http :// purl.org/net/orth#>
3 PREFIX sio: <http :// semanticscience.org/resource/>
4 PREFIX lscr: <http :// purl.org/lscr#>
5 SELECT DISTINCT ?protein1 ?protein2 {
6 VALUES (? protein1){(<http :// purl.uniprot.org/uniprot/P68871 >)}
7 ?cluster a orth:OrthologsCluster.
8 ?cluster orth:hasHomologousMember ?node1.
9 ?cluster orth:hasHomologousMember ?node2.

10 ?node1 orth:hasHomologousMember* ?protein_OMA_1.
11 ?node2 orth:hasHomologousMember* ?protein_OMA_2.
12 ?protein_OMA_1 lscr:xrefUniprot ?protein1.
13 ?protein_OMA_2 lscr:xrefUniprot ?protein2.
14 FILTER (?node1 != ?node2)}

LISTING 4.6: Query Q3

link http://purl.org/orthology/q3 is provided to directly execute the query
at the OMA SPARQL endpoint webpage. We denote this query as Q3.

The HBB gene is represented in this code fragment with the UniProt URI http:
//purl.uniprot.org/uniprot/P68871. More precisely, in OMA the lscr:xrefUniprot
represents the Cross-reference to UniProt.

d) Retrieving MBGD pairwise orthologs

In a similar manner to the previous code fragment, the code fragment in listing
4.7 depicts a SPARQL query to retrieve pairwise orthologs of the human HBB
gene which are derived from the HOGs in the MBGD database (see Figure 4.3
for the respective data schema).

To obtain the results for this query, denoted as Q4, by using the MBGD SPARQL
endpoint, we can click on the following link: http://purl.org/orthology/q4.

The HBB gene is represented again with the UniProt URI http://purl.uniprot.
org/uniprot/P68871. In the case of MBGD, the mbgd:uniprot represents the
cross-reference to UniProt.

http://purl.org/orthology/q2
http://purl.org/orthology/q3
http://purl.org/orthology/q3
http://purl.uniprot.org/uniprot/P68871
http://purl.uniprot.org/uniprot/P68871
http://purl.org/orthology/q4
http://purl.uniprot.org/uniprot/P68871
http://purl.uniprot.org/uniprot/P68871
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1 PREFIX mbgdr: <http :// mbgd.genome.ad.jp/rdf/resource/>
2 PREFIX mbgd: <http :// purl.jp/bio /11/ mbgd#>
3 PREFIX orth: <http :// purl.org/net/orth#>
4 SELECT ?protein1 ?protein2
5 WHERE {
6 VALUES (? protein1){ (<http :// purl.uniprot.org/uniprot/P68871 >)}
7 ?cluster a orth:OrthologsCluster.
8 ?cluster orth:hasHomologous ?node1.
9 ?cluster orth:hasHomologous ?node2.

10 ?node1 orth:hasHomologous* ?gene1.
11 ?node2 orth:hasHomologous* ?gene2.
12 ?gene1 mbgd:uniprot ?protein1.
13 ?gene2 mbgd:uniprot ?protein2.
14 FILTER (?node1 != ?node2)}

LISTING 4.7: Query Q4

Protocol 2: Retrieve homologous groups

In this protocol we illustrate the task of retrieving the non-hierarchical homologous
groups of a target gene, such as the human HBB gene. In addition, we restrict the
search to a specific taxonomic level, for example, "only at the primates level". In
other words, we depict how to retrieve the homologous groups at a given taxonomic
level and including a given gene represented as a UniProt URI. Note that the same
query can be executed only providing one of the inputs (i.e. either the taxonomic
level or gene). However, it can take longer to return all results or may not even be
executed due to runtime constraints at the original databases. The members of a
homologous group can be either paralogous or orthologous to one another.

a) Retrieving OMA Homologous Groups derived from the HOGs

The code fragment in listing 4.8, denoted as Q5, illustrates the SPARQL query
to retrieve homologous groups (i.e. clusters) that contains the human HBB
gene in the OMA database. To execute it directly at the OMA SPARQL end-
point webpage at https://sparql.omabrowser.org/lode/sparql, you can click
on the following link: http://purl.org/orthology/q5.

In this code fragment, the HBB gene is represented with its related UniProt en-
try (i.e. the UniProt URI http://purl.uniprot.org/uniprot/P68871). To re-
trieve the clusters that have other genes, we can replace this URI with one that
corresponds to another gene such as human INS (i.e. http://purl.uniprot.
org/uniprot/P01308). We can also provide a set of URIs enclosed with paren-
theses such as follows:

VALUES (?protein1_uniprot_URI)

(<http://purl.uniprot.org/uniprot/P68871>) (<http://purl.uniprot.org/uniprot/P01308>).

Similarly, we can change the taxonomic level of reference as follows:

VALUES(?tax_name) ("Hominoidea").

In further details, the Q5 query retrieves a set of (?cluster, ?protein2_OMA_URI,
?protein2_uniprot_URI, ?tax_name) tuples. The ?cluster variable represents the
homologous group built at a taxonomic level of reference (i.e. ?tax_name) that
contains the gene represented with a given UniProt entry (e.g. P68871). The
?protein2_OMA_URI and ?protein2_ uniprot_URI variables are assigned the ho-
mologous genes defined as OMA and UniProt entries, respectively. These

http://purl.org/orthology/q4
https://sparql.omabrowser.org/lode/sparql
http://purl.org/orthology/q5
http://purl.uniprot.org/uniprot/P68871
http://purl.uniprot.org/uniprot/P01308
http://purl.uniprot.org/uniprot/P01308
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1 PREFIX lscr: <http :// purl.org/lscr#>
2 PREFIX orth: <http :// purl.org/net/orth#>
3 SELECT DISTINCT ?cluster ?protein2_OMA_URI protein2_uniprot_URI ?

tax_name {
4 VALUES (? protein1_uniprot_URI)
5 {(<http :// purl.uniprot.org/uniprot/P68871 >)}
6 VALUES (? tax_name){(" Primates ")}
7 ?cluster a orth:OrthologsCluster.
8 ?cluster orth:hasHomologousMember* ?protein_OMA_1.
9 ?cluster orth:hasHomologousMember* ?protein2_OMA_URI.

10 ?protein_OMA_1 a orth:Protein.
11 ?protein2_OMA_URI a orth:Protein.
12 ?protein_OMA_1 lscr:xrefUniprot ?protein1_uniprot_URI.
13 OPTIONAL{
14 ?protein2_OMA_URI lscr:xrefUniprot ?protein2_uniprot_URI.
15 }
16

17 ?cluster orth:hasTaxonomicRange ?tax.
18 ?tax orth:taxRange ?tax_name.
19

20 }

LISTING 4.8: Query Q5

genes belong to the same homologous group (i.e. ?cluster). Because of the
fact that the SPARQL results are in a tabular form, to solely retrieve the mem-
bers of a homologous group that are represented as a UniProt entry, we mainly
need to project the ?protein2_uniprot_URI. To do so, we have to replace the line
containing the SELECT keyword in Q5 with the following instruction: SELECT
DISTINCT ?protein2_uniprot_URI.

b) MBGD Homologous Groups derived from the HOGs

The HOGs in MBGD do not provide explicit taxonomic levels at the root level
of a HOG. However, the taxon NCBI identifiers of subHOGs (i.e. sublevels)
can be extracted in some cases from the cluster URI. Since this requires more
advanced knowledge of SPARQL (in particular, for parsing the cluster URIs),
we only make it available as part of the Extended data online.

c) OrthoDB Homologous Groups

The code fragment in listing 4.9 denoted as Q6 retrieves homologous groups
that contains the human HBB gene identified with its corresponding UniProt
entry accession number P68871. The query can be executed at the OrthoDB
SPARQL endpoint webpage at https://sparql.orthodb.org. To inspect the
results, we can execute Q6 by accessing the following link: http://purl.org/
orthology/q6.

This SPARQL query will retrieve flat homologous groups that contains the
human HBB gene in OrthoDB. More specifically, these homologous groups
are indeed orthologous groups, similarly to groups in which all genes are
related to each other by pairwise orthologous relations [144]. Moreover, the
HBB gene is represented with its related UniProt entry (i.e. the UniProt URI
http://purl.uniprot.org/uniprot/P68871).

In more details, the Q6 query retrieves a set of 6-tuples (?group ?species_name
?protein1_uniprot ?gene1 ?taxLevel_ uniprot ?taxLevel ). The ?group vari-
able represents the homologous group built at a taxonomic level of reference

http://purl.org/orthology/q5
https://github.com/biosoda/tutorial_orthology/tree/master/Supplementary
https://sparql.orthodb.org
http://purl.org/orthology/q6
http://purl.org/orthology/q6
http://purl.uniprot.org/uniprot/P68871


62 Chapter 4. Applied Case Studies for Data Integration in the Life Sciences

1 PREFIX orthodb: <http :// purl.orthodb.org/>
2 PREFIX up: <http :// purl.uniprot.org/core/>
3 SELECT DISTINCT ?group ?species_name ?protein1_uniprot ?gene1
4 ?taxLevel_uniprot ?taxLevel
5

6 WHERE {
7 VALUES ?protein2_uniprot {<http :// purl.uniprot.org/uniprot/P68871 >}
8 VALUES ?taxLevel {" Primates "}
9 ?gene2 a orthodb:Gene.

10 ?gene2 orthodb:memberOf ?group.
11 ?gene1 a orthodb:Gene.
12 ?gene1 orthodb:memberOf ?group.
13 ?gene1 up:organism ?organism.
14 ?organism a ?taxon.
15 ?taxon up:scientificName ?species_name.
16 ?group orthodb:ogBuiltAt ?taxLevel_uniprot.
17 ?taxLevel_uniprot up:scientificName ?taxLevel.
18 ?gene2 orthodb:xref ?xref2.
19 ?xref2 orthodb:xrefResource ?protein2_uniprot.
20 ?protein2_uniprot a orthodb:Uniprot.
21 ?gene1 orthodb:xref ?xref.
22 ?xref a orthodb:Xref.
23 OPTIONAL {
24 ?xref orthodb:xrefResource ?protein1_uniprot.
25 ?protein1_uniprot a orthodb:Uniprot.
26 }
27 } ORDER BY ?group , ?taxLevel
28

29

LISTING 4.9: Query Q6

(i.e. ?taxLevel) that contains the gene represented with a given UniProt en-
try (e.g. P68871). The ?gene1 and ?protein1_uniprot variables are assigned
the orthologous genes defined as OrthoDB and UniProt entries, respectively.
These genes belong to the same homologous group (i.e. ?group). In addition,
?species_name and ?taxLevel_uniprot variables are assigned, respectively, a
species scientific name where ?gene1 is found, and ?taxLevel_uniprot is the
corresponding UniProt URI of a ?taxLevel value (i.e. a taxonomic level name,
e.g. "Primates"). To solely retrieve the members of an OrthoDB orthologous
group that are represented as UniProt entries, we just need to project the ?pro-
tein1_ uniprot variable in the SELECT query form.

Protocol 3: Retrieve Hierarchical Orthologous Groups (HOGs)

In this protocol we show how to retrieve the HOGs containing a target gene, such as
the human HBB gene, in the three orthology databases OMA, MBGD and OrthoDB.
The Ensembl dataset in the EBI RDF platform is not considered because it does not
provide HOG information.

a) Retrieving HOGs from OMA

The code fragment in listing 4.10 denoted as Q7 retrieves hierarchical orthol-
ogous groups (HOGs) that contains a gene identified with the UniProt entry
accession number P68871. Q7 can be executed at the OMA SPARQL endpoint
webpage at https://sparql.omabrowser.org/lode/sparql. The query along
with its results are available at http://purl.org/orthology/q7.

http://purl.org/orthology/q6
https://sparql.omabrowser.org/lode/sparql
http://purl.org/orthology/q7
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1 PREFIX obo: <http :// purl.obolibrary.org/obo/>
2 PREFIX orth: <http :// purl.org/net/orth#>
3 PREFIX taxon: <http :// purl.uniprot.org/taxonomy/>
4 PREFIX up: <http :// purl.uniprot.org/core/>
5 PREFIX lscr: <http :// purl.org/lscr#>
6 SELECT DISTINCT ?root_hog ?species_name ?protein1_uniprot
7 (? protein1 as
8 ?protein1_OMA) ?taxLevel {
9 VALUES ?protein2_uniprot {<http :// purl.uniprot.org/uniprot/P68871 >}

10 ?root_hog obo:CDAO_0000148 ?hog_cluster. #has_Root
11 ?hog_cluster orth:hasHomologousMember* ?node1.
12 ?node1 a orth:OrthologsCluster.
13 ?node1 orth:hasTaxonomicRange ?level.
14 ?level orth:taxRange ?taxLevel.
15 ?node1 orth:hasHomologousMember* ?protein1.
16 ?hog_cluster orth:hasHomologousMember* ?protein2.
17 ?protein1 a orth:Protein.
18 ?protein1 orth:organism ?organism.
19 ?organism obo:RO_0002162 ?taxon.
20 ?taxon up:scientificName ?species_name.
21 OPTIONAL {
22 ?protein1 lscr:xrefUniprot ?protein1_uniprot.
23 }
24

25 ?protein2 a orth:Protein.
26 ?protein2 lscr:xrefUniprot ?protein2_uniprot.
27

28 } ORDER BY ?taxLevel

LISTING 4.10: Query Q7

This SPARQL query will retrieve the root hierarchical orthologous group that
contain the human HBB gene in the OMA database. The HBB gene is rep-
resented with its related UniProt entry (i.e. the UniProt URI http://purl.
uniprot.org/uniprot/P68871). More specifically, the Q7 query retrieves a set
of 5-tuples (?root_hog, ?species_name, ?protein1_uniprot, ?protein1_ OMA,
?taxLevel). The ?root_hog variable represents the root HOG (i.e. the deepest
common ancestor for all the present species) that contains the gene represented
with a given UniProt entry (e.g. P68871). The ?protein1_OMA and ?pro-
tein1_uniprot variables are assigned the genes defined as OMA and UniProt
entries, respectively. These genes belong to the same root HOG (i.e. ?root_hog).
In addition, ?species_name and ?taxLevel variables are assigned, respectively,
the species scientific name and the taxonomic level (e.g. "Tetrapoda") where
the gene is found. Moreover, the taxonomic levels implicitly represent specia-
tion events and ancestral genes in the context of HOGs.

b) Retrieving HOGs from MBGD

The SPARQL query to retrieve HOGs from MBGD is similar to the previous
query over OMA and therefore we make it available as Extended data online.
As a reminder, although both the OMA and MBGD databases rely on different
versions of the ORTH ontology, they structure their HOG data similarly.

c) Retrieving HOGs from OrthoDB

The code fragment in listing 4.11 denoted as Q8 retrieves hierarchical orthol-
ogous groups that contain the human HBB gene in the OrthoDB database.
The HBB gene is represented with its related UniProt entry (i.e. the UniProt

http://purl.org/orthology/q7
http://purl.uniprot.org/uniprot/P68871
http://purl.uniprot.org/uniprot/P68871
https://github.com/biosoda/tutorial_orthology/blob/master/Supplementary/
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1 PREFIX orthodb: <http :// purl.orthodb.org/>
2 PREFIX up: <http :// purl.uniprot.org/core/>
3 SELECT DISTINCT ?hog_root ?species_name ?protein1_uniprot ?gene1
4 ?taxLevel_uniprot ?taxLevel
5 WHERE {
6 VALUES ?protein2_uniprot {<http :// purl.uniprot.org/uniprot/P68871 >}
7 ?gene2 a orthodb:Gene.
8 ?gene2 orthodb:memberOf ?groups.
9 ?gene2 orthodb:memberOf ?hog_root.

10

11 FILTER NOT EXISTS {? hog_root orthodb:ancestralOG ?ancestor .}
12

13 ?groups orthodb:ancestralOG* ?hog_root.
14 ?gene1 a orthodb:Gene.
15 ?gene1 orthodb:memberOf ?groups.
16 ?gene1 up:organism ?organism.
17 ?organism a ?taxon.
18 ?taxon up:scientificName ?species_name.
19 ?groups orthodb:ogBuiltAt ?taxLevel_uniprot.
20 ?taxLevel_uniprot up:scientificName ?taxLevel.
21 ?gene2 orthodb:xref ?xref2.
22 ?xref2 orthodb:xrefResource ?protein2_uniprot.
23 ?protein2_uniprot a orthodb:Uniprot.
24 ?gene1 orthodb:xref ?xref.
25 ?xref orthodb:xrefResource ?protein1_uniprot.
26 ?protein1_uniprot a orthodb:Uniprot.
27

28 } ORDER BY ?hog_root , ?taxLevel

LISTING 4.11: Query Q8

URI http://purl.uniprot. org/uniprot/P68871). The query can be executed
at the OrthoDB SPARQL endpoint webpage at https://sparql.orthodb.org.
To execute Q8 and inspect its results, we provide the following link: http:
//purl.org/orthology/q8. Note that unlike OMA rootHOGs where a gene
can only be in one root HOG, in OrthoDB a gene can belong to multiple "root"
HOGs. This is because OrthoDB might not explicitly relate the orthologous
group built at the highest taxonomic level (i.e. the actual root) to lower level
orthologous groups in the hierarchy. For example, for the HBB gene the Q8
query retrieves three distinct "root HOGs" with the following highest taxo-
nomic levels: Eukaryota, Metazoa, and Vertebrata.

In further details, the Q8 query retrieves a set of 6-tuples (?hog_root ?species_name
?protein1_uniprot ?gene1 ?taxLevel_uniprot ?taxLevel ). The ?hog_root variable
represents the "root HOG" that contains the gene represented with a given
UniProt entry (e.g. P68871). The ?protein1_uniprot and ?gene1 variables are
assigned the genes defined as UniProt and OrthoDB entries, respectively. These
genes belong to the same root HOG (i.e. ?hog_root). In addition, ?species_name
and ?taxLevel variables are assigned, respectively, the species scientific name
and the taxonomic level (e.g. "Eukaryota") where the gene is found. The
?taxLevel_uniprot is the corresponding UniProt URI of a ?taxLevel value.

Protocol 4: Meta-analysis - comparing OMA and MBGD data

In this protocol, we show how to compare orthology information across multiple
databases with SPARQL 1.1. Although the example in the following code fragment

http://purl.org/orthology/q8
https://sparql.orthodb.org
http://purl.org/orthology/q8
http://purl.org/orthology/q8
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1 PREFIX oma: <http :// omabrowser.org/ontology/oma#>
2 PREFIX orth: <http :// purl.org/net/orth#>
3 PREFIX sio: <http :// semanticscience.org/resource/>
4 PREFIX lscr: <http :// purl.org/lscr#>
5 PREFIX mbgd: <http :// purl.jp/bio /11/ mbgd#>
6 SELECT ?protein2 ?species WHERE {
7 SERVICE <http :// sparql.nibb.ac.jp/sparql > {
8 # retrieve via federated query from MBGD SPARQL endpoint
9 SELECT ?protein2 ?species ?uniprot_entry where {

10 VALUES ?uniprot_entry {<http :// purl.uniprot.org/uniprot/K9Z723 >}
11 ?cluster_mbgd a orth:OrthologsCluster.
12 ?cluster_mbgd orth:hasHomologous ?node1_mbgd.
13 ?cluster_mbgd orth:hasHomologous ?node2_mbgd.
14 ?node1_mbgd orth:hasHomologous* ?gene1.
15 ?node2_mbgd orth:hasHomologous* ?gene2.
16 ?gene1 mbgd:uniprot ?uniprot_entry.
17 ?gene2 mbgd:uniprot ?protein2.
18 ?gene2 mbgd:organism ?taxon.
19 OPTIONAL {
20 ?taxon mbgd:species ?species.
21 }
22 FILTER (? node1_mbgd != ?node2_mbgd)
23 }
24 }
25

26 # keep only those that do not exist in OMA
27 FILTER NOT EXISTS {
28 ?cluster a orth:OrthologsCluster.
29 ?cluster orth:hasHomologousMember ?node1.
30 ?cluster orth:hasHomologousMember ?node2.
31 ?node1 orth:hasHomologousMember* ?protein_OMA_1.
32 ?node2 orth:hasHomologousMember* ?protein_OMA_2.
33 ?protein_OMA_1 lscr:xrefUniprot ?uniprot_entry.
34 ?protein_OMA_2 lscr:xrefUniprot ?protein2.
35 FILTER (?node1 != ?node2)
36 }
37 }

LISTING 4.12: Query Q9

is restricted to OMA and MBGD, similar queries over different combinations of the
orthology databases mentioned in this chapter can be derived based on the Code
Fragments in Protocols 1, 2 and 3.

For a given UniProt entry such as the accession number K9Z723, retrieve or-
thologs that are only in MBGD, but not in OMA. Alternatively, to retrieve only those
that appear in both sources, simply remove the "NOT" keyword in the FILTER clause
below. To execute the query in listing 4.12, denoted as Q9, at the OMA SPARQL
endpoint, https://sparql.omabrowser.org/lode/sparql, we provide the follow-
ing link: http://purl.org/orthology/q9.

This federated SPARQL query will retrieve pairwise orthologous genes of the
Cyanobacterium-aponinum psb27 gene that are found in the MBGD database but
are not present in OMA. The psb27 gene is represented with its related UniProt
entry, thus the UniProt URI http://purl.uniprot.org/uniprot/K9Z723. Aggrega-
tions in SPARQL: Combining data from multiple resources By exploiting orthology
databases that represent information with the same framework for data interchange
(i.e. RDF) allow us to further query the data with the same query language (i.e.
SPARQL). As a result, we can aggregate and combine data from multiple databases

http://purl.org/orthology/q9
https://sparql.omabrowser.org/lode/sparql
http://purl.org/orthology/q9
http://purl.uniprot.org/uniprot/K9Z723
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more efficiently. This is because we avoid the needs of syntactic conversions and
changes in the original data models and structures by using SPARQL and RDF. These
conversions and changes are often required by traditionals methods that combines
different file-based data exchange formats or full database dumps. In the Extended
data online, we provide additional examples showing how to retrieve the top 10 en-
tries with most orthologs in OMA and MBGD for a given species, e.g. ’Drosophila
melanogaster’. These examples illustrate a few more advanced SPARQL features,
such as aggregation and ordering by a criterion in order to select the top N results.

4.1.7 Conclusions

We provide four protocols that show how to query evolutionary relationships (pair-
wise orthologs, as well as HOGs) across four major databases available through
SPARQL 1.1 endpoints: EBI, OMA, MBGD and OrthoDB. These protocols can serve
as a good practical source for bioinformatics researchers and practioners for under-
standing the RDF data models of these data sources, as well as the basics of retriev-
ing orthology information through SPARQL queries. Finally, we have shown how
aggregations in SPARQL can be used to quickly generate an overview of the data
available in each considered database, and how this data can be compared across
the data sources.

To sum up, we hope these protocols provide a useful introduction into analysing
evolutionary relationships among genes with SPARQL, as well as enriching these
analyses by integrating information from external data sources, through federated
queries. We have also integrated the queries in this chapter in the BioQuery search
interface [6] available at http://biosoda.expasy.org/. Researchers to directly exe-
cute or further refine these queries in a more user-friendly environment.

We encourage readers to experiment with the example queries presented in this
chapter, which are provided in the accompanying Jupyter notebook, to be directly
re-used or integrated into existing research analysis pipelines.

4.2 On the correlation between gene expression evolution and
branch length following duplication

4.2.1 Introduction

Phylogenetic analyses of gene expression have great potential for providing new bi-
ological insights, for example by enabling to identify genes that have evolutionary
shifts in expression correlated with evolutionary changes in specific biological pro-
cesses of interest [148]. Furthermore, comparative gene expression studies can enable
a better understanding of the evolution of gene expression patterns, for example by
providing insights into expression profile changes following gene duplication [149].

Most of the existing studies so far have focused on phylogenetic analyses within
species. However, the authors of [148] highlight the need for new phylogenetic com-
parative analyses of gene expression across species. The authors define three sig-
nificant challenges that need to be addressed for such studies to fully realize their
potential:

1. Gene expression data that is comparable across species must be available. At a
high-level, expression data represents the presence or absence of gene tran-
scripts in a given tissue or organ. The challenge for comparative studies,
however, is to define equivalent tissues or equivalent organs across different

https://github.com/biosoda/tutorial_orthology/blob/master/Supplementary/
https://github.com/biosoda/tutorial_orthology/blob/master/Supplementary/
http://biosoda.expasy.org/
https://github.com/biosoda/tutorial_orthology/blob/master/Orthology_SPARQL_Notebook.ipynb
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species. For example, in order to compare expression levels between the hu-
man and other simpler, well-studied organisms, such as the zebrafish, a cor-
respondence must be defined between the organs in the human body and the
equivalent organs in the zebrafish. A simple such correspondence would be
the equivalence between the lung in the human and the swim bladder in ze-
brafish. However, defining these correspondences in general is a difficult task.

2. New comparative methods must be developed, suitable for large multidimen-
sional datasets, given that expression data is generally sparse, involving a large
number of genes but only across a small number of species.

3. Comparative gene expression studies must also consider gene duplication and
loss. More precisely, the article [148] points out that previous studies of gene
expression across species have focused on the subset of genes that have only
strict orthologs [150] [151], which simplifies analyses, but discards a large frac-
tion of the data and therefore precludes the investigation of many phenomena
of interest, such as the evolution of gene expression following gene duplica-
tion.

Here, we illustrate the potential of our data integration approach in jointly ad-
dressing all three challenges highlighted above, through a case study involving gene
expression information from Bgee [11], as well as orthology information from OMA
[12]. The availability of gene expression information, comparable across 29 species at
the time of writing in Bgee, integrated with orthology information - more specifically
Hierarchical Orthologous or Paralogous Groups [134] in OMA, offers many oppor-
tunities for new comparative expression analyses using the aggregated knowledge
across the two fields of biology.

4.2.2 Background

Before describing in more detail our proposed case study, we provide here a few use-
ful definitions for the type of information we will use in this study. First, we recall
that Hierarchical Orthologous Groups (HOGs) are defined as sets of genes that de-
scended from a single common ancestor within a taxonomic range of interest [134],
either through speciation or through duplication. After a single-gene duplication
event, the resulting sets of genes represent paralogous copies (or paralog groups)
of the ancestral gene. In the following, we will refer to these as sub-HOGs. In our
case study, we chose to focus on the paralogous sub-HOGs resulting from a dupli-
cation event after Vertebrata speciation, as illustrated in Figure 4.7. Each component
gene of sub-HOGs, shown as colored dots in Figure 4.7, can originate from a differ-
ent species. Therefore, HOGs aggregate genomic information across many species,
making them a very useful tool in the study of evolution.

We furthermore define the branch length of a sub-HOG as a measure of the
evolutionary distance between the sub-HOG and the ancestral gene. More precisely,
a smaller branch length (such as the branch length of sub-HOG1 compared to sub-
HOG2 in Figure 4.7) indicates a smaller number of substitutions in sequence with
respect to the ancestral gene. This could be an indication that the member genes of
this sub-HOG may have conserved the ancestral gene function.

Next, we will denote the expression profile of a sub-HOG to be the aggregate
gene expression information over all member genes of the sub-HOG. The expres-
sion pattern of genes is considered indicative of their function. A concrete example
is shown in Figure 4.8. Here, the expression profile is illustrated as a matrix, where
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FIGURE 4.7: Schematic representation of a phylogenetic tree showing
two paralogous groups (sub-HOGs) following a duplication event. In
our case study, we only consider sub-HOGs which were formed after
the Vertebrate speciation. Each sub-HOG consists of orthologs and

paralogs (represented by color dots).

columns denote component genes of the sub-HOG, while rows denote tissues or or-
gans, such as the lung or the liver, where these genes are expressed. An expressed
gene is marked in red in the expression profile matrix in Figure 4.8. The aggregate
expression profile per sub-HOG will be computed as follows: for each tissue or or-
gan where >=50% of all component genes in the sub-HOG are expressed, we will
consider an overall “expressed” value in the aggregate profile. For example, in sub-
HOG1 in Figure 4.2, genes are considered overall expressed in the lung, the heart
and the testes. By expression breadth we will denote the total number of tissues or
organs where genes are expressed on average within a sub-HOG. For example, sub-
HOG1 in Figure 4.8 has an overall expression breadth of 3 (given there are 3 organs
where genes are expressed), while sub-HOG2 has an expression breadth of 2 (only
2 organs where genes are on average expressed). Finally, by expression variance we
will denote the difference in expression profiles (tissues where each component gene
is expressed) within a single sub-HOG.

4.2.3 Research Hypothesis

In this case study, we are primarily interested in understanding the evolution of
gene expression patterns (and hence of gene function) following a duplication event.
In principle, we would aim to investigate whether after a single-gene duplication
one of the genes evolves rapidly, perhaps receiving a new function (a process called
neofunctionalization), while the other conserves the function of the ancestral gene.
However, we recall here that the only observable (measurable) gene expression pro-
files are those corresponding to the paralogous copies and generally not the ancestral
gene function, which is unknown. Therefore, we cannot easily measure the amount
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FIGURE 4.8: Expression profiles of two paralogous sub-HOGs

of change between the ancestral gene and any of its copies following a duplication,
given that doing so would require reconstructing the ancestral gene state, which is
beyond the scope of the current study (one solution is discussed in Section 4.2.6).

Instead, we investigate here the following hypothesis: does the evolution rate (as
measured by the branch length) correlate with the amount of change in the expres-
sion profile between pairs of paralogous copies (subHOGs), as measured by the pairwise
difference between their expression profiles? In other terms, can we confirm, us-
ing the available data across OMA and Bgee, that more substitutions in sequence
correlate with more changes in the expression profile?

For this purpose, we combine gene duplication data - in the form of paralogous
HOGs, which represent gene families following a gene duplication event, from OMA
- with expression data, in the form of comparable expression levels across tissues and
across species, from Bgee. We focus on the paralogous HOGs resulting from a du-
plication following the Vertebrata speciation. In order to estimate the evolutionary
distance between the vertebrate ancestral gene and each of its subsequence paralo-
gous copies (sub-HOGs), we will integrate a new type of information, namely the
branch length of the corresponding sub-HOGs. A smaller branch length indicates
stronger sequence similarity between the duplicated gene and the ancestral gene,
while a longer branch indicates many substitutions in sequence between the dupli-
cate and the ancestor. We therefore expect to see a correlation between the differ-
ence in expression profiles among paralogous copies and their difference in branch
lengths. Moreover, we will investigate whether a longer branch also correlates with
a higher expression breadth (on average more tissues where genes are expressed
within a sub-HOG).

Finally, we will also investigate the correlation between expression breadth (at
the level of each sub-HOG) and evolutionary rate. Previous studies (see [152]) have
shown a strong negative correlation between expression breadth and evolutionary
rate. Given that we do not know the ancestral state, we will only consider the the
following special case: pairs of paralogous subHOGs where one expression profile
(e.g. in Figure 4.8, subHOG-1) is a superset of the other (e.g. subHOG-2). This case
may be indicative of a specialization in the less broadly expressed copy (subHOG-2
in Figure 4.8), while the superset (i.e. subHOG-1, the more broadly expressed copy)
might be closer in function to the ancestral gene.
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1 PREFIX up: <http :// purl.uniprot.org/core/>
2 PREFIX genex: <http :// purl.org/genex#>
3 PREFIX obo: <http :// purl.obolibrary.org/obo/>
4 PREFIX orth: <http :// purl.org/net/orth#>
5 PREFIX dct: <http :// purl.org/dc/terms/>
6 select distinct ?id ?anatName ?taxonName where {
7 # OMA SPARQL endpoint
8 service <https :// sparql.omabrowser.org/sparql/> {
9 select * where {

10 <http :// omabrowser.org/ontology/oma#
GROUP_498805_Euteleostomi_3106 > orth:hasHomologousMember* ?protein.

11 ?protein a orth:Protein.
12 ?protein a orth:Protein.
13 # here is where the ENSEMBL identifier is stored in OMA
14 ?protein dct:identifier ?id.
15 }
16 }
17 # federate with Bgee SPARQL endpoint to retrieve expression pattern
18 service <https :// bgee.org/sparql/> {
19 select * where {
20 ?gene dct:identifier ?id.
21 ?gene genex:isExpressedIn ?anatEntity.
22 ?anatEntity rdfs:label ?anatName.
23 ?gene orth:organism/obo:RO_0002162/up:scientificName ?taxonName
24 }
25 }
26 }

LISTING 4.13: Sample federated query for retrieving expression
pattern of OMA HOG members from the Bgee database

4.2.4 Materials and Methods

Data collection

The branch length information was not available through the official OMA SPARQL
endpoint at the time of writing and was instead provided by the Dessimoz lab as an
external resource. The branch length is measured in PAM (Point Accepted Mutation)
units [153], i.e. the average number of substitutions per site divided by 100 (in the
duplicated gene sequence compared to the ancestral gene).

A local RDF copy of the relevant fraction of OMA (paralogous copies following
duplication events immediately after the Vertebrata speciation), which included the
branch length information, was therefore used. Unique duplication events with at
least two comparable (same taxonomic level) paralogous copies (subHOGs) were
used for this analysis. For each member gene of a subHOG, the expression profile
was extracted from Bgee through a federated query, based on the ENSEMBL identi-
fier of the member gene (present both in OMA and Bgee). The RDF data from Bgee
was used, which provides only a binary expressed / not expressed value (we did
not take into account expression levels in this study).

An example federated query for retrieving the expression profile of member
genes of a given HOG (in this example the GROUP_498805_Euteleostomi_3106), is
shown in Listing 4.13. The query can be run in any SPARQL endpoint and will
retrieve a table of genes and the anatomical entities and species where these genes
are expressed. The results are illustrated in Table 4.1. In order to retrieve all relevant
subHOG IDs, the query in listing 4.14 can be used.
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id anatName taxonName
"ENSACAG00000014973" "female gonad" "Anolis carolinensis"
"ENSACAG00000014973" "skeletal muscle tissue" "Anolis carolinensis"
"ENSACAG00000014973" "kidney" "Anolis carolinensis"
"ENSXETG00000020872" "testis" "Xenopus tropicalis"
"ENSXETG00000020872" "embryo" "Xenopus tropicalis"
"ENSXETG00000020872" "heart" "Xenopus tropicalis"
"ENSXETG00000020872" "brain" "Xenopus tropicalis"
"ENSXETG00000020872" "female gonad" "Xenopus tropicalis"
"ENSXETG00000020872" "skeletal muscle tissue" "Xenopus tropicalis"
"ENSXETG00000020872" "gastrula" "Xenopus tropicalis"
"ENSXETG00000020872" "egg cell" "Xenopus tropicalis"
"ENSXETG00000020872" "mesonephros" "Xenopus tropicalis"
"ENSXETG00000020872" "blastula" "Xenopus tropicalis"

TABLE 4.1: Sample expression pattern for a subHOG obtained by fed-
erating data from OMA and Bgee

Finally, we considered that a paralogous copy (subHOG) of a duplicated gene is
overall expressed in a given tissue in the expression profile of the subHOG if at least
50% of the member genes of the subHOG are expressed in that tissue. We computed
the pairwise expression difference between paralogous copies as the Hamming dis-
tance (the total number of tissues only present in one of the subHOGs in the pair of
paralogous copies plus the the total number of tissues only present in the other) be-
tween the two expression profiles. For example, in Figure 4.8, the Hamming distance
between subHOG1 and subHOG2 is exactly 1 (subHOG1 is overall expressed in the
lung, whereas subHOG2 is not).

1

2 PREFIX orth: <http :// purl.org/net/orth#>
3

4 SELECT distinct (? cluster as ?duplication) (? orth_cluster_1 as ?
SubHOG_after_duplication) WHERE

5 {
6 #The tree that contains paralogs. The leafs are proteins.
7 #This graph pattern defines the relationship protein1 is paralogous

to protein2
8 ?cluster a orth:ParalogsCluster.
9 ?cluster orth:hasHomologousMember ?orth_cluster_1.

10 ?cluster orth:hasHomologousMember ?orth_cluster_2.
11 ?orth_cluster_1 orth:hasHomologousMember* ?protein1.
12 ?orth_cluster_2 orth:hasHomologousMember* ?protein2.
13 ?protein2 a orth:Protein.
14 ?protein1 a orth:Protein.
15

16 ### duplication immediately after the Vertebrata speciation
17 ?parent_hog orth:hasHomologousMember ?cluster.
18 ?parent_hog orth:hasTaxonomicRange/orth:taxRange "Vertebrata ".
19

20 filter (? orth_cluster_1 != ?orth_cluster_2 )
21 }

LISTING 4.14: Sample federated query for retrieving subHOGs
following a duplication event after the Vertebrata speciation

The data and code for reproducing our results are available at https://github.
com/anazhaw/tutorial_branch_length.

https://github.com/anazhaw/tutorial_branch_length
https://github.com/anazhaw/tutorial_branch_length
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4.2.5 Results

In this section we present preliminary results obtained by performing the analyses
using the available data from OMA and Bgee, as well as the external information
of the branch lengths. We follow-up in Section 4.2.6 with a discussion, as well as
an analysis of the limitations of this case study in Section 4.2.7, which could in part
explain the results obtained and provide direction for future work.

I. Relation between expression breadth and branch length

In a first step, we are interested in analysing the correlation between the ex-
pression breadth versus the branch length of each paralogous copy following
a duplication. The study [152] has shown that in general there is a strong neg-
ative correlation between expression breadth (EB) and branch length.

Our results from the analysis of approximately 15,000 paralogous copies (both
direct lineage genes following duplication - which form a majority of the data
- as well as subHOGs, only around 500 data points) do confirm a negative
correlation, albeit a very weak one: Spearman correlation coefficient of -0.247.
Figure 4.9 plots the two variables, namely expression breadth versus branch
length of paralogous copies. Note: here we report results for the entire data
range. Outlier removal did not significantly change the results - we report
details in the accompanying Jupyter notebook.

II. Relation between expression change and number of mutations in sequence

Going one step further, we want to investigate if there is a correlation between
the amount of change in expression observed between pairs of paralogous
copies (following a duplication) and the total number of substitutions in se-
quence, as measured by the sum of the branch lengths of the two copies. For
this purpose, we computed the pairwise Hamming distance between the ex-
pression profiles of paralogous copies and compared this against the sum of
branch lengths per same pair. Figure 4.10 illustrates the data, namely Ham-
ming distance between pairs of expression profiles versus the pairwise sum
of branch lengths. The total number of pairs compared was approximately
231,000. The results are similar to the previous case, namely a relatively weak
negative correlation: Spearman correlation coefficient of -0.228.

III. Relation between expression change and branch length difference
(case where one expression profile is a subset of the second)

Finally, in order to estimate if there is a correlation between the difference in
evolutionary rate between pairs of paralogous copies and their difference in
expression profile, we analysed only data corresponding to the case where one
expression profile is the subset of the other in the pair. We assume this might
indicate that one of the copies specialized, while the other may have retained the
ancestral gene function. In this way, we consider the copy with the broader ex-
pression profile to be a proxy for the ancestral gene and measure the difference
in expression profile compared to this reference versus the delta in evolution-
ary rate. Perhaps interestingly, the number of pairs compared for which this
property holds is slightly above 90,000 (around 40% of the total number of
pairwise comparisons).

Figure 4.11 illustrates the data. No significant correlation was found (Spear-
man coefficient of -0.034). However, we additionally performed here a t-test
to pairwise-compare the branch lengths of the two paralogous copies, namely,

https://github.com/anazhaw/tutorial_branch_length/blob/master/code/Applied_Case_Study.ipynb
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FIGURE 4.9: Expression breadth versus evolutionary rate of paralo-
gous copies following a duplication event

the set of branch lengths corresponding to the more broadly expressed copy
compared with the set of branch lengths corresponding to subset. Perhaps
surprisingly, here we obtained a significant positive difference, with a t-value of
+21.85; p-value < 0.005).

We discuss the results, while also analysing some of the limitations of our current
study, in the following sections.

4.2.6 Discussion

We break down the discussion according to the three cases tested:

1. Expression Breadth versus Branch Length

Our experiments confirmed a negative correlation between expression breadth
and branch length of paralogous copies following a duplication, which can be
indicative of specialization along the longer branches. However, previous stud-
ies [152] indicated a stronger negative correlation than our results have shown.
One possible explanation for this is that we did not account for differences be-
tween the total number of tissues for which data is available in Bgee across
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FIGURE 4.10: Pairwise Hamming distance between expression pro-
files versus total change in gene sequence (sum of branch lengths)

different species. Indeed, some species can have very rich expression profiles,
given the availability of expression data across thousands of their tissues (this
is the case for the mouse), whereas others inherently have only a small number
of tissues with available data. Therefore, the expression breadth will on aver-
age be significantly larger for species such as the mouse, with no connection to
the evolutionary rate following the duplication event.

One further interesting aspect to note in Figure 4.9 is that there appears to be a
cut-off around the expression breadth value of 25, from which the trend seems
to reverse. However, cases with expression breadths larger than 25 are in fact
rare: only 700 data points out of the total 15,000 (< 5%). Excluding these from
the analysis did not change the initial results.

2. Expression Change versus Number of Mutations in Sequence

In the lack of the ancestral gene expression profile, we analysed here if there is
a correlation between the total amount of change in expression in pairs of par-
alogous copies (assuming that one of the two copies is closer to the ancestral
gene, while the other perhaps specialized), and the total amount of change in
sequence, as measured by the sum of the branch lengths. Interestingly, the neg-
ative correlation here is similar to the first case. An important direction would
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FIGURE 4.11: Pairwise Hamming distance between expression pro-
files (for case where one paralogous copy has an expression profile
that is a subset of the other in the pair) versus delta between branch
length of the subset (presumed to be closer to the ancestral gene) and

the superset

be re-do the analysis after reconstructing the ancestral gene state (possible so-
lutions for this are provided further in this section) in order to test what is the
impact of computing the expression change relative to the ancestral gene, as
opposed to relative to the other paralogous copy in the pair. We explain why
this is an important distinction in the limitations discussion in Section 4.2.7.

3. Expression Change versus Branch Length Difference
(case where one expression profile is a subset of the second)

The positive difference between the branch lengths of broader expression copies
versus branch lengths of subsets is an unexpected result and seems to indi-
cate that the more broadly expressed paralogous copies are on average further
from the ancestral gene than the copies whose expression profile is a subset.
From previous studies, we would expect the subset to be on a longer branch,
indicative of a specialization event.



76 Chapter 4. Applied Case Studies for Data Integration in the Life Sciences

However, the difference in means between the two groups is extremely small
(the mean branch length for the superset in the pair is 27.68, while for the sub-
set it is only slightly smaller, at 26.91). We also recall here that this case covers
90,000 out of the total 230,000 pairwise comparisons, therefore it might not be
representative in general. In addition, the robustness of the result can only be
tested by repeating the analysis with knowledge of the ancestral gene func-
tion, as there might actually be changes in expression profile on both branches,
as we explain in the following section.

4.2.7 Limitations

The main limitation of our study is the lack of the ancestral gene expression profile.
To understand why this is an important problem, consider the scenario shown in
Figure 4.12. Without knowing the ancestral state, we could consider that subHOG2
specialized, while subHOG1 perhaps conserved the ancestral gene function. However,
this hypothesis might be wrong. Taking into account now the ancestral gene state,
shown in the example figure on the top-right, both subHOG1 and subHOG2 are
at a distance of 2 compared to the ancestral gene (subHOG2 lost the expression in
liver and heart, whereas subHOG1 is now also expressed in the lung, but lost the
expression in liver), therefore none of the two are representative of the ancestral state.
One possible solution for this problem would be to consider the Amphioxus as a
reference outgroup to the Vertebrata, as has been done in previous studies [154],
[155], [156]. In particular, the authors of [156] used Amphioxus expression data to
show that a large fraction of paralogous copies following whole-genome duplication
in Vertebrata indeed have undergone specialization rather than subfunctionalization.
However, at the time of writing, Bgee did not yet include Amphioxus expression
information. Therefore, we could not directly perform this analysis, which remains
an interesting direction for future work.

FIGURE 4.12: Example scenario where ancestral gene state is known.
The expression profile of subHOG1 is a superset of the expression
profile of subHOG2. Without knowing the ancestral state, we might
conclude this is a case of specialization. However, in reality both sub-
HOG1 and subHOG2 are equally distant in terms of expression pro-

file to the ancestral gene (in this figure, 2 tissues are different).
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Other problems might be related to data quality and size. First, we note that the
branch length information itself might be partially inaccurate, since it has not yet
been validated through more studies. For instance, a significant number of paralo-
gous copies have a branch length of zero - these have been excluded from our analy-
sis. One possible solution for this problem is to re-do this analysis with a secondary
information source for the branch lengths, for example Selectome [157], a new re-
lease of which will be available soon. Second, we might lose a significant fraction of
the duplication subHOGs by only looking at those with expression data available in
Bgee. Third, the expression data itself might not be well-balanced, meaning that for
some model species (e.g. Mus musculus) the number of well-studied genes, as well as
the overall number of tissues for which expression data is available, is significantly
higher than for others, which might affect the final results of this study, given that
we only consider as expressed subHOGs where at least 50% of the total number of
genes are expressed. Another limitation of this study is that we consider the absence
of information essentially as "not expressed", which might bias the results. Future
work could mitigate this problem by refining the expression profile computation to
consider homologous tissues across species and removing tissues for which data is
not available across all members of a subHOG. Currently, for subHOGs with a large
number of member genes, but which might not have a lot of expression information
available, this might artificially reduce ("shrink") the final expression profile breadth.
However, we recall here that this only affects a small number of data points in our
analysis, given that a large majority of pairwise comparison (99.7%) are of single-
gene paralogous copies. Finally, one possibility is that the scope of the analysis is too
coarse-grained: it may be that considering a binary "expressed" / "not expressed"
value in constructing the expression profiles, instead of including expression levels,
might simply result in too much information loss.

4.2.8 Conclusions and Outlook

This section introduced an applied case study for the correlation between evolution-
ary rate and expression profile. The main goal of this tutorial was to exemplify how
the integrated data can be used for testing research hypotheses across two connected
bioinformatics domains: orthology and gene expression.

Many possible improvements are left for future work. As a first step, the ex-
pression profile information could be combined with the branch lengths to try to
infer information about the ancestral gene function. For this purpose, the expression
profile of the ancestral gene could be computed as a weighted average of the expres-
sion profiles of paralogous copies following duplication, where the weight factor
for each copy could be inversely proportional to the branch length of the paralog.
This would incorporate - in the ancestral gene function inference - the intuition that
a smaller branch implies higher functional similarity to the ancestral gene. Once
outgroup expression data for the Vertebrata (from Amphioxus) becomes available
in Bgee, it will also be possible to compare the inferred expression profile with the
known expression information. Further improvements could be to include expres-
sion levels in the analysis or to narrow the study to only a set of particular tissues of
interest (e.g. 5 representative tissues, such as brain, liver, lung etc) or to a more fo-
cused set of genes (for example, excluding "housekeeping" genes, which are broadly
expressed). However, performing these refinements requires more in-depth domain
expertise, remaining therefore outside the scope of this thesis.

All in all, the integrated information of gene expression across species from Bgee,
as well as orthology information and more specifically paralogous HOGs from OMA,
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combined with novel data access tools that reduce the manual effort required to ben-
efit from this data, promise to open the path for many new insights in comparative
genomics. In particular, the study of gene function evolution across species follow-
ing duplications, is becoming significantly easier today due to the interoperability
of the existing relevant data sources, such as Bgee an OMA. Moreover, reusing the
federated queries and analyses introduced in this case study, new semantic con-
cepts could be added in the ontologies of Bgee and OMA, such as “expression pro-
file” and “branch length”, which would also enable direct access to this information
through richer data exploration tools, such as the Bio-SODA semantic search engine
(see Chapter 5), in the future.
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Chapter 5

Bio-SODA - A Question
Answering System for Domain
Knowledge Graphs

The problem of question answering over structured data has become a growing
research field, both within the relational database and the Semantic Web commu-
nity, with significant efforts involved in question answering over knowledge graphs
(KGQA). However, many of these approaches are specifically targeted at open-domain
question answering, and often cannot be applied directly in complex closed-domain
settings of scientific datasets.

In this chapter, we focus on the specific challenges of question answering over
closed-domain knowledge graphs and derive design goals for KGQA systems in this
context. Moreover, we introduce our prototype implementation, Bio-SODA, a ques-
tion answering system that does not require training data in the form of question-
answer pairs for generating SPARQL queries over closed-domain KGs. Bio-SODA
uses a generic graph-based approach for translating questions to a ranked list of
candidate queries. Furthermore, we use a novel ranking algorithm that includes
node centrality as a measure of relevance for candidate matches in relation to a user
question. Our experiments with real-world datasets across several domains, includ-
ing the last official closed-domain Question Answering over Linked Data (QALD)
challenge – the QALD4 biomedical task – show that Bio-SODA outperforms generic
KGQA systems available for testing in a closed-domain setting by increasing the F1-
score by at least 20% across all datasets tested. Finally, our experiments with a new
benchmark of complex questions developed by domain experts across two fields of
bioinformatics, show that Bio-SODA can serve as a powerful tool for scientific data
exploration.

5.1 Introduction

The problem of question answering over structured data has gained significant trac-
tion, both in the Semantic Web community – with a focus on answering natural lan-
guage questions over RDF data stores [158–160] – and in the relational database com-
munity, where the goal is to answer questions by finding their semantically equiva-
lent translations to SQL [54, 161, 162]. Significant research efforts have been invested
in particular in open-domain question answering over knowledge graphs. These ef-
forts often use the DBpedia and/or Wikidata knowledge bases that are composed of
structured content from various Wikimedia projects such as Wikipedia. A growing
ecosystem of tools is therefore becoming available for solving subtasks of the KGQA
problem, such as entity linking [163–166] or query generation [167]. However, most
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of these tools are specifically targeted at open-domain question answering, mostly
over DBpedia [168], which cast doubts on their applicability to other contexts, such
as for scientific datasets.

On the one hand, encouraged by the recent success of machine learning meth-
ods, several new benchmarks for training and evaluating KGQA systems have been
published [169, 170]. On the other hand, not only are these datasets generally costly
to construct for a new domain, since they involve manual curation, but also most of
the existing ones are synthetic (i.e., not based on real query logs). Moreover, most
datasets are limited to DBpedia or Wikidata, which may not be representative of
other, single-domain knowledge graphs - which we refer to as closed-domain.

For example, one of the major question answering datasets over DBpedia, LC-
Quad [169], as well as its updated version, LC-Quad 2.0 [170], include only simple
multi-fact questions that connect at most two facts. In other words, these queries
cover at most two or three triple patterns, with a query graph of at most two hops.
However, real-world questions may be much more complex. In particular, a study
of SPARQL query logs [171] across multiple knowledge graphs, including DBpedia,
has shown that a significant fraction of real-world queries have 10 triple patterns
or more. It therefore remains unclear whether existing training sets can serve as
representative for real-world question answering systems over knowledge graphs
in general.

All in all, an important unknown still remains as to how many of the lessons
learned in the open-domain question answering world can be easily applied to closed-
domain datasets, such as scientific datasets. In these domains, an equivalent ecosys-
tem of tools is not readily available. As a consequence, data access and retrieval
remain challenging for domain experts who are not familiar with structured query
languages. Lastly, the problem is further aggravated by the scarcity of open-source
question answering systems that can also be tested outside of the DBpedia ecosys-
tem.

As a step towards bridging the current gap in closed-domain question answer-
ing, we introduce Bio-SODA, a system designed to answer questions across multiple
domain knowledge graphs where no prior training data are available. Bio-SODA re-
lies on a generic graph-based approach in order to translate natural language ques-
tions into SPARQL queries. Furthermore, Bio-SODA is designed to compensate for
incompleteness in the data—either due to missing schema information or, to some
extent, due to missing labels. Although these situations should not occur when fol-
lowing ontology engineering best practices for representing data in RDF, our expe-
rience in working with real-world datasets shows that these problems are frequent
in practice.

We make our prototype implementation available open-source1. The prototype
enables both keyword search, as well as full question answering in English. We
chose bioinformatics as our primary target domain, motivated by the rapid growth
of publicly available RDF data in this domain. Specifically, around 8% of the Linked
Open Data Cloud originates from the Life Sciences [104]. For the purpose of eval-
uating our system, we use several real-world datasets stemming from different do-
mains. For example, we use the latest closed-domain question answering challenge
released as part of the official Question Answering on Large Databases (QALD) se-
ries, namely the QALD4 biomedical task [172]. Subsequent QALD challenges have
since focused on open-domain question answering.

1Code at https://github.com/anazhaw/Bio-SODA

https://github.com/anazhaw/Bio-SODA
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Furthermore, we introduce a new benchmark of 30 representative question-answer
pairs drafted in collaboration with domain experts from two different subfields of
bioinformatics: orthology (two genes are called orthologs if they were the same in
the last common ancestor) and gene expression (a measure of gene activity). The
questions represent information needs related to two in-use and publicly available
bio-databases, Orthologous MAtrix (OMA), a database of evolutionary relationships
among genes found in different species [12], and Bgee, a gene expression database
[11]. It has been shown that the number of triple patterns in the expected SPARQL
answer queries is inversely proportional to the performance of question answer-
ing systems in generating these queries [173]. With an average complexity of 7
triple patterns per query, our catalog highlights that real-world questions in these
domains surpass the current benchmarks in complexity and therefore require new
approaches. Finally, as an application of Bio-SODA to an entirely different, non-
bioinformatics domain, we use the CORDIS dataset describing European Union
(EU) funded research projects2.

This chapter makes the following contributions:

• We introduce Bio-SODA—a novel question answering system over domain
knowledge graphs that does not require prior training data (question-answer pairs)
for translating natural language questions into SPARQL.

• We define a ranking algorithm that combines syntactic and semantic similarity,
as well as node centrality in the knowledge graph. Many existing question an-
swering systems either rely on simple metrics for ranking, such as the length
of the answer query graph [54], or require extensive training data in order to
learn a ranking function [174]. To the best of our knowledge, our approach is
the first to take into account all three factors (syntactic and semantic similarity,
as well as node centrality) for ranking candidate queries.

• Our experiments on various real-world datasets show that Bio-SODA outper-
forms state-of-the-art KGQA systems by 20% on the F1-score using the official
QALD4 biomedical benchmark and by an even higher factor on the more com-
plex bioinformatics dataset. These differences generally stem from the higher
complexity of the questions composing these datasets compared to existing
benchmarks in open-domain question answering: higher number of triple pat-
terns per query, but also extensive use of literals (numbers, strings), filters,
negations, and so on. We make the benchmark targeting Bgee and OMA pub-
licly available3 for future research in this direction.

• Finally, we outline the challenges of closed-domain question answering and
identify requirements for generic question answering systems over domain
knowledge graphs.

The rest of this chapter is structured as follows: we introduce some of the spe-
cific challenges of closed-domain question answering in Section 5.2. We illustrate
the question answering pipeline, through a concrete example from the biomedical
domain, in Section 5.3. We present the system architecture of Bio-SODA in Section
5.4. Next, we describe the datasets used for the evaluation, their specific challenges
and the results obtained in Section 5.5. Section 5.7 places our contribution in the
context of the related work. We conclude by outlining possible directions for future
work in Section 5.8.

2https://cordis.europa.eu/projects
3See Benchmarks folder in the Bio-SODA github repository
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5.2 Problem Statement

In this section we introduce some of the specific challenges of closed-domain ques-
tion answering, which shape the architecture of the Bio-SODA system (described in
Section 5.4).

isAbsentIn

Gene

sameAs

possibleDiseaseTarget

Drug

sameAs

associatedGene

possibleDrug

Disease

sideEffect

Drug

Side Effects

Sider

Anatomical Entity

isExpressedIn

DiseasomeBgee

FIGURE 5.1: Simplified data model, inspired from the QALD4 Disea-
some, Drugbank and Sider datasets, as well as the Bgee data model
(which includes the Anatomical Entity class). The data model is a
multigraph, including disjoint properties – such as isAbsentIn and is-
ExpressedIn, as well as inverse properties, such as possibleDiseaseTarget
and possibleDrug. The information represented by one of these prop-
erties can be derived from the another one. This is an example of
redundancy at the data level that could be avoided. Furthermore, the
sameAs property between instances of the two distinct Drug classes
represents the join point between the two datasets. To make mat-
ters more complicated, a Side Effect and a Disease can be described
by the same terms, with instances of the two classes being related
via the sameAs property. As a result, even simple questions such as
“which drugs might lead to strokes?" are hard to automatically translate
correctly in the absence of external knowledge (i.e. “lead to" = “side

effect" as opposed to “possible disease target").

• Lack of training data.

For many of the closed-domain knowledge graphs there is no sufficiently long
and diverse log of queries in order to derive a representative training set for a
machine learning-based solution. So far, existing training corpora have proven
costly to construct [169], with the added drawback that any semi-automatically
generated dataset risks compiling a set of question-answer pairs that are non-
representative for the information needs of real users of the KGQA system, in
this case, domain experts.

• Specialized terminology and vocabulary.

Closed-domain knowledge graphs, such as scientific datasets, often make use
of specialized vocabularies.

On the one hand, this means that data-driven methods for entity and prop-
erty linking (e.g. N-gram-based matching, using an inverted index over the
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data) are likely to perform better than “off-the-shelf" solutions. These solu-
tions mostly revert to open-domain knowledge graphs for linking terms, such
as Falcon [163] or Spotlight [165] for DBpedia. However, specialized terms
cannot always be linked to DBpedia.

On the other hand, the target user is a domain expert and is therefore expected
to be more familiar with the domain terminology. As a result, the lexical gap
[175] and question ambiguity may be smaller problems in this context than in
open-domain question answering.

• Rule-based approaches perform well, but are costly to build and maintain.

So far, state-of-the-art solutions for closed-domain question answering have
been mostly rule-based systems, relying on manually handcrafted rules. For
example, GFMed [176] and Pomelo [177], the top 2 ranked systems in the
QALD4 biomedical challenge, have achieved very good results in the chal-
lenge, but at the cost of very little generality. In essence, these systems suffer
from significant overfitting: to be applicable to a new domain, their rule sets
would need extensive or even complete rewriting. Moreover, even for a new
dataset within the same domain, for which the schema differs, new rules need
to be added in order to accommodate the differences.

In some cases it is beneficial to incorporate a minimal set of rules in KGQA
systems, particularly for deriving complex concepts. However, this should be
a last resort and not the main translation mechanism, given that a large rule
set is hard to maintain and scale.

• Schema-less, incomplete data with imprecise labels.

Real-world datasets, particularly RDF knowledge graphs, often exhibit poor
structure, for example, properties with missing or generic domains and ranges.
In such cases, a question answering system should infer the schema based on
instance-level data.

An added challenge is the quality of labels. Given the manual nature of the
annotation process of most RDF data, i.e. adding labels, descriptions and com-
ments to data, it can be error-prone, leading to imprecise or missing informa-
tion. Note that many properties in the official QALD4 biomedical dataset do
not have any labels associated. For example, <http://www4.wiwiss.fu-berlin.
de/drugbank/resource/drugbank/foodInteraction> does not have any label
associated in the official challenge dataset, although 4 (out of 50) questions
specifically target this property. In these cases, a question answering system
should try to infer definitions based on other available information, for exam-
ple, Uniform Resource Identifier (URI) fragments.

Label imprecision can also affect the performance of question answering sys-
tems, given that it hampers correct entity linking. Consider the following ex-
ample: let us assume an RDF dataset with two different classes: class A, with
a label “Gene Tree" and class B, with a much more verbose label, such as “This
class describes genes along with their identifiers according to the information
in PubMed January 2020". A search for the term “gene tree" would indeed
return a single candidate match, namely class A. However, if the user would
instead search for “gene", both class A and class B are potential matches. Al-
though according to pure string similarity measures class A is a better match,
it is clear that in fact class B should be returned. This shows that pure string

<http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/foodInteraction>
<http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/foodInteraction>
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similarity metrics are not always sufficient for entity linking. For an extended
study on the quality of labels in the web of data, see [56].

Finally, a related problem in scientific datasets and particularly prevalent in
biological data, is the complexity of ontologies. These can define thousands of
terms, out of which however only few are actually used. For example, the Gene
Ontology [41], widely instantiated by bioinformatics databases, contains many
terms not used at all, for example the term GO:00621654. This suggests that
KGQA systems using these data should take into account additional metrics
for entity linking, such as the importance of a term in the knowledge graph,
in order to reduce the number of potential matches for a given user term. This
can be achieved, for example, by taking into account the PageRank score of the
matched node in the knowledge graph.

• Integration with external datasets.

Since a closed-domain knowledge graph might be an information silo, it is of-
ten beneficial to integrate it with external sources in order to obtain new knowl-
edge. In fact, an increasing number of domain datasets are being made avail-
able in the form of knowledge graphs for this exact purpose [78, 80]. Figure
5.1 illustrates the integration of Diseasome and Sider (both part of the QALD4
biomedical task) through the sameAs equivalence relationship between the in-
stances of two Drug classes. This enables joint queries across the datasets. A
further integration could be done between Diseasome and Bgee, based on in-
stances of the Gene class.

A question answering system for closed-domain knowledge graphs should
therefore also be easily extensible to new datasets, as well as updates in the
existing data sources. Ideally, these updates should not require the re-indexing
of all previously available data for each new release. As a result, the system
should support incremental indexing.

• High level of redundancy.

Although not specific to closed-domain knowledge graphs, redundancy can
also be an issue in this context, even more so when multiple datasets are in-
tegrated (as is the case for the QALD4 benchmark considered in this article).
Redundancy can occur both at the schema level, as well as at the instance level.
For example, in Figure 5.1, the Drug concept is defined by two different classes,
whose instances are however connected via sameAs predicates. The Drug con-
cept is therefore the join point between the two integrated datasets, Diseasome
and Sider. Moreover, the Drug and Disease concepts are connected through
two different properties, possibleDrug and possibleDiseaseTarget, that essentially
represent the same information. This results from the integration of Diseasome
and DrugBank and in principle implies that one of the two properties can be
inferred from another one (i.e. (x, y) ∈ R ⇔ (y, x) ∈ R−1 where R−1 is the
inverse relation of an R relation). Furthermore, redundancy can also occur at
the instance level: in the EU projects dataset, the same organization name can
be assigned to an instance of the Organization class, as well as to an instance of
a Participant in a project.

4See https://www.ebi.ac.uk/QuickGO/term/GO:0062165

https://www.ebi.ac.uk/QuickGO/term/GO:0062165
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5.3 Question Answering Pipeline

In this section we introduce the question answering pipeline in Bio-SODA. For this
purpose, we start from the following motivating example. Assume that a domain
expert is interested in answering the question:

“What are the drugs for diseases associated with the BRCA genes?"
Note that, based on the biomedical literature, mutations in the two BRCA genes,

BRCA1 and BRCA2 (stemming from BReast CAncer) are known to be associated with
multiple types of cancer. Moreover, assume that the domain expert aims to answer
the question using information from the QALD4 biomedical dataset, which inte-
grates three different sources: Drugbank, a database containing information about
drugs; Sider, a database describing the side-effects of drugs; and Diseasome, a database
about diseases, as well as possible drugs that can be prescribed for each disease.

The question answering pipeline of Bio-SODA is illustrated in Figure 5.2. The
main steps involved in the answering process are the following: first, the system
retrieves, from an Inverted Index, matches for all tokens in the user question. In
this example, all tokens are of length one, i.e. composed of a single word. The
index will enable retrieving not only the URI of the candidate match, but also its
PageRank score (an example is shown in parentheses for the first two tokens in the
Figure), as well as the class and property names of the match (omitted in the figure
due to space constraints). For example, the lookup for “BRCA" retrieves instances
of the class Diseasome:Genes, where the rdfs:label property matches the user token
(“BRCA1", “BRCA2"). A few simplified examples of Inverted Index entries are pro-
vided in Table 5.1.

In a second step, candidates are grouped together according to class and prop-
erty (a FILTER for the token BRCA is created on the Diseasome:Genes class), as well as
ranked according to string similarity and PageRank score. From here, the algorithm
detailed in the following sections (see Algorithm 1) is applied to construct candi-
date query graphs. Due to space constraints, Figure 5.2 only shows the query graph
obtained for the top ranked candidate matches. However, Bio-SODA will generate
multiple alternative interpretations, for example, also including the interpretation
considering Sider:Drugs instead of the DrugBank:Drugs. This can be tested in the
demo page of Bio-SODA for QALD4. From the query graph, the corresponding
SPARQL query is generated by also including labels for diseases and drugs. Finally,
the result set shown in the bottom of Figure 5.2 is returned.

In the following section, we introduce the system architecture of Bio-SODA and
describe the design of the question answering pipeline in more detail.
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SELECT DISTINCT ?diseases ?diseases_label ?drugs ?drugs_label ?genes ?genes_label WHERE { [...]
?diseases a <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/diseases>.

?drugs a <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/drugs>.
?drugs <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/possibleDiseaseTarget> ?diseases.

?diseases <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/associatedGene> ?genes.
?genes a <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/genes>.

?genes <http://www.w3.org/2000/01/rdf-schema#label> ?genes_label.
FILTER (contains(lcase(str(?genes_label)), "brca"))}
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FIGURE 5.2: Simplified answer pipeline for the query “What are the
drugs for diseases associated with the BRCA genes?". For the sake of
simplicity, PageRank scores are solely displayed when more than one

match is found.

5.4 System Architecture

In this section, we describe the Bio-SODA system architecture, shown in Figure 5.3.
The main building blocks of the system are the following:
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FIGURE 5.3: Bio-SODA System Architecture

1. Preprocessing phase:

• Indexing Module—composed of:

(a) Inverted Index: stores the vocabulary of the system. More precisely,
all the properties that should be searchable from the RDF data store
are indexed, according to a configuration file that specifies the list of
properties of interest (by default, all string literals will be indexed). A
further configuration option is whether URI fragments should also be
parsed and indexed. In this case, these fragments are split by a pre-
defined punctuation list, and through a camel case regex (e.g., “pos-
sibleDiseaseTarget" will be indexed as the corresponding keywords
“possible disease target").
The inverted index is stored in a relational database for fast searches
and it is used to match tokens (sequences of keywords in a user query)
against the RDF data. More precisely, the index stores: keywords (N-
grams of literals indexed), the indexed instance URI, the class of this
instance, the property from which the keywords were indexed (e.g.
label), as well as the PageRank score of the instance. PageRank scores
are computed using the approach presented in [178]. We further ex-
plain the role of each indexed information item in Subsection 5.3. An
example is shown in Table 5.1.

(b) Summary Graph Extractor: used in order to infer the schema of the
knowledge graph(s) based on instance-level data from the RDF store.
The Summary Graph is essentially a schema of the integrated RDF
data (note that multiple RDF sources can be combined, as long as
they are semantically aligned - i.e. they have at least one common
concept, such as Gene) and serves as the basis for constructing candi-
date query graphs from selected entry points (i.e., matches for tokens
in a user question). Computing a Summary Graph allows the sys-
tem to compensate for incomplete schema information, for example,
in cases where domains and ranges for properties are either miss-
ing or ill-defined. A second benefit of the Summary Graph is that



88
Chapter 5. Bio-SODA - A Question Answering System for Domain Knowledge

Graphs

Lookup
Key

URI Class Property PageRank

stroke side_effects:C0038454 sider:side_effects sider:side-
EffectName

0.34

drug drugbank:drugs owl:Class rdfs:label 91
drug sider:drugs owl:Class rdfs:label 2.3
possible
disease
target

diseasome:possible-
DiseaseTarget

rdf:Property uri_match 80

TABLE 5.1: Inverted Index Sample. The lookup key is used for fast
searches based on keywords from a user question. The remaining
information is used in attaching candidate matches to the Summary
Graph (see description in Section 5.4) in order to construct the corre-
sponding query graphs. A lookup key can consist of multiple key-

words. The same lookup key can appear multiple times.

it enables joining together multiple schemas from different knowl-
edge graphs in cases where several datasets should be integrated
and queried through the system, such as for the QALD4 biomedical
benchmark, composed of DrugBank, Diseasome and Sider.
Extracting the summary graph is achieved via SPARQL queries that
compute, for example, domains and ranges of all properties, based
on the classes of the instances which they connect. As a simplified ex-
ample, a triple asserting “Migraine ->possibleDrug ->Ibuprofen" will
result in Disease ->possibleDrug ->Drug being added to the Summary
Graph.

We note here that indexing is a pre-processing step that is only required
once, when the system is initialized. Afterwards, updates to the RDF store
can be incorporated periodically through incremental updates (appends)
to the inverted index, while the Summary Graph will only need to be
recomputed in case of schema changes.

2. SPARQL query generation phase:

Given a natural language question, the goal of the Bio-SODA system is to
translate it into a set of ranked candidate SPARQL queries, such that the top
ranked query is the closest to the user’s query intent. In the following, we
detail the role of each component involved in this translation process:

• Lookup Module:
The lookup module has the role of retrieving the best candidate matches
for tokens identified in a user query. A token is defined by the longest
sequence of keywords that matches an entry in the inverted index. For
example, in the question “What are the possible disease targets of Ibuprofen?"
the two tokens extracted will be “possible disease target" (corresponding to
an RDF property name) and “Ibuprofen" (corresponding to one or more
Drug instances).

• Candidate Ranking Module:
The lookup module can return a large number of candidate matches per
token. Due to this, the ranking module helps group together equiva-
lent matches and rank them in order of relevance to the initial query.
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More precisely, instances of the same class and with an identical prop-
erty that assigns the matched values (for example, instances of the class
Drug where the rdfs:label matched - a concrete case would be the BRCA1
and BRCA2 genes as a match for the BRCA keyword, see question illus-
trated in Figure 5.2) are grouped together into a single candidate, which
in turn will be used to create a FILTER in the SPARQL query.
Furthermore, both string similarity and node importance are taken into ac-
count when ranking. Including the PageRank score as a measure of im-
portance in the knowledge graph reduces the influence of the quality of
labels assigned (labels which can be imprecise, see discussion in Section
5.2). The intuition behind this is that domain knowledge graphs usu-
ally cluster around a few important concepts, which will be reflected in
the PageRank scores of the corresponding nodes. For example, UniProt5

[179], a protein knowledge base containing more than 60 billion triples,
includes only 177 classes at the time of writing. Out of these, only few
classes, such as Protein and Annotation, have a central role, and will usu-
ally be the target of domain expert questions on this source. Likewise, in
the case of the Cordis EU projects dataset, two different classes of Projects
are available, EC-Project and ERC-Project. However, there is significantly
more information in the dataset for the first class. In the lack of query logs
or handcrafted rules for mapping query tokens to the correct candidates,
the PageRank score can serve as a good proxy for ranking candidates ac-
cording to node centrality, similarly to the initial approach used by web
search engines [180].
As an added benefit, scoring with PageRank also ensures that metadata
matches are prioritized. For example, Drug as a class name will rank
higher than an instance match.
Finally, to ensure that candidate matches not only have good string sim-
ilarity, but are also semantically similar, word embeddings are also used
in the candidate ranking. The similarity comparison ensures that spuri-
ous matches, such as gene compared to oogenesis, are discarded based on
a pre-defined similarity threshold in the system configuration. Any word
embeddings can in principle be used with Bio-SODA. For the two main
bioinformatics use cases considered in this chapter, we use Word Vectors
extracted from PubMed, as described in [181]. The candidate ranking
module presents to the user top N matches per query token, where N is
configurable in the system.
• Query Graph Construction Module:

The goal of this module is to use the matches from the previous step to
generate a list of candidate query graphs. We extend the approach pre-
sented in [182] to translate matches to query graph patterns. More pre-
cisely, we apply the iterative algorithm shown in Algorithm 1: for each
set of candidate matches (one match per query token), we augment the
Summary Graph by attaching the candidate matches to their correspond-
ing class. Next, we find the minimal subgraph that covers all matches.
For this purpose, we solve the approximate Steiner tree problem by com-
puting the minimal spanning tree that covers one match per token. Note
that there might be multiple such subgraphs, given that two classes can
be connected via multiple properties. However, unless the user can be

5https://sparql.uniprot.org/

https://sparql.uniprot.org/
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Algorithm 1: Iterative graph-based approach for constructing query graphs
from candidate matches

Data:
Mn×t: the matrix of ranked candidate matches, where
n = the number of candidate matches per token,
t = the number of tokens in the user question.

Mi = a set of candidates covering one match per token (i.e. the ith row vector
of the Mn×t matrix).
G: Summary Graph of the RDF data
Result: S: the ranked set of candidate query graphs

1 foreach Mi ∈ M do
2 QGi = φ (empty graph)
3 foreach candidate match Tj ∈ Mi do
4 if Tj = a RDF property then
5 Get domain D and range R of Tj from G;
6 Add D and R as vertices to QGi;
7 Add edge Tj between D and R in QGi;
8 if multiple domains / ranges for Tj then Create a new copy of

QGi per alternative;
9 else

10 Compute in summary graph G:
11 shortest paths between class of Tj and classes of other matches Tz

in Mi;
12 Add shortest paths to QGi
13 if multiple alternatives exist then
14 Create a new copy of QGi per alternative;
15 end
16 end
17 Add spanning tree extracted from QGi to result set S (Steiner tree

approximation)
18 end
19 S_sorted = sort S by sum of match score of composing vertices. On a tie, sort

by the weight (i.e. the number of edges) of spanning tree.
20 return S_sorted

involved in disambiguating, it is important to generate all the variants,
given that two equal-length subgraphs might actually have opposite se-
mantics. Recall the example shown in Figure 5.1, where the properties
e.g, isAbsentIn versus isExpressedIn both connect the same two classes, but
represent disjoint result sets.
Finally, in some cases handcrafted rules for inferring new concepts or re-
lations are required, due to the complexity of the corresponding query
graphs. In such cases translating user questions into SPARQL cannot be
done via simple entity linking methods. Therefore, if needed, our ap-
proach also supports adding rules to derive implicit information from
the original knowledge graph as part of the question answering pipeline.
These rules are implemented as sub-queries similar to the SELECT SPARQL
query form. In this case, the rule head is the SPARQL query projection,
and the rule body is the WHERE clause content.
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Relation Query Graph

?X ortholog ?Z

prefix orth: <http://purl.org/net/orth#>

?X a orth:Protein.
?Z a orth:Protein.

?cluster a orth:OrthologsCluster.
?cluster orth:hasHomologousMember ?node1.
?cluster orth:hasHomologousMember ?node2.
?node2 orth:hasHomologousMember* ?X.
?node1 orth:hasHomologousMember* ?Z.

filter(?node1 != ?node2)

TABLE 5.2: Example of a custom rule for orthology data

An example for the evolutionary relationship “ortholog”, describing genes
that descend from the same common ancestor gene, is shown in Table 5.2.
The problem of identifying the orthologs of a gene can be considered sim-
ilar to finding persons descending from a common ancestor at a certain
level in an ancestry tree. The ortholog relation is not explicitly available
as an RDF property in the OMA RDF data, but rather asserted through a
complex set of property paths6. An extended discussion on this is avail-
able in [143]. By providing custom rules, our approach enables seman-
tically enriching the data sources and handling complex concepts which
translate to long query subgraphs.

• Query Graph Ranking Module:
The query graph ranking module plays an important role in presenting
the user with a meaningful, ordered list of results. In contrast to existing
work, we do not return the overall minimal subgraph as the top result, but
rather the graph that maximizes the sum of the match scores of the candidates
covered. To understand why this is the case, consider the following ques-
tion: “what are the drugs for asthma?". This question translates to a 2-hop
query graph, joining Drug and Disease via the possibleDiseaseTarget path
(see Figure 5.1). However, one likely scenario is that the description of
a Drug instance includes the keyword asthma. In this case, the minimal
query graph would be 1-hop only, retrieving only Drug instances that ex-
plicitly contain the keyword in the description, probably a small subset
of all instances which have the corresponding Disease as a possible target.
In this case, the minimal result would have good precision, but very low
recall.

• Query Executor Module:
Finally, the query executor translates the ranked query graphs into SPARQL
queries, assigning meaningful variable names, also adding human-readable
fields to the result set, as shown in Table 5.6. Importantly, we do not only
return the best result, but rather a ranked list of possible interpretations
(top N, where N is configurable in the system). This gives the user the
opportunity to inspect the results in order to use further solely the inter-
pretation (i.e. SPARQL query) that matched the question intent.

6https://www.w3.org/TR/sparql11-query/#propertypaths
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5.5 Evaluation

5.5.1 Datasets

In this section we introduce the 3 datasets considered for evaluating Bio-SODA. The
characteristics of these datasets are shown in Table 5.3. Importantly, all three are
real-world, in-use datasets—here we highlight particular challenges that need to be
overcome for each dataset in the context of designing a generic question answering
system:

1. The QALD4 biomedical dataset is composed of Sider, DrugBank and Disea-
some. The particularity of this dataset is that it contains a lot of redundancy,
such as multiple Drug classes, identical terms describing both Disease and Side
Effects instances, which are connected via owl:sameAs properties, and so on.

2. The bioinformatics dataset is composed of the Bgee (gene expression) and
OMA (orthology) RDF stores. Given the highly specialized domain informa-
tion contained in these sources, a particularity of this dataset is that ques-
tions can include complex concepts which translate to long SPARQL query
graphs. An added challenge deriving from this is that the same concepts can
be connected through multiple equal-length paths with semantically different
or even opposite meanings.

3. The CORDIS dataset of EU-funded projects. Although this dataset has a sim-
pler schema, the challenge here is that questions can have a higher degree of
ambiguity. In some cases, multiple interpretations are valid – for example,
many terms are reused often and in a variety of contexts, such as “Big Data".
This can be either part of a project title, a topic, an organization name, and so
on. Therefore, identifying the query intent in some cases (e.g. Show Big Data
projects) cannot be done without user disambiguation.

Dataset Sources #Classes #Triples Size on Disk
QALD4-biomedical Drugbank, Diseasome, Sider 12 0.69 M 200 MB
Bioinformatics Bgee, OMA 37 430 M 30 GB
CORDIS EU projects dataset 26 6.5 M 1 GB

TABLE 5.3: Descriptions of the 3 public datasets used in our evalua-
tion.

5.5.2 Queries

We have reused the official 50 queries of the QALD4 biomedical challenge7. We do
not distinguish between training and test queries. Indeed, we report performance
metrics for all systems we tested across the entire set of 50 queries. Given that the
test set was also available to participants in the official challenge, we believe this to
be a fair evaluation. We do not change the questions in the official challenge, not
even in cases where we could identify mistakes in the question. Furthermore, as
opposed to previous work using this benchmark [55], we do not materialize triples
based on owl:sameAs statements and only use the exact dataset, as provided in the
official benchmark.

7https://github.com/ag-sc/QALD/blob/master/4/data

https://github.com/ag-sc/QALD/blob/master/4/data
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For the bioinformatics dataset, we created in collaboration with domain experts,
a benchmark of 30 queries, in increasing order of complexity, across two datasets,
namely Bgee and OMA. The queries represent real information needs of domains
experts within the field of gene expression and orthology, using the publicly avail-
able RDF data of Bgee8 and OMA9. The average number of triple patterns per query
here is 7 (not taking into account joint queries between the two sources, which have
even higher complexity), with some questions jointly targeting 4 entities or more
(Gene, Species, Anatomical Entity, Developmental Stage). In contrast, in existing bench-
marks, such as LC-Quad [169], queries with only 2 entities are already considered
complex.

In order to test Bio-SODA using an entirely different domain, using the CORDIS
dataset of EU funded projects, we created a test set of 30 queries in increasing order
of complexity. Given the relatively simple structure of this data model, the average
number of triple patterns per query is close to that of existing KGQA benchmarks
[169], with an average 2.3 triple patterns per query. However, the complexity stems
from the usage of filters, literals in the query, as well as the higher degree of ambi-
guity.

Queries across the three datasets include aggregations, negations, and make ex-
tensive use of filters.

All questions, as well corresponding SPARQL queries, are available in the Eval-
uation folder of our GitHub repository10.

5.5.3 Results

In this section we compare the performance of Bio-SODA against state-of-the-art sys-
tems which are open-source. Although there is a rich literature introducing question
answering systems for knowledge graphs in recent years (to cite a few examples, see
[183–185] etc.), only a few of them are publicly available for testing. Some provide
at most a web service interface, where the target knowledge base usually cannot be
changed11.

Given these constraints, we focused on open-source systems that are publicly
available for testing, in particular systems that show state-of-the-art performance ac-
cording to a recent survey on natural language interfaces to databases [186]. Specifi-
cally, we tested Sparklis [129], a generic query builder system for knowledge graphs12.
Moreover, we compared against GFMed [176] which was top ranked in the QALD4
biomedical challenge and specifically designed for this dataset. We use GFMed’s
publicly available grammar13 to evaluate how the system performs outside of the
official QALD4 biomedical dataset. In addition, we compared our approach against
SQG [167], a system for query generation over knowledge graphs14.

We use the standard evaluation metrics of precision (P), recall (R) and F1-score,
macro-averaged over all questions in the dataset. For Bio-SODA in particular, al-
though the system generates a ranked list of possible interpretations, we report num-
bers based on the top answer only (Precision@1). The results are presented in Table
5.4.

8https://bgee.org/sparql
9https://sparql.omabrowser.org/sparql

10Evaluation in https://github.com/anazhaw/Bio-SODA/
11e.g. http://wdaqua-frontend.univ-st-etienne.fr/
12A live demo can be tested with any SPARQL endpoint at http://www.irisa.fr/LIS/ferre/

sparklis/
13See http://cs-gw.utcluj.ro/~anca/GFMed/index.html
14Available at https://github.com/AskNowQA/SQG/

https://bgee.org/sparql
https://sparql.omabrowser.org/sparql
https://github.com/anazhaw/Bio-SODA/
http://wdaqua-frontend.univ-st-etienne.fr/
http://www.irisa.fr/LIS/ferre/sparklis/
http://www.irisa.fr/LIS/ferre/sparklis/
http://cs-gw.utcluj.ro/~anca/GFMed/index.html
https://github.com/AskNowQA/SQG/
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System/Stats Precision Recall F1
QALD4
GFMed 1 0.99 0.99
SQG 0.42 0.42 0.42
Sparklis (5.5 steps/query) 0.88 0.88 0.88
Bio-SODA 0.61 0.60 0.60
Bioinformatics
GFMed 0 0 0
SQG 0.16 0.16 0.16
Sparklis - - -
Bio-SODA 0.6 0.6 0.6
CORDIS
GFMed 0 0 0
SQG 0.33 0.33 0.33
Sparklis (6.2 steps/query) 1 1 1
Bio-SODA 0.66 0.66 0.66

TABLE 5.4: Evaluation results. By considering a perfect user of the Sparklis tool, the mini-
mum number of manual steps for composing a query (averaged over all queries) is shown

between parentheses.

GFMed, the highest scoring in the QALD4 challenge, cannot (nor was it intended
to) be used outside this dataset without rewriting the set of grammar rules that are
strictly designed for question answering over specific releases of Diseasome, Drug-
bank and Sider.

SQG on the other hand, originally evaluated on the LC-Quad [169] benchmark,
does not support complex multi-hop questions, nor filters or queries involving liter-
als. An example such query is “Show me projects which started in 2020?", where 2020
is a numerical literal, as opposed to a linkable entity. While in the case of LC-Quad
these limitations do not impact performance, all the three datasets considered in our
evaluation include such features, which explains the poorer performance of SQG:
an F-score of 0.42 in the case of QALD4, only 0.33 in the CORDIS dataset and finally
0.16 in the case of the bioinformatics dataset. We note that these results are a theo-
retical best, since for SQG we assume perfect entity and property linking, leading to
the highest performance it can achieve.

Finally, Sparklis is not a question answering system per-se, but rather a query
builder, which helps users form the correct question by composing building blocks
starting from examples of class names, properties, values etc. Therefore, in order to
answer questions, we needed to rephrase them from the available building blocks
manually. On the positive side, we found Sparklis to be a powerful system, because
it enables building a rich variety of query types out-of-the-box. To achieve this, only
the SPARQL endpoint URL of the target RDF data store is required. Using the query
building methodology of Sparklis, 44 out of 50 questions in the QALD4 biomedical
benchmark can be answered. Furthermore, all questions in the CORDIS dataset can
also be answered. Although this result might seem surprising, recall that the ma-
jor challenge of this dataset is disambiguation. The manual query building process
in Sparklis addresses exactly this problem, provided that the user knows very well
how the data is structured and semantically represented. Therefore, on the negative
side, we found that the query building methodology requires precise understanding
of the data model, especially if multiple classes have the same label, as is the case
in QALD4. For example, answering the question Which drugs might lead to strokes?
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requires knowing that the Drugs class to be used is the one in Sider, as opposed to
the one in Diseasome. Furthermore, formulating questions in Sparklis is a manual
and therefore time-consuming process. Even when making the strong assumption
that the user has perfect knowledge of the data model, as well as of the features of
Sparklis (for example, how to correctly formulate aggregations, which can be chal-
lenging), the minimal number of manual steps required to formulate questions is
on average 5.5 interactions per question for QALD4 and 6.2 for CORDIS, with a
maximum of 10 for the more complex questions. In most cases, the question result-
ing from composing the building blocks will be significantly different from a true
natural language question. We did not pursue this approach on the bioinformatics
dataset, also because complex concepts in this dataset (ortholog, paralog) cannot be
expressed through the query building mechanism. More precisely, Sparklis does not
support complex property paths such as the ones previously introduced in Table 5.2.

Bio-SODA is a middle-ground between the generic, but manual approach of
Sparklis, and the grammar-based approach of GFMed, which is not easily trans-
ferable to a new domain. More precisely, Bio-SODA achieves relatively good per-
formance (around 0.6 F1 score) across the three datasets without requiring manual
intervention. The only exception are two custom rules for the bioinformatics dataset,
as described in Table 5.2. These help answer 4 out of 30 queries. Although GFMed
has the best results for QALD4, it cannot be used outside this dataset without a com-
plete rewriting of the grammar rules. Sparklis also achieves better results on the two
datasets tested, but with the big disadvantage that it is a manual approach, where
the user must understand the data model in order to compose questions correctly.

Our findings are further detailed in the Evaluation folder in our GitHub repos-
itory. We provide an analysis of the results for Bio-SODA, also highlighting limita-
tions of the current prototype, in the following sections.

5.5.4 Impact of Ranking Algorithm

We conducted an ablation study to quantify the importance of ranking by PageRank
score of candidate matches. For this purpose, we disable our ranking algorithm and
instead use simple string similarity-based ranking for candidate matches, returning
the overall minimal subgraph as the top answer.

The results, displayed in Table 5.5, show that for the CORDIS dataset in par-
ticular, ranking makes a crucial difference. The reason for this is that, for most of
the keywords that describe metadata (such as class names, like Project Topic or Sub-
ject Area), there exists in the dataset a project whose acronym matches exactly. For
example, there exist projects with acronyms such as Topic, Area, Host, Code, which
are (according to string similarity only) classified as best matches for tokens in the
original question. Constructing the overall minimal subgraph leads to wrong results
in almost all cases, except for only 3 out 30 questions, where there is no ambiguity.
Note that adding no other change aside from considering PageRank scores in ranking
enables answering 17 more queries out of 30 for this dataset.

5.5.5 Error Analysis and Remaining Problems

In the QALD4 biomedical benchmark, Bio-SODA correctly answered 30 out of 50
questions with an additional 2 partially correct. We note that 1 question in QALD4
cannot be answered by Sparklis nor Bio-SODA due to missing label information.
More precisely, the instance <http://www4.wiwiss.fu-berlin.de/diseasome/resource/

<http://www4.wiwiss.fu-berlin.de/diseasome/resource/genes/EDNRB>
<http://www4.wiwiss.fu-berlin.de/diseasome/resource/genes/EDNRB>
<http://www4.wiwiss.fu-berlin.de/diseasome/resource/genes/EDNRB>
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Dataset (a) Correct with Bio-SODA
Ranking

(b) Correct with String
Similarity Ranking

QALD4 30/50 23/50
Bioinformatics 18/30 12/30
CORDIS 20/30 3/30

TABLE 5.5: Ablation study: (a) ranking with node centrality measure
versus (b) traditional approach with solely string-similarity and over-

all minimal subgraph as top result.

genes/EDNRB> is the target of the question “Which genes are associated with En-
dothelin receptor type B?", however, the label Endothelin receptor type B is not as-
signed in the official dataset of the benchmark, nor can it be inferred from the URI
fragment, for example. Upon closer inspection, the question is actually ill-formulated.
Since EDNRB itself is a gene, the correct question should be “Which diseases are as-
sociated with EDNRB?". In total, we have found at least 4 out of 50 entries in the
dataset to contain errors, either in the question formulation, or in the ground truth
answer. These have already been discussed in previous studies [55].
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FIGURE 5.4: Bio-SODA failure analysis. Out of the total 50 questions
in the QALD4 biomedical benchmark, Bio-SODA cannot correctly an-
swer 20. A further 12 out of 30 cannot be answered in the bioinfor-
matics dataset, mainly due to query complexity (some queries having
more than 10 triple patterns). Finally, on the CORDIS dataset 10 out
of 30 queries cannot be answered, a large fraction of which include
features currently unsupported in Bio-SODA: aggregations, superla-

tives and comparatives, conjunctions etc.

An additional number of questions cannot be answered by Bio-SODA across the
three datasets due to other reasons. We summarise them in Figure 5.4, explained in
the following:

• Aggregations. Our system currently does not support questions that require ag-
gregations, such as Count, Sum etc. An example such question would be Count

<http://www4.wiwiss.fu-berlin.de/diseasome/resource/genes/EDNRB>
<http://www4.wiwiss.fu-berlin.de/diseasome/resource/genes/EDNRB>
<http://www4.wiwiss.fu-berlin.de/diseasome/resource/genes/EDNRB>
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the projects in the life sciences domain. A possible solution to this would be to
include pre-defined patterns or training a question classifier for this purpose.

• Superlatives/Comparatives. Another unsupported feature in the current pro-
totype is the use of quantifiers (superlatives or comparatives). An example
would be Which drug has the highest number of side-effects? The main reason for
lack of support in this feature is that determining the property which should
be quantified requires either using the dependency parse tree (in which case
the questions should be grammatically correct) or using heuristics, which may
be error-prone. The requirement to support keyword searches in Bio-SODA
made it challenging to take into account the dependency parse tree for ques-
tions, given that the performance of dependency parsers decreases with miss-
ing words (such as keyword searches) [187]. One possible solution for this
would be to only use Part of Speech (PoS) tagging to detect superlatives, con-
sidering the dependency parse tree when these are present. The direction of
the superlative (e.g. most as opposed to least) would need to be detected via a
classifier.

• Conjunctions. Conjunctive questions which involve multiple instances of the
same class are not supported in the current prototype. An example such case
is List drugs that lead to strokes and arthrosis. This limitation derives from our
methodology in computing the minimal subgraph covering candidate matches,
which would require special handling for cases when multiple candidates of
the same class are present in a question.

• Properties with same domain and range. Stemming from the same limitation men-
tioned above, these properties are currently not supported. In QALD4, the
only instance of this is the diseaseSubtypeOf property, which has as both domain
and range the Disease class. In the bioinformatics dataset we handle symmet-
ric properties describing ortholog and paralog genes through the custom rules
exemplified in Table 5.2.

• Ranking. One of the major sources of failure in our prototype remains ranking.
In the QALD4 dataset, ranking problems affect 4 out of 50 queries. An example
is: What are the diseases caused by Valdecoxib?. Here, the system cannot correctly
choose Drug - sideEffect - Side_Effect over the alternative Disease - possibleDrug
- Drug. The reason for this is that the Disease class matches exactly the term in
the question, while the Drug class in Diseasome has a higher PageRank score
than the one in Sider. Furthermore, the combination of these two candidate
matches also leads to the smallest subgraph. A possible solution to the prob-
lem would be incorporating word embeddings or synonyms in the indexing
phase, or rephrasing the question. Despite this issue, the user is still able to
identify the correct interpretation among the lower ranked answers, based on
the explanations provided in the output.

A more complex corner-case is part of the bioinformatics dataset, What are the
genes with lung in the description? The term lung is commonly used to refer to an
Anatomical Entity. This also reflects in the node importance of this match in the
dataset. Therefore, the system cannot correctly determine that, in the context
of this question, it should instead be considered part of the description prop-
erty of a Gene. The correct candidate match scores very low, resulting in the
correct answer also being ranked too low. A similar example from QALD4 is
Which drugs have bipolar disorder as indication?, where bipolar disorder is matched
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against a Disease instead of a drug indication. In these cases user disambigua-
tion, at the level of candidate matches, would solve the problem.

• Incomplete information. This problem affects mainly the results in the QALD4
dataset, more precisely 4 out of 50 queries. We have already covered the ex-
ample of the question targeting the EDNRB gene, which lacks the correct label
in the official dataset. We currently do not enrich the inverted index with syn-
onyms or external information, which means questions must be formulated
in terms of the available vocabulary of the dataset. An additional three ques-
tions cannot be answered because they refer to URIs that do not have any class
defined in the data, therefore the system cannot attach the candidate matches
anywhere in the Summary Graph. An example is the drugType property, which
can take two values, either http: // www4. wiwiss. fu-berlin. de/ drugbank/
resource/ drugtype/ experimental or http: // www4. wiwiss. fu-berlin. de/
drugbank/ resource/ drugtype/ approved . We believe a better modelling of
the data should have provided, for example, either these as a xsd:anyURI datatype,
given they are not used for any other purposes, or defined some class for both.

• Query complexity. The bioinformatics dataset covers queries with high com-
plexity, which are difficult to solve especially since they include symmetric
properties, with multiple instances of the same class, each filtered according
to different conditions. An example of such a question is Retrieve Oryctolagus
cuniculus’ proteins encoded by genes that are orthologous to Mus musculus’ HBB-Y
gene. Here, the task is to retrieve Gene instances in a particular Taxon (species),
namely the rabbit (Oryctolagus cuniculus), which are orthologs (symmetric prop-
erty) of a second instance of Gene, labeled HBB-Y, in a different species, namely
the mouse (Mus musculus). The resulting query has over 15 triple patterns,
with 3 filters (the 2 species names plus the gene name). Bio-SODA currently
cannot answer questions which involve multiple instances of the same class
with additional constraints on each instance. This is particularly challenging
to solve without considering the dependency parse tree. Therefore, we cur-
rently only support generic questions, such as What are the orthologs of Mus
musculus’ HBB-Y gene?.

• Others. Two questions in the QALD4 dataset have particular challenges, the
first being a stemming error. In the question Give me drugs in the gaseous state,
the term gaseous cannot be correctly stemmed to gas. The second type of error
is due to unsupported ASK queries, e.g. Are there drugs that target the Protein
kinase C beta type?. Here, Bio-SODA retrieves examples of such drugs, instead
of the boolean True. However we do not consider this a fundamental limitation
and a question type classifier could be added in future work.

We report a more detailed analysis of all systems considered in this chapter in
the Evaluation folder in our GitHub repository. For easy accessibility to the system,
as well as reproducibility of the results, we also provide a demo page for each of the
three datasets, available online 15.

15Bio-SODA Demo: http://biosoda.expasy.org/welcome/

http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/experimental
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/experimental
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/approved
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/approved
https://github.com/anazhaw/Bio-SODA/tree/master/Evaluation
http://biosoda.expasy.org/welcome/
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5.6 Lessons Learned: Design Goals for Practical Question
Answering Systems over Domain Knowledge Graphs

Stemming from the challenges of closed-domain question answering, which we in-
troduced in Section 5.2, as well as our experience in using Bio-SODA across several
real-world datasets, we derived the following design goals for question answering
systems over domain knowledge graphs:

• Generality: The system should be easily adaptable to new datasets. In partic-
ular, the system should be able to answer questions in a new domain without
manual intervention and without relying on extensive training data, which is
hard to obtain in many domains. In this line, a desirable property is also the
ability to cope with “real-world" datasets, dealing with incompleteness in the
data, in the form of:

– missing schema information (should be inferred from instance-level data);

– missing labels (should be incorporated from URIs whenever meaningful);

– other issues; an example is the owl:sameAs property, which is an equiv-
alence relationship, however, in many cases also has a defined direction-
ality. More precisely, an RDF store can assert “A owl:sameAs B" without
also asserting “B owl:sameAs A". When “owl:sameAs" inferences are not
derived by Web Ontology Language (OWL) reasoners [188], this can have
unexpected consequences, given that writing the wrong SPARQL query
(i.e. wrong directionality) will lead to empty results. This is a known issue
in the the QALD4 biomedical dataset [189]. One possible solution is to al-
ways consider the UNION of both directions: “A owl:sameAs B" UNION
“B owl:sameAs A" in constructing SPARQL queries.

• Extensibility: The system should easily work with multiple datasets (provided
they are already semantically aligned—i.e., data integration is a prior require-
ment). Many studies introduce possible approaches for data integration - for
the ontology-based data integration approach used as part of this work see
Chapter 3.

• Configurability: The database owner should be able to specify properties (e.g.
labels, descriptions) should be searchable using the system. Our experience
with real-world datasets showed that in general it is not desirable for all prop-
erties to be indexed. As an example, in many cases, fields in the queried data
sources can be either redundant or too verbose. In bioinformatics, these are ab-
stracts of papers that are assigned as values to an RDF property, whose length
can therefore be up to 300 words. Similarly, in the CORDIS dataset, these are
the abstracts of the EU projects. These cases should be handled through a ded-
icated approach, for example, based on classical information retrieval methods
(see an example in [190]).

• Explainability: The system should clearly guide the user through how a ques-
tion was processed and interpreted. This starts from explaining which con-
cepts were matched in relation to the original question, continuing with how
these candidate matches are composed together in a query graph in order to
provide the final SPARQL query. Finally, the query results should be under-
standable as well. Therefore, the projected variable names should be meaning-
ful. Furthermore, labels and descriptions should be part of the result set, as
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opposed to only URIs, which in most cases do not contain human-readable in-
formation. A concrete example of two possible interpretations for the question
“Which drugs lead to strokes?" are shown in Table 5.6. The first interpretation
given on the top is correct, but hard to validate since no labels are shown. The
second interpretation is easier to understand given that the SPARQL query
includes meaningful variable names and human-readable information (e.g. la-
bels) in the result set.

1) A simplified SPARQL query could be:
Query: SELECT ?x where { ?x sider:sideEffect side_effects:C0038454.}

Results: ?x=sider_drug:163742; ?x=sider_drug:4440;

2) A more meaningful and interpretable result set would be given by:

Query:

SELECT * where {
?drug sider:sideEffect ?side_effect.
?drug rdfs:label ?drug_label.
?side_effect sider:sideEffectName ?name.
FILTER(contains(?name), “stroke"). }

Results:
?drug ?drug_label ?side_effect ?name
sider_drug:163742 “Arixtra" side_effects:C0038454 “stroke"
sider_drug:4440 “Amerge" side_effects:C0038454 “stroke"

TABLE 5.6: Example showing two equivalent interpretations for the
question “Which drugs lead to strokes?". The namespace URIs are omit-
ted for readability and replaced with prefixes (e.g. “sider:") The first
interpretation returns correct results, however, they are hard to vali-
date by a non-expert user, given that the response only contains URIs
(essentially, opaque numerical identifiers). In contrast, in the second
variant, the system provides a more understandable SPARQL query,
with meaningful variable names, but more importantly a more com-
prehensive result set. Note that the human readable name of an in-
stance returned in the result is not necessarily always found in the

label property (e.g. sider:sideEffectName).

5.7 Related Work

The problem of question answering over structured data has been well-studied in
recent years, with a growing number of published systems, particularly in open-
domain question answering. Recent surveys on natural language interfaces to databases
include [186, 191].

In parallel, the biomedical field has seen a growth of dedicated systems for ques-
tion answering. Examples include GFMed [176] and Pomelo [177] – the two highest
ranked systems in the QALD4 biomedical challenge – as well as more recent sys-
tems [189]. However, these can generally be considered as expert systems, with
lower generalizability to other domains, given that they extensively rely on manu-
ally handcrafted rules, which often depend on domain expertise.

Our work aims to bridge the gap between the two parallel efforts by solving
the common case in a domain-independent manner. For this, Bio-SODA relies on a
generic graph-based approach in order to generate a ranked list of candidate SPARQL
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queries from a given question. We enable the addition of custom rules only for corner
cases when needed.

Many recent KGQA systems [158, 160] have been evaluated using the LC-Quad
benchmark of 5000 questions over DBpedia [169]. Although this benchmark is an
important step forward, particularly for enabling machine learning approaches, it
does not cover complex multi-hop questions, which makes it unclear how the results
would generalize to this case. As an example, at the time of writing, the current im-
plementation of SQG, which is publicly available [167], would not work for complex
question answering on a new knowledge graph without significant changes to the
code base, as it is targeted at question answering over DBpedia and more specifically
in the format required by the LC-Quad benchmark. We recall here that LC-Quad in-
cludes queries with a complexity of at most two hops, which is also reflected in the
implementation of SQG at the time of this writing. ExSQG, an extension of SQG, was
recently proposed [192] to support richer query types. Although ExSQG supports
ordinal questions (e.g., superlatives), it does not support string-based filters, which
Bio-SODA makes extensive use of.

More recent KGQA systems, such as [160, 193], support multiple knowledge
graphs, but are limited to queries with a complexity of at most three triple patterns.
Similarly, existing end-to-end QA systems, based on machine learning approaches,
such as [194], can only handle simple questions. These approaches have the added
drawback that they only generate a single answer, as opposed to multiple candi-
dates. Furthermore, end-to-end approaches suffer from the problem of lack of ex-
plainability, which makes it challenging for users to validate the correctness of the
result. Explainability has therefore in this context become an active area of research,
with solutions proposed including translating back structured queries into natural
language sentences [195–197] or summarizing the entities in the results [178].

Disambiguation is one of the major tasks of question answering systems. One
possible solution for this is to limit the interface to a controlled natural language
and involve the user in constructing questions from the available building blocks.
Sparklis [129] is a query building system that enables answering controlled natural
language questions over knowledge graphs out-of-the-box. However, this process is
manual and therefore time-consuming, which makes it less convenient than a true
natural language interface.

One of the systems closest to ours is the KG-agnostic WDAqua-core1 [158]. The
system supports multiple knowledge bases in several languages. However, the sys-
tem is only available as a demo. Although the authors mention that node relevance
can in principle be taken into account in ranking, it is not clear whether the ap-
proach was used in the evaluation or whether the ranking function was learned
based on training data. Furthermore, the system identifies relations from a user
question based on a dictionary and does not use word embeddings for filtering out
spurious candidate matches. One of the strong points of the system is its portability,
which is demonstrated across 5 datasets. We have also tested Bio-SODA across 3
multi-domain datasets, achieving satisfactory results across all three benchmarks.

5.8 Conclusions and Outlook

In this chapter we have introduced Bio-SODA, a question answering system for do-
main knowledge graphs, which we evaluated across three real-world datasets per-
taining to different domains: biomedical, orthology and gene expression, and finally
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EU-funded projects. Our results have shown that Bio-SODA outperforms state-of-
the-art systems that are publicly available for testing by a 20% F1-score improvement
and more. The main advantage of Bio-SODA over existing open-source systems is
that it can handle complex, multi-triple pattern queries without requiring user guidance
and training data. Bio-SODA uses a novel ranking approach that takes into account
both string and semantic similarity, as well as node centrality of candidate matches.
Our experiments demonstrate that this improves the quality of results, particularly
for datasets which can suffer from redundancy and imprecise labels.

However, making question answering systems for domain knowledge graphs
work in the real-world will require a multi-way dialog between disciplines, involv-
ing the database community, the natural language processing community and do-
main experts.

As a first step in future work, we plan to add user feedback to the question an-
swering process, by involving the user in a disambiguation dialog for selecting the
best candidate matches, as well as for ranking the best answer among resulting can-
didate queries. As a long term direction for future research, we envision compiling a
benchmark of cross-domain question-answer pairs, similar to the Spider benchmark
in the relational database world [198], which would enable research into refining
pre-trained KGQA models for new domains.
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The research presented in this thesis opens many opportunities for future work.
First, Machine Learning methods have the potential to simplify semantic data inte-
gration, by automating some of the underlying processes. One example is finding in-
tersection points (Virtual Links, discussed in Chapter 3) between connected datasets.
This can be achieved through Entity Matching. Recent approaches have proposed
using Transformer Architectures for this step [199], which could be promising for
automating Virtual Links discovery between existing datasets.

Other steps of the data integration pipeline are however less likely to be amenable
to full automation in the near future. For example, ontology engineering or relational-
to-RDF mappings creation (see Chapter 3), require in-depth domain knowledge, as
well as agreement between domain experts. Therefore, these are likely to remain
manual efforts. Still, new approaches are emerging in reducing these efforts, as
they are both challenging and time-consuming tasks. For example, a recent study
proposed a "pay-as-you-go" methodology for creating mappings, in order to speed-
up the adoption of Ontology Based Data Access systems in practice [200]. A com-
plementary problem, namely knowledge base creation from text, has already been
tackled through machine learning methods (e.g. [201]), whose prevalence is likely
to increase in this field. All in all, automatic knowledge base creation from het-
erogeneous sources remains crucial in enabling semantic integration of both non-
structured (text) and structured data.

In Life Science research, semantic data integration has the potential to create a
shift of paradigm, from the current status quo of tedious manual work – involving
users searching by identifier lists and compiling results from multiple sources into
spreadsheets by hand - to novel data exploration engines, capable of fulfilling such
information needs automatically.

However, while data integration will continue to be an enabler for many new
applications, it will also give rise to many new challenges. As large volumes of
heterogeneous data are becoming logically unified into federated architecture, im-
proved federated query optimizers will be required in order for response times to
remain practical. Steps in this direction have already been taken by the creation
of benchmarks [202], as well as practical implementations of federated query op-
timizers such as [203], [64]. Testing these systems with new queries and datasets,
such as the catalog of bioinformatics queries over three datasets (Bgee, OMA and
UniProt), evaluated in this thesis in Chapter 3, remains an interesting direction for
future work.

Additional challenges arise from providing unified access points to federated
data: provenance tracking, quality and relevance assessment of existing data sets (in
the context of a given research hypothesis), as well as the explainability of results, all
of which will play an important role in designing applications with practical impact.
One of the pitfalls of making data interoperable and reusable will be its reuse in
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scenarios that it was not originally intended for. In fact, example such scenarios are
already known and discussed in the literature [204], [205], [206].

In this sense, benefiting from the integrated data across domains will also require
integrated domain knowledge and careful interpretation of the novel results that span
multiple domains. Therefore, interdisciplinary work, conducted in truly interdis-
ciplinary teams, is likely to play an increasingly important role in going forward,
particularly in Life Science research.

Finally, research in the field of Question Answering over Structured Data still
has a long road ahead, as recent studies point out [207]. Although Machine Learn-
ing methods have brought contributions in this direction too, they have so far been
applicable mostly to low-complexity queries, especially in the case of RDF datasets
[208], where the focus remains on open-domain questions (for example, over DBpe-
dia), rather than domain datasets. It is therefore not clear how they generalize, par-
ticularly in cases where there are only few training examples that a system can learn
from or be fine-tuned on. One of the most promising new contributions has been
given by the Spider challenge [198] of question answering over relational databases.
Systems participating in this challenge, such as IRNet [209] or RatSQL [210] - al-
though designed for question answering over relational databases - have the poten-
tial to be applicable for RDF datasets as well, due to their use of an intermediate rep-
resentation. Additionally, they have the important advantage of being open-source,
which was unfortunately not the case for most of the published question answering
systems so far.

However, none of these systems will work without some fine-tuning to new do-
mains, particularly in cases of ambiguity and redundancy in the data. On the other
hand, the number of new training examples required for this fine-tuning has not yet
been systematically analyzed (nor is it clear if such an estimation is feasible in gen-
eral). It is therefore important to evaluate existing systems on unseen domains and
investigate the remaining challenges that most be solved in order to make them us-
able in practice. Another important direction is to replace dictionary-based solutions
(inverted indexes), still used to a large extent in most question answering systems,
with new methods based on semantic similarity. This would significantly improve
the handling of out-of-vocabulary terms. However, although Word Embeddings,
such as GloVe [211], have opened the path for many new applications in natural lan-
guage processing, currently finding the most semantically similar terms from within
a database with respect to a given user term (in reasonable time) remains a complex
problem. One of the only solutions proposed so far has been [212], but more research
is needed - in particular, word embeddings will not solve the problem of multi-word
concepts. Knowledge Graphs embeddings [213] on the other hand could be helpful
in solving this for the case of KGQA systems. Their application to question answer-
ing has only recently started to be analyzed, focusing only on simple questions [214].

Ultimately, it is worth noting that no question answering system will be perfect
on its own, given that two users might actually mean different things while asking
the same question. Therefore, incorporating user feedback will also be one of the key
components in improving the accuracy of question answering systems over time.
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Chapter 7

Conclusions

This thesis has addressed two key challenges: first, the data integration challenge,
stemming from the heterogeneity of publicly available biological databases. Here,
we proposed an ontology-based data integration approach, which we illustrated on
the concrete use case of an existing, in-use, gene expression database - Bgee. As part
of the Bio-SODA project, Bgee was made interoperable with external datasets, such
as the OMA orthology database, as well as the UniProt RDF store. As an illustration
of the benefits of data integration, I have next introduced two applied case stud-
ies, which are designed to help guide domain experts into formulating expressive,
federated queries within across the domains of orthology and gene expression. For
example, I showed how the integrated data between Bgee and OMA can be used in
order to make a comparative study of expression evolution following a duplication.

The second challenge addressed in this thesis is the data access problem, in or-
der to bridge the semantic gap between end users and structured data, particularly
knowledge graphs. This can be achieved through an intuitive search interface, that
removes from users the burden of understanding the data models of the queried
sourced, as well as the technical language required to query them. Here, I introduced
Bio-SODA, a question answering system for domain knowledge graphs. Experimen-
tal results showed that Bio-SODA achieves good performance across three bench-
marks datasets, outperforming state-of-the-art question answering systems that are
publicly available for testing. Furthermore, Bio-SODA does not require prior train-
ing data, in the form of question-answer pairs (a scarce resource, particularly for
domain datasets), in order to translate user questions into their equivalent technical
queries in SPARQL.

The techniques presented in this thesis complement each other. Ontology-based
data integration is the foundation for enabling new applications - either within the
same domain (using multiple, interoperable data source to compare and contrast re-
sults) or, perhaps more importantly, across domains, where data integration can be
a key enabler to new scientific discovery. The design of Bio-SODA, which I intro-
duced in Chapter 5, is based on the assumption that the underlying data sources are
already semantically aligned and interoperable. This makes the methods introduced
in Chapter 3 a necessary pre-requisite. However, the practical applications that make
use of the integrated data, such as the ones I introduced in Chapter 4, also can and
should help guide the development of question answering systems. Ultimately, the
goal of such systems is not merely to answer complex, even if at times artificial,
benchmark questions, but rather to assist the main beneficiaries of the data - in par-
ticular, domain experts - in answering meaningful, novel and insightful questions. In
this sense, measuring the utility of question answering systems in accelerating the
pace of scientific discovery, in comparison with traditional data access modalities,
remains an interesting open topic for future research.
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A.1 Example that compares the number of UniProt entries
between the Linked Life Data and UniProt RDF stores

The following example illustrates one of the main drawbacks of centralized data
integration approaches, namely that in the lack of a good strategy for keeping data
in-sync, results can quickly become stale. As an illustration, we can compare the
total number of protein entries in the Linked Life Data (LLD) SPARQL endpoint
([103] mentioned in the Introduction section in Chapter 3), with the count according
to the latest version of UniProt.

Executing the SPARQL query in the version of UniProt at the time of writing
(release 2019_03) will result in a total of around 238 million proteins, whereas in
Linked Life Data there are only around 20 million, indicating that the entries in LLD
are severely outdated, missing out more than 90% of the total entries in the latest
UniProt version. We provide below the required links in order to reproduce these
observations:

Query to retrieve the total number of proteins:
1 PREFIX up:<http :// purl.uniprot.org/core/>
2 SELECT (count(? protein) as ?count_uniprot_entries )
3 WHERE
4 { ?protein a up:Protein .}

Executing the query at Linked Life Data SPARQL endpoint:
http://www.linkedlifedata.com/sparql

To get the list of results in your browser directly, use the following link:
http://www.linkedlifedata.com/sparql?query=PREFIX+up%3A%3Chttp%3A%2F%

2Fpurl.uniprot.org%2Fcore%2F%3E+%0D%0ASELECT+%28count%28%3Fprotein%29+as+
%3Fcount_uniprot_entries+%29%0D%0AWHERE%0D%0A%7B%0D%0A%09%3Fprotein+a+up%
3AProtein+.%09%0D%0A%7D&_implicit=false&implicit=true&_form=%2Fsparql

Executing the query at UniProt SPARQL endpoint:
https://sparql.uniprot.org/sparql/

http://www.linkedlifedata.com/sparql
http://www.linkedlifedata.com/sparql?query=PREFIX+up%3A%3Chttp%3A%2F%2Fpurl.uniprot.org%2Fcore%2F%3E+%0D%0ASELECT+%28count%28%3Fprotein%29+as+%3Fcount_uniprot_entries+%29%0D%0AWHERE%0D%0A%7B%0D%0A%09%3Fprotein+a+up%3AProtein+.%09%0D%0A%7D&_implicit=false&implicit=true&_form=%2Fsparql
http://www.linkedlifedata.com/sparql?query=PREFIX+up%3A%3Chttp%3A%2F%2Fpurl.uniprot.org%2Fcore%2F%3E+%0D%0ASELECT+%28count%28%3Fprotein%29+as+%3Fcount_uniprot_entries+%29%0D%0AWHERE%0D%0A%7B%0D%0A%09%3Fprotein+a+up%3AProtein+.%09%0D%0A%7D&_implicit=false&implicit=true&_form=%2Fsparql
http://www.linkedlifedata.com/sparql?query=PREFIX+up%3A%3Chttp%3A%2F%2Fpurl.uniprot.org%2Fcore%2F%3E+%0D%0ASELECT+%28count%28%3Fprotein%29+as+%3Fcount_uniprot_entries+%29%0D%0AWHERE%0D%0A%7B%0D%0A%09%3Fprotein+a+up%3AProtein+.%09%0D%0A%7D&_implicit=false&implicit=true&_form=%2Fsparql
http://www.linkedlifedata.com/sparql?query=PREFIX+up%3A%3Chttp%3A%2F%2Fpurl.uniprot.org%2Fcore%2F%3E+%0D%0ASELECT+%28count%28%3Fprotein%29+as+%3Fcount_uniprot_entries+%29%0D%0AWHERE%0D%0A%7B%0D%0A%09%3Fprotein+a+up%3AProtein+.%09%0D%0A%7D&_implicit=false&implicit=true&_form=%2Fsparql
https://sparql.uniprot.org/sparql/
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To get the list of results in your browser directly, use the following link:
https://sparql.uniprot.org/sparql/?format=html&query=PREFIX+up%3A%3Chttp%

3A%2F%2Fpurl.uniprot.org%2Fcore%2F%3E+%0D%0ASELECT+%28count%28%3Fprotein%
29+as+%3Fcount_uniprot_entries+%29%0D%0AWHERE%0D%0A%7B%0D%0A%09%3Fprotein+
a+up%3AProtein+.%09%0D%0A%7D

A.2 Example Bgee-Ontop relational-to-RDF mapping

The code fragment in Listing A.1 defines how rows (i.e. a species) and columns (i.e.
species attributes) of the species table in the relational database can be mapped as
RDF triples, by instantiating a corresponding GenEx class, namely the up:Taxon class
(imported from the UniProt core ontology), as well as its individuals. The mapping
also addresses schema-level heterogeneity by concatenating two source column values
(i.e. genus and species) into the target up:scientificName RDF property.

1 target taxon:{ speciesId} a up:Taxon ;
2 up:scientificName {speciesSciName} ;
3 up:rank up:Species ;
4 up:commonName {speciesCommonName }.
5 orth:Organism /{ speciesId} a orth:Organism ;
6 obo:RO_0002162 taxon:{ speciesId} .
7 source SELECT speciesId , speciesCommonName ,
8 CONCAT(genus , ’ ’, species) AS speciesSciName
9 FROM species

LISTING A.1: Ontop direct mapping to infer Species related data into
the GenEx semantic model (i.e. target schema) based on the Bgee
relational database (i.e. data source). Prefixes are defined in Table

A.1.

TABLE A.1: In this thesis, we assume the namespace prefix bindings
in this table.

Prefix Namespace Internationalized Resource Identifier IRI
rdfs: http://www.w3.org/2000/01/rdf-schema#
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
orth: http://purl.org/net/orth#
up: http://purl.uniprot.org/core/
taxon: http://purl.uniprot.org/taxonomy/
genex: http://purl.org/genex#
obo:, uberon: http://purl.obolibrary.org/obo/
oma: http://omabrowser.org/ontology/oma#
skos: http://www.w3.org/2004/02/skos/core#
sio: http://semanticscience.org/resource/
lscr: http://purl.org/lscr#
void: http://rdfs.org/ns/void#
voidext: http://purl.org/query/voidext#

https://sparql.uniprot.org/sparql/?format=html&query=PREFIX+up%3A%3Chttp%3A%2F%2Fpurl.uniprot.org%2Fcore%2F%3E+%0D%0ASELECT+%28count%28%3Fprotein%29+as+%3Fcount_uniprot_entries+%29%0D%0AWHERE%0D%0A%7B%0D%0A%09%3Fprotein+a+up%3AProtein+.%09%0D%0A%7D
https://sparql.uniprot.org/sparql/?format=html&query=PREFIX+up%3A%3Chttp%3A%2F%2Fpurl.uniprot.org%2Fcore%2F%3E+%0D%0ASELECT+%28count%28%3Fprotein%29+as+%3Fcount_uniprot_entries+%29%0D%0AWHERE%0D%0A%7B%0D%0A%09%3Fprotein+a+up%3AProtein+.%09%0D%0A%7D
https://sparql.uniprot.org/sparql/?format=html&query=PREFIX+up%3A%3Chttp%3A%2F%2Fpurl.uniprot.org%2Fcore%2F%3E+%0D%0ASELECT+%28count%28%3Fprotein%29+as+%3Fcount_uniprot_entries+%29%0D%0AWHERE%0D%0A%7B%0D%0A%09%3Fprotein+a+up%3AProtein+.%09%0D%0A%7D
https://sparql.uniprot.org/sparql/?format=html&query=PREFIX+up%3A%3Chttp%3A%2F%2Fpurl.uniprot.org%2Fcore%2F%3E+%0D%0ASELECT+%28count%28%3Fprotein%29+as+%3Fcount_uniprot_entries+%29%0D%0AWHERE%0D%0A%7B%0D%0A%09%3Fprotein+a+up%3AProtein+.%09%0D%0A%7D
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A.3 Example SPARQL federated query across Bgee, OMA,
UniProt

What are the human genes which have a known association to glioblastoma (a type of brain
cancer) and which furthermore have an orthologous gene expressed in the rat brain?

1 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#>
2 PREFIX obo: <http :// purl.obolibrary.org/obo/>
3 PREFIX orth: <http :// purl.org/net/orth#>
4 PREFIX sio: <http :// semanticscience.org/resource/>
5 PREFIX taxon: <http :// purl.uniprot.org/taxonomy/>
6 PREFIX up: <http :// purl.uniprot.org/core/>
7 PREFIX lscr: <http :// purl.org/lscr#>
8 PREFIX genex:<http :// purl.org/genex#>
9

10 SELECT DISTINCT ?protein ?orthologous_protein_rat ?id WHERE {
11 SELECT * {
12 SERVICE <http :// sparql.uniprot.org/sparql > {
13 SELECT ?protein WHERE {
14 ?protein a up:Protein ;
15 up:organism taxon :9606 ;
16 up:annotation ?annotation .
17 ?annotation rdfs:comment ?annotation_text .
18 ?annotation a up:Disease_Annotation .
19 FILTER CONTAINS (? annotation_text , "glioblastoma ") } }
20 SERVICE <https :// sparql.omabrowser.org/sparql > {
21 SELECT ?orthologous_protein_rat ?protein ?id WHERE {
22 ?protein_OMA a orth:Protein .
23 ?orthologous_protein_rat a orth:Protein .
24 ?cluster a orth:OrthologsCluster .
25 ?cluster orth:hasHomologousMember ?node1 .
26 ?cluster orth:hasHomologousMember ?node2 .
27 ?node2 orth:hasHomologousMember* ?protein_OMA .
28 ?node1 orth:hasHomologousMember* ?orthologous_protein_rat .
29 ?orthologous_protein_rat orth:organism/obo:RO_0002162 taxon

:10116. #rattus norvegicus
30 ?orthologous_protein_rat sio:SIO_010079/lscr:xrefEnsemblGene ?id.
31 ?protein_OMA lscr:xrefUniprot ?protein .
32 FILTER (?node1 != ?node2) } }
33 SERVICE <http :// biosoda.expasy.org :8080/ rdf4j -server/repositories/

bgeelight > {
34 ?gene genex:isExpressedIn ?a .
35 ?a rdfs:label "brain" .
36 ?gene orth:organism ?s .
37 ?s obo:RO_0002162 taxon :10116.
38 ?gene lscr:xrefEnsemblGene ?id . } } }

LISTING A.2: A federated SPARQL 1.1 query to retrieve proteins
associated with glioblastoma and the orthologs expressed in the rat

brain.

Table A.2 displays the results of executing the SPARQL query above, where:

• The first column, “protein”, shows UniProt human proteins with a known as-
sociation with glioblastoma for which there exists an orthologous protein ex-
pressed in the rat’s brain. Clicking on any of the links in this column will
redirect to the corresponding UniProt entry online.

• The second column, “orthologous_protein_rat”, shows the orthologous rat pro-
tein (for which there exists known expression in the brain according to data
from Bgee)
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• The third column, “id”, shows the Ensembl ID of the gene encoded by the rat
protein (from column 2). Note that the ensemble ID (e.g. ENSRNOG00000008839)
can be used in the Bgee search interface at https://bgee.org/ for validating
the results.

The complete list of federated queries is available in our template-based search
interface at http://biosoda.expasy.org, while an explanation for the complexity
of the queries is available in our github repository at https://github.com/biosoda/
bioquery/.

https://bgee.org/
 http://biosoda.expasy.org
https://github.com/biosoda/bioquery/
https://github.com/biosoda/bioquery/
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A.4 Example relational-to-RDF OBDA mappings and discus-
sion

Figure A.1 – provided here as a copy of Figure 3.2 in chapter 3, for readability pur-
poses – illustrates graphically an example of exposing relational data from Bgee
(shown in the bottom half of the figure, the relational model) in a virtual RDF graph
(a fraction of the ontology and 2 instances are shown in the upper half of the figure,
the RDF model).

GlobalCond
globalConditionID
speciesID
anatEntityID   UBERON:0000955

Species
speciesID                9606
genus                   "Homo"
species              "sapiens"

Gene
bgeeGeneID                                    374147
geneID                                        NEUROD6
geneName         "Neurogenic differentiation 6"
speciesID                                             9606
ensemblGene              ENSG00000164600

AnatEntity
anatEntityID                 UBERON:0000955
anatEntityName                                "brain"
anatEntityDescription
"The brain is the center of the nervous system [..

genex:AnatomicalEntity genex:isExpressedIn orth:Geneup:Taxon

taxon:speciesId a up:Taxon; 
up:scientificName

{speciesConcatName}

GlobalExpression
globalConditionID
speciesID

bgeeGeneID
anatEntityID  UBERON:0000955

oma:GENE_{geneId} a orth:Gene; 
rdfs:label {geneName}

taxon:9606 

rdf:type

"Homo
sapiens"

up:scientificName

concat(genus, '  ', species)  
as speciesConcatName

obo:UBERON_0000955 

rdf:type

"brain"

rdfs:label

obo:{anatEntityIdSPARQL} a  
genex:AnatomicalEntity ; 

rdfs:label {anatEntityName } 

replace(anatEntityId,":","_")  
as anatEntityIdSPARQL 

oma:GENE_NEUROD6 

rdf:type

"Neurogenic
differentiation 6"

rdfs:label

Relational Model

OBDA  
mappings 

RDF Model

FIGURE A.1: An illustration of relational-to-RDF mappings on a sam-
ple of the Bgee database (a copy of Figure 3.2 in Chapter 3, provided
here for readability). These mappings address both schema-level het-
erogeneity (an example is shown in blue), as well as data-level hetero-
geneity (shown in green). A mapping can also be a simple 1-to-1 cor-
respondence between a relational attribute (e.g. geneName, shown in
red) and its equivalent RDF property (in this case, an rdfs:label of an
orth:Gene instance). Namespace prefixes are defined in Supplemen-

tary Table A.1.

The orange rectangles in the OBDA mappings layer (in the center of the figure)
represent the “source” fragments (a simplified SQL statement) of a relational-to-RDF
mapping, while the blue rectangles illustrate the “target” (resulting RDF triples). For
readability purposes, we only included 3 sample mappings in this figure. However,
the full set of OBDA mappings employed with the Bgee relational data is available
in our github repository at https://github.com/biosoda/bioquery/tree/master/
Bgee_OBDA_mappings.

We note here that more complex mappings OBDA mappings can require joining
multiple tables in order to express an ontological concept or property which does not
have a direct correspondent (i.e., is not explicitly present) in the original database.

https://github.com/biosoda/bioquery/tree/master/Bgee_OBDA_mappings
https://github.com/biosoda/bioquery/tree/master/Bgee_OBDA_mappings
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TABLE A.2: Results of federated SPARQL query joining Bgee, OMA
and UniProt.

protein orthologous_protein_rat id
http://purl.uniprot.
org/uniprot/P37231

https://omabrowser.
org/oma/info/
RATNO15188

http://rdf.ebi.ac.
uk/resource/ensembl/
ENSRNOG00000008839

http://purl.uniprot.
org/uniprot/P08922

https://omabrowser.
org/oma/info/
RATNO12308

http://rdf.ebi.ac.
uk/resource/ensembl/
ENSRNOG00000000406

http://purl.uniprot.
org/uniprot/P68431

https://omabrowser.
org/oma/info/
RATNO09038

http://rdf.ebi.ac.
uk/resource/ensembl/
ENSRNOG00000053155

http://purl.uniprot.
org/uniprot/P68431

https://omabrowser.
org/oma/info/
RATNO09042

http://rdf.ebi.ac.
uk/resource/ensembl/
ENSRNOG00000056281

http://purl.uniprot.
org/uniprot/P68431

http://omabrowser.
org/oma/info/
RATNO11352

http://rdf.ebi.ac.
uk/resource/ensembl/
ENSRNOG00000060366

http://purl.uniprot.
org/uniprot/Q14956

https://omabrowser.
org/oma/info/
RATNO14717

http://rdf.ebi.ac.
uk/resource/ensembl/
ENSRNOG00000008816

http://purl.uniprot.
org/uniprot/P84243

https://omabrowser.
org/oma/info/
RATNO18582

http://rdf.ebi.ac.
uk/resource/ensembl/
ENSRNOG00000032401

http://purl.uniprot.
org/uniprot/P84243

https://omabrowser.
org/oma/info/
RATNO06508

http://rdf.ebi.ac.
uk/resource/ensembl/
ENSRNOG00000003220

http://purl.uniprot.
org/uniprot/O75140

https://omabrowser.
org/oma/info/
RATNO07117

http://rdf.ebi.ac.
uk/resource/ensembl/
ENSRNOG00000018144

http://purl.uniprot.
org/uniprot/Q12980

https://omabrowser.
org/oma/info/
RATNO03263

http://rdf.ebi.ac.
uk/resource/ensembl/
ENSRNOG00000020541

http://purl.uniprot.
org/uniprot/Q8WTW4

https://omabrowser.
org/oma/info/
RATNO20234

http://rdf.ebi.ac.
uk/resource/ensembl/
ENSRNOG00000021660

http://purl.uniprot.
org/uniprot/Q9BZH6

https://omabrowser.
org/oma/info/
RATNO02052

http://rdf.ebi.ac.
uk/resource/ensembl/
ENSRNOG00000020430

http://purl.uniprot.
org/uniprot/Q9HD26

https://omabrowser.
org/oma/info/
RATNO12311

http://rdf.ebi.ac.
uk/resource/ensembl/
ENSRNOG00000000408

http://purl.uniprot.
org/uniprot/Q9Y243

https://omabrowser.
org/oma/info/
RATNO06482

http://rdf.ebi.ac.
uk/resource/ensembl/
ENSRNOG00000021497

http://purl.uniprot.
org/uniprot/Q9UM73

https://omabrowser.
org/oma/info/
RATNO17047

http://rdf.ebi.ac.
uk/resource/ensembl/
ENSRNOG00000008683

http://purl.uniprot.org/uniprot/P37231
http://purl.uniprot.org/uniprot/P37231
https://omabrowser.org/oma/info/RATNO15188
https://omabrowser.org/oma/info/RATNO15188
https://omabrowser.org/oma/info/RATNO15188
http://rdf.ebi.ac.uk/resource/ensembl/ENSRNOG00000008839
http://rdf.ebi.ac.uk/resource/ensembl/ENSRNOG00000008839
http://rdf.ebi.ac.uk/resource/ensembl/ENSRNOG00000008839
http://purl.uniprot.org/uniprot/P08922
http://purl.uniprot.org/uniprot/P08922
https://omabrowser.org/oma/info/RATNO12308
https://omabrowser.org/oma/info/RATNO12308
https://omabrowser.org/oma/info/RATNO12308
http://rdf.ebi.ac.uk/resource/ensembl/ENSRNOG00000000406
http://rdf.ebi.ac.uk/resource/ensembl/ENSRNOG00000000406
http://rdf.ebi.ac.uk/resource/ensembl/ENSRNOG00000000406
http://purl.uniprot.org/uniprot/P68431
http://purl.uniprot.org/uniprot/P68431
https://omabrowser.org/oma/info/RATNO09038
https://omabrowser.org/oma/info/RATNO09038
https://omabrowser.org/oma/info/RATNO09038
http://rdf.ebi.ac.uk/resource/ensembl/ENSRNOG00000053155
http://rdf.ebi.ac.uk/resource/ensembl/ENSRNOG00000053155
http://rdf.ebi.ac.uk/resource/ensembl/ENSRNOG00000053155
http://purl.uniprot.org/uniprot/P68431
http://purl.uniprot.org/uniprot/P68431
https://omabrowser.org/oma/info/RATNO09042
https://omabrowser.org/oma/info/RATNO09042
https://omabrowser.org/oma/info/RATNO09042
http://rdf.ebi.ac.uk/resource/ensembl/ENSRNOG00000056281
http://rdf.ebi.ac.uk/resource/ensembl/ENSRNOG00000056281
http://rdf.ebi.ac.uk/resource/ensembl/ENSRNOG00000056281
http://purl.uniprot.org/uniprot/P68431
http://purl.uniprot.org/uniprot/P68431
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For this reason, mappings such as the one in 3.1 from Chapter 3 (shown here in
Listing A.3 below) can be interpreted as a semantic enrichment of the Bgee original
data schema, because they provide an explicit representation for knowledge that is
not directly present in the base data. In addition, all RDF triples are indeed virtual,
not materialised, hence the data are not duplicated.

1 target oma:GENE_{geneId} genex:isExpressedIn uberon :{ anatEntityIdSPARQL
} .

2 source SELECT g.geneId ,
3 REPLACE(gc.anatEntityId ,":","_") AS anatEntityIdSPARQL
4 FROM globalExpression AS ge
5 JOIN globalCond AS gc
6 ON ge.globalConditionId = gc.globalConditionId
7 JOIN gene AS g ON g.bgeeGeneId = ge.bgeeGeneId

LISTING A.3: Ontop mapping to infer the “is expressed in” GenEx
relation (i.e. target schema) based on the Bgee relational database (i.e.

data source). Prefixes are defined in Supplementary Table A.1.

In more detail, the code fragment in Listing A.3 asserts the genex:isExpressedIn
property by relating the projected columns geneId and anatEntityIdSPARQL from the
join between the globalExpression, globalCond and gene tables in the Bgee database.
This mapping also addresses data-level heterogeneity by applying the SQL REPLACE()
function in order to transform the anatEntityId attribute (represented in Bgee with
the separator “:”) into the corresponding standard UBERON IRI (where the “_” sep-
arator is used). This transformation is also graphically illustrated in Figure A.1 (in
green).

Nonetheless, the OBDA solution with Ontop has some limitations. In particular,
Ontop may struggle to apply complex and numerous mappings. In principle, the
advantage of Ontop is that, by translating SPARQL queries into SQL, the system
can take full advantage of the SQL query optimizer provided by the underlying
relational database management system (RDBMS). However, when the relational-
to-RDF mappings are very complex, the translation of a given SPARQL query can
result in an extremely complex SQL equivalent that can possibly imply an overall
poor performance of the system (Ontop + RDBMS) [126]. Moreover, currently not
all SPARQL queries can be translated into SQL. For example, aggregation queries
(e.g. SUM, COUNT, MAX) are not yet supported.

A.5 Information available in Bgee, OMA and UniProt

In the Table A.3 we provide an overview of the type of information available in
Bgee, OMA and UniProt, both in the original representation (relational database
for Bgee and HDF5 for OMA), as well as in RDF. More precisely, an “x” represents
information available; an added “+” symbolizes information available in RDF; and
“o” represents a link to other databases (e.g. OMA homologous groups).

A.6 Discussion regarding choice of RDF materialization for
OMA

From the original OMA data, we chose to exclusively materialise in RDF the Hi-
erarchical Orthologous Groups (HOGs) and the cross-references to other resources,
which are the main “value-added” parts of OMA. The RDF serialisation relies on
the ORTH ontology documented in https://qfo.github.io/OrthologyOntology/.

https://qfo.github.io/OrthologyOntology/
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TABLE A.3: The information available on Bgee, OMA and UniProt
data stores by also including resulted information (i.e. non-stored)
after some data processing. Legend: “x” represents information avail-
able; “+” information available in RDF; and “o” represents a link to

other databases (e.g. OMA homologous groups).

Information Bgee OMA UniProt
Gene Ontology annotations x x x+
Cross-references x+ x+ x+
Family and domain x x+
Local synteny x
Pairwise homologous genes/proteins x+
Homologous groups of genes/proteins o x+ o
Hierarchical Orthologous Group (HOG) x+ o
Gene expression x+ o
Absence of gene expression x
Anatomical entity annotations (UBERON) x+
Developmental stage annotations x+
Species taxonomy (NCBI identifiers) x+ x+ x+ (fully)
Gene and/or protein names x+ x+ x+
Subcellular location (including GO annotation) x x+
Sequences x x+
Post-translational modifications and/or processing
events

x+

Protein structures (quaternary, tertiary and sec-
ondary)

x+

Similar proteins based on their membership in
UniProt Reference Clusters (UniRef).

x+

Other information, such as pairwise orthologs (i.e. orth:hasOrtholog property asser-
tions), may be inferred from the HOGs, therefore it does not require to be materi-
alised [92].

The choice of a partial materialisation in the case of OMA is further justified by
the following reasons:

(i) To our knowledge, there is currently no OBDA solution to query HDF5 data
stores as virtual RDF graphs with SPARQL support. One possible direction
would be to translate SPARQL into HDFql (i.e. a recent SQL-like query lan-
guage for HDF5 data). In analogy to Ontop for Bgee, using such an approach
would allow us to expose OMA data as an RDF virtual graph and convert the
data to RDF on-the-fly. However, building an OBDA solution for HDF5 from
scratch requires substantial development efforts, well beyond the scope of this
project.

(ii) Parts of the data in the OMA HDF5 store are already available in UniProt (e.g.
the protein sequences or the gene ontology annotations—for further exam-
ples see Supplementary Material). Hence, by solely materialising into RDF the
OMA HDF5 data which are not already available through the UniProt SPARQL
endpoint, we reduce the amount of data duplication, as well as the mainte-
nance efforts required to keep data in sync with changes in UniProt.
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A.7 Discussion regarding Virtual Links

At a technical level, note that virtual links among OMA, Bgee and UniProt can be
classified into two different types: (i) IRI based (e.g. an instance), and (ii) data literal
based (e.g. a label, such as “Homo sapiens” or “HBB”). For example, cross-reference
IRIs serve as virtual links of type (i) among the data stores. Concretely, let us con-
sider cross-references to Ensembl genes [215]. On the one hand, the Ensembl gene
IRI is assigned to the up:transcribedFrom OWL object property in the UniProt RDF
store. This IRI is illustrated as a filled black circle in Figure 3.3. On the other hand,
we reuse the same IRI as value of the lscr:xrefEnsemblGene OWL annotation prop-
erty in the Bgee and OMA RDF graphs. To illustrate type (ii), we can mention the
rdfs:label and skos:prefLabel properties that assert the same gene names (e.g. “HBB”)
to an instance of orth:Gene in the Bgee graph and up:Gene in the UniProt RDF graph,
respectively. In Figure 3.3 in Chapter 3, these literals are represented as rectangles.
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