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ABSTRACT
Metabolic processes are crucial in immune regulation, yet the impact of metabolic heterogeneity on 
immunological functions remains unclear. Integrating metabolomics into immunology allows the explora
tion of the interactions of multilayered features in the biological system and the molecular regulatory 
mechanism of these features. To elucidate such insight in lung squamous cell carcinoma (LUSC), we 
analyzed 106 LUSC tumor tissues. We performed high-resolution matrix-assisted laser desorption/ioniza
tion (MALDI) mass spectrometry imaging (MSI) to obtain spatial metabolic profiles, and immunohisto
chemistry to detect tumor-infiltrating T lymphocytes (TILs). Unsupervised k-means clustering and 
Simpson’s diversity index were employed to assess metabolic heterogeneity, identifying five distinct 
metabolic tumor subpopulations. Our findings revealed that TILs are specifically associated with meta
bolite distributions, not randomly distributed. Integrating a validation cohort, we found that heteroge
neity-correlated metabolites interact with CD8+ TIL-associated genes, affecting survival. High metabolic 
heterogeneity was linked to worse survival and lower TIL levels. Pathway enrichment analyses highlighted 
distinct metabolic pathways in each subpopulation and their potential responses to chemotherapy. This 
study uncovers the significant impact of metabolic heterogeneity on immune functions in LUSC, provid
ing a foundation for tailoring therapeutic strategies.
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Background

Metabolic reprogramming is a hallmark of cancer,1 leading to 
heterogeneous and complex metabolic profiles that complicate 
metabolic-targeted therapies. These alterations are closely linked 
to immune cell functions within the tumor microenvironment 
(TME).2 Recent research highlights the intricate interplay 
between metabolic processes and immune functions,2–4 with 
dysregulation of these pathways associated with chronic inflam
matory disorders and cancers.5–7 Metabolic pathways unexpect
edly regulate T-cell fate, function, and differentiation,8 but the 
complexity of immunometabolic reprogramming in diseases 
remains poorly understood due to disease heterogeneity and 
diverse phenotypes. The TME’s unique immune and metabolic 
characteristics reprogram cell-cell communication and alter 
antitumor responses.9 Given that tumors rely on metabolites 
for growth and T cells must substantially increase nutrient 
uptake to mount a proper immune response, investigating the 
association between metabolic heterogeneity and immune func
tions could uncover potential crosstalk or competition within 
the TME, further revealing novel strategies to inhibit tumor 
growth while enhancing anti-tumor immunity.

Tumor heterogeneity is a significant challenge in cancer 
diagnosis and treatment, manifesting as genetic, metabolic, 
TME,10–13 and other heterogeneity. Studies across various can
cer types indicate that intratumoral heterogeneity drives tumor 
progression and fosters drug resistance, including in lung 
cancer.14 Lung cancer, the leading cause of cancer-related 
death globally,15 is predominantly non-small-cell lung cancer 
(NSCLC), with about 30% being lung squamous cell carcinoma 
(LUSC).16,17 Studies in NSCLC patients revealed that intratu
moral heterogeneity varies with mutational burden, and low 
mutational burden was correlated with better overall 
survival.18,19 Single-cell RNA sequencing further showed that 
LUSC has greater inter- and intratumor heterogeneity than lung 
adenocarcinoma.20 These findings underscore the importance of 
studying factors like metabolic heterogeneity in lung cancer.

Immunometabolism bridges metabolism with immunology 
at both intracellular and whole-body levels.21 Studying tumor 
immunometabolism requires techniques that capture meta
bolic heterogeneity in TME. Mass spectrometry imaging 
(MSI) is a key method, enabling direct, systematic quantifica
tion of metabolism in intact cell populations.22 MSI has 
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provided insights into the metabolic underpinnings of lung 
cancer, aiding molecular classification strategies.23,24 Matrix- 
assisted laser desorption/ionization (MALDI) is the most com
mon approach in spatial metabolomics, allowing in situ screen
ing of molecular classes within their histopathological 
context.25–27 High cellular specificity of MSI has proven effec
tive in identifying predictive biomarkers.24,28,29 Identifying 
molecular alterations within tumor tissues and underlying 
immunometabolism offers insights into biochemical heteroge
neity and the role of metabolic reprogramming in cancer. 
Immunohistochemistry (IHC) complements this by identify
ing tumor-infiltrating T lymphocytes (TILs) and other 
immune markers, which can be predictive and prognostic.30– 

34 Exploring the spatial distribution of immune cells and their 
interactions with cancer and stromal cells may enhance our 
understanding of cancer progression.35

In this study, we integrated spatial metabolomics with unsu
pervised k-means clustering and Simpson’s diversity to inves
tigate tumor-specific metabolic heterogeneity and interactions 
in the LUSC immune microenvironment. Using MALDI-MSI, 
we mapped spatially resolved metabolites across tumor regions 
in clinically annotated samples. We assessed metabolic hetero
geneity and identified distinct tumor subpopulations with 
unique metabolic activities and chemotherapy responses. We 
found significant associations between TILs and both meta
bolic heterogeneity and tumor subpopulations. Combining 
these findings with genomics data, we identified genes corre
lated with TILs, specific metabolites, and patient survival. This 
study offers new insights into the cross-talk between immune 
cells and tumor metabolic heterogeneity in LUSC.

Materials and methods

Patient cohort and tissue samples

Tumor samples were obtained from 106 LUSC patients 
(Table 1) diagnosed at the Institute of Pathology, University of 
Bern, excluding cases with prior or concurrent LUSC in other 
organs. A tissue microarray (TMA) was constructed from for
malin-fixed and paraffin-embedded (FFPE) tissue blocks.

High mass resolution MALDI Fourier-transform ion 
cyclotron resonance (FT-ICR) MSI

Briefly, the FFPE section (4 μm) was mounted onto indium tin 
oxide-coated glass slides. The air-dried tissue section was 
spray-coated with 10 mg/mL 9-aminoacridine (9-AA) hydro
chloride monohydrate matrix in 70% methanol. Prior to matrix 
application, the FFPE tissue section was deparaffinized in 
xylene. Metabolite detection was performed in negative ion 
mode. Mass spectra were acquired in the range of m/z 
50–1,100 with a lateral resolution of 50 µm.

Unsupervised pixel-wise k-means segmentation and 
metabolic tumor subpopulation determination

Using the segmentation tool in Bruker SCiLS Lab, unsupervised 
k-means clustering was performed pixel-wisely containing over
all resolved MS peaks within only tumor regions with k range 
from 2 to 15. For further statistical analysis, we linked the 
survival data of patients to the presence of specific clusters and 
consequently determined the metabolic tumor subpopulations 
(MTSs). The fitness of the model at each k was assessed using the 
Akaike information criterion (AIC) involving patients’ overall 
survival; the model with the lowest AIC value was presumed to 
most closely fit the data. Applying the k value and threshold of 
pixels fraction corresponding to the lowest AIC value, patients 
were assigned to certain clusters, so-called MTSs. Specifically, 
each MTS stands for a LUSC patient cluster with certain tumor- 
specific metabolic profiling and features.

Simpson’s diversity index as heterogeneity score

The calculation formular Simpson diversity index measures in 
our study is defined as follows: 

D ¼ 1 �
Pk

i¼1
p2

i , where pi is the share of pixels in cluster i and  

k is the number of clusters.
The formular is built considering the spatial locations of 

pixels for each patient in each cluster. Each pixel is located by 
x and y coordinates which were extracted from SCiLS Lab 
software. The index can have values between 0 and 1. A value 
of 0 means that all the pixels from one patient are in one 
cluster. A higher value of the index, therefore, indicates higher 
diversity of the pixels in the different clusters for a patient. As 
the heterogeneity score for each patient, the Simpson index to 
measure the metabolic heterogeneity of the patients is calcu
lated using the within sum of squares as entries p_i. A higher 
heterogeneity score stands for a higher metabolic heterogeneity 
level.

More details of materials and methods can be found in the 
Supplementary file.

Results

Identification of MTSs in LUSC

The study design and pipeline are shown in Figure 1a. 
Supplementary Fig. S1A represents the high-resolution IHC 
images of immunological markers analyzed in this study. 
Supplementary Fig. S1B displayed the distinguished 

Table 1. Patient characteristics.

Clinicopathological characteristics of the LUSC cohort

Characteristic Number

Total LUSC patients 106
Sex
male 95
female 11
Age (years): median (range) 69 (43–85)
Tumor size (mm): median (range) 45 (8–130)
UICC stage
I 37
II 32
III 33
IV 4
Distant metastases
M0 102
M1 4
Primary resection
R0 91
R1 15
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Figure 1. Unsupervised k-means clustering of tumor-specific spatial metabolomics data from 106 patients with LUSC. (A) The top part shows the example images from 
HE, IF and IHC experiments, respectively, indicating how the tumor regions were annotated and immunological features were measured. The bottom part illustrated the 
complete study design including the spatial metabolomics experiment and analysis approaches. (B) AIC model selection criteria indicated that k = 7 fitted the data the 
best with a threshold 35% of pixels presence. The left heatmap shows the AIC values at different thresholds as the k value changes. The minimum AIC values from each 
k are scaled to 0–1 and visualized as a line graph in the right heatmap to facilitate comparison. (C) Spatial segmentation map of k7 clustering results in LUSC tissue 
samples. (D) Pixels distribution of 106 tumor ROIs in 7 clusters. The heatmap on the right shows the percentages of pixels presences of each tumor ROI in different 
clusters; the bar chart on the left shows the number of each cluster’s pixels, of which the length of the bar indicates the percentages of total pixels and the number 
indicates the absolute count. (E) Patients distribution in MTSs. The heatmap on the right shows the patients with pixels above the pixel presence threshold; the bar chart 
on the left shows the number of patients in each MTS.
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distributions of three typical metabolites in all patient tissues. 
Via the comparison of the minimum AIC values at each k, k = 7 
with a threshold of 35% showed the lowest AIC value across all 
k values and thresholds, and was thus defined as the optimal 
value for the number of clusters and the threshold (Figure 1b). 
One patient could be segmented into more than one cluster 
(Figure 1c), which was due to the high metabolic heterogeneity 
of the patients. The spatial pixel distribution of overall peaks 
from 106 LUSC patients in 7 clusters were quantified as per
centages and visualized in Figure 1d. In order to determine the 
clinical importance of each metabolomics cluster, the results of 
the metabolite segmentation had to be linked to the clinical 
data of the patients. By comparing with the AIC-guided thresh
old of 35% pixel presences, 106 LUSC patients were assigned to 
MTS1 (n = 30), MTS2(n = 1), MTS3 (n = 22), MTS4 (n = 59), 
MTS5 (n = 15) and MTS7 (n = 6); as each of patients in 
MTS6 held < 35% of the pixels, there was no patient were 
assigned (Figure 1e). To achieve robust and substantial results, 
MTS2 (n = 1) was also excluded from the further analyses in 
the consideration of statistical principle.

Metabolic heterogeneity was associated with 
immunological landscapes and showed an 
independent prognostic value

To further compare the heterogeneity status of individual 
patients, Simpson’s diversity index was applied to quantify 
each patient with an index value. The index distribution 
shown in Figure 2a indicated a diversity among patients’ het
erogeneity. As metabolic heterogeneity increased, the correla
tion of heterogeneity with the metabolic pathways of nicotinate 
and nicotinamide metabolism, pyrimidine metabolism as well 
as tryptophan metabolism enhanced, while the correlation with 
the metabolic pathways of steroid hormone biosynthesis, amino 
sugar and nucleotide sugar metabolism, pantothenate and CoA 
biosynthesis as well as cysteine and methionine metabolism 
weakened (Figure 2b). By correlating Simpson index to the 
expression of immunological markers, we found that the 
patients with higher Simpson index tended to have lower CD3 
+ and CD8+ TILs, while the expression of PD-L1 didn’t show 
a significant correlation (Figure 2c). Metabolites usually interact 
with genes to regulate immune responses through a complex 
network of interactions. Integrative analyses, such as genomics, 
transcriptomics, proteomics, and metabolomics, help under
stand such kind of complex interactions. For that, by integrating 
the genomics data from a validation LUSC cohort (n = 501) into 
our analysis, we identified 27 genes that may have functions in 
human by interacting with heterogeneity-correlated metabolites 
and meanwhile positively correlated with CD8+ TIL infiltration 
level in LUSC patients (Figure 2d & Supplementary Fig. S2). 
Those heterogeneity-correlated metabolites include five nega
tively correlated ones and three positively correlated ones. 
Among the 27 infiltration-related genes, the LUSC patients 
with high expression of endoplasmic reticulum auxin binding 
protein 1 (ABP1), phospholipase A2 group IB (PLA2G1B) and 
snail family zinc finger 1 (SNAI1) led to a worse overall survival 
(Figure 2d). Phosphatidylcholines (PC) as a metabolite that 
negatively associated with heterogeneity score were found to 

have an unfavorable impact on the PFS of LUSC patients in our 
study (Figure 2d).

Based on Simpson’s diversity index, 30 patients were stratified 
as high heterogeneity and 76 patients were as low heterogeneity 
(Figure 3a). The Kaplan-Meier curves revealed that LUSC patients 
with high heterogeneity had significantly worse overall survival 
(Figure 3b) and progression-free survival (Figure 3c) compared to 
LUSC patients with low heterogeneity. Meanwhile, the patients 
with high CD3+ or CD8+ TIL were found to have better progres
sion-free survival (Figure 3d,e). Importantly, by multivariate Cox 
analysis, we found that the impact of metabolic heterogeneity on 
survival was stronger than the impact of TILs and independent 
(Figure 3f,g). Given the negative correlation between metabolic 
heterogeneity with TILs, the metabolites co-abundant with CD3+ 
and CD8+ TILs in LUSC patients were identified to explore their 
roles in immune processes. The metabolite-immune network 
displayed that, the co- abundant metabolites in high heterogeneity 
mainly take part in the immune process of neutrophil and mem
ory B cell; while in low heterogeneity mainly the immune process 
of erythrocyte, granulocyte, and microglia (Figure 3h). Basophil 
activation was a shared correlated immune process in both high- 
and low-heterogeneity (Figure 3h).

The correlations of metabolic heterogeneity levels with clin
icopathological features were investigated as shown in Figure 4a. 
To rule out potential confounding interaction between metabolic 
heterogeneity levels and clinicopathological features, we per
formed multivariate Cox analysis for PFS and OS (Figure 4b). 
High metabolic heterogeneity, high UICC stages, and age equal 
or above 70 years old had a significantly unfavorable impact on 
OS and PFS. Other co-factors (sex, tumor size, distant metastases, 
and primary resection) did not affect PFS or OS (Figure 4b).

MTSs were independent factors for survival and 
associated with TILs

Followed by linking the clinical data of LUSC patients to the 
AIC-threshold MTSs, statistically significant differences in OS 
(p = 0.019) were found between MTSs (Figure 5a), but not in 
PFS (p = 0.250) (Figure 5b). In the pairwise comparisons for 
OS, statistically significant differences were observed between 
MTS1 versus MTS3 (p = 0.042), MTS4 versus MTS5 (p =  
0.021), and MTS3 versus MTS5 (p < 0.001), respectively 
(Figure 5c–e). In the pairwise comparisons for PFS, statistically 
significant differences were observed between MTS3 versus 
MTS5 (p = 0.027) (Figure 5f). We next assessed the distribu
tions of Simpson index and heterogeneity levels among MTSs, 
which indicated diversity of their heterogeneity (Figure 5g,h). 
Correlation analysis then was used to investigate the immuno
logical and clinical features of each MTS (Figure 5I,J). MTS1 
was positively correlated with CD3+ TIL, CD8+ TIL and tumor 
size. MTS3 was negatively correlated with age and primary 
resection status. MTS4 was positively correlated with CD3+ 
TIL and CD8+ TIL while negatively correlated with tumor size. 
MTS7 was positively correlated with PD-L1 and UICC stages 
while negatively correlated with primary resection status. No 
statistically significant correlation was observed for MTS5. 
Distribution of the certain TILs-correlated metabolites were 
compared between each MTS to investigate the further rela
tionship between TILs and MTSs (Supplementary Fig. S3).
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Multivariate Cox analysis among 5 MTSs with clinical fac
tors for PFS and OS (Figure 5k) revealed that, MTS1 (CD3 
+CD8+) and MTS5 had significantly unfavorable impact on 

OS, while MTS1 (CD3+CD8+) and MTS4 (CD3+CD8+) had 
significantly unfavorable impact on PFS. MTS3 and MTS7 
(PD-L1+) did not show independent prognostic potential.

Figure 2. Metabolic heterogeneity evaluated by Simpson’s diversity index was associated with TILs landscapes. (A) Distribution of Simpson’s diversity index values in 106 
LUSC patients. Each line represents one patient. Higher index indicates higher metabolic heterogeneity. (B) Distinct metabolic pathways were found to be correlated 
with Simpson’s diversity index. (C) Simpson’s diversity index was significantly correlated with the counts of CD3+ and CD8+ TILs but not the expression of PD-L1. (D) 
Metabolite-gene interaction network based on the metabolites associated with Simpson index in our cohort (n = 106) and genes associated with CD8+ TIL infiltration 
level in external validation cohort (n = 501). High expression of PC, ABP1, PLA2G1B and SNAI1 were found to have unfavorable impact on PFS or OS of LUSC patients.
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Figure 3. Association between metabolic heterogeneity and immunological landscapes were investigated. (A) Patients were classified into high- and low-heterogeneity 
levels by an optimized cutoff. Kaplan-Meier analysis of OS and PFS showed that (B-C) patients with high heterogeneity had significantly worse survival (high n = 24, low 
n = 65), and (D-E) patients with high CD3+ or CD8+ TIL had significantly better progression-free survival (CD3+: high n = 46, low n = 37; CD8+: high n = 65, low n = 18). 
(F-G) multivariate cox analysis demonstrated that metabolic heterogeneity was independent from CD3+ and CD8+ TIL to be a prognostic factor in both OS and PFS. (H) 
Network shows the metabolites-involved immune processes at high- and low-heterogeneity levels based on the CD3+ or CD8+ TILs co-abundant metabolites.
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MTSs were characterized by distinct metabolic 
pathways and responsiveness to chemotherapy

To compare the altered metabolic processes in MTSs, the 
metabolites closely associated with each MTS were sub
jected to metabolic pathway analysis, which in the mean
time evaluated heterogeneity at the level of pathway. 
Figure 6a summarizes the major categories of identified 
pathways for five MTSs on the left and illustrated the 
detailed metabolic pathways and their correlations with 
each of five MTSs on the right. It is noteworthy that as 
independently prognostic factors, MTS1 (CD3+CD8+) 
exhibited positive association with carbohydrate metabo
lism and lipid metabolism; MTS4 (CD3+CD8+) and 
MTS5 exhibited negative association with carbohydrate 
metabolism and nucleotide metabolism, as well as positive 
correlation with amino acid metabolism and lipid 
metabolism.

Next, we mapped the metabolites closely correlated with 
each MTS to the SMPDB database for getting an insight of 
association between metabolites and chemotherapy. As 
demonstrated in the MTS-metabolite-drug network 
(Figure 6b), among all correlated metabolites, adenosine 5’- 
diphosphate (5’-ADP), adenosine 3‘,5’-diphosphate (3’,5’- 
ADP), uridine diphosphate (UDP), glutathione were 
observed to play roles in several anti-cancer drug pathways. 
In details, MTS3 was positively correlated with the pathways 
of sorafenib, tamoxifen, doxorubicm, docetaxel, erlotinib, 

vinblastine, paclitaxel, vindesine, vincristine and vinorelbine. 
MTS4 (CD3+CD8+) and MTS5 were negatively correlated 
with the pathways of sorafenib, tamoxifen, doxorubicm, doc
etaxel, erlotinib, vinblastine, paclitaxel, vindesine, vincristine, 
and vinorelbine. MTS7 (PD-L1+) was positively correlated 
with the pathways of cyclophosphamide (Figure 6b).

Discussion

In this study, we explored tumor heterogeneity and immuno
metabolism in LUSC using high-resolution spatial metabolo
mics. We uncovered significant metabolic heterogeneity in 
LUSC tissues, finding that higher heterogeneity correlates 
with T cell suppression and poorer patient survival. By inte
grating genomics with metabolomics, we identified genes 
linked to metabolites and TILs, forming a metabolism- 
immune-gene connection. We defined five distinct metabolic 
tumor subpopulations, three of which were independently 
associated with poor prognosis. This is the first study to inves
tigate the relationship between metabolic heterogeneity and the 
immunological landscape in LUSC.

It is known that the tumor metabolic microenvironment 
can suppress T cells, as those isolated from tumors often show 
signs of exhaustion and distinct metabolic signatures.36,37 In 
LUSC tissues, we observed a negative correlation between CD3 
+ and CD8+ TILs and metabolic heterogeneity. This suggests 
competition for nutrients in the tumor microenvironment, 

Figure 4. Metabolic heterogeneity was an independent prognostic factor. (A) Clinicopathological characteristics of 106 LUSC patients were visualized and their 
significance of differences between high- and low-heterogeneity were analyzed. (B) Multivariate cox analysis demonstrated that metabolic heterogeneity an 
independent prognostic factor in both OS and PFS.
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impairing TILs and aiding tumor progression.36,38,39 It could 
be a possible explanation for our result that LUSC patients with 
higher heterogeneity were found to contain less TILs and had 
worse survival. What’s more, metabolic heterogeneity showed 
an independent and stronger unfavorable impact on survival 

compared to TILs. Disruption of T cell activation due to altered 
tumor cell metabolism and other metabolic features in the 
TME indicates that this is an important mechanism for immu
nosuppression. On this basis, we can also reconsider that the 
constitutes of metabolic heterogeneity and immunity in 

Figure 5. Association between MTSs and clinical features as well as TILs were investigated. (A-B) Kaplan-Meier analysis showed a significant difference among OS of all 
MTSs. In pairwise comparison, there were significant differences in OS between MTS1 and MTS3 (C), MTS4 and MTS5 (D), MTS3 and MTS5 (E), and in PFS between MTS3 
and MTS5 (F). (G) Distribution of Simpson index of patients in each MTS. (H) Patients ratio of high- and low-heterogeneity levels in each MTS. (I) Significant positive 
correlations were found between MTS1 and MTS4 with CD3+ and CD8+ TILs counts, as well as between MTS7 and the expression of PD-L1. (J) MTSs correlated to 
different clinical features. (K) Multivariate cox analysis demonstrated that MTS1, MTS4 and MTS5 had independent prognostic value.
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subpopulations displaying distinct TIL features may enable the 
sensitivity or resistance to the specific therapy. It also implies 
that TILs are not distributed at random manner but closely 
associated with the metabolites constitution. Our comprehen
sive characterization of immunometabolism may provide new 
insights for further exploration of resistance mechanisms and 
optimization of immunotherapy strategies.

The tumor immune microenvironment as characterized by 
infiltration of CD8+ TILs and PD-L1 expression has been 
associated with the efficacy of immune checkpoint inhibitors 
(ICIs).40,41 A thorough interrogation of the immunological 

landscape is crucial for immunotherapy strategy selection and 
prediction of clinical responses in LUSC patients. We identi
fied a metabolic tumor subpopulation, MTS4, which was posi
tively associated with CD3+ and CD8+ TILs and showed 
independent prognostic value in LUSC. Our analysis suggests 
that ATP-ADP mediated catalysis and the effectiveness of 
erlotinib may be reduced in MTS4 (CD3+CD8+). Antibodies 
targeting PD1 or PD-L1 have achieved substantial overall sur
vival improvements in advanced NSCLC, although major chal
lenges still remain, including low response rate in unselected 
patients, lack of reliable predictive biomarkers, and 

Figure 6. Mts-specific metabolite characteristics and pathways enrichment. (A) Variations of MTSs based on the metabolic pathway enrichment analysis. The major 
categories of associated pathways with each MTSs were shown by the left Sankey diagram. The width of flow represents the number of mapped metabolites. The 
detailed correlations between pathways and MTSs were illustrated in the right scatter plot. (B) Association of anti-cancer drug pathways with MTS.
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identification of more immunotherapeutic targets. Additionally, 
our findings indicate that MTS7, a subpopulation positively 
correlated with PD-L1 expression, may show enhanced sensitiv
ity to cyclophosphamide. A previous study concluded that the 
LUSC patients with high tumor PD-L1 expression tend to resis
tant to ICIs therapy.40 Taken together, for patients in MTS7 
(PD-L1+), chemotherapy with cyclophosphamide could poten
tially be more effective than immunotherapy. Those findings 
may bring more insights for explaining the chemotherapy resis
tance mechanism of LUSC patients and improving the thera
peutic strategies targeting different subpopulations.

Recent studies have linked cancer heterogeneity to tumor 
growth and treatment response.42,43 In our spatial metabolic 
profiling of LUSC, we identified distinct metabolic pathways 
associated with different heterogeneity levels and subpopula
tions. Increased metabolism of nucleotides including purine 
and pyrimidine is acknowledged a hallmark of cancer, support
ing uncontrolled growth of tumors.44,45 Notably, pyrimidine 
metabolism was enhanced in patients with higher heterogene
ity, correlating with worse survival and T cell suppression. 
Nucleotide metabolism was positively correlated with MTS3 
and MTS7 (PD-L1+) but negatively with MTS4 (CD3+CD8+). 
Interestingly, tryptophan metabolism pathway was observed 
a positive correlation with metabolic heterogeneity, which 
means that the LUSC patients with higher heterogeneity 
might have enhanced tryptophan metabolism. Increased tryp
tophan catabolism in TME can mediate immunosuppressive 
effect on T cells, while decreased tryptophan catabolism was 
associated with a marked increase in the tumor infiltration and 
proliferation of polyfunctional CD8+ lymphocytes.46,47

As an independent prognostic factor, the subpopulation 
MTS5 in our study was found major abundant activities of 
amino acid metabolism and potentially resist to most che
motherapy drugs. Previously, activated amino acid metabolism 
was demonstrated to generate apatinib resistance by repro
graming glutamine metabolism in NSCLC.48 Furthermore, 
a growing body of evidence now supports the concept that 
targeting nucleotide metabolism can increase the antitumor 
immune response and enhance cancer immunotherapy.49 

While, MTS5 showed decreased activities of nucleotides meta
bolism and had no significant immune features observed. 
Taken above, the patients in MTS5 might face more unfavor
able prognosis compared to other LUSC patients, due to a high 
possibility of resistance to chemotherapy and immunotherapy. 
Besides, we suppose that LUSC patients in MTS3 and MTS7 
(PD-L1+) might show better response to the chemotherapy 
treatment that targets nucleotides metabolism, while the 
patients in the MTS4 (CD3+CD8+) with prognostic value 
and MTS5 might tend to be resistant to such treatment. In 
clinics, agents inhibiting synthesis and incorporation of 
nucleotides in DNA are widely used as chemotherapeutics to 
reduce tumor growth, cause DNA damage, and induce cell 
death.50 Therefore, considering the suppression effect of tryp
tophan catabolism on immune immunity, blocking tryptophan 
catabolism with indoleamine 2,3-dioxygenase (IDO) inhibitors 
could be considered a prioritized treatment strategy for the 
LUSC patients with high metabolic heterogeneity, or those 
patients in subpopulation MTS7 (PD-L1+) that was also posi
tively correlated to tryptophan metabolism. Chemotherapy, 

radiotherapy, and targeted therapy alter tumor metabolism, 
and metabolic changes are often implicated in treatment 
resistance.51,52 Cancer patients elicit very individualized 
responses to different treatments. This situation demands bet
ter characterization of the whole tumor ecosystem. That is to 
say, the identification and effective targeting of molecular 
alterations in more specific subtypes of LUSC patients could 
further improve the treatment efficiency.

CD8+ TILs are key mediators of antitumor immunity and 
are strongly linked to survival in solid tumors.53 We identified 
several genes interacting with metabolites and CD8+ TILs by 
integrating metabolic profiling with genomics in LUSC. High 
expressions of PLA2G1B, SNAI1, and ABP1 were associated 
with high CD8+ TIL levels and worse survival in a validation 
cohort of 501 LUSC patients. PLA2G1B, a phospholipase, may 
modulate lung inflammation.54,55 SNAI1, an EMT transcrip
tion factor, is linked to chemotherapy resistance.56,57 ABP1, 
less studied in human diseases, was found a potential role in 
our study in LUSC involving metabolic tumor heterogeneity 
and immune infiltrating landscapes.

An emerging view regarding cancer metabolism is that it is 
heterogeneous and context-specific. In our study, “metabolic 
heterogeneity” refers to the variation in metabolic activity that 
occurs within different regions of a tumor or between different 
cells within the same tumor, in particular lung tumor. The 
metabolic heterogeneity was reflected by the clustering among 
patient samples of lung cancer, and the complexity was further 
verified at the metabolic profiling level. This study highlights the 
existence of distinct metabolic tumor subpopulations within lung 
squamous cell carcinoma and each patient has a certain level of 
the metabolic profiling variation. These subpopulations or cer
tain patients may exhibit different metabolic profiles, contribut
ing to variations in immune cell infiltration, treatment response, 
and patient survival. This concept is central to understanding 
how different areas within a tumor may respond differently to 
therapies, especially those targeting metabolic pathways.

This study has some limitations inherent to the meth
odologies used. Specifically, the IHC antibodies are incom
patible with the MALDI-MSI matrix, making it impossible to 
perform the two experiments on consecutive tissue sections. 
As a result, precise co-registration between IHC and spatial 
metabolomics data could not be achieved. Furthermore, the 
lack of direct co-localization between tumor-infiltrating lym
phocytes (TILs) and metabolite distributions limits the abil
ity to draw definitive spatial conclusions. Despite these 
challenges, the combined use of IHC and spatial metabolo
mics provides valuable insights into the interplay between 
immune cells and metabolic pathways. Future studies lever
aging advanced imaging techniques or alternative co- 
registration methodologies could further refine this analysis 
and overcome these limitations.

Together, we provide a novel perspective for unraveling 
the metabolic heterogeneity and its association with 
immunology in LUSC. Our findings demonstrated that 
higher metabolic tumor heterogeneity foreshadows worse 
survival and revealed a strong connection between meta
bolic heterogeneity with TILs. The spatial metabolomics 
has opened the door to describe the complexity of lung 
cancer immunometabolism. Our comprehensive depiction 
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of the tumor heterogeneity-related immune landscapes and 
definition of distinct metabolic subpopulations could help 
design personalized treatment for LUSC patients in clinical 
practice.
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