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Abstract. Most global indices of concentrations are obtained as weighted averages of convex
functions of distributions ratios, such as the per capita income. We seek to define local indices
of concentrations, comparing the wealth of a region to its neighbours, where the spatial weights
defining neighbourhood are formally equivalent to the components of a reversible Markov
transition matrix. Second-order local concentrations are shown to generalize Moran or Geary
autocorrelation indices, while first-order local concentrations can be constructed so as to not
exceed their ordinary or global counterpart. Behaviour under aggregation and the Pigou-Dalton
principle are further discussed within the proposed formalism, which is exemplified on wealth
distribution among the Swiss cantons under the neighbourhood structure induced by inter-
regional migrations.
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1 Introduction

Indices of concentrations measure the discrepancy between two distributions, typically between
the regional income shares and the regional population shares. They constitute non-negative
quantities attaining their minimum value zero when the two distributions coincide, decrease
under aggregation, and obey the Pigou-Dalton transfer principle. Concentration indices, in
particular spatial concentration of income and economic activites, have inspired an immense
amount of empirical studies as well as applied mathematical literature; this scientific body is too
huge to be faithfully reported, even shallowly (see however e.g., Atkinson 1970; Sen 1973;
Cowell 1977; Yoshida 1977; Bourguignon 1979; Dagum 1980; Toyoda 1980; Shorrocks 1984;
Baccini et al. 1986; Eichhorn 1988; Arbia 1989; Valeyre 1995).

The present paper initially describes a family of concentration indices covering most of the
usual measures. As a matter of fact (Section 3), the usual concentration indices systematically
turn out to express, as a weighted average of a convex function of the ratio of two distributions,
where the average runs on regions (yielding first-order indices such as the Isard or the Theil
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concentrations) or on pairs of regions (yielding second-order indices such as the Gini or the
quadratic concentrations). The study then focuses on the possible definitions and analytical
properties of local concentrations indices, as measured from the neighbourhoods of the regions,
in contrast to the usual global indices, where each region contributes in proportion of its relative
population, irrespectively of its position.

Neighbourhood relations are quantified by the use of symmetric interaction of exchange
matrices, or equivalently by row-normalized spatial weights defining the components of a
reversible Markov transition matrix (see e.g., Bavaud 1998). This formalism encompasses most
of the situations, such as those based upon a discrete adjacency matrix, a regular lattice or a
continuous ‘distance-deterrence function’. The same formalism also permits us to define in full
generality the concept of spatial autocorrelation by comparing the values of the local to the
global variances of a spatial variable.

In addition, this formalism naturally emphasizes an important property of ordinary, global
concentrations, namely their decrease under local sharing, which is shown to entail both the
decrease under aggregation and the Pigou-Dalton principles.

To a certain extent, the study of local concentrations generalizes and develops the study of
local variances, central in the theory of spatial autocorrelation (see e.g., Moran 1950; Geary
1954; Lebart 1969; Haining 1990; Cressie 1993; Anselin 1995; Griffith 2000). Section 2 recalls
the basic material on spatial autocorrelation, in the general context of reversible Markov chain
or weighted networks, encompassing traditional approaches such as the use of adjacency
matrices, of regular lattices or distance deterrence schemes (Bavaud 2007). Section 3 introduces
the class of ordinary (global) first- and higher-order concentration indices under consideration.
Section 4 studies the properties of various local concentration indices; in particular, the behavior
of second-order local concentrations is analogous to spatial autocorrelation indices (Moran’s I
and Geary’s c), while first-order local concentrations, as defined here, are shown to be smaller
than their global counterparts, and can be exactly decomposed under aggregation. Section 5
exemplifies the formalism with Swiss cantons’ wealth data, with a neighbourhood structure
induced by inter-regional migrations.

2 The flow approach to spatial autocorrelation

Consider m regions exchanging units (people, goods, news) during some fixed time T, and define
the normalized flow or exchange matrix E with components eij = ‘proportion of units moving
from region i to region j in time T ’. We assume here equilibrium (see Bavaud 2002, for a more
general approach), that is the symmetry of E, as well as the strict positivity of the associated
marginal or reference distribution f:
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E defines a non-oriented weighted graph or network, possibly containing loops, together
with a neighbourhood relation as ‘i~j’ iff eij > 0. It also defines a reversible Markov chain with
transition matrix W = (wij) (with associated stationary distribution fi) as
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In spatial econometrics, W is the spatial weights matrix entering in spatially autoregressive
models such as y = rWy + Xb + e (see e.g. Anselin 1988).
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A regional variable x is positively spatially autocorrelated if its local variance varloc(x),
measuring the average squared difference of values between pairs of neighbours, is smaller
than the corresponding global or ordinary variance var(x), where pairs are chosen independently
(see e.g. Lebart 1969; Anselin 1995; Bavaud 2007). Formally,

var :
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where x f xi i= Σ . The ratio of the local variance (whose definition is reminiscent of the vari-
ogram construction) to the global variance is Geary’s c(x), obeying
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where l = 1 � l2 � . . . lm � - 1 are the real eigenvalues of the reversible weight matrix W,
where l1 = 1 is the trivial or Perron-Froebenius eigenvalue. The case l2 = 1 corresponds to a
reducible network made of at least two non-interacting components, while lm = 1 obtains for a
bipartite network as illustrated in figure 1 (see e.g. Lawler and Sokal 1988; Chung 1997; Griffith
2000; Bavaud 2007).

Bipartite networks model pure commuting flows, where units are alternatively located in two
complementary sets of regions, such as residences and workplaces.

Flows are said to be of a diffusive type if all the eigenvalues are non-negative. In this case,
Geary’s c is bounded above by the unity, and Moran’s index I(x) := 1 - c(x) is non-negative. An
extreme case of diffusive type is provided by frozen flows where eij = fidij (dij being the com-
ponents of the unit matrix), resulting in eigenvalues all equal to one as well as c(x) ≡ 0 and
I(x) ≡ 1 for any field x. Frozen flows correspond to the absence of inter-regional exchange, that
is complete autarchy.

To the opposite, perfect mobility case eij = fifj represents an a-spatial situation where each
region sends the same proportion of units to the other regions, accordingly to the weight of the
latter. The associated Markov chain is of order zero (memoryless transitions) and the eigenval-
ues, except l1 = 1, are zero. Under perfect mobility, local and global quantities coincide; in
particular, c(x) ≡ 1 and I(x) ≡ 0.

2.1 Low-diagonal transformation

In the majority of spatial studies, the diagonal spatial weights are set to zero, which incidentally
entails the existence of negative eigenvalues. However, zero diagonal values cannot in general
be imposed to a given exchange matrix E without modifying its eigenstructure. Even so, a

Fig. 1. Edges link pairs of neighbours in the above networks. Left: reducible network, with l2 = 1 and e(J,Jc) = 0.
Right: bipartite network, with lm = -1 and e(J,Jc) = 1/2
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low-diagonal exchange matrix � �E eij= ( ) with the same marginals �fi = fi can be constructed
as ẽij := eij + a(fifj - fidij) where a � 0 must satisfy a � amax := minieii/(fi(1 - fi)) to insure the
non-negativity of Ẽ (see table 1). The corresponding eigenvalues read �λ λ δα α α= + −( )a 1 1 : all
the eigenvalues of W̃ with the exception of the trivial one are decreased by the value a. Also, one
readily finds c̃(x) = c(x) + a and Ĩ(x) = I(x) - a, which shows the local variance to increase under
the low-diagonal transformation, due to the reduction of the self-interaction components eij

contributing to zero in Equation (1).

3 Concentrations indices

In the present, presumably original formalism (its global part included), concentration indices
constitute asymmetric measures of discrepancy between any two distributions f and g, the
former being the reference distribution associated to an exchange matrix. For instance, the
concentration between the reference distribution f = ‘population distribution’ and g = ‘area
distribution’ is a measure of the variation of the population density across regions.

Wealth inequalities provide a well investigated, but far from being unique, illustration of the
topics, where fi = ‘share of the population of region i’ is the reference distribution associated to
inter-regional migrations in equilibrium, and gi = ‘share of the income of region i’. The ratio of
the distributions is the income per capita, and constitutes a measure of regional wealth. The
wealth concentration Q is defined by

Q f c q q
g

fj j
j

j
j
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: := ( ) =∑ (2)

where c(q), the concentration kernel, is convex with c(1) = 0. Jensen’s inequality (the average of
a convex function is not less than the function of the average) together with q f qi i:= =Σ 1,
demonstrates that Q � 0. In the equalitarian case g ≡ f, that is q ≡ 1, the concentration Q is
zero. Converserly, Q = 0 implies the equalitarian wealth distribution when c(q) is strictly
convex.

Also, Equation (2) satisfies the Pigou-Dalton principle: if region i transfers a part e > 0 of its
income to region j, such that gi → gi - ei and gi → gi + ei, the resulting concentration decreases
by the quantity (c�(qi) - (c�(qj))e + 0(e2), which is non-negative to the first order if qi � qj.
Finally, the concentration decreases under aggregation: if regions are aggregated into super-
regions indexed by J = 1, . . . ,M < m, then
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∑∑ are both non-negative by Jensen’s inequality.
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Equation (2) encompasses many usual and possibly new concentration indices such as:

• the L1 or Isard concentration with c(q) := |q - 1|
• the quadratic or chi square concentration with c(q) = (q - 1)2

• the Theil or relative entropy concentration (Theil 1967; Gehrig 1988) with c(q) = -ln q and

Q f
f

gj
j

j

= Σ ln

• the generalized entropy concentration kernel c q q( ) =
−( )

−( ):
1

1
1

α α
α (see e.g. Cowell 1980),

where
� a = 2 yields (half) the quadratic concentration

� a → 1 yields the concentration Q g
g

fj
j

j

= Σ ln

� a → 0 yields the Theil concentration

� a = 0.5 yields (twice) the Hellinger concentration Q f gj j= −( )Σ
2

• the low threshold concentration kernel c(q) := q(z - q)(z - q) where z � 1 defines a ‘poverty
line’ and q(x) is the threshold function (taking on value 1 for x � 0 and value 0 for x < 0). The
resulting concentration is Q = zF(z) - G(z) � 0 where F z f z qj j( ) = −( ): Σ θ is the relative
mass of poor regions and G z g z qj j( ) = −( ): Σ θ their corresponding income. Similar results
obtain with the high threshold concentration kernel c(q) := q(q - z)(q - z) where z � 1
represents an ‘abundance threshold’.

3.1 Decrease under local sharing

The introduction of spatial weights permits to state an essential property shared by Equation (2),
that is their decrease under local sharing: suppose each region donates its income to its
neighbours, in proportion to the associated spatial weight, hence defining a new income g[1] and
wealth q[1]:

g g w q g
w

f
g

w

f
w qj i ij

i
j i

ij

ji
i

ji

ii
ji i

i

1 1[ ] [ ]= = = =∑ ∑ ∑ ∑: :

Note that the shared wealth qj
1[ ], the average wealth of the neighbours of j, also satisfies

Σf qj j
1 1[ ] = . As intuitively expected, the shared concentration Q[1] obeys Q[1] � Q:

Q f c q f w c q f c q Qi i
i

j ji i
ji

j j
j

= ( ) = ( ) ≥ ( ) =∑ ∑ ∑ [ ] [ ]1 1: (3)

For a regular Markov chain, iterating the process further decreases the concentration with
limit Q[•] = 0.

The concentration reduction under local sharing is a fairly general property, valid with any
transition matrix W such that f is the associated stationary distribution. In particular, it implies
the second law of thermodynamics in the Theil case, that there is a decrease of the relative
entropy under neighbours averaging (see e.g., Cover and Thomas 1991). It also entails the
decrease of concentration under aggregation, as well as the Pigou-Dalton principle themselves
(see Appendix).
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3.2 Concentrations of higher order

The same properties hold for the concentration indices of order r � 2 defined:
as averages over all r-uples of regions (j1, . . . ,jr)

Q
r

f f q qr
j jr j j

j j
r

r

( ) = ( )∑:
!

. . . . . . ,
,...,

1
1 1

1

c (4)

where the concentration kernel c(qj1
, . . . , qjr

) is a symmetric function, convex in each of its
arguments, with c(1, . . . ,1) = 0. Equation (4), which does not seem to have been used in
empirical studies, opens up the possibility of measuring concentration by comparing triples,
quadruples, etc., of regions.

4 Local concentrations

4.1 Local concentrations of order two

In view of Equation (4), the global and local concentrations of order two are defined as:

Q f f c q q Q e c q qi j i j
ij

ij i j
ij

II
loc
II: , : ,= ( ) = ( )∑ ∑1

2

1

2
(5)

where the kernel c(q,q�) is convex is both arguments and obeys c(1,1) = 0. By construction, the
global concentration decreases under local sharing:

Q f f c q q f f w w c q q f f c qi j i j
ij

k l ki lj i j
ijkl

k l k
II = ( ) = ( ) ≥∑ ∑∑1

2

1

2

1

2
, , 11 1 1[ ] [ ] [ ]( ) =∑ , .q Ql

kl

It also gives Q Qloc
II II= under complete mobility. For frozen flows, Qloc

II = 0 under the
additional condition c(q,q) = 0.

The concentration of order two with quadratic kernel c(qi,qj) := (qi - qj)2 is (as a result of the
identity (1) for the global variance) identical with the corresponding concentration of order 1.
The best known concentration index of order 2 is the Gini index with c(qi,qj) := |qi - qj|. Both are
particular cases of the power concentration c(qi,qj) := |qi - qj|p with p � 1. Note that an admis-

sible kernel such as c q q
q

q
q

q

q
qi j

i

j
i

j

i
j, ln ln( ) = + is not necessarily non-negative, nor satisfies

c(q,q) = 0.
However, definition (5) suffers from two drawbacks: to the best of our knowledge, a proof

that Qloc
II decreases under aggregation and a proof that Q Qloc

II II≤ seem both lacking in general.

4.1.1 Behaviour under aggregation

Equation (5) can be written as:

Q f Q Q w c q qi i
i

i ij i j
j

loc
II II IIwhere= = ( )∑ ∑: ,

1

2
(6)
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The following decomposition holds under the aggregation of the m regions into M < m
super-regions J = 1, . . . , M:

Q w c q q w
w

w
c q q c q qi

II
iJ i i

J

J
jJ

ij

jJ
i j i i

J

j JJ

= ( ) + ( ) − ( )[ ]∑ ∑
∈

1

2

1

2
, , ,∑∑

where w wiJ ij
j J

:=
∈
∑ and q

w

w
qi

J ij

iJ
j:= Σ . By Jensen’s inequality, Q w

w

wi
W

iJ
ij

iJj JJ

:=
∈
∑∑1

2

c q q c q qi j i i
J, ,( ) − ( )[ ] ≥ 0 and Q c q qi

B
i i≥ ( )[ ]1

2
1, , but a proof that Qi

B ≥ 0 is lacking for non-

positive kernels.
In the quadratic kernel case, the expression for Qi

II (or rather its complementary, up to a
normalization absorbing the denominator) turns out to coincide with the well-known local
Moran statistic (Anselin 1995), used at detecting ‘hot’ and ‘cold spots’ in the configuration of a
spatial field.

4.1.2 Local versus global values

Q Qloc
II II≤ does not hold in general. Indeed, in a world where rich regions are connected to poor

regions only and vice-versa, the local concentration of order two can be as large as twice the
global concentration: consider a bipartite graph with associated partition (J,Jc) (see figure 1)
such that f fJ J

c= = 1 2 and eij = 0 if (i,j) ∈ (J,J) or (i,j) ∈ (Jc,Jc). Taking qj = 1 + e for j ∈ J and
qj = 1 - e for j ∈ Jc yields, for any kernel, c(q,q′),

Q

Q

e J J

f f
e J J e

c

J J
c

c
ij

i J j Jc

loc
II

II
where= ( ) = ( ) =

∈ ∈
∑,

, : .
,

2

However, one can prove that Q Qloc
II II≤ for a diffusive network in the case of the power

concentration for p � 2. The proof relies on the fact that the power dij
p 2 of a Euclidean distance

dji is a Euclidean distance for 0 � p � 2 (see e.g., Bretagnolle et al. 1966).
General graph bi-partitionning consists in determining a split into two regions (J,Jc) with as

little interacting as possible. The solution is also the minimum power concentration ratio for
p = 1 (see e.g., Deza and Laurent 1996), that is the minimum local Gini ratio:

Q

Q

e J J

f f
h

J J

c

J J

C

c

loc
II

II
≥ ( ) =min

,
:

,
�

h̃ is a so-called ‘isoperimetric’ constant (see e.g., Chung 1997), relating the ‘surface’ e(J,Jc) to
the ‘volumes’ fJ and f

Jc. A variant is Cheeger’s constant:

h
e J J

f f

e q q

f q aJ J

c

J J

q

ij i j
ij

a i i
i

c

c

: min
,

min ,
min

min,
= ( )

[ ] =
−

−

∑
∑

which trivially satisfies � �h h h2 ≤ ≤ ′ and obeys the celebrated Cheeger’s inequalities 2 1h ≤ −
λ2

21 1≤ − − h (see e.g., Chung 1997).
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4.2 Local concentrations of order one

Transforming the global first-order wealth concentration of order one Equation (2) into a local
concentration is less immediate than in the second-order counterpart case of section 4.1.

4.2.1 Version A

A local individual wealth concentration Qi
A ‘as observed from region i’ can be defined by

sampling the surroundings j with weight wij, and rating their relative wealth as q qj i
1[ ], hence

obtaining:

Q w c
q

q
Q f Q e c

q

qi
A

ij
j

ij

A
i i

A

i
ij

j

iij

: := ⎛
⎝⎜

⎞
⎠⎟

= = ⎛
⎝⎜

⎞
⎠⎟[ ] [ ]∑ ∑1 1loc ∑∑

where Qi
A ≥ 0 by Jensen’s inequality.

Under perfect mobility, QA = Q by construction, and one would like QA � Q to hold in the
general case. However, a proof of the latter assertion seems lacking, with the notable exception
of the Theil concentration c(q) = -lnq, where one readily finds:

Q f
g

f
f

g

f
Q Q QA

j
j

jj
j

j

jj
loc = − = − ≤∑ ∑

[ ]
[ ]ln ln .

1
1 (7)

4.2.2 Version B

Another attempt consists in defining a local wealth concentration as

Q w c q q Q f Q e c q qi
B

ij j i
j

B
i i

B

i
ij j i

ij

: : .= − −( ) = = − −( )[ ] [ ]∑ ∑ ∑1 11 1loc

Again Qi
B ≥ 0, and QB = Q under perfect mobility, but the statement QB � Q remains

unproved in general, with the exception of the quadratic concentration c(q) = (q - 1)2, where

Q f q f q Q Q QB
j i

j
j i

j
loc = −( ) − −( ) = − ≤∑ ∑ [ ] [ ]1 12 1 2 1 . (8)

4.2.3 General attempt

Equations (7) and (8) suggest a general definition for the individual local concentration Qi and
the average local concentration of order one Qloc:

Q w c q c qi ij j
j

i:= ( )⎡

⎣
⎢

⎤

⎦
⎥ − ( ) ≥∑ [ ]1 0 (9)

Q f Q f c q f c q Q Qi i
i

j j
j

j j
j

loc : .= = ( ) − ( ) = −∑ ∑ ∑ [ ] [ ]1 1

(10)
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The individual and average local concentrations enjoy a number of desirable properties:

• 0 � Qloc � Q (see section 3). In particular, Qloc = 0 when Q = 0 (equalitarian wealth).
• Qloc = 0 when the flows are frozen (q[1] ≡ q).
• Qloc = 0 when the flows are perfectly mobile: the distinction between local and global quan-

tities vanishes in this case (q[1] ≡ 1).
• Qi and hence Qloc decreases under aggregation of the m regions into super-regions indiced by

J = 1, . . . ,M < m, in view of

Q w c q c q w
w

w
c q c qi iJ i

J

J
i
j

iJ
ij

iJ
j i

J

j JJ

= ( )⎡
⎣⎢

⎤
⎦⎥

− ( ) + ( ) − ( )[ ]∑ ∑∑
∈

where w wiJ ij:= ∑ and q
w

w
qi

J ij

iJ
jj J

:=
∈∑ . Again, Q w c q c qi

B
iJ i

J

J
i
j:= ( )⎡

⎣⎢
⎤
⎦⎥

− ( ) ≥∑ 0 and

Q w
w

w
c q c qi

W
iJ

ij

iJ
j i

J

j JJ

:= ( ) − ( )[ ] ≥
∈
∑∑ 0 by Jensen’s inequality. Consequently

Q f Q f Q f Q Q Q Qi i
i

i i
B

i
i i

W

i

B W B
loc loc loc loc= = + = + ≤∑ ∑ ∑ :

5 Application: Inter-regional income disparities in Switzerland

Consider the m = 26 Swiss cantons, and the exchange matrix E obtained from the inter-
regional migration data 1995–2000 provided by the Swiss Federal Statistical Office (http://
www.bfs.admin.ch). The (26 ¥ 26) origin-destination matrix N = (nij) counts the number of
individuals residing in canton i in 1995 and in canton j in 2000. N is not symmetric, but is well
approximated by a quasi-symmetric model (Bavaud 2002), and can be made symmetric by
simply averaging with its transpose, or, as done here more sophisticated and explained in Bishop
et al. (1975) and further developed by Bavaud (2002), by computing its maximum likelihood
estimate under quasi-symmetry. After normalization, the resulting exchange matrix E = (eij)
induces a weighted neighbourhood structure, measuring the relative intensity of the migratory
flow between each pair of cantons. The reference distribution fi = ei• yields the stationary
population share of each canton, while the diagonal components eii give the proportion of
stayers, which strongly exceed the off-diagonal proportion of movers, most people staying in the
same canton in the five years under consideration (Table 1).

The original non-trivial eigenvalues range from l2 = 0.977 to l26 = 0.844 > 0: flows are
of diffusive type, as expected from the time-continuous nature of the underlying migratory
process. By contrast, low-diagonal eigenvalues with a = am = 0.863 range from �λ2 0 114= . to
�λ26 0 018 0= − <. .

Let gi = ‘regional income share of the i-th canton in 2000’ (http://www.bfs.admin.ch) con-
stitute the second distribution. The resulting ratio qi = gi/fi is the per capita income in canton i
(see Figure 2 and Table 2).

Since the original and low-diagonal flows possess the same marginal f, the associated global
concentration indices coincide. By contrast, the low-diagonal transformation reduces the
regional self-interaction, especially strong in the original flows. Consequently, the individual
low-diagonal local concentrations Q̃j are fairly larger than their original counterparts Qi, as
shown by Table 2, irrespectively of the nature of the first- or second-order kernel under study.
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Note that q qi i− > −1 1� (with the notable exception of i = BL), which illustrates the regression
of the shared wealth towards the mean. As a consequence, and as argued above, the local / global
concentration ratios are less than unity. Indeed, Table 3 shows the ratios to be low, but this is
mainly due to the strong auto-interaction, that is the high proportion of stayers in the data.
Deleting a part of the stayers by the low-diagonal transformation increases the ratio near one.
This follows from the weak auto-correlation of income distribution in Switzerland, which
suggests that the diffusive, equalizing wealth effect, decreasing the local concentration, tends to
be compensated by the preferential migrations effect from poorer to richer regions, increasing
the local concentration.

6 Conclusion

In their ordinary, global version, first- and second-order concentration indices behave essentially
in a similar way, and share the same desirable properties, such as the Pigou-Dalton principle and
the exact decomposition under aggregation. This parallelism no longer holds in the local
versions proposed in the present paper: on the one hand, local concentrations of order one, as
defined in Equation (10), constitute presumably new objects possessing the sought-after prop-
erties of being smaller than their global counterparts, and exactly decomposable under aggre-
gation. On the other hand, nothing comparable holds for second-order local concentrations
which instead measure the local discontinuities of the wealth field, as does Geary’s index, and
allow the latter to be generalized to non-quadratic kernels. Although local concentrations
of order two constitute extensions of classical Moran and Geary indices and permit fruitful
connections with weighted graph theory (see e.g. Chung 1997), they essentially capture the
same phenomenon, namely spatial autocorrelation.

The proximity between the numerical values of ratios of Table 3 comes as a bit of a surprise,
and one could perhaps speculate over the possible robustness of the ratios, relatively insensitive
to the choice of the concentration kernel. However, further analyses implying alternative data
sets and spatial levels (such as networks of commuters, international migrations or international
trade flow) are clearly requested to get a better and safer understanding of the possibilities and
limitations offered by the present formalism.

Fig. 2. Average wealth q (per capita income) in the Swiss cantons, ranging from 0.704 (region VS) to 2.051 (region BS)
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Appendix

To show that Equation (3) entails the concentration decrease under aggregation, consider the
transition matrix wjk := I(J(j) = K(k))fk/fK(k), where J(j) denotes the super-region to which j
belongs, and I(A) = 1 if A is true, and I(A) = 0 otherwise. W is a Markov transition matrix with
stationary distribution f and q qj J j

1[ ]
( )= , and hence QB = Q[1] � Q.

Furthermore, let q1 > q2 and e ∈ (0,min[(q1 - q2)f1, (q1 - q2)f2]). Define a Markov transition
matrix W as wij = dij for i,j � 3, w11 := 1 - l, w12 := l, w12 := m and w22 := 1 - m (all other
components being zero), where l := e/[(q1 - q2)f1] and m: = e/[(q1 - q2)f2]. Then W is a reversible
transition matrix with stationary distribution f and new income g g1

1
1

[ ] = − ε, g g1
2

2
( ) = + ε, and

g gi i
1[ ] = for i � 3, hence showing the concentration to decrease under income transfer from a

richer to a poorer region (Pigou-Dalton principle).
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Concentraciones locales

François Bavaud

Resumen. La mayoría de índices globales de concentraciones se obtienen como promedios
ponderados de funciones convexas de índices de distribución, como la renta per capita. Bus-
camos definir índices locales de concentraciones, comparando la riqueza de una región con sus
vecinas, donde las ponderaciones espaciales que definen la vecindad son formalmente equiva-
lentes a los componentes de una matriz de transición Markov reversible. Se muestran concen-
traciones locales de segundo orden para generalizar los índices de autocorrelación de Moran o
Geary, mientras que las concentraciones locales de primer orden se elaboran de manera que no
excedan su contraparte ordinaria o global. Se discuten el comportamiento bajo agregación y el
Principio de Pigou-Dalton dentro del formalismo propuesto, el cual se ejemplifica mediante
la distribución de riqueza entre cantones suizos bajo la estructura de vecindad inducida por
migraciones regionales.

JEL classification: R12, C46, D31

Palabras clave: Concentración, autocorrelación espacial, índice de Gini local, índices de
Moran y Geary, vecindad
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