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SUMMARY 

Queuing is a fact of life that we witness daily. We all have had the experience of waiting in 

line for some reason and we also know that it is an annoying situation. As the adage says 

"time is money"; this is perhaps the best way of stating what queuing problems mean for 

customers. Human beings are not very tolerant, but they are even less so when having to wait 

in line for service. Banks, roads, post offices and restaurants are just some examples where 

people must wait for service.  

Studies of queuing phenomena have typically addressed the optimisation of performance 

measures (e.g. average waiting time, queue length and server utilisation rates) and the analysis 

of equilibrium solutions. The individual behaviour of the agents involved in queueing systems 

and their decision making process have received little attention. Although this work has been 

useful to improve the efficiency of many queueing systems, or to design new processes in 

social and physical systems, it has only provided us with a limited ability to explain the 

behaviour observed in many real queues. 

In this dissertation we differ from this traditional research by analysing how the agents 

involved in the system make decisions instead of focusing on optimising performance 

measures or analysing an equilibrium solution. This dissertation builds on and extends the 

framework proposed by van Ackere and Larsen (2004) and van Ackere et al. (2010). We 

focus on studying behavioural aspects in queueing systems and incorporate this still 

underdeveloped framework into the operations management field. In the first chapter of this 

thesis we provide a general introduction to the area, as well as an overview of the results. 

In Chapters 2 and 3, we use Cellular Automata (CA) to model service systems where 

captive interacting customers must decide each period which facility to join for service. They 

base this decision on their expectations of sojourn times. Each period, customers use new 

information (their most recent experience and that of their best performing neighbour) to form 

expectations of sojourn time at the different facilities. Customers update their expectations 

using an adaptive expectations process to combine their memory and their new information. 

We label “conservative” those customers who give more weight to their memory than to the 
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new information. In contrast, when they give more weight to new information, we call them 

“reactive”.  

In Chapter 2, we consider customers with different degree of risk-aversion who take into 

account uncertainty. They choose which facility to join based on an estimated upper-bound of 

the sojourn time which they compute using their perceptions of the average sojourn time and 

the level of uncertainty. We assume the same exogenous service capacity for all facilities, 

which remains constant throughout. We first analyse the collective behaviour generated by 

the customers’ decisions. We show that the system achieves low weighted average sojourn 

times when the collective behaviour results in neighbourhoods of customers loyal to a facility 

and the customers are approximately equally split among all facilities. The lowest weighted 

average sojourn time is achieved when exactly the same number of customers patronises each 

facility, implying that they do not wish to switch facility. In this case, the system has achieved 

the Nash equilibrium. We show that there is a non-monotonic relationship between the degree 

of risk-aversion and system performance. Customers with an intermediate degree of risk-

aversion typically achieve higher sojourn times; in particular they rarely achieve the Nash 

equilibrium. Risk-neutral customers have the highest probability of achieving the Nash 

Equilibrium.  

Chapter 3 considers a service system similar to the previous one but with risk-neutral 

customers, and relaxes the assumption of exogenous service rates. In this sense, we model a 

queueing system with endogenous service rates by enabling managers to adjust the service 

capacity of the facilities. We assume that managers do so based on their perceptions of the 

arrival rates and use the same principle of adaptive expectations to model these perceptions. 

We consider service systems in which the managers’ decisions take time to be implemented. 

Managers are characterised by a profile which is determined by the speed at which they 

update their perceptions, the speed at which they take decisions, and how coherent they are 

when accounting for their previous decisions still to be implemented when taking their next 

decision. We find that the managers’ decisions exhibit a strong path-dependence: owing to the 

initial conditions of the model, the facilities of managers with identical profiles can evolve 

completely differently. In some cases the system becomes “locked-in” into a monopoly or 

duopoly situation. The competition between managers causes the weighted average sojourn 

time of the system to converge to the exogenous benchmark value which they use to estimate 

their desired capacity. Concerning the managers’ profile, we found that the more conservative 
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a manager is regarding new information, the larger the market share his facility achieves. 

Additionally, the faster he takes decisions, the higher the probability that he achieves a 

monopoly position.  

In Chapter 4 we consider a one-server queueing system with non-captive customers. We 

carry out an experiment aimed at analysing the way human subjects, taking on the role of the 

manager, take decisions in a laboratory regarding the capacity of a service facility. We adapt 

the model proposed by van Ackere et al (2010). This model relaxes the assumption of a 

captive market and allows current customers to decide whether or not to use the facility. 

Additionally the facility also has potential customers who currently do not patronise it, but 

might consider doing so in the future. We identify three groups of subjects whose decisions 

cause similar behavioural patterns. These groups are labelled: gradual investors, lumpy 

investors, and random investor. Using an autocorrelation analysis of the subjects’ decisions, 

we illustrate that these decisions are positively correlated to the decisions taken one period 

early. Subsequently we formulate a heuristic to model the decision rule considered by subjects 

in the laboratory. We found that this decision rule fits very well for those subjects who 

gradually adjust capacity, but it does not capture the behaviour of the subjects of the other two 

groups. 

In Chapter 5 we summarise the results and provide suggestions for further work. Our main 

contribution is the use of simulation and experimental methodologies to explain the collective 

behaviour generated by customers’ and managers’ decisions in queueing systems as well as 

the analysis of the individual behaviour of these agents. In this way, we differ from the typical 

literature related to queueing systems which focuses on optimising performance measures and 

the analysis of equilibrium solutions. Our work can be seen as a first step towards 

understanding the interaction between customer behaviour and the capacity adjustment 

process in queueing systems. This framework is still in its early stages and accordingly there 

is a large potential for further work that spans several research topics. Interesting extensions 

to this work include incorporating other characteristics of queueing systems which affect the 

customers’ experience (e.g. balking, reneging and jockeying);  providing customers and 

managers with additional information to take their decisions (e.g. service price, quality, 

customers’ profile); analysing different decision rules and studying other characteristics 

which determine the profile of customers and managers. 
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RÉSUME 

Dans cette thèse, nous étudions les aspects comportementaux d'agents qui interagissent 

dans des systèmes de files d'attente à l'aide de modèles de simulation et de méthodologies 

expérimentales. Chaque période les clients doivent choisir un  prestataire de servivce. 

L'objectif est d’analyser l'impact des décisions des clients et des prestataires sur la formation 

des files d'attente.  

Dans un premier cas nous considérons des clients ayant un certain degré d'aversion au 

risque. Sur la base de leur perception de l'attente moyenne et de la variabilité de cette attente, 

ils forment une estimation de la limite supérieure de l'attente chez chacun des prestataires. 

Chaque période, ils choisissent le prestataire pour lequel cette estimation est la plus basse. 

Nos résultats indiquent qu’il n’y a pas de relation monotone entre le degré d’aversion au 

risque et la performance globale. En effet, une population de clients ayant un degré d’aversion 

au risque intermédiaire encoure généralement une attente moyenne plus élevée qu'une 

population d'agents indifférents au risque ou très averses au risque.  

Ensuite, nous incorporons les décisions des prestataires en leur permettant  d'ajuster leur 

capacité de service sur la base de leur perception de la fréquence moyenne d’arrivées. Les 

résultats montrent que le comportement des clients et les décisions des prestataires présentent 

une forte "dépendance au sentier". En outre, nous montrons que les décisions des prestataires 

font converger l'attente moyenne pondérée vers l'attente de référence du marché.  

Finalement, une expérience de laboratoire dans laquelle des sujets jouent le rôle de 

prestataire de service nous a permis de conclure que les délais d'installation et de 

démantèlement de capacité affectent de manière significative la performance et les décisions 

des sujets. En particulier, les décisions du prestataire, sont influencées par ses commandes en 

carnet, sa capacité de service actuellement disponible et les décisions d'ajustement de capacité 

qu'il a prises, mais pas encore implémentées.  
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1 INTRODUCTION 

Queueing systems have been extensively studied since Erlang (1909) tackled the telephone 

traffic problem for the first time. He is considered to be the founder of queueing theory and 

since then several related theories and concepts have been developed (e.g. Kendall, 1951; 

Bailey, 1954a, 1954b; Barrer, 1957a, 1957b; Naor, 1969; Yechiali, 1971; Dewan and 

Mendelson, 1990). Queueing theory can be applied to a large range of problems including 

communication and computer networks (Erlang, 1909; Agnew, 1976; Koole and 

Mandelbaum, 2002), service operation systems (Dewan and Mendelson, 1990), airport design 

(Koopman, 1972), vehicular traffic systems (Naor, 1969) and inventory systems (Graves, 

1982). 

This thesis addresses topics in behavioural queueing. In this first chapter we introduce the 

field, briefly describe the chosen methodologies and provide an overview of the results. 

1.1 Queueing Systems 

In general terms, a queueing system may be described as a process where customers arrive at 

a facility for service, and if there is no server available immediately, customers must wait to 

be served (Gross and Harris, 1998). The outputs of this process are served customers. 

Exogenous and endogenous factors can alter the performance of queueing systems. For 

instance, customers may decide not to use a facility due to the queue length. In this case the 

queue length is an endogenous factor and the customers' impatience is exogenous.  

The term "customer" is used in this dissertation to refer to humans or items (e.g. vehicles, 

data, documents, among others), whose decision to use a service facility depends on humans 

or machines capable of registering and sharing information regarding the system behaviour. 

All customers are served in a facility whose capacity is determined by the number of available 

servers and the service rate. The "manager" is the service provider who makes decisions 

regarding the service capacity. The “queue” may be considered either as a number of 

customers waiting for service or as the backlog of work in a service system. Similarly the 
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term “sojourn time” is used to denote the time from the moment the customer either submits a 

request to a service system (e.g. calls for appointment) or arrives at a service system to use it, 

until the service has been provided. In other words, this is the time from when a job or an 

activity is requested, until it has been carried out. Mathematically, the sojourn time is the 

waiting time plus the service time.  

According to Gross and Harris (1998) queueing systems can be described by six major 

characteristics: arrival pattern of customers, service pattern of servers, queue discipline, 

waiting room (the authors refer this to as the system capacity), number of service channels, 

and number of service stages. Arrival and service patterns have several characteristics in 

common. The first is that both arrivals and services may be either individual (single 

customers) or simultaneous (batches of customers). Likewise, both patterns may be either 

deterministic or stochastic, and determined endogenously or exogenously. They are 

endogenously determined if they depend on the state of the system, e.g. the customers' 

decision of whether or not to join the facility depends on how many customers are queueing. 

In the case of endogenous rates, the literature considers two possibilities: they may either 

depend on a steady-state (e.g. Dewan and Mendelson, 1990) or be state-dependent (e.g. Naor, 

1969). The steady-state case assumes that the decisions are based on an equilibrium analysis 

of average performance measures of a system (van Ackere and Larsen 2009). State-dependent 

decisions are based on the current system status (Gross and Harris 1998). The arrival and 

service patterns may also be time-dependent, i.e. the arrival and service rates change with 

time (Gross and Harris, 1998).  

Customers may exhibit impatience. Gross and Harris (1998) define three situations of 

impatient customers: customers deciding not to join the queue upon arrival (balking); 

customers, once in the queue, deciding to leave it (reneging); and customers deciding to 

switch queue in a system with several parallel service channels (jockeying). Customers' 

impatience is an exogenous factor. However their decision to stay, not join, or leave the queue 

may depend on both exogenous and endogenous factors. 

Once customers are in the queue, they might be selected in various ways to be served. 

This depends on the queue discipline. The most familiar disciplines are first come, first served 

(FCFS) and last come, first served (LCFS). However, many other ways are possible, e.g. 

depending on the priority which the facility gives to its different customers. 
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A service can be made up of one or more operations or tasks, which the customers must 

go through to complete the service. Each of these operations or tasks is a stage of service and 

it may be performed by one or more servers; e.g. at a bank, there are several receptionists to 

address customers according to the required service. In the same way, one server may operate 

in one or more stages, e.g. in a fast food restaurant, an employee can take orders, prepare 

them and sometimes he also receives the cash.  

The number of service channels refers to the number of parallel servers available at each 

stage, who are working simultaneously. A multichannel service system may have either only 

a single queue for each stage, as at banks, or it may have one queue for every server, as at the 

supermarket. 

Finally the waiting room (referred to as system capacity in Gross and Harris (1998)) refers 

to the physical capacity of the system to accommodate a backlog of customers. When the 

number of customers waiting for service reaches this physical capacity, no further customers 

are allowed to enter until at least one customer is served or impatiently leaves. Considering 

the above, a system with limited queueing capacity may be viewed as a case of forced balking 

(Gross and Harris, 1998). However most theoretical models assume that queueing capacity is 

infinite.  

Having presented the research area, we proceed to motivate the selection of the research 

problem.  

1.2 Fundamental Motivation: Relationships among Customers, Queueing 
and Service Providers 

Queueing problems concern a broad range of applications which have been widely addressed 

in several disciplines. These include economics, physics, mathematics, computer science and 

so on. Queueing is a fact of life that we witness daily. We all have had the experience of 

waiting in line for some reason and we know that it is an annoying situation. Banks, roads, 

post offices, and restaurants, are just some examples of queueing systems. There are also 

situations in which customers are not necessarily humans. For instance, customers could be a 

stack of files waiting at an office to be dealt with, jobs at a factory waiting to be performed or 

dispatched, and vehicles waiting at a garage to be repaired, among others. Still, note that 
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behind each of these objects is a human being waiting (e.g. the final customer of the garage is 

the car owner) 

 

Figure 1.1 Illustrative situation of queueing 

As the adage says "time is money"; this is perhaps the best way of explaining what 

customers think about queueing. Queueing becomes even more annoying and costly for 

customers in those cases when they periodically require a service. In these cases, the past 

experience enables customers to estimate the sojourn time for the next time, before deciding 

whether or not to join the queue, which queue to join and/or at what time it is better to do it. 

This implies a dynamic queueing system with endogenous arrival rates which depend on the 

customers' expectations. For example, people, who annually take their car to the garage for 

the emissions tests, decide based on their experience what garage, to take their car to and 

when to do so. Similarly, a worker or a student, who daily has to choose an hour and/or a 

restaurant to have lunch at, has enough experience to choose the time and/or place that he 

considers less crowded.  

Society and business have evolved. Customers have increasingly more alternatives to 

choose a service provider. Before, there often were few providers offering the same service or 

good and they were usually not close to each other. The customers therefore had to queue up 

at the only local facility. Nowadays there are more and more providers offering the same 

service or good and people are increasingly mobile. This competition enables customers to 

decide each time which is the best provider for their demands. Customers usually base this 

decision on several factors (e.g. price, quality, and waiting times), but in this work we focus 

exclusively on waiting times as the factor which determines customers’ decisions. When 
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regular customers switch provider, this not only reduces revenues, but also affects the 

facility’s reputation. A bad reputation impacts the decisions of potential customers to join the 

facility in the future owing to word-of-mouth effects.  

In order to maximise his market share, the manager should adjust the service capacity of 

his facility depending on the backlog of customers. This implies that the service rates are also 

endogenously determined, like the arrival rates. In other cases the customer may not be able 

to observe the system state. We assume that the arrival and service rates are endogenously 

determined and that both are based on perceptions about the state of the system and in some 

cases on how confident agents are about the accuracy of these expectations. 

We does analyse a dynamic and complex problem which depends on interactive decisions 

of all agents involved in the system. Customers and managers have conflicting interests: the 

customers' goal is to join the quickest queue and that of the managers is to satisfy the 

customers (i.e. keep waiting times reasonable). Finding the best configuration of a queueing 

system to improve its performance and to satisfy the objectives of both agents is the purpose 

of queueing theory, which attempts to determine how long customers should wait and how 

many people will join the queue (Gross and Harris, 1998).  

In this section we have motivated the need to study the behavioural aspects of queueing 

problems. This is an area that has been little developed so far and is the focus of this thesis, as 

discussed below. 

1.3 Collective Behaviour in Queueing Systems: the Research Problem 

Most queueing problems are modelled assuming static conditions, and exogenous arrival and 

service rates. They are analysed in steady-state, despite the fact that they are dynamic and that 

agents' decisions depend on the state of the system. Over the last decades, some researchers 

have attempted to move away from these predominant assumptions of traditional queueing 

theory towards a more dynamic context in which agents' decisions are increasingly 

considered.  

The present thesis goes in this direction. It was written as part of an SNF research project 

called "Queueing: A Behavioural approach" developed between 2007 and 2011. We seek to 

build on and extent the work of van Ackere and Larsen (2004) and van Ackere et al. (2010). 
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Our goal is to contribute to a new way to approach queueing problems by incorporating 

decision rules based on adaptive behaviour for both customers and managers. We focus on 

queueing problems with endogenous arrival and service patterns. We ignore others factors 

which can influence a customer’s decision to seek service, such as quality of service, added 

value services and discounts. That is, we focus solely on the waiting time aspect. 

We focus on understanding how customers and service providers adapt their behaviour to 

changing circumstances, and study the information structure used for this aim. Particularly, 

we wish to know how customers and managers make decisions in a queueing system and how 

these decisions affect and are influenced by the system behaviour. We attempt to identify and 

analyse if the dynamic and interactive decisions of agents (customers and manager), which 

are based on their experience and expectations, can lead to an adaptive and collective 

behaviour of the system.  

We deviate from most of the literature in that we model dynamic queueing systems with 

arrival and service patterns which are deterministic and endogenously determined. We model 

the customer’ and managers’ decisions both from an individual and aggregated point of view 

by assuming state-dependent feedback. In this way, some assumptions of classical queueing 

theory are relaxed, such as that the system reaches a steady-state, that service rates are 

exogenous and that both service and arrival rates are stochastic. The customers’ decision to 

return the next period to the same facility will depend on their past experience. Some 

examples of this kind of systems include a person who must choose a garage for the 

inspection of her car, a person who goes monthly to the bank to pay her bills, and a person 

who goes weekly to the supermarket, among others. In all these examples, the customer may 

choose the facility at which he wishes to be served and at what time to do so.  

We study three different variants of queueing problems. We first consider service facility 

systems where customers routinely require service and autonomously choose between three 

facilities to be served. Customers use their most recent experience and that of their neighbours 

to form expectations about the sojourn time at the different facilities. The customers’ decision 

of which facility to join is based on their expectations and on how risk-averse customers are 

regarding these expectations. We assume service facilities with exogenous service rate and 

identical service capacity, which remains constant.  



1.  Introduction        7 
 

 

In the second variant we relax the assumption of exogenous service rates by enabling 

managers to adjust the service capacity and solely consider risk-neutral customers.  

The third variant considers a one-facility queueing system with current and potential 

customers. The service and the arrival rates are both endogenous; i.e. the manager can adjust 

the service capacity each period and customers decide whether or not to use the facility for 

service. 

1.4 Related Work 

Even though queueing problems have been extensively analysed since 1909 when A. K. 

Erlang studied the telephone traffic problem for the first time, most queueing models have 

been aimed at optimising performance measures rather than at understanding the behaviour of 

agents and the feedback of their decisions in a dynamic system. The early studies were 

confined to equilibrium theory (Kendall 1951). Subsequent work has focused on the design, 

running and performance of processes (van Ackere and Larsen, 2009). Most of these models 

are static; they assume that arrival and service rates are stochastic and exogenously 

determined and that the system has reached a steady-state (Rapoport et al., 2004). We define a 

model as static when it assumes that the system parameters (e.g. arrival and service rates) of 

the system remain constant during the period of analysis. On the contrary, a model is defined 

as dynamic when it assumes that the system characteristics may change over the period of 

analysis (this definition includes multi-period models). 

The interest in studying the decisions involved in queueing problems is more recent. The 

seminal papers in this area are Naor (1969) and Yechiali (1971), who argued in a quantitative 

way the insight published by W. Leeman (1964 and 1965) and then discussed by T. Saaty 

(1965). They were the first to propose that queues could be reduced by controlling the arrival 

rate. They suggested the use of price for that purpose. Specifically, they proposed that the best 

way to reduce the queue size is by levying tolls upon arrival, i.e. customers must pay a price if 

they wish to use the facility’s services. Naor (1969) studied the impact on an M/M/1 queueing 

system (a system with a single server, a Poisson arrival process and an exponentially 

distributed service process) where the customers are able to decide whether or not to join the 

queue, based on the system congestion they observe. This is the most elementary form of 

feedback in a queueing system (van Ackere et al, 2006).  
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Although queueing theory is commonly known as a branch of operation research, 

queueing concerns many other disciplines. Particularly, the influence of waiting time on the 

relations between customers and managers of service systems has been widely addressed in 

marketing (Larson 1987, Law et al. 2004, and Bielen and Demoulin 2007), and management 

science (Naor 1969, Stidham Jr. 1985, Dewan and Mendelson 1990, Rump and Stidham Jr. 

1998, and Haxholdt et al 2003). Marketing researchers study the existing relation between 

waiting time, customer satisfaction and customer loyalty (Law et al. 2004 and Bielen and 

Demoulin 2007). Their purpose is to provide managers with information regarding customers’ 

attitudes which enable them to build strategies to improve service quality accordingly. Next 

we discuss the literature review from three different points of view depending on the 

methodologies used to study behavioural aspect in queueing problems. We first analyse the 

contributions made by the marketing field; next we present operations management’s 

contributions and finally we analyse some experimental work. 

1.4.1 Psychology of queues 

In the 80’s, marketing researchers began to develop a new field of study denominated 

“Psychology of queues”. Larson (1987) is the seminal paper on this subject. In this paper, he 

raises some insights about the customers’ queueing experiences. He identifies some factors 

which affect customers’ perceptions about queues, such as the queueing environment, the 

availability of information regarding the anticipated delays, and the social injustice in queues. 

To quantify the latter element, he defines the concepts of slips and skips. A customer is 

slipped in the system when another customer who joined the queue later is first served, while 

this second customer has skipped over the first one. In that sense slipped people are the 

unhappy victims of skipping people, who often feel very satisfied.  

Law et al (2004) and Bielen and Demoulin (2007) empirically study the influence of the 

waiting time on the satisfaction-loyalty relationship. Law et al (2004) formulate an empirical 

model to analyse the satisfaction level and the repurchase behaviour of customers in fast food 

outlets. They conclude that waiting times significantly affect the customers’ satisfaction and 

accordingly influence their repurchase frequency. Bielen and Demoulin (2007) assess a set of 

eight hypotheses related to the determinants of waiting time satisfaction and the influence of 

this variable on the service satisfaction. Their results confirm that waiting time is a service 

satisfaction determinant, but additionally influence the relationship between customer 

satisfaction and loyalty. This paper summarises the marketing literature related to the 
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relationship between waiting times and customer satisfaction and also covers the study of 

managers’ strategies to match service capacity and demand. 

1.4.2 Operations management models   

Models focused on customers’ decisions assume that they base their decisions on their last 

experience (e.g. Gallay, 2009 and Stidham, 1985 and 1992), on adaptive expectation (e.g. 

Rump and Stidham 1998, Zohar et al. 2002, van Ackere et al 2004, and Delgado et al. 2011a), 

or on preferences and prices for service (e.g. Naor 1969). According to Leeman, the use of 

prices in queueing problems decentralises the decision making of the system's agents. On the 

one hand, customers consider prices and their own preferences in order to decide when and 

where to require service. On the other hand, when the service provider applies a prices policy 

to reduce the queues, he should consider this policy in order to adjust the service capacity; i.e. 

a price system may be used as a policy to guide the hiring of personnel or the investment in 

the service facilities as the revenues enable financing additional capacity (Leeman, 1964). The 

work of Naor (1969) and Yechiali (1971) was generalised by several authors including 

Stidham (1985, 1992), Mendelson (1985), Dewan and Mendelson (1990), van Ackere (1995), 

Rump and Stidham (1998), Zohar et al. (2002), Haxholdt et al. (2003), van Ackere et al. 

(2006, 2010), among others. Stidham (1985), van Ackere (1995), and Haxholdt et al. (2003) 

provide a survey of the work on optimal pricing control and service capacity management in 

queueing system.  

van Ackere and Larsen (2009) present an overview of a selection of key papers which 

have contributed to the literature on queueing through the study of decisions of agents 

involved in the system. They classify these papers according to three criteria related to the 

arrival and service patterns: 1) whether both rates are exogenous or endogenous; 2) whether 

both processes are stochastic or deterministic; and 3) whether feedback is state-dependent or 

is based on a steady-state analysis. We consider two additional criteria. The first one is 

whether the authors develop a model to describe queueing phenomena or conduct an 

experiment to analyse human behaviour in queueing phenomena. Additionally, if the papers 

concern models, we classify these as dynamic and static. Table 1.1 shows the classification of 

the literature according to these criteria. Most of these papers are discussed in detail by van 

Ackere and Larsen (2009). We will focus on the most relevant aspects of this literature, i.e. 

weaknesses and suggestion for future work, which are relevant for our research. We also 
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discuss briefly the most recent papers related to dynamic and state-dependent models, as well 

as the papers which deal with experimental methods. 

Most papers of table 1.1 seek to determine optimal policies for pricing and capacity 

decisions to control problems associated with congestion in service facility systems. The 

purpose of the pricing strategy is to control the expected arrival rate (Dewan and Mendelson, 

1990) and the role of the optimal policy is to look for an equilibrium between the arrival rate 

and the admission price (Rump and Stidham, 1998). The models based on price setting and 

cost allocation depend on the form and the estimation of many functions (e.g. waiting time, 

expected price and admission price), which makes analytical solution quite complicated to 

find. These models are more useful for those problems where customers compare price and 

sojourn time when choosing a facility for service. Their decision of which facility to use 

therefore depends on different price-sojourn time pairs they have to choose. For instance, 

drivers must choose between the use of a toll road and another alternative.  

Mendelson (1985) and Dewan and Mendelson (1990) study the decision problem faced by 

a service facility manager who must allocate costs to control the congestion level. They 

analyse the cases with fixed and variable service capacity. They model service facility 

systems in which the facility’s users decide whether or not to join the facility by comparing 

their expected added-value to the expected marginal cost. Mendelson (1985) assumes the 

expected marginal cost as a linear function of the service price and an expected delay cost, 

while Dewan and Mendelson (1990) assume a nonlinear function. The expected delay cost 

can be interpreted as an opportunity cost which customers incur because of queueing delays. 

In other words, it is the value which users are willing to pay to avoid waiting. This value is 

determined using the expected average waiting time (determined in steady state) (Mendelson 

1985). Both papers seek to find the optimal price and service capacity which maximise the 

expected net value of the total number of served customers. For the first problem, which 

assumes an exogenous and fixed service rate, the optimal price is equal to the expected delay 

cost of customers. In the second problem, which assumes variable service capacity (i.e. 

endogenous), the optimal price and capacity depend on the demand which materialises each 

period and the expected delay cost for that demand (Dewan and Mendelson 1990). Both 

models are static (i.e. the model is only valid if the system parameters do not change during 

the period of analysis). Dewan and Mendelson (1990) suggest that future research should be 

aimed at dynamic models with state-dependent arrival rates.  
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Table 1.1 Literature overview (adapted from van Ackere and Larsen, 2009). 

Stochastic Deterministic Stochastic Deterministic
Edelson and Hildebrand Agnew (1976)
(1975) (Analytical)
Stidham (1985)
Naor (1969) Boots and Tijms (1999) van Ackere and Larsen Rapoport et al. (2004)
Yechiali (1971) (2004) Seale et al (2005)
Edelson and Hildebrand Sankaranarayanan et al. Stein et al. (2007) 
(1975) (2011) Rapoport et al. (2010)
Stidham (1985)
van Ackere (1995)
Sinha et al. (2010)
Mendelson (1985) Edelson (1971) Stidham (1992)
Dewan and Mendelson Rump and Stidham (1998)
(1990) Zohar et al. (2002)
van Ackere (1995)
Mendelson (1985) Agnew (1976) 
Dewan and Mendelson 
(1990)

(Descriptive)

Ha (1998, 2001) Haxholdt et al. (2003)
van Ackere et al. (2006)
van Ackere et al. (2010)

Arrival and service 
rates endogenous

Steady 
state

Steady 
state

Static models Dynamic models Experiments

State 
dependent

Arrival rate 
endogenous and 
service rate exogenous

State 
dependent

Arrival and service rates 
exogenous
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Subsequently, Stidham (1992) and Rump and Stidham (1998) extend the work of Dewan 

and Mendelson (1990) by developing a multi-period model (a dynamic model which 

evaluates the system steady-state in discrete time-periods). Both Stidham (1992) and Rump 

and Stidham (1998) assume that customers decide based on their estimates of the expected 

marginal cost whether or not to join the queue. Stidham (1992) applies static expectations (cf. 

Sterman 1989a) to enable customers to learn from their past experience, while Rump and 

Stidham (1998) apply adaptive expectations (cf. Nerlove 1958, Sterman 1989a). Static 

expectations assume that the current state of the system will persist, while adaptive 

expectations update each period the perception of this state using the most recent information. 

Rump and Stidham (1998) quote a wide range of papers dealing with static expectations. 

More recently, Sinha et al. (2010) apply an optimal pricing scheme of surplus capacity to 

control the joint problem of existing and potential customers who are differentiated according 

to a pre-specified service quality level. 

Mendelson (1985), Dewan and Mendelson (1990), Stidham (1992), Rump and Stidham 

(1998), and Sinha et al. (2010) assume that steady-state is reached each period before the 

arrival rate is adjusted. Rump and Stidham (1998) suggest that it would be interesting to relax 

this assumption.  

Haxholdt, et al. (2003), van Ackere and Larsen  (2004), van Ackere, et al. (2006, 2010) 

and Sankaranarayanan, et al. (2011) study some behavioural aspects by analysing the 

feedback process involved in the customers’ choice regarding what queue they should join in 

the next period. van Ackere et al. (2010) include the feedback process involved in the 

manager’s decisions.  

Haxholdt, et al. (2003) and van Ackere, et al. (2006 and 2010) analyse this feedback using 

system dynamics (SD), whereas van Ackere and Larsen (2004) and Sankaranarayanan et al. 

(2011) apply cellular automata (CA). the CA methodology captures the individual experience 

of customers and how they make their decision based on local information, while SD captures 

the average perceptions of customers and assumes decisions based on global information.  

On the one hand, Haxholdt et al (2003) and van Ackere et al (2006 and 2010) model the 

customers’ decisions to join a facility and the manager’s response for increasing or decreasing 

capacity. This work is developed for a system with a single queue. In both cases, the 

customers’ decision to join the facility is based on their perception of sojourn time. Current 
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customers form their perceptions based on their previous experiences, while potential 

customers do so through word of mouth. Such expectations represent the global expectation 

of all the customers, who went through the system over a certain period.  

On the other hand, van Ackere and Larsen (2004) and Sankaranarayanan et al (2011) 

model the customers’ decisions to choose a queue within a system of parallel queues. These 

models differ from the SD models in that customers have information about their own 

experiences and that of their neighbours. That is, customer behaviour is modelled at an 

individual rather than aggregated level. van Ackere and Larsen (2004) model a road system in 

which they analyse how a finite number of commuters choose among alternative roads. The 

authors assume that commuters use their most recent experience to update expectations about 

travel times. Commuters compare these expectations to the most recent experience of their 

neighbours and choose the most attractive alternative. Sankaranarayanan et al. (2011) model a 

service system where customers must choose periodically among different facilities for 

service. They differ from van Ackere and Larsen (2004) in that they assume that customers 

update their expectations about sojourn times using both their own experience and that of 

their neighbours. Then, customers choose the facility with the lowest expected sojourn time.  

1.4.3 Experiments with queueing systems 

Rapoport et al. (2004) carry out a laboratory experiment aimed at studying customers’ 

behaviour. They depict a queueing problem with endogenously determined arrival rates and 

state-dependent feedback as a non-cooperative n-person game. Subjects, playing the role of 

car owners who need to take their car to a garage for the emissions control, should decide 

each experimental trial whether to join the queue. If they choose to join it, they also should 

decide when to do so. The authors first analyse the strategies which lead to the equilibrium 

solutions for the game. Then, they perform an experimental study in order to identify if 

customers, making individual decisions, achieve a coordinated solution for this game in large 

groups. Finally, they characterise this solution and determine if it converges to the 

equilibrium. Each player was provided with information about his arrival time, his payoff for 

the trial, his cumulative payoff, his waiting time and the number of players who arrived at the 

same time for service. Players were not provided with information about the other members 

of the group. Subsequently Seale et al. (2005) extended this work to non-cooperative n-person 

games with complete information (i.e. including the information of the other group-members). 

Later Stein et al. (2007) and Rapoport et al. (2010) performed other experiments to study 
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queueing systems with endogenous arrival rates and batch service. They analyse how 

customers decide whether to join a queue and when to do so.   

1.5 Methodology 

Most research on queueing problems has focused on the optimisation of performance 

measures and the equilibrium analysis of queueing systems. Traditionally, analytical 

modelling and simulation have been the approaches used to deal with queueing 

problems. Most simulation models are stochastic and just some more recent models are 

deterministic. 

The analytical approach describes mathematically the operating characteristics of the 

system in terms of the performance measures, usually in "steady state" (Albright and Winston, 

2012). This approach is useful for low-complexity problems for which an analytical solution 

can be found with few simplifying assumptions. Simulation is more appropriate for complex 

problems and enables modelling the problem in a more realistic way, as it requires fewer 

simplifying assumptions (Albright and Winston, 2012).  

The analysis of queueing problems could be aimed either at optimising performance 

measures to improve the operating characteristics of the system without accounting for 

customer behaviour or at understanding the agents' behaviour through of the analysis of their 

decisions. Considering the complexity of the queueing problems described above, which is 

due to the interactive dynamic decisions of the agents, we will focus on studying the 

behavioural aspects of queueing problems by using deterministic simulation and experimental 

economics. 

In Chapters 2 and 3 of this thesis, we use agent based simulation, specifically cellular 

automata (CA), to understand how customers adapt their behaviour to the system evolution as 

well as how customers and managers react to each other's behaviour. In the fourth chapter we 

apply experimental economics to analyse how human subjects, playing the role of a manager 

in a laboratory environment, decide when and by how much to adjust the capacity of a service 

facility.  
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1.5.1 Cellular Automata 

The CA approach uses agent-based simulation (North and Macal 2007) and endows agents 

with enough computational ability to interact and share information with other agents of the 

system. This approach is useful for modelling problems at any abstraction level (Borshchev 

and Filippov, 2004). It has become an important tool for look into queueing problems, 

particularly traffic systems, from both a theoretical and a practical point of view. 

A cellular automaton is a collection of cells arranged on a discrete lattice or grid which 

evolves at discrete times depending on the discrete states they can take (Ilachinski 2001). 

Cells represent agents interacting in a local neighbourhood (i.e. the discrete lattice). Every 

agent updates his state each discrete time step according to a decision rule which takes into 

account the neighbours’ state.  

The typical discrete lattices are either one or two-dimensional and in some cases they can 

be three-dimensional. In the case of one-dimensional lattices, they can have the shape of 

either a ring or a line and the neighbourhoods are formed by the cells that are located within a 

certain range (Ilachinski 2001). This range determines the number of neighbours each cell has 

on each side. When the lattices have more than one dimension, the neighbourhoods can take 

different geometrical shapes. For instance, the most familiar neighbourhoods in two-

dimensional lattices are (i) von Neumann neighbourhoods where each cell has four 

neighbours located respectively above, below, to the left and to the right; and (ii) “Moore 

neighbourhoods” which have the shape of a checkerboard, i.e. each cell has exactly eight 

neighbours (North and Macal 2007).  

John von Neumann (1948) is one of pioneers of the use of CA models. He introduced the 

first mathematical formulations of CA when considering a self-reproducing automata to 

attempt to explain the reductionist biology (Ilachinski 2001, Wolfram 1994). Nevertheless, 

Stephen Wolfram is recognised as the main contributor to the development of this field 

throughout the eighties and nineties (Wolfram (1994) contains a collection of their most 

outstanding papers on CA and complexity). CA have been used to represent and understand 

the behaviour in several complex systems, including physical fluids, neural networks, 

molecular dynamical systems, natural ecologies, military command and control networks, and 

the economy, among many others.  
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We select CA because it is a very simple method to study behavioural pattern formation in 

complex systems. Queueing systems are complex in the sense that they are dynamical systems 

where the interactions between customers as well as between customers and managers are 

typically non-linear. We use a CA model to depict how customers interact in a local 

neighbourhood to decide each period which facility to patronise for service based on their 

own experience and that of their neighbours. The neighbourhood represents a social network 

of customers with the same aim, e.g. colleagues, friends, people living next-door etc.  

We apply a one-dimensional CA to depict a queueing situation in a captive market where 

customers routinely require service and must choose among a set of facilities to be served. 

The discrete lattice has the shape of a ring. Customers are the cells and the facilities represent 

the states each cell can take. Each cell has exactly K neighbours on each side. For instance, 

when K = 1 the last cell has the first one and the last but one as neighbours. Each period, 

customers must choose a facility (state) following a decision rule based on their expectations 

of the sojourn time at the facilities. Customers form their expectations using their most recent 

information. When a customer patronises a facility he uses this experience to update his 

expected sojourn time at this facility. Moreover, customers share their experience with their 

neighbours and use this information to update the expected sojourn time at the facility of their 

best performing neighbour. Customers update their expectations each period using an 

adaptive expectation process (Nerlove, 1958) whereby they weight their memory and their 

most recent information. The adaptive expectations concept is also known as exponential 

smoothing (Theil and Wage, 1964). 

van Ackere and Larsen (2004) assume that customers update their expectation using solely 

their most recent experience and that they then compare this expectation to the latest 

experience of their neighbours in order to decide which road to select the next period. We 

deviate from van Ackere and Larsen (2004) in that we model customers who update their 

expectations not only using their own experience, but also that of their neighbours. Customers 

update the expectation of their last patronised facility using their own experience and use the 

most recent experience of their quickest neighbour (i.e. the best performing) to update their 

expectation of the facility used by this neighbour. Subsequently they compare their 

expectations in order to decide which queue to join. This is the basic structure of the CA 

model we use in the next two chapters of this thesis.  
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In Chapter 2 we introduce the idea that customers are uncertain about their expectations. 

The extent to which they account for this uncertainty when taking decisions depends on how 

risk-averse they are. Customers estimate their uncertainty through the volatility of the 

estimate of their expectations. Given the use of adaptive expectations, this volatility is usually 

estimated by means of the smoothing variance (Taylor 2006). The variance is unobservable, 

but this can be estimated by applying exponential smoothing to the squared residuals of the 

expectations (Taylor 2004). Customers use this estimate of uncertainty to compute an upper-

bound of the sojourn time on which they base their decision of which facility to join each 

period. We assume exogenous service rates: facilities having identical service capacity which 

remains constant over time. Hence, the average sojourn time of the system only depends on 

the customers’ decisions. 

In Chapter 3 we use the same basic CA model, but we assume risk-neutral customers and 

relax the assumption of exogenous service rates. We enable managers to adjust the service 

capacity of the facilities (i.e. endogenous service rates). We assume that managers base their 

capacity adjustment decisions on their perception of the arrival rate. We use the same 

principle of adaptive expectations and endow managers with memory to update their 

perceptions about the future arrival rates. We model service systems where the managers’ 

decisions require time to be implemented, e.g. hiring employees requires training, laying off 

staff may imply a notice period, acquiring IT systems takes time, among others. Managers are 

characterised by the speed at which they update their perceptions, the speed at which they 

take decisions, and how coherent they are when accounting for their previous decisions still to 

be implemented when taking their next decision. 

1.5.2 Laboratory Experiments 

Experimental economics is a methodology that allows collecting data from human subjects to 

study their behaviour in a controlled economic environment (Friedman and Sunder, 1994). 

Laboratory experiments were introduced in Economics by Edward H. Chamberlin (1948). 

Motivated by the theories of industrial organisation and market performance, he looked into 

the behavioural characteristics of competitive markets and tested the hypothesis that 

monopolistic competition theories are more useful to explain the observed behaviour than the 

theories of demand and supply (Plott 1982).  
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Models are useful to predict behaviours and explain how these behaviours are influenced 

by changes in independent variables, while laboratory experiments are useful to explain how 

these behaviours emerge. Experimental data analysis provides us with information to explain 

the effects some variables have on micro-economic phenomena which existing theories 

cannot explain (Friedman and Sunder, 1994).   

The fundamental objective of experimental economics is to recreate a controlled micro-

economic environment in the laboratory which guarantees the measurement of the relevant 

variables (Smith 1982). In this sense, the relevance of the collected data rests on the 

proposition that laboratory environments represent "real" markets in which economic 

principles can be applied when real people pursue real profits within a virtual context of real 

rules (Plott 1982).  

The literature presents three basic principles which must be considered for the design of 

economic experiments: 1) realism, 2) control and repetition and 3) induced-value theory 

(Friedman and Sunder, 1994). These principles are a guidance for the economic 

experimentalists. Realism refers to the difference between models and experiments. A model 

may simulate the reality, but it performs under the conditions, rules and laws assumed by the 

modeller and not under conditions, rules and laws under which individuals and institutions 

interact in reality. Experimental economics evokes a parallel environment between reality and 

laboratory experiments (Grossklags 2007). Controlling and repeating are required to ensure 

that the collected observations are the result of the manipulation of the experimental 

environment by the experimenter (Grossklags 2007). However, in any experiment there are 

factors which cannot be controlled. The goal of the repetition is precisely to reduce the 

variability caused by these factors. Induced-value theory proposes the use of a reward 

medium to convince subjects to participate in the experiment and induce pre-specified 

characteristics (Friedman and Sunder 1994).  This principle distinguishes experimental 

economics from other experimental disciplines. 

In Chapter 4, we perform an experiment in which we recreate the capacity management of 

a service facility through a controlled laboratory environment. We use the protocols of 

experimental economics (Friedman and Sunder 1994) to design, carry out, and control this 

experiment.  
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Consider a situation where customers repeatedly choose a service provider. The system is 

composed of a service facility, a manager, a queue and customers. The experiment is 

presented as a garage with two populations of customers seeking service: regular customers 

and potential customers. Regular customers are those who currently patronise the facility and 

periodically decide whether or not to use its service. The frequency at which they do so is 

given and known by the manager. They may leave the system if their expected sojourn time 

(which is based on (an average of) the last few times they have used the facility’s services) is 

greater than the time they consider acceptable. Potential customers currently do not use the 

facility, but might consider doing so in the future depending on how attractive the sojourn 

time is, i.e. they might become regular customers.   

The system operates as follows: regular customers request a service which will be provide 

immediately if there are free servers at that moment; else, they join the queue. Customers in 

the queue are served according to the first-come, first-served (FCFS) rule. The service 

capacity is adjusted by the manager, who knows the current system state, in order to achieve 

an acceptable sojourn time. However, the manager’s decisions are not instantaneously 

implemented. Indeed, capacity adjustment involves an explicit time-lag to delivery capacity 

orders or to dismantle capacity. There are other delays involved in the system, which are 

unknown for the manager. These delays are the time which customers take to update their 

perceptions of sojourn time.  

We adapt the system dynamics (SD) model proposed by van Ackere et al (2010) to 

represent the above queueing situation. We develop a computational graphical user interface 

adapted to this model to perform our experiment. The participants of this experiment are 

Bachelor and Master Students from the Faculty of Business and Economics at the University 

of Lausanne. Each participant plays the role of the manager of a garage and his task is to 

adjust the service capacity. The customers of the garage are virtual agents whose behaviour is 

generated by the underlying model. 

Our objective is to study the impact of delays on the managers’ capacity decisions. We 

wish to test in particular whether subjects, taking on the role of managers of a service facility, 

account for their previous decisions when taking the next capacity decision. Additionally, 

we attempt to determine the decision rule used by the subjects in the laboratory to manage the 

capacity adjustment process. 
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1.6 Overview of Results Contributions  

As mentioned before, this thesis is associated to the SNF research project "Queueing: A 

Behavioural approach". This project has already yielded eight publications, listed in Appendix 

A. Four of these publications are directly related to this thesis and are included in Appendices 

B to E. This thesis is divided into three parts: first we analyse queueing problems from the 

standpoint of risk-averse customers, then we incorporate the managers’ decisions in order to 

analyse the behaviour resulting from the interactions between customers and managers, and 

finally we perform a laboratory experiment to collect information about how human subjects 

taking the role of managers adjust the service capacity.   

This thesis thus tackles three different queueing situations. The first situation considers 

service facility systems where customers routinely require service and autonomously choose 

between m facilities to be served. Each facility has its own queue. We assume service 

facilities with constant exogenous service rate and identical service capacity. This issue is 

addressed in Delgado et al. (2011a) (see Appendix B), Delgado et al. (2011b) (see Appendix 

C), Delgado et al. (2011d) (see Appendix E) and Chapter 2 of this thesis.  

In Delgado et al. (2011a), the authors analyse the different collective behavioural patterns 

which emerge from the decisions of interacting customers who routinely choose a facility for 

service. These patterns are: chaotic behaviour, almost-stable behaviour and the Nash 

Equilibrium. In the first pattern, customers never find a facility which meets their needs and 

therefore continue to switch facility irregularly. In the second pattern, groups of neighbours 

are loyal to a facility and some customer on the borders of these neighbourhoods alternate 

between two facilities. A special case of this pattern occurs when the customers’ expectations 

regarding one of the facilities become very large and agents decide to never again patronise 

this facility. The last pattern occurs when customers are equally split among all facilities and 

yields the lowest possible average sojourn time. Customers are satisfied with their experience 

and do not wish to change facility. 

In Delgado et al. (2011b), Delgado et al. (2011d) and Chapter 2 of this thesis, we consider 

customers whose degree of risk-aversion determines the extent to which they account for 

uncertainty when taking the decision of which facility to join (as mentioned in Section 1.5.1). 

Delgado et al. (2011b) focus on the behaviour of risk-neutral and moderately risk-averse 

customers. They conclude that systems with customers having an intermediate degree of risk-
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aversion exhibit longer transient periods and converge more slowly to an almost-stable 

behaviour. Delgado et al. (2011d) show that customers with a high level of risk-aversion 

achieve low sojourn times when they are cautious towards the new information used to update 

their expected sojourn time, whatever their attitude regarding the information used to update 

the variance. Customers with an intermediate level of risk-aversion experience low sojourn 

times when they are reluctant to update their expectations of both sojourn time and variance. 

Finally, risk-neutral customers and those with low risk-aversion achieve their best 

performance when they are most conservative regarding the updating of their expected 

sojourn times.  

Chapter 2 of this thesis integrates Delgado et al. (2011b) and Delgado et al. (2011d) and 

analyses more thoroughly the behaviour of the risk-averse customers. We show that there is a 

non-monotonic relationship between the degree of risk-aversion and system performance. For 

instance, customers with an intermediate degree of risk-aversion typically achieve higher 

sojourn time than the others; moreover, it is very unusual for this type of customers to reach 

the Nash equilibrium. Risk-neutral customers have the highest probability of achieving the 

Nash Equilibrium. Concerning the transient period, we extend the conclusion of Delgado et 

al. (2011b) to risk-averse customers in general, i.e. the more risk-averse the customers, the 

longer the transient period exhibited by the system.  

In Chapter 3, we consider a queueing system with similar characteristics to that addressed 

in Chapter 2, but now we incorporate endogenous service rates and focus solely on risk-

neutral customers. We assume that both customers and managers base their decisions on their 

perception of the state of the system. While customers have information about the most recent 

sojourn time they experience at the facilities, managers know the number of arriving 

customers at their facilities. So both customers and managers use this information to update 

their perceptions. We find that the managers’ decisions exhibit a strong path-dependence: 

managers can have the same profile, but owing to the initial conditions of the model the 

facilities evolve completely differently. In some cases the system becomes “locked-in” into a 

monopoly or duopoly situation. The weighted average sojourn time of the system converges 

to the exogenous benchmark value which managers use to estimate their desired capacity. We 

also find that the more conservative a manager is regarding new information, the larger the 

market share his facility achieves. Additionally, the faster he takes decisions, the higher the 

probability that he achieves a monopoly position. 
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Delgado et al. (2011c) (see Appendix D) and Chapter 4 address the laboratory experiment 

described in Section 1.5.2. We consider a different queueing situation to that tackled in 

Chapters 2 and 3. Delgado et al. (2011c) analyse the typical behaviour of the system 

occurring when one of the equilibrium conditions is modified. They propose two alternative 

strategies to manage the capacity adjustment of the service facility for which they determine 

the optimal parameters and analyse the resulting system behaviour. In Chapter 4, we identify 

three groups of subjects whose decisions result in similar behavioural patterns. These groups 

are labelled gradual investors, lumpy investors, and random investor. The autocorrelation 

analysis of the subjects’ decisions indicates that these decisions are positively correlated to 

the decisions taken one period early. Subsequently we formulate a heuristic to model the 

decision rule considered by subjects in the laboratory. We find that this decision rule fits very 

well for those subjects who gradually adjust capacity, but it does not capture the behaviour of 

the subjects of the other two groups. The experiment was performed for different treatments 

whereby we varied the length of the delays involved in the system. The results indicate that 

the longer the delivery and dismantling delays, the lower the cumulative profits typically 

achieved by subjects in the lab. In contrast, the different delays involved in the updating 

process of the customers’ perception do not significantly affect these profits 

The main contribution of this thesis is the use of simulation and experimental 

methodologies to explain the collective behaviour generated by customers’ and managers’ 

decisions in queueing systems as well as the analysis of the individual behaviour of these 

agents. In this way, we differ from the classical literature related to queueing systems which 

focuses on optimising performance measures and the analysis of equilibrium solutions. Our 

work is a building block for further theoretical work on the capacity adjustment of service 

facilities implying queueing phenomena. This framework is still in its early stages and 

accordingly there is a large potential for further work that spans several research topics. 

Interesting extensions to this work include incorporating other characteristics of queueing 

systems, which affect the customers’ experience (e.g. balking, reneging and jockeying); 

providing customers and managers with additional information to take their decisions (e.g. 

price, quality, customers’ profile, among others); analysing different decision rules and 

studying other characteristics which determine the profile of customers and managers. 
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1.7 Overview of the Thesis 

The next three chapters are structured as research papers consisting of a brief introduction of 

the topic, a description of the methodology, a discussion of the results, conclusions, and 

suggestions for further work.  

Chapter 2 addresses a queueing system with risk-averse customers and exogenous service 

rates. After a brief introduction, we describe in section 2.2 the elements which make up this 

queueing system. Section 2.3 introduces the CA model which depicts how customers interact 

and share information in this system when choosing a facility for service. The information on 

which customers base this decision and the way they update such information are explained in 

Section 2.4. There, we describe the adaptive expectation process used to update the 

customers’ perceptions of sojourn time as well as the way customers estimate the uncertainty 

involved in these perceptions. In Section 2.5 we characterise the customers’ profile according 

to how risk-averse they are and the weight they give to new information when updating their 

perceptions and estimating uncertainty. Section 2.6 discusses the collective behaviour 

observed when customers are risk-neutral and risk-averse. Section 2.7 details the sensitivity 

analysis of the weighted average sojourn time of the system with respect to the parameters 

which determine the customers’ profile. The last section addresses the conclusions and further 

work. 

In Chapter 3 we relax the assumption of exogenous service rate and incorporate the 

service provider’s decisions into the behavioural analysis of the agents involved in queueing 

systems. Section 3.1 gives a brief introduction of this topic. Section 3.2 describes the 

adaptations we have made to the CA model of Chapter 2 in order to consider endogenous 

service rates. In the same section we define the managers’ and the customers’ decision rules. 

Section 3.3 characterises the managers’ and customers’ profiles as a function of the model 

parameters. The next section discusses some typical behavioural patterns of customers and 

managers, and provides an aggregated view of the system when these patterns occur. Then we 

perform some experiments in which we analyse the influence which the different parameters 

have on the performance of the facilities. Finally, we present conclusions and suggestions for 

further work. 

In Chapter 4 we address the laboratory experiment performed to analyse the way human 

subjects make decisions regarding the service capacity of a facility with current and potential 



24        Behavioural Queueing: Cellular Automata and a Laboratory Experiment 

 

customers. Section 4.1 briefly describes the SD model used in this chapter, focusing on the 

adaptations made to the original model developed by van Ackere et al. (2010). Section 4.3 

describes the experimental economics protocol (Friedman and Sunder 1994) used to conduct 

this experiment. In Section 4.4 we discuss the results. We first provide a descriptive analysis 

of the way subjects take their decisions. Next, we test the experimental hypothesis and 

analyse differences between treatments. Finally we present conclusions and provide some 

insights for further work. 

In Chapter 5 we summarise the results of this thesis and provide more general conclusions 

of this thesis. We also discuss the contribution of the thesis to study the behavioural patterns 

in queueing systems and service systems in general. Additionally, we present the limitations 

of the present work. As mentioned before, the appendix contains the papers we have 

published in the course of this research and which are related to this thesis. 
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2 QUEUEING SYSTEMS WITH RISK-AVERSE 
ADAPTIVE CUSTOMERS 

ABSTRACT 

Queueing problems cover a wide gamut of applications that have extensively been addressed in 

various disciplines. However, most research on this subject has been mainly aimed at the optimisation 

of performance measures and the equilibrium analysis of a queueing system. The decision making 

process of the customers of the facility and the impact of their individual choice on queue formation 

have rarely been studied. In this chapter, we tackle this process in dynamic queueing systems with 

deterministic endogenous arrivals. A self-organising queueing system with local interaction and 

locally rational customers is assumed to portray the way customers, who routinely require a service, 

decide which facility to use. We deviate from most of the literature in that we model the customers’ 

decision process by applying adaptive expectations and incorporating the uncertainty involved in 

these expectations. Customers update their expectations based on their own experience and that of 

their neighbours. We use simulation analysis to compare the collective behaviour of risk-neutral and 

risk-averse customers. Risk-neutral customers ignore uncertainty and base their decision only on their 

expected sojourn time, while risk-averse customers account for uncertainty and use it to estimate an 

upper bound of the sojourn times. A one-dimensional cellular automata model is used to explain how 

customers interact in a multichannel service facility and study their collective behaviour. Our results 

indicate that the more risk-averse the customers the longer the transient period the system exhibits. 

Additionally, after this transient period, the system converges more slowly to an almost-stable average 

sojourn time. Systems where customers are either close to risk-neutral or strongly risk-averse perform 

better, in terms of average sojourn time, than those whose customers have an intermediate level of 

risk-aversion. 

KEYWORDS: Queueing problems, cellular automata (CA), adaptive expectations, 

uncertainty. 
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2.1 Introduction 

Queueing problems have been extensively studied since Erlang (1909) published his work on 

telephone traffic problem in 1909. These problems span a wide range of applications, which 

concern several disciplines such as operation research, economics, management and computer 

science, among others. Queueing system applications include network systems, service 

operations, inventory systems and traffic systems, to name a few.  

A queueing system can be described as a process where customers arrive at a facility for 

service and they must wait when such a service is not immediate (Gross and Harris 1998). 

Customers can be humans or objects (e.g. vehicles, data, documents, among others) requiring 

service. In many cases, customers require a service routinely; they must thus decide which 

facility to patronise each period. Some examples of this kind of systems include a person who 

goes weekly to the supermarket, a person who must choose a garage for the inspection of her 

car, and a person who goes monthly to the bank to pay her bills. These decisions often depend 

on customers’ previous experience at the facility.  

Since Erlang (1909), queueing problems have been mainly tackled from an aggregated 

point of view in which researchers are focused on optimising the performance measures of the 

system (e.g. average sojourn time). Most of the early works concerning queueing problems 

were confined to the equilibrium theory (Kendall 1951). This work has been useful to 

improve the performance of many systems, or in other instances to design new processes in 

social and physical systems. However, in many cases this view has also limited our ability to 

explain the behaviour observed in many real queues.  

Koole and Mandelbaum (2002) emphasise the need to include human factors in the 

context of queueing models, particularly in cases such as call centres.  Later, 

Sankaranarayanan et al. (2011) generalise this thought and suggest delving into micro-

dynamics of queueing systems and analysing how the queues are formed. Nevertheless, in the 

80’s, marketing researchers began to develop a new field of study denominated “Psychology 

of queues”. Larson (1987) is a seminal paper in this subject. In this field, researchers attempt 

to understand how customers decide “to queue or not to queue”. More recently marketing 

researchers have shifted their focus toward the study of the influence of the waiting times on 

customer satisfaction, customer loyalty and service quality (Law, et al. 2004; Bielen and 

Demoulin 2007).  
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Other disciplines, such as management science, have focused on building models to study 

customers’ decisions (e.g. Dewan and Mendelson 1990; Rump and Stidham Jr. 1998; van 

Ackere and Larsen 2004; Sankaranarayanan, et al. 2011). In some of these models, 

customers’ decisions are based on customers’ expectation of sojourn time (Zohar, et al. 2002; 

Haxholdt et al. 2003). Other authors model these decisions by incorporating a price as 

mechanism to control the arrival rates (e.g. Naor 1969; Stidham Jr. 1985; Stidham Jr. 1992; 

Dewan and Mendelson 1990). This stream of literature started when Naor (1969) and Yechiali 

(1971) published their seminal papers in which they argue in a quantitative way the insight 

published by W.A. Leeman (1964) and then discussed by T. L. Saaty (1965) and W.A. 

Leeman (1965). They are the first to propose that queues could be reduced by controlling the 

arrival rate. Specifically, they propose that the best way to reduce the queue size is by levying 

tolls upon arrival, i.e. customers must pay a price if they wish to use the facility’s services. 

Most research, which has continued with this stream (i.e. incorporating customers’ 

decisions into the queueing model), considers queueing systems with stochastic arrival and 

service patterns. The resulting models have been studied theoretically in operations research 

and management science by Edelson and Hilderbrand (1975), Stidham Jr. (1985), Dewan and 

Mendelson (1990), van Ackere (1995), Rump and Stidham Jr. (1998), Zohar et al. (2002), 

among others. Hassin and Haviv (2003) widely discuss the literature on equilibrium 

behaviour of customers and servers in stochastic queueing systems. Comparatively, 

deterministic models have not been much discussed. Some models were proposed by Edelson 

(1971), Agnew (1976), Haxholdt et al. (2003), van Ackere and Larsen (2004), and van Ackere 

et al. (2006). 

Haxholdt et al. (2003) and van Ackere et al. (2006), using system dynamics, include 

feedback into their model to look at the return rates of customers to the service facility. van 

Ackere and Larsen (2004) apply a one-dimensional CA model in order to study the formation 

of commuters’ expectations about congestion in a three-road system. Commuters update their 

perceptions using an exponentially weighted average. Then, by comparing these perceptions 

to the most recent experience of their neighbours, commuters pick the best alternative 

regarding the expected travel time.  

Later, Sankaranarayanan et al. (2011) and Delgado et al. (2011a) (see Appendix B) use a 

similar approach to model a multichannel service facility in which customers routinely choose 

a service facility for service. Differing from van Ackere and Larsen (2004), Sankaranarayanan 
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et al. (2011) and Delgado et al. (2011a) assume that customers update their expectations using 

both their own information and that of their neighbours. In this case, a different weight is 

given to the information provided by the neighbours. Delgado et al. (2011a) explain how local 

interactions among customers influence the formation of queues and the different collective 

behaviours patterns, which the system exhibits Sankaranarayanan et al. (2011) delve into the 

state of the art of deterministic models applied to understanding the way customers behave in 

queueing systems and control the arrival rates.  

In this chapter, we propose an extension of the model proposed by Sankaranarayanan et al. 

(2011) and Delgado et al. (2011a). Our work differs from the above papers in the following 

aspects: (i) we use the concept of volatility of forecast errors (Taylor 2004 and 2006) to 

incorporate uncertainty into the formation process of expectations proposed by 

Sankaranarayanan et al. (2011); (ii) we differentiate between risk-neutral and risk-averse 

customers; (iii) we analyse how different levels of risk-aversion may affect the collective 

behaviour of customers; and (iv) we assume that customers give the same weight to their own 

information and that provided by their neighbours, but they apply different weights to 

estimate their expectations regarding sojourn times and their uncertainty. 

Our simulation results indicate that the more risk-averse the customers are, the longer the 

transient period exhibited by the system is. After this transient period, if customers are risk-

averse, the system converges more slowly to an almost-stable average sojourn time. Systems 

where customers are either risk-neutral or strongly risk-averse perform better and are less 

likely to ignore a facility (i.e. never use it again) than those whose customers have an 

intermediate level of risk-aversion. 

The remainder of the chapter is structured as follows. The next section describes the 

system we deal with in this chapter. Section 2.3 introduces the CA model and provides a 

technical description. Then, we present the concept of adaptive expectations and explain how 

we use it to estimate the expected sojourn times and the customers’ uncertainty regarding 

these expectations. Customers use the resultant estimates in order to form their own measure 

of the system performance, which enables them to decide which facility to join each period. 

The fifth section of this chapter characterises the customer types according to their risk-

aversion attitude and the weights they give to their expectations.  Later, we discuss and 

explain the simulation results for a typical case. In Section 2.7, we present a sensitivity 
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analysis with respect to the risk-aversion parameter and the expectation coefficients. The last 

section addresses the conclusions and future work. 

2.2 A Service System 

Consider a fixed population of N interacting and homogenous customers requiring service. 

All customers need service simultaneously and it is compulsory for them to choose one of m 

facilities. This system portrays a captive market in which customers repeatedly need either a 

service or a good and they have several options to obtain it. Examples include food stores, 

post offices, garages and banks, among others. The assumption that customers need service 

simultaneously is a stylised representation of a rush-hour. Thus, a queue will form at each 

facility when the rate of arriving customers exceeds the facility’s service capacity. Queues are 

unobservable at the time of decision making and decisions are irreversible: customers do not 

have any accurate information regarding the queue size or sojourn time when making their 

choice and cannot switch facility after making their choice. Nonetheless, they can form 

perceptions of the sojourn times at their previously chosen facilities based on their experience. 

Additionally, according to the aforementioned attribute of interacting customers, we assume 

they interact with their neighbours and share information about their previous experience. 

Hence, customers update their perceptions of sojourn time for the facilities, which they and 

their best performing neighbours patronised the previous period. The customers’ decision of 

which facility to join therefore depends on their perceptions. 

2.3 The CA Model 

In this chapter the system described above is modelled as a queueing system with endogenous 

arrival rates and exogenous service rates. We assume identical service rates for all facilities, 

while arrivals at each facility depend on the customers’ previous experiences and their 

expectations. Reneging and balking are not allowed. 

We adopt a CA approach (North and Macal 2007; Wolfram 1994) to model the interaction 

between customers, capture their expectations and analyse their collective behaviour. In the 

context of the CA methodology (North and Macal 2007), agents portray customers. They 

interact in a one-dimensional neighbourhood assumed to have the shape of a ring and 
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composed of cells. Each cell is an agent who has exactly K neighbours on each side. For 

instance, when K = 1, agent i has agents i-1 and i+1 as neighbours. The last and the first 

agents located in the ring are special cases. The first agent has the second agent and the last 

agent as neighbours, while the neighbours of the last agent are the penultimate agent and the 

first one. The neighbourhood can depict for example a social network encompassing 

colleagues, friends, people living next-door etc. The facilities represent the states that the cells 

(agents) can take each period. Each period, agents must choose a facility (state) following a 

decision rule based on their most recent experience. We assume smart agents who have the 

ability to remember information and update their memory using new information. The 

updating process of agents’ memory is based on the theory of adaptive expectations (Nerlove 

1958). This theory is also known as exponential smoothing and assumes that agents use the 

most recent information, which they have, to adapt their expectations. This information stems 

from their last experience and that of their best performing neighbour, i.e. the neighbour who 

has experienced the minimum sojourn time in the previous period. Moreover, these 

expectations involve a certain degree of uncertainty which is captured by the variance of the 

estimates. This variance is computed by using the squared errors of the forecasts. As variance 

is unobservable, exponential smoothing is applied to estimate the squared residuals (Taylor 

2006). This method is known as volatility of forecasting errors (e.g. Taylor 2004). 

Technically the CA model works in the following way. Let A be a set of n agents (cells) 

{A1, A2,…, Ai,…, An} and Q the set of m facilities (states) {Q1, Q2,…, Qj,…, Qm } which 

agents can choose (take). Each agent Ai must join exactly one facility Qj each period t. All m 

facilities have the same service rate μ, but different arrival rates (λjt). We define the arrival 

rate as a function of the state of the agents each period, si(t). The agents’ decisions will 

determine their state for each period. Let S denotes the set of states si(t) of n agents in period 

t. This state si(t) is one of the m possible facilities, that is, S⊂ {Q1, Q2,…, Qj,…, Qm}. With 

this in mind, the arrival rate (λjt) for queue j at time t can be written as a function of S, Q, and 

t, given by the following equations:  

𝑥𝑖𝑗(𝑡) = 𝑓�𝑠𝑖,𝑄𝑗, 𝑡� = �
1             if si(t)=Qj
0             otherwise

     (2.1) 

 ∑
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=
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We assume that the state si(t) evolves over time depending on the agent’s expected 

sojourn times, his uncertainty and his risk-aversion. Let us denote the expected sojourn time 

of agent Ai for the facility Qj in period t by Mijt, the corresponding uncertainty by σijt, and the 

risk-aversion factor by R. Mijt and σijt evolve over time, while R is assumed to be a constant. 

Additionally, this parameter is the same for all agents, as implied by the aforementioned 

assumption of homogenous customers. Then, the state si(t) for agent Ai will be determined 

through the following function: 

𝑠𝑖(𝑡 + 1) = 𝐹(𝑀𝑖𝑗𝑡+1,𝜎𝑖𝑗𝑡,𝑅)    (2.3) 

In order to define this function, we incorporate these variables into a measure that enables 

agents to decide their state each period. We call this measure the expected upper bound of the 

sojourn time and denote it by Uijt. By upper bound, we mean the maximum sojourn time, 

which agents estimate they may experience at the facilities. This upper bound is estimated by 

using the agents’ expected sojourn time (Mijt) and their uncertainty and risk-aversion level. 

Finally, assuming that agents are rational, in the sense that they always choose whatever is 

most convenient for them, they will decide to patronise the facility with the lowest upper 

bound. Before delving into the function that determines the expected upper bound of sojourn 

time (Uijt), we describe how agents form their expectations and estimate their uncertainty by 

applying an adaptive expectation model. 

2.4 The Adaptive Expectations Model 

Agents update their expected sojourn time Mijt and their uncertainty σijt by applying adaptive 

expectations (Nerlove 1958), also called adaptive or exponential forecasting (Theil and Wage 

1964; Gardner Jr. 2006). This is a mathematical-statistical method of forecasting commonly 

applied to financial market and economic data, but it can be used with any discrete set of 

repeated measurements (Gardner Jr. 2006). This technique is based on the weighted average 

of two sources of evidence: the latest evidence (the most recent observation), and the value 

computed one period before (Theil and Wage 1964). 

2.4.1 Estimating the Expected Sojourn Times 

Considering the assumption of captive customers, the latest evidence they have to estimate 

their expected sojourn time is given by their most recent experience in the system. This 
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experience is denoted by Wijt. Thus, agent Ai, who uses facility Qj in period t, updates his 

expected sojourn time, Mijt+1, for this facility, using Wijt. Additionally, according to the CA 

model, each agent interacts with two neighbours, who provide him with information regarding 

their latest experience. Then, agent Ai uses this information to update his expectation with 

regard to the facility chosen by his quickest neighbour. With this information in mind, agents 

update their expected sojourn time for their chosen facility and that of their best performing 

neighbour using an exponentially weighted average with weight α, which is assumed to be 

constant. This weight is also known as the coefficient of expectations (Nerlove 1958) or 

smoothing parameter (Gardner Jr. 2006). Given the assumption of homogenous agents, α is 

the same for all agents. So, the updating process of the memory of agent Mijt+1 can be 

expressed by: 

𝑀𝑖𝑗𝑡+1 = 𝛼 ∗ 𝑀𝑖𝑗𝑡 + (1 − 𝛼) ∗ 𝑊𝑖𝑗𝑡    (2.4) 

where Mijt is the previous value of the memory. See Delgado et al. (2011a) for more 

technical details about the estimation of  Mijt. 

2.4.2 Estimating the Uncertainty Measure for the Agents’ Expected Sojourn Times 

The measure of uncertainty, σijt, is modelled using the error in the estimation of Mijt. 

According to Newbold (1988), if Mijt is a smoothing estimation of Wijt, the error in such an 

estimate will be: 

𝑒𝑖𝑗𝑡 = 𝑊𝑖𝑗𝑡 − 𝑀𝑖𝑗𝑡−1     (2.5) 

and the cumulative squared error at time t can be estimated by the sum of the squared 

errors: 

∑∑
=

−
=

−==
tsim

2t

2
1ijtijt

tsim

2t

2
ijtij MWeSS )(     (2.6) 

where tsim is the simulation time. However, in this way, all the observations are given the 

same weight; a more realistic approach is to give a larger weight to more recent errors. So in 

this context, the uncertainty, σijt, may be estimated using the concept of volatility forecasting 

which is calculated by means of the smoothing variance (e.g. Taylor 2006). As the variance is 

unobservable, we can apply exponential smoothing in order to estimate this variance using the 
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squared residuals (Taylor 2004). Thus, the smoothed variance, 𝜎𝑖𝑗𝑡+12 , will be expressed as a 

weighted average of the previous estimate, 𝜎𝑖𝑗𝑡2 ,, and the new observation of the squared error 
𝑒𝑖𝑗𝑡2 ,. Thus, agents update the variance, 𝜎𝑖𝑗𝑡2 ,, as follows: 

𝜎𝑖𝑗𝑡+12 = 𝛾 ∗ 𝜎𝑖𝑗𝑡2 + (1 − 𝛾) ∗ (𝑊𝑖𝑗𝑡 − 𝑀𝑖𝑗𝑡−1)2   (2.7) 

where γ  is the smoothing parameter (Taylor 2004). The volatility is then measured by the 

standard deviation σijt. 

2.4.3 Estimating the Expected Upper Bound of the Sojourn Time 

Once the agents compute their expected sojourn time and the uncertainty of this estimate, they 

consider these values to assess the expected upper bound of the sojourn time, i.e. the estimate 

of the maximum sojourn time they think they could experience given their expectations and 

how risk-averse they are. Given the aforementioned “risk-aversion factor”, R, which is 

identical for all agents, the expected upper bound of the sojourn time, Uijt, of agent Ai at 

facility Qj in period t can be written as follows: 

𝑈𝑖𝑗𝑡 = 𝑀𝑖𝑗𝑡 + 𝑅 ∗ 𝜎𝑖𝑗𝑡     (2.8) 

The agents’ uncertainty, σijt, is assumed to be the volatility of their expectations and the 

risk-aversion factor, R, may be considered as how sensitive agents are to this volatility. The 

larger R is, the more risk-averse the agents are.  

In order to decide which facility to join, agents must update Uijt each period.  According to 

the decision rule explained in the CA Model, they always patronise the facility with the 

lowest value of Uijt, i.e. agents update their state by choosing the queue with the lowest 

expected upper bound of the sojourn time. In the rare case where two or more queues have the 

same minimal expected upper bound, agents choose between these facilities, giving first 

preference to their previously chosen queue and second choice to the one previously used by 

their best performing neighbour. 

2.4.4 Average Sojourn Time in a Transient Period 

In this chapter, we consider a queueing system whose arrival rates may temporarily exceed 

the service rates. Hence, we need a measure for the average sojourn time that enables us to 

study the system behaviour in a transient state, rather than in steady state 
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This measure is proposed and explained in Sankaranarayanan et al. (2011). They consider 

a congestion measure which satisfies the well-known Little’s Law and the steady state 

equations (Gross and Harris 1998), while remaining well-defined when ρ ≥ 1 (transient 

analysis). This measure is: 

µµ

λ 1W 2
jt

jt +=      (2.9) 

where µ  is the service rate for all facilities and λ jt  the number of agents arriving at Qj at 

time t. For more details about the formulation of this measure, see Sankaranarayanan et al. 

(2011) and Delgado et al. (2011a). We adopt this measure throughout this chapter. 

2.5 Characterisation of Customers 

Customers (referred to as agents in this chapter according to the terminology of CA models) 

can be classified according to the values of their parameters. We characterise the different 

customer types as follows: 

• Customers are considered risk-neutral when R = 0. We can also call them customers 

who ignore the uncertainty. Otherwise, if R > 0, we say that customers account for 

uncertainty and they therefore have a certain level of risk-aversion. We assume that 

customers have a low risk-aversion when 0 < R <0.4. For 0.4 ≤ R ≤ 1.2, we say that 

their risk-aversion is intermediate, while for R>1.2, we say that customers are very 

risk-averse.  

• Depending on the coefficients of expectations (α and γ), customers can be called 

conservative or reactive regarding the new information: 

o For values of α  > 0.5, we shall say that customers are conservative with regard to 

the expected sojourn times, i.e. they give little weight to the new information 

regarding their or their neighbours’ most recent experience. Alternatively, if 

α <0.5, we shall call them reactive customers regarding the expected sojourn times, 

since they attach more importance to the new information than to the past. 

o A similar reasoning applies to γ: Customers are considered to be either conservative 

or reactive regarding the use of new information to estimate the variability of their 

expectations when, respectively, γ > 0.5 or γ < 0.5. 
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2.6 Simulation Results and Discussion 

The agents of a CA model are endowed with memory (Wolfram 1994). This feature enables 

us to use this framework to investigate the problem we address here. We model the agents’ 

memory using adaptive expectations as described above. As the system behaviour depends on 

the initial values of memory assigned to the agents, i.e. the evolution of the system is path 

dependent, our model cannot be solved analytically. Hence, we use simulation to understand 

the system behaviour. For its implementation, we use MATLAB 7.9, a numerical computing 

environment used in engineering and science (The MathWorks 2009)  

The CA model is configured with 120 agents (i.e. the number of cells n in the one-

dimensional discrete lattice) and 3 facilities (i.e. the number of states m each cell may take). 

As we simulate a system with just three facilities, considering a neighbourhood size larger 

than 1 would be to assume that customers could often have full information. We therefore use 

a neighbourhood size (K) equal to 1. The service rate is the same for all facilities and equals 5 

agents per unit of time. Each agent is allocated an initial memory for the expected sojourn 

time for each facility. These memories are distributed randomly around the optimal average 

sojourn time. This setup of the system is appropriate to observe the phenomena with which 

we are concerned. 

In order to study the impact of including uncertainty in the agents’ decisions, we divide 

the simulation results in three parts: the first part illustrates the simulation of a typical 

example in which we compare the resulting collective behaviour of customers when they 

include or ignore uncertainty. We refer to this example as the base case. Its results are 

reported in Figure 2.1 to Figure 2.5. We then study the distribution of average sojourn time 

for different values of the risk-aversion factor, R, while keeping the smoothing parameters 

constant. This distribution is illustrated in Figure 2.6. Next, we perform a sensitivity analysis 

with regard to the smoothing parameters α and γ. Figure 2.7 shows the outcomes of this 

sensitivity analysis. 

Table 2.1 summarises the parameters used to configure the system for the base case. 

Numerous simulations of the model enable us to say that 100 periods is enough time to 

observe and analyse a typical example of how the system behaves during and after the 

transient period. Thus, one run of the model in this first part of the analysis is carried out over 
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100 simulation periods. This setup is used to simulate one case where customers include 

uncertainty (R = 0.5) and another one where they ignore it (R = 0). 

Parameter Value Description 

M 3 Number of service facilities 

N 120 Population size  

µ 5 Service rate  

α 0.3 Weight to memory when updating  the expected 
sojourn time 

γ 0.7 Weight to memory when updating the estimated 
variance of the expected sojourn time 

Tsim 100 Simulation time 

Table 2.1 Parameter values used for the simulation run. 

Figure 2.1 and Figure 2.2 show the evolution of the agents' choices of service facility over 

100 periods for the same initial values of expected sojourn times, but assuming different risk 

attitudes. Figure 2.1 involves risk-neutral agents (R = 0, i.e. uncertainty ignored), while risk-

averse agents (R = 0.5, i.e. uncertainty included) are concerned in Figure 2.2. The horizontal 

axis depicts the time, while the 120 agents are represented on the vertical axis from top to 

bottom. Colours indicate the state of each agent each period. Black indicates facility 1, grey 

facility 2 and white facility 3. 

Both figures exhibit an initial transient period. This period is longer when agents consider 

uncertainty (R = 0.5) in their decisions, around 34 periods (see Figure 2.2) compared to the 

case where uncertainty is ignored (R = 0), around 15 periods (see Figure 2.1). This result is 

undesirable for risk-averse customers who would prefer a system that stabilises quickly. The 

stabilisation of the system depends on how fast the elements considered by the customers to 

choose a facility converge to a target. Risk-averse customers base their decision on the 

expected upper bound of sojourn time (Uijt), which is formed by their expected sojourn time 

(Mijt) and an estimate of their uncertainty, while risk-neutral customers only consider the 

expected sojourn time. The target for the expected sojourn time (Mijt) is the average sojourn 

time at each facility (Wijt) (see Equation 2.4), while the target for the estimated uncertainty 

(Mijt - Wijt) is zero. Given that the estimate of uncertainty depends on the expected sojourn 

time, the former converges slower than the latter. As a system with risk-averse customers 

requires that both elements converge to the respective targets in order to stabilise, this process 
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takes more time than for a system with risk-neutral customers, which only requires the 

convergence of the customers’ expected sojourn time. Consequently, due to their cautious 

behaviour, risk-averse customers achieve the opposite of what they wish. 

  
 

Figure 2.1 Spatial-temporal behavioural evolution of risk-neutral agents’ choice of service facility 
with α= 0.3; γ = 0.7 and R = 0 (uncertainty ignored) 

 
 

Figure 2.2 Spatial-temporal behavioural evolution of risk-averse agents’ choice of service facility 
with α= 0.3; γ = 0.7 and R = 0.5 (uncertainty included) 

       
Time

C
us

to
m

er
s

10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

Facility 1 Facility 2 Facility 3

Time

C
us

to
m

er
s

10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

       Facility 1 Facility 2 Facility 3



38        Behavioural Queueing: Cellular Automata and a Laboratory Experiment 

 

The length of the transient period also varies depending on the randomly allocated initial 

expected sojourn times (Delgado et al. 2011a). During this period, agents explore all facilities 

in order to capture information and try to learn from the system behaviour. The weight they 

give to this information leads to herding behaviour: agents tend to imitate their best 

performing neighbours and at the end of the transient period one or two facilities tend to be 

crowded, as shown in Figure 2.1 (between periods 9 and 15) and Figure 2.2 (between periods 

27 and 34). As more weight is given to new information than to memory (α < 0.5), agents 

react to the bad experiences by changing facility at the next period. For instance, in Figure 2.1 

facility 1 is crowded at time 10, implying that no agents choose this facility in the next two 

periods. A similar situation occurs in Figure 2.2 at time 30 when all agents join facility 3 

resulting in that this facility not being used for the next three periods. 

After the transient period, a collective behaviour pattern emerges in Figure 2.1 and Figure 

2.2. We explain this pattern in two stages. The first stage portrays a diffusion phenomenon in 

which some of the agents, who previously experienced a very bad experience at a facility, 

start to go back to this one. Due to the sharing of information between neighbours, the number 

of returning customers increases gradually.  

Figure 2.1 and Figure 2.2 illustrate two different situations from which this phenomenon 

can stem as discussed below. In the second stage, stable groups of customers loyal to a facility 

emerge. In Figure 2.1, which concerns risk-neutral agents (R = 0), the diffusion phenomenon 

involves facility 2 (grey) and appears in period 16, when two agents (68 and 71) decide to try 

once again this facility after a bad experience at facility 1 (black). In that period, these two 

agents are the only ones to join facility 2, since all other agents consider this facility as a very 

poor choice. As a result, these two agents experience an extremely low sojourn time, the news 

spreads and other agents return. The cause of this phenomenon lies in period 14, when facility 

2 was the most patronised. However, four agents did not use that facility in that period 

(including agents 68 and 71). Hence, the bad performance at this facility in period 14 did not 

affect their memory, while that of the other agents increased a lot. At time 15 these four 

agents stay at facility 1, which is the most visited. Consequently, the expectations of agents 68 

and 71 regarding this facility soar and these agents decide to move to facility 2 in period 16, 

where they have a good experience as mentioned above. Over the next periods, they share this 

experience with their neighbours, who start coming back to facility 2. Then, the number of 

agents patronising this facility gradually increases and a group of loyal agents to this facility 
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starts to emerge. This phenomenon persists until some agents on the spatial borders of the 

group are disappointed and decide to try the facility which their best performing neighbour 

used one period early. On the lower border, this occurs in period 40 when agent 88 is the last 

one to join facility 2. On the other side, the diffusion continues, but more slowly, until period 

66. Agent 47 is the last one to join this facility. After period 42, the last agents joining facility 

2 continue to alternate irregularly between this facility and that of their best performing 

neighbour.  

As for Figure 2.2 which involves risk-averse agents (R = 0.5), the diffusion phenomenon 

arises in period 34 and is owed to one sole agent (26), who stays at facility 1 (black) despite 

his bad experience there one period earlier (period 33). The remaining agents consider this 

facility as a bad choice and they therefore move to facilities 2 (grey) and 3 (white). Thus, 

agent 26 experiences the lowest sojourn time in the system in period 34. This event 

considerably improves his expectation regarding this facility. Moreover, his neighbours hear 

about this experience and decide to try again this facility in the next period (35). Later, the 

information spreads to further neighbours resulting in more agents coming back to this facility 

bit by bit.  

The collective pattern then continues with small groups of agents tending to stay at the 

same facility over time, resulting in a certain degree of stability for the system. We call these 

agents loyal. However, the agents located on the borders between these groups keep shifting 

between two facilities in a stable way. For example, in Figure 2.1, agents 47 and 88 switch 

between facilities 2 (grey) and 3 (white) following the sequence {2-3-3-3-2-3-3-3-2…}, while 

agents 48 and 87 move between the same facilities with the sequence {3-2-2-2-3-2-2-2-3…}. 

Comparatively, this form of stability cannot be identified in figure 2, since at the end of the 

simulation period (100), no regular pattern is yet reached. Such a system requires more time 

to stabilise. 

In Figure 2.1, agent 56 illustrates an odd case in period 64: This agent decides to leave 

facility 2 (grey) in period 64, after having patronised it for a long period, because of his 

expectation regarding this facility exceeds that of facility 3 (white). This occurs because after 

the transient period, this agent patronises for some time facility 3 resulting in his expectation 

regarding this facility improving significantly (see Figure 2.3). Additionally, when he leaves 

this facility in period 30, this is the last time he updates his memory regarding this facility 

owing to his quickest neighbour never using it again either. Thus, his expectation regarding 
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facility 3 remains low and close to that of facility 2, as shown in Figure 2.3. Hence, when the 

number of agents using facility 2 increases in period 63, the expectation of agent 56 regarding 

this facility exceeds that of facility 3. He decides therefore to try facility 3 in period 64. 

However, he experiences a bad sojourn time (note the increase of his expected sojourn time 

for facility 3), which encourages him to come back to facility 2 and stay there for the 

remainder of the simulation. 

 

Figure 2.3 Expected sojourn times of agent 56 when he ignores uncertainty (R = 0), i.e. a risk-
neutral agent. 

Figure 2.4 and Figure 2.5 show the evolution of the weighted average sojourn time of the 

system and the minimum and maximum sojourn times experienced by customers. the 

weighted average sojourn time is computed using the following equation: 
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where λjt is the number of customers patronising facility j at time t and Wjt is the average 

sojourn time these customers experience at this time at this facility.  

In Figure 2.4 and Figure 2.5 we can observe that in those periods when most agents 

patronise the same facility the maximum, minimum and average sojourn times experienced by 

the agents reach extreme values. For instance, in the example where agents ignore uncertainty 
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(Figure 2.1 and Figure 2.4) most agents choose facility 3 in period 13, two agents facility 1 

and no agents facility 2. Hence, the two agents at facility 1 experience the lowest sojourn time 

(W1,13 = 0.28), while the agents at facility 3 experience a very high sojourn time (W3,13 = 

4.92). A similar case occurs in Figure 2.2 and Figure 2.5, in period 34 when a single agent 

joins facility 1 and experience the lowest sojourn time (W1,34 = 0.24).  

 

Figure 2.4 Average, maximum and minimum sojourn time for a system configured with risk-
neutral agents (R =0) and coefficients of expectations: α= 0.3; γ = 0.7 

 

Figure 2.5 Average, maximum and minimum sojourn time for a system configured with risk-
averse agents (R =0.5) and coefficients of expectations: α= 0.3; γ = 0.7 
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Figure 2.4 and Figure 2.5 also illustrate the general observation that a system in which 

agents are risk-neutral converges faster to an almost-stable average sojourn time than a 

system with risk-averse agents.  

The discussion provided so far has been based on two examples, but the patterns of 

behaviour we discussed are typical of what we have observed over several thousands of 

simulations. We have also simulated the cases with agents who are even more risk-averse. 

The observed behaviour is similar, but with a longer transient period: stable patterns start to 

emerge after 500 or more periods. 

Figure 2.6 shows the distributions of the weighted average sojourn time for 1,000 

simulations of a system configured according to the parameter values of Table 2.1 with  R 

equals to 0 (uncertainty ignored), 0.5 (an intermediate degree of risk-aversion) and 1.5 (very 

high risk-aversion). Each simulation was run for 1500 periods with different initial expected 

sojourn time allocated to the agents randomly. The weighted average sojourn time was 

calculated based on the last 500 periods of each run. 

Figure 2.6 illustrates the dependence of the sojourn time on the allocated initial expected 

sojourn times and enables us to identify the probability of a facility being ignored by the 

agents in steady state. Figure 2.6 a) depicts the distribution of weighted average sojourn times 

for the system where agents ignore uncertainty, while in Figure 2.6 b) and 2.6 c) agents 

incorporate uncertainty into their decisions. The first peak of each distribution represents the 

proportion of cases where the three facilities are used in steady state. When R = 0, around 

81% of the cases reach a weighted average sojourn time in steady-state between 1.80 and 1.90 

time units, compared to 57% of the cases for R = 0.5 and 94% for R = 1.5. The remaining 

cases (19% for R = 0, 43% for R = 0.5 and 6% for R = 1.5) fall in the interval [2.6, 2.8]. In 

these cases one facility is ignored when the system has reached a steady state, i.e. all the 

agents are clustered in only 2 of the 3 facilities. 

 Given the previous analysis, we can conclude that the more risk-averse the customers, the 

longer the transient period the system exhibits. Moreover, Figure 2.6 shows that there is a 

non-monotonic relationship between the degree of risk-aversion and system performance; 

customers with an intermediate degree of risk-aversion typically are more likely to ignore a 

facility than those who are very risk-averse or risk-neutral. Consequently, very risk-averse 

customers and risk-neutral customers achieve lower average sojourn times. 
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Figure 2.6 Distributions of weighted average sojourn time for 1,000 simulation with different 
initial conditions for α= 0.3; γ = 0.7 

2.7 Sensitivity Analysis 

In this section, we present a sensitivity analysis with respect to the risk-aversion parameter 

(R) and the expectation coefficients (α, γ).The model is configured with the same settings as 
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different initial expected sojourn time (Mij0) allocated to the agents randomly. This allows us 

to identify that after 1,000 periods the system starts to exhibit a certain stability, i.e. the 
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time is easily identified and characterised. Hence, we run the model for 1500 periods and the 

weighted average sojourn time is computed for the last 500 periods.  

We adopt the definitions of customer types given in Section 2.5. Figure 2.7 illustrates how 

the weighted average sojourn time varies depending on the value of these parameters. Each 

graph in Figure 2.7 shows, for a given expectation coefficient of the expected sojourn time 

(α), the weighted average sojourn time of the system as a function of the expectation 

coefficient of the variance (γ) and the risk-aversion parameter (R). The curves in each graph 

represent the weighted average sojourn time for different values of the expectation coefficient 

of uncertainty (γ) depending on the risk-aversion level of customers (R, horizontal axis). 

These results are based on 1,000 simulations of the model for each combination of the 

parameters α, γ, and R. We simulate the model for each combination of parameters using the 

same random seeds. 

We have mentioned above that the weighted average sojourn time is higher than 1.8 and 

that those values falling in the interval [2.6, 2.8] indicate that customers have ignored a 

facility. Thus, the higher the weighted average sojourn times exhibited in figure 2.7, the 

higher the probability that in steady-state a facility is being ignored. 

A facility j is ignored when for all customers the estimated upper bound of the sojourn 

time (Uijt) at this facility is much higher than that of the other two facilities. When this occurs, 

customers will not receive new information to update Uijt over the next periods. Moreover, 

when the customers’ estimated upper bound of sojourn time for at least one of the other two 

facilities is close to the target (i.e. the average sojourn time), the facility currently being 

ignored will never be used again. Consequently, customers will either stay at one of the two 

remaining facilities or alternate between these.  

The first graph of Figure 2.7 (α = 0.1) illustrates the case where customers give 

significantly more weight to new information than to the past when updating their 

expectations of sojourn times. In this case, customers with a very low level of risk-aversion 

(i.e. R close to 0) perform poorly, i.e. the system reaches high average sojourn times. As α is 

very small, the expected average sojourn time (i.e. the memory Mijt) is strongly affected by 

new information. Thus, extreme experiences at a facility (i.e. very high or very low sojourn 

times) will significantly impact the customers’ expected sojourn time as well as the squared 

error of this expectation. However, since R is also very small, whatever the value of γ, 
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uncertainty plays a negligible role when estimating the upper bound of sojourn time. 

Consequently, when customers experience extreme sojourn times, their expected upper bound 

for the next period will be well above the average sojourn time and therefore the probability 

of ignoring a facility increases.  

 

Figure 2.7 The weighted average sojourn time of the system as a function of the coefficients of 
expectations (α , γ) and the risk-aversion parameter (R). 

An extreme experience, whether positive or negative, will have a strong impact on the 

expected sojourn time: a decrease in case of a positive experience, and an increase in case of a 

negative experience. But, in both instances, the estimate of the uncertainty will increase as the 

experienced value will be very different from the customer's expectation, thus significantly 
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increasing the second component of the estimate of the upper bound given the large value of 

R. Thus, in the case of a positive experience, the decrease in the estimate of the expected 

sojourn time will be partially, if not fully, offset by the increase in the uncertainty component 

of the upper bound. On the contrary, in the case of a negative experience, the increase in the 

uncertainty will reinforce the increase in the expected sojourn time when estimating the upper 

bound. Consequently, larger values of R lead to larger values of the estimated upper bound, 

implying that customers will be more inclined to test other facilities, thus increasing the 

length of the transition period.  

As α (i.e. the expectation coefficient to update the expected sojourn time) increases, very 

risk-averse customers tend to perform increasingly worse (i.e. higher average sojourn times), 

while risk-neutral customers do better. Note also that, whatever the value of γ , the value of R 

for which customers are most likely to ignore a facility (i.e. very high weighted average 

sojourn times), increases in α. However, this does not imply that when α is very high, very 

risk-averse customers performs very poorly. On the contrary, we can observe in Figure 2.7 

that when customers are very conservative (α = 0.9) with regard to their expected sojourn 

time and less conservative with regard to the variance (γ  < 0.9), the average sojourn time 

starts to decrease in R once this parameter exceeds a certain threshold. 

Customers who are very conservative regarding both the expected sojourn time and the 

variance (α ≥ 0.7 and γ ≥ 0.9) are a special case. Note that in these situations, the relationship 

between R and the system performance is monotonic: the more risk-averse the customers, the 

more likely they are to achieve higher average sojourn times and to ignore a facility. Given 

that α and γ are high, the new information does not matter very much. Thus, extreme 

experiences at a facility (i.e. very high or very low sojourn times) have a very weak impact on 

both the customers’ expected average sojourn time (i.e. the memory) and their estimate of the 

variance. Hence, as the risk-aversion level (R) increases, it plays a more important role when 

estimating the expected upper-bound than the other two parameters. Moreover, when R is 

very high, this parameter dominates, i.e. the estimated upper bound of the sojourn time is 

barely affected by the expected sojourn time. Thus, the estimated upper bound of the sojourn 

time increases and tends to be well above the average sojourn time. As the weight given to the 

new information is very small, the expected upper bound will converge very slowly to the 

average sojourn time. Consequently the probability of ignoring a facility increases and the 
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system achieves, on average, higher weighted average sojourn times than when customers 

have a lower risk-aversion level. 

Regarding the other combinations of parameters α and γ, the relationship between R and 

the system performance is non-monotonic, as shown in Figures 2.6 and 2.7. For instance, 

customers who update their perception of the variance more quickly (γ = 0.1) systematically 

achieve the highest average sojourn times (i.e. the peak of the pink lines in Figure 2.7) when 

R equals α. In such situations, customers are more likely to ignore a facility forever. Note that 

when R exceeds 1 (the maximum value which α can take), the weighted average sojourn time 

decreases in R. The analysis of this non-monotonic relationship is very complex and would 

require studying in more detail the interaction between the three parameters (α, γ and R). 

According to Figure 2.7, we can describe the performance of customers depending of the 

weight they give to their memory (α). For α ≤ 0.3 (i.e. reactive customers according to the 

customer types of Section 4), very risk-averse customers (R > 1.2) perform better than risk-

neutral customers do (R =0); while for α ≥ 5 (i.e. conservative customers), risk-neutral 

customers do better than risk-averse customers (R > 0). In the extreme case where customers 

are very conservative regarding their expectations of sojourn time (α = 0.9) the average 

sojourn time achieved by customers with low risk-aversion is close to the Nash Equilibrium, 

which is equal to 1.8 periods. The system achieves such an equilibrium only when each 

period an equal number of customers patronise each of the three facilities. The Nash 

equilibrium is the optimal behaviour the system could achieve. However, the best 

performance which the system achieves yields a sojourn time a little higher than the Nash 

equilibrium. This performance occurs when the system is set up with customers characterised 

as: 

• Very conservative when updating their expectations of sojourn time (i.e. α = 0.9),  

• Rather conservative when updating their expectations of variance (i.e. γ ≥ 0.5), and  

• With lower risk-aversion levels (i.e. 0.1 ≤ R ≤ 0.3). 

Next, let us consider the impact of the coefficient of expectations to update the estimate of 

the variance (γ). Conservative customers (γ high) with an intermediate level of risk-aversion 

perform well as long as the parameter α remains above 0.3. This is particularly the case when 

the parameters α and γ are very high (i.e. α and γ = 0.9, which means that customers are 

reluctant to consider new information to update their expectations). Very risk-averse 
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customers experience, on average, lower sojourn times when they consider the new 

information as very important (γ < 0.5) to update the variance, except for the cases where they 

are very conservative regarding their expectations of sojourn time (α = 0.9). The lower γ, the 

spikier the behaviour of the average sojourn time is as a function of risk-aversion (R). That 

means, the average sojourn time is more sensitive to small changes. 

2.8 Conclusions and Future Work 

We have modelled a service system with interacting customers who must decide each period 

which facility to join for service. For this system, we have studied the impact of accounting or 

not for uncertainty in the customers’ decisions on the collective behaviour of customers and 

on the weighted average sojourn time of the system. A one-dimensional CA model has been 

used to describe how customers interact with their neighbours and share information 

regarding their experiences. Risk-neutral customers base their decision on the expected 

sojourn time (i.e. they ignore uncertainty), while risk-averse customers estimate an upper 

bound for the different sojourn times. Risk-averse customers use their experience and that of 

their neighbours to compute this upper bound, by using their expected sojourn times, their 

estimate of the uncertainty concerning this expectation and a risk-aversion parameter. They 

estimate their expected sojourn times and their uncertainty by applying adaptive expectations.  

The model has been simulated for different combinations of parameters that characterise 

the customer types. These simulations show that the more risk-averse the customers, the 

longer the transient period exhibited by the system and the slower the convergence to an 

almost-stable weighted average sojourn time. This outcome is undesirable for risk-averse 

customers who would prefer a system that stabilises quickly, but occurs because the more 

risk-averse customers are, the slower the estimated upper bound the sojourn time converges to 

the average sojourn time. 

Very risk-averse and risk-neutral customers are less likely to permanently ignore (i.e. 

never use it again) a facility in the long run than those who have an intermediate degree of 

risk-aversion. Permanently ignoring a facility is unrealistic if it remains in operation. In such a 

case, sooner or later a customer will return, whether by accident (random choice) or by 

curiosity (he has not been there for a long time) and experience a very low sojourn time. He 
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will share this information with his neighbours, thus starting a diffusion phenomenon through 

which the number of returning customers will increase gradually. 

Systems where customers are either close to risk-neutral or strongly risk-averse perform 

better than those who have an intermediate level of risk aversion. Very risk-averse customers 

experience low sojourn times (i.e. good performance) when they give significant weight to the 

most recent experience to update their memory regarding expected sojourn time (i.e. α is 

small). Moreover, they achieve their best performance when they update their perception of 

the variance more slowly. If these very risk-averse customers are reluctant to take into 

account new information to update their expectations of sojourn time (α large), they will 

experience higher sojourn times. Risk-neutral customers and those with low risk-aversion 

achieve their best performance when they give little weight to the most recent experience 

when updating their expected sojourn times. 

As far as customers with an intermediate risk-aversion level are concerned, they perform 

better when they use either low weights to update their two expectations (i.e. expected sojourn 

time (α) and the variance (γ)) or high to both.  

The optimal choice of updating parameters depends on the customers' risk attitude. 

Consequently, future research will focus on studying the impact of the different behavioural 

parameters (α, γ, R). This will include allowing for different levels of customers’ reactivity 

depending on the source of the information, i.e. giving different weights to own experience 

and information received from neighbours in the memory updating processes (expected 

sojourn times and variance). The next step will be to assume heterogeneous customers. In 

particular, we will consider customers with different degrees of risk-aversion (R) and/or 

different levels of reactivity (α, γ). Another interesting aspect would be to focus on the service 

capacity. For example, assessing the collective behaviour when the facilities have different 

service capacity or, more interestingly, assuming that managers are able to adjust the service 

capacity of the facilities depending on the customers’ behaviour (i.e. endogenous service 

rates). 
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3 QUEUEING SYSTEMS WITH INTERACTING 
CUSTOMERS AND SERVICE PROVIDERS  

ABSTRACT 

We address a service facility problem with reactive customers and managers. This problem is 

modelled as a deterministic queueing system in which customers must routinely choose a facility for 

service and managers are able to adjust the service capacity. Customers cannot observe queues before 

choosing a facility. However, they interact with their neighbours and share information regarding 

their previous experience. Both managers and customers base their decisions on their perceptions 

about the system. They are endowed with computational memory to update their perceptions using an 

adaptive expectations model. Customers use their previous experience and that of their neighbours to 

update their perceptions about the average sojourn time, while managers form their perceptions based 

on the queue length.  We use cellular automata to model the interaction between customers and 

managers. We perform a simulation to assess the way the customers’ and managers’ decisions evolve 

and affect the system behaviour. Our results show that the system we study exhibits a certain degree of 

path-dependence. The main conclusion is that the more conservative managers tend to achieve a 

larger market share. 

KEYWORDS: Queueing problems, endogenous service and arrival rates, cellular automata 

(CA), adaptive expectations, path-dependence. 
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3.1 Introduction 

The preceding chapter addressed the problem of a service facility system in which customers 

face the situation each period of having to choose between m facilities for service. For 

instances, car owners who annually or biannually (depending on the country) must choose a 

garage for emission tests, students or employees who daily look for a restaurant for lunch, and 

so forth. The model built in the previous chapter assumed that all facilities had the same 

service capacity which did not change over time, i.e. exogenous service rates. Relaxing this 

assumption by enabling managers to make decisions regarding the facilities’ service capacity, 

we attempt to go onwards in studying the behavioural aspects of queueing problems with 

repeat customers.  In many real-life service systems, managers are able to adjust their service 

capacity depending on the customer behaviour. They look to retain their current customers 

and attract new ones to their facilities in order to increase their profits. The new customers can 

either be customers currently patronising another facility or potential customers who wish to 

enter the system (e.g. new car owners and new students). In this chapter, we focus only on 

existing customers, while new potential customers will be tackled in the next chapter.   

As managers value their customers because they increase the value of the firm customers 

value their time. “Time is money”, such as the adage says. Whatever the service customers 

require, waiting for service represents a waste of time for them which affects their utility. This 

impact is even stronger when customers repeatedly patronise a facility for service. When 

customers perceive that their utility is being affected, they look for another service provider 

who maximises their utility. The complexity of the relationship between managers and 

customers increases in real life when many service facilities compete to render a same service. 

In this case, the managers’ actions will affect their future decisions, those of the customers as 

well as those of the rival managers.  

A very broad range of studies has addressed the behaviour of customers and managers in 

queueing problems. Nevertheless, this literature is scattered and not well-organised. The 

literature related to customer behaviour has been broadly discussed in the previous chapter 

and in the introduction of this thesis. The research on customer behaviour in queueing 

systems has been mainly tackled by marketing researchers, who study the relationships 

among waiting times, customer satisfaction and service quality in service facilities (Davis and 

Heineke 1998; Hui and Tse 1996; Taylor 1994). These studies attempt to understand the 

influence of waiting time on customer satisfaction, customer loyalty and service quality 
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(Bielen and Demoulin 2007; Law, et al. 2004). Their aim is to endow managers with 

information about customers’ attitudes to enable them to redesign their service facility 

accordingly. For a review of the literature, see in Bielen and Demoulin (2007) and Gallay 

(2010). 

Concerning the managers’ decisions, most studies in the literature have focused on 

analysing policies of optimal pricing and capacity decisions to control problems associated 

with congestion in service facility systems. P. Naor (1969) is the seminal paper on this 

subject. He formalised the insight originally formulated by W. A. Leeman (1964) and then 

discussed by T. L. Saaty (1965) and W. A. Leeman (1965). These authors suggest using 

pricing to help reduce queues in many service systems. Naor’s model was subsequently 

generalised by Yechiali (1971), Edelson (1971), Edelson and Hilderbrand (1975), Stidham Jr. 

(1985, 1992), Mendelson and Whang (1990), Dewan and Mendelson (1990); van Ackere 

(1995), among others. More recently, Sinha, et al. (2010) applied an optimal pricing scheme 

of surplus capacity to control the joint problem of existing and potential customers who are 

differentiated according to a pre-specified service quality level.  

Although some managers’ strategies effectively consider either the demand or the supply 

perspective when adjusting their service capacity, optimal strategies should incorporate the 

perspective of the two conflicting parts of the system (Pullman and Thompson 2002). Our 

research is motivated by the logic behind this assertion and the complexity of the interaction 

between the decisions of customers and managers in service facility systems.  

Consequently, our modelling approach considers a service facility system where 

competing facilities render a service which customers require routinely. Each facility has its 

own queue and manager. Queues are assumed to be invisible to the customers. We assume 

that customer interact with their neighbours and share information about their most recent 

experience.  They use their experience and that of their best performing neighbour to update 

their expectations of their previously chosen queue and the one used by their quickest 

neighbour.  Then, based on their expectations, customers choose a facility for the next time. 

Managers take their decision to adjust service capacity on the basis of their desired service 

capacity which they determine based on their perception of the queue length at their facility 

and a market reference sojourn time. This market reference is a benchmark whereby managers 

compete with each other to attract more customers to their facilities. In other words how 

managers perform compared to this benchmark is a competitiveness index of the facilities. 
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In order to study this complex problem we propose an idealised queueing model with 

reactive and adaptive customers and managers in which the decisions of both types of agents 

are interdependent. This model is built using a CA-based framework. As in the previous 

chapter, the interaction between customers is portrayed in a one-dimensional cell lattice. The 

main structure of the CA model is similar to that of the model used in Chapter 2 and in 

Delgado et al. (2011a, 2011b, and 2011d) (See Appendices B, C and E). However, the factors 

which determine the average sojourn time customer experience at the facilities are different. 

While in the previous chapter this experience depended only on customers’ decisions because 

the service capacity remained constant (i.e. exogenous service rates), now this experience is 

also influenced by the service providers’ decisions (i.e. endogenous service capacity). 

Our results show that the managers’ and customers’ behaviour is strongly influenced by a 

path dependence phenomenon. Once historical or random events determine a particular path, 

agents may become locked-in regardless of the advantages of the alternatives. In our context, 

two or three managers can have the same profile, however given the initial conditions, which 

are randomly allocated to the agents (i.e. customers and managers), their facilities could 

evolve completely differently. W. B Arthur (1990) explains this phenomenon in the following 

way: “if a company or a nation in a competitive marketplace gets ahead by “chance”, it tends 

to stay at that level and even increase its lead” (p. 92). Other results indicate that the more 

conservative a manager is, the larger his market share. Additionally, his facility is less likely 

to close down. Similarly, the facilities of reactive managers are less likely to remain in 

operation in the long term. Finally we simulate the model for different values of the 

benchmark sojourn time which managers use as reference to estimate their desired service 

capacity. The results of this experiment enable us to say that such a measure acts as an 

attractor point of the system to which the system behaviour converges. 

This chapter is organised as follows. The next section describes the one-dimensional CA 

model we use to study the agents’ behaviour in a multichannel service facility system. First, 

we explain the differences between this model and that of the previous chapter. Next we deal 

in turn with the managers’ and the customers’ decision rules. In the third section, we describe 

the managers’ and customers’ profile depending on the model parameters. The next section 

presents the results. We first analyse some typical behaviour of customers and managers and 

provide an aggregated view of the system. Then we perform some experiments in which we 
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analyse the influence which the different parameters have on the performance of the facilities. 

Finally, we present the conclusion and contributions of the chapter. 

3.2 The Queueing Model 

Consider the queueing system and the CA model explained in the previous chapter. This 

system consists of a fixed population of N reactive and adaptive customers choosing between 

m facilities for service each period. In that case the arrival rates (λ) were endogenously 

determined, while the service rates (µ) were exogenous. In this chapter, we propose to make 

the service rates endogenous and allow service providers to adjust their service capacity. In 

this sense, we model a system in which customers are free to choose a facility for service and 

the service providers adjust their capacity depending on the customers’ behaviour. The 

managers’ actions can either encourage or discourage customers to use a certain facility. 

It is worth pointing out that this new element concerning the facilities (i.e. variable service 

rate) does not have a significant impact on the structure of the CA model. The only difference 

lies in the elements which determine the experience each cell (customer) has when taking 

(using) the different states (facilities). This experience is the average sojourn time of 

customers at each facility, which is given by Equation 2.9. This equation defines a congestion 

measure for customers of a system as a function of the arrival and service rates. Such a 

function considers that arriving customers can temporarily surpass the service rate in a 

transient period, but it also satisfies the behavioural characteristics of steady-state. In the 

previous chapter, we assumed the service rate was fixed (i.e. exogenous). Hence, the average 

sojourn time of the system only depended on the customers’ previous decisions. Now, we 

assume that service providers are able to adjust the facilities’ service capacity (i.e. 

endogenous service capacity). Consequently, the average sojourn time (i.e. customer’s 

experience) depends on both the customers’ and service providers’ decisions. In other words, 

the ability of a facility (state) to be more attractive for customers (cells) than the others 

depends on the behaviour of all agents in the system. 

We use the well-known causal-loop diagram proposed by P. Senge (1990) in order to 

explain the dynamics between customers and service providers (referred to as managers in the 

remainder of the chapter) as agents who interact in a service system. We will use the term 

“agents” throughout the chapter when discussing issues which concern both the managers and 
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the customers. Figure 3.1 portrays the feedback structure between a service facility and its 

customers. This figure consists of two sectors: the customers’ behaviour is to the left and that 

of the managers to the right. Both sectors are connected by the congestion measure, whose 

evolution determines the dynamics of the actors in the system. Customers decide which 

facility to use based on their estimate of sojourn time, while managers decide to adjust service 

capacity based on their estimate of arrival rates. Examples of this kind of system include a 

garage where customers take their car for maintenance, and workers or students who daily 

patronise a restaurant for lunch.  

 

Figure 3.1 Feedback loop structure of the model 

3.2.1 Customers’ Dynamics 

The causal loop in Figure 3.1 highlights the relationship between a service facility and its 

customers. These dynamics are identical for the m facilities. It is worth recalling that we deal 

with a system portraying a captive market, which means that all customers must patronise one 

facility for service each period. Customers have the ability to interact with their neighbours in 

a one-dimensional K-neighbourhood. K represents the number of neighbours each customer 

(cell) interacts with on each side. Additionally, we assume that customers have an adaptive 

behaviour, in the sense that they adjust their memory over time based on their previous 

experience in the system. Nevertheless, we assume them to be rational when choosing the 

most convenient facility according to the information they have. This means that they will 

patronise the facility with the lowest expectation of sojourn time. Thus, customers with a bad 

perception about a facility can decide to move to another one, as shown in Figure 3.1.  
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Compared to the previous chapter, we now consider only risk-neutral customers i.e. we 

assume R = 0 in Equation (2.8). Then, customers take their decision based only on their 

perceptions about the average sojourn time. Additionally, we follow Delgado et al. (2011a) 

and Sankaranarayanan (2011) and apply different weights for customers to update their 

memory depending on the sources of the information. In this sense, we denote by α the weight 

that customers give to their own information when updating their memory regarding their 

previously chosen facility, and by β the weight for the information provided by their best 

performing neighbour. In that way, we model the updating process of the customer’s memory 

(Mijt+1) applying an exponentially weighted average of the most recent information (Wijt) and 

the previous computed expectation (Mijt). Then Mijt+1 is given by: 

𝑀𝑖𝑗𝑡+1 = 𝜃 ∗ 𝑀𝑖𝑗𝑡 + (1 − 𝜃) ∗ 𝑊𝑖𝑗𝑡    (3.1) 

s.t. θ = 




infomation 'neighbours using  when          
ninformatio own using  when          

β
α

    

where θ denotes the coefficient of expectations and takes two different values depending 

on the source of information, as explained above. The logic behind this coefficient is 

explained in Delgado et al. (2011a) (see Appendix B) and Wijt is computed using Equation 

2.9. 

To summarise the customers’ dynamics: longer (shorter) queues bring about higher 

(lower) sojourn times and increase (decrease) customers’ perceptions. When customers’ 

perception about a certain facility exceeds the expectations they have regarding some other, 

they decide to switch facility. Otherwise they remain at the same facility. Customers share 

their experiences with their neighbours who, in turn, update their expectations using the 

information from their best performing neighbour. Consequently, customers’ experience at a 

certain facility can either encourage or discourage new customers to join this facility. In fact, 

customers experiencing low sojourn times at one facility can induce their neighbours to use 

this facility in the next periods. Likewise, customers experiencing high sojourn times can 

deter their neighbours from joining this facility. The speed at which customers’ experience 

has an impact on their neighbours’ memory depends on the weight given to the information 

provided by the neighbours. Then, the more (less) customers patronise a facility, the longer 

(shorter) queues are.  
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3.2.2 Service Providers’ Decisions 

The two reinforcing loops at the right side of Figure 3.1 (c.f. capacity acquisition and 

reduction loops) illustrate the managers’ dynamics. These dynamics result from the 

interaction between managers and customers’ actions through the state of the system. These 

two feedback loops describe a very basic type of learning (Sterman 2000), in which managers 

use the information they have about the system to form expectations, they perceive a gap 

between the desired and the current state, and they attempt to move the current state toward 

the desired state. In order to model this feedback process analytically, we endow managers 

with similar abilities as the customers. In this sense, we assume that managers have a memory 

and react to customer behaviour by adjusting the service capacity of their facility. Although 

customers cannot observe the queues before choosing a facility, managers have information 

about the number of customers arriving at their facilities. They thus use this information to 

form their perceptions about the future arrival rate, �̂� Rjt. The managers’ memory also enables 

them to update their perceptions each period using an adaptive expectation model, as follows: 

�̂�𝑗𝑡+1 = 𝛿 ∗ �̂�𝑗𝑡 + (1 − 𝛿) ∗ 𝜆𝑗𝑡    (3.2) 

where hats indicate the expected queue length, and δ  the coefficient of expectations 

(Nerlove, 1958). δ can be also interpreted as the speed at which managers adjust their 

perceptions. This parameter follows the same logic as explained above for the customers’ 

parameters (α and β).  

Managers use their estimate about the future demand (i.e. arrival rate) to determine the 

service capacity required to meet their customers’ expectations of sojourn time. Managers do 

not have accurate information regarding these expectations, but they know a reference 

average sojourn time, τMR, which is considered by the market to be acceptable to the 

customers. This market reference can be interpreted as a benchmark the managers use to 

evaluate the competitiveness of their firms. This benchmark is assumed to be exogenous and 

fixed. Given �̂� Rjt and τMR, managers can determine their desired service capacity, �̇� Rjt, by using 

Equation 2.8. Rewriting this equation in terms of these three variables we have: 

jt
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jt

jt
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λ
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Note that this is a second order equation for which there are two possible solutions. 

Nevertheless, due to the nature of the problem it is impossible to have negative arrival and 

service rates. Hence, we only consider the positive solution of Equation 3.3. This solution is 

given by: 
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We assume �̇� Rjt to be the service capacity which managers consider as sufficient to satisfy 

the customers’ needs regarding expected sojourn times. Then, the aim of managers is to adapt 

their available service capacity (µjt) to their desired service capacity. They must therefore 

decide when and how much capacity to add or remove. Nonetheless, once the adjustment 

decision has been made, its implementation process does not materialise immediately. In fact, 

when managers decide how much capacity they wish either to add or remove, there is usually 

a lag between the moment they take their decision and it is implemented. van Ackere et al. 

(2010) model this type of service systems, where the capacity adjustment involves either an 

implementation or dismantling time, by applying system dynamics (SD). Examples of this 

kind of delays include the delivery delay entailed when purchasing new machines; the time 

required to build new infrastructure; the period for training new employees; and the legal 

notice period to lay off staff.  

According to Figure 3.1, the capacity adjustment entails either to increase (c.f. capacity 

orders) or decrease (c.f. capacity retirements) capacity. When managers decide how much 

capacity to add (xt), these orders accumulate as capacity on order (𝜇𝑗𝑡+ ) until they are available 

for delivery. Once the delivery time (d+) expires the ordered capacity is available for service.  

That is, order xt is fulfilled in period t+d+. Assuming that there is no capacity on order at the 

beginning of the simulation, i.e. 𝜇𝑗𝑡+  = 0 for t ≤ 1 and xt = 0 for t < 1, the cumulative orders are 

given by: 

∑
−

+−=

+

+

=
1t

  1dtk
kjt xµ  t > 1     (3.5) 

Similarly, when the capacity adjustment implies removing capacity, the capacity managers 

decide to withdraw (yt) is designated as capacity to be retired (𝜇𝑗𝑡− ).  This capacity remains 
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available for customers until the dismantling time (𝑑−) expires, i.e. yt is removed from the 

service capacity in period t + 𝑑−. Assuming that there are no previous retirement decisions at 

the start of the simulation, i.e. yt = 0 for t < 1 and hence 𝜇𝑗𝑡−  = 0 for t ≤ 1, the capacity 

retirements accumulate as follows for t >1: 

∑
−

+−=

−

−

=
1t

  1dtk
kjt yµ      (3.6) 

The capacity decisions that have not yet been implemented (𝜇𝑗𝑡
± ) are given by: 

)( −+± −= jtjtjt µµµ      (3.7) 

Regarding the way managers decide the capacity adjustment they require at their facilities 

(xt and yt), we propose a heuristic which enables managers to know how much capacity either 

to add or remove and when to do so. This heuristic considers that the learning process 

explained above enables managers to estimate their required capacity adjustment, which 

managers can decide to carry out as fast or slow as they wish. 

The required capacity adjustment depends on the gap managers observe between their 

desired capacity (�̇� Rjt) and the service capacity, which they perceive to have currently. When 

this gap is positive, new capacity orders will be placed, whereas new capacity retirements will 

be carried out when the gap is negative.  

The current available service capacity (µjt) and the managers’ previous decisions, which 

are still in the process of implementation (𝜇𝑗𝑡
± ), make up the capacity that managers are 

expecting to have in service if no further changes are decided. Nevertheless, managers do not 

necessarily keep in mind all their previous decisions, which have not been yet implemented.  

Denoting by ψ the proportion of the not yet implemented capacity adjustment, which 

managers remember, we obtain that the service capacity they perceive to have at time t, is 

given by: 

±+= jtjtjt µψµµ *      (3.8) 

where ψ is nonnegative and less than or equal to 1. We call ψ the “coherence factor” of 

managers. If managers are rational when making capacity decisions they should take into 



3.  Queuing Systems with Interacting Customers and Service Providers        61 

 

account their previous decisions, which are still in process of execution. In this case, ψ = 1. 

Otherwise, if they only account for part of these past decisions, ψ < 1.  

By computing the difference between the service capacity, which managers consider they 

currently have, and their desired capacity, we obtain the required capacity adjustment (Δµjt): 

jtjtjt µµµ∆ −=       (3.9) 

Managers may make this adjustment as fast or as slow as they wish. That is, we assume 

that managers can be prudent when taking their decisions. The second element of the heuristic 

tackles this issue. Let ζ be the speed at which managers decide to adjust capacity, i.e. how fast 

they decide to either add or remove capacity. Then, when the desired capacity exceeds the 

current capacity, which managers perceive to have, they decide to add capacity and the 

ordered capacity (xjt) will be: 

jtjtjtjtjt  if             x µµµµζ >−=  )(*   with    0 ≤ ζ ≤ 1 (3.10) 

while if this decision implies to withdraw capacity, the capacity to be retired is: 

jtjtjtjtjt  if             y µµµµζ <−=  )(*   with    0 ≤ ζ ≤ 1 (3.11) 

ζ is small when managers take their decisions slowly, i.e. they are prudent decision 

makers. On the contrary, a high ζ implies that managers take actions quickly, i.e. they are 

aggressive decision makers. 

To summarise the managers’ dynamics: The more customers patronise a facility, the 

higher its manager’s perception of the arrival rate is. High (low) managers’ expectations 

increase (decrease) their desired service capacity. The higher (lower) the desired service 

capacity the more capacity the managers order (remove). With a delay, the capacity orders 

will increase the service capacity, while the capacity retirements will decrease it. This will 

affect the number of customer arriving at that facility. These dynamics yield the two 

reinforcing loops illustrated in Figure 3.1.  

The feedback between customers and managers’ actions generate different collective 

behaviours. Indeed, any action of managers on their service capacity will cause changes in the 

number of customers patronising their facility and vice versa. Moreover, the multiple delays 
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involved in the system influence the agents’ decisions and the resulting behaviours. Our aim 

in this chapter is precisely to study the collective behaviours which emerge from the 

interaction between customers and managers and the influence of delays on their decisions.  

3.3 Customers’ and Managers’ Profile 

Customers and managers can be characterised depending on their decision parameters. 

Concerning customers, their profile is described using their coefficients of expectations. In the 

previous chapter we described customers’ profile in accordance with their risk-aversion level 

and the importance they give to new information to update their memory. Now we only 

consider risk-neutral customers, but we assume that customers can give a different weight to 

their own information and the one provided by their best performing neighbour. Considering 

their attitude towards new information, customers can be defined as conservative, hesitant or 

reactive. We say that customers are conservative or reluctant regarding new information when 

they have more confidence in their memory than in recent experiences (i.e. α or β high). 

When the contrary occurs, we call customers reactive (i.e. α or β low). When a roughly equal 

weight is given to memory and to the new information, we call hesitant customers (i.e. α or β 

intermediate). Table 3.1 summarises the type of customers according to the weight they give 

to their memory and depending on the source of information (i.e. own-information or that of 

their neighbours). 

Definition of  
customer types 

Parameters 

w.r.t. their own 
experience 

w.r.t. the information 
provided by neighbours 

Conservative customers  α  ≥ 0.7 β ≥ 0.7 

Hesitant customers 0.3 < α < 0.7 0.3 < β < 0.7 

Reactive customers α  ≤ 0.3 β ≤ 0.3 

Table 3.1 Customer types according to their coefficient of expectations 

Like the customers, managers can also be characterised according to their attitude towards 

new information when updating their perceptions. But, additionally, we can describe 

managers according to their coherence when taking decisions and the speed at which they 
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implement these decisions. Table 3.2 gives the different characterisations of managers 

depending on their attitudes when updating perceptions and making decisions. 

Definition of manager types Parameters 

Conservative managers (Slow decision maker):   
- w.r.t. the speed at which they update their perceptions δ  ≥ 0.7 
- w.r.t. the speed at which they take their decisions  ζ  ≤ 0.3 

Hesitant managers (Moderate decision maker):   

- w.r.t. the speed at which they update their perceptions  0.3 < δ < 0.7 

- w.r.t. the speed at which they take their decisions 0.3 < ζ < 0.7 

Reactive managers (fast decision maker):   

- w.r.t. the speed at which they update their perceptions  δ  ≤ 0.3 

- w.r.t. the speed at which they take their decisions ζ ≥ 0.7 

Regarding the coherence factor managers can be:  
- fully rational ψ  = 1.0 
- almost rational  0.7 < ψ  < 1.0 
- slightly irrational 0.4 ≤ ψ  ≤ 0.7 
- moderately irrational 0 < ψ  < 0.4 
- completely irrational ψ = 0 

Table 3.2 Manager types according to the parameters which describe their capabilities. 

The agents’ profiles described above will be used throughout the remaining of the chapter 

to explain the behaviour of the system. Likewise, we will refer to the aforementioned 

attributes when discussing the sensitivity analysis regarding the decision parameters allocated 

to customers and managers. 

3.4 Simulation Results 

This section describes the simulation analysis and several experiments performed using the 

model outlined above. We first present an analysis of four examples of typical behaviours 

exhibited by the system. Then, we carry out some experiments to study the sensitivity of the 

behaviour with regard to the decision parameters involved into the model. Specifically, we 

evaluate how the system responds to changes in the parameters which determine the agents’ 
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decision rules. Additionally we examine how the sojourn time benchmark impacts the average 

sojourn time of the system. 

Due to the number of parameter the model has, we limit our simulation analysis to 

evaluating the dynamics of a system which is configured with 3 facilities and 120 customers 

(i.e. a one dimensional lattice of 120 cells, where each cell can take exactly one of three 

states). Each facility is initially provided with a service capacity of 5 customers per time unit, 

a manager and its own queue. Agents are endowed with an initial memory (i.e. expected 

average sojourn times for customers and expected arrival rates for managers). We interpret 

this initial memory as the knowledge customers and managers have about the historical events 

of the system. This initial memory is randomly allocated to the agents using a uniform 

distribution, whose maximum and minimum values are respectively 10% above and below the 

sojourn time of the Nash equilibrium. Given that all facilities have the same service capacity 

at the beginning, the Nash equilibrium occurs when customers are split equally among the 

three facilities, i.e. 40 customers patronising each. This distribution yields an average sojourn 

time of 1.8 time units.  

We assume the implementation and dismantling delays involved in the managers’ 

decisions to be fixed and equal to 4 and 2 periods, respectively. That is, once managers decide 

to increase capacity, this order will be delivered 4 periods later. Similarly, when they decide 

to reduce capacity, the capacity to be retired will still be available for service during the next 

2 periods.  

We develop and simulate the model using the numerical computing environment 

MATLAB 7.9 (The MathWorks TM 2009). We also use MATLAB’s statistical toolbox to 

compute statistics about the performance of the agents and the system (e.g. average sojourn 

time at each facility and for the system). We use Stata (StataCorp.2011, 2011) to test the 

statistical hypotheses related to the performance of the facilities. 

Owing to limitations of computational capability and the difficulty of visualisation of 

results in more than 8 dimensions (e.g. δ1, δ2, δ3, α, β, ψ, ζ, τMR, W are some examples of 

parameters and variables which determine the dimension of the model), we assume that the 

three managers are configured with different coefficients of expectations (i.e. δ1, δ2, δ3), but 

with the same coherence factor (ψ) and decision making speed (ζ). The other dimensions will 

be studied in further work. Although, MATLAB always performs the operations and keeps 
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the numbers in a precision of 16 decimal digits (The MathWorks TM 2009), we have 

performed the analysis based only on the first 4 decimal digits. 

3.4.1 Typical Behaviours 

Here we present the analysis of four examples of typical behaviours generated by the system.  

These behaviours were obtained running the model with the same initial memory allocated to 

the agents (i.e. using the same random seed), but varying some of the managers’ behavioural 

parameters. Specifically, we change the coherence factor (ψ) and the decision making speed 

(ζ).  

Agents were initialised with the parameters shown in Table 3.3. Each simulation run 

consists of 200 periods. The results are studied at the micro and macro-levels. By micro-level, 

we refer to the individual level, that is, we analyse the way customers’ and managers’ 

decisions evolve. The macro-level refers to an aggregated view of the system in which we 

analyse its overall performance given the agents’ decisions. 

Figures 3.2, 3.3 and 3.4 illustrate the different results obtained for the four examples. 

Figure 3.2 illustrates the evolution of customers’ decisions and the service capacity (Micro-

dynamics). Figure 3.3 shows the evolution of the managers’ decisions and the service 

capacity during the transient period. Figure 3.4 shows the average, minimum and maximum 

sojourn times that customers experience at the facilities each period (an aggregated view of 

the system).  

Figures 3.2 (a) (c), (e) and (g) show the space-temporal behaviour patterns generated by 

the customers’ choice of service facility. The customers’ decisions during the first four 

periods are the same for the four examples. They move between the different facilities to 

experiment and update their expectations. This occurs because the customers and managers’ 

initial memories are the same for these four examples. Additionally, the three facilities are 

initially setup with the same service capacity. Thus, customers will behave similarly in these 

examples until a change occurs with regard to the service capacity.  

Figures 3.2 (b) (d), (f) and (h) show the evolution of the service capacity at each facility 

resulting from the managers’ decisions. Although managers of identical facilities have the 

same initial desired service capacity in the four examples (e.g. the manager of facility 2 is 

allocated with the same initial memory in the four examples), their first capacity decisions 



66        Behavioural Queueing: Cellular Automata and a Laboratory Experiment 

 

vary between these examples. Indeed, the magnitude of these orders also depends on the 

speed at which managers take their decisions (ζ) (their coherence factor (ψ) plays no role 

initially since it is assumed that there is no capacity on order in period 1). This speed is 

different in the four cases. In this sense, managers in example 4 (Figure 3.2 (h)) make the 

largest capacity order in period 1 since they take decisions faster (ζ = 0.8). The magnitude of 

the following capacity adjustments will depend on the system dynamics, i.e. the interactions 

between customers and managers.  

Parameter 
Examples 

(A) (B) (C) (D) 

α 
0.3 0.3 0.3 0.3 

(Reactive) (Reactive) (Reactive) (Reactive) 

β 
0.7 0.7 0.7 0.7 

(Conservative) (Conservative) (Conservative) (Conservative) 

δ1 
0.8 0.8 0.8 0.8 

(Conservative) (Conservative) (Conservative) (Conservative) 

δ2 
0.5 0.5 0.5 0.5 

(Hesitant) (Hesitant) (Hesitant) (Hesitant) 

δ3 
0.2 0.2 0.2 0.2 

(Reactive) (Reactive) (Reactive) (Reactive) 

ψ 
0.5 0.8 0.33 0.7 

(Slightly 
irrational) 

(almost 
rational) 

(moderately 
Irrational) 

(Slightly 
Irrational) 

ζ 
0.2 0.5 0.66 0.8 

(Slow) (Moderate) (Moderate) (Fast) 

Random 
Seed 12225 12225 12225 12225 

 

Table 3.3 Parameter values used for the simulation runs. 

3.4.1.1 Individual behaviour 

Changes in service capacity depend on both the managers’ decisions and the implementation 

delays of these decisions. In period 1, managers use their initial memory to compute their 

initial desired service capacity. This estimate is lower than their current service capacity since 

it is based on the benchmark of sojourn time (2 time units), which is higher than the average 

sojourn time corresponding to their expected arrival rate given the initial conditions (10% 

above the Nash equilibrium of 1.8 time units). Consequently the managers’ first period 
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decision implies a slight reduction in service capacity (Figure 3.3) which, given the 

dismantling delay, materialises in period 3 as show in Figure 3.2.  

After period 4, the behavioural patterns exhibited in Figures 3.2 can be explained in two 

different phases. The first phase exhibits a transient period whereby customers and managers 

try to learn from the system. In the previous chapter we explained that the length of this 

period depends on the random initial conditions. During this period, customers move through 

all facilities attempting to find the facility with the lowest average sojourn time; while 

managers attempt to adjust their service capacity to satisfy the customers. After the transient 

period, a collective behaviour of the agents emerges and the system exhibits a certain 

stability. When this occurs, we say that the system has reached a steady-state. 

The customer behaviour during the transient period has been extensively discussed in the 

previous chapter and in Delgado et al (2011a). The managers react to customer behaviour by 

adjusting their service capacity. In addition to the system dynamics (i.e. the interaction 

between customers and managers), the kind of adjustment (i.e. increasing or decreasing 

capacity) managers make and its magnitude depend on the managers’ profile. Both elements 

depend on the coefficient of expectations (since it determines the desired service capacity) 

and the consistency factor (it influences the capacity, which the manager perceives to have). 

However only the decision making speed affects the magnitude of the adjustment (see 

Equations 3.10 and 3.11). For instance, we observe in Figure 3.3 that for all the examples, 

managers 1 (green line) and 2 (blue line) are more moderate than manager 3 (red line) when 

adjusting service capacity during the first eight time periods. Specifically, the service capacity 

of manager 3 is significantly reduced compared to the one of the other two managers. Unlike 

manager 3, managers 1 and 2 are more conservative regarding the new information (see δ 

coefficients). Likewise, Figure 3.2 (c.f. the evolution of customers’ choice) shows that the 

number of customers patronising facilities 1 (grey cells) and 2 (black cells) during the first six 

time periods are somewhat more stable than for facility 3 (white cells). Hence, the 

adjustments made by managers 1 and 2 are gentler than those made by their counterpart at 

facility 3. 
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Figure 3.2 Space-time evolution patterns of customers’ choice of service facility and the service 
capacity evolution of each facility depending on the parameters involved in the managers’ decision 

rule (see Table 3.3). 
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Figure 3.3 Managers’ capacity decisions and the service capacity evolution during the first 25 
time periods of the transient period for the four examples specified in Table 3.3. 
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The behaviour of manager 3 at the beginning can be explained by two factors: the 

customers’ experience at facility 3 during the first three time periods and the manager’s 

attitude toward new information. Given the initial conditions he starts by deciding to remove 

some capacity (See the red line in figures in the left column of Figure 3.3). In periods 1 and 3, 

facility 3 is the most patronised (see white colour in Figures 3.2 (a) (c), (e) and (g)), while it is 

the least patronised in period 2. As the arrival rate at facility 3 is very low in period 2, his 

manager, who is the most reactive regarding the new information when updating his memory 

(δ3 = 0.2), decides to withdraw even more capacity in period 3, as shown in the left column of 

Figure 3.3 (red line). At that time customers come back to this facility. Consequently in 

period 4, manager 3 takes the decision to increase capacity, while customers ignore his 

facility. So, in period 5 when the capacity removing decision taken in period 3 materialises 

(see right column of Figure 3.3), he overreacts by removing even more capacity. It is worth 

recalling that the decision making speed differs across the four examples and thus the 

magnitude of the managers decisions differs from one case to another. Given the delivery and 

dismantling delays (4 and 2 time periods, respectively), the decision taken in period 5 to 

decrease capacity materialises before the decision to increase capacity taken in period 4, as 

can be seen in Figure 3.3 (b), (d), (f), and (h). Additionally, most of the capacity orders placed 

by manager 3 are partially offset by his subsequent retirement decisions. After period 8, when 

the capacity order placed by manager 3 in period 4 is the first to materialise (see Figure 3.3 

(b), (d), (f), and (h)), the behaviour of this manager changes notably in the four examples: he 

makes more aggressive decisions. Below we discuss in more detail the behaviour exhibited by 

both managers and customers in each example.  

Figure 3.2 (a) and (b) show an example where the three facilities remain open during the 

whole simulation period. In this case, the managers only account for 50% of their not-yet 

implemented decisions when taking the next one. Similarly, they are very prudent and 

therefore they make decisions slowly (at a rate of 20% of the desired adjustment). The 

transient period for this example lasts about 45 periods. From then on, customers exhibit a 

quasi-stable behaviour in which groups of customers loyal to a facility emerge and the 

customers located on the borders of these groups keep alternating between two facilities (the 

facilities patronised by their neighbours), as shown in Figure 3.2 (a). Nevertheless, the service 

capacity takes a bit more time to stabilise, but this is normal given the delays involved in the 

decision process. Once the system stabilises, facility 2 (black cells in Figure 3.2 (a)) is the 

most patronised and facility 1 (grey cells) the least. Similarly, these are the facilities with the 
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highest and lowest service capacity, respectively. All the three facilities have almost the same 

sojourn time 

It is worth mentioning that in this example, the service capacity of the three facilities 

presents the smallest fluctuations through the transient period compared to the other three 

examples (See Figures  3.2 (b) and 3.3 (b)). Note that the manager of facility 1 keeps a service 

capacity similar to that of facility 2 and larger than that of facility 3 (red line and white cells) 

even though this facility has been already totally ignored three times before period 14. 

Moreover, from that moment on this facility is the least patronised until period 19. In period 

13, 112 customers patronise facility 1, which is the maximum for any facility throughout the 

simulation (Note that at no time do all the 120 customers use the same facility). This is very 

positive for manager 1, but a very bad experience for his customers. So customers ignore 

facility 1 in period 14 (see Figure 3.2 (a)), while its manager, given his profile (very 

conservative regarding new information, moderately irrational and slow decision maker), 

takes a very small decision to increase the service capacity, as can be seen in Figure 3.3(a). 

The next time periods, customers are slowly coming back to facility 1 and its manager reacts 

to this behaviour by gradually reducing the service capacity. This manager keeps the policy of 

decreasing capacity for the next 20 time periods and his service capacity falls below that of 

facility 3, as shown in Figure 3.2 (b).  

Most of the capacity orders placed by manager 2 are partially offset by his subsequent 

retirement decisions between periods 8 and 18. Unlike manager 1, he decides to slightly 

increase capacity between period 15 and 21. These decisions materialise from period 19 

onwards and enable him to have the largest facility.  

In period 15, manager 3 starts to adding small amounts of capacity each period (red line) 

and his facility starts to inherit some customers who have experienced high sojourn times at 

facilities 1 and 2 in the previous two time periods. From then onwards, facility 3 is the second 

most patronised. This encourages manager 3 to order more service capacity during the next 

ten periods. These orders start being fulfilled from period 20 onwards, as shown in Figure 3.2 

(b) and Figure 3.3(a) and (b). From then onwards, this facility has the second highest service 

capacity. 

The other three examples illustrate cases where at least one facility closes. This occurs 

logically when customers ignore a facility for a long time and its manager consequently 
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reduces capacity, ultimately closing down the facility. Nevertheless, irrational managers do 

take decisions which lead to a shutdown (capacity equal to zero) even in the presence of 

customers. The occurrence of either of these two events yields a kind of path dependence 

(Arthur 1989, Liebowitz and Margolis 1995), in which the system becomes “locked-in” into a 

monopoly or duopoly situation, as once a facility has closed down, it cannot re-open. The 

emergence of this phenomenon depends on both the customers’ and the managers’ previous 

decisions as well as on the initially allocated memories. A more detailed analysis of how the 

customers’ and the managers’ previous decisions can lead to such path dependence is given 

below. 

Figures 3.2 (c), (d), (e) and (f) illustrate two examples in which one of the three facilities 

closes down. In both cases, facility 3 shuts down because the customers walked out.  

In example (B) (Figures 3.2 (c), (d)), managers are almost rational (ψ = 0.8) and decide 

moderately fast (ζ = 0.5). The transient period of this case can be explained in two phases. 

The first phase is similar to the previous example: customers move through all facilities 

during a certain time and managers overreact to this behaviour by increasing and decreasing 

service capacity (See Figure 3.3 (c)). Given that managers decide more quickly than in 

example (A), the facilities’ service capacity show greater fluctuations. This phase takes 

around seventeen time periods. During this period, the manager of facility 3 sharply reduces 

his service capacity (red line). This strongly affects the experience of customers at this facility 

and therefore their memory. In period 13, most customers decide to join facility 3 after having 

had a bad experience at the other two facilities during the previous two periods. Given that 

facility 3 has much less service capacity than the other two, the experience at this facility is 

worse and the impact on the customers’ memory is much stronger. So, this facility is ignored 

in period 14 and only three customers come back the next period. Even though manager 3 

makes a large capacity order in period 14 (based on the demand of period 13), only two more 

customers join this facility in period 18 when such an order materialises. From that moment 

on the system exhibits an interesting behaviour in which the customers’ and managers’ 

decisions seem to have reached the Nash equilibrium, since customers do not switch facility 

and the service capacities seem to remain constant. However, the service capacity of the 

facilities does change, but the changes are very small and graphically unobservable. 

Additionally, the system can only reach the Nash equilibrium when the average sojourn time 

of all facilities is exactly equal the benchmark (2 time units) and this is not the case. Thus, 
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these small changes in service capacity affect the average sojourn time and, in turn, the 

customers’ memory. Two customers of facility 3 are the first to break this false equilibrium in 

period 55. From then onwards, they irregularly alternate between this facility and facility 1 

until they persuade their neighbours to leave facility 3 forever in period 107. This causes 

manager 3 to shut down his facility three time periods later. Then, an almost-stable behaviour 

emerges. Customers and managers behave as in the previous example when the system 

reached steady-state.  

Figures 3.2 (e) and (f) show another example where only two facilities remain open. 

During the transient period, the service capacity exhibits more and higher fluctuations than in 

the previous two examples. This is because managers are moderately irrational (ψ = 0.33), 

which means that they only consider a small portion of their previous decisions, which are not 

yet implemented, when making future decisions. Moreover, they decide faster than the 

managers of the previous two examples (ζ = 0.66). The closing down of a facility occurs 

much earlier during the transient period. In period 16, facility 3 achieves its lowest level of 

service capacity so far and it is the most patronised facility, resulting in a bad experience for 

customers. As a result, customers decide to ignore this facility for the next time periods and 

its manager shuts it down six time periods later. 

The main difference between this example and the previous one lies in the system 

behaviour during the steady-state period. Indeed, we observe that the system reaches the Nash 

equilibrium with two facilities. After time 54, seven groups of customers loyal to facility 1 

and seven groups to facility 2 emerge. The more customers patronise facility 1 which has the 

highest service capacity. The managers’ decisions take more time to reach equilibrium than 

customers’ choices. This occurs in period 100, when both facilities have enough service 

capacity to guarantee that their customers will always experience an average sojourn time 

equal to the benchmark. 

In the last case shown in Figures 3.2 (g) and (h), only one facility remains open. This is 

facility 1 (grey cells and green line), whose manager is the most conservative. Facility 3 

(white cells and red line) is the first to close. Its manager significantly reduces the service 

capacity during the transient period. As a result, this facility is ignored four times during the 

first ten time periods. Similarly, this facility is twice very crowded during these ten periods. 

Hence, manager 3 decides to sharply increase his service capacity, but he later counteracts 

this decision by decreasing capacity (see Figure 3.3 (g)), and given the length of the delays, 
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the capacity retirements materialise before the capacity orders. Then, in periods 13 and 14 

facility 3 is ignored again. This motivates its manager to reduce the service capacity over the 

next time periods. Consequently, this facility is closed in period 17, even though a few 

customers had come back to this facility in period 15. Facility 2 is the other one which closes. 

The behaviour of this manager is similar to the one exhibited by manager 3 in example 2. He 

closes his facility because customers gradually leave. 

3.4.1.2 Aggregated behaviour 

We use the average sojourn time customers experience at the facilities as a measure which 

enables us to analyse the global system performance. Figure 3.4 shows the evolution of the 

weighted average sojourn time of the system and the minimum and maximum sojourn time 

experienced by customers at each facility for the same four examples discussed above. The 

weighted average sojourn time is computed using Equation 2.10 (see Chapter 2). Additionally 

the weighted average sojourn time in steady state is computed for the last 40 periods.  

We can observe in Figure 3.4 that in all the cases, the average sojourn time in steady-state 

converges to the benchmark (2 time units). This behaviour is in keeping with the goal of the 

managers of satisfying the customers’ needs, which are represented by the reference average 

sojourn time for the market, i.e. the benchmark (τMR). Facilities which do not approach this 

benchmark soon get out of business, as was illustrated in Figure 3.2. This aspect enables us to 

conclude that the benchmark of the average sojourn time acts as an attractor point in the 

system for the agents’ decisions. 

The average sojourn time of examples (a) and (b) seems to be constant. However, this 

measure actually presents a sustained oscillation during the steady-state period, as can be seen 

from the minimum and maximum values. Note that the oscillations in the second example 

have greater amplitude than in the first one. Nevertheless, given the almost-stable behaviour 

of these decisions, the average sojourn time of customers at the facilities fluctuates over time 

with a very small constant amplitude as shown in Figure 3.4. 

In the context of queueing systems, the Nash equilibrium implies that customers do not 

wish to change facility. This occurs only when the average sojourn time is the same at all 

facilities. Figure 3.2 (e) shows that in the third example customers remain at the same facility 

in steady-state and Figure 3.4 (c) shows that the maximum and minimum average sojourn 

times equal the weighted average sojourn time of the system (i.e. all customers experience the 
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same average sojourn time in steady state). Hence, we can conclude that in the third case the 

system has really reached the Nash Equilibrium.  

 

Figure 3.4 Average sojourn time evolution in four different examples depending on the 
parameters of the managers’ decision rule. 

In the last example only one facility remains open. The average sojourn time in steady 

state is still above the benchmark (2 time units) at time 200. This is due to the long transient 

period exhibited by this system. When the transient period ends, the manager takes much 

more time to stabilise his decisions. Nevertheless, the average sojourn time of this facility will 

also converge to the benchmark but after a much longer time.  

The four examples described above are the most typical behavioural patterns we can 

observe when simulating the model for different combinations of the model parameters (i.e. 

managers, customers and system parameters) and using different random seeds to allocate the 
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initial memory to the agents. As general conclusion of the behaviour observed in these four 

typical cases, we can say that conservative managers usually achieve a greater market share. 

Other behaviours, though rare, can occur: 

1) The most conservative manager closes his facility (e.g. manager 1 in the previous 

cases).  In the next section we show evidence regarding this case. 

2) The facility of the most reactive manager is the only one remaining open. 

3) A Nash equilibrium with the three facilities remaining open. This tends to occurs 

when the system is set up with extreme values of the coefficients of expectation (e.g. α 

= β = 0.9; δ1 = δ2 = δ3 = 0.1) 

4) The transient period lasts for a very long time, that is, the system takes more than 500 

time periods to reach a steady-state. 

5) All facilities close down. This usually occurs in extreme cases when managers are 

close to fully irrational (e.g. ψ < 0.1) and very slow in taking decisions (ζ > 0.8). 

Next we perform a sensitivity analysis of the impact of some model parameters on the 

managers’ and customers’ decisions. 

3.4.2 Simulation Experiments 

This section describes the analysis of simulation experiments performed using the model 

outlined above. These experiments are discussed in terms of the possible scenarios which we 

can obtain when simulating the model as explained in Table 3.4. In all the experiments we run 

the model for 500 time periods and compute the steady-state value over the last 40 time 

periods.  

We carry out 3 experiments. The first two concern the managers’ parameters (δ, ψ and ζ). 

The third assesses the sensitivity of the average sojourn time of the system to the benchmark 

(i.e. the market reference, τMR). The customers’ parameters (α and β) are assumed to be fixed. 

Thus, their analysis only applies for systems whose customers are set up with α = 0.3 (slightly 

reactive regarding their own information) and β = 0.7 (slightly conservative regarding their 

neighbours’ information).  
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Colour 
code 

Numerical 
code Scenario 

  0 All facilities close 
  1 Facility 1 is the only one open 
  2 Facility 2 is the only one open 
  3 Facility 3 is the only one open 
  12 Facilities 1 and 2 remain open, while facility 3 closes 
  13 Facilities 1 and 3 remain open, while facility 3 closes 
  23 Facilities 2 and 3 remain open, while facility 3 closes 
  123 All facilities remain open 

Table 3.4 Possible scenarios generated by simulating the model. 

3.4.2.1 Path dependence and the influence of the managers’ parameters on the closing of a 

facility. 

The first experiment is aimed at studying the impact the managers’ parameters have on the 

number of facilities remaining open over time. Using the values {0.2, 0.5, 0.8} we consider 

all combination of the coefficients of expectations of the managers (δ1, δ2, δ3), i.e. twenty-

seven combinations altogether. For each combination we simulate the model varying the 

coherence factor (ψ) and the speed at which managers take their decisions (ζ). These last two 

parameters vary from zero to one in steps of 0.01. This generates 10,201 combinations of 

these two parameters for each configuration of the coefficients of expectations, yielding a 

total of 275,427 runs. Each simulation run is thus a different case which represents a 

combination of parameters δ1, δ2, δ3, ψ and ζ. Each case is run using the same seed used to 

obtain the typical behaviours in the previous section, i.e. seed number 12225. This means that 

the initial conditions allocated to the agents are the same in each simulation. 

Figures 3.5 to 3.7 show which facilities are still in operation at time period 500 as a 

function of the parameters allocated to the managers for these 275,427 cases. Each of the nine 

panels in Figures 3.5 to 3.7 represents one of the twenty-seven combinations of the 

coefficients of expectations of managers (δ1, δ2, δ3). For each of these combinations, the 

model is simulated as a function of the parameters ψ and ζ. In each case, only one scenario of 

Table 3.4 can occurs, i.e. each case is represented by a cell and each cell takes on a colour 

from Table 3.4 depending on which scenario occurs. Yellow cells represent the scenarios 

where the three facilities remain open, while the white ones mean that the three facilities 

close. The blue shades indicate that only one facility remains open and the green ones that 
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two facilities remain open. When we refer to facility 1 as an open facility, we look for any 

colour whose numerical code involves “1” (i.e. dark blue, dark green, medium green and 

yellow) in Table 3.4.  

 

Figure 3.5 Illustrative simulation results of the facilities still open at time 500 for the cases where 
manager 1 is reactive regarding new information (δ1 = 0.2), as a function of the coefficients of 

expectations of managers 2 and 3 (δ2, δ3), as well as of ψ and ζ. 
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Figure 3.6 Illustrative simulation results of the facilities still open at time 500 for the cases where 
manager 1 is hesitant regarding new information (δ1 = 0.5), as a function of the coefficients of 

expectations of managers 2 and 3 (δ2, δ3), as well as of ψ and ζ. 

Figure 3.5 illustrates which facilities remain open for the all the cases in which manager 1 

is assumed to be reactive regarding new information (δ1 = 0.2), while the other managers can 

be either reactive, hesitant or conservatives. Figure 3.6 assumes that manager 1 is hesitant and 

Figure 3.7 that he is conservative.  
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Figure 3.7 Illustrative simulation results of the facilities still open at time 500 for the cases where 
manager 1 is conservative regarding new information (δ1 = 0.8), as a function of the coefficients of 

expectations of managers 2 and 3 (δ2, δ3), as well as of ψ and ζ. 

It is worth recalling that these cases are generated using a set of initial memories randomly 
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open) change, the qualitative results (e.g. the most frequent outcome is that facility 1 remains 

open) remain valid.  

The main insight we can draw from Figures 3.5 to 3.7 is that the more conservative a 

manager (higher values of δ) is compared to his competitors, the larger the percentage of 

cases in which he keeps his facility open (see panels on the top and on the right of Figure 3.5 

and Figure 3.6 as well as all panels in Figure 3.7). For instance, note that in Figure 3.7, where 

manager 1 is the most conservative, there are very few cells taking the colours medium blue 

(code 2), light blue (code 3), light green (code 23) or white (code 0).  

Most of the monopoly situations (blue shades) occur when a conservative manager, who 

takes decision fast (ζ >0.6 approximately), faces two reactive managers (see the cases with ζ 

>0.6 in panels I and IX in Figure 3.5 and panel VII in Figure 3.7). In these cases, the facility 

of the conservative manager achieves a monopoly.  Note that for managers 1 (dark blue in 

panel VII of Figure 3.7) and 2 (medium blue in panel I of Figure 3.5), there are more cases 

(i.e. combinations of parameters ψ and ζ) yielding this type of scenario (i.e. monopoly 

situation) than for manager 3. This illustrates the impact of the choice of random seed and 

emphasises the phenomenon of path-dependence discussed above. That is, the managers’ 

decisions are strongly “path-dependent”, in the sense that the facilities of two or three rival 

managers, who have the same profile and face the same customers, could evolve completely 

different each other, depending on the initial conditions.  

Panel VII of Figure 3.5, panel V of Figure 3.6 and panel III of Figure 3.7 represent those 

cases where the three managers have identical profiles. By comparing these three panels we 

observe that (i) there are more parameter combinations which yield a monopoly position for 

facility 1 (dark blue) than for the other two facilities; (ii) there are a few parameter 

combinations in which facility 1 closes down (i.e. there are very few cells taking the colours 

medium blue, light blue, light green or white); and (iii) the number of cases where the three 

facilities are still open at time 500 (yellow) increases as managers are more conservative 

regarding new information.  

In some extreme cases, e.g. when managers are close to being fully irrational (e.g. ψ < 0.1) 

and very slow taking decisions (e.g. ζ > 0.8), all the facilities close. This also applies for other 

set of random initial memories allocated to the agents. However, we do not delve into these 
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cases, since we assume that these extreme conditions are not realistic and would lead to entry 

by more rational competitors.  

In general we can say that the more conservative the managers are, the less influence the 

coherence factor (ψ) and the decision making speed (ζ) have on the closure of their facilities.  

3.4.2.2 Influence of the managers’ parameters on the probability of a facility being closed. 

The second experiment implies 1,000 iterations (i.e. 1,000 different random seeds) of the 

model for a number of different combinations of the managers’ parameters (δ1, δ2, δ3, ψ, ζ) 

for the case where α = 0.3 and β = 0.7. In order to validate if 1,000 iterations are enough to 

draw conclusions about the different scenarios the system exhibits in steady state, we have 

run 10,000 iterations of the model and extended the simulated time to 10,000 time periods for 

several parameter combinations. The steady-state period was computed for the last 100 time 

period. We found that there were no significant differences in the number of facilities closing 

compared to 1,000 iterations over 500 periods. We therefore assume that 1,000 simulations of 

the model over 500 time periods is appropriate for our analysis. 

Figure 3.8 shows the relative frequency of each scenario described in Table 3.4 for the 

nine possible combinations of parameters (ψ, ζ) using the three values {0.2, 0.5, 0.8}. The 

coefficients of expectations of managers and customers are those used in Section 3.4.1 (see 

Table 3.3: δ1 = 0.8, δ2 = 0.5, δ3 = 0.2, α = 0.3 and β = 0.7). Each combination of parameters 

(ψ, ζ) is represented by a bar in Figure 3.8. The first three bars (i.e. I, II, and III) illustrate the 

cases where the managers are slow decision makers (ζ = 0.2) and have different degrees of 

rationality when accounting for their not-yet implemented decisions (ψ). The next three bars 

represent those cases where managers are moderate decision makers and the last three those 

where managers are fast decision makers.  

Figure 3.8 indicates that the scenario where the three facilities remaining open (yellow 

colour) is the most likely when managers take their decisions slowly (see bars I, II and III). 

This probability decreases as the decision making process is faster and it is close to zero when 

managers are faster decision makers (ζ = 0.8) and almost rational when accounting for their 

not-yet implemented decisions (ψ = 0.8) (case IX). In contrast, the probability of one facility 

closing (green shades) is lower when the decision making process is slow (see bars I, II and 

III) and is the highest when this process is moderate (see bars IV, V and VI). Note in 

particular that when one facility closes, this is mostly facility 3 (dark green), whose manager 
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is the most reactive (δ3 = 0.2). Additionally this scenario is the most likely in all the cases in 

which managers are moderate decision makers (bars IV, V and VI) and in those cases where 

they are fast decision makers and either slightly irrational or almost rational when considering 

their not-yet implemented decisions (bars VIII and IX).  

 

 
Figure 3.8 Percentage of runs which yield each possible scenario depending on the consistency 

factor (ψ) and the speed factor (ζ). 

The faster the decision making process, the lower the probability of the most conservative 

manager (i.e. manager 1, δ1 = 0.8) being the only one who closes his facility (light green). 

The probability of the hesitant manager (i.e. manager 2, δ2 = 0.5) being the only one to close 

his facility (medium green) is higher when the decision making process is slow (bars I, II and 

III) and lower when such a process is fast (bars VII, VIII and IX). When the most 
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monopoly position (See medium blue in bars VII, VIII and IX). In the case where managers 
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closing his facility is negligible (less than 0.1%) (bar IX). Finally, note also that the scenario 

in which the three facilities shut down is very unlikely (less than 0.2%) for this case. 

Concerning the market share of the facilities in each scenario, we hypothesise that the 

most conservative managers’ facilities capture a larger market share than the others. We use 

the Mann-Whitney-Wilcoxon test (MWW) (Newbold 1988), a non-parametric statistical test 

also called the Mann-Whitney U-test, to assess the null hypothesis that the median of the 

average arrival rates of two facilities during steady-state are the same. The alternative 

hypothesis assumes that the median of the average number of customers arriving at the most 

conservative manager’s facility in steady-state is greater than that at the other facility. We 

have applied a non-parametric test because we do not know the distribution of the data and for 

some scenarios we have very little data. Parametric tests are not appropriate in these cases. 

Instead, the MWW-test is appropriate because the distributions have enough symmetry to 

assume that the median and the average are similar. 

Table 3.5 provides the test-statistics of the MWW-test to assess the difference between the 

medians of the distributions of average arrival rates at each facility in steady-state for the 

scenarios where at least two facilities remain open, as monopolistic situations are irrelevant in 

this context. This table contains statistics for the same nine cases of Figure 3.8. For each case 

and each scenario, this table provides the following information which, as an example, is 

explained in detail for case I and the scenarios where facilities 1 and 2 remain open (dark 

green) and where all facilities remain open:  

- The relative frequency of iterations in which the average number of customers arriving 

at the active facilities is the same (referred as “P(equal)” in Table 3.5; for instance, in 

case 1 when facility 1 and 2 remain open (dark green scenario) 0.85% of the iterations 

yield that both facilities serve on average the same number of customers in steady 

state. When all facilities remain open (yellow scenario) not a single iteration yields 

this event. 

- The probability of a given facility (Fx) capturing the largest market share (referred as 

“P[λ(Fx)=Max(λ)]); for instance, when facilities 1 and 2 remain in operation (dark 

green scenario), facility 1 has a 51% probability of being the most patronized, while 

facility 2 has a 48% probability of being so. Similarly when all facilities remain open 

(yellow scenario), facility 1 has a 48% probability of being the most used, while 

facility 2 and 3 have, respectively, a 39% and a 14%. Note that in this scenario, there 
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are some cases where adding up the three probabilities yields a result greater than 

100% (e.g. case I). This is because in some iterations two facilities are tied for the 

largest market share. 

- The median of the number of customers arriving at each facility. For instance, when 

facilities 1 and 2 remain open, the median arrival rates are respectively 61 and 59 

arriving customers. 

- The letters (i.e. “a”, “b”, “c”, and “d”) next to the median value of the second facility 

of each scenario indicate the results of the MWW-test for the null hypothesis that the 

median arrival rate is the same for the assessed facilities. The letters “a” and “b” 

indicate that this hypothesis is rejected at a significance level of 0.01 and 0.1, 

respectively, against the alternative hypothesis that the median arrival rate of the most 

conservative manager’s facility is significantly greater than that of the other facility. 

The letter “c” indicates that the null-hypothesis is rejected at a significance level of 

0.01, against the alternative hypothesis that the median arrival rate of the most 

conservative manager’s facility is significantly lower than that of the other facility. 

The letter “d” indicates that the null hypothesis cannot be tested because of lack of 

data. For instance, the letter “a” in the scenario where facility 1 (δ1 = 0.8) and 3 (δ3 = 

0.2) remain open (medium green) indicates that according to the MWW-test the 

median number of customers using facility 1 (i.e. with the most conservative manager) 

is significantly greater than that using facility 3 at a significance level of 0.01. In the 

scenario where the three facilities remain open, this test is assessed by pairs of 

facilities and the significance of the test is indicated in the last three columns for each 

pair of facilities. For instance, in case I, the MWW-test indicates that at a significance 

level of 0.01, the median of facility 1 (δ1 = 0.8) is significantly greater than that of 

facility 2 (δ2 = 0.5) and facility 3 (δ3 = 0.2) and that the median of facility 2 (δ2 = 0.5) 

is significantly greater than that of facility 3 (δ3 = 0.2). 

In most cases, the p-values computed by MWW-test suggest rejecting the null hypotheses 

at the 1% level of significance. This enables us to conclude that the facility of the most 

conservative manager (i.e. manager 1, δ1 = 0.8) usually attracts more customers than the other 

facilities. Most of the exceptions are due to lack of data. For instance, the yellow scenario (i.e. 

the three facilities remain open) in case IX (ψ = 0.8 and ζ = 0.8), which is unlikely (0.2% of 

iterations barely visible in Figure 3.8).  
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* P(equal) represents the relative frequency of iterations in which the number of arriving  customers is the same 
for all facilities open in each scenario.  
 
H0: The median of the number of arriving customer is the same for all the facilities open; 
against:  

(i) Ha: The median of the number of customers arriving at the most conservative manager’s facility is 
significantly greater than that of the number of customers arriving at the other facility. According to the 
MWW test, H0 can be rejected at significance levels of: a 0.01; b 0.1;  

or 
(ii) Ha: The median of the number of customers arriving at the most conservative manager’s facility is 

significantly lower than that of the number of customers arriving at the other facility, H0 can be rejected 
at a significance level of: c 0.01.  

d the hypothesis cannot be tested because of lack of data: These are scenarios which occur very rarely (see Figure 
3.8). 

 
Table 3.5 Some statistics for the number of customers arriving at each facility during steady-state 

for 1,000 simulations of the model as a function of ψ and ζ  

In case VII, where managers are moderately irrational (ψ = 0.2) and fast decision makers 

(ζ = 0.8), the scenario in which the most reactive manager (i.e. manager 3, δ3 = 0.2), shuts 

down his facility (i.e. dark green scenario) contrasts with the expected behaviour. That is, the 

F1 F2 F1 F3 F2 F1 F2 F3
P(equal)*

P[λ(Fx)=Max(λ)] 51% 48% 75% 24% 84% 13% 48% 39% 14%
Median 61 59 69 51 a 70 50 a 48 42 28 a a a

P(equal)*
P[λ(Fx)=Max(λ)] 57% 41% 77% 22% 88% 12% 54% 36% 10%

Median 63 57 a 69 51 a 72 48 a 51 42 27 a a a
P(equal)*

P[λ(Fx)=Max(λ)] 56% 43% 79% 19% 86% 11% 58% 33% 10%
Median 64 56 a 72 48 a 71 49 a 52 41 26 a a a

P(equal)*
P[λ(Fx)=Max(λ)] 54% 44% 78% 21% 100% 47% 38% 15%

Median 63 57 a 79 41 a 88 32 a 50 41 26 a a a
P(equal)*

P[λ(Fx)=Max(λ)] 67% 32% 88% 12% 89% 11% 57% 37% 7%
Median 73 47 a 87 33 a 82 38 a 53 41 22 a a a

P(equal)*
P[λ(Fx)=Max(λ)] 76% 23% 100% - 100% - 62% 25% 13%

Median 80 40 a 84 36 a 87 33 a 57 35 21 a a a
P(equal)*

P[λ(Fx)=Max(λ)] 39% 60% 56% 42% 86% 14% - 43% 57%
Median 52 68 c 63 57 74 46 a 14 55 60 b

P(equal)*
P[λ(Fx)=Max(λ)] 66% 33% 72% 26% 100% - 11% 67% 22%

Median 69 51 a 105 15 a 104 16 d 54 18 48 a
P(equal)*

P[λ(Fx)=Max(λ)] 82% 18% 100% - - - 100% - -
Median 85 35 a 112 8 a - - 62 40 18 d d d

 2 FACILITIES OPEN 3 FACILITIES OPEN

F1-
F2

F2-
F3

F1-
F3

0.8 0.8
- -0.51% -

0.8

F3

0.5
2.13% -0.79% -

-

-

0.8 0.2
2.25% -1.42%

0.5 0.8
- -0.86%

-

0.5 0.2
0.68% -1.58% -

0.5 0.5
- -1.03%

0.85% -

-

0.2 0.5
0.70% -2.36% -

0.2 0.8
1.30% 3.51%1.12%

Case

I

II

ζ ψ Measure
F1 and F3 F2 and F3F1 and F2 All facilities

0.2 0.2
0.76% 2.94%

IX

III

IV

V

VI

VII

VIII
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less conservative manager of the two still active managers, who is manager 2 (i.e. δ2 = 0.5), 

usually captures the largest market share.  

According to Table 3.5, the scenarios in which all remaining facilities serve on average 

the same number of customers in steady state  have very little chance of occurring, no matter 

how irrational or how fast the managers are (see P(equal)). It is worth mentioning that this 

scenario does not necessarily imply customers being equally split between all the facilities. A 

configuration with groups of alternating customers is another possibility which can yield this 

scenario. 

Table 3.6 contain the minimum, maximum and average closure times of facilities 

depending on which and how many facilities close, for the same cases discussed above. 

Recall that for these cases, the scenario where the three facility close is unusual. For those 

scenarios where only one facility closes, we also compute aggregate values (see Aggregate in 

Table 3.6): the minimum and the maximum closure times are respectively the lowest 

minimum value and the highest maximum value between the three possible scenarios, while 

the average is the weighted average of the three scenarios. For instance, in case 1 when only 

one facility closes, this occurs between periods 19 and 477, on average in period 46. When 

two facilities close, the minimum, maximum and average closure times are given according to 

the order in which these facilities closed, no matter which facility close first. For instance, in 

case 1, when two facilities close, the first does so anywhere between periods 21 and 193, on 

average in period 47, and the second one between periods 25 and 193, on average in period 

55. 

We can observe that for all cases the most likely scenarios (recall Figure 3.8) have highly 

asymmetric distributions of closure time of the facilities. The exceptions are the scenarios 

where two facilities close in cases II and III and the one where facility 1 is the only closing in 

case VIII. These scenarios have a low probability of occurrence as can be seen in Figure 3.8. 

Note that, except for case I, the average closure time of the first facility closing in the 

scenario where two facilities do so is lower than when only one facility closes. Thus, we can 

say that in these cases the first closure of a facility occurs, on average, earlier in the scenarios 

when two facilities close than in those where only one facility shuts down.  
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   1 FACILITY CLOSING 2 FACILITIES 

CLOSING 

Case ζ ψ Measure F1 
Closing 

F2 
Closing 

F3 
Closing Aggregate First 

Closing 
Second 
Closing 

I 0.2 0.2 
Min 31 21 19 19 21 25 

Average 35 44 51 46 47 55 
Max 47 408 477 477 193 193 

II 0.2 0.5 
Min 31 22 20 20 25 26 

Average 44 46 57 52 28 30 
Max 401 499 492 499 30 33 

III 0.2 0.8 
Min 32 22 20 20 23 26 

Average 36 52 71 61 29 36 
Max 53 490 464 590 35 44 

IV 0.5 0.2 
Min 28 16 13 13 13 17 

Average 53 85 80 80 31 44 
Max 384 395 467 467 306 315 

V 0.5 0.5 
Min 28 17 13 13 13 18 

Average 34 106 96 91 39 60 
Max 51 488 483 488 384 472 

VI 0.5 0.8 
Min 28 18 13 13 14 19 

Average 32 87 110 93 80 175 
Max 38 485 488 488 462 497 

VII 0.8 0.2 
Min 28 14 12 12 12 15 

Average 164 38 40 43 31 111 
Max 440 257 330 440 392 489 

VIII 0.8 0.5 
Min 32 16 12 12 12 17 

Average 101 90 51 55 47 172 
Max 169 446 348 348 379 498 

IX 0.8 0.8 
Min - 24 9 9 8 17 

Average   167 38 47 44 173 
Max - 290 328 328 322 496 

Table 3.6 Minimum, maximum and average closure time of facilities for 1,000 simulations of the 
model as a function of ψ and ζ 

Recall that when managers take decisions slowly (cases I, II and III), the scenarios of two 

facilities closing are very rare (recall blue shades in Figure 3.8). Conversely, these scenarios 

are more likely in those cases where managers take decisions quickly (cases VII, VIII and 

IX). In Table 3.6 we can observe that when these scenarios occur, the second facility usually 

shuts down soon after the first did so for those cases where managers are slow decision 

makers (cases I, II and III). In contrast, the second facility takes generally significantly longer 

to close, when manager are fast decision makers (cases VII, VIII and IX). 
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In those cases where managers are either slow or moderately fast decision makers (cases I 

to VI) and only one facility close, facility 1 (whose manager is the most conservative δ1 = 

0.8) is the least likely to close, but when it does, its average closure time is the lowest. 

The main conclusion we can extract from the above experiment is the fact that the most 

conservative managers capture the largest market share and that their facilities are less likely 

to shut down. In order to validate whether this conclusion also applies for different allocations 

of the three kinds of managers around the three facilities, this experiment was also performed 

for other combinations of the sequence {0.2, 0.5, 0.8} of the managers’ coefficients of 

expectations. That is, we move the different managers (i.e. reactive, hesitant and conservative) 

around the three positions in the model (facilities 1, 2 and 3). The results we obtain do not 

differ much from those presented above and yield similar conclusions about the behaviour of 

reactive and conservative managers. 

We repeated the experiment with the same combinations of the managers’ coefficient of 

expectations for another combination of the customers’ parameters. We have tested all the 

extreme and intermediate cases regarding the customers’ attitudes toward the new 

information. Again, the main insights about the market share and the probability of the 

conservative manager’s facility remain valid. One significant observation is that the scenario 

in which the three facilities are still open at time 500 is much more frequent when customers 

are either hesitant or very conservative regarding new information, no matter its provenance. 

Conversely, the scenario where the conservative managers achieve a monopoly position is 

more likely when customers are more reactive with respect to their own information and more 

conservative regarding that of their neighbours. 

3.4.2.3 Influence of the benchmark on the average sojourn time of the system. 

Next we study the impact of the exogenous market reference, which the managers use as 

benchmark to adjust their service capacity, on the facilities’ performance and the aggregated 

performance of the system. We have run 1,000 iterations of the model for thirty-eight 

different values of the reference average sojourn time (τMR) (ranging from 0.3 to 4.0) and 

varying also the parameters ψ and ζ.  All the other model parameters remain the same as in 

Table 3.3: δ1 = 0.8, δ2 = 0.5, δ3 = 0.2, α = 0.3 and β = 0.7. Each simulation is run for 500 

time periods and the weighted average sojourn time in steady state is computed for the last 40 

time period. All the combination of parameters ψ and ζ yield similar distributions and 
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tendencies to those shown in Figure 3.9 which corresponds to the case with ψ = 0.8 and ζ = 

0.5.  

     

Figure 3.9 Evolution of the distribution of average sojourn time of the system in steady-state 
generated through 1,000 simulations of the model as a function of the benchmark of sojourn time 
(τMR). Managers and customers are allocated with different initial expectations and the following 

parameters: δ1 = 0.8 , δ2 = 0.5 , δ3 = 0.2 , ψ = 0.8 and ζ = 0.5 w.r.t managers and α = 0.3 and β = 0.7 
w.r.t. customers.   

When analysing the typical behaviours exhibited by the system and its agents, we 

mentioned that the benchmark of the average sojourn time is an attractor of the system since 

the interaction between managers and customers causes the weighted average sojourn time of 

the system to converge to this benchmark. Figure 3.9 enables us to generalise this claim. In 

this figure we can observe that the weighted average sojourn times of the system in steady 

state are closely clustered around the benchmark, whatever the value of this benchmark. This 

means that for a given value of the benchmark, the average sojourn time converges to this 

value. The managers’ and customers’ profile only influence the time the system takes to 

converge. 

The small variations in average sojourn time visible in Figure 3.9 are precisely due to this 

characteristic of convergence and to the low probability of long transient periods. The higher 

the benchmark, the greater the dispersion of the weighted average sojourn times. 
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3.5 Conclusions 

In this chapter we have extended the CA model proposed by Delgado et al. (2011a) and 

Sankaranarayanan et al. (2011) by incorporating the service rate as an endogenous variable. 

That is, we have endowed the managers with the ability to adjust the service capacity of their 

facility. In this sense we introduce additional parameters into the model which characterise 

the managers’ profile and define the decision rule they apply to adjust the service capacity. 

Managers are also provided with a memory which enables them to update their expectations 

regarding the number of customers arriving at their facilities each period. For this purpose, 

coefficients of expectations (δ1, δ2, δ3) are allocated to managers. Additionally, we have 

characterised the managers depending on the extent to which they account for their previous 

decisions when deciding by how much to adjust capacity and the speed at which they take 

decisions. The first attribute indicates the level of irrationality of managers when the decision 

making involves delays. With the purpose of measuring this level we have introduced a 

parameter called “coherence factor” (ψ), which captures the proportion of the managers’ 

previous decisions, which have not been yet implemented, that they consider when making 

decisions. Concerning the other attribute, i.e. the speed, we incorporate another parameter to 

capture the proportion of the desired adjustment they decide to implement (ζ).  

In order to study the collective behaviour which emerges from the interaction between 

customers and managers over time, we have run the simulation model for different 

configurations of parameters using the same initial conditions. We have also performed some 

experiments to analyse the sensitivity of the model to the different parameters involved in the 

system. We conclude that the managers’ decisions are strongly “path-dependent”, in the sense 

that two or three managers can have the same profile, but behave very differently from each 

other due to the initial memories allocated to managers and customers.  

Another conclusion is that the facility of the most conservative manager usually achieves 

the highest market share. Additionally this facility is the most likely to remain open until the 

end of the simulation period (i.e. it is less likely that this facility shuts down).   

The analysis of the typical collective behavioural patterns which emerge when the system 

reaches steady-state and the third experiment which concerns the benchmark of sojourn time 

enable us to conclude that this benchmark is an attractor point of the system. This means that 

the average sojourn time of the system will converge to the benchmark over time. 
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Nevertheless, the rate at which this convergence occurs depends on the managers and the 

customers’ profiles. In some cases, the convergence period can be very long. 

This work can be extended by analysing the sensitivity of the model to the customers’ 

parameters and the delays involved in the implementation of the managers’ decisions. Further 

work in this field includes adding uncertainty parameters to the customers and managers’ 

decision rules (as was done in the previous chapter for the customers) and assessing the 

influence of other service factors in the customers and managers’ decisions, such as price and 

quality. 
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4 MANAGING CAPACITY AT A SERVICE FACILITY: AN 
EXPERIMENTAL APPROACH  

ABSTRACT 

In this chapter, we perform an experiment through which we address the capacity management of a 

service facility. This experiment was carried out using a computational user interface based on a 

system dynamics model. The model represents a queueing system with one facility and an infinite 

number of virtual customers who decide whether or not to patronise the facility. The facility has a 

manager whose role is played by human subjects. The subjects were recruited among undergraduate 

and master students in Finance, Management and Economics at the University of Lausanne. Their 

goal was to maximise the profits of the service facility by adjusting the service capacity. The capacity 

adjustment process implies certain implementation times. These are the capacity delivery and 

dismantling delays which apply when subjects decide either to add or withdraw capacity, respectively. 

There are also delays due to the time customers take to update their perceptions. Subjects were aware 

of the delays involved in the capacity adjustment process, but not of those concerning customers. 

Additionally, the subjects were provided with information regarding the number of customers waiting 

for service (i.e. backlog of work), the available service capacity, the utilisation rate of the service 

facility and all the information regarding cost, revenue and profits per period as well as the 

cumulative profits. We use the results to study the way subjects in a laboratory environment face a 

situation in which they must adjust the capacity of a service facility considering that customers do not 

like to wait for service. The results show that the subjects can be classified as belonging to one of 

three types of managers labelled as: gradual, lumpy and random investors. Our analysis also shows 

that as the delivery and dismantling delays increase, the cumulative profits achieved by the subjects 

decrease significantly.  

KEYWORDS: Queueing systems, capacity adjustment management, system dynamics 

(SD), experimental economics, potential customers and customer base. 
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4.1 Introduction 

In chapter 3, we used CA to model the way managers of a service facility adjust its capacity 

based on their expectations regarding the future customer arrivals. These managers knew the 

number of customers arriving at their facilities and used this information to update their 

expectations. Now we use a SD model, which was proposed by van Ackere et al. (2010) and 

subsequently adapted by Delgado et al. (2011c) (see Appendix D), as an experimental 

platform to collect information about how subjects playing the role of a manager in a 

laboratory environment, manage the capacity of a service facility. We build a computational 

graphical user interface through which subjects take decisions to adjust the capacity of a 

garage (i.e. the service facility) each month (i.e. the time unit) 

We apply the protocols of experimental economics (Friedman and Sunder 1994) to 

perform the experiment and control the exogenous factors which could bias the results. 

Experimental economics is a methodology applied for collecting data from human subjects 

and studying their behaviour in a controlled economic environment (Friedman and Sunder 

1994). In behavioural economics SD models have been widely used to simulate socio-

economic environments. Some examples include Sterman (1989a and 1989b), Kampmann 

(1992) and Moxnes (2000). For more details about how SD models are used to carry out 

laboratory experiments, see Arango et al. (2012).  

Few experiments in economics and management science study queueing problems. 

Rapoport et al. (2004) formulated a queueing problem with endogenously determined arrival 

rates and state-dependent feedback as a non-cooperative n-person game. These experiments 

are focused on studying behaviour from the point of view of the customers. Subjects, playing 

the role of car owners who need to take their car to a garage for the emissions control, should 

decide each experimental trial whether or not to join the queue. If they choose to join it, they 

also should decide when to do so. The authors first analyse the strategies which lead to the 

equilibrium solutions for the game. Then, they perform an experimental study in order to 

identify if customers, making individual decisions, achieve a coordinated solution for this 

game in large groups. Finally, they characterise this solution and determine if it converges to 

the equilibrium. Each player was provided with information about his arrival time, his payoff 

for the trial, his cumulative payoff, his waiting time and the number of players who arrived at 

the same time for service. Players were not provided with information about the other 

members of the group. Subsequently Seale et al. (2005) extended this work to non-
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cooperative n-person games with complete information (i.e. including the information of the 

other group-members). Later Stein et al. (2007) and Rapoport et al. (2010) performed other 

experiments to study queueing systems with endogenous arrival rates and batch service. They 

analyse how customers decide whether to join a queue and when to do so.   

In this chapter we focus on the manager’s role. We study the capacity management of a 

service facility in which the managers’ decisions take time to be implemented and customers 

take time to update their perceptions. Our aim is to analyse how subjects playing the role of 

managers make decisions regarding the capacity of a service facility in which customers must 

wait to be served and the customers’ satisfaction depends on this wait. Additionally we want 

to study the effects of the delays involved in the system on the managers’ decisions. The 

problem is portrayed as the management of a garage where customers must make an 

appointment to take their cars. The customers’ wait runs from the time they make their 

appointment to the time their car is serviced. The task of the subjects is therefore to manage 

the capacity (i.e. add or remove capacity) of the garage in order to satisfy their current 

customers and attract potential customers. When subjects decide to increase capacity, the 

capacity orders materialise after a delivery delay. Similarly, the retirement decisions involve a 

dismantling delay. We hypothesise that, when making their decisions, subjects only partially 

account for past decisions which have not yet been implemented. 

Our results indicate that the subjects can be classified into three types of managers 

according to the way in which they adjust the service capacity: those who make gradual 

investments in service capacity; those who make lumpy investments; and those who overreact 

to the customer behaviour by adding and removing capacity without any logic. The 

autocorrelation analysis of the capacity adjustments, which subjects made each period, shows 

that these adjustments strongly depend on the decisions taken one period before. In order to 

determine the way subjects adjust service capacity, we propose a decision rule which 

estimates the capacity adjustment decision using a multivariate linear regression in terms of 

the current backlog, the currently available service capacity and past decisions which have not 

yet implemented. The statistical tests for the significance of the estimated parameters indicate 

that the backlog and the available service capacity influence the capacity adjustment 

decisions.  Finally a statistical comparison between treatments, in which the length of the 

delays involved in the system is varied, indicates that the delivery and dismantling delays 

have a significant impact on the cumulative profits achieved by the subjects.  



96        Behavioural Queueing: Cellular Automata and a Laboratory Experiment 

 

Some of the results obtained from this experiment have been published in Delgado et al. 

(2011c). 

The remaining sections of this chapter are organised as follows: In the next section, we 

briefly describe the SD model used in this chapter focusing on the adaptations made to the 

original model developed by van Ackere et al. (2010). In section 4.3 we explain the way we 

carry out the experiment following the protocols of experimental economics (Friedman and 

Sunder 1994). In the last section we discuss the results. We first provide a descriptive analysis 

of the way subjects take their decisions. Next, we test the experimental hypothesis and 

analyse the difference treatments. 

4.2 A Service Facility Management Model 

The queueing model used in this chapter was originally proposed by van Ackere et al. (2010) 

where a full explanation of the model can be found. We use this model as a computational 

platform to perform a laboratory experiment with human subjects. Thus, we will explain how 

we have adapted this model for the experiment.  

van Ackere et al. (2010) use SD to model the feedback and delay structure involved in the 

relationship between customers and the manager of a service facility. Customers decide 

whether to join or not the facility for service, while the manager adjusts the service capacity 

in order to attract more customers. This structure is similar to the one explained in the 

previous chapter (see Figure 3.1). Nevertheless, the structure of the system differs in two 

main aspects: 1) there is only one facility; and 2) two groups of customers are assumed: 

current and potential customers. The number of customers queueing is modelled as the 

backlog of work which the facility has to serve over the following periods. Likewise, the 

assumption of a captive market (i.e. customers have to join the facility) is also relaxed in this 

chapter by modelling customers who can decide whether or not to use the facility for service.  

Another difference with regard to the previous chapters is the sojourn time which 

customers experience. In the previous chapters we estimated an average sojourn time of 

customers at the facilities in a transient state (i.e. arrival rates might momentarily be larger 

than the service rates) using a non-linear equation in terms of the arrival and service rates. 

Now, given the continuous nature of SD models, the estimate of the sojourn time is simpler. 
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This sojourn time is considered to be the time between the moment customers make an 

appointment for service and the moment their service is completed. Once the customers make 

their appointment they become part of the backlog of customers waiting for service. Thus, the 

sojourn time of these customers depends on the service rate (µt) of the facility. We compute 

the sojourn time (Wt) each period as the ratio between the backlog of customers (i.e. queue 

Qt) and the service rate (µt): 

t

t
t

Q
W

µ
=       (4.1) 

The service rate depends on the service time and the available service capacity. The 

service time is assumed to be exogenous and fixed, while the available service capacity is 

endogenous and depends on the manager’s decisions. The latter is explained below. 

Current customers make up the customer base of the facility; they periodically patronise it 

as long as they are satisfied. Their level of satisfaction depends on how their expected sojourn 

time ( tW
•

) compares to a market reference (τMR). This market reference has the same 

interpretation as the benchmark used in the previous chapter, but now it also applies to the 

customers. All current customers deciding to join the facility at given time t base this decision 

on the same expected sojourn time ( tW
•

). This expectation is updated using the sojourn time 

(Wt) experienced by the customers served each period through the following equation: 

 11 1 −
•

−

•
−+= ttt WWW *)(* ϕϕ      (4.2) 

where 1/ϕ is assumed to be the time taken by customers to adapt their expectations. So 

current customers compare their expected sojourn time to the market reference and decide 

whether or not to stay with this facility.  

Potential customers are the prospects for the facility. That is, those customers who the 

manager envisages as potentially attractive to the business. They can be either former 

customers, who left the facility due to dissatisfaction, or new customers who require the 

service and are looking for a facility. Potential customers decide whether or not to become 

current customers of the facility depending on their perceptions about the sojourn time. They 

form their perceptions through the word of mouth effect using Equation (4.2). Updating 

perceptions based on the reputation of a certain facility often requires more time than when 
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based on one’s own experience. Indeed, the information about this facility is less readily 

available to potential customers than to current customers. Thus, we assume that the time 

required by potential customers to adapt their expectations is longer than or equal to that of 

the current customers. 

While the current customers’ expectations determine their loyalty to the facility, the 

potential customers’ perception defines whether they will try the facility. The lower the 

sojourn time expected by current customers, the more loyal they are, whereas the higher this 

expectation the more customers will leave the customer base. Regarding potential customers, 

the lower their perceptions, the more they will try out the facility. The rates at which new 

customers join and current customers leave are modelled using nonlinear functions of the 

satisfaction level. van Ackere et al. (2010) discuss some alternatives to model these functions.  

The manager can adjust the service capacity of his facility whenever he wishes, but this 

adjustment involves an implementation time (e.g. delivery and retirement delays). van Ackere 

et al. (2010) represent this time using an information delay (Sterman 2000): after the manager 

estimates the required capacity, any needed adjustment is implemented gradually. This is a 

simplified view of the delay structure.  In a SD context, this kind of delays is better modelled 

through material delays, which capture the real physical flow of the capacity (Sterman 2000). 

Once the adjustment decision has been made, its implementation is not immediate. We 

deviate from van Ackere et al. (2010) by incorporating this material delay structure in the 

model, using the stock and flow diagram of Figure 4.1. In this way, we can model how the 

manager accounts for his previous decisions, which have not yet been implemented, when 

taking his next decision.  

 

Figure 4.1.  Stock and flow diagram for the capacity adjustment management of a service facility. 

The capacity adjustment process is depicted in Figure 4.1 by capacity orders and 

retirement decisions. On the one hand, when the manager decides to add capacity (c.f. 

capacity orders in Figure 4.1), these orders accumulate as capacity on order (COt) until they 
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are available for delivery. After a capacity delivery delay, the capacity on order is delivered at 

the facility and placed as retained service capacity (RSCt).  

On the other hand, the capacity retirement decisions also take time to be carried out. In 

this sense, once the manager decides to withdraw capacity, this capacity is removed from the 

retained service capacity and earmarked as capacity to be retired (CbRt), as shown in Figure 

4.1. This capacity remains available for service until the capacity retirement delay expires. 

Once this occurs, this capacity is effectively retired from the facility.  Thus, the available 

service capacity (ASCt) at the facility at time t is made up of the retained service capacity 

(RSCt) and the capacity to be retired (CbRt). This relation is shown in Figure 4.1 and given by 

the following equation: 

ASCt = RSCt + CbRt     (4.3) 

As the available service capacity (ASCt) increases, so does the service rate. Consequently 

the backlog of work will decrease more quickly and the customers’ wait will be lower. This 

results in less customers leaving and more prospects joining. The opposite logic applies when 

the available service capacity (ASCt) decreases.  

The behaviour generated by the model in equilibrium has been discussed in Delgado et al. 

(2011c). In that paper the authors proposed two decisions rules to model the capacity 

adjustment decisions. The system behaviour generated by these two approaches was 

compared to the one observed in the laboratory. Here we focus on analysing how the subjects 

use the available information about the service facility and customer behaviour when making 

capacity adjustment decisions. We propose another decision rule and analyse statistically 

whether it accurately captures the subjects’ decision process. 

4.3 A Service Facility Management Experiment 

The experiment reported in this section was developed to collect information about the way 

human subjects, taking on the role of a manager, face a situation in which they must adjust the 

capacity of a service facility. This experiment addresses the capacity management of a service 

facility, where a certain delay between applying for the service (making an appointment) and 

receiving it, is considered normal. Examples include car maintenance (as in this experiment) 

and hairdressers. This experiment is based on the simulation model described above and 
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performed using a computational graphical interface developed using the Forio Simulation 

Platform (Forio Online Simulations, http://forio.com/simulate). Forio Simulation is an online 

platform which enables us to easily create graphical user interfaces based on simulation 

models. 

The experiment portrays the management of a large garage for repair and maintenance of 

cars. The user interface is shown in Figure 4.2. This is divided in two parts. The first part is 

the input panel where the subjects indicate their decisions regarding the service capacity. And 

the second part shows the information of the garage which is given to the subjects. This 

information is updated each time they take a decision, as shown in Figure 4.2 for a subject 

who is half-way through the experiment (time=50). 

 

Figure 4.2 Experimental interface for the service capacity adjustment of a service facility 

The garage is configured with an existing customer base as well as an infinite number of 

potential customers who are not currently using the garage, but might consider doing so in the 

future. In period 1 there is a backlog of 50 cars and the garage is endowed with an initial 

capacity to serve 25 cars simultaneously. Each car required minimum 1 month to be serviced 

(i.e. the time between the appointment and the completion of service). Servicing a car yields a 

revenue of 1$. Service capacity entails a fixed cost of 0.5$ per month independently of 

whether or not it is being used. Table 4.1 contains the other relevant parameters and initial 

http://forio.com/simulate
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conditions. Note that although SD models are continuous, as mentioned above, we perform 

this experiment using discrete time periods. Each experimental period represents one month 

in the problem context. 

The experimental design considers five treatments where we vary the different delays 

implied in the decision process. We want to test if these delays have an impact on the profits 

the manager achieves. We hypothesise that the delay structure, inherent to the system, affects 

how the manager decides to adjust capacity. This delay structure includes the delays the 

manager knows (i.e. the lags in capacity adjustment), and those which are unknown to him 

(i.e. the time required by potential and current customers to update their perceptions). Table 

4.2 summarises the conditions of each treatment. 

State Variables Value Unit 
Initial Customer base 175 People 

Initial Backlog (i.e. Queue) 50 People 

Capacity on order 0 People / month 

Initial Service capacity 25 People / month 

Capacity to be retired 0 People / month 

Perceived waiting time of current customers 2 Months 

Perceived waiting time of potential customers 2 Months 

Exogenous Variables Value Unit 
Service frequency 0.15 1 / month 

Market reference waiting time (τMR) 2 Months 

Delays Value Unit 
Capacity delivery delay 4 Months 

Capacity retirement delay 2 Months 

Perception time of current customers (1 / ϕc) 2 Months 

Perception time of potential customers (1 / ϕp) 4 Months 

Table 4.1 Initial configuration of the model used to represent the management of a garage 

The purpose of treatments A and B is to study the impact of the length of delays about 

which the manager does not know when taking decisions about the service capacity, i.e. the 

time customers take to update their expectations about the garage.  Treatments C and D 
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address those delays of which the manager is aware, i.e. the time required to implement his 

capacity adjustment decisions. 

Treatment 
Current 

customers 
Delay  

Potential 
customers 

Delay  

Time to 
increase 
capacity 

Time to 
decrease 
capacity 

Number of 
subjects* 

Base Case 4 2 4 2 33 (3) 
A 10 2 4 2 31 (1) 
B 6 4 4 2 32 (3) 
C 4 2 8 4 31 (5) 
D 4 2 2 1 30 (1) 

* The first number is the total number of subject assigned to the treatment, while the number 
in parenthesis is the number of subjects who closed down the facility before period 100 

 
Table 4.2 Treatment conditions. 

4.3.1 Experimental Protocol 

We have designed this experiment based on the protocols from experimental economics (e.g. 

Smith 1982, Friedman and Sunder 1994). This experiment was conducted in the informatics 

laboratories of the School of Business and Economics of the University of Lausanne. Subjects 

were allocated across eleven experimental sessions according to their availability. Each 

session involved around sixteen subjects and lasted on average 2 hours, including the time for 

preparing the lab and collecting results. Two facilitators supervised each session.  

Upon arrival at the laboratory, the subjects were allocated to a PC and separated from their 

neighbours by another PC. Communication between the subjects was forbidden. Once they 

were seated, we provided them with written instructions and a consent form, which they had 

to sign before starting the experiment. The instructions were quite simple and provided 

subjects with a short explanation of the system that they had to manage in the experiment and 

with all the information which they had available to carry out their task. These instructions 

can be found in the appendix of Delgado et al. (2011c) (see Appendix D).  

Before starting the experiment, a short introduction was presented to the subjects with the 

aid of a Power-Point presentation. We explained the interface and the tasks they should 

perform during and after the experiment.  
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4.3.1.1 Subjects 

The sample is drawn from undergraduate and master students in Finance, Management and 

Economics from the University of Lausanne. We invited subjects to participate in an 

experiment designed to study decision making in a service industry. The students were 

motivated to participate in the experiment by the possibility to earn up to 80 Swiss Francs, 

depending on their performance. We received about four-hundred replies and recruited one-

hundred and fifty-seven subjects following the principle of “first come, first served”. The 

subjects were allocated across the five experimental treatments attempting to keep 

homogenous samples according to the participants’ profile. Each treatment had at least thirty 

participants.  

4.3.1.2 The subjects’ task 

The subjects’ objective was to maximise the cumulative profits of the garage over 100 

experimental periods (i.e. months). Their task was therefore to manage the service capacity of 

the garage to satisfy their existing customers and attract new ones. Subjects should decide 

each period whether to adjust or not the service capacity and by how much. The capacity 

adjustment implied either to add or remove capacity. When subjects decided to adjust 

capacity they could use the sliders in the first square (Your decisions) of Figure 4.2  or write 

their decision in text box on the right side of the sliders. Subjects were informed that their 

decisions would not materialise immediately. They were aware of the delivery and 

dismantling delays of the treatment (see Table 4.2) they had been assigned to. The experiment 

ended once the subject made the last decision in period 100 or when the available service 

capacity reached 0, i.e. the subject shut down his facility. Subjects who shut down the facility 

before time 100, will not be considered in the statistical analysis and when comparing 

different treatments 

Subjects were asked to register each decision in writing to avoid loss of data in case of 

trouble during the experiment (e.g. a power cut, an error on the online platform, among 

others).  

4.3.1.3 The available information 

To help subjects make these decisions we provided them with information about the system 

(see Figure 4.2). Subjects had information about the number of customers currently waiting 

for service or whose car was currently being serviced (referred to as the backlog). They knew 
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the current service capacity and the utilisation rate of this capacity. This information was also 

given in a graphical way so that they could observe its evolution. Additionally they could 

observe the current revenue, the capacity costs, the profit per period and the cumulative profit.  

4.3.1.4 Monetary rewards 

At the end of the experiment subjects received a reward which consisted of two parts. If they 

pursued the experiment until the end, they received a guaranteed participation fee of 20 CHF. 

Additionally, depending on their performance, subjects could receive a bonus which varied 

between 0 and 60CHF. The performance was measured through the total profit they achieved 

at the end of the experiment. Subjects knew beforehand the payoff scale linking their profits 

to their bonus.  

4.4 Experimental Results 

Based on the results we identify three groups of subjects whose decisions yield similar 

behavioural patterns. In the base case, thirteen subjects are classified as group 1, nine subjects 

as group 2 and eleven subjects as group 3. Figure 4.3 illustrates the capacity adjustment 

decisions of a typical subject of each group as well as the evolution of the backlog and the 

available service capacity over the 100 periods. Negative capacity adjustment decisions 

represent capacity retirement decisions.   

During the first six periods the backlog increases. This rise is independent of subjects’ 

decisions and occurs because of the initial conditions which imply a 2 month sojourn time for 

the initial backlog of customers. This corresponds to the market reference and the initial 

perception of both current and potential customers. Hence, this configuration attracts new 

customers to the facility for the first periods. As the service capacity remains constant during 

these periods (capacity orders placed in period 1 are not fulfilled until period 5), the backlog 

of customers rises. Consequently, the sojourn time also increases. This affects the customers’ 

perceptions, resulting in a drop in the backlog from period 6, as shown in Figure 4.3.  
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Figure 4.3 Typical behaviours observed in the lab. 

Available Service Capacity
Backlog (Queue)

SUBJECT 5: Score = 2,551 (Gradual investor)

SUBJECT 12: Score = 2,207 (Lumpy investor)

SUBJECT 3: Score = 719 (Random investor)
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Most subjects initially decide to increase capacity and later overreact to the decreasing 

backlog by removing capacity. We can interpret these first reactions as a learning process in 

which subjects are trying to adapt to the system behaviour during a transient period. After this 

period, the three groups of subjects behave differently. The first group is composed of those 

subjects who overreact to the initial increase of the backlog but quickly switch to making 

repeated small decisions to gradually adjust capacity over time (e.g. Subject 5). Most of these 

decisions concern capacity orders (i.e. positive capacity adjustment decisions). Consequently, 

the garage’s available service capacity for this kind of managers increases exponentially over 

time. The backlog increases at the same rate as the available service capacity. Thus, the 

sojourn time remains stable and the garage attract more customers. We consider that these 

subjects learn quickly from the system behaviour. This group achieved the higher scores for 

the experiment. We call these subjects “gradual investors”. 

The second group (e.g. Subject 12) represents those subjects who, after an overreaction to 

the initial backlog, make fewer but more aggressive capacity adjustment decisions than the 

subjects of the first group. Moreover, they continue to overreact to the evolution of the 

backlog over time. Hence, these subjects alternately decide to increase and decrease capacity 

(the capacity adjustment decisions are positive and negative in Figure 4.3). These decisions 

result in an oscillating pattern for both the available service capacity and the backlog. The 

subjects in this group are called “lumpy investors”. They decide to add chunks of capacity 

when the backlog increases. But at such time the average sojourn time is very high, which 

affects customers’ perception. This causes some customers to leave. Hence when the capacity 

orders materialise (after the delays involved in the decision process) the backlog of customers 

is already decreasing and this new capacity speeds up this process. The opposite logic occurs 

when the backlog is low and the subjects decide to decrease capacity.  Given that the capacity 

orders are generally higher than the retirement decisions, the available service capacity 

increases over time, but more slowly than for the first group.  

The last group includes subjects who, even after the transient period, continue to overreact 

significantly in both directions to the evolution of the backlog (e.g. Subject 3). We label these 

subjects “random investors”. Given this behaviour, we conclude that this group of subjects is 

unable to handle the delay structure inherent to the system. They performed poorly; they 

achieved the lowest payoffs and occasionally found themselves with zero service capacity 



4.  Managing Capacity at a Service Facility: an Experimental Approach        107 

 

before the end of the experiment.  In the remainder of the chapter we will exclude from the 

analysis those subjects who reached zero service capacity before period 100. 

Figure 4.4 shows the autocorrelation function (ACF) of the capacity adjustment decisions 

of some typical subjects. These graphs portray the autocorrelation of the subjects’ decisions 

with the previous decisions at different time lags. For nineteen subjects out of 30, the first 

order lags are significantly greater than zero at the 5% level of significance, as shown in 

Figure 4.4 for subjects 3, 5, 11, and 30 (the first lag is outside the shaded region). This means 

that the decision which subjects make at time t is positively correlated with the one they made 

one period earlier (i.e. time t-1). This outcome suggests that the decisions taken one period 

earlier by subjects should be taken into account when estimating a heuristic to portray the way 

the subjects made their decisions. Note that the first order lags of subjects 12 and 18, who 

belong to the second group, are significantly different from zero, but they have other 

significant higher order lags. For instance, the eighth order lag of the ACF of subject 12 and 

the second, sixth, eighth and tenth order lags of subject 18. Similarly subjects 3, 5, 11 also 

present significant higher order lags. These significant higher order lags constitute an 

evidence of the presence of oscillating patterns in the subjects’ decisions, such as shown in 

Figure 4.3. The lags within the shaded region are not significantly different from zero. For 

only four subjects out of 30 are all the lags non-significant. Three of these belong to the first 

group (gradual investors) and the fourth one to the second group (lumpy investors). 

Next we propose a heuristic to model the way subjects made their decisions. This heuristic 

is formulated as a multivariate regression model which considers the existing autocorrelation 

in the capacity adjustment decisions of the subjects. First we estimate the parameters of this 

regression model. Next we incorporate this heuristic in the SD model and simulate it using the 

estimated parameters for each subject. We compare the simulated behaviour to the one 

observed in the laboratory.  



108        Behavioural Queueing: Cellular Automata and a Laboratory Experiment 

 

 

Figure 4.4 Correlograms of observed capacity decisions of some subjects. 

4.4.1 Estimating a Decision Rule for the Capacity Adjustment 

Following Delgado et al. (2011c), we assume that the manager attempts to adjust his capacity 

to a desired state, which is based on his estimate of the backlog. The manager determines his 

desired service capacity (DCt) by computing the ratio between his perception of the backlog 

of work (EQt) and a market reference of the sojourn time (τMR). This market reference is 

assumed to be the same that current and potential customers use to base their decisions.  

SUBJECT 11 (Gradual investor)

SUBJECT 12 (Lumpy investor) SUBJECT 18 (Lumpy investor)

SUBJECT 03 (Random investor) SUBJECT 30 (Random investor)

SUBJECT 5 (Gradual investor)
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The perception of the backlog of work (EQt) can be estimated in different ways.  In 

behavioural simulation there are several formulations to form expectations from recent 

observations. Sterman (1987, 1989) explains some of the most used formulations in SD. 

Adaptive expectations (Nerlove 1958), which is the most typical of these formulations, is the 

one van Ackere et al. (2010) use to model the manager’s perception. Delgado et al. (2011c) 

test both adaptive and static expectations (Sterman 1989). Static expectations only consider 

the most recent information the manager has about the backlog of work (Qt).  

At the end of the experiment, we asked subjects to complete a questionnaire about the 

information they used most to take their decisions and how they used this information. 80% of 

the subjects considered the information about the backlog when taking their decisions. Thus, 

we hypothesise that the manager’s desired service capacity is determined as a function of the 

backlog of work (Qt), 

DCt = f(Qt).       

The goal of the manager is to maximise his profits and to do so he should satisfy his 

customers by avoiding high sojourn times. Thus we assume that the manager has his own 

reference sojourn time which does not necessarily equal the market reference. Then, a 

function for the desired service capacity of the manager could be: 

DCt = δ* Qt           (4.4) 

where 1/δ represents the reference average sojourn time of the manager. Once the manager 

knows his desired service capacity, he compares this value to what he considers to be his 

available service capacity in order to decide how much service capacity to order or to 

withdraw (recall that some of the managers’ past capacity decisions are still to be 

implemented). When his desired capacity exceeds the current capacity, the manager decides 

to order capacity. When the opposite occurs he decides to remove capacity.  

We formulate the hypothesis that subjects include their previous decisions, which have not 

been yet implemented, into their estimate of available service capacity. These not yet 

implemented capacity adjustments (ΔCt) are given by the difference between the capacity on 

order (COt) and the capacity to be retired (CbRt) at time t: 

ΔCt = COt – CbRt     (4.5) 
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And the future service capacity (FSCt), once all past decisions (ΔCt) are implemented, 

will be: 

FSCt = ASCt + ΔCt     (4.6) 

Previous research in capacity management suggests that decision makers often take into 

account only a fraction of the supply line when managing capacity adjustments (Sterman 

1989a, 1989b. Hence, we incorporate the parameter ψ to represent the proportion of the not 

yet implemented previous decisions which the manager accounts for when taking his next 

decision. As in the previous chapter, we call this parameter the “coherence factor” and its 

interpretation is the same. So, the future service capacity (FSCt), which the manager takes 

into account when taking capacity adjustment decisions, is modelled as follows: 

FSCt = ASCt + ψ* ΔCt       (4.7) 

Thus the perceived gap (PGapt) between the desired service capacity and the future 

service capacity managers face each period is: 

PGapt = DCt – FSCt        (4.8) 

Replacing DCt and FSCt using equations 4.4 and 4.7, we obtain: 

PGapt = δ* Qt – (ASCt + ψ* ΔCt)     (4.9) 

A manager might not wish to, or be able to, close this gap immediately as it is based on a 

perceived need. Thus, let χ be the speed at which the manager choose to close this perceived 

gap, i.e. how aggressive is he when making decisions. We define the capacity adjustment 

decision (CADt) as CADt = χ*PGapt. Then including χ in Equation 4.9, we obtain: 

CADt = χ*[δ* Qt – (ASCt + ψ* ΔCt)]    (4.10) 

where χ must be between 0 and 1. This adjustment involves either an increase in capacity 

(when CADt >0), a decrease in capacity (when CADt < 0), or leaving capacity unchanged 

(when CADt = 0). Defining δ’ = χ*δ and ψ’ = χ*ψ, we obtain: 

CADt = δ’* Qt – χ*ASCt – ψ’* ΔCt             (4.11) 
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The parameters δ’, χ and ψ’ are estimated using a multivariate linear regression without 

intercept.  

According to the theory ψ (i.e. the coherence factor) must be between 0 and 1 (Sterman 

1989a). Then we expect ψ’ to non-negative and ψ’≤ χ. If ψ’ = χ, then ψ = 1 and the subjects 

account fully for the not-yet implemented decisions when taking new capacity adjustment 

decisions. If ψ = 0, the not-yet implemented decisions are ignored. Similarly, given that 1/δ 

represents the average sojourn time the manager takes as reference to estimate his desired 

service capacity, we expect δ’ to be non-negative.  

Table 4.3 contains the parameter estimates (i.e. δ’, χ and ψ’ ) together with the p-values of 

the F-test for the significance of the linear regression for the 30 subjects of the base case. The 

F-test indicates whether there is a linear relationship between the desired capacity adjustment 

and the set of the variables considered, i.e. Qt , ASCt and ΔCt  (Montgomery and Runger 

2003). Unlike the t-test, which assesses if the individual effects of these variables are 

significant, the F-statistic is used to test the null hypothesis that these effects are 

simultaneously equal to zero. The R2 is not included in this analysis, given that we are 

considering a model without intercept. Hence, the analysis of such a measure is not 

appropriate (Greene 2002 and Chatterjee and Hadi 2006).  

According to the p-values of the F-test, the hypothesis that all parameters of the model are 

simultaneously equal to zero can be rejected for all but 2 subjects. In most of the cases, this 

hypothesis is rejected at the 1% of significance level. This means that at least one of the 

variables Qt , ASCt and ΔCt  contributes significantly to the model (Montgomery and Runger 

2003). That is, the capacity adjustment decisions can be estimated by a linear model in terms 

of Qt , ASCt and ΔCt for 28 out of 30 subjects Only for two subjects (7 and 29), the estimated 

parameters are simultaneously not significantly different from zero. Thus, we should assume 

that a linear model, which depends on Qt , ASCt and ΔCt, is not appropriate to estimate the 

decided capacity adjustments of these subjects.  

Concerning the significance of the individual parameters, we can observe that the majority 

of the estimates for δ’ and χ are significant. Only for subjects 1 and 20, are both parameters 

not significantly different from zero while for subjects 19 and 29 solely δ is not significant. A 

different situation occurs with ψ’, which is only significant for a little less than half of all 
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subjects. This means that less than half of the subjects consider their not-yet implemented 

decisions when deciding new capacity adjustments.  

 

H0 is rejected at a significance level of: a 1%, b 5% and c 10% 
Table 4.3 Parameters estimates 

In Table 4.4 we summarise the estimated parameters of Equation 4.10 (i.e. χ, δ and ψ) for 

the subjects whose parameter are all significant in Table 4.3. Recall that these parameters 

have an interpretation as long as they are non-negative and χ and ψ are less than or equal to 1. 

Subject
1 -0.02 -0.03 0.07 0.017 b
2 0.24 a 0.22 a -0.08 0.000 a
3 0.19 a 0.21 a -0.06 0.000 a
4 0.22 a 0.20 a 0.09 0.000 a
5 0.37 a 0.35 a 0.31 a 0.000 a
6 0.13 a 0.13 a -0.22 a 0.000 a
7 0.04 b 0.07 b 0.05 0.171
8 0.12 a 0.11 a -0.01 0.000 a
9 0.05 b 0.04 a -0.34 a 0.000 a
10 0.29 a 0.26 a 0.17 c 0.000 a
11 0.13 c 0.11 c 0.05 0.000 a
12 0.22 a 0.23 a 0.38 a 0.000 a
13 0.24 a 0.25 a 0.25 a 0.000 a
14 0.20 a 0.17 a 0.18 b 0.000 a
15 0.15 a 0.18 a 0.24 b 0.000 a
16 0.16 a 0.24 a 0.20 b 0.000 a
17 0.15 a 0.14 a -0.13 c 0.000 a
18 0.24 a 0.23 a 0.35 a 0.000 a
19 0.02 0.04 a -0.38 a 0.000 a
20 0.04 0.03 -0.14 b 0.012 b
21 0.11 a 0.10 b 0.12 0.000 a
22 0.04 b 0.04 b 0.11 0.087 c
23 0.22 b 0.20 b 0.09 0.003 a
24 0.12 a 0.11 a -0.02 0.000 a
25 0.28 a 0.27 a -0.01 0.000 a
26 0.20 a 0.18 a 0.04 0.000 a
27 0.16 b 0.14 b 0.13 0.036 b
28 0.11 b 0.09 b 0.02 0.000 a
29 0.06 0.06 c -0.02 0.218
30 0.07 a 0.08 a 0.12 0.000 a

ψ ' F-Testδ ' χ
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We can observe that δ and χ satisfy this condition for all subjects in Table 4.4, while the 

conditions of ψ are only satisfied for three subjects (5, 10 and 16).  

Subject δ χ ψ 
5 1.080 0.346 0.891 
6 0.979 0.132 -1.640 
9 1.300 0.038 -9.022 
10 1.091 0.265 0.640 
12 0.983 0.225 1.682 
13 0.993 0.246 1.006 
14 1.145 0.174 1.031 
15 0.844 0.178 1.369 
16 0.673 0.242 0.814 
17 1.082 0.140 -0.896 
18 1.017 0.235 1.494 

Table 4.4 Significant estimated parameters of the decision rule (see Equation 4.10) for the 
subjects of the base case 

Recall that 1/ δ is the sojourn time which the manager wishes to guarantee to his 

customers, i.e. it is the reference sojourn time the manager uses to estimate his desired service 

capacity (see Equation 4.4). Given that all values of δ in Table 4.4 are higher than 0.5, we can 

conclude that all subjects consider reference sojourn times lower than the market reference, 

which is equal to 2 months. The market reference is the sojourn time customers take into 

account when deciding whether to join or leave.  

Considering χ, we can say that subjects are very prudent (i.e. slow decision makers) when 

making capacity adjustments based on their perceptions, since the values of this parameter are 

quite low, the highest being 0.35.  

Finally, for the three subjects whose parameter ψ satisfies the theoretical conditions, we 

can say that according to the proposed decision rule they consider 89%, 64% and 81%, 

respectively, of their not-yet implemented decisions (ΔCt) when taking a new capacity 

adjustment decision. Concerning the other subjects we cannot use this decision rule to make 

any inference about the way they consider ΔCt when adjusting capacity. Hence, in further 

work we propose to go study other decision rules which account for the way the subjects 

consider their not yet implemented decisions. 



114        Behavioural Queueing: Cellular Automata and a Laboratory Experiment 

 

As a further test we have simulated the model using the decision rule with the estimated 

parameters for each subject. Figure 4.5 shows the comparison between simulated capacity 

adjustments and the ones decided in the laboratory by the three subjects analysed above as 

typical cases. The decision rule closely matches the decisions taken by subjects of the first 

group (e.g. subject 5). It is worth recalling that the subjects of this group achieved the better 

performance among the three groups. However, this decision rule does not perform very well 

for the other two groups of subjects as illustrated in Figure 4.5. Although the simulated 

capacity adjustments for subjects 12 and 3 exhibit oscillating patterns as observed in the 

laboratory, the amplitude and the period of these patterns are different, and for the third group 

the resulting capacity is also very different.  

Although the F-test indicates that the proposed decision rule can be used to explain how 

most subjects take their decisions in the laboratory, this does not imply that this decision rule 

is the only one which can do so. Indeed, the comparison between the simulated and observed 

behaviours shows that this decision rule is not adequate to portray the way all subjects made 

their decision. Given the previous discussion about this decision rule, we consider that there is 

not enough evidence to conclude that the way subjects adjust their capacity can be modelled 

through a linear model in terms of the variables considered. Nevertheless, based on the 

autocorrelation analysis and the significance of δ and χ, we conclude that these variables have 

a certain influence on the decisions taken by the subject in the lab and must be considered in 

further work.  
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Figure 4.5 Comparison of experimental and estimated capacity decisions and available service 
capacity for the three typical subjects. 

 

Subject's decisions and available service capacity

Simulated decisions and simulated available service capacity

SUBJECT 5: Score = 2,551 (Gradual investor)

SUBJECT 12: Score = 2,207 (Lumpy investor)

SUBJECT 3: Score = 719 (Random investor)
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4.4.2 Treatment Results 

Given that our data samples are very small, we should not use parametric tests to make 

inferences about the differences between the treatments. So we employ the nonparametric 

Mann-Whitney-Wilcoxon (MWW) test used in the previous chapter to compare the 

distributions of profits achieved in each treatment. Table 4.5 contains the corresponding p-

values to test the null hypothesis that the median of the cumulative profits achieved by 

subjects assigned to the treatment in the row is equal to the median of the cumulative profits 

achieved by subjects assigned to the treatment in the column. Figure 4.6 shows the Box plots 

of the distributions of the cumulative profits achieved by the subjects for each treatment.  

 

* H0: the median of the cumulative profits achieved by subjects assigned to the treatment in the row 
(X) is equal to the median of the cumulative profits achieved by subjects assigned to the treatment in 
the column (Y). 
 

** Probability that the median of the cumulative profits achieved by subjects assigned to the treatment 
in the row (X) exceeds the median of the cumulative profits achieved by subjects assigned to the 
treatment in the column (Y) 
 

a H0 is rejected at a significance level of 1% 
 

Table 4.5 Statistics of the Mann-Whitney-Wilcoxon (MWW) test for the comparison of the 
cumulative profits achieved in each treatment 

Using the 1% significance level, we see clearly that the cumulative profits achieved in 

treatments C (i.e., high delays related to the decision process) and D (i.e., low delays related 

to the decision process) differ significantly from the ones achieved in the other treatments. 

Additionally we can observe that the subjects of treatment C typically achieve lower profits 

Treatment (Y):

Treatment (X):

P-Value* 0.2805
P(X>Y)** 0.4190

P-Value* 0.9035 0.1772
P(X>Y)** 0.4910 0.6020

P-Value* 0.0008a 0.0029a 0.0000a

P(X>Y)** 0.2370 0.2680 0.1210

P-Value* 0.0002a 0.0000a 0.0003a 0.0000a

P(X>Y)** 0.7870 0.8280 0.7790 0.9320

C

A

D

C

B

Basecase A B
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than the subjects of the other treatments. Conversely, the cumulative profits achieved in 

treatment D are generally higher.   

The Box plots in Figure 4.6 illustrate the variability of the cumulative profits achieved by 

the subjects in each treatment and provide a comparison across treatments. The distribution of 

the cumulative profits of treatment D has the lowest variability, while the base case has the 

highest. Note also that despite some outliers, the cumulative profits achieved by subjects in 

treatment D are clustered around the median. The distributions of profits of treatments A, C, 

and D are more symmetric than those of treatment B and the base case. The distribution of the 

base case is the most asymmetric and it includes the poorest performance (see the lower 

outlier it is almost -$2,000). Nevertheless, Figure 4.6 confirms the conclusion of the MWW-

tests that on average the poorer performances were achieved in treatment C and that the 

cumulative profits achieved in treatment D are on average the highest. So, we can conclude 

that the length of the delays involved in the implementation process of the decisions, which 

are known to the manager, strongly affect the cumulative profits which the garage can 

achieve. Moreover, the shorter these delays, the higher the cumulative profits of the garage 

and vice versa.   

 
 

Figure 4.6 Box plots for the cumulative profits by treatment  
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4.5 Conclusions and Further Work 

In this chapter, we have used a system dynamics (SD) model as an experimental platform to 

collect information about the way subjects taking the role of managers in a laboratory adjust 

the capacity of a service facility. The system was modelled as a garage for repair and 

maintenance of cars whose manager could adjust the capacity each period. The garage had a 

finite number of existing customers who patronised it and an infinite number of potential 

customers who each period could decide whether or not to join. Similarly, the existing 

customer could decide to leave. The decisions of both kinds of customers depended on their 

perceptions of the average sojourn time.  Existing customers updated their perception based 

on their own experience, while potential customers did so through word of mouth. The goal of 

the subjects was to manage the service capacity of the garage in order to maximise their 

profits. To help subjects perform their task, they were provided each period with relevant 

information about the customer behaviour and the garage, such as the backlog of customers 

and the available service capacity. 

Based on the results we can classify the subjects in three groups, whose decisions bring 

about similar behavioural patterns. In the first group are those subjects who gradually invest 

in service capacity over time. After initially overreacting to the increase of the backlog, these 

subjects learn from the system behaviour and continuously take small decisions to adjust the 

service capacity. This strategy enables them to achieve the better performances.  

The second group represents those subjects who, after a slight overreaction to the initial 

increasing backlog, make fewer but more aggressive capacity adjustment decisions than the 

subjects of the first group. Their decisions exhibit an oscillating pattern: They alternate 

capacity orders and retirement decisions. Given that the former generally exceeds the latter, 

the available service capacity increases over time, but more slowly than that of the first group.  

The last group includes subjects who, even after the transient period, overreact 

significantly to the backlog. This behaviour indicates that these subjects are unable to handle 

the delay structure inherent to the system. Hence, the garage of the subjects performs more 

poorly than that of the others and achieves the lower cumulative profits. Moreover, some of 

these subjects shut down their garage before the experiment ends. 

The autocorrelation analysis shows that the capacity adjustment decisions made by most 

of the subjects are strongly positively correlated to the decisions taken one period early. 
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Given this analysis and the delay structure involved in the decision process, we developed a 

heuristic to model the decision rule applied by the subjects in the laboratory. This heuristic is 

a linear model which considers the current backlog, the available service capacity and the 

capacity decisions still to be implemented (once their delivery and dismantling delays expire). 

The significance tests of the estimated parameters indicate that when taking their current 

decisions only 13 out of 30 subjects in the base case account for their previous decisions, 

which have not yet been implemented. These tests also show that these subjects react 

prudently to changes in their perceptions when adjusting the service capacity. Additionally, 

when estimating their desired service capacity based on the backlog, these subjects target 

sojourn times which are below the market reference customers take into account for their 

decisions.  

We have simulated the model using the estimated parameters and compared the simulated 

behaviour to the one observed in the lab. This decision rule fits very well for the subjects of 

the first group (those who gradually adjust capacity), but it does not capture the behaviour of 

the subjects of the other two groups. We thus propose as further work to delve more deeply 

into the statistical analysis of the information collected from the experiment in order to 

propose other decisions rules which capture the behaviour observed in the laboratory, and to 

extend this analysis to the other treatments. Another interesting issue will be to test the 

hypothesis that the autocorrelation of the subjects’ decisions increases with the length of the 

delays.  

Finally, the statistical comparison between different treatments, in which the length of the 

delays involved in the system was varied, enables us to conclude that the capacity 

implementation and dismantling delays have a significant impact on the cumulative profits 

achieved by the service facility. The longer these delays are, the higher the fraction of subjects 

who achieve low cumulative profits. In contrast, the different delays involved in the 

perception updating process of customers do not have a significant impact on the cumulative 

profits achieved by subjects.  

Other extensions to this research include conducting further sets of experiments. For 

instance, incorporating a unit cost for each unit of capacity which the manager decides to add 

or remove; asking the manager for his expectations regarding the backlog; and including 

another group of human subjects who assume the role of customers.  
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5 SUMMARY OF KEY RESULTS AND SUGGESTIONS FOR 
FURTHER WORK 

Studies of queueing phenomena have typically addressed the optimisation of performance 

measures (e.g. average waiting time, queue length and server utilisation rates) and the analysis 

of equilibrium solutions. The individual behaviour of the agents involved in queueing systems 

and their decision making process have been little discussed. Although this research has been 

useful for improving the efficiency of many queueing systems, or in other instances for 

designing new processes in social and physical systems, it has only provided us with a limited 

ability to explain the behaviour observed in many real queues. 

In this dissertation we deviate from this traditional line of inquiry by analysing how the 

agents involved in the system make decisions instead of focusing on optimising performance 

measures or analysing equilibrium solutions. We have addressed three queueing problems 

dealing explicitly with the customers’ and managers’ decisions. These decisions are based on 

the expectations which customers and managers form regarding the state of the system. 

Customers and managers form these expectations using an adaptive expectation process 

whereby they update their memory using newly available information. They are considered 

conservative when they give more weight to their memory than to new information. In 

contrast, when they give more weight to new information, we say that they are reactive.  

Traditionally, analytical modelling and simulation have been used to deal with queueing 

problems. The analytical approach describes mathematically the operating characteristics of 

the system in terms of performance measures, usually in "steady state". This approach is 

useful for low-complexity problems for which an analytical solution can be found with few 

simplifying assumptions. The second approach is more appropriate for complex problems, 

such as those where customers interact and share information regarding their experience in 

different queues and the decision process is subject to delays. A simulation approach enables 

modelling such problems in a more realistic way than the analytical approach, with fewer 

simplifying assumptions.  
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In chapters 2 and 3 we studied queueing systems which portray a captive market: 

customers periodically require a service and must choose which facility to join for this 

service. We have adapted the model proposed by Delgado et al. (2011a) (Appendix B) and 

Sankaranarayanan et al. (2011). We used a one-dimensional cellular automata (CA) to 

describe how customers interact with their neighbours and share information regarding their 

experiences. CA is an agent-based simulation methodology (North and Macal, 2007) in which 

agents are endowed with enough computational ability to update their state in the system by 

applying simple decision rules, such as joining the facility with the lowest expected sojourn 

time.  

In Delgado et al. (2011b) (Appendix C), Delgado et al. (2011d) (Appendix E) and Chapter 

2 of this thesis we incorporated uncertainty into the model proposed by Delgado et al. 

(2011a). Customers exhibit different degrees of risk-aversion which determine the extent to 

which they account for uncertainty when deciding which facility to patronise. The more risk-

averse customers are, the more importance they give to uncertainty. Risk-neutral customers 

base their decision on the expected sojourn time (i.e. they ignore uncertainty), while risk-

averse customers estimate an upper bound for the sojourn time using their expected sojourn 

time and their estimate of the level of uncertainty of this expectation. We studied the impact 

of the degree to which customers account for uncertainty when making decisions on the 

resulting collective behaviour and on the weighted average sojourn time of the system.  

Interacting customers endowed with memory can yield different collective behaviours. 

Delgado et al. (2011a) discussed some of these behaviours and showed that the system 

achieves low weighted average sojourn times when groups of neighbours are loyal to a 

facility and customers are approximately equally distributed across all facilities. When an 

equal number of customers patronise each facility, and thus customers do not wish to change 

facility, the system achieves the Nash Equilibrium and this split yield the lowest weighted 

average sojourn time.  

Delgado et al. (2011b) focused on the behaviour of risk-neutral customers and those with 

an intermediate degree of risk-aversion. They concluded that systems with customers having 

an intermediate degree of risk-aversion exhibit longer transient periods and converge more 

slowly to an almost-stable behaviour. Delgado et al. (2011d) showed that customers with a 

high level of risk-aversion experience, on average, low sojourn times when they are reluctant 

to incorporate new information when updating their expected sojourn time, whatever their 
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attitude when updating their estimate of variance. Moreover, very risk-averse customers 

achieve their best performance when they are reactive to new information to update their 

perception of the variance. Customers with an intermediate level of risk-aversion experience 

low sojourn times when they are reluctant to update their expectations of both sojourn time 

and variance. Finally, risk-neutral customers and those with low risk-aversion achieve their 

best performance when they are most conservative with respect to updating their expected 

sojourn times.  

In Chapter 2 we showed that there is a non-monotonic relationship between the degree of 

risk-aversion and system performance; customers with an intermediate degree of risk-aversion 

typically achieve higher sojourn time than the others and they rarely achieve the Nash 

equilibrium. Meanwhile, risk-neutral customers have the highest probability to achieve the 

Nash Equilibrium. Concerning the transient period, we extended the conclusion of Delgado et 

al. (2011b) to risk-averse customers in general, i.e. the more risk-averse the customers, the 

longer the transient period exhibited by the system. Indeed, risk-averse people take more 

volatile decisions. Consequently the system takes more time to achieve a stable behaviour.  

While the optimal choice of updating parameters depends on the customers' risk attitude, 

service systems where customers are either close to risk-neutral or strongly risk-averse 

usually perform better than those who have an intermediate level of risk-aversion, whatever 

the parameter values.  

In Chapter 3 we incorporated endogenous service rates into the model of Delgado et al. 

(2011a). Accordingly, we endowed the managers with the ability to adjust the service 

capacity. Each period they can decide to add or remove capacity based on their desired state 

and the current state of the facility. Each manager is characterised by a profile which depends 

on how conservative or reactive he is regarding new information, how rational when 

accounting for his previous decisions still in process of implementation and how fast he takes 

decisions. In that sense, we found that the more conservative a manager is regarding new 

information, the larger the market share his facility achieves. Additionally, the faster he takes 

decisions, the more likely he is to achieve a monopoly position. Another interesting result this 

model yields is the path-dependence phenomena of the managers’ decisions. Once historical 

or random events determine a particular path, agents may become locked-in regardless of the 

advantages of the alternatives. In this sense, managers can have the same profile, but owing to 

the initial conditions of the model, their facilities can evolve completely differently. For 
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instance, a system with three identical managers could become “locked-in” into a monopoly 

or duopoly situation.  

The competition between managers causes the weighted average sojourn time of the 

system to converge to a benchmark value. This benchmark is a reference sojourn time 

managers use to estimate their desired capacity to satisfy the customers based on market 

expectations. In this sense, this benchmark is an attractor point of the system. The rate at 

which this convergence occurs depends on the managers and customers’ profiles. In some 

cases, the convergence period can be very long. 

Chapter 4 tackled the third queueing situation we have addressed in this dissertation. This 

situation deals with the capacity management of a service facility with a finite number of 

current customers and an infinite number of potential customers. Customers are able to update 

their perceptions of the system based either on their experiences (current customers) or on 

information shared through word of mouth (potential customers). We focused on analysing 

the effects of the delays involved in the system. These delays are the time required by 

customers to update their perceptions and the implementation time of the manager’s decisions 

(i.e. delivery and dismantling delays). We have conducted a laboratory experiment in which 

human subjects take the role of a garage’s manager. In order to carry out this experiment we 

have applied the protocols of experimental economics (Friedman and Sunder 1994).  

According to the results, we have classified the subjects in three groups, whose decisions 

bring about similar behavioural patterns and which we have labelled gradual investors, lumpy 

investors, and random investors. In the first group are those subjects who learn from the 

system behaviour and gradually invest in service capacity over time. This strategy enabled 

them to achieve the better performances. Subjects of the second group alternate their 

decisions between capacity orders and retirement decisions. They are more aggressive than 

the subjects of the first group. Given that the capacity orders usually exceed the retirement 

decisions, the available service capacity increases over time, but more slowly than that of the 

first group. In the last group are those subjects who are unable to handle the delay structure 

inherent to the system and take seemingly random decisions. 

The experiment was performed for different treatments whereby we varied the length of 

the delays involved in the system. The statistical comparison tests across these treatments 

indicate that the delivery and dismantling delays significantly impact the cumulative profits 
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achieved by the subjects in the laboratory. The longer these delays, the lower the cumulative 

profits typically achieved by the subjects. In contrast, the different delays involved in the 

updating process of the customers’ perception did not significantly affect these profits.  

Using autocorrelation analysis we have shown that the decisions taken by most of the 

subjects are positively correlated to the decisions taken one period early. We have also 

proposed a heuristic which models the subjects’ decision rule based on their previous 

decisions still to be implemented, the current backlog and the available service capacity. This 

heuristic is formulated as a linear regression model without intercept. We have estimated the 

parameters of this decision rule and simulated the model using these estimates. We found that 

this decision rule fits very well for those subjects who gradually adjust capacity, but it does 

not capture the behaviour of the subjects of the other two groups. The significance tests of the 

parameter estimates indicate that when taking their current decisions only some subjects 

account for their previous decisions, which have not yet been implemented. Accordingly, we 

plan to delve more deeply into the statistical analysis of the data in further work in order to 

propose other decisions rules which capture the behaviour observed in the laboratory. 

5.1 Overall Contribution 

We hope that this research has provided some building blocks to incorporate behavioural 

aspects in queueing problems, thus contributing to the new field of behavioural operations 

management. We have built on and extended the work of van Ackere and Larsen (2004) and 

van Ackere et al. (2010). Using simulation models and experimental methodologies we have 

removed some simplifying assumptions of the classical queueing theory, such as steady-state 

condition, which enables us to be closer to reality. Particularly, the use of CA allows 

analysing the individual behaviour and the micro-dynamics of agents interacting in queueing 

systems. Throughout this thesis, we have considered that customers are autonomous and can 

decide each period which facility to join for service. This decision is based on the customers’ 

most recent information, which they use to form expectations about the different facilities. 

Moreover, we have modelled the way customers account for the uncertainty involved in their 

perceptions and characterised customers through their risk-aversion level and the speed at 

which they update their perceptions. We showed that customers using adaptive expectations 
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of waiting phenomena can generate different collective behavioural patterns. We have 

explained these patterns through the individual behaviour of customers.  

Concerning queueing systems with endogenous service and arrival rates, this thesis shows 

that customers and managers’ decisions exhibit a strong path-dependence phenomenon. 

Additionally we have shown that managers’ decisions based on adaptive expectations cause 

the weighted average sojourn time of the system to converge to a market reference sojourn 

time. 

The laboratory experiment of Chapter 4 enabled us to test hypotheses about the way 

human subjects, who play the role of managers of a service facility, make decisions regarding 

the capacity adjustment of this facility. These hypotheses have given us some insights, which 

theoretical models cannot confirm so far. For instance, the comparison of different treatments 

in Section 4.4.2 enables us to conclude that explicit delays for delivering and dismantling 

capacity in a service facility significantly affect the subjects’ decisions, and thus the 

performance of the facility. Similarly we showed that the backlog, the available service 

capacity and the decisions, which have not yet been implemented, influence the way real 

subjects manage the capacity adjustment of service facilities.  

5.2 Limitations 

In this thesis we have restricted our work to a multichannel queueing system with three 

facilities and a neighbourhood size of 1. As mentioned before, considering a larger 

neighbourhood size with only three facilities would be to assume that customers could often 

have full information to take their decisions. We have performed some experiments 

simulating the one dimensional CA model with five and ten facilities. This structural change 

increases the system complexity drastically, since more facilities mean more states the cells 

can take.  The results we found were intuitive: the greater the number of facilities the longer 

the transient period the system exhibits. Indeed, many facilities imply more experimentation 

and choice options. Accordingly, the learning process of customers in the system will take 

more time. Further work should consider higher dimensional CA models with a greater 

number of facilities (states) to analyse the impact of the available information and extend the 

theoretical framework for the analysis of collective behaviours and decision making in 

queueing systems.  
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The CA models we developed in this thesis assume that all customers arrive at the same 

time at the facility for service. This characteristic implies that our models are very specific 

and limits their application to situations occurring during rush hours, e.g. students who, every 

day during lunch time, must choose a restaurant for lunch.  

A major limitation has been the computational time required to run many iterations. For 

instance, an iteration of the model used in Chapter 2 for 100 simulation periods takes around 

3 seconds; the 10,201 iterations of the model required to obtain one panel of Figures 3.5 to 3.7 

take around 50 minutes; the 9,000 iterations of the model required to compute all the 

estimates of Section 3.4.2.2 take 90 minutes. Extending this analysis to the 275,427 

combinations considered in section 3.4.2.1 would require more than one year of simulations 

on a normal CPU. Most of our simulations were run using 24 CPUs simultaneously. An 

alternative solution could be to compile the code of the model using the Matlab compiler and 

run the model outside the MATLAB environment. This would reduce the computational time 

by running the model in shared libraries.  

Although experimental economics is useful to collect information from a controlled 

economic environment and enables one to make conjectures about the subjects’ behaviour, 

such conjectures only apply to the behaviour observed in the laboratory and cannot be 

extrapolated to reality. Indeed, “the relevance of experimental methods rests on the 

proposition that laboratory markets are "real" markets in the sense that principles of 

economics apply there as well as elsewhere” (Plott 1982, p 1520). The principle of 

experimental economics is to apply the  simplicity of laboratory markets in order to reflect the 

way real people pursue real profits within a virtual context of real rules (Plott 1982). Within 

this context, the results of our experiment are only a first step towards understanding how 

managers adjust service capacity in situations where sojourn time is major factor of the 

customers’ decision making process.  

5.3 Further Work 

The framework of behavioural operations management is still in its early stages and 

accordingly there is a large potential for further work that spans several research topics. 

Throughout this dissertation we have proposed many interesting alternatives to extend this 

work. Regarding the CA models, we have mentioned considering heterogeneous customers, 
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i.e. customers with different degrees of risk-aversion and/or different levels of reactivity; 

modelling queueing systems where both customers and managers account for uncertainty; and 

assessing the influence of other service factors on the customers and managers’ decisions, 

such as price and quality. Further extensions concerning the experimental field include 

incorporating unit costs for each unit of capacity which the manager decides to add or 

remove; asking the manager for his expectations regarding the backlog; and including another 

group of human subjects who take on the role of customers.  

Other directions in which the work could be extended include introducing other typical 

characteristics of queueing systems which affect the customers’ experience, such as balking, 

reneging and jockeying; analysing other decision rules; and studying other characteristics in 

the customers’ and managers’ profile. 

One could also consider including a time dimension in the customers’ choice, i.e. 

customers could choose the timeslot at which they would like to join the facility. In such a 

context the manager would have a limited scope to adjust the capacity of the different 

timeslots. 
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Abstract In this paper we propose a cellular automata model (CA) to understand and analyze how 
customers adapt their decisions based on local information regarding the behavior of the 
system and how the interactions of individuals and their decisions influences the 
formation of queues, which in turn impacts the sojourn time. We illustrate how a 
multichannel system of service facilities with endogenous arrival rate and exogenous 
service rate, based on local information and locally rational agents, may present different 
collective behaviors and in some cases reaches the Nash equilibrium. 

Keywords Queuing; Simulation; Cellular Automata; Adaptive expectations, Collective behavior 

1. Introduction 

Queuing problems address a broad range of applications which have been widely tackled and dis-
cussed in various disciplines since Erlang (1909) [3], who is considered to be the father of queuing 
theory (Gross and Harris [5]), first published the telephone traffic problem. Studies of queuing systems 
encompass various disciplines including economics, physics, mathematics, and computer science.  

Queuing is a fact of life that we witness daily and consider as an annoying situation. Banks, roads, 
post offices, and restaurants, are a few places where we experience queuing on a day-to-day basis.  As 
the adage says, "time is money," is perhaps the best way of stating what queuing problems mean for 
customers. Queuing becomes an annoying and costly affair for customers who require a certain service 
routinely. In these cases, the experience enables customers to estimate the sojourn time for the next 
time, before deciding whether or not to join the queue and/or the best time to join, thus implying a dy-
namic queuing system with endogenous arrival rates which depend on the customers' expectations. For 
example, people who annually take their car to the garage for emissions tests, decide based on their 
experience what garage to take the car to and at what time to do so. Similarly, a worker or a student 
who daily has to select an hour and a restaurant to have lunch, has enough experience to choose the 
time and place that he considers less crowded. 

The early works concerning queuing problems were confined to equilibrium theory (Kendall [9]) 
and focused on the design, running, and performance of facilities, with relatively little emphasis given 
to the decision processes of the agents of the system, i.e. the customers and managers of the facilities 
(van Ackere et al. [22]). Most queuing problems are tackled from an aggregated point of view. They 
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are modeled by assuming static conditions, and exogenous arrival and service rates, and are analyzed 
in steady-state, despite the fact that they are dynamic and that the agents' decisions depend on the state 
of the system (Rapoport et al. [16]). More recently, researchers have attempted to shift the focus from 
these predominant assumptions of traditional queuing theory to a dynamic context in which agents' de-
cisions are increasingly considered (e.g. Haxholdt et al [7] and van Ackere et al [21]). The present re-
search is in this new direction.  

There has been relatively little research aimed at analyzing and understanding the behavior of 
agents involved in a queuing system (van Ackere et al. [22]). The seminal papers on this subject are 
Naor [12] and Yechiali [24]. Koole and Mandelbaum [10] have suggested the incorporation of human 
factors as a challenge in order to advance the development of queuing models for call centers. Most of 
the models in this field are stochastic (e.g. Naor [12]; Yechiali, [23]; Dewan and Medelson [2]; Rump 
and Stidham [17]; Zohar et al [25]) and their form of feedback is either state-dependent (e.g. Naor 
[12]) or steady state (e.g. Dewan and Mendelson [2]). The stochastic models are aimed at understand-
ing the impact of variability of the service and arrival processes on the system behavior (van Ackere et 
al. [22]). Some recent models are deterministic. For instance Haxholdt et al [7], van Ackere and 
Larsen [20] and van Ackere et al [21] analyze the feedback process involved in the customer’s choice 
regarding which queue he should join in the next period. Haxholdt et al [7] and van Ackere et al [21] 
capture the average perceptions of the current customers in order to give feedback to the current and 
potential customers about the state of the system. van Ackere and Larsen [20] applied a single one-
dimensional Cellular Automata (CA) model to capture the individual expectations of the customer 
about the congestion on a three road system.  

We seek to understand how customers react to changing circumstances of the system. Our re-
search involves studying the interactions of individuals within the system and the system’s interactions 
with the individuals. These interactions are non-linear and involve feedback, and delays, and they re-
produce adaptive and collective behaviors which depend on the initial values allocated to the custom-
ers. These issues make it difficult to solve models analytically; hence we adopt a simulation approach. 

Specifically, we are interested in knowing how customers adapt their decisions based on local in-
formation regarding the behavior of the system. This information consists of their expectations (per-
ceptions), their experiences, and that of their neighbors. In this way, we are moving the focus from an-
alyzing the performance or designing the processes of a queuing system to analyzing the individual 
behavior of the agents and its impact on the system.  

We apply agent-based simulation (North and Macal [15]), more precisely a CA model (Wolfram 
[23]), to capture the complexity of a self-organizing system. This complexity is represented by nonlin-
ear interactions between the system’s agents. “Cellular Automata are, fundamentally, the simplest 
mathematical representations of a much broader class of complex systems” (Ilachinski [8], p. 1). CA 
enables to endow agents with enough computational ability to interact with other agents of the system 
and share information. This is useful for modeling problems at any abstraction level (Borshchev and 
Filippov [1]). Taking into account the agents' autonomy, their interaction, and the fact that the infor-
mation is shared between individuals at micro level, we consider that CA is a suitable methodology to 
help us model the system complexity. A CA model depicts agents interacting in a spatially and tempo-
rally discrete local neighborhood (Ilachinski [8]). The agents are represented as cells and each cell 
takes on one of k-different states at time t according to a decision rule (Ilachinski [8]). This decision 
rule determines the state of each cell at the next time period (t+1) based on the cell’s current state and 
that of its neighbors (North and Macal [15]). 

We use exponential smoothing (Gardner[4]) to estimate the agents’ expectations of the congestion 
in the queues (in terms of sojourn time). In other words, the agents' decisions are based on adaptive 
expectations (Nerlove [14]). Exponential smoothing is based on a weighted average of two sources of 
evidence: one is the most recent observation and the other the estimation computed the period before 
(Theil and Wage [19]). 

Consider a situation where customers routinely require a service and autonomously decide on a fa-
cility in a multichannel system with one queue for each channel (facility). There are also other applica-
tions in which customers do not choose a facility for service, but they may choose at what time to join 
the facility. In these cases we can consider each time period as a service channel. Once a customer is 
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in the facility, if all servers are busy, customers must wait to be served. Their decision to return in the 
next period to the same facility, and therefore their loyalty, will depend on their past experience. Some 
examples of this kind of systems include an individual who must choose a garage for the inspection of 
his car, an individual who goes monthly to a bank to pay his bills, and an individual who goes to the 
supermarket weekly. In all these examples, the customer may choose the facility he wishes to be 
served at and at what time to do so. These are, in general terms, the kind of queuing problems to be 
studied in this research.  

Simulating the CA model we found that it presents interesting collective behaviors of agents (cus-
tomers) endowed with memory and local interactions with neighbors. In this paper we explain three of 
these behaviors: The first behavior depicts customers who switch between the different alternatives 
and do not achieve stability. The second behavior represents customers who alternate between two fa-
cilities, but the system achieves stability. In this case customers and their best performing neighbor al-
ternate facility. The last behavior corresponds to a Nash equilibrium wherein after trying out several 
facilities, each agent remains loyal to one facility. 

The paper is organized as follows. After this brief introduction, we provide a model description, 
which is followed by the simulation setup and results. We conclude the paper with comments and sug-
gestions for future work. 

2. The model 

Consider a group of customers (referred to as agents) who routinely must choose which service facility 
to use in a multichannel system with one queue for each channel (facility). We assume an exogenous 
and identical service rate (μ) for all facilities, whereas the arrival rate (λ) is endogenous and depends 
on the agents’ choice. They make their choice based on the sojourn time which they expect to face the 
next period at the different facilities. These expectations are built using the agents’ most recent experi-
ence and that of their nearest neighbors. We apply a cellular automata model (CA) (Gutowitz [6], 
Wolfram [23]) to represent the interaction between agents and capture their expectations and dynam-
ics. Agents are located in a one-dimensional neighborhood where each agent has exactly two neigh-
bors, one on each side. The neighborhood represents, for instance, a social network encompassing col-
leagues, friends, people living next-door etc. 

The structure of the model is assumed in the shape of a ring composed of cells. Each cell is an 
agent who may choose a service facility each time period. That is, the facilities are the states which 
each cell may take at each time period. Agents update their state through local interaction using a deci-
sion rule which is based on their own experience and that of their neighbors. In turn this experience 
depends on the state of all agents. We assume agents have a memory and the ability to update it using 
new information (previous experience). This memory contains the agents’ expected sojourn time for 
the next period at the different facilities. We use adaptive expectations (Nerlove [14]) (also known as 
exponential forecasting (Theil and Wage [19]) or exponential smoothing (Gardner [4])) to model the 
updating process of agents’ expectations. Such a CA model may be described as follows:  

Let A be a set of n agents (cells) {A1, A2,…, Ai,…, An } interacting with their neighbors and Q the 
set of m facilities (states) {Q1, Q2,…, Qj,…, Qm } which agents (cells) may choose (take) at each time 
t. Agents interact in a neighborhood of size K (Lomi et al. [11]), which defines the number of neigh-
bors on each side. For example, if K=1, agent Ai will interact with agents Ai-1 and Ai+1. Agent An will 
interact with An-1 and A1. 

All m facilities have the same service rate μ, but different arrival rates (λ j). Each agent Ai may join 
only one facility Qj at each time t. We denote the state of agent Ai at time t by si(t). Let S denote the 
set of states si(t) of n agents at time t. This state si(t) is one of the m possible facilities, that is, 
S ⊂ {Q1, Q2,…, Qj,…, Qm}. Then the arrival rate (λ jt) for the queue j at time t is a function of S, Q, 
and t. Let us consider the following function: 
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The state si(t) for each agent Ai evolves over time according to the agents’ expected sojourn time 
for each facility Qj, denoted by Mijt. At the end of each time period, the expected sojourn time of the 
agent for each facility is updated using two sources of information: his most recent experience and that 
of his neighbors Ai-1 and Ai+1 (Sankaranarayanan et al. [18]). Agent Ai’s experience at facility Qj at 
time t is denoted by Wijt. Then, agent Ai’s state (si(t+1)) and his expectation (Mijt+1) for queue j for the 
next time period t+1 are determined as follows: 

)()( 11 +=+ ijti MFts            (3) 

),,,,,( ,, ijtjtKiijtjtKiijt MWWWGM +−+ = 1     (4) 

where Wi-K,jt and Wi+K,jt denote, respectively, the experience of neighbors Ai-k and Ai+k. The func-
tion G defines agent Ai’s memory Mijt+1 (expectation) for queue Qj for time t+1, using an adaptive ex-
pectations equation (Nerlove [14]), given by: 

ijtijttij WMM )(, θθ −+=+ 11 ,  ),( βαθ ∈       (5) 

 where θ denotes the coefficient of expectations [14]. The parameter θ may take two different val-
ues depending on the source of information: When agents update their memory using their own expe-
rience, θ takes the value α. Otherwise, θ takes the value β. For θ = 0, no weight is given to the past, 
which implies that the expected sojourn time equals the most recently experienced time. A value θ = 1 
implies no updating of expectations, i.e. the expectation will never change whatever the agent's new 
information. Thus, the higher the value of θ, the more conservative (or inert) the agent is towards new 
information, while a lower value means agents consider their recent information to be more relevant. 
The expected sojourn time for period t+1 (Mijt+1) is thus an exponentially weighted average of the 
most recent experience Wijt and the previous computed expectation (Mijt). Agent Ai updates his 
memory in the following way:  

(i) Based on his own experience (Wijt), he will update his estimate of the sojourn time for his pre-
viously chosen service facility using θ =α.  

(ii) The second source of information comes from the experience of the agent's neighbors {Wi-K,jt,. 
. ., Wi-1,jt, Wi+1,jt,. . .,Wi+K,jt}. He will update his memory for the previously service facility cho-
sen by his best performing neighbor, i.e. the neighbor who has experienced the minimum so-
journ time at the previous time period W, using θ =β.  

 In the special case where the facility chosen by the agent and that chosen by his best performing 
neighbor coincide, the agent only updates his expectation once, using the minimum of α and β as 
weight.  Regarding the decision rule, we consider rational agents who join the facility with the lowest 
expected sojourn time, that is, the agents update their state si(t) each time period t using the minimum 
Mijt according to equations (3) and (5). In special cases where an agent has the same expected sojourn 
time for two or more facilities and it is the lowest, he chooses as follows: if the expected time for the 
facility, which he chose, equals the minimum Mijt he chooses this facility. If not, he checks whether 
the facility used by his fastest neighbor equals the minimum. If yes, he chooses this facility. Otherwise 
he chooses a facility at random: the facilities tied for the minimum expectation have equal probability 
of being selected. 
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 Finally, we need to define the sojourn time Wjt at facility Qj, given that λ jt agents selected this fa-
cility at time t. Unfortunately, the steady state equations are only valid for queuing systems that reach 
equilibrium, and in which the average service rate exceeds the average arrival rate.  

 We need a congestion measure which can be used for our transient analysis where at peak times 
agents cluster in the same facility and the arrival rate temporarily exceeds the service rate. Considering 
the above, we use a congestion measure proposed by Sankaranarayanan et al [18] for a multichannel 
service facility with the same service rate (µ) for all facilities and endogenous arrival rate (λ jt). Such a 
measure is given by: 

μ
+

μ
jtλ

=jtW 1
2             (6) 

 Then, by Little's law and the definition of ρ (ρ = λ jt/µ), the expected number of people for facility 
Qj at time t is given by: 

jtjtjtjtjtL ρρρρ +=+= 21)(         (7) 

 These measures satisfy the behavioral characteristics involved in the well-known Little’s Law and 
the steady state equations [5], but remain well-defined when ρ ≥ 1. For more details about the formula-
tion of these measures, see Sankaranarayanan et al [18]. A brief description of the formulation and val-
idation of Equations 6 and 7 is given in the Appendix A. 

3. Simulation Setup  
The agents of a CA model are endowed with memory (North and Macal [15]). This feature enables us 
to use this framework to investigate the problem we address here. We model the agents’ memory us-
ing adaptive expectations as described above. As the system behavior depends on the initial values of 
memory assigned to the agents, i.e. the evolution of the system is path dependent, our model cannot be 
solved analytically. Hence we use simulation to understand the system behavior. For its implementa-
tion we use Matlab, a numerical computing environment used in engineering and science.  

The CA model is configured with 120 agents (i.e. the number of cells n in the one dimensional 
discrete lattice) and 3 facilities (i.e. number of states m which each cell may take). In this paper we use 
a neighborhood size (K) equal to 1, due to limited computational capacities. The service rate is the 
same for all facilities and equals 5 agents per unit of time. We simulate the model for 50 periods. The-
se parameters are appropriate to observe the phenomena with which we are concerned. Each agent is 
allocated an initial memory for the expected sojourn time for each facility. These memories are dis-
tributed randomly around the optimal average sojourn time. In this paper we limit our study to the case 
where the agents use the same behavioral parameters value i.e. α = β = 0.5. All parameters used in this 
simulation are summarized in Table 1. 

TABLE 1. Parameter values used for the simulation runs. 
 

Parameter 
 

Description 
 

Value 

 

m 
 

Number of service facilities 

 

3 
 

n 

 

Population size (Number of agents) 
 

120 
 

μ  

 

Service rate 
 

5 
 

α = β 
 

 

Weight to memory w.r.t. own experience and 
neighbors’ experience, respectively 

 

0.5 
 

Tsim 

 

Simulation time 
 

50 
 

K 

 

Neighborhood Size 
 

1 
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4. Results  

The four panels in Figures 1 to 3 illustrate different collective behaviors which may be captured by the 
CA model. We ran the simulation model using the same configuration for all runs, as shown in Table 
1., but using different initial values of the expect sojourn times allocated to each agent. Recall that the-
se values are assigned to each agent randomly. 

  We start by analyzing the more disaggregated results before studying the system globally. Figure 1 
captures the evolution of the agents' choices of service facility over 50 time periods (one iteration) for 
4 different initial values of expected sojourn times allocated to the agents. The horizontal axis repre-
sents time and the vertical axis the 120 agents. The colors indicate the state (chosen facility) of a par-
ticular agent at a particular time (black = facility 1, gray = facility 2 and white = facility 3).  

FIGURE 1. Spatial-temporal behavioral evolution of agents' choice of service facility with 
α = 0.5 and β = 0.5 with different values for the initial expected sojourn times. 
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 We can observe that there is always an initial warm-up period whose length can vary. During this 
period, the agents try out the different facilities and all facilities are tested. We may say that agents are 
exploring the different facilities in order to learn from the system. For example in Figure 1b, agent 1 
experienced the three facilities for the first five time periods with a sequence of 32231. This phenome-
non depends strongly on the randomly allocated initial expected sojourn times. We can see that in 
many of these cases, some facilities are very crowded, implying that agents experience a large sojourn 
time at these facilities and expect the same situation for the next time period (e.g. Figures 1c and 1d 
show that facility 3 (white) is crowded at time 4). Consequently they move to another facility at the 
next period, generating the same problem for the new facility and in some cases forgetting the previ-
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ous facility (e.g. in Figures 1c and 1d, no agents choose facility 3 at time 5, implying that one or both 
of the other facilities are crowded). 

 After the warm-up period, a set of more stable choices emerges over the next few periods. We can 
observe that agents present three different collective behaviors. The first is when there are still some 
agents moving through all facilities, as shown in Figure 1a. Figures 1b and 1d present the second case, 
in which a few agents keep switching between two facilities (e.g. in Figure 1d agents 98 and 102 
switch between facilities 1(black) and 3(white) in a fairly regular pattern), while the others remain at 
the same facility. The logic behind this alternating behavior is that after the warm-up period, the so-
journ times expected by a few agents at two facilities are very similar. As in this particular case agents 
give the same weight both to their own information and that of their neighbors, after updating their 
memories they consider that the facility which their neighbor used is more attractive than the one they 
patronize. They thus move to the neighbor’s facility. A few agents moving to a facility during an al-
most stable period make it less attractive. Consequently, they decide to come back to their previous fa-
cility the next period, resulting in this switching behavior. 

 Figure 1d) also illustrates another phenomenon where one service facility is forgotten after the ini-
tial transition period. This particular case may occur when agents have had one or more very bad expe-
riences at a facility. Its expected sojourn time becomes so large that none of the agents will patronize 
this facility for the next periods and they will thus be unable to update their expectation; hence the 
agents will never again use this facility in the future. 

 The final observed collective behavior is shown in Figure 1c: it portrays an equilibrium situation, 
which corresponds to the case where the agents are equally distributed across the three facilities (i.e. 
40 agents at each facility), and all agents choose to remain at the same facility. They will stay at the 
same facility because once the system reaches steady-state they are in the facility which minimizes 
their expectation of sojourn time (i.e. maximization of their pay-off (Nash [13])) given the other 
agents’ choices. That is, they reach the Nash equilibrium: each player’s decision is optimal against that 
of the others (Nash [13]). Given that the three facilities are identical, an equal split of the agents across 
the three facilities is the only Nash equilibrium which the system can achieve. This situation coincides 
with the social optimum and yields a sojourn time of 1.8 time units. However, there are many ways in 
which agents can achieve this collective behavior (40 agents remaining at each facility over time). 
Which one materializes depends on the initial conditions. All facilities have the same sojourn time and 
the agents’ estimates will converge to reality. Thus no agent wants to switch facility and this behavior 
will remain stable over time. 

 Figure 2 shows the evolution of the average sojourn time, along with the minimum and maximum 
sojourn times experienced by the agents for each time period. This figure provides us with a more ag-
gregated view of the system’s behavior. The major fluctuations occur during the warm-up period. For 
the four cases shown in Figure 2, the average sojourn time after the warm-up transition period are re-
spectively 1.839, 1.802, 1.800, and 2.644. The first two are close to the Nash equilibrium (1.8), the 
third one confirms the equilibrium condition of the system and the latter is significantly higher than 
the Nash equilibrium. During the transition period, the average sojourn time of the system and the 
maximum sojourn time experienced by an agent are respectively 100% and 200% higher than the av-
erage sojourn time in steady state while the minimum sojourn time experienced by any agent is less 
than 50% of the average sojourn time in steady state. 

 The average sojourn time stabilizes after the transition phase. Note that once the system has stabi-
lized, the average sojourn time of the system may oscillate as in Figures 2a and 2d. The same fluctuat-
ing pattern occurs with the maximum and minimum sojourn times in Figures 2a, 2b, and 2d. In general 
terms this fluctuating behavior occurs because a few agents keep changing facility, often alternating 
between two facilities, as illustrated in Figures 1a, 1b, and 1d. This behavior is not seen in Figure 2c 
because the system has reached the Nash equilibrium. While Figures 2b and 2d present a well-defined 
oscillating pattern, the oscillations in Figure 1a are irregular. This is because the expectations of some 
agents for the three queues are very similar; they thus keep facility, as shown in Figure 1a (e.g. agent 
26 between times 36 and 38). 
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FIGURE 2. Four examples of average sojourn time for parameters α = 0.5 and  β = 0.5 with different 
values for the initial expected sojourn time 
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 Even though some agents in Figure 1b are switching between 2 facilities, the average sojourn time 
in steady state remains constant. This occurs because in one of the facilities (in this case facility 1) the 

number of agents stays constant and equals
m
n

, i.e. the number of agents in a facility when the Nash 

equilibrium is reached (40 for this case), while the other 
m
nn − agents are divided among the other 

two facilities, with v
m
n

+ agents patronizing one facility, and the remaining v
m
n

−  the other one, 

where v is any integer number between 1 and n/m. For example in case (b) the number of agents in fa-
cility 2 alternates between 39 and 41 each time period. When 39 agents join facility 2, 41 join facility 
3, and vice versa. In this case  v equals 1.   

 In Figure 2d there are just 2 facilities in use, facilities 1 and 3 (see Figures 1d and 3d). After the 
transition period the number of agents in each facility alternates each time period between vn j +  and 

vn j − agents, nj being the average number of agents who patronize facility j (i.e. j equals 1 and 3). 
When 66 agents join facility 1, the other 54 join facility 3, while when 48 agents go to facility 1, the 
other 72 join facility 3. Unlike Figure 2b, the average sojourn time in Figure 2d fluctuates because n1 
≠ n2, i.e. the average number of agents (nj) differs across facilities.  

 Figure 3 shows how agents are distributed across the different facilities over time. In these figures 
we analyze the system behavior at a macro-level. For instance, we easily can see when one facility is 
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forgotten or which facilities are more crowded at a given moment of time, e.g. Figure 3c illustrates 
that facility 1 is forgotten at time 4, while at time 7 this is the only facility used by agents. 

 While Figure 2a indicates an almost stable average sojourn time, both Figures 1a and 3a confirm 
that there is no such stability at the micro level. In Figure 1a we saw how some agents switch between 
facilities. In Figure 3a we see that the distribution of agents in the three queues is changing over time 
in an irregular fashion.  

 Finally we can observe in Figure 3c that after the transition period the distribution of agents across 
the three queues does not change over time. This confirms that the Nash equilibrium may be reached 
with the parameter configuration used for this simulation, i.e. when agents give the same weight to 
both the memory and the new information (own experience and that of best performing neighbor). 

FIGURE 3. Distribution of agents across the three service facilities for parameters α = 0.5 and  β = 0.5  
depending on the initial expected sojourn time 
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5. Conclusions and Future Work 

We have presented a one-dimensional cellular automata based queuing model to explain and under-
stand how customers interact and make decisions in a multichannel service facility. We deviate from 
the traditional research approach to queuing which has mainly concentrated on the design, perfor-
mance, and running of service facilities, assuming that customers’ arrivals are exogenous and follow a 
stochastic process. We describe a self-organizing disaggregated queuing system with local interaction 
and locally rational agents (customers) who, based on their expectations (memory), decide which fa-
cility to join the next time period. They update their expectations based on two sources of information, 
their previous experience and that of their neighbors, using an adaptive expectation model. 
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 Simulating this queuing model showed interesting collective behavior of agents (customers) en-
dowed with memory and local interactions with neighbors. In this paper we have explained three of 
these. The first behavior depicts the case where customers do not find a facility that satisfies their re-
quirements and continue to switch between alternatives. The second behavior represents the case 
where some customers have two preferred facilities and one of them corresponds to the one of their 
preferred neighbor (who has the better performance). In this case the customers alternate between 2 
facilities. The last behavior corresponds to a Nash equilibrium wherein after trying out several facili-
ties all agents find the most convenient one. 

 While the aggregated results (e.g. the evolution of average sojourn time) show that there is a cer-
tain stability in the system, the more disaggregated results (the agents’ evolution in the system) may 
either contradict or confirm this analysis. By looking at the individual level we understand better how 
customers learn from the system and update their expectations regarding the system using the new in-
formation and their previously computed expectations (the memory). It also enables us to study how 
the customers’ expectations may influence the stability of the system. 

 This is clearly a starting point for such a research agenda and we are working on extending the 
above mentioned framework. Extensions include playing around with different behavioral parameter 
values, considering service facilities of different sizes, including uncertainty in the customers’ expec-
tations, and also increasing the complexity of local interactions among agents i.e. changing the neigh-
borhood parameter K. Another aspect would be to incorporate more decision capabilities into the 
model, such as decision making by services providers, i.e. considering that both the arrival and service 
rate are determined endogenously. An interesting approach would be to conduct experiments wherein 
human subjects act as customers so that we can verify the model and the heuristics that are used. 

Appendix 
A. Equation of the sojourn time (Wjt) (Adapted from Sankaranarayanan et al [18]) 

 
Let us consider an M/M/1 system (i.e. a one-server system with Poisson arrivals and exponential ser-
vice times, see e.g. Gross and Harris [5]) in steady state. For such a system, the expected number of 
people in the system (L) satisfies equation (8): 

λµ
λ

ρ
ρ

−
=

−
=

1
L           (8) 

 where ρ denotes the utilization rate λ/μ. Recalling Little’s law 

L = λ * W,              (9) 

 equations (8) and (9) imply that the average sojourn time in the system (W) equals   

λµ −
=

1W .            (10) 

Unfortunately, these equations are only valid in steady state, which requires ρ < 1. We need a con-
gestion measure which can be used for a transient analysis where at peak times the arrival rate tempo-
rarily exceeds the service rate. We have therefore attempted to identify a congestion measure that sat-
isfies the behavioral characteristics of equations (8) to (10), but remains well-defined when ρ ≥ 1. 
Such a measure should satisfy the following criteria: 

(i) If ρ equals zero, the number of people in the facility, L, equals zero (Equation 8); 

(ii) L increases more than proportionally in ρ (Equation 8); 

(iii) When the arrival rate tends to zero, the sojourn time W is inversely proportional to the 
service rate µ (Equation 10); 

(iv) When the arrival rate and service rate increase proportionally, leaving ρ unchanged, the 
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waiting time W decreases (Equations 8 and 9); 

(v) Little's Law is satisfied (Equation 9). 

 With these requirements in mind, we define Ljt as follows: 

jtjtjtjtjtL ρρρρ +=+= 21)( .       (11) 

 Using Little's law and the definition of ρ yields the average sojourn time 

μ
+

μ
jtλ

=jtW 1
2 .           (12) 
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ABSTRACT 

In this paper, we apply system dynamics to model a queuing system wherein the 
manager of a service facility adjusts capacity based on his perception of the queue size; while 
potential and current customers react to the managers’ decisions. Current customers update 
their perception based on their own experience and decide whether to remain patronizing the 
facility, whereas potential customers estimate their expected waiting time through word of 
mouth and decide whether to join the facility or not. We simulate the model and analyze the 
evolution of the backlog of work and the available service capacity. Based on this analysis we 
propose two alternative decision rules to maximize the manager’s cumulative profits. Then, 
we illustrate how we have developed an experiment to collect information about the way 
human subjects taking on the role of a manager in a lab environment face a situation in which 
they must adjust the capacity of a service facility.  
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INTRODUCTION 

Most typical research in queuing problems has been focused on the optimization of 
performance measures and the equilibrium analysis of a queuing system. Traditionally, 
analytical modeling and simulation have been the approaches used to deal with queuing 
problems. Most simulation models are stochastic and some more recent models are 
deterministic (van Ackere, Haxholdt, & Larsen, 2010). 

The analytical approach describes mathematically the operating characteristics of the 
system in terms of the performance measures, usually in "steady state" (Albright & Winston, 
2009). This method is useful for low-complexity problems whose analytical solution is not 
difficult to find. For complex problems, a simulation approach is preferable as it enables 
modeling the problem in a more realistic way, with fewer simplifying assumptions (Albright 
& Winston, 2009).  

We consider those queuing systems in which customers decide whether or not to join a 
facility for service based on their perception of waiting time, while managers decide to adjust 
capacity based on their perception of the backlog of work (i.e. the number of customers 
waiting for service). The analysis of queuing problems could be aimed at either optimizing 
performance measures to improve the operating characteristics of a system or understanding 
how the manager and customers interact with the system to achieve their objectives. In the 
real world, queuing is a dynamic problem whose complexity, intensity and effects on the 
system change over time. Still, some problems may be modeled using the assumptions of 
classical queuing theory (Rapoport, Stein, Parco, & Seale, 2004). Considering the complexity 
of queuing problems, which is due to a set of interactive and dynamic decisions by the agents 
(i.e. customers and the manager) who take part in the system, we will focus on studying the 
behavioral aspects of queuing problems.  

Haxholdt, Larsen, & van Ackere (2003) and van Ackere, Haxholdt, & Larsen, (2006); 
van Ackere et al., (2010) have applied deterministic simulation methodologies for studying 
behavioral aspects of a queuing system. Other authors have included cost allocation as a 
control for system congestion (queue size) (e.g. Dewan and Mendelson 1990). In this way, 
customers' decisions on whether or not to join the system are influenced by such costs. 
Likewise, those decisions can be based on steady-state (e.g. Dewan and Mendelson 1990). or 
be state-dependent (e.g. van Ackere 1995). The seminal papers on this subject are Naor 
(1969) and Yechiali (1971). Other authors have included dynamic feedback processes to build 
perceptions of the behavior of the queue (van Ackere et al., 2006) and/or of demand (van 
Ackere et al. 2010), which influence the decisions of customers and managers. A more 
detailed discussion of the state of the art on behavioral aspects in queuing theory can be found 
in (van Ackere et al., 2010). 

 We propose two methodological approaches to achieve our goals. Firstly, we use 
system dynamics to learn about the macro-dynamics of customers and the manager interacting 
in a service facility. Specifically we analyze how the available service capacity and the queue 
evolve and how the delay structure affects the manager’s decision. We also want to assess 
how the manager adjusts capacity based on the evolution of the backlog of work (i.e. the 
number of customers waiting for service). Haxholdt et al. (2003) and van Ackere et al. (2006 
and 2010) applied system dynamics to tackled similar problems. System dynamics is useful 
for problems, which do not require much detail. That is, those which can be modeled at a high 
level of abstraction. This kind of problems is usually situated at the macro or strategic level 
(e.g. marketplace & competition, population dynamics and ecosystem) (Borshchev & 
Filippov, 2004)  
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Next we apply experimental economics (Smith, 1982) to capture information about how 
subjects playing the role of a manager in a lab environment, decide when and by how much to 
adjust the capacity of a service facility.  We use the system dynamics based simulation model 
as a computational platform to perform the experiment. For more details about how system 
dynamics models have been used to carry out laboratory experiments, see (Arango, 
Castaneda, & Olaya, 2011). Experimental economics is a methodology that based on 
collecting data from human subjects to study their behavior in a controlled economic 
environment (Friedman & Sunder, 1994).  

This paper is organized as follows: Firstly, we discuss the dynamic hypothesis of the 
problem proposed initially by van Ackere et al. (2010) and explain why we modify the model. 
Then, we analyze the model behavior of the base case. In the following section, we introduce 
two alternative strategies to manage the capacity adjustment of the service facility. We 
determine the optimal parameters for these strategies and analyze the resulting system 
behavior. We also perform a sensitivity analysis to the parameter values. Finally, we present 
the experimental laboratory and discuss the collected results. 

A SERVICE FACILITY MANAGEMENT MODEL 

In this section, we analyze the dynamic hypothesis of the queuing model proposed by 
van Ackere et al. (2010). This model captures the relationship between customers and 
manager (referred to as the service provider) as agents who interact in a service system. The 
causal loop diagram of Figure 1 portrays the feedback structure of these two actors in the 
system. The model consists of two sectors: the customers’ behavior is to the left and that of 
the manager to the right. Both sectors are connected by the queue, whose evolution 
determines the dynamics of these actors in the system. Customers decide whether to use the 
facility based on their estimate of waiting time, while the manager decides to adjust the 
service capacity based on the queue length. Examples of this kind of system include a garage 
where customers take their car for maintenance, and workers or students who daily patronize 
a restaurant to have lunch. In both examples, customers are free to use or not the facility for 
service and the manager is motivated to encourage customers to use his facility by adjusting 
its service capacity. 

Customers

Queue

Available
Service

Capacity
Waiting

time

Current
Customers
Satisfaction +

+

-

+

Desired
Service

Capacity+

Capacity
Orders

+

Capacity
Retirement

-

Current Customers Loop

Potential Customers Loop

Potential Customer
Expected Waiting time

Capacity Reduction Loop

Capacity Acquisition Loop
+ -

+ -

-

-

 

Figure 1. Feedback loop structure for a customers-facility queuing system  

Two groups of customers are assumed: current and potential customers. The former 
make up the customer base of the facility; they periodically patronize it as long as they are 



C.A. Delgado, A. van Ackere, E.R. Larsen, and S. Arango, 2011 

4 

satisfied. They consider being satisfied when their expected waiting time is less than the 
market reference, which they find acceptable. The second group represents those customers 
who the manager envisages as potentially attractive to the business. They can be either former 
customers, who left due to dissatisfaction, or new customers who require the service and look 
for a facility. They decide whether or not to join the facility depending on their expected 
waiting time, which they also compare to the market reference.  

Customers form their perception of waiting time ( tW
•

) each period using adaptive 
expectations (Nerlove, 1958), as shown in Equation 1:  

 

11 1 −
•

−

•
−+= ttt WWW *)(* ϕϕ        (1) 

 

where ϕ is called the coefficient of expectations (Nerlove, 1958) and 1/ϕ may be 
considered as the time taken by customers to adapt their expectations. Current customers 
adjust their expectation based on their last experience (Wt), while potential customers rely on 
word of mouth. The decision of joining a facility for service based on its reputation often 
requires more time than when we base this decision on our own experience. Thus, we assume 
that the time required by potential customers to adapt their expectations is longer than or 
equal to that of the current customers.  

While the current customers’ perception determines their loyalty to the facility, the 
potential customers’ perception defines if they will join the customer base. The lower the 
waiting time perceived by current customers, the more loyal they are, whereas the higher the 
perceived waiting time, the more customers will leave the customer base. Regarding potential 
customers, the lower their expected waiting time, the more will become new customers for the 
facility. The rates at which new customers join the customer base and current customers leave 
it are modeled using nonlinear functions of the satisfaction level. van Ackere et al. (2010) 
discuss some alternatives to model these functions. 

To summarize the customers’ dynamics: longer queues bring about higher waiting times 
for current customers and increased perceptions of waiting time for potential customers, 
implying that the level of satisfaction with the facility’s service of both customer groups 
decreases. Consequently, over time this reduction in customers’ satisfaction leads current 
customers to leave the facility and discourages new customers from joining it in the future. 
Thus, the number of customers waiting for service will decrease until the waiting time tends 
to acceptable levels compared to the market reference and the customers’ perception 
stabilizes. These dynamics are described by the two balancing loops to the left in Figure 1. 

As far as the service provider (the right side of Figure 1) is concerned, van Ackere et al. 
(2010) model the type of service systems where the capacity adjustment involves an 
implementation time. For instance, hiring new employees requires new training, laying off 
staff may imply a notice period, acquiring new IT systems takes time, among others. 
However, the authors represent this time in the model using an information delay (Sterman, 
2000); after the manager estimates the required capacity, any needed adjustment is 
implemented gradually. This is a simplified view of the delay structure.  In a system dynamics 
context, this kind of delays is better modeled through material delays, which capture the real 
physical flow of the capacity (Sterman, 2000). Once the adjustment decision has been made, 
its implementation process does not materialize immediately. We deviate from van Ackere et 
al. (2010) by incorporating this material delay structure in the model, as the stock and flow 
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diagram of Figure 2 illustrates. In this way, we can model how the manager accounts for his 
previous decisions, which have not yet taken effect, to make his next decision.  
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Figure 2. System dynamics representation for the capacity adjustment management of a 
service facility. 

The capacity adjustment process is depicted in Figure 2 by capacity orders and the 
decision to retire capacity, which determine the available service capacity. Starting from the 
left, the manager decides how fast and how much to adjust capacity based on his desired 
service capacity and the future capacity. The latter is explained below and depends on his 
previous decisions. He estimates the desired service capacity based on his perception of the 
average queue length and a market reference for the waiting time (τMR). Like the customers, 
the manager forms this perception by applying adaptive expectations. He updates his expected 
average queue length based on the most recent observation of the queue (Qt-1). This expected 
average queue length (EQt) is given by: 

 

11 1 −− −+= ttt EQQEQ *)(* ββ       (2) 

 

where β is the coefficient of expectations for the manager and 1/β may be interpreted as 
the time required by the manager to adapt his perception. Then, the desired service capacity of 
the manager is determined as follows: 

 

MR

t
t

EQ
CD

τ
=          (3) 

 

The longer the queue the greater the desired service capacity and the larger the capacity 
orders (c.f Figure 1). After the manager decides how much capacity to add (c.f. capacity 
orders in Figure 2), these orders accumulate as capacity on order (CO) until they are available 
for delivery (c.f. capacity delivery delay in Figure 2). Some examples of this kind of delayed 
process in capacity acquisition include construction of new buildings, purchase of new 
equipment and hiring staff. Once the capacity order is fulfilled, the service capacity (SC) will 
be increased by the capacity delivery. The greater the service capacity, the higher the service 
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rate and thus fewer customers waiting. In this way, a third balancing loop (c.f. capacity 
acquisition loop in Figure 1) results from the dynamics between the manager and customers.  

The decision of adjusting capacity may also imply removing capacity. When this 
occurs, the capacity, which the manager decides to withdraw, will be designated as capacity to 
be retired (CbR). This capacity remains available to the customer during the capacity 
retirement delay (e.g. end a lease on a building, notice period for staff, etc). Hence, the 
currently available service capacity at the facility at time t is given by, 

 

ASCt = SCt + CbRt         (4) 

 

After the delay involved in the capacity retirement, the available service capacity will 
decrease due to this retirement, as shown in Figure 1, and the number of customers in the 
queue will thus increase. This effect yields the fourth balancing loop in the system. This loop 
describes the behavior caused by the decisions of capacity reduction. 

Finally, the capacity that will be available once all the manager’s decisions have been 
implemented, i.e. the future capacity, is given by, 

 

FSCt = COt + SCt         (5) 

 

Then, Equations (4) implies that FSCt equals 

 

FSCt = ASCt + COt - CbRt        (6) 

 

To summarize the manager’s dynamics: longer queues increase his desired service 
capacity. The higher this desired service capacity, the more capacity the manager orders or the 
less he removes. Over time, the capacity orders will increase the available service capacity, 
while the capacity retirement will decrease it. Consequently, the higher (the lower) the 
available service capacity the lower (the higher) the number of customers queuing. Like the 
customers’ dynamics, the two balancing loops, which describe the manager’s behavior, may 
lead to stabilizing his perception over time. Thus, we are interested in studying how the 
manager analyzes the customers’ behavior in order to adjust capacity and how the multiple 
delays involved in the system affect his decisions.   

MODEL BEHAVIOR  

Before trying out some alternative policies or strategies to model the manager’s 
decisions and discussing descriptively some experimental results, we analyze the typical 
behavior of the system occurring when one of the equilibrium conditions is modified. The 
model is initially set under the equilibrium conditions, which are described in Table 1. Then 
we illustrate the impact on the system behavior of increasing the size of the initial customer 
base from 175 to 200. The other initial values remain as shown in Table 1. We simulate the 
model for 100 time units using a simulation step of 0.0625 time units. 
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State Variables Equilibrium 
Value 

Unit 

Customer base 175 People 

Queue 50 People 

Average queue 50 People 

Capacity on order 0 People / Time 

Service capacity 25 People / Time 

Capacity to be retired 0 People / Time 

Perceived waiting time of current customer 2 Time unit 

Perceived waiting time of potential customers 2 Time unit 

Exogenous Variables Value Unit 

Visit per time unit 0.15 1 / Time unit 

Market reference waiting time (τMR) 2 Time unit 

Delays Value Unit 

Time to perceive queue length (1 / β) 4 Time unit 

Capacity delivery delay 4 Time unit 

Capacity retirement delay 2 Time unit 

Perception time of current customers (1 / ϕc) 2 Time unit 

Perception time of potential customers (1 / ϕp) 4 Time unit 

Table 1. Initial conditions of equilibrium 

Figure 3 illustrates the evolution of the available service capacity and the number of 
customers waiting for service. We can observe that the manager adjusts the service capacity 
by imitating the evolution of the queue (i.e. the backlog of work). In this sense, he is trying to 
keep the average waiting time close to the market reference and while keeping the utilization 
rate close to 1, as shown in Figure 4. The lags involved in the manager and customer 
dynamics in addition to the manager’s reaction result in the oscillating phenomenon and a 
certain decreasing tendency, as shown in Figure 3. Next, we go into more detail of the causes 
of this pattern. 

An increase in the customer base will raise the arrival rate. Considering that the service 
capacity remains constant due to the lags involved in the capacity adjustment process and the 
formation of perceptions by the manager, more customers will wait for service. As the queue 
increases, the manager adjusts gradually his desired service capacity. According to Figure 1, 
the higher the desired service capacity, the larger the capacity orders. However, the capacity is 
delivered after 4 periods. The average waiting time therefore increases initially as plotted in 
Figure 4, affecting the perception of current customers and the expected waiting time of 
potential customers. When the perception of waiting time exceeds the market reference (2 
time units), the customer base starts to decrease because more current customers are 
dissatisfied and fewer potential customers wish to join the facility. Hence, when the 
manager’s decisions to add capacity start to materialize, the backlog of work (i.e. the queue) 
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is falling. Consequently, the available service capacity reaches its peak at about the time the 
queue is reaching its nadir. Moreover, the manager reacts again to this behavior of the 
customers, but on this occasion by reducing his available service capacity to avoid having idle 
capacity. Neither manager nor customers consider the delays inherent in the reaction of each 
other. Hence, the backlog soars because of the manager’s decision. Thus, despite the manager 
trying to adjust the service capacity by imitating the evolution of the queue, the multiple 
delays in the system bring about a fluctuating pattern as illustrated in figure 3.  
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Figure 3. Illustrative behavior of the available service capacity and queue length 
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Figure 4. Illustrative behavior of (a) the average waiting time and (b) the utilization rate. 

We have explained the model and illustrated a typical case where the manager reacts to 
customers’ dynamics. In the next section, we propose other alternative decision rules to 
enable the manager to adjust capacity more effectively. These rules are based on the 
manager’s perception of the backlog of work. Two alternative ways to form this perception 
based on the evolution of the queue are introduced. The decision rules consider both the 
required capacity adjustment and the speed at which this adjustment is carried out.  
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ALTERNATIVE DECISION RULES  

The aim of the manager is to maintain sufficient available service capacity (ASCt) in his 
facility in order to satisfy the customers. He thus decides whether to adjust the service 
capacity and at what time to do so. We propose a heuristic to determine the required capacity 
adjustment (RCAt) by incorporating the speed at which the manager decides to adjust it. Let α 
be the service provider’s speed to adjust capacity, i.e. how fast he decides to either add or 
reduce capacity. We defined above that the capacity adjustment decisions depend on the 
future service capacity (FSCt), and the desired capacity (DCt). Thus, including α in this 
definition, we may state RCAt as follows: 

 

)(* ttt FSCDCRCA −= α ,        (7) 

 

where α must be nonnegative and less than 1. This adjustment involves either an 
increase in capacity (when DCt - FSCt >0), a decrease in capacity (when DCt - FSCt < 0), or 
leaving capacity unchanged (when DCt - FSCt = 0). Taking into account that the capacity 
delivery delay may be different from the capacity retirement delay (c.f. Figure 2), we assume 
that the speed to either add or remove capacity can also be different. In this sense, the 
parameter α is determined as follows: 

 





>=−

<−
=

0 if      
0 if      

2

1

tt

tt

FSCDC
FSCDC

α
α

α        (8) 

 

where DCt and FSCt are as defined in Equation 3 and 6. Consider now that the manager 
does not necessarily keep in mind all his previous decisions, some of which are still in the 
process of execution. Thus, the future service capacity (FSCt), which the manager perceives, 
would be modeled as: 

 

FSCt = ASCt + γ * (COt - CbRt)      (9) 

 

where γ represents the proportion of the capacity adjustment that has not yet been 
implemented, which the manager takes into account. Replacing α, DCt and FSCt using 
Equations 8, 3 and 9, respectively, in Equation 7, the decision of how much to adjust capacity 
each period is determined by 

 

 







−−−

−+
= −− )(*

)(*
* ttt

MR

tt
t CbRCOASC

EQQ
RCA γ

τ
ββ

α 11 1   (10) 

s.t. 
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We propose a second manner to estimate DCt. Instead of using adaptive expectations, 
the manager may simply consider the most recent backlog, i.e. customers waiting for service 
(Qt), to estimate demand. That is, he looks at his current order book to decide how much 
capacity is required. Such an attitude is meaningful in situations where capacity can be 
adjusted fairly cheaply and quickly, e.g. by using temporary staff. In this case Equations 10 
and 11 become:  

 









−−−= )(** ttt

MR

t
t CbRCOASC

Q
RCA γ

τ
α      (12) 

s.t. 











>=−−−

<−−−

=
0   if      

0    if      

2

1

)(*

)(*

ttt
MR

t

ttt
MR

t

CbRCOASC
Q

CbRCOASC
Q

γ
τ

α

γ
τ

α
α     (13) 

 

 

Optimal Strategies 
Our objective is to find optimal values for the parameters α1, α2, β and γ, which 

determine the above two strategies, to maximize the manager’s cumulative profits over 100 
time units. In order to calculate this profit we introduce a fixed cost and revenue resulting 
from providing the service. The equations 10 to 13 are nonlinear and thus complicated to 
optimize analytically. Thus, we apply simulation optimization (Keloharju & Wolstenholme, 
1989; Moxnes, 2005) in order to find the optimal parameter values. 

We use the optimizer toolkit of Vensim where the cumulative profits are set as the 
payoff function. The optimal parameter values we obtain are given in Table 2. According to 
this table, the second strategy, i.e. when the manager forms his perception based on the most 
recent value of the backlog, reaches the best payoff (2’151 compared to 2’059 for strategy 1). 
This occurs because when using strategy 2 the manager makes decisions a bit more 
aggressively than when using strategy 1, as shown figure 5. Hence, the manager reaches 
higher profits when he relies on the most recent information about the customers’ behavior, 
i.e. Qt. The optimal value of β (i.e. the coefficient of expectations), which equals 1 (see table 
2), for strategy 1 strengthens the above remark. A coefficient of expectation equal to 1 means 
that the manager updates his expectation by using only the most recent information regarding 
the backlog. That is, the manager does not account for the past. In that case, Qt-1 is the latest 
information about the backlog the manager has to update his perception, EQt, at time unit t.  
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Strategy Alpha 1 Alpha 2 Beta Gamma Maximum 
Payoff Value 

Adaptive 
expectations 1.00 0.00 1.00 0.40 1'950 

Most recent 
value of the 
backlog 

1.00 0.00 N.A 0.37 2'071 

Table 2. Optimal values of the parameters which define each strategy 
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Figure 5. Evolution of the queue (i.e. backlog) and the available service capacity for the two 
capacity adjustment strategies with the optimal parameter values. 

Figure 5 shows the behavior of the two parts of the system (customers and the manager) 
for both strategies. Their optimal behaviors are similar. Like in the base case, when the 
manager applies either of these two strategies, the backlog grows at the beginning of the 
simulation and the manager reacts by increasing capacity. However, as he bases his decisions 
on the most recent information about the backlog, he notices quickly that the backlog goes 
down. Thus, his decision to increase capacity becomes less aggressive resulting in the 
utilization rate gradually increasing back to 1 (see Figure 6). Consequently, the manager’s 
decisions encourage current customers to remain loyal which in turn encourages the manager 
to keep the available service capacity constant. The manager’s behavior brings about current 
customers being satisfied and thus inducing potential customers to patronize the facility 
through word of mouth. New customers joining the customer base imply that the arrival rate 
steeply increases. The manager responds by slowly increasing the available service capacity, 
which quickly reduces the queue. From this point onwards, an oscillating phenomenon starts 
to emerge. This oscillating pattern differs from that of the base case in that it grows 
exponentially over time.  



C.A. Delgado, A. van Ackere, E.R. Larsen, and S. Arango, 2011 

12 

 Strategy 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100
Time

U
til

iz
at

io
n 

ra
te

Strategy 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100
Time

U
til

iz
at

io
n 

ra
te

(b) (a)  

Figure 6. Evolution of the utilization rate for the two capacity adjustment strategies set up 
with the optimal parameter values. 

Sensitivity analysis 
We perform a sensitivity analysis to understand the impact of the different parameters, 

which define the alternative strategies, on the model behavior. In particular, we analyze the 
effect of a change in the values of these parameters on the manager’s cumulative profits and 
the evolution of the queue.  

First we illustrate the case in which we change α2 (i.e. the speed at which the manager 
removes capacity). We select this parameter because it has the strongest impact. Figure 7 
illustrates how changing the value of α2 in both strategies affects the evolution of the queue 
and the manager’s cumulative profits. We can observe that changes in these two variables 
emerge after about 27 time units, particularly, when α2  is large (e.g. 0.5 or 1.0), i.e. when the 
manager quickly removes capacity. For instance, using both strategies with α2 equal to 1.0 
the cumulative profits decrease about 70% compared to the optimal value, while the backlog 
decreases by about 98% for strategy 1 and 94% for strategy 2. Likewise, the higher the 
parameter, the more the backlog oscillates. 

Changes in the other parameters have small impacts on the evolution of the cumulative 
profits and the queue. As far as α1  (i.e. the speed at which the manager add capacity) is 
concerned, for very small values (e.g. 0.0 and 0.1) the manager’s cumulative profits and the 
queue are slightly reduced using both strategies. Regarding the speed at which the manager 
updates his perception in Strategy 1, i.e. β, varying this parameter results in similar effects as 
changing α1. Finally, by trying different values of γ we found that they do not have any 
significant impact. 
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Figure 7. The cumulative profits and queue length when strategies 1 (Figs a and b) and 2 
(Figs c and d) are simulated for selected values of α2, keeping values of α1, β, and γ constant 

as shown in Table 2.  

A SERVICE FACILITY MANAGEMENT EXPERIMENT 

We use the model described above as a computational platform to implement a 
laboratory experiment (c.f. Smith, 1982). The objective behind this experiment is to collect 
experimental information to assess how human subjects taking on the role of a manager face a 
situation in which they must adjust the capacity of a service facility. We also want to analyze 
how they use the available information to make capacity adjustment decisions. The subjects 
have information about the behavior of both the facility and the customers. Regarding the 
facility, they know the past and current available service capacity and utilization rate. As for 
customers, subjects know the past and current backlog (i.e. the number of customers waiting 
for service).   

Experimental Protocol 
We design this experiment based on the protocol for experimental economics (e.g. 

Smith, 1982; Friedman and Sunder 1994). We recruited undergraduate and master students in 
Finance, Management and Economics from the University of Lausanne. They were invited to 
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participate in an experiment designed to study decision making in a service industry, through 
which they could earn up to 80 Swiss Francs. We received about 400 replies and selected 187 
subjects following the principle of “first come, first served” in order to perform six 
experimental treatments. Each treatment had at least 30 participants. Subjects were allocated 
across eleven experimental sessions; each involved around 16 subjects and lasted, on average 
90 minutes. Two facilitators supervised each session. The task of the subjects was to use a 
computer based interface, which portrayed the service capacity adjustment problem of a 
garage, to decide each period how much capacity to add or remove. They had to perform this 
task for 100 experimental periods.  

This experiment was conducted in the informatics laboratories of the School of 
Business and Economics. Upon arrival at the laboratory, the subjects were allocated to a PC 
and separated from their neighbor by another PC. Communication between the subjects was 
forbidden. Once they were seated, we gave them written instructions and a consent form, 
which they had to sign before starting the experiment. Then, a short introduction to the 
experiment was presented to them. The instructions were quite simple and provided subjects 
with a short explanation of the system that they had to manage in the experiment and all the 
information, which they had available to carry out their task. We present the instructions and 
the interface used to run the experiment in the appendix of this paper.  

We gave the subjects the payoff scale through which they earned their reward 
depending on their performance in the experiment. Performance was measured based on the 
cumulative profits that subjects had at the end of the experiment, i.e. at the period 100 or 
when the available service capacity reached 0, If that happened before than the period 100. 

Experimental Treatments 
In addition to the base case, we have designed other five experimental treatments to 

understand how the manager adjusts the capacity of an industry service. These five treatments 
are divided in two groups to study the effect of different factors. The first group is composed 
of four treatments and its objective is to analyze how the delay structure, inherent to the 
system, affects how the manager decides to adjust capacity. This delay structure includes the 
delays the manager knows (i.e. the implicit lags in capacity adjustment), and those which are 
unknown to him (i.e. the time required by potential and current customers to update their 
perceptions). The last group has a single treatment, which includes a cost to add or remove 
capacity. Table 3 summarizes the conditions of each treatment.  

 

 Treatment 
Current 

customers 
Delay  

Potential 
customers 

Delay  

Time to 
increase 
capacity 

Time to 
decrease 
capacity 

Cost per 
unit change 
in capacity 

Base Case 4 2 4 2 - 
A  10 2 4 2 - 
B  6 4 4 2 - 
C  4 2 8 4 - 
D  4 2 2 1 - 
E 4 2 4 2 1 

Table 3. Treatment conditions. 
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EXPERIMENTAL RESULTS 

All subjects overreact to the initial increase of the backlog. This sudden rise is 
independent of subjects’ decisions since it depends on the initial conditions. Thus, we can 
interpret this first reaction of the subjects as a learning process in which they are trying to 
adapt to the system behavior. In other words, we can call this initial period a transition period.  
Recall that we observed a similar pattern of the backlog in the simulation results.  

From this point onwards, we identify three groups of subjects, whose decisions result in 
similar behavioral patterns. Figure 8 illustrates the evolution of the backlog and the available 
service capacity of two typical subjects of each group. The first group is composed of those 
subjects who overreact strongly to the initial overshoot of the backlog and then they make 
many small decisions to gradually adjust capacity over time (e.g. Subjects 5 and 11). Most of 
these decisions concern capacity addition. Consequently, the garage’s available service 
capacity for this kind of managers presents an exponential increase over time. After the initial 
transition, the available service capacity and the queue behave in the same way. Thus, we can 
consider that these subjects quickly learn to manage the system to achieve sustainable growth. 
The subjects in this group achieved the higher scores of the experiment.  

The second group (e.g. Subjects 12 and 18) represents those subjects who, after their 
slight overreaction to the initial backlog, make fewer but more aggressive capacity adjustment 
decisions than the subjects of the first group. Moreover, they continue to overreact to the 
evolution of the backlog over time. This behavior results in an oscillating pattern for both the 
backlog and the available service capacity: they increase exponentially, but more slowly than 
for the first group. These two groups, despite achieving quite different behavioral patterns 
compared to the two optimal strategies discussed before, attain similar total profits.  

The last group includes subjects who, even after the transition period, continue to 
overreact significantly to the evolution of the backlog (e.g. Subjects 3 and 30). Although in 
some cases the backlog evolves as when simulating the optimal strategies (see Figure 5), the 
subjects did not capture the customers’ behavior. We can consider that these subjects were 
unable to handle the delay structure inherent to the system. They performed poorly, achieving 
the lower payoffs, and occasionally finding themselves with zero service capacity before the 
end of the experiment.  
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Subject 12 : Score = 2'207
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Subject 18 : Score = 2'212
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Subject 30 : Score = 651
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Figure 8. Experimental results for six typical subjects. 
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Treatment Results 
The outcomes of the treatments were compared using the Wilcoxon Rank-Sum test or 

Mann-Whitney U test. Table 4 shows the corresponding p-values. Using a 0.05 significance 
level, these p-values enable us to interpret that the cumulative profits achieved in treatments C 
(i.e., slow adjustment) and D (i.e., fast adjustment) are, on average, significantly different 
compared to the cumulative profits achieved in the other treatments. By looking at the box 
plots in Figure 9 we can get an idea of such a difference as the mean cumulative profits of 
treatments C and D are either above or below the mean cumulative profits of the other 
treatments, supporting the remark inferred from the Wilcoxon Rank-Sum tests. We can also 
observe that the variability in treatment D is less compared to that of the other treatments. In 
addition, the distributions of treatments A, C, D and E are reasonably more symmetric than 
those of treatment B and the base case. 

Col Mean  -
Row Mean
  P-Values

Basecase Treatment 
A

Treatment 
B

Treatment 
C

Treatment 
D

Treatment A 0.2805
Treatment B 0.9035 0.1772
Treatment C 0.0008 0.0029 0.0000
Treatment D 0.0002 0.0000 0.0003 0.0000
Treatment E 0.2871 0.7562 0.2310 0.0003 0.0000  

Table 4. P-values of the Wilcoxon Rank-Sum test for the cumulative profits 
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Figure 9. Box plots for the cumulative profits by treatment  

CONCLUSIONS AND FURTHER WORK 

In this paper, we have applied a system dynamics model to study how the manager of a 
service facility adjusts capacity based on his perception of the queue length, whereas potential 
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and current customers react to the managers’ decisions. While current customers update their 
perception based on their own experience and decide whether to stay in the customer base, 
potential customers update their perception through word of mouth and decide whether to join 
the customer base. We have simulated the model and analyzed the evolution of the backlog of 
work and the available service capacity. Based on this analysis we have proposed two 
alternative decision rules to maximize the manager’s cumulative profits. Then, we have 
illustrated how we developed an experiment to collect information about how human subjects 
taking on the role of a manager in a lab environment face a situation in which they must 
adjust the capacity of a service facility.  

Simulating this queuing model showed that when the manager tries to adjust the service 
capacity by imitating the evolution of the queue (i.e. the backlog of work), the multiple delays 
in the system bring about an oscillatory phenomenon. Optimizing the parameters, which set 
the alternative strategies, we found that the manager reaches higher profits when he relies on 
the most recent information about the customers’ behavior, i.e. the most recent backlog. The 
sensitivity analysis enables to conclude that changes in the speed at which the manager 
removes capacity have a strong impact on the evolution of the available service capacity and 
the backlog. Varying the other parameters results in small impacts on the evolution of these 
two variables. 

As far as the experiment is concerned, we identify three groups of subjects, whose 
decisions bring about similar behavioral patterns. The first group included the subjects who 
overreact strongly to the initial sudden increase of the backlog and make many small 
decisions to gradually adjust capacity over time. The second group represented the subjects 
who, after overreact to the initial backlog slightly, they make fewer but more aggressive 
capacity adjustment decisions than the subject of the first group. The last group included 
subjects who even, after the transition period, overreact significantly to the backlog. The two 
first groups, despite quite different behavioral patterns compared to the two optimal strategies 
discussed, achieved similar total profits. 

The next step will be estimate a decision rule which adjusts to collecting data from 
Subjects. Extensions include incorporating prices to manager’ decisions, i.e. a unit cost for 
each unit of capacity which the manager decides to add or remove. An interesting approach 
would be to conduct another experiment wherein another group of human subjects will 
assume the role of customers.  
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APPENDIX 

A. Computer Interface 

 

B. Subjects’ Instructions (Base case) 

Instructions for the participants 
NOTE: PLEASE DO NOT TOUCH THE COMPUTER BEFORE BEING ASKED TO 

DO SO 

 

Welcome to the experiment on decision making in a service industry. The instructions 
for this experiment are quite simple. If you follow them carefully and make good decisions, 
you may earn a certain amount of money. The money will be paid to you, in cash, at the end 
of the experiment. You are free to halt the experiment at any time without notice. If you do 
not pursue the experiment until the end, you will not receive any payment. The University of 
Lausanne has provided funds to support this experiment. If you have any questions before or 
during the experiment, please raise your hand and someone will come to assist you. 

We assure you that the data we collect during the course of this experiment will be held 
in strict confidence. Anonymity is guaranteed; information will not be reported in any manner 
or form that allows associating names with individual players. 

Description of Experiment 
This experiment has been designed to study how managers adjust service capacity in a 

service facility. Below is a short explanation of the system that you will have to manage in the 
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experiment. It is a relative simple system and you only have to make two decisions each time 
period (increasing capacity and/or decreasing capacity). 

The situation 
You are the manager of a large garage, which repairs and maintains cars. You have an 

existing customer base as well as many potential customers who currently are not using your 
services, but might consider doing so in the future. Both groups are sensitive to the waiting 
time. 

Waiting time: is the average time between the moment a customer calls your garage to 
make an appointment and the time the car has been serviced. This depends on two factors, 
how many other customers have made reservations previously (i.e. how long is the queue) and 
the service capacity of the garage (i.e. how many cars can on average be serviced per time 
period). Due to planning constraints, this waiting time cannot be less than one month. 

Customers: These customers use your garage on average every twice a year. They 
evaluate the expected waiting time (which is based on (an average of) the last few times they 
have used your garage) and compare this expected waiting time to the time they consider 
acceptable (the average for the industry, which is 2 months: the elapsed time between the 
moment a customer calls, and the moment he can pick up his car after servicing averages 2 
months). If they are satisfied (i.e. the expected waiting time is comparable to or better than the 
average for the industry) they will remain your customer and return again to use your garage. 
If they consider that the waiting time is too long compared to the industry average they will 
switch to another garage. 

Potential customers: These are people who might become customers if they consider 
that your waiting time is attractive (i.e. less than the industry average). However, given that 
they are currently not among your customers, they only hear about the waiting time at your 
place through word of mouth. Consequently, their estimate of the waiting time at your place is 
based on less recent information than the estimate of your current customers. Note: the 
number of potential customers is unlimited. 

Service Capacity: This is the number of cars the garage can service on average in one 
month. You, as the manager, control the service capacity of the garage, i.e. you have the 
possibility to increase and/or decrease capacity. However, this cannot be done 
instantaneously: it takes 4 months to increase capacity (e.g. ordering more tools, hiring 
people, acquiring more buildings etc) and 2 months to decrease capacity (end a lease on a 
building, lay off people, etc). Note: If at some point your decisions result in a service capacity 
equal to zero (0), the garage will be closed and the experiment is ended. 

Your Task 
As the manager, you make decisions regarding any change in capacity for the garage 

each month. To help you make these decisions you have information about the number of 
customers currently waiting for service or whose car is currently being serviced (referred to as 
the queue), profit, the current capacity of the garage, and the capacity utilization rate. You 
goal is to maximize the total profit over 100 months. 

Cost and revenue information: 

Profits [E$/month] = Revenue – Cost 

Revenue [E$/month]  

= number of customers served [cars/month]*Average Price per Customer [E$/car] 
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Average Price per Customer  = 1 $/car 

Cost [E$/month]   

= Service capacity [units]* Unit cost of service capacity [E$/unit/month] 

Unit cost of service capacity = 0.5 $/unit/month 

Interface  
In front of the computer, you will have the interface where all interactions will take 

place. The information is the same as what we have provided in these instructions. Please ask 
the facilitator to have a trial run to test out the software. 

Payment 
At the end of the experiment, you will receive a cash reward. This will consist of a 

guaranteed participation fee of 20CHF, plus a bonus which will depend on the total profit you 
have achieved. This bonus will vary between 0 and 60CHF. If you do not pursue the 
experiment until the end, you will not receive any payment. 

You will be asked to complete and sign a receipt with your name, email address, and 
student ID number. Thereafter, you can collect your payment. We will be happy to answer 
any questions you may have concerning this experiment. 

If you want to participate in this experiment, please sign the consent form on your desk. 
This form must be signed before the start of the experiment 

If you have no further questions, please ask the experiment facilitator to begin. Good 
luck and enjoy the experiment. 
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 Abstract - In this paper, we incorporate decision rules based 
on adaptive behaviour in order to analyze the impact of 
customers’ decisions on queue formation. We deviate from 
most of the literature in that we model dynamic queuing 
systems with deterministic and endogenous arrivals. We 
apply a one-dimensional cellular automata in order to model 
the research problem. We describe a self organizing queuing 
system with local interaction and locally rational customers. 
They decide which facility to use considering both their 
expected sojourn time and their uncertainty regarding these 
expectations. These measures are updated each period 
applying adaptive expectations and using customers’ 
experience and that of their local neighbours. This paper 
illustrates how the average sojourn time of customers in the 
system depends on their characteristics. These 
characteristics define how risk-averse customers are as well 
as how conservative they are regarding new information.  

 
Keywords – Cellular Automata, Queuing System, 

Sensitivity Analysis, Simulation, Uncertainty. 
 
 

I.  INTRODUCTION 
 

Queuing systems may be described as a process 
where customers arrive at a facility for service. Arrivals 
are the inputs of the process, while the outputs are served 
customers [1]. This process includes the service and the 
wait, when servers are not immediately available. Many 
researchers in Operation Research, Economics, 
Management and Computer Science have focused on 
studying problems related to Queuing systems. Queuing 
problems have been extensively tackled and discussed 
since Erlang [2] published his work on telephone traffic 
problem in 1909.  However, most research on this subject 
has been mainly aimed at the optimization of performance 
measures and the equilibrium analysis of a queuing 
system. The early works concerning queuing problems 
were confined to the equilibrium theory [3] and aimed at 
design, running and performance of facilities. 

Traditionally, analytical modelling and simulation 
have been the approaches used to deal with queuing 
problems. The analytical approach describes 
mathematically the operating characteristics of the system 
in terms of the performance measures, usually in "steady 
state" [4]. This method is useful for low-complexity 
problems whose analytical solutions are not difficult to 
find. For complex problems, a simulation approach is 
preferable as it enables modelling the problem in a more 
realistic way, with fewer simplifying assumptions [4]. 

The decision process of the customers has been rarely 
studied. For instance, the way customers as autonomous 
agents decide which facility to join for service. In a 
queuing system, customers react to the congestion in 
queues and adapt their expectations regarding sojourn 
time using their previous experiences. Koole and 
Mandelbaum [5] have suggested the incorporation of 
human factors as a challenge in order to advance the 
development of queuing models. The seminal papers on 
this subject are [6] and [7]. Most of the models in this 
field are stochastic (e.g.[6]; [7]; [8]; [9]; [10]) and their 
form of feedback is either state-dependent (e.g. [6]) or 
steady state (e.g. [8]). Some authors have included cost 
allocation as a control for system congestion (queue size) 
(e.g. [8]). In this way, customers' decisions on whether or 
not to join the system are based on such cost. Likewise, 
those decisions can be based on steady-state analysis (e.g. 
[8]) or be state-dependent (e.g. [11]). The stochastic 
models are aimed at understanding the impact of 
variability of the service and arrival processes on the 
system behaviour. In spite of all these models and 
research, little emphasis has been placed on the impact of 
individual choice on queue formation and understanding 
of the effects of expectations and experiences. Moreover, 
the existing models do not consider how customers 
include uncertainty in their perceptions of sojourn time to 
decide which facility to join. 

By studying how customers make decisions in a 
queuing system, we attempt to understand in a more 
realistic way the behaviour of the system in contrast to 
that research which tries to optimize performance 
measures using analytical methodologies. Our goal is to 
build a new basis for the analysis of queuing problems by 
incorporating decision rules based on adaptive behaviour 
for customers (e.g. [12]). We ignore exogenous factors, 
which can influence a customer’s decision to seek service, 
such as: quality of service, added value services and 
discounts. That is, all facilities work under the same 
conditions. We deviate from most of the literature in that 
we model dynamic queuing systems with deterministic 
and endogenous arrivals. In this way, some assumptions 
of classical queuing theory are relaxed, in particular that 
the system reaches a steady-state, that service rates are 
exogenous and that both service and arrival patterns are 
stochastic. 

Consider a situation where customers routinely 
require a service and autonomously choose a facility in a 
multichannel system with one queue for each channel 
(facility). There are other applications, in which 
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customers decide at what time to patronize a facility for 
service instead of choosing which facility to join. In these 
cases, we can consider each period as a service channel. 
The customers’ decision to return in the next period to the 
same facility, and therefore their loyalty, will depend on 
their previous experience. Some examples of this kind of 
systems include: a person who must choose a garage for 
the inspection of her car, a person who goes monthly to 
the bank to pay her bills, and a person who goes weekly to 
the supermarket, among others. In all these examples, the 
customer may choose the facility at which he wishes to be 
served and at what time to do so.  

We propose an extension of the model of [12] and 
[13]. We model a queuing system with endogenous and 
deterministic arrival rates using an agent-based simulation 
approach, more precisely a one-dimensional cellular 
automata [14]. We use this model to explain how 
customers interact in a multichannel service facility and to 
study their collective behaviour. We describe a self-
organized queuing system with local interaction and 
locally rational customers who, based on their 
expectations, decide which facility to use. We apply 
adaptive expectations [15] to model how customers 
update their expected sojourn time based on their own 
experience and that of their local neighbours. We also 
introduce uncertainty into the process of formation of 
agents’ expectations in order to analyse how a risk-averse 
attitude may affect collective behaviour. In this way, we 
differ from [12,13] since the agents’ decision policy in 
our model considers both the agents expectations and 
their uncertainty regarding those expectations. In order to 
model the agents’ uncertainty we use the concept of 
volatility of forecast errors (e.g. [16,17]). 

A sensitivity analysis of the model allows us to 
identify different customer types and analyse the 
performance of the system depending on the customer 
type. Model simulations indicate that customers with a 
high level of risk-aversion perform well (i.e. low sojourn 
times) when they give significant weight to new 
information to update their memory regarding expected 
sojourn time. Customers with an intermediate level of 
risk-aversion experience low sojourn times when they are 
reluctant to update both their expectations of sojourn time 
and variance. Finally, risk-neutral customers and those 
with low risk-aversion achieve their best performance 
when they update their expected sojourn times slowly. 
 
 

II.  METHODOLOGY 
 

We propose Agent-Based Modelling to study how 
customers routinely choose a facility for service. We 
model the service facility system as a queuing system 
with endogenously determined arrivals and exogenous 
service rates. The way customers decide which facility to 
patronize each period is based on adaptive expectations 
[15]. The model used in this paper was developed by [18], 
who adapted the model from [13] by incorporating 
uncertainty into the information used by customers to 

decide which facility to join. While [12] and [13] explain 
in detail the way customers use adaptive expectations to 
make decisions, [18] describes how uncertainty is 
considered.  

A one-dimensional cellular automata structure [14] is 
used to represent the interaction among customers and 
analyze the way they decide which facility to join each 
period. The cells represent customers and the states cells 
can take are the facilities between which customers can 
choice. We assume a population of n customers and m 
facilities to set up the system. Each customer has exactly 
two neighbours, one on each side. Each period (t) 
customers must choose a facility for service. Customers 
cannot observe queues before they decide which facility 
to join. However, they use their last experience and that of 
their neighbours to update their memory regarding the 
expected sojourn time at each facility using the following 
equation:  

 
Mijt+1 = α Mijt  + (1 − α) Wjt    (1) 

 
where Mijt and Mijt+1 are the expected sojourn times of 

customer i for facility j at time t and t+1, respectively, i.e. 
the past and current expectations of customers. Wjt is the 
new information regarding the sojourn time at facility j, 
which is the same for all customers patronizing this 
facility. α is the coefficient of expectations [15]. This new 
information can be the customer's own experience, or that 
of his quickest neighbour. For α = 0, no weight is given to 
the past, which implies that the expected sojourn time 
equals the most recent sojourn time. A value α = 1 
implies no updating of expectations.  

Traditional queuing theory considers systems where 
the arrival rate is less than the service rate, and calculates 
average sojourn time in steady state [1]. We assume that 
the arrival rate may occasionally exceed the service rate, 
implying that steady state is never reached. 
Sankaranarayanan, Delgado, van Ackere, and Larsen [13] 
and [12] suggest (2) to estimate a measure of the average 
sojourn time (Wjt) in a transient state. 

 

μμ
λ 1

2 += jt
jtW     (2) 

 
where μ represents the service rate, which is assumed 

as fixed and identical for all facilities and λjt is the arrival 
rate at each facility j at time t, which can vary depending 
on customers’ decisions. Equation (2), which is inspired 
by the behaviour of an M/M/1 system, satisfies the well-
known Little’s Law [13], but remains well defined when ρ 
≥ 1 (Transient Analysis). 

Delgado, van Ackere, Sankaranarayanan, and Larsen 
[18] differs from [12] and [13] in that [18] assume that 
customers consider both their expectations and the 
uncertainty of those expectations to decide which facility 
to patronize. Uncertainty is estimated using the error 
involved in the expectations which customers make about 
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the sojourn time at the facilities. However, considering 
that Mijt+1 is updated using exponential smoothing, which 
assumes a weighted average of the two sources of 
evidence (Mijt and Wijt), we use the concept of volatility 
forecasting [16] in order to deal with uncertainty similarly 
to the expectations, i.e. giving a different weight to the 
new information and the past. As variance is 
unobservable, we estimate a smoothed variance, 2

1+ijts , 
using the equation: 

 
2

1
22

1 1 )(*)(* −+ −−+= ijtijtijtijt MWss γγ
 (3) 

 
where γ is the expectations coefficient [16]. The logic 

behind the parameter γ is similar to that described above 
for α. In this case, this parameter refers to the updating 
process of the variance of customers’ expectations instead 
of their expected sojourn times. In the same way that 
customers update their expectations of sojourn time, they 
update their estimate of the variance of the sojourn time 
for their most recently used facility and for that of their 
best performing neighbour. 

Once the variance of expected sojourn time is known, 
uncertainty is estimated by the standard deviation sijt. 
Customers consider this uncertainty and their expectations 
of sojourn time in order to form an upper bound for their 
expected sojourn time. The way customers take into 
account uncertainty depends on how risk-averse they are. 
We use R in order to define the customers’ profile risk. 
The higher the value of R, the more risk-averse customers 
are. In this sense, an upper bound measure for the 
expected sojourn time, UbMijt, is given by, 

 
UbMijt = Mijt + R*sijt    (4) 

 
This upper bound is the measure on which customers 

base their decision of which facility to join the next 
period. Each period customers will patronize the facility 
with the lowest upper bound, i.e. customers update their 
state by choosing the queue with the lowest value of 
UbMijt (c.f. (1)). In the rare case where two or more 
facilities are tied for the lowest upper bound of expected 
sojourn time, customers choose among these facilities, 
giving first preference to their previously chosen facility 
and second choice to the one previously used by their best 
performing neighbour. For more details about the model 
description and the assumptions made by the authors, 
refer to [12,13,18] 
  
 

III.  RESULTS 
 
In this section, we present a sensitivity analysis with 

respect to the risk-aversion parameter (R) and the 
expectation coefficients (α, γ). Fig. 1 illustrates how the 
average sojourn time of customers in the system varies 
depending on the value of these parameters. Each graph in 
Fig. 1 shows the average sojourn time of the system as a 

function of the expectation coefficient of the variance (γ) 
and the risk-aversion parameter (R), for a given 
expectation coefficient of expected sojourn time (α). The 
curves in each graph represent the average sojourn time 
for different values of the expectation coefficient of 
uncertainty (γ) depending on the risk level of customers 
(R, horizontal axis).  

The system is set up with a population of 120 
customers and 3 facilities. Each facility has a service rate 
of 5 customers per unit of time. Each customer is 
provided with an initial memory for both the expected 
sojourn time and the variance of this sojourn time for each 
facility. The initial expected sojourn times are allocated to 
customers randomly around the optimal average sojourn 
time, while the variance is initialized at zero.  

The model was tested for different initial expected 
sojourn time (Mij0) allocated to the customers randomly. 
This allows us to identify that after 1000 periods the 
system starts to exhibit a certain stability, i.e. the variance 
of the sojourn time is less than 10% and the customers’ 
behaviour over time can be described as a collective 
pattern, which is easily defined and characterized by their 
decisions. Hence, we have run the model over 1500 
periods and the average sojourn time was computed over 
the last 500 period. The results in Fig. 1 are based on 
1000 simulations of the model for each combination of 
the parameters α, γ, and R. The simulations for each 
combination of parameters were run using the same 
random seeds. 

Before going in the sensitivity analysis, we define the 
main customer types in Table I We define conservative 
customers as those who give little weight to new 
information (i.e. Their or their neighbour's, most recent 
experience) to update their memory. 

 
TABLE I 

CUSTOMER TYPES DEFINED BY THE PARAMETER VALUES 
 

Definition of customer types Parameters 

Risk-neutral R  =  0 
Risk-averse R > 0 
Intermediate risk-aversion level R є [0.4, 1.2] 
Conservative customers  
- w.r.t. new information 
regarding average sojourn time 
- w.r.t. new information 
regarding the variability 

 α  ≥ 0.5 
 
γ ≥ 0.5 

Reactive customers 
- w.r.t. new information 
regarding average sojourn time 
- w.r.t. new information 
regarding the variability 

 α  ≤ 0.5 
 
 γ ≤ 0.5 
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Fig. 1.  The average sojourn time of the system as a function of  the 
coefficients of expectations (α, γ) and the risk-aversion parameter (R). 

 

The first graph of Fig. 1 (α = 0.1) illustrates the case 
where customers give more weight to new information 
than to the past when updating their expectations of 
sojourn times. In this case, customers with a very low 
level of risk-aversion (i.e. R close to 0) perform poorly, 
i.e. the system reaches high average sojourn times. On the 
contrary, a system, where customers are very risk-averse 
(i.e. R large), tends to perform better, i.e. the average 
sojourn time is lower. 

As α increases, very risk-averse customers tend to 
perform increasingly worse (i.e. higher sojourn times). 
Whatever the value of α, the maximum sojourn time is 
always achieved when customers update their perception 
of the variance more quickly (γ = 0.1), but the value of R 
(i.e. the risk-aversion parameter) for which this maximum 
occurs increases in α (i.e. the expectation coefficient to 
update the expected sojourn time).  

When the expected sojourn time coefficient (α) is less 
than 0.3, very risk-averse customers tend to reach lower 
sojourn times (i.e. better performance). For values of α 
greatest than or equal to 0.5 (i.e. more conservative 
customers), less risk-averse customers perform better. In 
the extreme case where customers are very conservative 
regarding their expectations of sojourn time (α = 0.9) the 
average sojourn time achieved by customers with low 
risk-aversion is close to the Nash Equilibrium, which is 
equal to 1.8 periods. The system achieves such an 
equilibrium only when an equal number of customers 
patronize the three facilities over time. Nash is the 
optimal behaviour the system could achieve. However, 
the best performance, which the system achieves, yields a 
sojourn time a little higher than Nash. This performance 
occurs when the system is set up with customers 
characterized as: 
 

• Very conservative to update their expectations of 
sojourn time (i.e. α = 0.9),  

• Rather conservative to update their expectations 
of variance (i.e. γ ≥ 0.5), and  

• They have lower risk-aversion level (i.e. R є [0.1, 
0.3]). 

 
Next, let us consider the impact of the coefficient of 

expectations to update variance (γ). Customers who are 
conservative regarding the variance and have an 
intermediate level of risk-aversion perform well as long as 
the parameter α remains above 0.3. This is particularly 
the case when the parameters α and γ are very high (i.e. α 
and γ = 0.9, which means that customers are reluctant to 
consider new information to update their expectations). 
Very risk-averse customers perform more poorly when 
they are conservative as regards the variance (γ large) and 
less conservative regarding their expected sojourn times 
(α low). The lower γ, the spikier the behaviour of the 
average sojourn time is as a function of risk-aversion (R).  
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IV.  CONCLUSION AND FUTURE WORK 
 

We have applied a one-dimensional cellular automata 
model to analyze how customers, who patronize a system 
of service facilities, interact with their neighbours in order 
to choose the facility with the minimum upper bound of 
customers’ expected sojourn times. Customers compute 
their upper bound using their expected sojourn time, their 
estimate of the uncertainty concerning this expectation 
and their risk-aversion parameter. They estimate their 
expected sojourn times and level of uncertainty by 
applying adaptive expectations.  

The model has been simulated for different 
combinations of parameters which characterize 
customers. These simulations showed that very risk-
averse customers experience low sojourn times (i.e. good 
performance) when they give significant weight to the 
most recent experience to update their memory regarding 
expected sojourn time (i.e. α is small). Moreover, they 
achieve their best performance when they update their 
perception of the variance more slowly. If these very risk-
averse customers are reluctant to take into account new 
information to update their expectations of sojourn time, 
they will experience higher sojourn times.  

As far as customers with an intermediate risk-
aversion level are concerned, they perform better when 
they update their expectations slowly (both the expected 
sojourn time and the variance). 

Finally, both risk-neutral customers and those with 
low risk-aversion achieve their best performance when 
they give little attention to the most recent experience 
when updating their expected sojourn times. 

Future research will include allowing for different 
levels of reactivity depending on the source of the 
information, i.e. customers will have different expectation 
coefficients when updating expectations based on their 
own experience or that of their neighbours. We will also 
allow for heterogeneous customers. In particular, we will 
consider customers with different degrees of risk-aversion 
(R) and/or different levels of reactivity (α, γ). Another 
interesting aspect would be to make the service rate 
endogenous, i.e. the manager would be able to adjust the 
service capacity of the facilities depending on the 
customers’ behaviour. 
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Appendix F. LIST OF SYMBOLS 

Chapter 2 

A: set of customers (i.e. cells) in the CA model 
Q : set of facilities (i.e. states) in the CA model 
S: set of states si(t) 
eijt: error in the estimation of Mijt 
K:  neighbourhood range of the CA model, i.e. how many neighbours each customer has 

on each side 
m: number of facilities at Q 
Mijt: expected sojourn time of customer i for facility j at time t 
n:  number of customers at A 
R: risk-aversion factor allocated to the customers 
si(t): state chosen by customer i at time t 
SSij: sum of the squared errors 
tsim: simulation time 
Uijt: expected upper bound of the sojourn time of customers i for facility j at time t 
Wijt: average sojourn time experienced by customer i at facility j at time t 
𝑊�𝑡: weighted average sojourn time 
 
α: coefficient of expectations to estimate the expected sojourn time 
γ: coefficient of expectations to estimate the smoothed variance 
λjt: arrival rate at facility j at time t 
μ:  service capacity of the facilities 
σijt: uncertainty of customer I regarding his expectation of sojourn time for facility j at time 

t 
𝜎𝑖𝑗𝑡+12 : smoothed variance 
 

Chapter 3 

d+: delivery delay 
d-: dismantling delay 
Mijt: expected sojourn time of customer i for facility j at time t 
Wijt: average sojourn time experienced by customer i at facility j at time t 
xjt: capacity orders for facility j at time t 
yjt: capacity retirements from facility j at time t 
α: coefficient of expectations to estimate the expected sojourn time using own 

information 
β: coefficient of expectations to estimate the expected sojourn time using the quickest 

neighbour’s information 
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δ: coefficient of expectations of managers 
Δµjt: required capacity adjustment 
ζ: speed at which managers make decisions 
θ: coefficient of expectations 
λjt: arrival rate at facility j at time t 
�̂� Rjt: future arrival rate at facility j at time t 
�̇� Rjt: desired service capacity for facility j at time t 
µjt: available service capacity of facility j at time t 
𝜇𝑗𝑡+ : capacity on order 
𝜇𝑗𝑡− : capacity to be retired 
𝜇𝑗𝑡

± : capacity decisions not yet implemented 
�̅�𝑗𝑡: service capacity which manager j perceives to have at time t 
τMR: reference average sojourn time 
ψ: coherence factor 
 

Chapter 4 

ASCt: available service capacity 
CADt: capacity adjustment decision 
CbRt: capacity to be retired 
COt: capacity on order 
ΔCt: capacity decisions not yet implemented 
DCt: desired service capacity 
EQt: estimating queue (i.e. Perception of the backlog of work) 
FSCt: future service capacity 
PGapt:  perceived gap between the desired service capacity and the future service 

capacity managers face each period 
Qt: backlog of customers 
RSCt: retained service capacity 
Wt : sojourn time 

tW
•

: expected sojourn time 
δ: coefficient of the manager’s expectations (i.e. 1/δ represents the reference average 

sojourn time of the manager) 
µt: service rate 
τMR: market reference 
φ: coefficient of customers’ expectations (i.e. 1/φ is assumed to be the time taken by 

customers to adapt their expectations) 
χ:  speed at which the manager choose to close this perceived gap, i.e. how aggressive is 

he when making decisions. 
ψ: coherence factor 
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