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a b s t r a c t

Individual learning (e.g., trial-and-error) and social learning (e.g., imitation) are alternative ways of
acquiring and expressing the appropriate phenotype in an environment. The optimal choice between
using individual learning and/or social learning may be dictated by the life-stage or age of an organism.
Of special interest is a learning schedule in which social learning precedes individual learning, because
such a schedule is apparently a necessary condition for cumulative culture. Assuming two obligatory
learning stages per discrete generation, we obtain the evolutionarily stable learning schedules for the
three situations where the environment is constant, fluctuates between generations, or fluctuates within
generations. During each learning stage,we assume that an organismmay target the optimal phenotype in
the current environment by individual learning, and/or the mature phenotype of the previous generation
by oblique social learning. In the absence of exogenous costs to learning, the evolutionarily stable
learning schedules are predicted to be either pure social learning followed by pure individual learning
(‘‘bang–bang’’ control) or pure individual learning at both stages (‘‘flat’’ control). Moreover, we find for
each situation that the evolutionarily stable learning schedule is also the one that optimizes the learned
phenotype at equilibrium.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Individual learning (IL; learning by oneself, e.g., by trial-and-
error) and social learning (SL; learning from others, e.g., by im-
itation) are alternative ways of acquiring and expressing the
appropriate phenotype in an environment (Galef, 1988; Whiten
and Ham, 1992; Heyes, 1993). The two terms are roughly syn-
onymous with producing and scrounging, respectively (Barnard
and Sibly, 1981; Giraldeau et al., 1994; Laland, 2004; Arbilly et al.,
2010, 2011). Both IL and SL are widely distributed among insects,
fish, birds, andmammals (Dugatkin, 2004). For example, honeybee
workers can search independently (use IL) or followwaggle dances
(use SL) to find food (Leadbeater and Chittka, 2007). Similarly, pri-
mates can devise novel solutions to the problems they face during
their lifetime (IL) or copy extant solutions from others in the pop-
ulation (SL; e.g., Dugatkin, 2004).

Since learning is costly in time or energy, organisms are often
subject to a trade-off between IL and SL. This raises the question
of when an organism should copy others (use SL) rather than
directly sample the environment (use IL). Laland (2004) suggests

∗ Corresponding author.
E-mail address: kenaoki@biol.s.u-tokyo.ac.jp (K. Aoki).

three relevant contexts (when an organism should use SL): (1) copy
when established behavior (innate or otherwise) is unproductive,
(2) copy when IL is costly, (3) copy when uncertain. To this list of
‘‘when’’ situations we wish to add a fourth possibility. Namely, the
optimal choice between IL and SL may be dictated by the life-stage
or age of an organism. Put anotherway, natural selectionmay favor
certain broad developmental patterns in the differential use of IL
and SL, with regard to phenotypes that may take a long time to be
acquired.

There are few, if any, definitive empirical studies that bear
on the ontogeny of IL versus SL with which to motivate such a
proposal. First, in a comparative survey of the primate literature,
Reader and Laland (2001) found that the reported incidence of
innovations is higher in adults than non-adults, given the relative
proportions of these groups. This observation suggests that as
primates mature, they are more likely to rely on IL in an absolute
sense and perhaps relative to SL as well. Second, in a study of
honeybee workers throughout their foraging careers, Biesmeijer
and Seeley (2005) noted that a novice forager is more likely than
an experienced forager to use the information fromwaggle dances
to guide her search (being recruited) than to search independently
(scouting). (Clearly, factors such as availability of food sources also
affect the division of labor between recruits and scouts, Beekman
et al., 2007.) These studies imply that primates and honeybeesmay
depend more on SL early in ontogeny and more on IL later.
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Third, Biondi et al. (2010a,b) compared the SL and IL profi-
ciencies of juvenile and adult raptors (Milvago chimango), finding
that juveniles were better than adults at learning from demon-
strators (SL). However, they also discovered the same tendency for
problem-solving (IL). Fourth, Cole et al. (2011) compared problem-
solving (IL) abilities in juvenile and adult great tits, but did not
observe a statistically significant main effect of age. Hence, these
latter studies provide no evidence for a differential life-stage de-
pendence on IL and SL.

SL by the waggle dance results in the (usually) horizontal
transfer between honeybee workers of information regarding
ephemeral food sources. As such, the information is only tran-
siently useful and does not contribute to the formation of traditions
(Leadbeater and Chittka, 2007). Arguably, it is the transmission of
relatively stable behaviors across generations by vertical and/or
oblique SL that is of greater interest. Moreover, in organisms
where there is a transfer of information across generations, cu-
mulative culture becomes a possibility (Tomasello, 1999; Tennie
et al., 2009). Cumulative culture can only occur if organisms are
equipped with the ability to accurately absorb the extant culture—
complete accuracy is however not required (see Fig. 2)—and then
to build on it. In other words, a necessary but not sufficient condi-
tion is that organisms use a composite learning strategy in which
SL precedes IL (Boyd and Richerson, 1985; Enquist et al., 2007;
Borenstein et al., 2008; Aoki, 2010). Although cumulative culture
supported by this ordering of SL and IL may explain the ecological
success of modern humans, it is not clear under what conditions
such a learning schedule might have evolved (if indeed it did).

According to Vygotsky (1978, p. 86), (human) children can do
some things under an adult’s guidance (by SL) that they cannot
do on their own (by IL) until a few years later (‘‘zone of proximal
development’’). More recently, Striano et al. (2001) conducted
experiments in which small children 2, 2.5, and 3 years old were
tested for their ability to pretend play (e.g., making a carrot walk
on the floor like a man). Observations were made on whether
the children reproduced the actions shown to them by an adult
experimenter or creatively produced novel actions not previously
demonstrated during the experiment. Striano et al. (2001) showed
that the proportion of novel actions as opposed to imitative actions
increases with age, which suggests that reliance on IL versus SL
also increases with age. An alternative interpretation is that older
children have had more exposure to various kinds of pretend play
outside the laboratory, and hence that actions coded as novel may
in fact be ‘‘deferred imitation’’ (Striano et al., 2001).

In a review of hunter–gatherer diet and their possible
consequences for human life history evolution, Kaplan et al. (2000)
describe how hunter–gatherers utilize nutrient-dense, difficult-
to-acquire foods such as roots, honey, and vertebrate meat. As
a result, naive children produce little food on their own and
require a long developmental period during which the necessary
extraction and/or hunting skills can be learned. For example, in
the case of vertebratemeat, which is procured bymales, maximum
productivity is attained only in middle age. Their data suggest that
a long-term ‘‘apprenticeship’’ (i.e., SL) and much ‘‘practice’’ (i.e.,
trial-and-error IL), perhaps occurring in this order, are required
before a member of hunter–gatherer society can be self-sufficient
and moreover produce a surplus to support his/her offspring. The
gradual improvement of foraging skills by learning is also seen in
nonhuman primates (e.g., Gunst et al., 2010).

In this paper we obtain evolutionary predictions on the
scheduling of IL and SL. We describe and analyze mathematical
models for the scheduling of IL and SL, where an organism must
learn a continuous phenotype, which has an optimal expression
that depends on the current environment. An organism is assumed
to experience two obligatory learning opportunities (which we
call stage 0 and stage 1 learning) per discrete generation. During

each stage, it may apply IL which allows it to track (the changes
in) the environment, oblique SL which allows it to access the
information possessed by the previous generation, or a mixture of
the two with complementary weights (see below). The phenotype
resulting from the two-stage cumulative learning process during
the lifespan of an organism determines its fitness.

Previous analytical models have made the following restrictive
assumptions: (1) an organismmay use a mixed strategy, but there
is only one opportunity for learning (e.g., Boyd and Richerson,
1988; Feldman et al., 1996; Wakano and Aoki, 2006), or the
learning schedule is the same across multiple learning stages
(Lehmann et al., 2010); (2) a strategy with two learning stages
is recognized, but the organism is compelled to use either pure
IL or pure SL during each stage (e.g., Boyd and Richerson, 1985,
Enquist et al., 2007, Borenstein et al., 2008 andAoki, 2010); (3) time
constraints on learning are ignored such that composite strategies
in which IL and SL are applied sequentially compete directly with
simple ‘‘one-shot’’ strategies using only pure IL or pure SL (e.g.,
Enquist et al., 2007, Borenstein et al., 2008 and Aoki, 2010).

Using the theory of evolutionarily stable (ES) strategies (May-
nard Smith, 1982), we identify the ES learning schedules for the
three situations (models) where the environment is constant, fluc-
tuates between generations, or fluctuates within generations. En-
vironmental variability is known theoretically to be an important
factor in the evolution of learning (Boyd and Richerson, 1985;
Rogers, 1988; Feldman et al., 1996). In the absence of exogenous
costs to either IL or SL, we find that the ES learning schedule is ei-
ther pure SL followed by pure IL (‘‘bang–bang’’ control, Sydsæter
et al., 2008), or pure IL at both stages (we use the descriptive neol-
ogism ‘‘flat’’ control).

In evolutionary games between unrelated individuals, each
organism ‘‘tries’’ to maximize its personal fitness, with the
consequence that themean fitness or ‘‘efficiency’’ of the population
is not necessarily maximized. In our case, if all organisms in a
panmictic population adopt an ES learning schedule in which
SL precedes IL, cumulative cultural evolution may or may not
result in a phenotype that most closely approaches the optimal
phenotype in the given environment, andpopulation fitnesswill be
maximized only if it does. Hence, for the threemodels, we consider
whether the ES learning schedule is also the one that ‘‘optimizes’’
the learned phenotype at equilibrium.

2. Models and mathematical analyses

2.1. Overview

Weconsider a panmictic population of infinite sizewith asexual
organisms that are semelparous. Generations overlap only insofar
as oblique SL occurs. We assume that organisms can obtain
information about the environment, or possible responses to that
environment, directly by individual learning (IL) and/or indirectly
by social learning (SL). This information is then expressed as the
phenotype, which is assumed to vary continuously.

The phenotypes that we have in mind are those that are usually
regarded as being acquired and expressed by learning, such as the
choice of food by rats (e.g., Aisner and Terkel, 1992), the quantity of
food foraged by some primates (e.g., Kaplan et al., 2000 and Gunst
et al., 2010), the length of a stone artifact (e.g., Lycett and Gowlett,
2008), or canoe design features (e.g., Rogers and Ehrlich, 2008).
Of these, the second, third, and (some of the) fourth are clearly
continuous phenotypes. We specifically wish to understand the
evolution of learning schedules in the (many) species where IL and
SL are already well-established. As such, we ignore the possibility
that the phenotype may be innately determined.

The phenotype of a naive newborn before any learning occurs
will be called the ‘‘initial phenotype’’ and is set to 0. This requires
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that the continuous scale on which the phenotype is measured
be suitably transformed. We use the terms information and
phenotype synonymously. There are two learning opportunities
per generation (stage 0 and stage 1 learning), during each of
which an organism can use either IL or SL or a mixture of
the two to update its phenotype. Learning strategies, which are
genetically determined, assign weights (between 0 and 1) to the
information gathered by IL and by SL during each stage. We
refer to the phenotype after stage 0 learning as the ‘‘intermediate
phenotype’’ and the phenotype after stage 1 learning as the
‘‘mature phenotype’’. With each learning strategy are associated
one intermediate phenotype and one mature phenotype that are
expressed sequentially. Weights should not be confused with
probabilities in a mixed strategy that determine which phenotype
amongmultiple alternatives is expressed at any one time. Only the
mature phenotype contributes to fitness. Post-learning organisms
reproduce in proportion to their fitness (fertility selection) and
survive to serve as exemplars (cultural parents) for the next
generation.

The target for IL is the optimal phenotype in the current state
of the environment, which may fluctuate within or between gen-
erations. The target for SL is always the mature phenotype of the
previous generation if the population is genetically monomor-
phic, or the population mean of the mature phenotypes if more
than one learning strategy is segregating. The efficiencies of IL
and SL during stage i learning are αi and βi (i = 0, 1), respec-
tively, where efficiency is defined as the proportional reduction
in the deviation from the target and assumed to be the same for
all learning strategies. We assume 0 < αi, βi < 1 (i = 0, 1),
which entails that the mature phenotype approaches but never
converges to the optimal phenotype (see Eqs. (5), (13) and (19)).

Our model is a generalization, in some respects, of the ‘‘guided
variation’’ model proposed by Boyd and Richerson (1985). The
recursions detailed below are in standard use in the modeling of
the social transmission of continuous phenotypes (Cavalli-Sforza
and Feldman, 1981), and hence in the evolutionary theory of
learning.

2.2. Constant environment

Denote the optimal phenotype by z∗, which is a positive
constant, and the mature phenotype of the resident (wild-type)
strategy (schedule) in generation t by zt . This strategy assigns
weight ui (the control) to IL and complementary weight 1 − ui
to SL during stage i learning, where 0 ≤ ui ≤ 1 (i = 0, 1). We
assume that, during each learning stage, the incremental change
in the phenotype due to learning is proportional to the distance
between the current phenotype and the target phenotype, which
is z∗ for IL and themature phenotype of the previous generation for
SL. The constants of proportionality are the efficiencies of learning,
i.e., αi and βi (i = 0, 1).

Since the initial phenotype is set to 0, pure ILwould produce the
phenotype α0z∗ during stage 0 of generation t + 1, whereas pure
SL would yield the phenotype β0zt . Hence, taking the weights in
consideration, we have the intermediate phenotype

z intt+1 ≡ u0α0z∗ + (1 − u0)β0zt . (1)

On further applying pure IL or pure SL during stage 1, the
incremental changes in the phenotype would be α1(z∗ − z intt+1) and
β1(zt − z intt+1), respectively. Thus, the mature phenotype is

zt+1 = z intt+1 + u1α1(z∗ − z intt+1) + (1 − u1)β1(zt − z intt+1). (2)

See Fig. 1 for a schematic diagram illustrating the process described
here.

Fig. 1. A schematic diagram illustrating the two-stage learning process before
reproduction in generation t + 1. The initial phenotype is 0 by assumption. The
intermediate phenotype is z intt+1, and the mature phenotype is zt+1. See text for
details.

Substituting Eq. (1) into Eq. (2), the recursion in the mature
phenotype across generations can be written as

zt+1 = Azt + Bz∗, (3)

where

A = (1 − u0)β0 [1 − u1α1 − (1 − u1)β1] + (1 − u1)β1, (4a)
B = u0α0 [1 − u1α1 − (1 − u1)β1] + u1α1. (4b)

At equilibrium,

ẑ = Bz∗/(1 − A), (5)

where 0 < A < 1 and 0 < B < 1. The two panels in Fig. 2 illustrate
the approach to equilibrium during the first five generations for
two different sets of weights.

Next introduce a rare mutant strategy of small effect into the
population of resident strategists at the equilibrium defined by
Eq. (5). We assume that only two learning strategies, the resident
and the mutant, can simultaneously segregate in the population.
Denote the control for thismutant strategy by um

i (i = 0, 1), and let
Am andBm be the functions ofum

i (i = 0, 1)obtainedby substituting
ui = um

i (i = 0, 1) in Eqs. (4a) and (4b), respectively. Then, as long
as the mutant strategy remains rare, the mature phenotype of the
mutant strategy is given approximately by

zm ≡ Amẑ + Bmz∗ (6)

(Appendix A).
We assume that the mature phenotype determines the fitness

of an organism, where deviations from the optimal phenotype, z∗,
are penalized. Explicitly, we write the objective function as

F
�
um
0 , um

1 , u0, u1
�

= exp
�
− (zm − z∗)2

w

�
, (7)

which is Gaussian with intensity of selection parameter w.
An ES control u∗

i (i = 0, 1) is one such that F
�
um
0 , um

1 , u0, u1
�

takes a (local) maximum when um
0 = u0 = u∗

0 and um
1 = u1 = u∗

1
(Maynard Smith, 1982). Set

s0 = ∂F
∂um

0

����
um0 =u0,um1 =u1

, s1 = ∂F
∂um

1

����
um0 =u0,um1 =u1

, (8)

which represent the selection gradients on the mutant control for
stage 0 and stage 1 learning, respectively. The partial derivatives in
Eq. (8) follow from our assumption that each of the two controls,
u0 and u1, evolves by holding the other control constant (i.e., no
pleiotropy or double mutants). In other words, only one mutant
control, um

0 or um
1 , deviates from the resident control at any one

time. Nevertheless, we use the notation of Eq. (7)—which gives the
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a

b

Fig. 2. Saw-tooth diagrams illustrating the cultural dynamics of the phenotype
(here denoted by z) in a constant environment over five generations for a cohort
adopting the same learning schedule (u0, u1). Panel (a) u0 = 0.2, u1 = 0.9:
primarily SL during stage 0 and primarily IL during stage 1. Panel (b) u0 = 0.9, u1 =
0.2: primarily IL during stage 0 and primarily SL during stage 1. Solid lines depict
the change in the phenotype in each generation. The initial phenotype (squares)
can be set to 0 without loss of generality. The intermediate phenotype (triangles)
is achieved by a mixture of individual learning (IL, weight u0) and social learning
(SL, weight 1 − u0) during stage 0 (Eq. (1)). This intermediate phenotype is then
upgraded during stage 1 (Eq. (2)), again by amixture of IL (weight u1) and SL (weight
1 − u1), to yield the mature phenotype (circles). The broken curve represents the
cultural dynamics of the mature phenotype (Eq. (3)), which can be seen to increase
from its initial value of 0.1 toward its equilibrium value (Eq. (4)). The optimal
phenotype is z∗ = 1. The increase over generations in the mature phenotype can
be interpreted as the accumulation of cultural information. The other parameters
are α0 = α1 = 0.1 and β0 = β1 = 0.9, which entails that the evolutionarily stable
(ES) learning schedule is u∗

0 = 0, u∗
1 = 1 (inequality (11c)). Note that in panel (a)

the weights more closely approximate the ES values, so that the equilibrium value
of the mature phenotype and the rate of approach to equilibrium are larger.

impression that um
0 and um

1 can vary simultaneously—for simplicity
of presentation.

From Eqs. (7) and (8) we then have

s0 = −2(ẑ − z∗)

w
exp

�
− (ẑ − z∗)2

w

�
∂zm

∂um
0

����
um0 =u0,um1 =u1

, (9a)

s1 = −2(ẑ − z∗)

w
exp

�
− (ẑ − z∗)2

w

�
∂zm

∂um
1

����
um0 =u0,um1 =u1

, (9b)

where we have used zm|um0 =u0,um1 =u1 = ẑ.
It can readily be shown that

z∗ − zm
��
um0 =u0,um1 =u1

= z∗(1 − A − B)/(1 − A) > 0. (10)

Inequality 10 entails that the sign of si will be identical to the sign
of ∂zm

∂umi

��� ≡ ∂zm
∂umi

���
um0 =u0,um1 =u1

(we drop the subscripts for brevity).

Computing the latter, we obtain
�
z∗�−1 [1 − u1α1 − (1 − u1)β1]−1 (1 − A)

∂zm

∂um
0

����

= α0(1 − β0)(1 − β1) + u1 [α0(1 − β0)β1 − α1β0(1 − α0)]
(11a)

and
�
z∗�−1

(1 − A)
∂zm

∂um
1

���� = [1 − u0α0 − (1 − u0)β0]α1(1 − β1).

(11b)

Clearly the right hand side and the coefficient of ∂zm
∂um1

��� in Eq. (11b)

are positive. Hence ∂zm
∂um1

��� > 0 for all u0 and u1 (0 ≤ u0, u1 ≤ 1),

Fig. 3. Dependence of the evolutionarily stable (ES) learning schedule in a constant
environment on the parameters α0, α1 and β0. The region in which the bang–bang
control (pure SL followedbypure IL) is ES (i.e., inequality (11c) is satisfied) lies above
the continuous line when α1 = 0.1 and above the dashed line when α1 = 0.9. The
area of this region is monotone increasing in α1. The ES learning schedule coincides
with the optimal learning schedule.

from which u∗
1 = 1 is the ES control for stage 1 learning. That is,

stage 1 learning should be pure IL. Substituting u1 = 1 in Eq. (11a),
we find that ∂zm

∂um0

��� < 0 if and only if

α0(1 − β0) − α1(1 − α0)β0 < 0. (11c)
Thus, the ES control for stage 0 learning is u∗

0 = 0 when inequality
(11c) is satisfied (α0 small, β0 large, α1 large) and u∗

0 = 1 when
this inequality is reversed (α0 large, β0 small, α1 small) (Fig. 3 and
Table 1).

We have shown that either u∗
0 = 0, u∗

1 = 1 (bang–bang
control), or u∗

0 = u∗
1 = 1 (flat control) is the ES strategy.

Since the selection gradients do not vanish at these points, we
need not calculate the second order derivatives. Eq. (6) entails
an approximation, which might seem to neglect the dynamic
interaction between cultural (mature phenotype) and genetic
(frequency of mutant strategy) evolution. However, a more
detailed analysis given in Appendix A shows that the selection
gradients (defined by Eqs. (6)–(8)) provide the first order effect
on mutant frequency change at all frequencies and therefore that,
by repeated invasions of mutant strategies of small effect, the
evolutionary dynamics of the controls will converge to either u∗

0 =
0, u∗

1 = 1 (when inequality (11c) holds) or u∗
0 = u∗

1 = 1
(otherwise).

2.3. Environment fluctuates between generations (with period 2)

Let the environment fluctuate between generationswith period
2, such that the optimal phenotype is z∗ > 0 in generation
t, −z∗ < 0 in generation t + 1, z∗ again in generation t +
2, etc. As before, we set the initial phenotype to 0. Unlike the
case of the constant environment, however, this choice of the
initial phenotype relative to the optimal phenotypes entails a
special assumption regarding the phenotypic scale. For example,
we must exclude the case where the optimal phenotypes in the
two environments deviate from the initial phenotype in the same
direction.

For this model, the recursion in the mature phenotype of the
resident strategy is

zt+1 = Azt − Bz∗, (12a)

zt+2 = Azt+1 + Bz∗, (12b)

zt+3 = Azt+2 − Bz∗, (12c)
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Table 1
Evolutionarily stable (ES) learning schedules for the three models of environmental change.

Environmental change ES learning schedule Parameter dependence
Stage 0 Stage 1

Constant Pure SL Pure IL α0(1−β0)−α1(1−α0)β0 < 0
Constant Pure IL Pure IL α0(1−β0)−α1(1−α0)β0 > 0
Between generations Pure IL Pure IL None
Within generations Pure SL Pure IL None

α0:efficiency of IL at stage 0, β0: efficiency of SL at stage 0, α1: efficiency of IL at stage 1.

etc. Hence, there is a periodic equilibrium where

ẑ+ = Bz∗/(1 + A) (13a)
and
ẑ− = −Bz∗/(1 + A) (13b)
alternate.

For a rare mutant strategy in generation t , when the optimal
phenotype is z∗ and themature phenotype of the resident strategy
in the previous generation (t − 1) is ẑ− (Eq. (13b)), we have
approximately

zmt ≈ Amẑ− + Bmz∗ = −z∗
�

AmB
1 + A

− Bm

�
. (14a)

Similarly, in generation t + 1 we have approximately

zmt+1 ≈ Amẑ+ − Bmz∗ = z∗
�

AmB
1 + A

− Bm

�
. (14b)

This periodic pattern repeats for as long as the mutant remains
rare. Define
zm ≡ Amẑ− + Bmz∗. (14c)
Then clearly zmt ≈ zm and zmt+1 ≈ −zm.

In the fluctuating environment of period two, the objective
function can be defined as the geometric mean of Eq. (7) at
two consecutive generations. Hence, recalling that the optimal
phenotype is z∗ and −z∗ in generations t and t + 1, respectively,
the objective function is approximately

F
�
um
0 , um

1 , u0, u1
�

= exp
�
− (zm − z∗)2

w

�
,

which is identical to Eq. (7). The selection gradients on the mutant
control for stage 0 and stage 1 learning are given by Eqs. (8)
and (9), where we substitute ẑ+ for ẑ in the latter. As in the
constant environment case, these selection gradients provide (up
to a constant of proportionality) the first order effects of selection
at all frequencies of the mutant strategy (Appendix B).

Also as in the constant environment case, we find

z∗ − zm
��
um0 =u0,um1 =u1

= z∗(1 + A − B)/(1 + A) > 0. (15)

Moreover,
�
z∗�−1 [1 − u1α1 − (1 − u1)β1]−1 (1 + A)

∂zm

∂um
0

����

= β0B + α0(1 + A) (16a)
and
�
z∗�−1

(1 + A)
∂zm

∂um
1

���� = {(1 − u0)α1β0 + β1 [1 − (1 − u0)β0]} B

+ [α1(1 − u0α0) + u0α0β1] (1 + A).

(16b)
The right hand sides and coefficients in Eqs. (16a) and (16b) are
both clearly positive. Hence, noting inequality (15), we conclude
that the ES control is u∗

0 = u∗
1 = 1. In this case, learning should be

entirely by IL (Table 1).

2.4. Environment fluctuates within generations (with period 2)

Assume that the optimal phenotype is −z∗ < 0 during stage
0 learning but shifts to z∗ > 0 during stage 1 learning. The initial
phenotype is assumed to be 0. Then, the recursion in the mature
phenotype of the resident strategy is

zt+1 = Azt + Cz∗, (17)

where A is given by Eq. (4a) and

C = u1α1 − u0α0 [1 − u1α1 − (1 − u1)β1] . (18)

At equilibrium

ẑ = Cz∗/(1 − A). (19)

For the rare mutant strategy, we have approximately

zm ≡ Amẑ + Cmz∗ (20)

(Appendix C), where ẑ is given by Eq. (19), and Am and Cm are the
functions of um

i (i = 0, 1) obtained by substituting ui = um
i (i =

0, 1) in Eqs. (4a) and (18), respectively. The selection gradients on
the mutant control are again given by Eqs. (8) and (9) (where ẑ
satisfies Eq. (19)). As before, we can show

z∗ − zm
��
um0 =u0,um1 =u1

= z∗(1 − A − C)/(1 − A) > 0. (21)

Moreover,
�
z∗�−1 [1 − u1α1 − (1 − u1)β1]−1 (1 − A)

∂zm

∂um
0

����

= − {u1α1β0(1 + α0) + α0(1 − β0) [1 − (1 − u1)β1]} (22a)

and
�
z∗�−1

(1 − A)
∂zm

∂um
1

���� = α1(1 − β1) [1 + u0α0 − (1 − u0)β0] .

(22b)

Clearly, Eq. (22a) entails ∂zm
∂um0

��� < 0 whereas Eq. (22b) entails
∂zm
∂um1

��� > 0. Hence, the ES control is u∗
0 = 0, u∗

1 = 1 (Table 1).

3. Evolutionarily stability and optimality

We show here that the ES learning schedule in each of the three
models results in the equilibrium value of the mature phenotype
that most closely approaches the optimal phenotype in the given
environment.

For the model of the constant environment (Section 2.2), the
optimal phenotype is z∗ > 0, and hence we need to show that
ẑ (which is <z∗ from Eq. (10)) is maximized on the ES learning
schedule. To do so, we regard ẑ in Eq. (5) as a function of u0 and
u1, and take partial derivatives. We can show that ∂ ẑ

∂u1
> 0 always

holds and that
∂ ẑ
∂u0

����
u1=1

= z∗(1 − α1)

[1 − (1 − u0)β0(1 − α1)]2

× [α0(1 − β0) − α1(1 − α0)β0] , (23)
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by the same calculations used to obtain Eqs. (11a) and (11b). Note
that the constant in square brackets in the numerator of Eq. (23),
which determines the sign of this equation, is identical to the
diagnostic quantity in inequality (11c). Hence, when inequality
(11c) is satisfied (i.e., when Eq. (23) is negative), we conclude that
smaller values of u0 (i.e., a greater reliance on SL) result in values
of ẑ that are closer to the optimal phenotype, andmore specifically
that u0 = 0, u1 = 1 maximizes ẑ. In this case, we have from
Eq. (5) that

ẑ = z∗α1/ [1 − (1 − α1)β0] . (24a)

Similarly, u0 = 1, u1 = 1 maximizes ẑ when this inequality is
reversed, in which case

ẑ = z∗ [α1 + α0(1 − α1)] . (24b)

Thus, the model under consideration has the property that the ES
learning schedule optimizes themature phenotype at equilibrium.

Next, for the model of environmental fluctuations between
generations (Section 2.3), we have ∂ ẑ+

∂u0
> 0 and ∂ ẑ+

∂u1
> 0 in

a generation in which the optimal phenotype is z∗ > 0. The
calculations are the same as involved in the derivation of Eqs. (16a)
and (16b). Similarly, ∂ ẑ−

∂u0
< 0 and ∂ ẑ−

∂u1
< 0 in a generation in

which the optimal phenotype is −z∗ < 0. Hence, the mature
phenotype at equilibrium is optimized in both generations when
u0 = u1 = 1, which coincides with the ES learning schedule.

Finally, for the model of environmental fluctuations within
generations (Section 2.4), we find ∂ ẑ

∂u0
< 0 and ∂ ẑ

∂u1
> 0 so that

u0 = 0, u1 = 1, corresponding to the ES learning schedule,
results in the mature phenotype at equilibrium that is closest to
the optimal phenotype z∗ > 0.

4. Discussion

This paper addresses the following question:when an organism
has several opportunities for IL and SL during its lifetime, what is
the evolutionarily stable (ES) schedule of IL and SL as a function of
life-stage (or age)? More specifically, we have analyzed a model
where an organism has two obligatory learning opportunities
(stage 0 and stage 1), at each of which it can apply IL or oblique
SL or a mixture of the two to acquire information about, or the
appropriate response to, the environment. Fitness is determined
by themature phenotype resulting from this two-stage cumulative
learning process (Section 2.1 for details), but since the mature
phenotype to be learned is assumed to vary continuously (e.g.,
the quantity of food foraged, the length of a stone artifact) and an
organism can learn from the parental generation (oblique SL), our
model incorporates the possibility that the mature phenotype can
change cumulatively over several generations (Fig. 2; Section 2.2
for details).

We then asked what the ES weights (controls) are for IL and
SL at each of the two learning stages under this model. In the
absence of exogenous costs to either IL or SL, we have found that
the ES controls can only take the values 0 or 1, and that the ES
learning schedulesmaximize themature phenotype at equilibrium
(see Section 3). Specifically, in a constant environment the ES
learning schedule is either pure SL followed by pure IL (bang–bang
control) or pure IL at both stages (flat control), depending on
the efficiencies of IL and SL at both stages (except the efficiency
of SL at stage 1). With environmental fluctuations between or
within generations, the ES learning schedules are unaffected by
these efficiencies. They are flat control and bang–bang control,
respectively. As summarized in Table 1, pure SL followed by pure
IL – the learning schedule supportive of cumulative culture –
is ES when the environment is constant (and the efficiencies

of learning satisfy inequality (11c)) or when the environment
fluctuates within generations.

Previous studies incorporating two opportunities for learning
per generation have arbitrarily assumed that an organism can
apply pure IL or pure SL during each stage, but not a mixture of the
two (Boyd and Richerson, 1985; Enquist et al., 2007; Borenstein
et al., 2008; Aoki, 2010). It is interesting that our analyses,
proceeding from fairly general assumptions regarding the controls,
predict that the ES weights, in the absence of exogenous costs to
learning, will take only the values 0 (pure SL) or 1 (pure IL). Hence,
our results provide some justification for the arbitrary assumption
made in these earlier studies. On the other hand, our results rule
out a learning schedule in which pure IL is followed by pure SL,
with once again the caveat that we have ignored the exogenous
costs. This timing of pure IL followed by pure SL, which is rejected
by our analyses, is found in ‘‘conditional social learning’’ (Enquist
et al., 2007). However, Enquist et al. (2007) consider conditional
social learning to be an inferior strategy compared to ‘‘critical
social learning’’, which posits pure SL followed by pure IL, when
the relative magnitudes of the exogenous costs of IL and SL are
taken into account. Boyd and Richerson (1988) have also described
a strategy in which IL can be interpreted as occurring before SL
(i.e., resort to SL when IL proves indecisive). However, this strategy
is mathematically equivalent to a mixed strategy with only one
opportunity for learning (Wakano and Aoki, 2007).

We note another difference between the composite strategies
envisioned by Enquist et al. (2007) and by us (see also Borenstein
et al., 2008 and Aoki, 2010). Conditional social learning and critical
social learning are both conditional strategies in that an organism
proceeds to stage 1 learning only when the solution obtained
by stage 0 learning is unsatisfactory. By contrast, the two-stage
learning process in our models is obligatory.

Recall that the efficiency of learning is defined as the
proportional reduction in the deviation from the target. In a
constant environment, bang–bang control (pure SL followed by
pure IL) is more likely to be favored when the efficiencies of SL
in stage 0 and IL in stage 1 are both high (and the efficiency of IL
in stage 0 is low) (Fig. 3). This result may be felt to be intuitively
reasonable, but entails that flat control (pure IL at both stages) is
more likely to be favored when the efficiency of IL in stage 1 is
low.We believe the reason for this latter, perhaps counterintuitive,
result is that the mature phenotype at equilibriumwill be far from
optimal in this case, so that it is better for the next generation
to avoid using SL to target the mature phenotype of the previous
generation. In either case, the ES control in stage 1 is pure IL, which
apparently contradicts the consensus view – derived from models
allowing for only one learning opportunity during the lifespan of
an organism – that IL is disadvantaged in a constant environment
(Aoki et al., 2005 and Wakano et al., 2004; but see Enquist et al.,
2007).

That the ES learning schedule should be flat control when the
environment fluctuates between generations is consistent with
previous work by Feldman et al. (1996), which examined the effect
of environmental periodicity on the probabilities of using IL or SL in
a mixed strategy model. In a model with one learning opportunity
per generation, Feldman et al. (1996) showed that in the extreme
case of period 2 (corresponding to our model), the pure IL strategy
would be evolutionarily stable (see also Boyd and Richerson,
1985 and Rogers, 1988). On the other hand, a mixed strategy
of both IL and SL was predicted when environmental changes
occurred less frequently. We expect that, if we extend our model
by incorporating longer environmental periodicities, we will see
a transition in the ES learning schedule between flat control
and bang–bang control as the period of environmental change
increases (for values of the efficiencies of learning satisfying
inequality (11c)). In addition, we believe that the generality of our
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results are unlikely to be compromised by the assumption of a
periodic environment with two states. Feldman et al. (1996) and
Aoki et al. (2005) have shown that environmental change, whether
periodic or random, and whether occurring between two or an
infinite number of states, have qualitatively similar consequences
for the evolution of learning strategies.

When the environment fluctuates within generations, we find
that the ES learning schedule is bang–bang control (pure SL
followed by pure IL). That IL should be avoided during stage 0
may also be felt to be intuitively reasonable, since the optimal
phenotype changes between stage 0 and stage 1, and an organism
using IL to track the environment during stage 0 would be
‘‘on a wild goose chase’’. A related result has been obtained by
Aoki (2010), who showed in a model with spatial environmental
heterogeneity that the learning strategy of SL followed by IL can
evolve if migration occurs, at a relatively high rate, after SL but
before IL. In this case, a large fraction – but less than half – of
the organismsmigrate and thus experience different environments
during SL and IL. Thus, bang–bang control is found to be the ES
schedule when there are two learning stages per generation and
the environment changes either temporally or spatially between
the two stages.

However, the generality of this prediction – SL is used early
in ontogeny and IL later in life – may be questionable, possibly
depending on our assumption of two learning opportunities per
generation. The conditions for the evolution of bang–bang control,
when the environment fluctuates within generations, may in fact
be more restrictive. If there are three learning opportunities,
for example, such that the optimal phenotype fluctuates as
−z∗, z∗, −z∗ in one generation and z∗, −z∗, z∗ in the next,
it is not clear what the ES learning schedule would be. Clearly, this
model needs to be pursued in greater detail and generality.

The model of environmental fluctuations within generations
has points in common with foraging models that posit spatial and
temporal variation in food availability within the lifetime of an
organism. Building on the concept of encounter stochasticity (the
number of food items encountered by an organism is a random
variable; Eliassen et al., 2009), Arbilly et al. (2011) (see also Arbilly
et al., 2010) argue that (horizontal) SL may be selected for over
IL when the best foods are also the least likely to find. Our
analysis agrees in showing that the ES learning schedule includes
SL when environmental changes occur within generations. This
is in contrast to the effect of frequent environmental changes
between generations, which has been shown in numerous studies
to favor IL.

However, SL in previous models is often synonymous with
information ‘‘scrounging’’, as organisms adopting this strategy
do not contribute to the production of information and exploit
producers (IL). By contrast, a learning schedule in which oblique SL
precedes IL allows for the possibility that information possessed by
past generations can be acquired by SL, which can then be further
improved by IL. In particular, when pure SL is the ES control for
stage 0 learning (u∗

0 = 0, u∗
1 = 1), even the partial use of SL

allows for an improvement in the quality of information gathered
by an organism over the two learning stages, and effectively leads
to cumulative cultural evolution (the ratchet effect; Fig. 2). Here,
SL is no longer simply synonymous with information scrounging,
but connotes information ‘‘enhancing’’ as well (Section 3).

So far we have ignored the exogenous costs that may be
associated with IL and/or SL. For example, the resources required
for the development and maintenance of the neural substrate
for learning, and the attention diverted from predators during
learning may generate costs, which are to be distinguished from
the endogenous costs ofmissing the target. Exogenous costs can be
incorporated into ourmodels bymultiplying the objective function
Eq. (7) by the factor (1 − c0um

0 )(1 − c1um
1 ), where ci (i = 0, 1) is

positive or negative depending on whether a larger net exogenous
cost accrues to IL than SL during stage i (i = 0, 1). When these
exogenous costs are introduced, we find as expected that the ES
controls, u∗

0 and u∗
1, can take intermediate values between 0 and

1 (numerical work not shown). In other words, the ES learning
schedule may entail a partial reliance on SL and IL at either or
both stages, which is perhapsmore consonant with actual learning
behavior.

Another type of exogenous cost may derive from the require-
ment of additional memory or processing power for learning
schedules with intermediate weights (0 < u0 < 1 and/or 0 <
u1 < 1) implied by ourmodel. Hence, we expect a priori that learn-
ing schedules with intermediate weights are less likely to be ES.
Interestingly, such schedules were found not to be ES even when
such an exogenous cost was ignored.

The learning schedule in which pure SL and pure IL occur in
this order has variously been called guided variation (Boyd and
Richerson, 1985), critical social learning (Enquist et al., 2007), and
‘‘social-learner-explorer’’ (Borenstein et al., 2008; Aoki, 2010). It is
arguably one of the few plausible learning strategies supportive
of cumulative culture. We find that this learning schedule can
be ES when the environment is constant, provided the efficiency
of SL is high during stage 0 learning, as inequality (11c) is
more likely to be satisfied for large β0 (Fig. 3). In addition, we
observe a ‘‘non-monotone’’ dependence on the efficiencies of IL,
where α0 and α1 have opposite effects in inequality (11c). These
predictions are entirely consistent with the conditions for critical
social learning to be ES, which Enquist et al. (2007) state as ‘‘less
environmental changes and more faithful cultural transmission’’.
Moreover, ‘‘increasing the probability of finding an OK solution
through individual learning . . . first favors and then slightly
disfavors critical social learning’’. Enquist et al. (2007) do not
address the case of environmental fluctuationswithin generations,
so that a comparison is not possible.

In closing, we emphasize the restrictive nature of some of
our simplifying assumptions, which may affect the generality
of our conclusions. First, the learning strategies considered here
can each express only one mature phenotype, whereas it may
be more pertinent to allow for mixed strategies. Second, we
assumed two learning opportunities per generation, with possible
repercussions as already mentioned particularly in the case where
the environment fluctuates within generations. Third, we set the
initial phenotype at halfway between the two optimal phenotypes
when the environment fluctuates between or within generations,
which entails a special assumption regarding the phenotypic scale.
Fourth, future work should incorporate the possibility that the
ontogeny of learningmay by contingent on the learning experience
itself.

While acknowledging these limitations, we feel that our paper
contributes to the evolutionary theory of learning. It does so by
providing a framework for investigating the broad developmental
patterns in the differential use of individual learning and social
learning that may be favored by natural selection under various
regimes of environmental change.
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Appendix A. Justification of the use of Eq. (6)

Let the frequency of the mutant strategy among the newborns
of generation t be qt . Moreover, let the mature phenotypes of the
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resident andmutant strategies in the same generation be zt and zmt ,
respectively. Then

zt = Az̄t−1 + Bz∗, (A.1a)

zmt = Amz̄t−1 + Bmz∗, (A.1b)

where

z̄t−1 = (1 − qt−1)zt−1 + qt−1zmt−1 (A.1c)

is the population mean of the mature phenotypes in generation
t − 1, and A, B, Am, Bm are as defined in Eqs. (4a) and (4b), and
immediately above Eq. (6). Our system is completely described
by Eq. (A.1) for the cultural dynamics together with Eq. (A.8) (see
below) for the mutant frequency dynamics.

Assume for now that a separation of time scales is possible,
such that changes in the mature phenotypes, zt and zmt , occur
muchmore quickly than changes in themutant frequency, qt . Then,
setting qt = ε (constant), and noting Eqs. (5) and (6), we have

zt − ẑ = A(1 − ε)
�
zt−1 − ẑ

�
+ Aε

�
zmt−1 − zm

�

+ Aε
�
zm − ẑ

�
, (A.2a)

zmt − zm = Am(1 − ε)
�
zt−1 − ẑ

�
+ Amε

�
zmt−1 − zm

�

+ Amε
�
zm − ẑ

�
. (A.2b)

In order to justify our use of the approximate Eq. (6), we look
at one control at a time. We focus in this Appendix on the control
u0, but exactly the same argument applies to u1. Thus, we set um

0 =
u0 +δ and um

1 = u1, fromwhichwe canwrite Am = A+A1δ, Bm =
B + B1δ. Substituting in the linear equations Eq. (A.2) and solving,
we obtain
�

zt − ẑ
zmt − zm

�
= 1 − (A + A1δε)

t

1 − (A + A1δε)

�
A(1 − ε) Aε
Am(1 − ε) Amε

�

×
�

A
Am

�
εδ

�
A1ẑ + B1z∗� . (A.3)

The solution Eq. (A.3) of Eq. (A.2) assumes that themutant arises in
generation 0, so that the initial conditions are z0 = ẑ and zm0 = zm.

Eq. (A.3) shows that the approximate value of the mature
phenotype of the mutant strategy, zm, deviates from the exact
value, zmt , to order ε. Since ε can be taken arbitrarily small
in the analysis of evolutionary stability, we conclude that the
approximation is valid.

We will now give a more general proof that assumes neither
a separation of time scales nor a low frequency of the mutant
strategy. In fact, we will show that the explicit expression for the
change in the frequency of the mutant strategy, �qt = qt+1 − qt ,
can be written, to first order in the small quantity δ, in terms of the
approximate Eq. (6) for any t .

First, on subtracting Eq. (A.1a) from Eq. (A.1b), we have

zmt+1 − zt+1 = δ
�
A1z̄t + B1z∗� . (A.4)

Assuming z0 = ẑ and zm0 = zm, it is possible to show that zt =
ẑ +O(δ) and zmt = ẑ +O(δ), and hence z̄t = ẑ +O(δ). Substituting
the last expression and the explicit forms of A1 and B1 in Eq. (A.4),
we obtain

zmt+1 − zt+1 = δ(α0z∗ − β0ẑ) [1 − u1α1 − (1 − u1)β1] + O(δ2).

(A.5)

Eq. (A.5) holds for all time t and any frequency qt of the mutant
strategy. Moreover, the coefficient of δ on the right hand side of
Eq. (A.5) is independent of t , which means that there exists a
constant c , which does not depend on t , such that
��zmt+1 − zt+1

�� < cδ

for sufficiently small δ. We conclude that the mature phenotypes
of themutant and resident strategies remain close to each other for
all time and that their difference does not accumulate to the first
order in δ. Using Eq. (6), we can rewrite Eq. (A.5) as

zmt − zt = δ
∂zm

∂um
0

����
um0 =u0

+ O(δ2). (A.6)

Now set

G(x) = exp
�
− (x − z∗)2

w

�
. (A.7)

Then the fitnesses (relative fertilities) of the resident and mutant
strategies, when the dependence on δ is made explicit, are given
by G (zt(δ)) and G

�
zmt (δ)

�
, respectively. Hence, the exact equation

describing the change per generation of the frequency of the
mutant strategy is

�qt = qt(1 − qt)

�
G

�
zmt (δ)

�
− G (zt(δ))

qtG (zmt (δ)) + (1 − qt)G (zt(δ))

�

. (A.8)

By way of a first order Taylor expansion around δ = 0 of this
equation, we obtain

�qt = δqt(1 − qt)S0,t + O(δ2), (A.9a)

where

S0,t = 1
G(ẑ)

× dG(zmt )

dzmt

����
zmt =ẑ

× d
dδ

(zmt − zt)

�����
δ=0

. (A.9b)

If the selection gradient, S0,t , is a constant independent of time,
t , then we can set S0,t = S0, where S0 > 0 implies both allele
invasion and substitution. To show this, we note that zmt

��
δ=0 = ẑ,

and hence by Eq. (A.7) the derivative dG(zmt )

dzmt

���
zmt =ẑ

does not depend

on time. Further, from Eq. (A.6) we see that d
dδ (z

m
t − zt)

��
δ=0does

not depend on time either and is equal to ∂zm
∂um0

���
um0 =u0

.

To complete the proof, we rewrite the objective function
defined in Eq. (7) as

F(um
0 , u1, u0, u1) = exp

�
− (zm − z∗)2

w

�

since we are here considering only variation in the control um
0 .

Then, dG(zmt )

dzmt

���
zmt =ẑ

= ∂F
∂zm

��
zm=ẑ and G(ẑ) = F(u0, u1, u0, u1). Hence,

the selection gradient is a constant independent of time, which
reduces to

S0,t = S0 = 1
F(u0, u1)

× ∂F
∂zm

����
zm=ẑ

× ∂zm

∂um
0

����
um0 =u0

= 1
F(u0, u1)

∂F
∂um

0

����
um0 =u0

. (A.10)

This selection gradient can be expressed as S0 = s0/F(u0, u1, u0,
u1), where s0 is as defined in Eq. (8). Hence, the optimal control
found from solving the heuristic equation s0 = 0 agrees with
that found by solving S0 = 0 derived from the population genetic
model.

Appendix B. Justification of the use of Eq. (14c)

We give a population genetic justification for the approxima-
tion used in the model of environmental fluctuations between
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generations. Following the convention of Section 2.3, the optimal
phenotype is z∗ > 0 in generation t, −z∗ < 0 in generation t + 1,
etc. We denote by

G+(x) = exp
�
− (x − z∗)2

w

�
(B.1a)

the objective function when the optimal phenotype is z∗, and by

G−(x) = exp
�
− (x + z∗)2

w

�
(B.1b)

the objective function when the optimal phenotype is −z∗.
Then, using Eq. (A.8) with G+(x) instead of G(x), the change in

the frequency of themutant strategy from generation t to t+1 can
be written to first order in δ as

qt+1 = qt + δqt(1 − qt)S+
0,t + O(δ2), (B.2a)

where

S+
0,t = 1

G+(ẑ+)
× dG+(zmt )

dzmt

����
zmt =ẑ+

× d
dδ

(zmt − zt)
����
δ=0

. (B.2b)

Likewise, to first order in δ, the change in the mutant frequency
from generation t+1 (when the optimal phenotype is−z∗) to t+2
can be written as

qt+2 = qt+1 + δqt+1(1 − qt+1)S−
0,t+1 + O(δ2), (B.3a)

where

S−
0,t+1 = 1

G−(ẑ−)
× dG−(zmt+1)

dzmt+1

����
zmt+1=ẑ−

× d
dδ

(zmt+1 − zt+1)

����
δ=0

.

(B.3b)

Substituting Eq. (B.2a) into (B.3a) and simplifying yields

qt+2 − qt = δqt(1 − qt)
�
S+
0,t + S−

0,t+1
�
+ O(δ2). (B.4)

If the average selection gradient,
�
S+
0,t + S−

0,t+1
�
/2, is a constant

independent of time, t , then its sign predicts the fate of themutant
strategy at all frequencies. Following the same line of argument
as in Appendix A, we will show that

�
S+
0,t + S−

0,t+1
�
/2 is indeed

independent of time and that it has the same sign as the selection
gradient, ∂F

∂um0

���
um0 =u0

, defined in Section 2.3.

First, we write the exact recursions for the mature phenotypes
of the resident and mutant strategies in generation t as

zt = Az̄t−1 + Bz∗, (B.5a)

zmt = Amz̄t−1 + Bmz∗, (B.5b)

which by using z̄t−1 = ẑ− + O(δ) gives

zmt − zt = δ(α0z∗ − β0ẑ−) [1 − u1α1 − (1 − u1)β1] + O(δ2). (B.6)

Hence, from Eq. (14c) we have

d
dδ

(zmt − zt)
����
δ=0

= ∂zm

∂um
0

����
um0 =u0

. (B.7)

Next, the exact recursions for the mature phenotypes of the
resident and mutant strategies in generation t + 1 are

zt+1 = Az̄t − Bz∗, (B.8a)

zmt+1 = Amz̄t − Bmz∗, (B.8b)

which by using z̄t = ẑ+ + O(δ) gives

zmt+1 − zt+1

= −δ(α0z∗ + β0ẑ+) [1 − u1α1 − (1 − u1)β1] + O(δ2). (B.9)

Using Eq. (14c) again and noting ẑ+ = −ẑ−, we have

d
dδ

(zmt+1 − zt+1)

����
δ=0

= − ∂zm

∂um
0

����
um0 =u0

. (B.10)

The equality ẑ+ = −ẑ− also entails that
1

G+(ẑ+)
× dG+(zmt )

dzmt

����
zmt =ẑ+

= 2(z∗ − ẑ+)

w
= − 1

G−(ẑ−)
× dG−(zmt+1)

dzmt+1

����
zmt+1=ẑ−

. (B.11)

Hence, using Eqs. (B.7), (B.10), (B.11), (B.2b) and (B.3b), the average
selection gradient can be written as

�
S+
0,t + S−

0,t+1
�
/2 = 2(z∗ − ẑ+)

w

∂zm

∂um
0

����
um0 =u0

. (B.12)

Finally, since ẑ+ = zm|um0 =u0,um1 =u1 < z∗, the optimal control found
from Eq. (16a) agrees with that predicted from

�
S+
0,t + S−

0,t+1
�
/2,

which is derived from the population genetic model.

Appendix C. Justification of the use of Eq. (20)

When the environment fluctuates within generations, Eqs.
(A.8), (A.9a) and (A.9b) still apply. In order to justify the use of zm
as defined by Eq. (20) we need to show that

d
dδ

(zmt − zt)
����
δ=0

= ∂zm

∂um
0

����
um0 =u0

, (C.1)

whereby the selection gradient on themutant control derived from
the population genetic model is given by Eq. (A.10).

To prove Eq. (C.1), we first note from Eqs. (17)–(20) that the
exact recursions for the mature phenotypes of the resident and
mutant strategies are

zt = Az̄t−1 + Cz∗, (C.2a)

zmt = Amz̄t−1 + Cmz∗. (C.2b)
Following the same line of argument as in Appendix A, we have
zmt − zt = −δ(α0z∗ + β0ẑ) [1 − u1α1 − (1 − u1)β1] + O(δ2),

(C.3)
and by substituting Eqs. (C.3) and (20) into Eq. (C.1), we find that
the equality indeed holds.

References

Aisner, R., Terkel, J., 1992. Ontogeny of pine cone opening behavior in the black rat,
Rattus rattus. Anim. Behav. 44, 327–336.

Aoki, K., 2010. Evolution of the social-learner-explorer strategy in an environmen-
tally heterogeneous two-island model. Evolution 64, 2575–2586.

Aoki, K., Wakano, J.Y., Feldman, M.W., 2005. The emergence of social learning in
a temporally changing environment: a theoretical model. Curr. Anthropol. 46,
334–340.

Arbilly, M., Motro, U., Feldman, M.W., Lotem, A., 2010. Co-evolution of learning
complexity and social foraging strategies. J. Theoret. Biol. 267, 573–581.

Arbilly, M., Motro, U., Feldman, M.W., Lotem, A., 2011. Evolution of social learning
when high expected payoffs are associated with high risk failure. J. R. Soc.
Interface 8, 1604–1615.

Barnard, C.J., Sibly, R.M., 1981. Producers and scroungers—a general model and its
application to captive flocks of house sparrows. Anim. Behav. 29, 543–550.

Beekman, M., Gilchrist, A.L., Duncan, M., Sumpter, D.J.T., 2007. What makes a
honeybee scout? Behav. Ecol. Sociobiol. 61, 985–995.

Biesmeijer, J.C., Seeley, T.D., 2005. The use of waggle dance information by honey
bees throughout their foraging careers. Behav. Ecol. Sociobiol. 59, 133–142.

Biondi, L.M., Bó, M.S., Vassallo, A.I., 2010a. Inter-individual and age differences
in exploration, neophobia and problem-solving ability in a Neotropical raptor
(Milvago chimango). Anim. Cogn. 13, 701–710.

Biondi, L.M., Garcia, G.O., Bó, M.S., Vassallo, A.I., 2010b. Social learning in
the Caracara Chimango, Milvago Chimango (Aves: Falconiformes): an age
comparison. Ethology 116, 722–735.



Author's personal copy

K. Aoki et al. / Theoretical Population Biology 81 (2012) 300–309 309

Borenstein, E., Feldman, M.W., Aoki, K., 2008. Evolution of learning in fluctuating
environments: when selection favors both social and exploratory individual
learning. Evolution 62, 586–602.

Boyd, R., Richerson, P.J., 1985. Culture and the Evolutionary Process. Univ. of Chicago
Press, Chicago, IL.

Boyd, R., Richerson, P.J., 1988. An evolutionary model of social learning: the effect
of spatial and temporal variation. In: Zentall, T., Galef Jr., B.G. (Eds.), Social
Learning. Erlbaum, Hillsdale, NJ, pp. 29–48.

Cavalli-Sforza, L.L., Feldman, M.W., 1981. Cultural Transmission and Evolution.
Princeton Univ. Press, Princeton, NJ.

Cole, E.F., Cram, D.L., Quinn, J.L., 2011. Individual variation in spontaneous problem-
solving performance among wild great tits. Anim. Behav. 81, 491–498.

Dugatkin, L.A., 2004. Principles of Animal Behavior. W.W. Norton and Company.
Eliassen, S., Jørgensen, C., Mangel, M., Giske, J., 2009. Quantifying the adaptive value

of learning in foraging behavior. Am. Nat. 174, 478–489.
Enquist, M., Eriksson, K., Ghirlanda, S., 2007. Critical social learning: a solution to

Roger’s paradox of nonadaptive culture. Am. Anthropol. 109, 727–734.
Feldman, M.W., Aoki, K., Kumm, J., 1996. Individual versus social learning:

evolutionary analysis in a fluctuating environment. Anthropol. Sci. 104,
209–232.

Galef Jr., B.G., 1988. Imitation in animals: history, definitions, and interpretations of
data from the psychological laboratory. In: Zentall, T., Galef Jr., B.G. (Eds.), Social
Learning. Erlbaum, Hillsdale, NJ, pp. 2–28.

Giraldeau, L., Caraco, T., Valone, T., 1994. Social foraging: individual learning and
cultural transmission of innovations. Behav. Ecol. 5, 35–43.

Gunst, N., Leca, J.-B., Boinski, S., Fragazy, D., 2010. The ontogeny of handling hard-
to-process food in wild brown capuchins (Cebus apella apella): evidence from
foraging on the fruit of Maximiliana maripa. Am. J. Primatol. 72, 960–973.

Heyes, C.M., 1993. Imitation, culture, and cognition. Anim. Behav. 46, 999–1010.
Kaplan, H., Hill, K., Lancaster, J., Hurtado, A.M., 2000. A theory of human life history

evolution: diet, intelligence, and longevity. Evol. Anthropol. 9, 156–183.
Laland, K.N., 2004. Social learning strategies. Learn. Behav. 32, 4–14.
Leadbeater, E., Chittka, L., 2007. Social learning in insects—fromminiature brains to

consensus building. Curr. Biol. 17, R703–R713.

Lehmann, L., Feldman, M.W., Kaeuffer, R., 2010. Cumulative cultural dynamics and
the coevolution of cultural innovation and transmission: an ESS model for
panmictic and structured populations. J. Evol. Biol. 23, 2356–2369.

Lycett, S.J., Gowlett, A.J., 2008. On questions surrounding the Acheulean tradition.
World Archaeol. 40, 295–315.

Maynard Smith, J., 1982. Evolution and the Theory of Games. Cambridge Univ. Press.
Reader, S.M., Laland, K.N., 2001. Primate innovation: sex, age and social rank

differences. Int. J. Primatol. 22, 787–805.
Rogers, A.R., 1988. Does biology constrain culture? Am. Anthropol. 90, 819–831.
Rogers, D.S., Ehrlich, P.R., 2008. Natural selection and cultural rates of change. Proc.

Natl. Acad. Sci. USA 105, 3416–3420.
Striano, T., Tomasello, M., Rochat, P., 2001. Social and object support for early

symbolic play. Dev. Sci. 4, 442–455.
Sydsæter, K., Hammond, P., Seierstad, A., Strøm, A., 2008. Further Mathematics for

Economic Analysis, second ed. Pearson Education.
Tennie, C., Call, J., Tomasello, M., 2009. Ratcheting up the ratchet: on the evolution

of cumulative culture. Phil. Trans. R. Soc. B 364, 2405–2415.
Tomasello, M., 1999. The human adaptation for culture. Annu. Rev. Anthropol. 28,

509–529.
Vygotsky, L.S., 1978. Mind in Society: The Development of Higher Psychological

Processes. Harvard Univ. Press.
Wakano, J.Y., Aoki, K., 2006. A mixed strategy model for the emergence

and intensification of social learning in a periodically changing natural
environment. Theor. Popul. Biol. 70, 486–497.

Wakano, J.Y., Aoki, K., 2007. Do social learning and conformist bias coevolve?
Henrich and Boyd revisited. Theor. Popul. Biol. 72, 504–512.

Wakano, J.Y., Aoki, K., Feldman, M.W., 2004. Evolution of social learning: a
mathematical analysis. Theor. Popul. Biol. 66, 249–258.

Whiten, A., Ham, R., 1992. On the nature and evolution of imitation in the
animal kingdom: reappraisal of a century of research. In: Rosenblatt, J.S., et al.
(Eds.), Advances in the Study of Behavior, vol. 21. Academic Press, New York,
pp. 239–283.


