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Leveraging large-scale biobank EHRs to
enhance pharmacogenetics of
cardiometabolic disease medications

Marie C. Sadler 1,2,3, Alexander Apostolov 3, Caterina Cevallos 4,
Chiara Auwerx 1,2,3,4, Diogo M. Ribeiro 3, Russ B. Altman 5 &
Zoltán Kutalik 1,2,3

Electronic health records (EHRs) coupled with large-scale biobanks offer great
promises tounravel the genetic underpinnings of treatment efficacy.However,
medication-induced biomarker trajectories stemming from such records
remain poorly studied. Here, we extract clinical and medication prescription
data from EHRs and conduct GWAS and rare variant burden tests in the UK
Biobank (discovery) and the All of Us program (replication) on ten cardio-
metabolic drug response outcomes including lipid response to statins, HbA1c
response tometformin and blood pressure response to antihypertensives (N =
932-28,880). Our discovery analyses in participants of European ancestry
recover previously reported pharmacogenetic signals at genome-wide sig-
nificance level (APOE, LPA and SLCO1B1) and a novel rare variant association in
GIMAP5 with HbA1c response to metformin. Importantly, these associations
are treatment-specific and not associated with biomarker progression in
medication-naive individuals. We also found polygenic risk scores to predict
drug response, though they explained less than 2% of the variance. In sum-
mary, we present an EHR-based framework to study the genetics of drug
response and systematically investigated the common and rare pharmacoge-
netic contribution to cardiometabolic drug response phenotypes in 41,732 UK
Biobank and 14,277 All of Us participants.

Genetic factors can contribute to inter-individual variability in drug
response. However, despite the immense progress of genome-wide
association studies (GWAS) for complex traits and diseases, the scale
of pharmacogenetics (PGx) studies to find genetic predictors of drug
efficacy remains limited. PGx GWAS represent less than 10% of all
entries in the GWAS Catalog with median sample sizes of 1220 for PGx
GWAS published between 2016 and 20201. As a result of low sample
size and lack of cohorts suitable for pharmacogenomic studies, rela-
tively few PGx associations determining drug efficacy have been
identified in a genome-wide approach1–3.

Several PGx GWAS consortia have formed over the years to study
the genetics of drug efficacy in larger sample sizes by investigating the
change in biomarker levels following medication start. For instance,
the Genomic Investigation of Statin Therapy (GIST) consortium has
identified variants in the LPA,APOE, SORT1/CELSR2/PSRC1 and SLCO1B1
regions as modulators of low-density lipoprotein cholesterol (LDL-C)
response to statins by combining randomized controlled trials (RCTs)
and observational studies4. Using electronic health records (EHRs), the
Genetic Epidemiology Research on Adult Health and Aging (GERA)
cohort has additionally identified the APOB and SMARCA4/LDLR loci as
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genetic determinants of statin response5,6. Similarly, the Metformin
Genetics (MetGen) consortium has identified SLC2A2 as influencing
haemoglobin A1c (HbA1c) response to metformin7, and more recently
a meta-GWAS on HbA1c response to GLP-1 receptor agonists found
variants in ARRB1 to influence drug efficacy8. Furthermore, the Inter-
national Consortium for Antihypertensive Pharmacogenomics Studies
(ICAPS) has published multiple GWAS investigating blood pressure
response to several antihypertensive drug classes (beta blockers, cal-
cium channel blockers (CCBs), thiazide/thiazide-like diuretics and
ACE-inhibitors (ACEi)/angiotensin receptor blockers (ARB))9–11.

Biobanks coupled with EHRs that comprise medication data pro-
vide new opportunities to discover PGx associations1,12,13. These mas-
sive datasets have already contributed to the replication of knownPGx
interactions as well as the discovery of new putative associations in
national biobanks such as the Estonian14 and UK Biobank (UKBB)15,16.
More recently, GWAS on longitudinal medication patterns extracted
from the Finnish nationwide drug purchase registry in the FinnGen
study identified tens of cardiometabolic risk loci specific tomedication
use and not associated with the underlying indication17. Yet, PGx bio-
bank studies so far have either focused on known pharmacogenes and
their associations with adverse drug reactions, drug dosage and drug
prescribing behaviour or analyzed the genetics of temporal medica-
tion use in isolationof disease phenotypes. Except for theGERA cohort
which solely utilized EHRs for the study of LDL-C response to statins5,6,
the integration of longitudinal medication and phenotypic data to
screen for genetic determinants of drug efficacy at a biobank scale
remains largely unexplored.

Here, we extracted clinical andmedication prescription data from
EHRs and conducted PGx association analyses on the change in bio-
marker levels following drug therapy to treat cardiometabolic diseases
(Fig. 1a). We performed PGx GWAS to assess the contribution of
common variants to drug response and compared the results with
GWAS conducted on RCT and observational data. Furthermore, we
assessed the cumulative impact of rare variants on drug response by
conducting rare variant burden tests using sequencing data. Discovery
analyses were conducted in the UK Biobank (UKBB)18 and replication
analyses in theAll of Us (AoU) researchprogram19 (Fig. 1b). In follow-up
analyses, we compared drug response genetics to the genetics of
baseline and longitudinal biomarker changes in medication-naive
individuals to dissect medication- and disease-specific components
while also highlighting common pitfalls in the analysis of longitudinal
(response) phenotypes (Fig. 1c). Finally, we demonstrated that poly-
genic risk scores (PRS) of the underlying condition can predict drug
response. In summary, we provide guidance on how to design drug
response studies with longitudinal medication prescriptions and bio-
marker measures stemming from real-world data, introduce a more
reliable model for studying genetic associations with drug response
and present a comprehensive resource on the genetic architecture of
cardiometabolic drug response. Our study showcases the value as well
as the challengeswhen analyzing EHR-coupledbiobanks to study inter-
individual variability in drug response and identify clinically relevant
genetic predictors.

Results
Overview of the analysis
In the drug response discovery analyses, we extracted longitudinal
prescription and response biomarker data from the UKBB primary
care records which we combined with phenotypic data from the
assessment visits (currently ≈ 230,000 (45%) UKBB participants are
linked to their EHRs). We then emulated EHR-derived drug response
cohorts for the following medication-biomarker pairs: statin-lipids
(LDL-C, high-density lipoprotein cholesterol (HDL-C), total choles-
terol (TC)), metformin-HbA1c, antihypertensive-systolic blood pres-
sure (SBP; by antihypertensive class (ACEi, CCB, thiazide diuretics)
and all classes combined), beta blocker-SBP and beta blocker-heart

rate (HR). Individuals were only part of a drug response cohort if a
phenotype measurement was available before and after treatment
initiation in addition to passing several other quality control (QC)
steps (Method section: Study design and phenotype definitions,
Supplementary Fig. 1, Supplementary Data 3). For each drug
response phenotype, we derived an absolute and logarithmic relative
biomarker difference as outcome traits as both approaches are
commonly employed in drug response studies. Lipid and blood
pressure response have been studied on both the absolute9,10,20–22 and
relative scale4,6,20–23, while HbA1c response has commonly been ana-
lyzed on the absolute scale7,24,25. Furthermore, we considered two
filtering scenarios to define drug response phenotypes, a stringent
and a lenient one. More stringent QC should result in a cleaner
phenotype definition, with the trade-off of reduced sample size (and
thus potentially lower statistical power). Given the sharp drop in
sample size with more stringent criteria, the lenient filtering strategy
constitutes the default setting throughout this study. In both strin-
gent and lenient scenarios, we tested single and average baseline and
post-treatment values over multiple measures, if available, with
average values being the default (Fig. 1).

In each drug response cohort, we first conducted GWAS to dis-
cover common genetic predictors (minor allele frequency (MAF) ≥
0.05) of drug efficacy. In a second step, we performed genome-wide
burden tests using whole exome sequencing (WES) data to assess
associations with rare variants (MAF < 0.01). Replication analyses of
identified PGx variants in the discovery analyses and across the lit-
eraturewere conducted in ~ 250,000 participants of the AoU research
program with available whole genome sequencing data (WGS). In
follow-up analyses,we showcase the biases emerging from the popular
approach of regression-based baseline adjustment to derive drug
response outcomes and assess baseline trait PRS as predictors of drug
response.

Drug response GWAS using EHRs from the UKBB
Following cardiometabolic drug treatment, lipid, HbA1c and blood
pressure levels significantly dropped while HDL-C levels moderately
increased (ΔHDL-C = 0.012 mmol/L, two-sided paired t test p-value =
2.41e−23; Fig. 2a; Supplementary Data 4). In comparison, biomarker
levels measured during an equivalent time window as baseline and
post-treatment levels remained stable for control individuals who did
not take any related medications (Fig. 2a; Supplementary Data 7). In
the LDL-C response to statin GWAS, APOB (rs10199768 T > G, beta =
0.056, p-value = 1.77e−08) and LDLR (rs118068660T >C, beta = −0.119,
p-value = 1.23e−10) were found to influence absolute biomarker
change, while the SLC22A3/LPA (rs10455872 G > A, beta = −0.146,
p-value = 4.87e−17) and APOE (rs7412 T > C, beta = 0.232, p-value =
1.11e–28) loci were found to influence relative (logarithmic) biomarker
change (Table 1; Fig. 2b; lenient filtering with average values if avail-
able,N = 18,753). All four genes encode proteinswith awell-established
role in serum lipids level regulation, with APOB, APOE, and LPA
encoding for apolipoproteins that bind lipids such as cholesterol and
triglycerides and organize them into various types of lipoprotein
particles (e.g., LDL-C), enabling their transport in the blood and dis-
tribution throughout the body26. The two former apolipoproteins
further act as ligands for the LDL receptor encoded by LDLR, allowing
thebinding and internalizationof lipoproteinparticles harboring these
lipoproteins, ensuring delivery of lipids to the cell and regulation of
serum LDL-C levels26. Importantly, all four genes have previously been
involved inmodulating response to statins4,6,20,27. More specifically, the
CARDS trial showed that the PGx association in the SLC22A3/LPA locus
results from LDL-C levels also including LDL-C residing in Lp(a)
particles27. The LPA variant rs10455872-G which is associated with a
lower response to statins also associates with increased levels of Lp(a)
which remain unchanged upon statin treatment. Thus, the relative
higher proportion of Lp(a) particles in rs10455872-G carriers gives rise

Article https://doi.org/10.1038/s41467-025-58152-3

Nature Communications |         (2025) 16:2913 2

www.nature.com/naturecommunications


to this PGx association even if LDL-C residing in statin-responsive LDL
particles drop to similar levels as in rs10455872-A carriers.

TC response to statins, for which we had a larger sample size
(more TC thanLDL-Cmeasures are available in theprimary caredata,N
= 28,880) confirmed the identified loci at APOB, LDLR, SLC22A3/LPA
(the latter being identified in both the absolute and relative biomarker

change GWAS), and APOE, while also identifying the SNP rs4149056
C>T in the SLCO1B1 locus (beta =−0.063,p-value = 1.10e−08). SLCO1B1
encodes for the OATP1B1 transporter, whichmediates the intracellular
uptake of a wide range of substrates, including statins28,29. Importantly,
the variant we identified, also known as Val174Ala or SLCO1B1*5, has
previously been associated with LDL-C statin response4,30 as well as
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Fig. 1 | Study design. aDrug response study design using electronic health records
(EHRs) from the UK and All of Us biobanks. Baseline (orange) and post-treatment
(green) phenotypes were extracted from EHRs or biobank assessment visits before
and after the first recorded prescription, respectively. Different timings relative to
the first prescriptionwere tested aswell as the use of single and average values over
multiple baseline and post-treatment measures if available. Drug response phe-
notypes defined by the 1) absolute and 2) relative logarithmic difference in post-
treatment and baseline biomarker measures were tested for ten cardiometabolic
medication-phenotype pairs: LDL cholesterol (LDL-C), total cholesterol (TC) and

HDL cholesterol (HDL-C) response to statins (blue); HbA1c response to metformin
(orange); systolic blood pressure (SBP) response to antihypertensives (green, ACE-
inhibitors (ACEi), calcium channel blockers (CCBs) and diuretics); SBP and heart
rate (HR) response to beta blockers (purple). b Discovery genetic association
analyses were conducted in the UK Biobank and replicated in the All of Us research
program on common variants (GWAS analysis) and rare variants through burden
tests. c Follow-up analyses compared the genetics of baseline, longitudinal change
and drug response genetics including polygenic risk score (PRS) analysis.
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myopathy31, a rare but well-described side effect that has been attrib-
uted to increased statin blood concentrations due to the reduced
uptake capacity of the encoded protein29.

No genome-wide significant hits were found in the HDL-C
response to statin GWAS (N = 25,405), HbA1c response to metformin
GWAS (N = 4424), HR (N = 2157)/SBP (N = 1750) response to beta
blockers, and SBP response to antihypertensives (N = 932–8250; Sup-
plementary Figs. 6, 7).

The impact of filtering in the PGx-EHR study design
In EHRs, medication start, baseline and post-treatment measures are
not readily available, and we tested multiple strategies to extract drug
response phenotypes and assess their impact on PGx associations. We
introduced a prescription regularity parameter to proxy drug adher-
ence under the assumption that skipped prescriptions are the result of
inconsistentmedication intake. This prescription regularity parameter

(or prescription completeness) is defined by the presence of a pre-
scription at least every two months for the duration of the post-
treatment period and a completeness of 100% is obtained if this is the
case. To account for varying time window thresholds, prescription
regularities, changes in medication regimens, and single or multiple
biomarker measures at baseline and post-treatment, we defined
stringent and lenient filtering strategies, assessing the impact of using
single versus multiple biomarker measures for each.

A main difference between the lenient and stringent filtering
scenariowas the extension of the baseline andpost-treatment periods.
In Supplementary Fig. 4, we show the distribution of the time between
the closest baseline measure and prescription start, and in Supple-
mentary Fig. 5, the distribution of the time between prescription start
and the closest post-treatment measure. The median of this distribu-
tion was between 0 and 41 days for the baseline measure and 111 and
273 days for the post-treatmentmeasure acrossmedication-biomarker

LDLR

LPA

APOE

SLCO1B1

LPA

LDLR

APOE

APOB
APOB LPA

Fig. 2 | EHR drug response phenotypes and PGx GWAS results derived from
the UKBB. a Baseline and post-treatment biomarker levels of statin (blue), met-
formin (orange), first-line antihypertensives (green) and beta blocker (purple)
medication users as well as first and second measures of controls who do not take
any relatedmedications. Boxes bound the 25th, 50th (median, centre), and the 75th
quantile of LDL-C post-treatment measures. Whiskers range from minima (Q1 -
1.5*IQR) to maxima (Q3 + 1.5*IQR) with points above or below representing
potential outliers. Drug response sample sizes are in Supplementary Data 4 and
control sample sizes in Supplementary Data 7. LDL cholesterol (LDL-C); total cho-
lesterol (TC); HDL cholesterol (HDL-C); ACE-inhibitor (ACEi); calcium channel

blocker (CCB). b Manhattan plots of LDL-C and TC response to statins. GWAS
association results of the top and bottom show the absolute and logarithmic
relative biomarker differences, respectively. GWAS were performed using a linear
additive model, with a two-sided test of association. Loci with genome-wide sig-
nificant signals (p-value < 5e−8) for either the absolute or relative difference are
highlighted in red. All loci are annotated with the closest gene and the horizontal
line denotes genome-wide significance (p-value < 5e−8). Results in (a) and (b)
correspond to the lenient filtering setting with average values over multiple mea-
sures, if available.

Article https://doi.org/10.1038/s41467-025-58152-3

Nature Communications |         (2025) 16:2913 4

www.nature.com/naturecommunications


pairs (Supplementary Data 4). As we anticipate the stringent filtering
scenario to more closely reflect the design of an RCT such as the
JUPITER trial (LDL-C response to rosuvastatin) where the post-
treatment value was taken 1 year following medication start20, we
chose a baseline period starting 100 days before prescription start and
a post-treatment period starting 60 (antihypertensives and beta
blockers) or 100 days (statins and metformin which have delayed
effects on lipids32 andHbA1c33) up to 1 year followingprescription start.
In the lenient filtering, we extended the baseline period up to 1 year
preceding and up to 2 years following prescription start. Note that the
post-treatment period in the lenient filtering setting remains more
stringent than in observational studies such as those included in the
GIST study where the post-treatment period varied widely between
cohorts and could last up to 5 years4. When testing the impact of the
time to first post-treatment measure on the biomarker difference, we
observed that increased follow-up times resulted in reduced bio-
marker differences, even in the stringent filtering scenario where this
parameter could not vary aswidely (the follow-up time explained up to
1.1% of the variance; Supplementary Data 6). Likewise, a lower pre-
scription completeness value resulted in decreased biomarker differ-
ences in the stringent and the lenient filtering settings, where the
required completeness were 60% and 30%, respectively (the pre-
scription regularity explained up to 7.6% of the variance; Supplemen-
tary Data 6). Despite the differences in the stringent and lenient
filtering scenarios, average baseline and post-treatment biomarker
levels were almost identical between the resulting drug cohorts (dif-
ferences of less than 3%; Supplementary Data 4).

Between the two filtering strategies, the sample size increased
from 40% (metformin-HbA1c) up to 334% (CCB-SBP) when relaxing the
filtering criteria (Supplementary Data 4). For statins, this rise was lar-
gely due to the extended baseline and post-treatment period. For
metformin and antihypertensives, we excluded individuals taking any
related medication in the stringent filtering setting, whereas, in the
lenient setting, sample size largely increased by allowing metformin
and antihypertensives to act as add-on therapy to sulfonylureas and
second-line antihypertensives, respectively, if consistently taken dur-
ing pre- and post-treatment periods of the studied medication (Sup-
plementary Figs. 2, 3). As a consequence of lower statistical power,
only 4 out of the 10 signals found in the lipid-statin GWAS were
detected in the stringent filtering scenarios (Supplementary Figs. 8, 9;
Supplementary Data 8). Furthermore, we tested the difference
between assessing a single baseline and post-treatment measure (the
closest to the prescription start) and averaging over all available
measures present in the baseline and post-treatment periods. The
impact was minimal, and the only difference was observed for the
SLCO1B1-associated SNP rs4149056 which did not reach genome-wide
significance with a single measure (p-value =1.49e−5).

Replication analysis in the All of Us research program
We conducted replication analyses in the AoU program (v7; N ≈
250,000 with available short-read WGS data). As in the UKBB, long-
itudinal prescription and phenotypic data were extracted from EHRs
and used to construct drug response cohorts by following the same
methodology as in the UKBB (Methods; Supplementary Data 9).
Cohort characteristics were similar to those in the UKBB (Supple-
mentary Data 9; Supplementary Fig. 10). The mean statin starting age
was 58 years compared to 61 years in the UKBB and as in the UKBB
post-treatment lipid levels were on average measured within a year
(average of 290 days) following the first prescription. The main dif-
ferencewas observed in the regularity of statin prescriptions.Whereas
in the UKBB, participants had on average a prescription every two
months 89% of the time, this number dropped to 44% in the AoU.
There were slightly fewer statin users than in the UKBB, but similar to
the UKBB, themain reasons for being excluded in the PGx cohort were
missing baseline and/or post-treatment measures in the consideredTa
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timewindows leaving 10,337 and 6999 individuals in the LDL-C and TC
response to statins, respectively. Among the 10 signals, 3 signals
implicating the APOE and LPA loci replicated at the Bonferroni-
corrected replication threshold of 0.05/10 = 0.005 and 4 at a nominal
p-value of 0.05 (all directionally concordant; Table 1). A fifth signal,
SLCO1B1, replicated at nominal significance (p-value = 1.31e−02) when
considering LDL-C instead of TC. Signals not replicating nominally
include the APOB and LDLR loci.

Participants in the AoUbiobank represent amore diverse range of
genetic ancestries compared to those in theUKBB,with only 50%being
of European ancestry34. When assessing allele frequencies of the
identified PGx signals across ancestries by using the gnomAD v4.1.0
resource35, the largest allele frequency differences were observed for
APOB, ranging from 5.2% in East Asians to 52.2% in the Amish (Sup-
plementary Data 10). Significant differences were also found for LDLR
(0.8–18.8%) and SLCO1B1 (3.1–20.9%),whileMAFsof other PGxvariants
varied by less than 10%. Based on this MAF spectrum, we conducted
power analyses to determine the sample sizes required to detect PGx
signals at genome-wide significance (5e−08) in different ancestral
groups. For a strong signal, such as rs7412 at the APOE locus (beta =
0.232, p-value = 1.11e−28), a sample size of 4000 is needed to achieve
80% power in African/African Americans where the MAF is the highest
(10.5%) compared to 28,500 in Amish people where the MAF is the
lowest (1.2%). For a more modest signal, such as rs4149056 at the
SLCO1B1 locus (beta = −0.063, p-value = 1.10e−08), a sample size of
148,501 is needed for 80% power in African/African Americans where
the MAF is the lowest (3.1%) compared to 27,501 in the Finnish where
the MAF is the highest (20.9%; Supplementary Fig. 11).

EHR-derived PGx GWAS recover known PGx loci
From the literature, we extracted genetic predictors reported for the
assessed cardiometabolic medication-biomarker pairs. We adopted
the criteria from Nelson et al., 20162 that provide a curated list up to
July 2015 by querying the GWAS Catalog36. Briefly, genetic variants
were required to pass the genome-wide significance threshold of 5e−8
and show evidence of replication. Reported GWAS stem either from
RCTs, EHRs (GERA cohort5,6) or observational studies often meta-
analyzed together. As we will elaborate in the longitudinal phenotype
model later on (Fig. 3a), adjusting biomarker changes for baseline
levels induces spurious associations for genetic variants that are also
associated with baseline levels. However, 5 of the 7 studies reporting
significant PGx variants have adjusted for baseline levels4,6,23–25. Thus,
these reported loci could represent either baseline genetic or phar-
macogenetic effects, or both. To be concordant with these studies, we
report literature replication p-values for baseline-adjusted and unad-
justed biomarker change.

Seven independent loci were reported for LDL-C response to
statins of which three (APOE, LPA and SORT1) and two (APOE and
SORT1) passed genome-wide significance in the (baseline adjusted)
discovery (UKBB) and replication (AoU) cohort, respectively (Table 2).
SLCO1B1 locus was nominally significant in the UKBB (p-value = 1.84e
−03) and genome-wide significant in the TC response GWAS for which
sample size was larger (p-value = 1.89E−09, baseline adjusted). ABCG2
associated with LDL-C reduction following rosuvastatin therapy in the
JUPITER trial20 was found to be insignificant in the UKBB and AoU (p-
values of > 0.05) and did also not reach genome-wide significance in a
later, larger GWAS meta-analysis of all statins combined4. The LDLR
and APOB loci reached genome-wide significance in the baseline-
adjusted GWAS in the GERA cohort, but were believed to be false
positives as a consequence of baseline adjustment6. These SNPs were
nominally significant in our baseline adjusted biomarker difference
GWAS. However, the reported LDLR-associated SNP rs67337506 is in
LD with the rs118068660 SNP (r2 = 0.29) which we identified as a
genuine PGx locus in the absolute LDL-C change GWAS (Table 1).
Similarly, the reportedAPOB-associated SNP rs1713222 is in LDwith the

rs10199768 SNP (r2 = 0.14) which reached genome-wide significance in
the absolute LDL-C change GWAS. Thus, although both loci were
identified by a biased PGx model, SNPs in LD reached genome-wide
significance in our unadjusted baseline GWAS. The HDL-C response
GWAS to statins (baseline adjusted) identified CETP as a single
genome-wide significant locus, which replicated at a genome-wide
significance level in the UKBB23. Overall, EHR-derived PGx signals on
lipids agree well with those reported in cohort studies, although,
baseline adjustment can lead to spurious associations for variants that
associate with the baseline levels of the biomarker. For instance,
rs247616 (CETP) was strongly associated with HDL-C change when
adjusting for baseline in the UKBB (p-value = 3.63E−10), but no longer
in the unadjusted analysis (p-value > 0.3). Associations like CETP and
SORT1 that reached genome-wide significance only upon baseline
adjustment were also found in our negative control analysis, where we
conducted a baseline-adjusted longitudinal change GWAS in drug-
naive participants (Supplementary Fig. 17), confirming our suspicion
that baseline adjustment leads to biased results (see Section on Mod-
elling drug response and longitudinal change phenotypes).

GWAS of HbA1c-response to metformin identified ATM24, SLC2A27

and PRPF3125, but only the SLC2A2-associated SNP (discovered in a
baseline-unadjusted analysis) was recovered at nominal significance
(p-value of 3.89E−02 and 4.07E−02 in the absolute and relative bio-
marker change model, respectively). SLC2A2 was discovered in a
sample size of 10,577 individuals7, whereas sample sizes were 4424 and
3845 in the UKBB and AoU, respectively. Nonetheless, it should be
noted that none of the metformin studies have reported the same
locus twice and the ATM and SLC2A2 loci were insignificant in the
ACCORD clinical trial GWAS that was conducted later (p-value > 0.1)25.
Although several loci have been found to influence blood pressure and
heart rate response to anti-hypertensives at a suggestive p-value
threshold, no genome-wide significant hits have been reported37.
Among the 13 loci identified at a suggestive significance level in studies
conducted in samples exceeding 300 participants37, only the SNP
rs4149601 in theNEDD4L gene region found to influence SBP response
to diuretics could be replicated at a nominal significance level in the
UKBB (p-value = 0.032; Supplementary Data 11). However, replication
only occurred in the baseline adjusted analysis which is more likely to
yield false positives (Fig. 3a).

Rare variants have a modest impact
While common genetic variants have been assessed as predictors of
drug response phenotypes in multiple studies, the impact of rare
variation is less well known. Making use of sequencing data (WES and
WGS in the UKBB and AoU, respectively), we conducted rare variant
burden tests for all ten drug response phenotypes (Fig. 1). We included
missense and putative loss-of-function (LoF) variants withMAF < 1% in
optimal kernel association tests (SKATO)38. After correcting for mul-
tiple testing (p-value < 0.05/18,983 = 2.63e−06), we identified GIMAP5
to impact absolute HbA1c response to metformin (p-value (SKATO) =
2.28e−06). Directionality could be inferred from an additive burden
test which revealed that a higher burden is associated with a reduced
biomarker reduction (additive burden test: beta = 0.66, p-value = 1.75e
−06). GIMAP5 is known to regulate lymphocyte function and survival,
particularly in T-cells and it has previously been associated with
autoimmune diseases such as type 1 diabetes, lupus, and inflammatory
bowel disease39. When restricting the analysis to known pharmaco-
genes (66 very important (VIP) autosomal pharmacogenes defined by
PharmGKB40), we found a significant association of rare variants in the
CYP1A2 gene to influence absolute HDL-C reduction following
statin treatment (p-value = 2.37e−04). Neither GIMAP5 (p-value = 0.53)
nor CYP1A2 (p-value = 0.35) replicated in the AoU indicating either
false positive associations or a statistical power issue due to the
lower sample size and the inclusion of different rare variants in
the AoU.
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Modelling drug response and longitudinal change phenotypes
In the following, we will propose a longitudinal phenotype model to
analyze drug response and longitudinal change phenotypes in an
unbiased manner. Biomarker levels Y at time t can be modelled as
follows (Fig. 3a):

Y t = β0 � G0 +βE � Et + γE � GE � Et +βD � Dt + γD � GD � Dt + ϵt

where β0 is the baseline genetic effect, G the genetics, βE the envir-
onmental effect, E the environment, γE the gene-environment interac-
tion effect, D the indicator of drug use, βD the drug effect and γD the
pharmacogenetic effect.

When modelling the drug response as the difference of post-
treatment levels Y t1

and baseline levels Y t0
, where the drug status is 1

and 0 at t1 and t0, respectively, the drug response phenotype simplifies
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to (Supplementary Note 1):

ΔY = Y t1
� Y t0

=βD + γD � GD + δ01

Thus, the pharmacogenetic effect can be estimated from genetic
regression analyses on the biomarker difference at post-treatment and
baseline. Control individuals who do not take any related medications
are not required for this estimation, however, analyzing longitudinal
changes in these individuals (the drug status being zero at both time
points) serves as a control to ensure that identified PGx signals are
specific to drug treatment. Supplementary Fig. 12 presents the
directed acyclic graph (DAG) that extends the graph in Fig. 3a for
modeling the genetics of drug response phenotypes ΔY. This
expression also holds when modelling the logarithm of the biomarker
level. However, adjusting biomarker differences for baseline levels
induces a bias when genetic variants are also associated with baseline
levels (β0 ≠ 0). It can be shown that this bias can be approximated by
C⋅β0whereC equals 1� ðβ2

E + γ
2
E Þ � corr ðEt , E0Þ (SupplementaryNote 1).

In Fig. 3b–d, we depict genetic variants that either have a sig-
nificant pharmacogenetic effect γD, baseline effect β0 or both, and
showcase how baseline adjustment can introduce a bias in genetic
effect estimation (Supplementary Data 12, 13). To this end, we com-
pared genetic effect sizes of biomarker differences in medication-
naive controls to those in statin users (simvastatin 40mg users
who represent the largest starting statin type-dose group; Supple-
mentary Data 5). The APOE missense variant rs7412 which is strongly
associated with baseline levels (β0 = 0.634, p-value < 1e−300) also
exhibited a pharmacogenetic effect (γD = 0.284, p-value = 3.52e−19)
while not being associated to longitudinal change in statin-free con-
trols (p-value = 0.59; Fig. 3b; Supplementary Data 7). However, upon
baseline adjustment, a significant genetic effect with longitudinal
change was observed in drug naive individuals (b = 0.256, p-value =
4.83e−102) as well as a stronger association in statin users due to the
bias that is proportional toβ0 (b=0.409,p-value = 1.07e−39). Since this
SNP is strongly associated with baseline levels, its effect on drug
response is overestimated when adjusting for baseline and a spurious
association is observed for longitudinal change without lipid-lowering
treatment. The SLCO1B1 missense variant rs4149056 was not asso-
ciated with total cholesterol baseline levels (p-value = 0.078), and
genetic effects remained similar between baseline adjusted and
unadjusted results (adjusted: γD = 0.092, p-value = 3.16e−08; unad-
justed: γD = 0.092, p-value = 1.18e−07 Fig. 3c), evidencing the sole
implicationof SLCO1B1 in pharmacokinetics (no significant association
was found for longitudinal change either; p-value > 0.24). In contrast,
the SNP rs11076175 in the CETP locus is strongly associatedwith HDL-C
baseline levels (β0 = 0.262, p-value = 4.26e−311), but had no significant
pharmacogenetic effect in the unbiased model (γD = 0.006, p-value =
0.70). Upon baseline adjustment, strong associations with both long-
itudinal change and drug response were observed (p-values of 4.85e

−33 and 7.95e−06, respectively; Fig. 3d). Together, these examples
illustrate how the genetic component of baseline levels can result in
the identification of false positive associations and/or overestimation
of pharmacogenetic effects.

More generally, no genome-wide significant associations were
found in (the correct) longitudinal biomarker progression GWAS in
medication-naive individuals (Supplementary Figs. 13, 14). However,
upon baseline adjustment, striking similarities could be observed
between drug response and longitudinal change GWAS (Supplemen-
tary Figs. 15-17; Supplementary Data 14, 15). Additional genome-wide
significant loci found in the baseline-adjusted PGx GWAS included the
SORT1/CELSR2/PSRC1 locus in the LDL-C response aswell asCETP in the
HDL-C response to statin GWAS both of which also reached genome-
wide significance in the longitudinal change GWAS in drug-naive
participants.

Polygenic risk scores as predictors of drug response
We assessedwhether high PRS of the underlying biomarker contribute
to increasedor decreasedbiomarker reductions inmedication users of
the UKBB. High LDL-C PRS resulted in an increased absolute, albeit
lower relative LDL-C reduction following statin treatment (babs =
−0.092mmol/L/SD PRS, p-value = 5.84e−48 and brel = 2.47%/SD PRS, p-
value = 4.22e−34; Fig. 4a; Supplementary Data 16). Thus, individuals
with a higher genetic predisposition to elevated LDL-C levels aremore
likely to experience a larger drop, however, relative to their starting
level this change is smaller than in those with a lower genetic predis-
position. These opposing effects of high PRS on absolute and relative
drug efficacy were also reflected in the genetic correlations of drug
response traits with baseline traits. While the absolute LDL-C genetic
difference was negatively correlated to LDL-C baseline levels (rg =
−1.14, 95%CI = [−1.54, −0.74]), the point estimate of the genetic corre-
lation with the relative LDL-C difference was positive, although not
significant (rg = 0.146, 95%CI = [−0.10, 0.39]; Supplementary Data 17).
These analyses suggest that in the case of statin response and LDL-C as
readout, the absolute LDL-C change is closer linked to the baseline LDL
genetics. Association results between TC PRS and TC response to
statins were highly significant (p-value < 2.51e−19) and directionally
concordant with LDL-C results. Nominally significant results between
biomarker PRS and drug response phenotypes were found for high
HbA1c PRS decreasing relative change following metformin treatment
(brel = 1.00%/SD PRS, p-value = 4.43e−03) and high SBP PRS increasing
SBP reduction following ACEi and treatment to all antihypertensives
combined (ACEi: babs = −0.56mmHg/SD PRS, p-value = 0.014, all: babs =
−0.46mmHg/SD PRS, p-value = 0.011). No significant effects of PRS on
drug responsewere observed for the remaining antihypertensives, nor
for beta blockers on HR (complete results in Supplementary Data 16).
As for genetic association analyses, care has to be taken not to adjust
for baseline levels as this can reverse directionality due to PRS affect-
ing both baseline and biomarker reduction: adjusting the LDL-C

Fig. 3 | Modelling longitudinal changes of biomarker levels with (or without)
treatment effect. a Biomarker levels Y at time t can be influenced by baseline
genetics G0 (orange), environment E and gene-environment interactions (GE ⋅ E,
blue), and drug status D and pharmacogenetic interactions (GD ⋅ D, purple). Drug
response phenotypes modelled as the difference of post-treatment (t1) and base-
line (t0) levels allow the estimation of the pharmacogenetic effect γD through
genetic regression analyses (Supplementary Note 1). b–d Stratification at genetic
variants that harbour pharmacogenetic γD (b, c) and/or baseline β0 (b, d) genetic
effects. Adjusting drug response or longitudinal change phenotypes for baseline
induces a bias that scales with C ⋅ β0 where C equals 1� ðβ2

E + γ
2
E Þ � corr ðEt , E0Þ

(Supplementary Note 1, red). Thus, variants with significant baseline effects spur-
iously associate with drug response phenotypes even if γD is zero (d). Suchmeasure
of change, however, shows association in drug-naive individuals too. The baseline
panel (t0) groups statin-free controls and statin users (simvastatin 40mg corre-
sponding to the largest starting statin type-dose group), and shows their sex and

age-adjusted standardized baseline level stratified by genotype. The following four
panels (t1) show standardized longitudinal change (drug-naive individuals) and
drug response phenotypes (statin users) adjusted for sex and age, once unadjusted
(correct model) and adjusted (biased model) for baseline levels. Genotype
regression coefficients (denoted with b) with baseline lipid levels, longitudinal
change and drug response phenotypes were derived through regression of the
standardized outcomemeasures on the genotype dosage adjusted for sex and age
as well as baseline levels if indicated. The significance level of the slope (b) is
indicatedby colour and stars where grey indicates a p-value > 0.05, blue a p-value≤
0.05, 2 stars a p-value < 1e−3 and 3 stars a p-value < 5e−8 (two-sided test statistics).
Dots correspond to themean and error bars to the standard deviation of covariate-
adjusted baseline levels and drug response/longitudinal change phenotypes in
each stratified group (numbers of individuals per stratum are shown in Supple-
mentary Data 12). LDL cholesterol (LDL-C); total cholesterol (TC); HDL cholesterol
(HDL-C).
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Fig. 4 | Drug response phenotype associationswith polygenic risk scores (PRS).
a Drug response associations with PRS calculated for the absolute (post-base) and
logarithmic relative (log(post)-log(base)) biomarker difference colour-coded by
the drug (blue: statins, orange: metformin, green: antihypertensives, purple: beta
blockers). Standardized effect sizes (biomarker/PRS effect) correspond to an SD
change for 1SD increase in PRS. A negative signmeans that increased PRS increases
treatment efficacy (i.e., larger biomarker difference compared to low PRS). All
associations are adjusted for sex, age and drug-specific covariates. The center of
the error bars corresponds to the linear regression association estimate, and the
error bars represent the 95% confidence intervals calculated in each drug response
cohort (sample sizes in Supplementary Data 4). LDL cholesterol (LDL-C); total
cholesterol (TC); HDL cholesterol (HDL-C); systolic blood pressure (SBP); heart rate

(HR); ACE-inhibitor (ACEi); calcium channel blocker (CCB). b Statin users stratified
by 1) LDL-C baseline levels adjusted for LDL-C PRS and 2) LDL-C PRS quintiles with
each tile showing the average LDL-C biomarker response (top: absolute, bottom:
relative difference). Darker blue values correspond to stronger biomarker reduc-
tions. c Statin users stratified by 1) LDL-C baseline levels, 2) LDL-C PRS and 3) rs7412
genotype (individuals with the TT genotype are omitted as their sample size was
too low). Boxes bound the 25th, 50th (median, centre), and the 75th quantile of
LDL-C post-treatment measures. Whiskers range from minima (Q1 - 1.5*IQR) to
maxima (Q3 + 1.5*IQR) with points above or below representing potential outliers.
Numerical values and sample sizes in each stratum are shown in Supplementary
Data 18.
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reduction for LDL-C baseline levels suggests that high PRS decreases
treatment efficacy (babs = 0.14mmol/L/SD PRS, p-value = 2.75e−141). As
a control experiment, a high PRS led to a nominally significant increase
in LDL-C in statin-free controls at the second measure (babs = 0.006
mmol/L/SD PRS, p-value = 0.045), which upon baseline adjustment
inflated to the samevalue as in statin users (babs = 0.14mmol/L/SD PRS,
p-value < 1e−300).

Although PRS can serve as a predictor of drug response, starting
baseline levels remain the best predictor of post-treatment levels
(Fig. 4b, c). To disentangle the effect of genetics and environment on
drug response, we adjusted baseline levels for PRS. Since baseline
biomarker levels comprise both a genetic and environmental/lifestyle
component (Fig. 3a), the resulting PRS-adjusted baseline levels should
more closely reflect the environmental component only. As a con-
sequence, individuals with high PRS and moderately high initial bio-
marker levels will have lower PRS-adjusted baseline levels than
individuals with same initial biomarker levels and low PRS. PRS-
adjusted baseline levels explained 43.0% and 10.7% of the variance of
absolute and relative LDL-C difference, respectively. Increased LDL-C
PRS increased LDL-C reduction which was most pronounced at high
PRS-adjusted baseline levels (Fig. 4b). Conversely, high LDL-C PRS
decreased relative LDL-C reduction which was more apparent at low
PRS-adjusted baseline levels. By integrating the PRS, the explained
variance increased from 43.0 to 44.3% and from 11.3 to 12.1% for
absolute and relative LDL-C differences, respectively.

In Fig. 4c, we highlight how additional stratification by drug
response genetic signals can improve prediction accuracy for post-
treatment LDL-C levels following statin initiation (Supplementary
Data 18). Additional stratification by the APOE genotype, the top signal
in the LDL-C response GWAS, increased the explained variance of the
relative reduction to 12.3% compared to 12.1% for adjustedbaseline and
LDL-C PRS predictors alone. Post-treatment levels remain higher for
individuals with high PRS despite greater absolute LDL-C reductions.

Discussion
In this study, we demonstrate the value of biobanks coupledwith EHRs
to study the genetics of cardiometabolic disease medications. We
conducted discovery in the UKBB and replication analyses in the AoU,
and assessed the impact of common and rare variations on drug effi-
cacy.We show that signals fromEHR-derived PGxGWAS are consistent
with findings reported in the literature and present a theoretical fra-
mework to model drug response and longitudinal phenotypes.

Overall, we found only a few genetic variants to influence cardi-
ometabolic drug response in line with other studies that often identi-
fied only a few or even no genome-wide significant signals8,10,41. A
review on 76 drug efficacy GWAS reported that only 15% of drugs
exhibit robust gene-treatment interactions2, the extent of which lar-
gely depends on the drug’smode of action. In their review, the authors
estimate that only 56% of these associations are clinically useful
resulting in a probability of 8.1% that a drug has a clinically relevant
genetic predictor2. Our study supports their conclusion that large
pharmacogenetic effects are unlikely for the studied cardiometabolic
drug traits, although more signals may emerge with larger sample
sizes. While no single genetic variant will have strong predictive per-
formance, well-powered PGx GWAS could enable the derivation of
clinically useful PGx PRS. If we consider the LDL-C GWAS on unrelated
UKBBparticipants of Europeanancestry (343,621 samples; http://www.
nealelab.is/uk-biobank), 416 independent genome-wide significant hits
are found. This number is estimated to decrease to 26 (6.3% of the hits)
if the sample size were 28,800 which equals the sample size of the
largest PGx GWAS in this study. With increased sample sizes, the
number of PGx signals will also increase, however, low and often
insignificant heritability estimates support that the genetic influence
on the studied drug response phenotypes remains low (Supplemen-
tary Data 17). For LDL-C response to statins we estimated the genetic

heritability to be 3.4% (95% CI: [0%, 8.6%]) in line with an earlier study
that reported a non-significant heritability estimate (11.7%, 95%CI: [0%,
29%],5). While inter-individual variability in drug response could also
depend on rare variants, we only identified a single gene GIMAP5
associated with HbA1c response to metformin.

Unlike RCT data, EHR data does not typically contain medication
start along with baseline and post-treatment measures as direct read-
outs and in this study, we propose analysis strategies to identify new
drug users with corresponding biomarker measures. We tested two
filtering options, a stringent and a lenient one, with the differences
being the extension of the baseline and post-treatment time periods,
the main medication acting as add-on therapy (e.g. metformin acting
as add-on to sulfonylureas treatment), relaxed prescription regularity
requirement and the allowance of medication dose changes. Themost
important difference between the stringent and lenient filtering set-
tingswas the resulting sample sizewhichdoubled for statin and tripled
for antihypertensive cohorts when relaxing the filtering criteria (Sup-
plementary Data 4). As a result of lower statistical power, the stringent
filtering strategy only identified 4/10 PGx loci at a genome-wide sig-
nificance level. We acknowledge that relaxed criteria, such as a longer
time between the post-treatment measure and medication start, as
well as less frequent prescriptions, were associated with smaller bio-
marker differences, suggesting that these variables are linked to drug
adherence. Nonetheless, PGx signals identified in the lenient filtering
scenario were confirmed as genuine, consistent with findings from the
literature (e.g., SLCO1B1) and control analyses in statin-free individuals.
Low drug adherence could potentially result in capturing the genetics
of underlying health and behavioral aspects associated with adher-
ence, although a previous study could not identify such signals even at
a sample size of 116,439 for statins42. Furthermore, we tested whether
there is a benefit in averaging over multiple baseline and post-
treatment measures if available. Averaging over multiple measures
should result in a more robust measure of the underlying biomarker
level and reduce the chance of picking up regression-to-the-mean
effects as we discuss in the following paragraph. The only difference
we observed between these two strategies was that SLCO1B1 reached
genome-wide significance when averaging across multiple measures
(p-value of 1.10e−08 compared to 1.49e−05). Taken together, we
recommend averaging across multiple measures when available and
adopting the stringent filtering criteria when using EHRs for drug
response studies, as this approach more closely mimics RCT designs.
However, if data availability limits the sample size, we recommend
using more lenient criteria while incorporating parameters that best
approximate drug adherence and account for concomitant medica-
tions as covariates, as this approach proved to significantly improve
statistical power.

As similar study designs have used differing GWAS models to
estimate pharmacogenetic effects, we developed a realistic model for
biomarker differences and showed how baseline adjustment will
induce biases for genetic variants associated with baseline levels. In
recent years, there have been debates about baseline adjustment in
analyses of change6,43–45. In the context of PGx GWAS, some research-
ers have advocated for no baseline adjustment6, while others have
argued otherwise45. There is a consensus thatmeasurement errors can
introduce a bias and spurious associations with longitudinal change
upon baseline adjustment (regression-to-the-mean bias)6,43–47, how-
ever, it is unclear whether baseline adjustment also affects drug
response phenotypes since drug effects are likely larger than mea-
surement errors. In the context of pharmacogenetic interactions with
biomarker change, only the direct genetic effect on change is of
interest, but genetic variants likely also affects baseline values which in
turn impact the magnitude of change induced by the medication.
Zhang et al. (2022) recommend adjusting for baseline as their model
represents baseline as a mediator between genetic variants and
quantitative change45. We argue that the mediator model is
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inappropriate because it assumes that the change depends equally
(i.e., same regression coefficient) on the genetic and the environ-
mental component of the baseline value. However, their model does
not test for this gene-environment “equivalence” and in all applications
we examined, this is not the case: the change depends very little on the
baseline genetics and almost all its association is with the environ-
mental component of the baseline value. Hence adjusting for the
baseline value rather than eliminating a bias, it introduces one. For this
reason,we, instead, proposemodeling drug responseas thebiomarker
differencebetween two timepoints, as baseline genetics, which should
remain constant during the post-treatment period, cancels out. We
provide theoretical derivations as to the origin and magnitude of the
bias arising from baseline adjustment and demonstrate in GWAS on
drug-naive control individuals that our model, which supports not
adjusting for baseline, does not generate inflated type I errors as
suggested by the authors45. Furthermore, since control individuals are
likely subjected to similar measurement errors and gene-environment
interactions as medication users, the control experiments reassure
that these effects are negligible compared to the pharmacogenetic
effects.We show that for unbiased pharmacogenetic effect estimation,
both absolute and logarithmic relative biomarker differences can be
assessed. Whether absolute or relative reductions are most deter-
mining in lowering the risk of associated clinical diseases may be
dependent on the studied medication-biomarker pair. If biomarker
levels are linearly associated with the disease risk, absolute change is
more relevant; however, if this relationship is exponential or quadratic,
then relative change is of more importance. As to pharmacogenetic
interactions, it is a priori unknown on which scale genetic variants act
linearly, evidencing theusefulness of testingboth absolute and relative
biomarker changes. Regarding heritability estimates, there were no
significant differences between the two phenotype definitions in this
study (Supplementary Data 17). Thus, we recommend conducting
discovery analyses on both scales, and in a next step, examine whether
the observed associations on the respective scales are clinically
relevant.

We compared the PGx effects reported in the literature to the
ones obtained from the EHR study design to assess the value of using
EHRs to derive drug response phenotypes. Previous studies have
inconsistently conducted pharmacogenetic GWAS through baseline-
adjusted and unadjusted models, and therefore, we conducted repli-
cation results for both models as well. For statins, seven out of the
eight reported PGx loci reached genome-wide significance in theUKBB
analyses when looking at all association models and SNPs in LD.
However, not all of these PGx loci can be qualified as genuine PGx loci
depending on which model was used in the literature. We replicate
APOE, LPA, and SLCO1B1 as genuine PGx loci, while SORT1 and CETP
only reached genome-wide significance in baseline-adjusted models
(both in the drug response and longitudinal change GWAS in controls,
Supplementary Data 14, 15) and likely do not harbour a drug-specific
genetic component as reported earlier6. SNPs in the APOB and LDLR
loci have been reported in the literature as spurious hits due to base-
line adjustment6. However, for both loci, we identified SNPs in LD as
genuine PGx signals that were significant in the absolute biomarker
change model (Table 1). Although we did not identify PGx loci beyond
what has been previously reported, the comparison with the literature
confirmed that EHRs serve as a valuable data resource next to RCT and
observational data for PGx study designs. Importantly, with the med-
ian cost estimated to be 409 USD per RCT participant48, our study on
41,732 UKBB participants linked to their EHRs would cost 17 million,
evidencing the cost effectiveness of this resource to study PGx at scale.

We found that high PRS of the underlying biomarker can lead to
increased absolute, although lower relative biomarker reductions,
further contributing to the growing body of literature that links PRS to
treatment effectiveness17,49–56. A recent study showed that sulfonylur-
eas therapy was more effective in participants with higher T2D PRS

withfindings replicated in a separate cohort54. Other studies found that
high schizophrenia PRS reduced antipsychotic efficacy51 and similarly
high LDL-C and SBP PRS were associated with uncontrolled hyperch-
olesterolaemia andhypertension, respectively55. Additionally, high SBP
PRS have been linked to lower rates of discontinuing hypertension
medication17,56. Using RCT data, high coronary heart disease (CHD)
genetic risk was found to be associated with more increased CHD risk
over time, although the comparison between controls and treated
participants revealed that relative risk reductions were higher among
treated individuals with a high PRS, suggesting that this group bene-
fited the most from lipid-lowering therapy49,50,52,53. Given the com-
plexity of genetics affectingbothbaseline biomarker levels anddisease
risk as well as reductions thereof, disentangling whether genetic or
environmental factors can be easier alleviated by medication requires
careful considerations as adjusting for baseline levels induces genetic
biases. While we found strong evidence for a higher genetic burden to
increase low-density and total cholesterol reductions, this effect arti-
ficially reverseswhen adjusting for baseline levels.While RCTdatawith
a control arm remains the gold standard for studying such complex
interactions, large biobank data also allow the construction of (non-
randomized) control groups. Both for variant-level and PRS associa-
tion analyses, we demonstrate how drug response and disease pro-
gression genetics seemingly overlap when adjusting for baseline and
how these baseline genetics signals disappear in the control group
upon applying the correct longitudinal change model.

The reason as to why PRS contribute to drug-induced biomarker
response requires further investigation and we propose two hypoth-
eses: one related to biology and the other to either of the employed
models. Biological pathways involved in the drug perturbation may
coincide with genes highly contributing to PRS which means that the
drug may work better for people with high baseline value for genetic
reasons. Therefore, drugs designed to target key genes involved in the
disease are likely to be more beneficial for individuals for whom these
genetic networks are at the root of the disease. The second, more likely
hypothesis concerns a model misspecification. In the current PRS
association model, we assume baseline levels to be linearly associated
with the biomarker difference and analogous to genetic variants,
baseline levels encompass PRS as the genetic component. Thus, when
adjusting the biomarker difference for both baseline and PRS, spurious
associations are obtained with PRS andwe show on the example of LDL
response to statin, that the association is in the opposite direction than
without baseline adjustment. If biomarker differences truly depend on
the genetic and non-genetic components of baseline values, baseline
PRS and the non-genetic baseline part are expected to correlate dif-
ferently with baseline and biomarker change. Further investigations
into deriving an environmental baseline component (either by
approximating it by the residuals after PRS regression or explicitly
identifying environmental correlates of baseline values), could provide
more precise estimates on the relative contribution of genetic and
environmental components on biomarker change. While we identify
PRS aspredictors of treatment efficacy,we alsonote that in our analyses
PRS explained less than 2% of the variance in differential drug response.

Our study has several limitations. First, we rely on data from EHRs
to derive before and after treatment biomarker levels, and thus cannot
exclude the possibility that individuals were already on medication
before the first recorded prescription. If these individuals were tomake
up a large proportion of the cohort, the analysis would no longer cap-
ture the genetics of drug response, but rather of disease progression
whilst on medication. Second, despite a large fraction of individuals
with medication records in the biobanks, final PGx cohort sample sizes
are limited by the number of participants on a certain medication and
further reduced due to incomplete or missing data. Of the ~ 65,000
participantswith a statin prescription in theUKBBprimary care records,
63% couldnot be considered for the LDL-C response analysis because of
missing baseline and/or post-treatment measures. With an optimistic
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outlook, sample sizes can be expected to double in the future when all
UKBB participants are linked to their primary care records (this number
currently stands at 45%) and could increase even further with longer
follow-up times and anultimate increase in cardiometabolicmedication
users. Third, and related to the previous limitation, most participants
have follow-up measures after six months (Supplementary Fig. 5; Sup-
plementary Data 4) which limits the study of immediate pharmacolo-
gical effects, and measured drug responses may harbour a disease
progression component. Frequency of follow-up measures constitutes
a major limitation compared to RCT data where more frequent and
broadbiomarkermeasures are likely available. Forth, polypharmacy has
only been taken into account within and not acrossmedication groups,
meaning that a statin user was excluded from the analysis if, for
instance, fenofibrate (lipid-lowering medication) was initiated during
the follow-up period while exclusion did not apply in cases where
metformin (anti-diabetic medication) prescriptions were recorded
during follow-up for that same individual. Even within, especially for
antihypertensives where frequent changes in medication regimen
occur, it canbedifficult todetermine appropriatefiltering and covariate
strategies to study individual drug classes as sample sizes are too low
when restricting the analysis to individuals taking antihypertensives
from a single class (i.e., stringent filtering strategy). Fifth, our analysis
focused on continuous biomarkers and not on clinical events. LDL-C,
SBP, HR and HBA1c merely serve as surrogate endpoints of CHD and
T2D events, and the genetic interplay with drug efficacy may be dif-
ferent when assessing hard clinical endpoints. EHRs provide a rich
resource for conducting analyses similar to those done with RCT
data49,50,52,53, and for studying genetic interactions with drug efficacy on
clinical events in real-world settings. Sixth, analyses have been con-
ducted in individuals of European ancestry. While allele frequencies of
identified PGx signals were largely consistent across genetic ancestry
groups (Supplementary Data 10), analyses in diverse ancestry groups
are likely to identify PGx effects missed in individuals of European
ancestry. For a PGx signal with modest effect size such as SLCO1B1, we
estimated that a sample size of ~ 150,000 is required for 80% power in
African/AfricanAmericans (MAFof 3.1% compared to 15% in Europeans),
showcasing that even with cohorts the size of the current study
increased numbers of PGx signals could be identified provided that the
MAF is high. Finally, we rely on observational data to draw conclusions
about drug efficacy. Although, we contrast the results with control
analyses on longitudinal biomarker change, control and medication
groups were not defined randomly and by definition have markedly
different disease profiles. Bettermatching of controls throughmethods
such as propensity scores that include genetic predisposition could
address this issue in future studies.

To conclude, we show that EHRs enable new opportunities to study
the genetics of drug response at scale and in a cost-effective manner.
Although challenges remain with respect to the completeness and fre-
quency ofmedication prescriptions and biomarkermeasures, these data
allow us to shed light on the complex contribution of genetic and
environmental components to drug efficacy. We find that the influence
of common and rare genetic variants on drug response is relatively low,
and larger sample sizes achieved by combining drug response GWAS
from observational, EHR and RCT data as well as studies inmore diverse
ancestries will be needed to capture the full extent.

Methods
Study population
The UK Biobank is a prospective study of ~500,000 participants of
whom 45% (N ≈ 230,000) are linked to the primary care data of the
UnitedKingdom’s NationalHealth System18. The primary care resource
contains longitudinal data of GP prescription records (datafield
#42039) and GP clinical event records (datafield #42040) encoded
through the British National Formulary (BNF), National Health Service

(NHS) dictionary of medicines and devices (DM+D), Read V2 and
Clinical Terms Version 3 (CTV3) codes and are available up to 2016 or
2017, depending on the data provider (EMIS/Vision for Scotland and
Wales, and TPP and Vision for England; detailed description of the
linked primary care data is provided by the UKBB at https://biobank.
ndph.ox.ac.uk/showcase/showcase/docs/primary_care_data.pdf). Ana-
lyses were conducted in individuals of white British ancestry (N =
190,754), with no excessive number of relatives (N = 76) and differing
reported and genetically inferred gender (N = 133; we used the defi-
nition of white British ancestry, excess relatives, differing gender as
defined by the UKBB Sample-QC file of datafield #53118), excluding
participants who have withdrawn their consent up to April 2023
resulting in N = 190,545 participants who were considered in the drug
response analyses.

Study design and drug response phenotypes
We derived drug response phenotypes for the following cardiometa-
bolic medication-phenotype pairs: statin-lipids (LDL-C, HDL-C, TC),
metformin-HbA1c, antihypertensive-SBP (by antihypertensive class
and all classes combined), beta blocker-SBP and beta blocker-HR. For
each drug response phenotype, we considered stringent and lenient
filtering scenarios which differed by regularity in prescription pattern,
pre-treatment and post-treatment time windows as well as handling of
treatment changes (e.g. dose change) and concomitant medication
(e.g. add-on therapy, see below). In Supplementary Fig. 1 and Supple-
mentary Data 3, we outline the different QC filters applied to each
scenario. To further increase thenumber of available clinicalmeasures,
we added measures from the initial and repeated assessment visits
with their respective time stamps to the pool of longitudinal data (LDL-
C: #30780, HDL-C: #30760, TC: #30690, HbA1c: #30750, SBP: #4080,
HR: #102). Read V2 and CTV3 codes encoding these variables in the
primary care data are listed in Supplementary Data 1 (Supplementary
Note 2 for HbA1c unit conversion). Baselinemeasures were taken three
months (stringent filtering) or up to a year (lenient filtering) before
treatment initiation and 7 days after, either as the closest measure to
treatment start or an average of all available measures during the pre-
treatment period. The post-treatment period was defined as 60 days
for antihypertensives and beta-blockers, and 100 days for statins and
metformin after medication start (statins andmetformin have delayed
effects on lipids32 and HbA1c33, respectively), up to 1 (stringent) and 2
(lenient) years after, and either the closest measure to treatment start
or an average of all available measures during the post-treatment
period were taken. Consequently, we derived drug response pheno-
types for four scenarios: stringent filtering-single measure, stringent
filtering-average measures, lenient filtering-single measure, and leni-
ent filtering-average measures.

To determine medication regimens (medication start, treatment
changes, prescription regularity), we first extracted all available pre-
scriptions for each broader medication class (lipid-regulating, anti-
diabetic including insulin, and antihypertensives; BNF and Read V2
codes in Supplementary Data 2; when BNF codes were truncated to
miss the drug ingredient, we extracted them by matching drug names
and brand names in the drug description). We then selected indivi-
duals with entries of the medication of interest (primary medication)
and omitted individuals taking medications other than the primary
medication of the same class within a year of initiating the primary
medication (in the stringent filtering setting, only monotherapies
within the same medication class were allowed and no prior related
medication prescriptions were permitted). This criterium was relaxed
in the lenient filtering setting where the primary medication could act
as add-on therapy in certain scenarios, with the related medication
included as a covariate (Supplementary Data 3). More specifically, the
following concomitant medication regimens were allowed in the
lenient filtering setting:
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1. Statins: Non-statin antilipemic medication prescriptions (e.g.
fenofibrates) prior to statin prescriptions were permitted and
use was included as covariate.

2. Metformin: Prior sulfonylureas prescriptions were permitted
(covariate) as well asmetformin acting as add-on to sulfonylureas
(additional covariate, which was defined by recorded sulfonylur-
eas prescriptions during baseline and post-treatment periods).
Individuals with sulfonylureas prescriptions recorded only during
the post-treatment period (and not baseline period) were
filtered out.

3. First-line antihypertensives: Antihypertensives were allowed to
act as add-on to beta blockers (covariate) and loop diuretics
(additional covariate) if prescriptions were consistently recorded
during baseline and post-treatment periods as illustrated in
Supplementary Fig. 2.

4. Beta blockers: in the analysis with SBP we excluded individuals
taking any other antihypertensives except for loop diuretics
(covariate, same as described with first-line antihypertensives). In
both the stringent and lenient analysis with HR, prescriptions of
antihypertensives other than beta blockers were permitted since
their effect on HR is much weaker than for beta blockers57.

Note that in both stringent and lenient filtering settings, indivi-
duals taking primary medications in combination with a medication
of the same class (e.g. statins in combination with ezetimibe) were
filtered out (Supplementary Note 3). Prescriptions during the post-
treatment period of medications of the same class as the primary
medication (except for the allowed concomitant medication regi-
mens in the lenient filtering setting described above) were defined as
treatment changes, and accordingly, individuals were excluded from
the respective drug cohort. A dose change, with dose information
retrieved from the drug description using regular expressions15, was
defined as treatment change in the stringent, but not in the lenient
filtering setting where the average over all prescriptions in the post-
treatment period was used. Note that dosage information is not
readily available, and we assume the dose information, available in
the description of themedication, to correspond to the daily dosage.
Since a given primary medication as defined herein can comprise
multiple drugs (e.g. simvastatin and atorvastatin for statins, ramipril
and lisinopril for ACEi), we only included drugs taken by at least 20
individuals (both in the stringent and lenient filtering setting).
Finally, we defined a prescription regularity parameter by the pre-
sence of a prescription at least every two months for the duration of
the post-treatment period with the completeness being 100% if this
was the case (we required a completeness of 60% and 30% in the
stringent and lenient filtering setting, respectively). In Supplemen-
tary Data 5, we show for each drug response cohort the number of
individuals per drug type and dose which constituted covariates in all
drug response analyses.

In SupplementaryData 4, we show the study characteristics of the
individuals in each drug response phenotype cohort. Furthermore, bar
plots in Supplementary Fig. 3 show the number of individuals after
each QC step. The aforementioned QC steps can be summarized as
follows: (i) available baseline and post-treatment measures, (ii) pre-
sence of a primary care record other thanbaseline/primarymedication
at least two years before the medication start to avoid falsely con-
sidering a change to a new health care provider as a first prescription,
(iii) presence of a prescription part of the broader medication class
after post-treatment measure, (iv) drug change between medication
start and post-treatment measure, (v) regular prescriptions proxying
drug adherence under the assumption that skipped prescriptions are
the consequence of inconsistent medication intake and (vi) minimum
baseline level (e.g. LDL-C ≥ 2 mmol/L). We only considered cohorts
with more than 500 individuals for GWAS analyses.

GWAS
In the genetic association analyses, we define the drug response phe-
notype as either the absolute (Y t1

� Y t0
) or the logarithmic relative

(logðY t1
Þ � logðY t0

Þ= logðY t1
=Y t0

Þ) difference between post-treatment
Y t1

and baseline Y t0
levels. This differencewas then adjusted for study-

specific covariates including sex, age at the time of medication start,
timebetweenmedication start and post-treatmentmeasure, drug type
and dose if applicable and the first 20 principal components (Sup-
plementary Data 3). Importantly, the difference was not adjusted for
baseline levels as this can induce a bias for genetic variants that are
associated with baseline (Supplementary Note 1).

GWAS analyses were conducted using REGENIE (v3.2.6) which
accounts for sample relatedness58. REGENIE first fits a whole-genome
regression model (step 1) before testing each SNP in a leave-one-
chromosome-out (LOCO) scheme (step 2). In step 1, genotyped SNPs
were filtered as follows using PLINK259: minor allele frequency (MAF) ≥
0.01, Hardy-Weinberg equilibrium p-value ≥ 1e−15, genotyping rate ≥
0.99, not present in high linkage disequilibrium (LD) regions60, not
involved in inter-chromosomal LD58 and passing LD pruning at r2 < 0.9
with a window size of 1,000 markers and a step size of 100 markers
which resulted in 424,544 SNPs included in step 1. In step 2, variants
imputed by the Haplotype Reference Consortium panel with a MAF ≥
0.05 were tested (up to 5.5 million markers depending on phenotype
sample size). Individuals with missing genetic data and/or not passing
geneticQCwere excluded from the analysis. Independent signals were
defined as r2 < 0.001 and clumpingwas performedusing PLINK and the
UK10K reference panel61.

Rare variant analysis
Rare variant analyses were conducted using REGENIE (v3.2.9). Pheno-
type definitions and covariates (Supplementary Data 3) were the same
as in the GWAS analyses, except that biomarker differences were
transformed by inverse quantile normalization to decrease the chance
of false positives. Following step 1 whole genome regression (Method
section: GWAS), we performed rare variant burden tests using optimal
kernel association tests (SKATO) in step 238. Masks were constructed
from rare variants (MAF < 0.01) including missense and putative LoF
variants, and REGENIE SKATO tests were computed with default
parameters. Variant annotations and gene set definitions were derived
following the original quality functionally equivalent (OQFE) protocol
and provided on the UK Biobank DNAnexus research analysis
platform62. Burden tests were then conducted on OQFE WES data
(#23158)62. Genes classified as very important pharmacogenes (VIPs)
were downloaded from the PharmGKB gene annotations (April 5, 2023
version)40.

Replication in the All of Us Biobank
The All of Us research program is a prospective cohort recruiting up to
1 million participants19. Replication analyses were conducted in the
release v7 in which genotype data were available for ~310,000 and
WGS data for ~250,000 individuals. In the AoU database, the Obser-
vational Medical Outcomes Partnership (OMOP) Common DataModel
(CDM) is used for standardized vocabularies and harmonized data
representations. Medication records were retrieved based on concept
ID codes from the RxNorm vocabulary and phenotypes from the
SNOMED vocabulary. Replication analyses were restricted to lipid
response to statins and HbA1c response to metformin for which
genome-wide significant signals were obtained either in the UKBB
analyses or reported in the literature.

Similarly to the UKBB, we extracted medication records by
starting from the broader medication class (lipid modifying agents
(concept id 21601853) and drugs used in diabetes (concept id
21600712)) which were then classified into primary medications
(statins (concept id 21601855) and metformin (concept id
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1503297)), combination therapies (lipid modifying agents, combi-
nations (concept id 21601898), blood glucose lowering drugs,
combination (concept id 21600765) and sulfonylureas (concept id
21600749)) and related medication from the same class. Dose
information was extracted from the drug concept entries using
regular expression or imputed by the median dose of the drug in
question when not available. Phenotypes were extracted based on
the following ancestor concept IDs: LDL-C (3028437), HDL-C
(3007070), TC (3027114) and HbA1c (3004410). Only measures
with available units and values in the plausible range were retained
(Supplementary Data 1). While lipid measures were recorded as
mmol/L and primarily as mmol/mol for HbA1c in the UKBB (Sup-
plementary Note 2), units were mg/dL and % for lipids and HbA1c,
respectively, which we left unconverted. Following the extraction of
longitudinal medication and biomarker measures, we followed the
same QC steps as in the UKBB by applying the lenient filtering
strategy with average baseline and post-treatment measures (Sup-
plementary Fig. 1). Drug prescription regularity was found to be
lower in the AoU, likely because drug prescriptions are only recor-
ded from participating EHR sites. As a consequence, we lowered the
drug regularity QC parameter and required a single prescription
between medication start and post-treatment measures (QC9,
Supplementary Fig. 1). Cohort characteristics and reason for
removal are reported in Supplementary Data 9 and Supplementary
Fig. 10, respectively.

GWAS: GWAS analyses were conducted using REGENIE (v3.2.4).
For step 1, we used genotyped SNPs and filtered them as follows using
PLINK2: autosomal SNPs, MAF ≥ 0.01, Hardy-Weinberg equilibrium p-
value ≥ 1e−15, genotyping rate ≥ 0.99, not present in high linkage
disequilibrium (LD) regions60 and passing LD pruning at r2 < 0.9 with a
window size of 1000 markers and a step size of 100 markers which
resulted in 238,888 SNPs. The first 20 PCs were computed on the same
set of SNPs using the FastPCA algorithm implemented in PLINK263. In
step 2, we used WGS data from the Allele Count/Allele Frequency
(ACAF) threshold callset to test associations between the genotypes of
interest and drug response phenotypes.

Rare variant analysis: We conducted SKATO analyses on rare
variants from the exon regions usingREGENIE (v3.2.4)with step 1 being
the same as in the GWAS. Variant annotations and gene set definitions
were extracted from the Variant Annotation Table (VAT) provided by
the AoU. Missense variants and putative LoF variants defined as stop-
gain, frameshift, splice donor and splice acceptor with MAF < 0.01
were included in the burden tests.

PRS and genetic correlations
We calculated PRS for UKBB participants with the PGS Catalog
Calculator64,65 using pre-calculated genetic effect sizes from the PGS
Catalog66: LDL-C, PGS002150; HDL-C, PGS002172; TC, PGS002108;
HbA1c, PGS002171; SBP, PGS002228; HR, PGS002193. These PRS
genetic effects stem from the LDpred2-auto method (implemented in
the R package bigsnpr) which assumes a point-normal mixture dis-
tribution for effect sizes, with only a proportion of causal variants
contributing to the SNP heritability66,67. We then calculated the asso-
ciations between PRS and the absolute and (logarithmic) relative bio-
marker difference adjusted for sex, age and drug-specific covariates
(Supplementary Data 3).

We calculated genetic correlations between traits using the Gen-
omicSEM R package (v0.0.5c)68. Trait GWAS summary statistics were
obtained from the following consortia: LDL-C, HDL-C and TC from the
Global Lipids Genetics Consortium69 (N up to 1,320,016; European
ancestry), HbA1c from the UKBB (#30750, N = 344,182), SBP from a
meta-analysis of the UKBB and the International Consortium of Blood
Pressure70 (N up to 757,601) andHR from theUKBB (#102,N = 340,162)
where the UKBB GWAS summary statistics came from Neale’s lab
(http://www.nealelab.is/uk-biobank).

Longitudinal biomarker change GWAS in controls
We conducted biomarker change GWAS in control individuals that
were part of the primary care data and that did not have any drug
prescription indicated for the investigated disease/surrogate end-
point: controls in the lipid-change GWAS had no lipid-lowering medi-
cations, those in HbA1c-change GWAS had no antidiabetic
medications, those in blood pressure-change GWAS had no anti-
hypertensives, and those in heart rate-change GWAS had no beta-
blockers (i.e., broad medication class, Supplementary Data 2). All
participants in this set with two available measures spaced between
6 months and 3 years which corresponds to the allowed time interval
between baseline and post-treatment measures were included. GWAS
analyses were conducted analogous to the drug response GWAS,
replacing baseline with first and post-treatment with second pheno-
type measure. We used the same covariates as in the corresponding
drug response cohorts omitting drug-specific variables (Supplemen-
tary Data 3).

Power analysis
We conducted statistical power analyses to determine the sample size
needed to detect PGx signals at genome-wide significance in different
ancestral groups. Minor allele frequencies were obtained from the
gnomAD v4.1.0 resource35. We based the effect sizes on the effect sizes
observed in the discovery analyses in the UKBB and calculated the
required power as

powerðα, λÞ=Φ
ffiffiffi

λ
p

� c
� �

+Φ �
ffiffiffi

λ
p

� c
� �

whereΦ() is the cumulative density function of the standard Gaussian
distribution, and c was set to Φ−1(5e–08/2) = 5.45 which is the test
statistic corresponding to a two-sided discovery α of 5e−08.

The non-centrality parameter (NCP), λ, was calculated as

λ =
N

nobs
� β

2
obs

se2obs
� MAF � ð1�MAFÞ
MAFobs � ð1�MAFobsÞ

where the sample size nobs, observed effect size βobs, standard error
seobs and minor allele frequency MAFobs stem from the discovery
analyses in the UKBB.

Data availability
Genetic and phenotypic data from the UK Biobank and the All of Us
Research Program, including all linked electronic health records, are
available to bonafide researchers uponapplication. Application details
for the UK Biobank are available at http://www.ukbiobank.ac.uk/using-
the-resource/. Access to the controlled tier of the All of Us Research
Program requires institutional approval, completion of ethics training,
and agreement to a Data Use and Registration Agreement (DURA), as
outlined at https://www.researchallofus.org/register/. British National
Formulary (BNF), National Health Service (NHS) dictionary of medi-
cines and devices (DM+D), Read V2 and Clinical Terms Version 3
(CTV3) vocabularies encoding the UK Biobank primary care records,
https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=592. ATHENA -
OHDSI vocabulary repository for RxNorm (drug) and SNOMED (phe-
notype) concept IDs, https://athena.ohdsi.org/. Polygenic risk score
genetic effect sizes (UK Biobank), https://www.pgscatalog.org/
publication/PGP000263/. Lipid GWAS summary statistics from the
Global Lipids Genetics Consortium, https://csg.sph.umich.edu/willer/
public/glgc-lipids2021/. Systolic blood pressure GWAS summary sta-
tistics from the UK Biobank and the International Consortiumof Blood
Pressure meta-analysis, https://www.ebi.ac.uk/gwas/publications/
30224653. Neale’s lab GWAS summary statistics (UK Biobank), http://
www.nealelab.is/uk-biobank. UK10K individual-level data are available
upon request, https://www.uk10k.org/data_access.html. Pharmacoge-
netic GWAS summary statistics are available on the GWAS Catalog
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(https://www.ebi.ac.uk/gwas) under the accession IDs GCST90455589-
GCST90455608. Source data are provided with this paper.

Code availability
GWAS calculations were performed with REGENIE (v3.2.6) which is
available at https://github.com/rgcgithub/regenie. PLINK2 is available
at https://www.cog-genomics.org/plink/2.0/. PRS were calculated with
the PGS Catalog Calculator (v2.0) available at https://github.com/
PGScatalog/pgsc_calc. Genetic correlations were calculated with the
GenomicSEM R package (v0.0.5c) available at https://github.com/
GenomicSEM/GenomicSEM. All codes used in this analysis are avail-
able on GitHub at https://github.com/masadler/PGxEHR (https://doi.
org/10.5281/zenodo.1402683671).

References
1. McInnes, G., Yee, SookWah, Pershad, Y. & Altman, R. B. Genome-

wide association studies in pharmacogenomics. Clin. Pharmacol.
Therapeutics 110, 637–648 (2021).

2. Nelson, M. R. et al. The genetics of drug efficacy: opportunities and
challenges. Nat. Rev. Genet. 17, 197–206 (2016).

3. Pirmohamed, M. Pharmacogenomics: current status and future
perspectives. Nat. Rev. Genet. 24, 350–362 (2023).

4. Postmus, I. et al. Pharmacogenetic meta-analysis of genome-wide
association studies of LDL cholesterol response to statins. Nat.
Commun. 5, 5068 (2014).

5. Oni-Orisan, A. et al. Characterization of statin low-density lipopro-
tein cholesterol dose-response using electronic health records in a
large population-based cohort.Circulation: Genom. Precis. Med. 11,
e002043 (2018).

6. Oni-Orisan, A. et al. The impact of adjusting for baseline in phar-
macogenomic genome-wide association studies of quantitative
change. NPJ Genom. Med. 5, 1 (2020).

7. Zhou, K. et al. Variation in the glucose transporter gene slc2a2 is
associated with glycemic response to metformin. Nat. Genet. 48,
1055–1059 (2016).

8. Dawed, A. Y. et al. Pharmacogenomics of glp-1 receptor agonists: a
genome-wide analysis of observational data and large randomised
controlled trials. Lancet Diab. Endocrinol. 11, 33–41 (2023).

9. Salvi, E. et al. Genome-wide andgene-basedmeta-analyses identify
novel loci influencing blood pressure response to hydro-
chlorothiazide. Hypertension 69, 51–59 (2017).

10. Singh, S. et al. Genome-wide meta-analysis of blood pressure
response to β1-blockers: results from icaps (international con-
sortium of antihypertensive pharmacogenomics studies). J. Am.
Heart Assoc. 8, e013115 (2019).

11. McDonough, C. W. et al. Adverse cardiovascular outcomes and
antihypertensive treatment: A genome-wide interaction meta-
analysis in the international consortium for antihypertensive phar-
macogenomics studies. Clin. Pharmacol. Therapeutics 110,
723–732 (2021).

12. Bush, W. S. et al. Genetic variation among 82 pharmacogenes: the
PGRNseq data from the eMERGE network. Clin. Pharmacol. Ther-
apeutics 100, 160–169 (2016).

13. Auwerx, C., Sadler, M. C., Reymond, A. & Kutalik, Z. From pharma-
cogenetics to pharmaco-omics: Milestones and future directions.
Hum. Genet. Genomics Adv. 3, 100100 (2022).

14. Tasa, T. et al. Genetic variation in the Estonian population: phar-
macogenomics study of adverse drug effects using electronic
health records. Eur. J. Hum. Genet. 27, 442–454 (2019).

15. McInnes, G. & Altman, R. B. Drug response pharmacogenetics for
200,000 UK biobank participants. In BIOCOMPUTING 2021: Proc.
Pacific Symposium (eds Altman, R. B. et al.) 184–195 (World Scien-
tific, 2020).

16. Malki, M. A., Dawed, A. Y., Hayward, C., Doney, A. & Pearson, E. R.
Utilizing large electronic medical record data sets to identify novel

drug–gene interactions for commonly used drugs.Clin. Pharmacol.
Therapeutics 110, 816–825 (2021).

17. Kiiskinen, T. et al. Genetic predictors of lifelong medication-use
patterns in cardiometabolic diseases.Nat.Med.29, 209–218 (2023).

18. Bycroft, C. et al. The UK Biobank resource with deep phenotyping
and genomic data. Nature 562, 203–209 (2018).

19. The All of Us Research Program Investigators. The “All of Us”
research program. N. Engl. J. Med. 381, 668–676 (2019).

20. Chasman, D. I. et al. Genetic determinants of statin-induced low-
density lipoprotein cholesterol reduction: the Justification for the
Use of Statins in Prevention: an Intervention Trial Evaluating Rosu-
vastatin (JUPITER) trial. Circulation: Cardiovasc. Genet. 5,
257–264 (2012).

21. Svensson-Färbom, P. et al. A functional variant of the nedd4l gene is
associated with beneficial treatment response with β-blockers and
diuretics in hypertensive patients. J. Hypertension 29,
388–395 (2011).

22. Hamrefors, V. et al. Pharmacogenetic implications for eight com-
mon blood pressure-associated single-nucleotide polymorphisms.
J. Hypertension 30, 1151–1160 (2012).

23. Postmus, I. et al. Meta-analysis of genome-wide association studies
of HDL cholesterol response to statins. J. Med. Genet. 53,
835–845 (2016).

24. Harries, L. W. et al. Common variants near ATM are associated with
glycemic response to metformin in type 2 diabetes.Nat. Genet. 43,
117–120 (2011).

25. Rotroff, D. M. et al. Genetic variants in CPA6 and PRPF31 are asso-
ciated with variation in response to metformin in individuals with
type 2 diabetes. Diabetes 67, 1428–1440 (2018).

26. Mehta, A. & Shapiro, M. D. Apolipoproteins in vascular biology and
atherosclerotic disease. Nat. Rev. Cardiol. 19, 168–179 (2022).

27. Deshmukh, H. A. et al. Genome-wide association study of genetic
determinantsof LDL-c response to atorvastatin therapy: importance
of Lp(a). J. lipid Res. 53, 1000–1011 (2012).

28. König, J. Seithel, A., Gradhand, U. & Fromm, M. F. Pharmacoge-
nomics of human oatp transporters.Naunyn-Schmiedeberg’s. Arch.
Pharmacol. 372, 432–443 (2006).

29. SEARCH Collaborative Group. Slco1b1 variants and statin-induced
myopathy—a genomewide study. N. Engl. J. Med. 359,
789–799 (2008).

30. Hopewell, J. C. et al. Impact of common genetic variation on
response to simvastatin therapy among 18 705 participants in the
heart protection study. Eur. Heart J. 34, 982–992 (2013).

31. Patel, J., Superko, H. R., Martin, S. S., Blumenthal, R. S. & Christo-
pher-Stine, L. Genetic and immunologic susceptibility to statin-
related myopathy. Atherosclerosis 240, 260–271 (2015).

32. Tsiara, S., Elisaf, M. & Mikhailidis, D. P. Early vascular benefits of
statin therapy. Curr. Med. Res. Opin. 19, 540–556 (2003).

33. Ulcickas Yood, M., Elston Lafata, J., Koro, C., Wells, K. E. & Pladevall,
M. Time to pharmacotherapy change in response to elevated hba1c
test results. Curr. Med. Res. Opin. 22, 1567–1574 (2006).

34. The All of Us Research Program Genomics Investigators. Genomic
data in the all of us research program.Nature 627, 340–346 (2024).

35. Chen, S. et al. A genomicmutational constraint map using variation
in 76,156 human genomes. Nature 625, 92–100 (2024).

36. Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and
deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

37. Oliveira-Paula, G. H., Pereira, S. C., Tanus-Santos, J. E. & Lacchini, R.
Pharmacogenomics and hypertension: current insights. Pharma-
cogenomics Pers. Med. 12, 341–359 (2020).

38. Lee, S., Wu, M. C. & Lin, X. Optimal tests for rare variant effects in
sequencing association studies. Biostatistics 13, 762–775 (2012).

39. Heinonen, M. T. et al. Gimap gtpase family genes: potential modi-
fiers in autoimmune diabetes, asthma, and allergy. J. Immunol. 194,
5885–5894 (2015).

Article https://doi.org/10.1038/s41467-025-58152-3

Nature Communications |         (2025) 16:2913 16

https://www.ebi.ac.uk/gwas
https://github.com/rgcgithub/regenie
https://www.cog-genomics.org/plink/2.0/
https://github.com/PGScatalog/pgsc_calc
https://github.com/PGScatalog/pgsc_calc
https://github.com/GenomicSEM/GenomicSEM
https://github.com/GenomicSEM/GenomicSEM
https://github.com/masadler/PGxEHR
https://doi.org/10.5281/zenodo.14026836
https://doi.org/10.5281/zenodo.14026836
www.nature.com/naturecommunications


40. Whirl-Carrillo,M. et al. An evidence-based framework for evaluating
pharmacogenomics knowledge for personalized medicine. Clin.
Pharmacol. Therapeutics 110, 563–572 (2021).

41. Zhang, C. et al. Response to anti-IL17 therapy in inflammatory dis-
ease is not strongly impacted by genetic background. The Am. J.
Hum. Genet. 110, 1817 (2023).

42. Cordioli, M. et al. Socio-demographic and genetic risk factors for
drug adherence and persistence: a retrospective nationwide and
biobank study across 5medication classes and 1 845 665 individuals.
medRxiv https://doi.org/10.1101/2023.10.09.23296740 (2023).

43. Glymour,M.M.,Weuve, J., Berkman, L. F., Kawachi, I. & Robins, J. M.
When is baseline adjustment useful in analyses of change? an
example with education and cognitive change. Am. J. Epidemiol.
162, 267–278 (2005).

44. McArdle, P. F. & Whitcomb, B. W. Improper adjustment for baseline
in genetic association studies of change in phenotype. Hum. Her-
edity 67, 176–182 (2009).

45. Zhang, H., Chhibber, A., Shaw, P. M., Mehrotra, D. V. & Shen, J. A
statistical perspective on baseline adjustment in pharmacoge-
nomic genome-wide association studies of quantitative change.
NPJ Genom. Med. 7, 33 (2022).

46. Blomqvist, N. On the bias caused by regression toward themean in
studying the relation between change and initial value. J. Clin.
Periodontol. 14, 34–37 (1987).

47. Tu, Yu-Kang & Gilthorpe, M. S. Revisiting the relation between
change and initial value: a review and evaluation. Stat. Med. 26,
443–457 (2007).

48. Speich, B. et al. Systematic review on costs and resource use of
randomized clinical trials shows a lack of transparent and com-
prehensive data. J. Clin. Epidemiol. 96, 1–11 (2018).

49. Mega, J. L. et al. Genetic risk, coronary heart disease events, and the
clinical benefit of statin therapy: an analysis of primary and sec-
ondary prevention trials. Lancet 385, 2264–2271 (2015).

50. Natarajan, P. et al. Polygenic risk score identifies subgroup with
higher burden of atherosclerosis and greater relative benefit from
statin therapy in the primary prevention setting. Circulation 135,
2091–2101 (2017).

51. Zhang, J. P. et al. Schizophrenia polygenic risk score as a predictor
of antipsychotic efficacy in first-episode psychosis. Am. J. Psy-
chiatry 176, 21–28 (2019).

52. Damask, A. et al. Patients with high genome-wide polygenic risk
scores for coronary artery disease may receive greater clinical
benefit from alirocumab treatment in the ODYSSEY OUTCOMES
trial. Circulation 141, 624–636 (2020).

53. Marston, N. A. et al. Predicting benefit from evolocumab therapy in
patients with atherosclerotic disease using a genetic risk score:
results from the fourier trial. Circulation 141, 616–623 (2020).

54. Li, J. H. et al. A polygenic score for type 2 diabetes risk is associated
with both the acute and sustained response to sulfonylureas. Dia-
betes 70, 293–300 (2021).

55. Tapela, N. M. et al. Are polygenic risk scores for systolic blood
pressure and ldl-cholesterol associated with treatment effective-
ness, and clinical outcomes among those on treatment? Eur. J.
Preventive Cardiol. 29, 925–937 (2022).

56. Türkmen, D. et al. Polygenic scores for cardiovascular risk factors
improve estimation of clinical outcomes in ccb treatment com-
pared to pharmacogenetic variants alone. Pharmacogenomics J.
24, 12 (2024).

57. Materson, B. J., Reda, D. J. &Williams, D.W. Comparison of effects of
antihypertensive drugs on heart rate: changes from baseline by
baselinegroupandover time.Am. J.Hypertension 11, 597–601 (1998).

58. Mbatchou, J. et al. Computationally efficient whole-genome
regression for quantitative and binary traits. Nat. Genet. 53,
1097–1103 (2021).

59. Chang, C. C. et al. Second-generation plink: rising to the chal-
lenge of larger and richer datasets. Gigascience 4, s13742–015
(2015).

60. Meyer, H. V. plinkQC: genotype quality control in genetic associa-
tion studies. meyer-lab-cshl/plinkQC. https://doi.org/10.5281/
zenodo.3934294 (2022).

61. UK10K. The UK10K project identifies rare variants in health and
disease. Nature 526, 82 (2015).

62. Krasheninina, O. et al. Open-sourcemapping and variant calling for
large-scale ngs data from original base-quality scores. bioRxiv
https://doi.org/10.1101/2020.12.15.356360 (2020).

63. Galinsky, K. J. et al. Fast principal-component analysis reveals
convergent evolution of adh1b in europe and east asia. Am. J. Hum.
Genet. 98, 456–472 (2016).

64. PGS Catalog Team. PGS Catalog Calculator v2.0. https://github.
com/PGScatalog/pgsc_calc(2023).

65. Lambert, S. A. et al. The polygenic score catalog as an open data-
base for reproducibility and systematic evaluation. Nat. Genet. 53,
420–425 (2021).

66. Privé, F. et al. Portability of 245polygenic scoreswhenderived from
the UK Biobank and applied to 9 ancestry groups from the same
cohort. Am. J. Hum. Genet. 109, 12–23 (2022).

67. Privé, F., Arbel, J. & Vilhjálmsson, B. J. Ldpred2: better, faster,
stronger. Bioinformatics 36, 5424–5431 (2020).

68. Grotzinger, A. D. et al. Genomic structural equation modelling
provides insights into the multivariate genetic architecture of
complex traits. Nat. Hum. Behav. 3, 513–525 (2019).

69. Graham, S. E. et al. The power of genetic diversity in genome-wide
association studies of lipids. Nature 600, 675–679 (2021).

70. Evangelou, E. et al. Genetic analysis of over 1 million people iden-
tifies 535 new loci associatedwith blood pressure traits.Nat. Genet.
50, 1412–1425 (2018).

71. Sadler, M. Leveraging large-scale biobank EHRs to enhance
pharmacogenetics of cardiometabolic disease medications.
masadler/PGxEHR. https://doi.org/10.5281/zenodo.14026836
(2024).

Acknowledgements
This work was supported by the Swiss National Science Foundation
(310030_189147) to ZK. RBA is supported by NIH HG010615, NIH
GM153195, Chan Zuckerberg Biohub, and Burroughs Wellcome Fund.
MCSwould like to thank the Fulbright Program for funding her research
stay at Stanford University where this research work has started under
the co-supervision of RBA. This research has been conducted using the
UK Biobank Resource under Application Number 16389. LD was calcu-
lated based on the UK10K data resource (EGAD00001000740,
EGAD00001000741). Computations were performed on the Urblauna
cluster of theUniversity of Lausanne.Wealsowould like to acknowledge
the participants and investigators of the UK Biobank and All of Us study.
We thankGregMcInnes for his help and support in analyzingmedication
prescription data in the UK Biobank and Ewan Pearson for his advice in
defining drug response phenotypes from the UK Biobank primary
care data.

Author contributions
MCS and ZK conceived and designed the study. MCS performed sta-
tistical analyses in the UK Biobank. AA conducted replication analyses in
the All of Us research program under the supervision of MCS and RBA.
CC computed PRS on UK Biobank participants. CA contributed with the
biological interpretation of the results. DMR provided guidance on
analyzing rare variants from sequencing data. ZK supervised all statis-
tical analyses. All the authors contributed by providing advice on the
interpretation of results.MCS andZKdrafted themanuscript. All authors
read, approved, and provided feedback on the final manuscript.

Article https://doi.org/10.1038/s41467-025-58152-3

Nature Communications |         (2025) 16:2913 17

https://doi.org/10.1101/2023.10.09.23296740
https://doi.org/10.5281/zenodo.3934294
https://doi.org/10.5281/zenodo.3934294
https://doi.org/10.1101/2020.12.15.356360
https://github.com/PGScatalog/pgsc_calc
https://github.com/PGScatalog/pgsc_calc
https://doi.org/10.5281/zenodo.14026836
www.nature.com/naturecommunications


Competing interests
MCS has been consulting for 5 Prime Sciences at the time of the sub-
mission; however, this study was performed separately with no rela-
tionship to 5 Prime Sciences. The results and opinions expressed in this
paper do not represent those of 5 Prime Sciences. The other authors
declare that they have no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-58152-3.

Correspondence and requests for materials should be addressed to
Zoltán Kutalik.

Peer review informationNature Communications thanks Shefali Verma,
Helen Warren and the other, anonymous, reviewer(s) for their con-
tribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-58152-3

Nature Communications |         (2025) 16:2913 18

https://doi.org/10.1038/s41467-025-58152-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Leveraging large-scale biobank EHRs to enhance pharmacogenetics of cardiometabolic disease medications
	Results
	Overview of the analysis
	Drug response GWAS using EHRs from the UKBB
	The impact of filtering in the PGx-EHR study design
	Replication analysis in the All of Us research program
	EHR-derived PGx GWAS recover known PGx loci
	Rare variants have a modest impact
	Modelling drug response and longitudinal change phenotypes
	Polygenic risk scores as predictors of drug response

	Discussion
	Methods
	Study population
	Study design and drug response phenotypes
	GWAS
	Rare variant analysis
	Replication in the All of Us Biobank
	PRS and genetic correlations
	Longitudinal biomarker change GWAS in controls
	Power analysis

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




