Forensic Science International: Digital Investigation 39 (2021) 301285

journal homepage: www.elsevier.com/locate/fsidi

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

I
Investigati,0'1

Android application forensics: A survey of obfuscation, obfuscation
detection and deobfuscation techniques and their impact on

investigations

Check for
updates

Xiaolu Zhang **, Frank Breitinger ™ *, Engelbert Luechinger €, Stephen O'Shaughnessy ¢

2 Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX, 78249, United States
b School of Criminal Justice, Faculty of Law, Criminal Justice and Public Administration, University of Lausanne, 1015, Lausanne, Switzerland
€ Hilti Chair for Data and Application Security, Institute of Information Systems, University of Liechtenstein, Fiirst-Franz-Josef-Strasse, 9490, Vaduz,

Liechtenstein

4 Department of Informatics, Technological University Dublin, Blanchardstown Campus, Dublin 15, Ireland

ARTICLE INFO

Article history:

Received 7 May 2021

Received in revised form

9 September 2021

Accepted 12 September 2021
Available online 6 October 2021

Keywords:

Android application forensic
Obfuscation

Deobfuscation

Obfuscation detection
Literature review

ABSTRACT

Android obfuscation techniques include not only classic code obfuscation techniques that were adapted
to Android, but also obfuscation methods that target the Android platform specifically. This work ex-
amines the status-quo of Android obfuscation, obfuscation detection and deobfuscation. Specifically, it
first summarizes obfuscation approaches that are commonly used by app developers for code optimi-
zation, to protect their software against code theft and code tampering but are also frequently misused
by malware developers to circumvent anti-malware products. Secondly, the article focuses on obfusca-
tion detection techniques and presents various available tools and current research. Thirdly, deobfus-
cation (which aims at reinstating the original state before obfuscation) is discussed followed by a brief
discussion how this impacts forensic investigation. We conclude that although obfuscation is widely
used in Android app development (benign and malicious), available tools and the practices on how to
deal with obfuscation are not standardized, and so are inherently lacking from a forensic standpoint.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

Survey
Reverse engineering

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Android is undoubtedly the most popular mobile device oper-
ating system (OS), holding a market share of 87% (Chau and Reith,
2019) with new Android apps or updates for existing ones
appearing daily or even more frequently. Given this seemingly ever-
increasing pace of production, there is inevitably a corresponding
increase in the misuse of mobile technology and applications for
nefarious purposes. As a direct consequence, law enforcement and
forensics investigators struggle to cope with the digital evidence
backlog (Hamilton, 2020). This is compounded by the pace with
which the complexities of technology are growing and often,
techniques and procedures can quickly become outdated. For
instance, Zhang et al. (2017) manually reversed Android Vault

* Corresponding authors.
E-mail addresses: Xiaolu.Zhang@utsa.edu (X. Zhang), Frank.Breitinger@unil.ch
(F. Breitinger), Engelbert.Luechinger@unili ~(E. Luechinger), Stephen.
Oshaughnessy@tudublin.ie (S. O'Shaughnessy).

https://doi.org/10.1016/j.fsidi.2021.301285

applications to understand the encryption mechanisms. All these
apps have been updated since then, making the work outdated
(presented techniques most likely will not work anymore), yet
these findings were utilized by local law enforcement to solve a
case as no commercial tool at that time had the capability. Although
in this case, investigators were lucky that Zhang et al. (2017) were
working on this problem, we argue that examiners may get to the
point where they have to manually analyze an application. While
reverse engineering alone is already a challenge, obfuscation
techniques add an additional burden and complicate the process.
These techniques are frequently employed in the development of
Android applications (benign and malicious) and are commonly
found in the public domain on Google's Play Store. Wermke et al.
(2018), for example, investigated the use of obfuscation

2666-2817/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
mailto:Xiaolu.Zhang@utsa.edu
mailto:Frank.Breitinger@unil.ch
mailto:Engelbert.Luechinger@uni.li
mailto:Stephen.Oshaughnessy@tudublin.ie
mailto:Stephen.Oshaughnessy@tudublin.ie
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2021.301285&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2021.301285
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.fsidi.2021.301285

X. Zhang, E. Breitinger, E. Luechinger et al.

techniques in the Google Play Store and analyzed a dataset of over
1.7 million apps. They concluded that approximately 25% of apps
are using some obfuscation techniques, even reaching the ratio of
50%, when only considering the most popular apps with more than
10 million downloads.! Note, the Android developer studio rec-
ommends obfuscation (e.g., with ProGuard) for code shrinking
and optimization. With respect to malicious applications, Zhou and
Jiang (2012) showed that 86% of their tested malware samples were
repacked versions of benign Android apps, proving that malware
developers are using obfuscation techniques as well. Though, they
usually use these methods with the intent to circumvent anti-
malware products; a recent survey concluded that the use of
obfuscation techniques significantly reduces the detection rate of
malware detectors (Hammad et al., 2018). From an investigative
perspective, we can differentiate between two major motives to
dissect an app:

M1 The examiner suspects that the (benign) app contains evi-
dence about a certain crime and there is currently no tool that
can assist (e.g., photos locked away in a vault app).

M2 The examiner suspects that the app is malicious and s/he
wants to access the underlying code and structure (note that an
app can be malicious by design or a benign app that has been
modified to be malicious).

Regardless of the motivation, an essential first step is to deter-
mine the utilized obfuscation method where some can be identified
automatically. For instance, Mirzaei et al. (2019) introduced an
obfuscation detector that can analyze an app and discover the
applied obfuscation techniques. Nevertheless, these detectors are
usually limited to a small number of obfuscation techniques.
Depending on the utilized technique, an examiner might have to
deobfuscate the app before performing static analysis. This process
usually includes several manual steps, since the support of auto-
mated tools is sparse. Yoo et al. (2016), for example, introduced a
deobfuscation schema that can decrypt encrypted strings; how-
ever, this idea never made it into actual implementation. As we see
malware analysis as a subdomain of digital forensics, this paper
aims at supporting forensic investigators and researchers by:

e providing a comprehensive literature overview to capture the
current status-quo of obfuscation techniques preparing them for
a possible manual analysis.

e providing a summary of obfuscation detection and deobfusca-
tion techniques allowing practitioners to identify the most
suitable approach/application for their problem.

Although several reviews and articles have already been pub-
lished in this domain, their emphasis was primarily on Android
obfuscation techniques, leaving the areas of detection and deob-
fuscation relatively unexplored. Furthermore, existing articles
mainly focused on discovering the impact of obfuscation tech-
niques for malware detection which is in contrast to this work
where we consider the affect on forensic investigations.

Limitations. The articles have been searched manually and the
changes on this topic happen frequently, therefore we do not claim
to be complete. As indicated by the title, this work focuses on the
Android platform and therefore techniques for other operating
systems (e.g., Windows, i0S) may be different.

Outline. The remainder of this work is organized as follows. In
Sec. 2, we introduce the package structure and the building process

! The fact that popular apps tend to use obfuscation more frequently may be
attributed to companies being more concerned about intellectual property theft.

Forensic Science International: Digital Investigation 39 (2021) 301285

of Android applications followed by Sec. 3. The methodology of this
research is covered next in Sec. 4. The core of this article are Sec-
tions 5, 6 and 7 which discuss Obfuscation techniques, Obfuscation
detection and Deobfuscation, respectively. The related work is
summarized in Sec. 8 followed by Impact of obfuscation on forensic
investigations (Sec. 9). Sec. 10 concludes the paper.

2. Android basics

This section outlines some basics of the Android platform which
are essential to understand prior to discussing the obfuscation and
deobfuscation techniques. In detail, we briefly summarize the
Android package structure (Sec. 2.1) followed by the building pro-
cess (Sec. 2.2).

2.1. Android package (APK) structure

An APK file is a compressed file format used by the Android
platform as a container for an app(lication). According to developer.
android.com, a typical APK file consists of the directories and files
as depicted in Fig. 1:

lib directory contains the application's shared libraries compiled
for different CPU architecture such as ARM and MIPS. Since the
shared libraries are processor dependent, they are usually written
in C.

res contains additional resources that are not already pre-
compiled into the resources.asc file.

assets hold application-specific supplementary assets. These are
usually raw files like images that can be loaded later as a byte-
stream.

META-INF can be considered as an internal Java meta directory
which should not contain user data. Common files are the devel-
oper signature file (similar to a certificate; named *.RSA or *.DSA);
MANIFEST.MF which lists all files in the package including a cryp-
tographic hash; and many more.

Besides these directories, there are several important files
(technically, only the AndroidManifestxml file is mandatory
(Google, 2020c,a)):

AndroidManifest.xml contains essential details about the app
such as the permissions and hardware requirements.

classes.dex is the executable file running on the Dalvik virtual
machine (DVM) or the Android runtime (ART). Note that the DEX
file usually contains the main part of the program and can easily be
decompiled. Therefore, more and more applications start
outsourcing important code into shared libraries.

resources.arsc contains pre-compiled resources and is usually
used for performance reasons.

To the best of our knowledge, while the most well-known
obfuscation techniques target DEX files and shared libraries, some

(N

META-INF

lib res assets

AndroidManifest.

[

classes.dex ressources.asc

APKJ

Fig. 1. Contents of an APK file.

http://developer.android.com
http://developer.android.com

X. Zhang, E. Breitinger, E. Luechinger et al.

Java/Kotlin Java DEX APK file Signed
source code bytecode bytecode APK file
Dart Nat';’e ":.'a’y APK file Signed
source code / (feferredina APK file
runner project)
Javascript \ bundle file APK file Signed
source code / (Tunning on APK file
JavaScriptCore)

Fig. 2. APK build process.

obfuscation techniques are applied to application manifest and
resource files. More details can be found in Sec. 5.

2.2. APK build process

To create an APK file, a specific build process has to be followed.
This process is also explained in detail in the Android developer
guide. Nevertheless, Fig. 2 shows a simplified version of the
compilation process.

First, the source code (written in Java or Kotlin) together with
other custom libraries is compiled with a compiler (javac/kotlinc),
into Java bytecode (.class). In order to run the program in Android,
the code has to be further compiled into DEX bytecode (.dex). Only
in this structure, the application can run on DVM or ART (since
Android V5.0). This format is then also used to distribute the app to
the end-users. The virtual machine performs the final trans-
formation of translating the DEX bytecode into machine instruction
during runtime. After all required files (in Fig. 1) are prepared, they
are compressed into an APK file, which, in the last step, must be
signed by the author for declaring the legitimacy of the application.
The understanding of this process is essential since every code
obfuscation approach works on a different level and affects
different resources.

Note that the build process could be different if the app devel-
oper tended to build a cross-platform mobile application with
Flutter” or React Native.® On Flutter, the source code is written in
another language called Dart and compiled directly to a native li-
brary which will be referred in a small ‘runner’ Android project.
With the React Native platform, the source code written in Java-
Script will be kept in a bundle file (called index.android.bundle
located in the assets folder by default) in the APK file and will be
executed in a JavaScript VM (called JavaScriptCore) along with the
application. Consequently, although the complied APK file is
structured the same, the main logic of the application, which is
relevant to the forensic investigators, can be found in different lo-
cations. Of course, this may also impact the obfuscation techniques
applied. To the best of our knowledge, Proguard (see Sec. 5) is still
the major obfuscation tool utilized for the applications that are
built on these platforms.

3. Android application forensics basics

Due to the simplicity of unpacking, disassembling and repack-
ing, it is a straight forward process for attackers to inject malicious
code and advertisements to benign apps. Since “Android has no
requirement for a key-pair to be certified by a Certificate Authority

2 https://flutter.dev/(footnote links were last accessed 2021-09-09).
3 https:/[reactnative.dev].

Forensic Science International: Digital Investigation 39 (2021) 301285

(CA)” (Vidas and Christin, 2013), a modified app can be signed with
the attacker's key as a ‘new’ app and will run on Android device
legitimately. Attackers may even sign the same repacked app with
different keys to trick security products that rely on hash value of
APK files for identification.

From a forensic investigator's perspective, unpacking and dis-
assembling are playing an important role in reverse engineering
Android apps (Lin et al., 2018; Spreitzenbarth et al., 2013) as they
allow investigators to extract hard-coded evidence such as crypto-
keys and user credentials (Zhang et al., 2017), as well as examining
malicious activities of Malware (Cen et al., 2014). Prior to the
prevalence of obfuscation techniques in Android development,
reverse engineering (or statically analyzing) an Android application
was significantly less complicated.

3.1. Unpacking and repacking

To unpack the APK content, the first step is to decompress the
APK file which can be done by any software that handles ZIP files.
Alternatively, one may use a more sophisticated tool such as the
apktool which not only unpacks the APK but performs additional
steps, e.g., decoding the manifest file (details see Sec. 5.1).
Decompressed APKs may be modified and repacked, resulting in a
valid new/modified app which in the last step must be re-signed
which is commonly done using jarsigner (ORACLE, 2013a). Since
this is commonly used for Android Malware, prior to disassembling
the app under investigation, the examiner should identify if the app
is an untampered app (see M1 in the Introduction) or a malicious/
tampered one (see M2). This can be done in several ways:

1. The most straight forward approach is to generate the crypto-
graphic hash of the app and look it up in a reference database.
Alternatively, one may simply use a search engine.

2. Another approach is to analyze the certificate that comes with
the app and is usually located in the META-INF folder and often
has the file extension RSA. Once found, this binary file can be
interpreted using Java keytool:

$ keytool -printcert -file META_INF/<NAME>.RSA

While these are frequently self-signed certificates, searching for
the certificate fingerprint may reveal additional information.

3. Lastly, one may investigate the assets folder so see if one can find
a familiar logo or other indicators of the original app.

Completing these previously mentioned steps then allows a
general assessment of the app: (i) if all are true, the app is likely to be
benign; (ii) if all are false, this is likely a malicious by design appli-
cation; and (iii) if only 3 is true, this may be a benign application that
has been tampered with. In the latter case, one may compare against
the original APK to identify tampered files/resources. A possible
procedure would be comparing the MANIFEST.MF files (name may
be different) in the META-INF directory as these contain the SHA256-
hashes as Base64 of all files. Note, that the file has to start with
Manifest-Version: 1.0; there is a similar looking file with a.SF-
extension which starts with signature-version: 1.0 and con-
tains the digital signatures of all files.

3.2. Disassembling

To investigate the functionality, the DEX file and shared libraries
are disassembled. With respect to the DEX file, one can either
decompile it back to Java source code or disassemble it to an in-
termediate language (e.g., smali):

https://flutter.dev/
https://reactnative.dev/

X. Zhang, E. Breitinger, E. Luechinger et al.

Java Decompilation. To decompile the app, one can rely on
dex2jar (Google, 2020b), a tool that transforms DEX bytecode into
Java bytecode. After acquiring the Java bytecode, one can use a Java
decompiler to retrieve Java source code. Examples would be JD
(Dupuy, 2020), a Java decompiler that can extract the Java source
code files or JEB, a commercial dissembler for DEX bytecode and
native machine code.

Smali dis-/reassembling. Disassembling describes the procedure
of converting the classes.dex file into an intermediate language
named smali commonly done with the tool baksmali. Compared
to DEX, smali is human readable. Another peculiarity of smali is
that it can be recompiled back into a functioning DEX file (reas-
sembling). Note, during dis- and reassembling, program compo-
nents are likely to be reordered (i.e., arranged differently) even if no
changes were made resulting in different hashes.

Library analysis. In addition to the Java executable, the shared
libraries are usually written in C and compiled for different CPU
architectures. Therefore, traditional Reverse Engineering tools for
desktop computer such as IDA pro and Ghidra became the
common options for forensic investigators.

Of course, if obfuscation techniques were successfully applied,
this could severely hinder the process to a point where the original
state of an Android app is not reconstructable anymore. How
obfuscation can impact forensic analysis is discussed in Sec. 5.

4. Methodology

To find relevant source material, Google Scholar (GS) as well as
other article search engines (e.g., IEEE, ACM) were searched to
identify relevant literature. Additionally, general search engines
such as google.com and duckduckgo.com were queried to include
relevant knowledge in forums or blog posts.

General survey. To receive a general overview, the first query on
GS with the search term android obfuscation was conducted. The
results of the first five pages were then further segmented using a
matrix dividing the content into three main categories: obfuscation
technique, obfuscation detection and deobfuscation. Obfuscation
technique is further partitioned into sub-categories of various
obfuscation techniques (e.g., identifier renaming).

Extended searches. Based on these initial results, an extended
search was performed with the aim to find additional literature.
This search was primarily based on the identified sub-categories
(e.g., android obfuscation reflection) as well as analyzing refer-
ences of downloaded articles (backward searches). When searching
online, again the first five result pages were considered. New
sources were added to the matrix based on the headline/title. In
case a result was ambiguous, we additionally evaluated the ab-
stract, introduction and/or conclusion.

Finalizing the collection. As the last step, we read and assessed all
identified articles. In case there was no relevance found, the entry
was deleted. Additional sources like the general Android developer
guide (developer.android.com) are not part of the matrix.

5. Obfuscation techniques

Obfuscation mechanisms have been widely implemented in the
Android ecosystem where we, like Maiorca et al. (2015), “refer to
the term obfuscation as actions that perform changes on the
application while preserving its semantics” and usually complicates
an analysis. Table 1 reflects the structure of this section and sum-
marizes the most popular Android obfuscation techniques grouped
by how they operate. The techniques require a different imple-
mentation effort (IME) which is an subjective rating. Meaning that
approaches that are integrated into common tools and perform the
transformation fully automated are labeled low. On the other hand,

Forensic Science International: Digital Investigation 39 (2021) 301285

Table 1

Overview of obfuscation techniques.
Obfuscation technique PTT MBE OPT IME
APK
Aligning X X low
Manifest transformation X X low
Renaming
Identifier renaming X X low
Package renaming X X low
Native library stripping X X low
Control flow modification
Code shrinking (or tree-shaking) X X low
Call indirection X X X low
Junk Code insertion X X low
Code reordering X X low
Reflection X X high
Evasion attacks X high
Encryption
Data encryption X X low
Asset file encryption X X mid
Class encryption X X high
Native code encryption X X high

Note that although Android obfuscation has been reviewed in existing works (e.g.,
Hammad et al. (2018); Dalla Preda and Maggi (2017)), this work intends to expand
these reviews with new techniques and its impact on digital forensic analysis.

if manual work is required, it is rated mid or high depending on the
complexity. For instance, asset file encryption can be completed
with two helper functions (encrypt(), decrypt()) while reflection is
considered more complex requiring more programming. Before
discussing the techniques, we briefly want to highlight three
frequent reasons we identified:

Protection's (PTT) goal is to safeguard the application (e.g.,
prevention from being modified into a malicious application) and/
or the intellectual property (IP) by limiting the ability to manipulate
or reverse engineer applications. Therefore, apps frequently rely on
encryption (Sec. 5.4) but may also utilize other mechanisms as they
are easy to implement.

Malicious Behavior Evasion (MBE) aims at bypassing malware
analysis software. By altering specific information that is used to
classify an app as benign or malicious, the decision can be influ-
enced. Note, all presented obfuscation techniques are commonly
used for MBE.

Optimization (OPT) is used to improve code because the output
of the transformation can be stored more compactly, or the effi-
ciency of the app can be improved. Concepts described in Sec. 5.1 or
5.2 are commonly used.

We believe that knowing the IME as well as a reason, helps an
investigator to be better prepared. For instance:

e The app under investigation seems to be only repacked which
makes it very unlikely that this is an original app; it is likely to be
an app trying to hide malicious behavior.

e The app under investigation utilizes native code encryption
(Sec. 5.4) and reflection (Sec. 5.3); it looks like it was not
repacked (=original app). It is less likely to contain malicious
behavior but reverse engineering will be difficult.

5.1. APK

Both presented techniques are directly related to the APK file:
Aligning is commonly used for optimization purposes; the
AndroidManifest.xml is often modified to hide malicious behavior.
These techniques could mislead the forensic analysis where no
code analysis is involved but relying on the target APK file's hash
value or the requested App permissions.

http://google.com
http://duckduckgo.com
http://developer.android.com

X. Zhang, E. Breitinger, E. Luechinger et al.

Aligning. According to Google (2020d), “archive alignment [...]
provides important optimization to Android application (APK) files
[..] It causes all uncompressed data within the APK, such as images
or raw files, to be aligned on 4-byte boundaries” allowing faster
access and less RAM usage. While malicious apps may care less
about the performance, it is an easy way to obfuscate as it can be
done automatically using zipalign:

$ zipalign -v 4 infile.apk outfile.apk

where 4 is the alignment and -v forces verbose output. The same
tool can also be used to verify the alignment running:

$ zipalign -c -v 4 existing.apk

where -c confirms the alignment of the given app.
AndroidManifest.xml transformation. The AndroidManifest con-
tains metadata about the app itself and is saved in XML format.
During the APK generation process, the manifest file is converted
into a binary XML file which has to be undone before modifying it:

$ file Folder/AndroidManifest.xml
AndroidManifest.xml: Android binary XML
$ Java -jar apktool_2.5.0.jar d existing.apk

While apktool may be the most prominent tool, one could also
use aapt? (Android Asset Packaging Tool) or online services such as
apkdecompilers.com. The AndroidManifest is commonly used by
tools to assess an app and thus simple alterations like adding un-
necessary permissions or adding fake component capabilities may
drastically decrease the performance of detection tools.

5.2. Renaming

These obfuscation techniques manipulate the program code
directly by replacing expressions with less meaningful and often
shorter expressions (e.g., only single characters), resulting in more
compact source code, without modifying the logic. It may also
modify non-code files such as assets. This evades searching for
strings and analyzing file names.

Identifier renaming®. Following software development guide-
lines, variables, classes and methods should be meaningful to
improve code readability and reusability. However, from a pro-
gramming standpoint, the identifier names do not influence the
program's logic. Thus, it is possible to replace every code identifier
with a meaningless string (Dong et al., 2018). An example is given in
Listing 1 and 2 representing identical logic.

Listing 1: Original Java code.

private void calculate(MyList listVariable) {
wvhile(listVariable.HasMore()) {
variable = listVariable.GetNext (true);
variable.calculate();
StaticClass (variable);

}
}

Listing 2: Obfuscated Java code.

private void a(a b) {
while(b.a()) {
a = b.a(true);
a.a();
a(a);
}
¥

4 https://[www.jgwebdesigns.net/android-development-tips-and-tricks/
extracting-manifest-info-from-an-apk-file.

5 In computer programming, identifiers are language entities such as class
names, method names and field names.

Forensic Science International: Digital Investigation 39 (2021) 301285

ProGuard, for example, implements a simple version of this
obfuscation technique, where the identifiers are replaced using the
English alphabet characters [a-zA-Z]. DexGuard, a more powerful tool
than ProGuard, on the other hand is using non-ASCII characters which
makes it more difficult to work with (Apvrille and Nigam, 2014). Since
automatically detecting these kinds of obfuscation is straight forward
(average length of identifiers is short; analyzing used charset), one
may instead replace each character of a given identifier with arandom
one, e.g., Variable.GetNext () turns into Bszyoadf . ZbtNgvp ()
or using MD5 values of original names (Hammad et al., 2018). In
general, possibilities are endless and easy to implement.

Package renaming. Every Java program is structured into packages
which are used to group related classes together building a common
namespace; classes inside the same package can access each other
without using the fully qualified name. Packages have a hierarchy,
and the dot-character separates them. While Android strongly rec-
ommends using the package naming according to owned URLS in
reverse order (e.g., Google Maps app should be com. google.maps),
developers are free to choose the name of the package themselves,
with the only requirement that all characters are lower case (ORACLE,
2013d). Wang and Rountev (2017) in their experiments used a tool
called Legu. Legu® obfuscated the packet structure by renaming items
and adding new helper classes to hide the original classes.

Native library stripping. Similar to identifier/package renaming
for Java executable(s), a developer may strip/remove debug sym-
bols that are not required for execution from a native (shared) li-
brary. If a library is compiled with Native Development Kit (NDK),
stripping is done by default. Such a technique could significantly
hurt the readability of the reverse-engineered code and impact
automated tools that rely on Dalvik bytecode analysis. Due to the
popularity of this technique, Android Malware and obfuscation
tools tend to hide their malicious activity or cryptographic algo-
rithms (for releasing the encrypted code at runtime) in stripped
native libraries (Alam et al., 2017).

Forensic implication. Dong et al. (2018) investigated the Google
Play Store and other Third-party markets using a custom detection
model. They concluded that 43% of the Google Play Store apps and
73% of the third-party apps used some renaming obfuscation.
Wermke et al. (2018) reported even higher numbers with 64% of
the apps using renaming obfuscation. They note, however, that “a
large percentage of apps were not intentionally obfuscated by the
original developer but contained third-party libraries that used
obfuscation”. These renaming mechanisms have become a default
choice for app/IP optimization protection Such techniques, which
forensic investigators should familiarize themselves with, can
defeat some existing library detection methods that rely on the
names/symbols in APKs during an investigation. For example,
Crussell et al. (2012, 2013)'s library detection methods were revised
for similarity matching based on constructing Program De-
pendency Graphs, in which names and symbols in DEX bytecode
are required. Although renaming mechanisms can pose an obstacle
to static code analysis, many advanced approaches (introduced in
Sec. 7) can bypass them because they do not intend to change the
syntax or workflow of the program and they are usually limited,
e.g., system calls and library calls may cause running issues.

5.3. Control flow modification

This group of obfuscation techniques alters program code in a
way to control the execution path of the Android app. These can
usually happen entirely automated.

6 According to the authors this is a tool from China and we could not find a
source.

http://apkdecompilers.com
https://www.jgwebdesigns.net/android-development-tips-and-tricks/extracting-manifest-info-from-an-apk-file
https://www.jgwebdesigns.net/android-development-tips-and-tricks/extracting-manifest-info-from-an-apk-file

X. Zhang, E. Breitinger, E. Luechinger et al.

Code shrinking (tree shaking). Tools such as proGuard and r8’
(which has replaced proGuard to be the default option since
Android Studio 3.3 beta) can also apply code shrinking and tree
shaking to remove unreachable code and uninstantiated types.
Although the aim of these tools is not necessarily for obfuscation
purposes, the optimized code could cause confusion for some
automated forensic tools. For example, as a unique feature of r8,
class inlining can remove classes that are only used locally. Since
this approach could inline (move and remove) code in the dex
executable, tools/approaches relying on matching the application's
Control Flow Graph (CFG) for third-party library detection or
Malware detection could be potentially impacted by this code
shrinking mechanism. Unfortunately, as rR8 is relatively new, we
had barely found any existing literature that has claimed that their
detecting approach tolerates the rR8 optimization.

Call Indirection. A call graph, also known as CFG, can be extracted
from a computer program using either a dynamic approach, by
recording the execution of the app with a profiler for example, or by
a static approach, where the code itself is analyzed. The graph
represents the calling relationship between the methods within the
program code and can aid humans in understanding the program
code (Eisenbarth et al., 2001). Anti-malware products utilize CFGs
to determine if an Android app is malicious or not, by comparing
the signature of the CFG to the CFG of known malware. Bacci et al.
(2018a) designed a program that added a new method for every
method invocation where the new method simply invokes the
original one. Thus, creating an additional call of a method but
leaving the original flow of the program intact. Dalla Preda and
Maggi (2017) described a similar approach but defined more pre-
cisely that the new proxy methods have to be public and static,
have the same parameters and have the same return type as the
original method. Additionally, in their approach, they created
distinct new proxy methods for methods that were called multiple
times. This technique is usually executed on the DEX bytecode
because an efficient Java compiler would detect such unnecessary
calls and try to optimize the CFG accordingly and eventually get rid
of the desired effect.

Junk Code Insertion. According to Li et al. (2019), Junk Code
Insertion includes methods like operation (nop) instructions (e.g.,
0x00 for DEX bytecode), unconditional jumps and additional reg-
ister for garbage operations. These techniques do not change the
program's logic and have a less significant impact on a detector. On
the other hand, Sindhu et al. (2014) concluded that nop instructions
are easily detectable and can be undone. In addition, the use of
opaque predicate is described by Balachandran et al. (2016). An
opaque predicate is a conditional instruction that always results in
the same outcome but creates two branches. One of the branches
leads to the original code, and the other contains unreachable junk
instructions.

Code Reordering. During the compilation process (see Sec. 2) the
DEX compiler orders the code in a structure that the Dalvik virtual
machine can execute it. Bacci et al. (2018b) reported a random
reordering method by inserting goto instructions, producing un-
necessary jumps inside the code. This obfuscation technique has to
be done without changing the original runtime execution. How-
ever, this could only be done to methods that did not contain any
other type of jump instructions, like for example if, switch, while,
and more. If the method is applied randomly, You and Yim (2010)
considers this obfuscation technique as a strong way to circum-
vent anti-malware products that check the code signature, since
the reordering is done randomly. Dalla Preda and Maggi (2017)
described a different approach. Nevertheless, in this case, they

7 https://r8.googlesource.com/r8).

Forensic Science International: Digital Investigation 39 (2021) 301285

grouped the DEX code into uniquely labeled basic blocks. After-
wards, these blocks were randomly shuffled. To preserve the orig-
inal execution sequence, unconditional jumps were inserted,
between the block, to link these together again.

Reflection. Reflection is a Java-specific feature used to examine or
modify the runtime behavior of an application. In particular, it uses
the Java.lang.reflect.* APl (ORACLE, 2013c) which allows
creating new and modifying existing classes during code execution.
According to Li et al. (2016), “reflection usage is widespread in
Android apps, with 87.6% (438/500) of apps making reflective calls”.
The most popular pattern in which Reflection is used is the
sequence: Class. forName () followed by Class.getMethod ()
into Method. invoke (). Therefore, in most cases, reflection is
used to access class methods that may be loaded at runtime. Gei-
nimi, a popular malware family, uses reflection for dynamic
method invocation (Kazdagli et al., 2014). Load parts of the code
dynamically hamper static analysis and often requires dynamic
approaches.

Evasion attacks. Evasion attacks are adversarial examples for
machine-learning-based techniques. Since many Android malware
detection and obfuscation detection techniques (introduced in Sec.
6) rely on Machine Learning, Chen et al. (2019) proposed an
adversarial example to defeat two well-known machine-learning-
based Android malware detection systems, MaMaDroid and Drebin,
by obfuscating the semantic features (CFG is one of them) leveraged
in these tools. The result shows that the presented adversary can
drop the detection rate of an Android malware from 96% (MaMa-
Droid) and 97% (Drebin) down to 0%. Rather than targeting to
specific Android malware detectors, Gu et al. (2020) presented
adversarial examples, which are based on a modified one-pixel
attack, to evade any Android Malware classifier that relies on
Malware's gray-scale image. The result shows that with the pro-
posed approach, 93% of 500 Malware examples were successfully
classified as benign apps.

5.4. Encryption

The most sophisticated obfuscation mechanism is encryption as
without the matching decryption method and the key, static
analysis is useless. Investigators have to fall back on dynamic
methods to get a full understanding of the app. Depending on the
utilized technique, it may still be possible to reverse parts of the
app. Generally, we differentiate between 'data encryption’' and
'asset file encryption'. The use of encryption methods as an
obfuscation method has increased over the evolution of the
Android platform. For example, the support for file-based encryp-
tion in the Android Version 7.0 (Nougat) (Crowley and Lawrence,
2016), made the handling of obfuscation techniques like aligning
with the additional use of encryption easier to implement since the
encryption methods were part of the standard Android APIL
Therefore, no extra library had to be included, which made the app
smaller and less suspicious to malware detectors that consider
external libraries as problematic. One of the downsides of
encryption is that it uses a large amount of computing power to
encrypt and decrypt the data. However, modern hardware capa-
bilities make the use of encryption more feasible.

Data Encryption. Naturally, examiners and analysis tools analyze
cleartext strings looking for certain key words such as IP addresses
or login credentials which are directly embedded into the DEX file
(e.g., stringsclasses.dex). To hamper this analysis, Bacci et al.
(2018a,b) implemented a simple Caesar cipher with a fixed key of
3; “the original string will be restored during application run-time.”
Of course, one may use stronger encryption mechanisms which in
return will impact runtime.

https://r8.googlesource.com/r8/

X. Zhang, E. Breitinger, E. Luechinger et al.

Asset file Encryption. Asset files are not compiled but simply
added to the APK file without modification. Since these files can be
valuable for examiners, it became common to also encrypt them.
For instance, Dalla Preda and Maggi (2017) renames the file and
path names to the MD5 of their string values and then encrypts the
raw objects. The authors point out that the AssetManager class,
which is responsible for loading these asset files, cannot be over-
ridden. Therefore, to decrypt them during runtime again, every call
to the AssetManager class is redirected to a proxy method,
handling the decryption.

Class Encryption. This obfuscation technique is based on the
reflection technique. A possible implementation is discussed by
Maiorca et al. (2015), to completely encrypt each program class and
store the result in a byte array. The code has to be altered by adding
a new method responsible for decrypting the data at runtime and
loading the class into memory by using the reflection APIL
Accordingly, it inherits the disadvantage of using reflection by
increasing the overhead of running the app.

Native Code Encryption. The Java Native Interface (JNI) is a Java
feature that allows executing and being executed by native appli-
cations (i.e., closer to the hardware such as C or Assembly) (ORACLE,
2013b). This is especially useful if the standard Java class library
does not support platform-specific features. To bring this to the
next level, Dong et al. (2018) describes a more sophisticated
approach where the original APK is encrypted and an additional
wrapper APK is created that is responsible for decrypting the
original APK, loading it into memory and then executing it. This
approach makes it impossible for tools depending on static analysis
to determine if the original app is benign or malicious. Additionally,
it hinders reverse engineering as well. Schulz (2012) outlined a
three-step process to modify DEX bytecode during runtime: (1)
using JNI to run native code; (2) a magic byte constant that the
native code will look for and (3) the new Davlik bytecode which will
replace the original one. As pointed out by Wong and Lie (2018),
“native code contains no symbol information—variables are map-
ped to registers and many symbols are just addresses. Thus, static
analysis of native code yields significantly less useful results and
the inclusion of native code in an application can hide malicious
activity or sensitive API invocations from an analyzer.”

6. Obfuscation detection

Obfuscated apps pose a real challenge and hamper the investi-
gative process as outlined in Sec. 3. A starting point for examiners is
the detection of the utilized mechanism and therefore researchers
and practitioners have developed concepts in the form of schemes
and implementations to tackle this challenge. In the following, we
highlight some approaches that resulted in tools and are not only
conceptional. An overview of identified detectors is shown in
Table 2. More details about the different tools is provided in the
corresponding paragraphs.

RepDroid. Yue et al. (2017) specifically address repacking and pro-
posed a dynamic detection method based on layout group graph
(LGG).LGGs can be extracted by executing the Android app and tracing
the layout transitions during the interactions. Under the assumption
that a repacked app behaves similar to the original version, the two
LGGs are expected to be similar. Thus, one of two analyzed apps is a
clone, when the LGGs resemble each other. This approach has excel-
lent scaling potential since it can detect multiple clones of an app.
However, the limitation of this work is that once apps are considered
similar, the actual original benign app still cannot be determined.
Furthermore, we could not find the implementation of RepDroid
publicly, although the authors claimed that an implementation exists.

WLTDroid. A recent work continued the research on repacking
and proposed a more efficient tool: WLTDroid. In contrast to

Forensic Science International: Digital Investigation 39 (2021) 301285

Table 2
Obfuscation detection tools.
Tool Obfuscation detection Technique Available
RepDroid Repacking dynamic X
WLTDroid Repacking dynamic X
IREA Identifier Renaming static X
Reflection
Data Encryption
AndrODet Identifier Renaming static 4

Data Encryption
Control Flow Obfuscation

RepDroid, this implementation uses a new approach called whole
layout tree (WLT), which is a purpose-based measure. Since it is a
dynamic technique, the app is executed. WLTDroid then extracts
the external view layout information and the inner view transfer
information to determine the similarity of apps by comparing the
WLT similarity. This approach reaches a comparable detection rate,
but the generation of a WLT is less time consuming compared to the
LGG approach of RepDroid. Obviously, WLTDroid inherits the same
limitations in case of identifying the original app. Additionally, no
publicly available implementation of WLTDroid could be found
(Guo et al., 2020).

IREA. Kiihnel et al. (2015) developed TrREA which is capable of
detecting identifier renaming, reflection and data encryption.® The
tool applies multiple heuristics to detect each obfuscation tech-
nique separately which are briefly summarized: 1) For identifier
renaming, four different heuristics are used targeting various
characteristics renamed identifier such as average length, variance
of length, absolute number of used different characters and ratio of
capital to lower case letters (CamelCase detection). 2) For reflection,
the authors use pattern matching to check the presence of jav-
a.lang.Class Or java.lang.reflect packages and opcodes of
the form invoke-kind. 3) For encryption, IREA proposes two
heuristics. One targets detecting the standard encryption API or
common third party crypto libraries such as java/security,
javax/crypto Or Lorg/jasyp. The second heuristic targets
custom encryption “by utilizing bit or byte operations on bit or byte
arrays”.

AndrODet. AndroDet by Mirzaei et al. (2019) is based on three
detector algorithms working independently and with different
feature sets. Thus, a single sample app can be tested on one
obfuscation method (e.g., Identifier Renaming) or on multiple
obfuscation techniques (e.g., identifier renaming and data encryp-
tion), by running multiple detectors in sequence. The detectors
work on features that are extracted from DEX code. For identifier
renaming, they used similar heuristics like IREA. In contrast, for
encryption detection, they rely on analyzing the encrypted strings
and extract features that include, entropy, word size in byte, string
length and the number of special characters (e.g., equals, dashes,
slashes). The control flow obfuscation detector works by analyzing
the extracted control flow graph. Next, features like number of
nodes, number of sinks, number of edges, for example, were
considered to determine if the code used any control flow obfus-
cation techniques. The Python-implementation is publicly available
on Github. Another practical advantage of AndrODet is that it
supports online learning algorithms through Data Stream Mining
(DSM), which means that AndrODet does not have to be re-trained.
However, Mohammadinodooshan et al. (2019, ArXiv article)
recently commented on encryption detection capabilities of
AndrODet. The authors criticized that “the accuracy of string

8 Additionally, it includes the detection of mobile advertising but is not relevant
for this paper.

X. Zhang, E. Breitinger, E. Luechinger et al.

Table 3
Approaches and tools for deobfuscation.

Forensic Science International: Digital Investigation 39 (2021) 301285

Article Tool Adversary Scope

Functionality Application

Approach Availability

Bichsel =~ DeGuard Identifier & Package renaming Dalvik Code (Static) Code Probabilistic learning Free service at http://apk-deguard.com/
et al. bytecode deobfuscation analysis based on dependency
(2016) graph
Yoo et al. N/A String obfuscation & Dalvik Code (Static) Recover the encrypted N/A
(2016) encryption bytecode deobfuscation Malware string with the decrypted
analysis value captured at runtime
He et al. DEBIN Native library stripping Native Debug (Static) Machine learning based = Open-sourced at https://github.com/eth-sri/
(2018) code information Malware on Dependency Graph debin
(x86, x64, recovery analysis
ARM)
Rasthofer HARVESTER Reflection, data encryption Dalvik Runtime Runtime data Similarity matching Base version for scientific research and
et al. bytecode value monitoring, advanced version for commercial usage at
(2016) extraction dynamic https://www.sit.fraunhofer.de/de/
analysis harvester/
Backes LibScout Identifier renaming, Dalvik Third-party Vulnerable Profile matching based on Open-sourced at https://github.com/reddr/
et al. reflection, control-flow bytecode library library known libraries LibScout
(2016) modification detection detection
Wang Orlis Control flow modification Dalvik Third-party Large scale Similarity digest matching N/A
et al. bytecode library library based on call graphs
(2018) detection detection
Baumann Anti- Identifier & Package renaming Dalvik Package Malware Similarity matching Open-sourced at https://github.com/ohaz/
etal. ProGuard bytecode detection detection antiproguard
(2017)
Ikram DaDiDroid Identifier Renaming, String Dalvik Malware Machine learning based N/A
etal. Encryption, Control flow bytecode detection on API call graphs
(2019) modification
Lietal. Obfusifier Identifier Renaming, String Dalvik Malware Machine learning based N/A
(2019) Encryption, Identifier bytecode detection on Method graph, API

Renaming, Control flow
modification

Path, etc.

encryption detection is evaluated using samples from the AMD and
PRAGuard malware dataset [.. which] are highly similar due to the
fact that they come from the same malware family.” Additionally,
they proposed an alternative by analyzing per-string bases and
defining a threshold to determine if an app is using data encryption.

As Table 2 showed, the number of publicly available tools is
limited. From a forensic standpoint, this becomes a problem since
an investigator does not have access to the tools themselves and
conclusively cannot inspect and most critically cannot make im-
provements to the code. Researchers in the obfuscation community
may have to consider publishing not only the research paper and
the results but also the code used publicly, for example, on Github.

7. Deobfuscation

With the rise in popularity of obfuscation, there has also been an
increase in research for defeating the obfuscation techniques. This
section focuses on reviewing the deobfuscation techniques pro-
posed for assisting forensic investigators. Additionally, we included
techniques that are obfuscation resilient, which could potentially
help forensic investigator to identify obfuscated third-party li-
braries (Sec. 7.3) and detecting obfuscated Malware (Sec. 7.4). An
overview of all identified tools and articles is provided in Table 3.

7.1. Code deobfuscation

Identifier renaming is one of the most popular techniques found
in the app market. Besides the automated deobfuscation ap-
proaches that we are about to introduce in this section, tradition-
ally, forensic investigators could utilize some reverse engineering
platforms (such as JEB® and IDA pro'?) for renaming the obfuscated

9 https://www.pnfsoftware.com/jeb/.
10 https://www.hex-rays.com/products/idaj.

identifiers (in both Dalvik bytecode and native libraries) manually
during static analysis. Such tools are still the most reliable option
for fine-grained analysis (Zhang et al., 2017). beGuard, presented
by Bichsel et al. (2016), aims to reverse the Android applications
obfuscated with ProGuard via a probabilistic learning model
trained over thousands of non-obfuscated Android application. The
model was stated as being able to defeat identifier renaming, detect
third-party libraries, and is helpful for inspecting obfuscated mal-
ware. The basis of DeGuard is the “dependency graph” generated
for the obfuscated app, which is formalized with the relationship
between the un-obfuscated information left in the app (e.g., the un-
renamed elements such as names of fields, methods, classes, and
packages) and the obfuscated information that DeGuard tries to
predict. The authors of the article claimed a 79.1% recovery rate for
renamed elements, and 91.3% accuracy for third-party library
detection. Although the implementation of DeGuard is close-
sourced, DeGuard is showcased online on apk-deguard.com,
allowing investigators to upload obfuscated APKs. Yoo et al. (2016)
outlined a string deobfuscation scheme that targets the string code
obfuscation technique specifically. It extracts the smali code of the
Android app, intercepts all results coming from the decrypt method
and replacing the encrypted string with the decrypted value.
However, there is currently no implementation but maybe there
will be in the future. DEBIN is a deobfuscation tool for predicting
the stripped (debug) information from binaries (compiled for a
specific CPU architecture) via machine learning (He et al., 2018). To
build a machine learning model for name prediction, DEBIN first
lifts the assembly code of non-striped binaries (which are decom-
piled from the binaries) and then converts the assembly code to an
intermediate representation which is the basis for extracting de-
pendency graphs (over which the model is built). Although this
approach is not proposed solely for the Android platform, we argue
that it could be very helpful for forensic investigators to apply static
analysis on Android native libraries due to the fact that 1)
comparing with similar tools such as DIVINE and TIE, DEBIN is the

http://apk-deguard.com
http://apk-deguard.com/
https://github.com/eth-sri/debin
https://github.com/eth-sri/debin
https://www.sit.fraunhofer.de/de/harvester/
https://www.sit.fraunhofer.de/de/harvester/
https://github.com/reddr/LibScout
https://github.com/reddr/LibScout
https://github.com/ohaz/antiproguard
https://github.com/ohaz/antiproguard
https://www.pnfsoftware.com/jeb/
https://www.hex-rays.com/products/ida/

X. Zhang, E. Breitinger, E. Luechinger et al.

only tool that supports Advanced RISC Machines (ARM) execut-
able,'' and 2) the only tool that supports name prediction for
functions and variables.

7.2. Runtime value extraction

Rasthofer et al. (2016) introduced HARVESTER and is a deob-
fuscation approach aiming to extract runtime values. When using
HARVESTER, an analyst must specify the parameters (i.e., one or
more variables or function arguments) that are targeted for
extraction. HARVESTER then finds the context of the targeted pa-
rameters from the static code of the application and removes
statements that may restrict the creation of them (i.e., resulting in a
stripped source code). Lastly, this reduced application is executed
to extract the runtime value dynamically. If the values of the tar-
geted parameters are generated by a reflective call, HARVESTER will
get the runtime values that are needed for making the reflective call
first and then trace the targeted values by executing the reflective
call as an ordinary call. In the article, HARVESTER outperforms
other existing code (static/dynamic) analysis tools such as Flow-
Droid and TaintDroid.””> Although HARVESTER helps defeating
obfuscation techniques such as reflection and native code encryp-
tion, it does not provide any benefits for renaming or control flow
modification. HARVESTER is available for scientific research in a
base version' and in an advanced version for commercial usage.

7.3. Obfuscation-resistant third-party library detection

Detecting known third-party libraries that have been obfuscated
can significantly reduce an investigator's workload or bypass the
deobfuscation process completely if, for example, the third-party
library being identified is open-sourced. One possible imple-
mentation is the light-weight third-party library detector Libsc-
out which was introduced by Backes et al. (2016). The authors
utilize a profile matching algorithm based on a hash (variant of
Merkle) tree which is built upon the non-obfuscatable information
extracted from an obfuscated library. LibScout has shown to be
efficient for library detection (even fine-grained to its version) as
well as resilient against common renaming techniques. A known
flaw of this approach is that due to the way the hash tree is built it
cannot be fully resilient against other techniques such as listed in
Table 1 under “Control flow modification”. Another library detector
named ORLIS was presented by Wang et al. (2018) and it is claimed
to be resilient against control flow modifications. ORLIS can identify
third-party library in an Android Application with a repository of
known third-party libraries and a two-stage similarity matching
approach. In the first stage, the sdhash ‘digest’'* is calculated for the
application and is compared with the same type of digests pre-
calculated for the known third-party libraries. In the second
stage, the comparison becomes fine-grained. Instead of App-to-
libraries, ORLIS calculates and matches the ssdeep digest for
each chain of classes of the application and the libraries (the li-
braries that are remained from the first stage). In the article, ORLIS
was also proved outperforming some other detectors such as
FDroidData and LibDetect. However, the tool has not been released
publicly for forensic investigators. The second tool named

1" ARM is one of the most commonly used CPU architectures for smart phones and
the architecture, for which most native libraries of Android applications are
complied.

12 FlowDroid (Arzt et al., 2014) and TaintDroid (Enck et al., 2014) are well-known
tools for static taint-analysis and dynamic taint-analysis for Android applications.

3 https://www.sit.fraunhofer.de/de/harvester.

4 ‘Digest’ is derived from many fuzzy call graphs, of which each is generated for a
method.

Forensic Science International: Digital Investigation 39 (2021) 301285

Anti-ProGuard was presented by Baumann et al. (2017) and also
aims to deobfuscate renaming techniques. However, instead of
building a probabilistic model, Anti-ProGuard requires smali files as
input and then utilizes a database storing obfuscated snippets and
their cleartext counterparts. To improve the accuracy, Anti-
ProGuard is not looking for exact matches but utilizes similarity
hashing (SimHash by (Charikar, 2002)) Overall Anti-ProGuard was
able to identify over 50% of packages in Android apps correctly,
despite admitting of shortcoming like high processing time, e.g.,
one Android app took four to 6 h to process. However, the imple-
mentation code is not publicly available, which makes possible
improvements for interested people harder.

7.4. Obfuscation-resistant malware detection

Since obfuscation heavily impacts the detection of malware
(Pomilia (2016); Maiorca et al. (2015), some of the latest research
focuses on utilizing features that cannot be (easily) obfuscated.
These tools are often called obfuscation resilient or obfuscation
resistant. Note, as the focus of this article is slightly different, we
only showcase two recent approaches. For instance, Ikram et al.
(2019) added additional features in their extraction process. For
example, they parsed the names in the recovered source code and
made the decision if more than 50% of the names were three letters
or shorter, that the code has been processed with an Identifier
renaming algorithm. They used this specific feature together with
other& features to determine if an Android sample app was benign
or not. By acknowledging the possibility of obfuscation and there-
fore adding an additional feature to represent it, the whole system
itself gets more robust against obfuscation methods. Li et al. (2019)
used a different approach by constructing a call graph based on the
DEX file. By analyzing the graph, they extracted relevant features to
determine malicious apps from benign apps. In this example, this
approach is not disturbed by an Identifier renaming algorithm.
Thus, the whole extraction process became more resilient against
obfuscation approaches.

8. Related works

There have been various studies on obfuscation and its usage
and impact on the Android ecosystem which can roughly separate
into three different domains:

Usage of obfuscation techniques. Dong et al. (2018) studied the
popularity of obfuscation techniques by looking at different app
markets like Google Play Store, third-party markets (i.e., Huawei,
Xiaomi, App China), and malware datasets from VirusShare and
VirusTotal. In total, they examined more than 114 thousand apps
and showed that, for example, identifier renaming was used more
in third-party market apps and malware than in Google Play Apps.
Similarly, Wermke et al. (2018) analyzed a dataset of over 1.7
million Google Play Apps and concluded that approximately 25% of
the apps were intentionally obfuscated by the app developer (many
more used libraries that were obfuscated). Additionally, they sur-
veyed Android developers on their knowledge and use of obfus-
cation. Although tools like ProGuard are free and well known by
developers, the paper pointed out that there are still mis-
conceptions around obfuscation and that the correct use of obfus-
cation tools is a challenge.

Application of obfuscation techniques. The second group focused
on applying obfuscation techniques for various purposes. Zheng
et al. (2012) introduced ADAM, an automated and extensible sys-
tem, with the idea to transform a (malware) sample into different
variations using various obfuscation methods, including renaming
obfuscation, control flow manipulations, and encryption. The goal
of the authors was to test and “evaluate the detection of these

https://www.sit.fraunhofer.de/de/harvester

X. Zhang, E. Breitinger, E. Luechinger et al.

variants against commercial anti-virus systems”. Afterward, these
new APK samples can be used to test and evaluate either custom
detection tools or commercial systems. This allows tool developers
to test their systems against various obfuscation techniques. Over
the years new studies and results on testing Android analyzers
were published (Rastogi et al., 2013; Maiorca et al., 2015; Hammad
et al.,, 2018). After several studies, Dalla Preda and Maggi (2017)
published a systematization of knowledge paper including a uni-
fied methodology."” Additionally, the authors expanded the idea of
ADAM and designed a new framework called AAMO (Automatic
Android Malware Obfuscator), with the main improvement that
AAMO can combine multiple obfuscation techniques.

Detection of obfuscation techniques. Faruki et al. (2016) present a
comprehensive analysis of obfuscation techniques as well as
obfuscation detection techniques. In detail, they “review code
obfuscation and code protection practices, and evaluate efficacy of
existing code de-obfuscation tools”. Accordingly, the focus of that
work covered primarily tools used in manual reverse engineering
and less on automated deobfuscation tools or frameworks.

All of the aforementioned articles include sections on
obfuscation-related techniques. However, none of them provides
an all-round view for obfuscation, obfuscation detection and
deobfuscation techniques. In fact, the obfuscation techniques
reviewed in these articles are limited to their own purpose. For
example, when review obfuscation techniques, Wermke et al.
(2018) does not “look for packers or other techniques specifically
used by malware” (e.g., methods in the Control flow modification
category in Table 1), and Dong et al. (2018) only counts those ap-
plications obfuscated with Identifier Renaming, String Encryption,
or Java Reflection (which are attached to the Renaming and
Encryption categories), because these obfuscation methods can be
detected by the tool/platform proposed in these articles. For the
same reason, reading an article written for testing malware de-
tectors against code (Zheng et al., 2012) or for reviewing deobfus-
cation tools (Faruki et al., 2016) may be not efficient for a digital
forensic investigator or Android app developer to understand this
overall field.

9. Impact of obfuscation on forensic investigations

We see two major implications for forensic investigations:

Misleading automation Obfuscation techniques can be/are used
to evade automatic detection and inhibit forensic examination. For
instance, evasion attacks trick machine-learning-based obfuscation
detection techniques, and simple methods such as repacking and
manifest transformation can invalidate application fingerprinting
(via hash values) techniques.

Complicate the manual analysis In addition to rendering auto-
matic approaches useless, some obfuscation techniques can also
significantly complicate the manual analysis of apps to a point
where some methods are impractical, e.g., static analysis will not
work for applications whose code is encrypted or is inserted with a
great load of junk code.

Both points can be summarized to the point that the analysis
(particularly, those that tend to be applied automatically) gets more
difficult which in return requires more advanced practitioners and
more backlogs. To counteract existing Android obfuscation tech-
niques, several tools have been discussed that help to detect
obfuscation and sometimes even to deobfuscate (parts of) the
application. Approaches that deobfuscated and compare obfus-
cated code show promising results and have the advantage that

5 This paper provides a good starting point for investigators to get even more
insides into obfuscation.

10

Forensic Science International: Digital Investigation 39 (2021) 301285

they could also handle layered obfuscation techniques on Dalvik
bytecode. However, according to our review, most of the automated
approaches are not publicly released which coincides with findings
from Wu et al. (2020) that tools are often developed but not
released. In addition, the existing deobfuscation and obfuscation
detection approaches reviewed barely cover native libraries
although almost all the research we reviewed in this article (e.g.,
Mirzaei et al. (2019); Li et al. (2019)) have asserted that an obfus-
cated native library could hide malicious activities and hinder some
library detection techniques. The results from more recent research
are tools and techniques that are less impacted by obfuscation. For
instance, Pasetto et al. (2020) presented a tool named Strandroid
which is “not affected by certain types of code obfuscation such as
structural transformations (modifying the CFG of the methods) and
dummy code insertion”. Although obfuscation resilience features
become essential for Android malware detection, it does not truly
provide many benefits for reverse engineering (i.e., understanding)
the application, as typical deobfuscation techniques for malware
detection-resilient obfuscation work by extracting non-code fea-
tures rather than recovering the source code of the application. An
aspect that was not addressed in this article but is becoming more
relevant, is the possibility of using multiple obfuscation methods in
sequence, i.e., creating multiple layers of obfuscation. You and Yim
(2010) already concluded that obfuscation techniques could be
combined, resulting in a more complex obfuscation level, making
malware analysis and deobfuscation approaches even harder.
Recent work like Mirzaei et al. (2019) confirms this observation.

10. Conclusion

This work presented a condensed summary of the status quo of
Android obfuscation, obfuscation detection and deobfuscation. The
obfuscation techniques have been separated by their utilized
technique (e.g., identifier renaming or encryption) which allows
examiners to easily find them in this article and inform themselves.
In contrast, obfuscation detection and deobfuscation have been
organized by tools as we believe from a practitioner's perspective,
finding sophisticated tools is most helpful. Consequently, this
article provides a good overview for beginners and intermediates
alike. Some of the key takeaways are that obfuscation techniques
have advanced in recent years for various reasons and by now are
frequently part of developer tools, i.e., they will become even more
common in the future (obfuscation by default). On the other hand,
not all techniques are easy to implement and some require more
sophisticated knowledge which in return means they may be not
used by ‘script-kiddies’. Lastly, these advances often target and
prevent static analysis wherefore dynamic analysis skills will be
even more important in the future.

References

Alam, S., Qu, Z., Riley, R., Chen, Y., Rastogi, V., 2017. Droidnative: automating and
optimizing detection of android native code malware variants. Comput. Secur.
65, 230—246.

Apvrille, A., Nigam, R., 2014. Obfuscation in android malware, and how to fight
back. Virus Bull. 1-10.

Arzt, S., Rasthofer, S., Fritz, C.,, Bodden, E., Bartel, A., Klein,]., Le Traon, Y., Octeau, D.,
McDaniel, P., 2014. Flowdroid: precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. ACM Sigplan Not. 49, 259—269.

Bacci, A., Bartoli, A., Martinelli, F., Medvet, E., Mercaldo, F,, 2018a. Detection of
obfuscation techniques in android applications. In: Proceedings of the 13th
International Conference on Availability. Reliability and Security, pp. 1-9.

Bacci, A., Bartoli, A., Martinelli, F., Medvet, E., Mercaldo, F.,, Visaggio, C.A., 2018b.
Impact of code obfuscation on android malware detection based on static and
dynamic analysis. In: ICISSP, pp. 379—385.

Backes, M., Bugiel, S., Derr, E., 2016. Reliable third-party library detection in android
and its security applications. In: Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 356—367.

Balachandran, V., Tan, D.J., Thing, V.L, et al., 2016. Control flow obfuscation for

http://refhub.elsevier.com/S2666-2817(21)00203-1/sref1
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref1
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref1
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref1
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref2
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref2
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref2
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref3
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref3
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref3
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref3
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref4
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref4
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref4
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref4
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref5
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref5
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref5
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref5
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref6
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref6
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref6
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref6
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref7

X. Zhang, E. Breitinger, E. Luechinger et al.

android applications. Comput. Secur. 61, 72—93.

Baumann, R., Protsenko, M., Miiller, T., 2017. Anti-proguard: towards automated
deobfuscation of android apps. In: Proceedings of the 4th Workshop on Security
in Highly Connected IT Systems, pp. 7—12.

Bichsel, B., Raychev, V., Tsankov, P., Vechev, M., 2016. Statistical deobfuscation of
android applications. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 343—355.

Cen, L., Gates, C.S,, Si, L., Li, N., 2014. A probabilistic discriminative model for android
malware detection with decompiled source code. IEEE Trans. Dependable
Secure Comput. 12, 400—412.

Charikar, M.S., 2002. Similarity estimation techniques from rounding algorithms. In:
Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of
Computing, pp. 380—388.

Chau, M., Reith, R., 2019. Smartphone market share. URL: https://www.idc.com/
promo/smartphone-market-share/os.

Chen, X,, Li, C,, Wang, D., Wen, S., Zhang, J., Nepal, S., Xiang, Y., Ren, K., 2019. Android
hiv: a study of repackaging malware for evading machine-learning detection.
IEEE Trans. Inf. Forensics Secur. 15, 987—1001.

Crowley, P., Lawrence, P., 2016. Pixel security: better, faster, stronger. URL: https://
security.googleblog.com/2016/11/pixel-security-better-faster-stronger.html.
Crussell, J., Gibler, C.,, Chen, H., 2012. Attack of the clones: detecting cloned appli-
cations on android markets. In: European Symposium on Research in Computer

Security. Springer, pp. 37—54.

Crussell, J., Gibler, C., Chen, H., 2013. Andarwin: scalable detection of semantically
similar android applications. In: European Symposium on Research in Com-
puter Security. Springer, pp. 182—199.

Dalla Preda, M., Maggi, F,, 2017. Testing android malware detectors against code
obfuscation: a systematization of knowledge and unified methodology. Journal
of Computer Virology and Hacking Techniques 13, 209—232.

Dong, S., Li, M., Diao, W., Liu, X,, Liu, J., Li, Z., Xu, F,, Chen, K., Wang, X., Zhang, K.,
2018. Understanding android obfuscation techniques: a large-scale investiga-
tion in the wild. In: International Conference on Security and Privacy in
Communication Systems. Springer, pp. 172—192.

Dupuy, E., 2020. Java decompiler. URL: https://java-decompiler.github.io/.

Eisenbarth, T., Koschke, R., Simon, D., 2001. Aiding program comprehension by
static and dynamic feature analysis. ICSM 2001. In: Proceedings IEEE Interna-
tional Conference on Software Maintenance. IEEE, pp. 602—611.

Enck, W,, Gilbert, P, Han, S., Tendulkar, V., Chun, B.-G., Cox, L.P,, Jung, J., McDaniel, P.,
Sheth, A.N., 2014. Taintdroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Trans. Comput. Syst. 32, 1-29.

Faruki, P., Fereidooni, H., Laxmi, V., Conti, M., Gaur, M., 2016. Android Code Pro-
tection via Obfuscation Techniques: Past, Present and Future Directions arXiv
preprint arXiv:1611.10231.

Google, 2020a. App manifest overview. URL: https://developer.android.com/guide/
topics/manifest/manifest-intro.

Google, 2020b. Github - dex2jar. URL: https://github.com/pxb1988/dex2jar.

Google, 2020c. Reduce your app size. URL: https://developer.android.com/topic/
performance/reduce-apk-size.

Google, 2020d. zipalign. URL: https://developer.android.com/studio/command-line/
zipalign.

Gu, S., Cheng, S., Zhang, W., 2020. From image to code: executable adversarial ex-
amples of android applications. In: Proceedings of the 2020 6th International
Conference on Computing and Artificial Intelligence, pp. 261—268.

Guo, J., Liu, D., Zhao, R., Li, Z., 2020. WItdroid: repackaging detection approach for
android applications. In: International Conference on Web Information Systems
and Applications. Springer, pp. 579—591.

Hamilton, F., 2020. Police Struggling to Clear Evidence Backlog of 12,000 Devices.
URL: https://www.thetimes.co.uk/article/police-struggling-to-clear-evidence-
backlog-of-12-000-devices-rpmhmfnpt.

Hammad, M., Garcia, J., Malek, S., 2018. A large-scale empirical study on the effects
of code obfuscations on android apps and anti-malware products. In: Pro-
ceedings of the 40th International Conference on Software Engineering,
pp. 421-431.

He,]., Ivanov, P, Tsankov, P, Raychev, V., Vechev, M., 2018. Debin: predicting debug
information in stripped binaries. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1667—1680.

Ikram, M., Beaume, P., Kaafar, M.A., 2019. Dadidroid: an Obfuscation Resilient Tool
for Detecting Android Malware via Weighted Directed Call Graph Modelling
arXiv preprint arXiv:1905.09136.

Kazdagli, M., Huang, L., Reddi, V., Tiwari, M., 2014. Morpheus: benchmarking
computational diversity in mobile malware. In: Proceedings of the Third
Workshop on Hardware and Architectural Support for Security and Privacy,
pp. 1-8.

Kiihnel, M., Smieschek, M., Meyer, U., 2015. Fast identification of obfuscation and
mobile advertising in mobile malware. In: 2015 IEEE Trustcom/BigDataSE/ISPA,
vol. 1. IEEE, pp. 214—221.

Li, L., Bissyandé, T.F., Octeau, D., Klein, J., 2016. Droidra: taming reflection to support

1

Forensic Science International: Digital Investigation 39 (2021) 301285

whole-program analysis of android apps. In: Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis, pp. 318—329.

Li, Z., Sun, J., Yan, Q., Srisa-an, W., Tsutano, Y., 2019. Obfusifier: obfuscation-resistant
android malware detection system. In: International Conference on Security
and Privacy in Communication Systems. Springer, pp. 214—234.

Lin, X,, Chen, T., Zhu, T, Yang, K., Wei, F, 2018. Automated forensic analysis of
mobile applications on android devices. Digit. Invest. 26, S59—S66.

Maiorca, D., Ariu, D., Corona, I., Aresu, M., Giacinto, G., 2015. Stealth attacks: an
extended insight into the obfuscation effects on android malware. Comput.
Secur. 51, 16—31.

Mirzaei, O., de Fuentes, .M., Tapiador, J., Gonzalez-Manzano, L., 2019. Androdet: an
adaptive android obfuscation detector. Future Generat. Comput. Syst. 90,
240-261.

Mohammadinodooshan, A., Kargén, U, Shahmehri, N., 2019. Comment on
“Androdet: an Adaptive Android Obfuscation Detector” arXiv preprint arXiv:
1910.06192.

ORACLE (2013a). jarsigner. URL: https://docs.oracle.com/javase/7/docs/technotes/
tools/windows/jarsigner.html.

ORACLE (2013b). Java native interface specification contents. URL: https://docs.
oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html.

ORACLE, 2013c. Trail: the reflection api. URL: https://docs.oracle.com/javase/
tutorial/reflect/index.html.

ORACLE, 2013d. Using package members. URL: https://docs.oracle.com/javase/
tutorial/java/package/usepkgs.html.

Pasetto, M., Marastoni, N., Dalla Preda, M., 2020. Revealing similarities in android
malware by dissecting their methods. In: 2020 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW). IEEE, pp. 625—634.

Pomilia, M., 2016. A Study on Obfuscation Techniques for Android Malware. Sapi-
enza University of Rome, p. 81.

Rasthofer, S., Arzt, S., Miltenberger, M., Bodden, E., 2016. Harvesting runtime values
in android applications that feature anti-analysis techniques. In: NDSS.

Rastogi, V., Chen, Y. Jiang, X., 2013. Droidchameleon: evaluating android anti-
malware against transformation attacks. In: Proceedings of the 8th ACM SIG-
SAC Symposium on Information, Computer and Communications Security,
pp. 329-334.

Schulz, P,, 2012. Code Protection in Android. Insititute of Computer Science. Rhei-
nische Friedrich-Wilhelms-Universitgt Bonn, Germany, p. 110.

Sindhu, P, Babu, S.S., Vijayalakshmi, Y., Kalyankar, N., 2014. Evaluating android
antimalware against transformation attacks. Journal Impact Factor 5, 9—14.
Spreitzenbarth, M., Freiling, F., Echtler, F.,, Schreck, T., Hoffmann, J., 2013. Mobile-
sandbox: having a deeper look into android applications. In: Proceedings of the

28th Annual ACM Symposium on Applied Computing, pp. 1808—1815.

Vidas, T., Christin, N., 2013. Sweetening android lemon markets: measuring and
combating malware in application marketplaces. In: Proceedings of the Third
ACM Conference on Data and Application Security and Privacy, pp. 197—208.

Wang, Y., Rountev, A, 2017. Who changed you? obfuscator identification for
android. In: 2017 IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft). IEEE, pp. 154—164.

Wang, Y., Wu, H., Zhang, H., Rountev, A., 2018. Orlis: obfuscation-resilient library
detection for android. In: 2018 IEEE/ACM 5th International Conference on
Mobile Software Engineering and Systems (MOBILESoft). IEEE, pp. 13—23.

Wermbke, D., Huaman, N., Acar, Y., Reaves, B., Traynor, P, Fahl, S., 2018. A large scale
investigation of obfuscation use in google play. In: Proceedings of the 34th
Annual Computer Security Applications Conference, pp. 222—235.

Wong, M.Y., Lie, D., 2018. Tackling runtime-based obfuscation in android with
<inline>\left\{\right.</inline>TIRO<inline>\left.\right\}</inline>. In: In 27th
<inline>|left|{|right.</inline>USENIX<inline>|left.|\right|} </inline> Security Sym-
posium (<inline>|left|{|right.</inline>USENIX<inline>|left.\right|}</inline> Se-
curity 18), pp. 1247—1262.

Wu, T, Breitinger, F.,, O'Shaughnessy, S., 2020. Digital forensic tools: recent advances
and enhancing the status quo. Forensic Sci. Int.: Digit. Invest. 34, 300999.
Yoo, W., Ji, M., Kang, M., Yi, J.H., 2016. String deobfuscation scheme based on dy-

namic code extraction for mobile malwares. IT Convergence Practice 4, 1-8.

You, L., Yim, K., 2010. Malware obfuscation techniques: a brief survey. In: 2010 In-
ternational Conference on Broadband, Wireless Computing, Communication
and Applications. IEEE, pp. 297—300.

Yue, S., Feng, W., Ma,], Jiang, Y., Tao, X, Xu, C,, Ly, J., 2017. Repdroid: an automated
tool for android application repackaging detection. In: 2017 IEEE/ACM 25th
International Conference on Program Comprehension (ICPC). IEEE, pp. 132—-142.

Zhang, X., Baggili, 1., Breitinger, F.,, 2017. Breaking into the vault: privacy, security
and forensic analysis of android vault applications. Comput. Secur. 70, 516—531.

Zheng, M., Lee, P.P, Lui,].C., 2012. Adam: an automatic and extensible platform to
stress test android anti-virus systems. In: International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment. Springer,
pp. 82—101.

Zhou, Y., Jiang, X., 2012. Dissecting android malware: characterization and evolu-
tion. In: 2012 IEEE Symposium on Security and Privacy. IEEE, pp. 95—109.

http://refhub.elsevier.com/S2666-2817(21)00203-1/sref7
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref7
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref8
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref8
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref8
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref8
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref9
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref9
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref9
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref9
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref10
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref10
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref10
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref10
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref11
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref11
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref11
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref11
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref13
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref13
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref13
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref13
https://security.googleblog.com/2016/11/pixel-security-better-faster-stronger.html
https://security.googleblog.com/2016/11/pixel-security-better-faster-stronger.html
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref15
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref15
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref15
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref15
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref16
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref16
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref16
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref16
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref17
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref17
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref17
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref17
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref18
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref18
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref18
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref18
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref18
https://java-decompiler.github.io/
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref20
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref20
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref20
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref20
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref21
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref21
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref21
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref21
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref22
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref22
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref22
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://github.com/pxb1988/dex2jar
https://developer.android.com/topic/performance/reduce-apk-size
https://developer.android.com/topic/performance/reduce-apk-size
https://developer.android.com/studio/command-line/zipalign
https://developer.android.com/studio/command-line/zipalign
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref27
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref27
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref27
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref27
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref28
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref28
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref28
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref28
https://www.thetimes.co.uk/article/police-struggling-to-clear-evidence-backlog-of-12-000-devices-rpmhmfnpt
https://www.thetimes.co.uk/article/police-struggling-to-clear-evidence-backlog-of-12-000-devices-rpmhmfnpt
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref30
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref30
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref30
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref30
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref30
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref31
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref31
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref31
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref31
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref32
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref32
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref32
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref32
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref33
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref33
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref33
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref33
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref33
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref34
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref34
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref34
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref34
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref35
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref35
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref35
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref35
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref35
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref36
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref36
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref36
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref36
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref37
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref37
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref37
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref38
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref38
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref38
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref38
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref39
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref39
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref39
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref39
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref40
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref40
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref40
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref40
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/tutorial/reflect/index.html
https://docs.oracle.com/javase/tutorial/reflect/index.html
https://docs.oracle.com/javase/tutorial/java/package/usepkgs.html
https://docs.oracle.com/javase/tutorial/java/package/usepkgs.html
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref45
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref45
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref45
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref45
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref45
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref46
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref46
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref47
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref47
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref48
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref48
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref48
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref48
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref48
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref49
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref49
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref50
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref50
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref50
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref51
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref51
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref51
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref51
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref52
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref52
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref52
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref52
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref53
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref53
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref53
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref53
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref54
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref54
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref54
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref54
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref55
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref55
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref55
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref55
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref56
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref57
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref57
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref58
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref58
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref58
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref59
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref59
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref59
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref59
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref60
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref60
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref60
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref60
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref61
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref61
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref61
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref62
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref62
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref62
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref62
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref62
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref63
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref63
http://refhub.elsevier.com/S2666-2817(21)00203-1/sref63

	Android application forensics: A survey of obfuscation, obfuscation detection and deobfuscation techniques and their impact ...
	1. Introduction
	2. Android basics
	2.1. Android package (APK) structure
	2.2. APK build process

	3. Android application forensics basics
	3.1. Unpacking and repacking
	3.2. Disassembling

	4. Methodology
	5. Obfuscation techniques
	5.1. APK
	5.2. Renaming
	5.3. Control flow modification
	5.4. Encryption

	6. Obfuscation detection
	7. Deobfuscation
	7.1. Code deobfuscation
	7.2. Runtime value extraction
	7.3. Obfuscation-resistant third-party library detection
	7.4. Obfuscation-resistant malware detection

	8. Related works
	9. Impact of obfuscation on forensic investigations
	10. Conclusion
	References

