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Interactions between organisms are pervasive in nature (Herre et al. 1999). 

Organisms associate intra and / or inter-specifically, either by cooperating, or by 

engaging in conflict to exploit their interacting partner. Intra-specific conflict and 

competition in some organisms increases their reproductive activity (Barnes & 

Kuklinski 2005). Males of many species compete intra-specifically for mating 

opportunities with more and better females (Huber 2005). Individuals cooperate 

within their species to forage in a group, enhancing their individual benefit (Pekar et 

al. 2005) and their fitness. Fitness is defined as the survival and/or reproductive 

success of individuals (Clayton 1997). On the other hand, inter-species interactions 

are a major cause of adaptive radiation (Pellmyr & Leebens-Mack 2000) and affect 

the abundance, distribution, phenotype, and genotypic diversity of individuals 

(Strauss & Irwin 2004). Inter-species interactions can be classified based on their 

trophic levels in food chain, such as predator – prey interactions (Clark 2004). 

Another approach classifies inter-specific interactions, called symbioses, based on the 

fitness of the interacting partners. The interacting partners of symbiosis are termed 

hosts (those with larger body size) and symbionts (those with smaller body size) 

(Saffo 1993). Most symbionts occur as either parasites, which increase their own 

fitness at the cost of fitness of the host; mutualists, which increase theirs as well as 

their hosts’ fitness; or commensals, where either ones’ fitness is enhanced without 

any effect on the fitness of another (Ebert & Herre 1996; Cheney & Cote 2005; Jog 

& Watve 2005). 

 

Symbionts are transmitted either horizontally or vertically through generations, 

mediated by inter- and intra-specific interactions of their hosts (Jog & Watve 2005). 

Parasitic symbionts enhance their fitness by increasing transmission, aided by their 

virulence (Frank 1992), causing a significant reduction in the body condition and 

fitness of hosts. Horizontally transmitted parasites generally have higher virulence, 

increasing host mortality. Although host mortality could reduce the parasites’ fitness, 

such a fitness cost is balanced by parasites’ increased horizontal transmission, 

suggesting a link in the fitness of hosts and symbionts. Models indicate that changes 

in transmission dynamics of symbionts can vary their virulence (Ganusov & Antia 
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2003) and that a trade-off between the resource depletion and new host encounter 

rate may shape the symbiont’s infection strategy (Fenton & Rands 2004). The 

infection strategy of symbionts has been found to depend on the host physiology 

(Redman et al. 2001), which governs the outcome of the symbiotic relationship. For  

an symbiotic interaction between two species, symbionts have been observed to be 

mutualists, commensals, and parasites depending on the hosts’ physiological 

condition (Cheney & Cote 2005; McCreadie et al. 2005), indicating that such 

interactions are context dependent. For some symbioses, it is difficult to measure the 

effect of symbionts on hosts’ fitness (Nuttal 1997; Lindstrom et al. 2003), whereas 

for some others, symbionts that reduce host fitness also allow them certain benefits 

(Fry et al. 2004). This suggests that there are many symbionts, whose role either 

varies with environmental factors or cannot be determined. Hence, it is often difficult 

to define a single role for some symbiotic interactions based solely on the effect of 

interactions on the fitness of hosts and symbionts. 

  

Like other vertebrates, birds play host to various symbionts. Birds harbor diverse 

parasitic symbionts such as microbial pathogens and feather mites (Moller 1991; 

Hubalek et al. 1995). Parasites alter the body condition and behavior of birds, 

reducing their fitness (Boots & Knell 2002; Lindstrom et al. 2003). On the other 

hand, mutualistic symbionts residing in the gut of some birds play an important role 

in their nutrition by helping degrade certain substrates (Dominguezbello et al. 1993). 

Other symbionts benefit the birds by acting as growth promoters and interact 

competitively with pathogenic bacteria (Moreno et al. 2003). The presence of such 

microbes is critically important in avian growth and development.  

 

Microbial symbionts also occur on the plumage of birds (Muza et al. 2000), living 

either freely or by attaching themselves to the feathers (Lucas et al. 2005). Such 

interactions between birds and bacteria is likely to be an ancient association, as some 

avian fossils show the presence of bacteria on feathers of early birds (Davis & Briggs 

1995). Some of the present day feather based bacteria are capable of degrading 

feather keratin in vitro  (Burtt & Ichida 1999) and this capability is spread across 

diverse bacterial taxa (Lucas et al. 2003). Such bacteria are present both on intact 
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avian plumage and in soil (Burtt & Ichida 1999; Lucas et al. 2003). Recent data 

suggests that a particular keratinolytic bacterium does not effect feather degradation 

when present on live birds (Cristol et al. 2005). However, there is no data on the 

activity and role of other keratinolytic bacteria on live birds. To understand and 

characterize the role of such symbionts in their interactions with birds, we need to 

test and catalogue the effect of these bacteria on hosts’ body condition, behavior, and 

fitness. We also need to study the response of hosts to these symbionts and whether 

any of the hosts’ morphological and / or physiological traits affect the activity of 

such symbionts. 

 

Such a study is presented in this thesis. Chapter 2 of this thesis studies the effect of 

different loads of keratinolytic bacteria (called EB: Ecto-Bacteria), on the body 

condition of their hosts: zebra finches (Taeniopygia guttata). Bacterial symbionts 

rarely occur in pure cultures on birds and other hosts and rather occur in 

communities (Lucas et al. 2005). Therefore, this study observes the effect of 

differential loads of the EB community (a selection of ten cultivated EB isolates) on 

some morphological and physiological traits of hosts, which are indicative of their 

body condition. Since body condition of an individual correlates with its fitness 

(Blums et al. 2005), alterations in the body condition of birds could change their 

fitness. The expressions of some of the observed morphological and physiological 

traits depend on the body condition of the hosts and are called condition-dependent 

traits. Some of these condition-dependent traits are sexually selected traits that are 

implicated in mate choice of the hosts. In this study, we test our hypothesis that 

differential loads of such ecto-bacteria would alter the body condition of their hosts. 

 

Chapter 3 focuses on observing the effect of the load of EB community on male mate 

choice behavior of zebra finches. Male zebra finches choose mates based on the 

expression of some of the females’ condition-dependent traits, called females’ 

sexually selected traits. In our set-up, Chapter 3 tests the hypothesis that differential 

loads of microbial flora of zebra finches would alter their mate choice behavior. We 

predict that an increase in the load of symbionts on a group of females would reduce 
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the expression of their sexually selected traits and skew the male preference for 

females towards females with lower bacterial load and a better body condition. 

 

Changes in the morphology and behavior of hosts are correlated with variations in 

the presence, load, and activity of their symbionts (Fitze & Richner 2002; Moreno et 

al. 2003; Lucas et al. 2005). Birds vary morphologically between sexes and species 

in their plumage coloration. Recent data documents differential degradation of 

melanized and non-melanized feathers by keratinolytic bacteria in broth, or in highly 

humid conditions (Burtt & Ichida 2004; Goldstein et al. 2004). These studies also 

speculate a role for such bacteria in the evolution of plumage coloration (Grande et 

al. 2004). Such in vitro studies neither simulate in situ conditions of feather 

degradation on live birds, nor demonstrate any correlation between bacterial growth 

and observed feather degradation. Such deficiencies are addressed in our in vitro 

experiments in Chapter 4, which observe the growth of EB while studying feather 

degradation in broth. In this chapter, I investigate the effect of melanization of 

feathers on their degradability and corresponding EB growth, in set-ups with and 

without broth. In addition, I test whether our EB isolates live freely on feathers or 

whether they attach themselves to feathers, of live birds. Microbial attachment to 

substrates is an energy dependent activity and attachment of EB isolates to feathers 

could suggest that EB are active on live birds. 

    

Many of the avian plumage symbionts are pathogens. In the study presented in 

chapter 5, using a traceable EB isolate, we investigate the behavioral mechanisms 

that aid rates and routes of infection and transmission of microbial symbionts. 

Investigating a link between social and sexual behaviors of the hosts and the 

transmission of their symbionts within a population is important in epidemiology. 

With the rise of new and emerging avian diseases, some of which are zoonotic in 

nature, such a study could have significant medical and epidemiological 

implications. 
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Introduction: 
 

Microbial parasites can have a detrimental effect on their hosts’ morphology (Zuk et 

al. 1998), such as reduction in body mass and /or other morphological traits, leading 

to a reduced social rank (Duckworth et al. 2004). Expression of such morphological 

traits depends on the body condition of the individual and hence they are called 

condition-dependent morphological traits. Some microbes also occur as opportunistic 

parasites, causing disease when present in greater loads (MacPherson & Uhr 2004), 

due to a dysfunctional immune system of the host (Guarner & Malagelada 2003), and 

/or due to environmental factors (Lacoste et al. 2001; Dror et al. 2005). Body 

condition and the expression of condition-dependent morphological traits of hosts are 

negatively correlated with parasitic bacterial loads (Thompson et al. 1997; Hamilton 

& Poulin 1999). A reduction in hosts’ body condition, with an increase in their 

microbial load, is brought about by a trade-off between the hosts’ investment in 

immune function and in displays used in signalling (Jacot et al. 2004). Together, this 

suggests that the role and virulence of such microbes depend on host physiology, 

microbial loads, and environmental stress. 

 

Birds are host to diverse ecto-bacteria (Muza et al. 2000), some of which are 

pathogens and cause a reduction in their body condition (Bayer et al. 1976). Some 

bacteria can degrade feather keratin in vitro by producing Keratinase and are present 

as the normal ecto-flora of birds (Burtt & Ichida 1999). Such bacteria, since found in 

both soil and avian plumage (feathers on live birds), can degrade molted feathers 

lying on soil and could degrade feathers on live birds. The effect of many of these 

bacteria on hosts’ body condition is unknown (Lucas et al. 2003). Feathers contain 

small peptides of avian Φ keratin, whereas the larger peptides of avian Φ keratin are 

present in their beaks (Farner Donald S. 1993). Beaks consists of a compact layer of 

keratinized epidermal cells, molded around the bony core of each mandible and are 

frequently colored using melanins, lipochromes, or carotenoids (Welty 1964).  
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Carotenoids in birds are present either in circulating or in stored forms, wherein 

circulating plasma carotenoids help in boosting the immune system (McGraw & 

Ardia 2003). For many birds, stored red carotenoids, which make the bills and 

plumage redder, are less abundant than yellow carotenoids and cause red 

ornamentation to be costlier  (Hill 1996) and more attractive (McGraw & Ardia 

2003).  The redness of bills in male zebra finches (Taeniopygia guttata) changes 

during their breeding cycle. Male bill redness is least intense at the end of the 

breeding cycle and is a condition-dependent trait (Burley et al. 1992; Birkhead et al. 

1998). Bill color in zebra finches is a sexually selected trait (McGraw & Ardia 

2003). Environmental, physiological, and reproductive constraints alter the optimal 

phenotypic expression of bill color in zebra finches (Burley et al. 1992; Zann 1996). 

In some birds, parasite loads of hosts reduce their bill coloration (Figuerola et al. 

2005), but there is yet no evidence of alteration of bill coloration due to the presence 

of non-parasitic symbionts. 

 

Birds also use their beaks to preen themselves. Preening involves spreading 

secretions from the uropygial gland on plumage, to maintain plumage condition 

(Montalti et al. 2005). The uropygial gland secretes uropygial oil, or preen oil 

(Farner Donald S. 1982), which has some anti-microbial properties against certain 

bacteria (Bandyopadhyay & Bhattacharyya 1996, 1999; Shawkey et al. 2003). 

Removal of this gland leads to a conspicuous change in the normal microbial flora of 

the plumage (Bandyopadhyay & Bhattacharyya 1996). Uropygial gland weight 

changes with the age (Sandilands et al. 2004b) and body condition of birds (Farner 

Donald S. 1982), whereas preen oil composition changes with their diet, sex, and age 

and such changes could change their plumage odors (Sandilands et al. 2004a). This 

suggests that uropygial gland morphology and preen oil composition are condition-

dependent traits, though it is not known whether microbial loads of birds change the 

morphology and activity of uropygial glands. 

 

Given that the presence of pathogens in hosts is negatively correlated with hosts’ 

body condition, which is mediated by a trade-off between the hosts’ investment in 

immunity and in growth and reproduction, we want to understand the effect of 
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certain keratinolytic microbial symbionts on hosts’ body condition and immune state 

to help understand the role of such symbionts. In this study, we experimentally 

enhanced the load of keratinolytic bacterial symbionts (called EB: Ecto-Bacteria) on 

feathers of zebra finches (Taeniopygia guttata), to investigate the effect of EB on the 

hosts’ body condition and on the trade-off between the hosts’ investment in 

morphological displays and in immune competence. We propose that an increase in 

the ecto-microbial load of birds can effect a change in the expression of some of their 

condition-dependent morphological traits and immune competence. 

 

Material and Methods: 
 

Experimental set-up: 

Thirty-six captive zebra finches (18 males and 18 females), banded using colored 

plastic rings, were used for the experiment. Birds were housed in same sex pairs in 

cages with food, water, and sand available ad libitum. The temperature and relative 

humidity in the cages were maintained at 27º C and 60% (± S.D.). Light and dark 

periods were set at 18 and 6 hours, respectively. Tarsal lengths of all birds were 

measured before the start of the experiment with vernier callipers and their weights 

were measured before and during the experiment using an electronic balance 

(Mettler). The experiment consisted of a Treatment phase of 60 days, followed by 40 

days of Recuperation phase. The birds were divided into three Treatment groups: a 

test group ‘B’ (n = 16) and two control groups: ‘T’ (n = 14) and ‘C’ (n = 6). There 

were no significant differences in the body mass or uropygial gland volumes 

[calculated by multiplying the three dimensions (length, breadth, and height) of the 

gland with vernier calipers] of birds between the three groups (One-Way ANOVA; 

Body Mass, F 2, 35 = 0.21, p = 0.81; Tarsus Lengths, F 2, 35 = 0.13, p = 0.87; 

Uropygial gland volumes, F 2, 35 = 0.24, p = 0.78).  

 

Treatment phase: 

Each test bird in group B was treated on their wing, breast, and tail feathers with 1 ml 

of a bacterial suspension [cell density: 105 cells/ml; estimated using Direct 
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Microscopic Count (Atlas 1995)] with a sterile paint brush. The bacterial suspension 

was composed of a community of 10 different keratinolytic bacteria [called EB: 

Ecto-Bacteria;(Lucas et al. 2003)], with all isolates present in similar cell densities. 

The EB treatments were aimed at increasing the bacterial loads of group B birds 

within an ecologically significant range. Therefore, the cell density of the EB 

suspension was made similar to that of pond water (< 106 cells/ml) frequented by 

wild birds (Diler et al. 2000; Al-Harbi 2003). For controls, group T birds had their 

wing, breast, and tail feathers treated with 1 ml of sterile PBS with a sterile brush and 

group C individuals had similar feathers ruffled with a dry sterile brush. The birds 

were treated once every seven days, for 60 days.  

 

Bacterial sampling: 

To test the effect of EB treatments on the microbial loads of birds, the bacterial load 

on the plumage of all birds was determined on the 30th day of the Treatment phase. 

We developed a sampling technique in which a print of two adjacent wing and two 

adjacent tail feathers of every bird was impressed on separate sterile agarose slabs. 

An area of 64 mm2 of the agarose imprint of every feather (four samples per bird) 

was removed and aseptically transferred into a micro-centrifuge tube, containing 200 

µl of sterile PBS. After 10 seconds of vigorous shaking, each tube was plated out on 

Casein Starch Agar (CSA), in two dilutions (Atlas 1995). The CSA plates were 

incubated at 25° C for 24 hours, following which the numbers of colonies on all 

plates were enumerated (Atlas 1995). Comparing the microbial counts of the 

adjacent feathers, we found the method to be highly repeatable (Wing feathers: r2 = 

0.94, n = 35, p < 0.001; Tail feathers: r2 = 0.97, n = 35, p < 0.001).  

 

Recuperation phase: 

The Recuperation phase started on the 60th day of the experiment and involved 

housing the birds in their cages without any treatments for an additional 40 days. 

Before stopping the treatments on the 60th day of the experiment, males and females 

were randomly exposed to each other for 90 minutes, albeit in separate cages with 

wire gauze to separate them.  
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Observations of Body weight, Uropygial gland volumes and Bill colors: 

To test the effect of EB treatments on morphological traits of birds, we measured 

their body weight and uropygial gland volume, on days 0, 30, and 60 from the start 

of the experiment. Furthermore, we digitally photographed the bills of all birds, at a 

fixed distance from a neutral light, on days 30, 61, and 100 from the start of the 

experiment. Bill hue, a measure of the intensity of redness of bill redness, for all 

birds was calculated as the mean of  5 RGB (Red, Green and Blue) hue values, from 

five random locations on the bill using Adobe Photoshop 5.0 (Fitze & Richner 2002). 

Bill hue is negatively correlated with bill redness (Bright et al. 2004). 

 

Observations of plasma carotenoid levels and cellular immune response: 

To test the effect of EB treatments on the immune competence of zebra finches, we 

assessed the cellular immunity and plasma carotenoid levels in all the birds, on the 

30th day of the experiment. We measured the level of plasma carotenoids (circulating 

carotenoids) of all birds by HPLC, using a reverse phase C-18 column (Blount et al. 

2003). Cellular immune response was tested on the 30th day of the experiment using 

PHA, an antigen which induces the T-cell proliferative response of the organism 

(Smits & Williams 1999). Before and after the test, the thickness of treatment sites 

on the left and right wings of all birds was measured, with a spessimeter. The test site 

on the left wing of the bird was injected intra-dermally with a 20 μl of PHA solution 

(concentration 5mg/ml, made using sterile PBS), whereas the control site on the right 

wing was injected similarly but with an equal volume of sterile PBS. Twenty-four 

hours later, we measured the thickness of test and control sites. The T-cell 

proliferative response was calculated as the difference between the change in 

thickness of the PHA-injected test and PBS-injected control site, in each bird. 

 

We analyze all data using One-Way ANOVAs. Statistical tests were done using JMP 

5.0.1a. 
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Results: 
 

The treatments of group B birds with EB suspension had a significant effect on their 

bacterial loads. Bacterial sampling of the wing and tail feathers revealed that test 

birds in group B had significantly higher bacterial loads, than control birds in groups 

C and T (F 2, 33 = 4.10, p = 0.02; Mean number of bacterial colonies per treatment 

group ± S.E.: B = 536.3 ± 79.6, C = 329.1 ± 138, T = 209.69 ± 82.4). This data was 

tested for homogeneity of variance across groups using Bartlett’s test and was found 

to be equal across all the three Treatment groups (F ratio = 1.8, df = 2, p = 0.16), 

showing that the requirements for One-Way ANOVA were met. Bacterial loads for 

all feathers were found to be within the observed ecto-bacterial loads of wild birds 

(Burtt & Ichida 1999). There was no significant effect of the treatments on the body 

mass of birds (30th day: F 2, 31 = 0.59, p = 0.56; 60th day: F 2, 34 = 0.89, p = 0.41).  

 

We found no significant effect of the treatments regimes on the bill hues of birds 

between the three Treatment groups, on the 30th day of the experiment (F 2, 35 = 1.94, 

p = 0.15). However in males, EB treatments had a significant effect on bill hues, on 

both the 30th and the 61st day (30th day: F 2, 17 = 4.46, p = 0.03; 61st day: F 2, 16 = 

30.96, p < 0.001). Group B males had higher bill hues than males in control groups, 

in both observations. At the end of the Recuperation phase (40 days after stopping 

EB treatments), there was no effect of EB treatments on male bill hues (Fig. 1; F 2, 17 

= 1.83, p = 0.19). On exposure to females, control males (group C and T) decreased 

their bill hues significantly more than test (group B) males [(C = T) > B, F 2, 16 = 

6.63, p = 0.009, Tukey post-hoc for p < 0.05; (Fig. 2)], indicating that the bills of 

control males were redder as compared to test males. No significant effect of the EB 

treatment was observed on female bill hues (30th day: F 2, 17 = 1.69, p = 0.21; 61st 

day: F 2, 17 = 0.03, p = 0.96). 
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Figure 1: Bill hues of all males by Treatment group over the length of the experiment. 

 

 

 
 

 
Figure 2: Change in bill hues of all males by Treatment groups on exposure to females. 
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Figure 3: Gland volumes of all birds by Treatment groups on the 30th day of the experiment. 

 

We found uropygial gland volumes to be significantly altered by EB treatments. 

Group B birds had significantly smaller uropygial gland volumes, compared to 

control birds (Fig. 3; 30th day: F 2, 32 = 5.72, p = 0.007; 61st day: F 2, 34 = 3.43, p = 

0.04; (T > C) > B, Tukey post hoc for p < 0.05). We also observed that the glands of 

group B birds shrank significantly, compared to the controls, during the course of the 

Treatment phase (F 2, 32 = 3.51, p = 0.04).  
 

We found no significant overall effect of EB treatment on plasma carotenoids (F 2, 33 

= 1.51, p = 0.23). However, on treatment, group B females (test) had significantly 

elevated plasma carotenoids levels than control females in other groups [Fig. 4; F 2, 17 

= 7.38, p = 0.0059; B > (C > T), Tukey post hoc for p < 0.05], after 30 days of 

treatment. Males between the Treatment groups failed to show any significant 

differences, with respect to their plasma carotenoid levels (F 2, 15 = 0.34, p = 0.71). 
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We also found that group B birds did not respond significantly differently to PHA, 

compared to their control counterparts (F 2, 34 = 2.03, p = 0.14). 

 

 
 

Figure 4: Relative plasma carotenoids levels in females of different Treatment groups. 

Discussion: 
 

This study shows that EB treatments of birds, leading to changes in their bacterial 

loads, can modify certain morphological traits such as the uropygial gland volume 

and the intensity of bill color in males. Our results demonstrate for the first time that 

an enhanced load of ecto-bacteria, which comprise the hosts’ normal flora, alters the 

expression of condition-dependent traits. Experimental manipulation of ecto-

bacterial loads neither altered the body mass, nor evoked a cellular immune response 

in hosts, implying that such bacteria and their loads did not cause disease in zebra 

finches. 

 

We found that the bacterial treatments had an effect on the males’ bill hue, wherein 

males with higher bacterial load had higher bill hues. This observed effect of 
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treatments on bill hue disappeared, after treatments were stopped and the bacterial 

loads of both the test and the control birds became similar. Bill coloration in zebra 

finches is a sexually selected trait and is sexually dimorphic, with males having bills 

redder than females, caused by deposition of red carotenoids (Burley et al. 1992; 

Birkhead et al. 1998; Blount et al. 2003). Given that hue is the inverse of intensity of 

redness (Bright et al. 2004), we infer from our results that bacterial loads act as a 

constraint in the expression of a sexually selected trait in male zebra finches. We also 

observe that males respond to the presence of females and hence mating 

opportunities, by decreasing their bill hues. Such a response is demonstrated to be 

dependent on their ecto-bacterial loads, as males with unaltered bacterial loads effect 

a significantly greater decrease in bill hues in response to mating opportunities than 

males with elevated bacterial loads.  

 

Bill redness depends on the amounts of red carotenoids stored in bills. Although red 

carotenoids do not play a direct role in affording a defense response to pathogens, 

they help in boosting the immune system (McGraw & Ardia 2003). A decrease in bill 

redness, with an increase in bacterial load on EB treatment, implies the depletion of 

bill carotenoids due to their utilization in response to elevated bacterial loads. The 

mechanism of such a response is unknown, as decreased levels of circulating 

carotenoids failed to change the cellular immune response of birds. Results suggest 

that in response to increased bacterial presence, males use carotenoids from their 

stored depots in bills, leaving their levels of plasma carotenoids unchanged. Female 

zebra finches, on the other hand, do not store red carotenoids in their bills in the 

same amounts as males and resort to using circulating plasma carotenoids to respond 

to increased bacterial loads. This leads to a significant difference in plasma 

carotenoids levels in females of different groups. Recent data documents a sex-based 

difference in carotenoid status and immune function in zebra finches, wherein dietary 

carotenoids aid the immune function of both the sexes differently (McGraw & Ardia 

2005). Our results suggest that zebra finches use carotenoids in response to microbial 

symbionts and that there is a sex-based difference in the source of carotenoids used 

to afford such a response, wherein males use carotenoids stored in their bills and 

females use their circulating plasma carotenoids. 
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Birds treated with EB, having elevated bacterial loads, had significantly lower 

uropygial gland volumes when compared to control birds. After treatment with EB 

community, the uropygial gland volume in birds with elevated bacterial load shrank 

significantly from its original volume, as compared to birds with un-altered bacterial 

load. The uropygial gland and its secretions are condition-dependent traits 

(Sandilands et al. 2004a; Sandilands et al. 2004b), with some preen oil fractions 

having anti-microbial activity (Shawkey et al. 2003). Preen oil maintains the 

plumage quality, a sexually selected trait in zebra finches (Clayton 1990) and a 

cessation of preen oil makes the feathers brittle (Moyer et al. 2003). Preen oil also 

gives the avian plumage a characteristic social odor (Sandilands et al. 2004a). 

Putting our results in context of previous work, we suggest that the shrinkage in 

gland volumes is due to an increased secretion of the preen oil. We speculate that 

such an increase in the secretion of preen oil is a defense response to the elevated 

bacterial load. In addition, the shrinkage in gland volume effected by EB loads and 

the resulting reduction or cessation of preen oil could alter attractiveness and odor of 

the birds. 

 

The mechanism by which birds are able to detect and respond to the elevated loads of 

microbial symbionts cannot be revealed by our experiment, as the EB treatments do 

not change the body mass or cellular immune state of zebra finches. This requires 

further investigation, though we hypothesize that such a response could be mediated 

by either the feather-degrading capability of the EB community, causing degradation 

of plumage and local irritation of the uropygial gland and epidermis; or by the EB 

getting ingested during preening and being recognized by intestinal immune tissues 

(Klipper et al. 2000). 

 

This study demonstrates that the ecto-microbial load of birds modulates the 

expression of certain condition-dependent traits, some of which play a significant 

role in their mate choice. In addition, by altering the expression of such traits, we 

suggest that the birds are able to respond to increased symbiont load. We also show 
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that the mechanisms of such responses are sex-biased, with both sexes using sources 

of body carotenoids to respond to an increase in microbial loads.  

 

Further work should focus on identifying the mechanisms behind the hosts’ detection 

and response to EB. It should also be investigated whether such elevated bacterial 

loads lead to a change in the composition of the preen gland oil, altering their anti-

microbial fraction. Defining an ecological role for the interactions between birds and 

their EB symbionts requires further work. Though based on present work, we 

hypothesize that EB are opportunistic parasites of birds, as they depend on their 

loads, to diminish hosts’ expression of condition-dependent traits and evoke a hosts’ 

response to their increased loads. 

 

Summary: 
 

Birds harbor diverse bacteria in varied loads on their plumage, some of which are 

capable of degrading feathers. By experimentally enhancing the load of feather-

degrading bacteria on zebra finches (Taeniopygia guttata), we show the effects of 

ecto-bacteria on some of their condition-dependent morphological traits. We 

demonstrate that such bacteria reduce the expression of male bill color, a sexually 

selected trait in zebra finches, without changing the hosts’ body mass. Our 

experiment also demonstrates that an experimental increase in ecto-bacterial load of 

hosts leads to a reduction in plasma carotenoids levels in females and a reduction in 

uropygial gland volumes of zebra finches. 
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Chapter 3 
 

Microbial loads and male size govern male mate choice in 
zebra finches (Taeniopygia guttata) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The work presented here is in preparation for submission to Behavioral Ecology and 
Sociobiology. 
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Introduction: 
 

Sexual selection generally operates by a higher preference for mates with an 

enhanced expression of costly morphological traits. Reproductive success has been 

hypothesized to be correlated with the expression of such morphological traits, also 

known as mate choice traits, which are honest signals of mate condition (Zahavi 

1975). The intensity of sexual selection, operating through mate choice, depends on 

the difference in the reproductive and parental investment between both sexes, the 

operational sex ratio, and the costs of mate search and courtship (Krebs & Davis 

1993; Andersson 1994; Jennions & Petrie 1997; Widemo & Saether 1999). Sexual 

selection in many species is more intense among males, as they vary more in 

reproductive success than females (Wade & Arnold 1980), suggesting that female 

mate choice is more intense, than male mate choice. As choosiness varies with 

reproductive investment, female mate choice is usually more significant because 

females invest significantly more in reproduction and parental care. Female mate 

choice of males has been well documented partly because it is based on observable 

and exaggerated males’ sexually selected traits (Peters et al. 2004) and as females are 

usually the choosier sex (Andersson 1994). 

 

Male mate choice, the choice exerted by males on females, is significant when 

mating is costly for males (Cunningham & Birkhead 1998; Bergstrom & Real 2000; 

Kokko & Johnstone 2002). This can occur due to elevated levels of male parental 

investment, reduced male mating opportunities, or reduced male bias in the 

operational sex ratio (Bonduriansky 2001; Kokko & Johnstone 2002). In zebra 

finches (Taeniopygia guttata), a monogamous species, there is evidence of mutual 

mate choice as male zebra finches are also known to choose females (Zann 1996). 

Male mate choice operates by discriminating on the basis of traits indicative of 

female quality and condition, such as bigger body size (Jones et al. 2001) or 

structural coloration of plumage (Siefferman & Hill 2005).  
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The average parasite loads of hosts are negatively correlated with hosts’ body 

condition and the expression of their sexually selected traits (Hamilton & Poulin 

1999). Parasite loads can alter mate choice as mate choice favors the avoidance of 

mates with higher parasite loads (Mazzi 2004). In house finches (Carpodacus 

mexicanus), males show reduced expression of their sexually selected traits on 

infection with ecto- and endo-parasites (Thompson et al. 1997). In some species, 

males choose to avoid parasitized and infected mates, as parasite loads are inversely 

linked to female fecundity (Rosenqvist & Johansson 1995). This experiment 

investigates the effect of microbial symbionts on the male mate choice of zebra 

finches (Taeniopygia guttata). We hypothesize that the microbial symbiont load of 

females could bias male mate choice and males would prefer females with lower 

symbiont loads.  

 

In our study, we experimentally manipulate the load of keratinolytic bacteria (called 

EB: Ecto-Bacteria) on the plumage of zebra finches (Taeniopygia guttata) to create 

groups of individuals with significant differences in their ecto-bacterial loads. By 

investigating the male mate choice for females with higher and lower ecto-bacterial 

load, we expect males to avoid females with higher microbial loads and therefore 

prefer females with lower microbial loads. In zebra finches, male mate choice 

depends on female’s sexually selected traits, which are orange bill color, tail length 

(Zann 1996), and fecundity (Jones et al. 2001). We predict that an increase in hosts’ 

microbial load would reduce the expression of female’s sexually selected traits and 

hence, skew the male mate choice towards lower bacterial load females with a better 

expression of sexually selected traits. 

 

In addition, male mate choice can vary with male quality (Amundsen & Forsgren 

2003; Wong & Jennions 2003). Low quality males are theoretically expected to be 

less choosy (Parker 1983) and higher quality males can be expected to be more 

choosy. Male size is an indicator of male quality in zebra finches (Zann 1996) and 

hence, male mate choice in zebra finches could also vary with male size. It would be 

interesting to investigate the effect of male size on the male mate choice of zebra 

finches. Generally, it is thought that hosts’ parasite load and male size governs their 
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male mate choice, hence this experiment would also test the interaction between 

male size, male mate choice, and the microbial loads of birds.  

 

Methods 

 

Experimental setup: 

Thirty-six birds (18 males and 18 females) were used for this experiment. The birds 

were previously color ringed, which since would interfere with mate choice of zebra 

finches were changed to numbered metallic rings (Hunt et al. 1997). Birds were 

housed in cages of same sex pairs for 5 months before the experiment, with food, 

water, and sand available ad libitum. The temperature and relative humidity in the 

cages were maintained at 27º C and 60% (± S.D.). Light and dark periods were 18 

and 6 hours, respectively. Tarsal lengths of all birds were measured before the start 

of the experiment using vernier calipers, whereas their weights were measured before 

and during the experiment using an electronic balance (Mettler). The experiment 

consisted of a Treatment phase, followed by the Mate Choice experiment.  

 

The Treatment phase: 

In the Treatment phase, the birds were divided into three Treatment groups, one ‘test’ 

group: B (n = 16) and two ‘control’ groups: S (n = 14) and C (n = 6). All the groups 

had an equal number of both sexes and there was no significant difference in size or 

body mass (for statistical analyses, see Chapter 2, Methods) between the groups. 

Each group B bird was treated on their wing, breast, and tail feathers with 1 ml of a 

bacterial suspension [cell density: 105 cells/ml, estimated by Direct Microscopic 

Count (Atlas 1995)] using a sterile paintbrush. The bacterial suspension was 

composed of a community of ten different feather-degrading bacteria [called EB: 

Ecto-Bacteria; (Lucas et al. 2003)] present in similar cell densities. In the control 

groups, group S birds had their wing, breast, and tail feathers treated with 1 ml of 

sterile PBS using a sterile brush and group C birds had similar feathers ruffled using 

a dry paintbrush. The birds were treated once every seven days, for 30 days. The 

 27



  
 

 

treatment was aimed at increasing the bacterial loads of birds within a range that is 

observed in the wild. Therefore, the cell density of the EB suspension was made 

similar to that of pond water (< 106 cells/ml) frequented by wild birds (Diler et al. 

2000; Al-Harbi 2003). One female from control group S died during the Treatment 

phase, but her death appeared to be unconnected with the treatment regimes. 

 

Bacterial sampling: 

To test that EB treatments of group B birds successfully increased their microbial 

loads, the bacterial load on the plumage of all birds was determined on the 30th day 

of the Treatment phase. We developed a sampling method in which a print of two 

adjacent wing and two adjacent tail feathers of every bird was impressed on separate 

sterile agarose slabs. An area of 64 mm2 of the agarose imprint of every feather (four 

samples per bird) was removed and aseptically transferred into a micro-centrifuge 

tube, containing 200 µl of sterile PBS. After 10 seconds of vigorous shaking, each 

tube was plated out on Casein Starch Agar (CSA), in two dilutions (Atlas 1995). The 

CSA plates were incubated at 25° C for 24 hours, following which the numbers of 

bacterial colonies on all plates were enumerated (Atlas 1995). There was a strong 

correlation between the number of colonies from feather sub-samples (for statistical 

analysis; see Chapter 2, Materials and Methods, Bacterial sampling), showing that 

this method was highly repeatable.  

 

Treatment of group B (test) birds with EB suspension had a significant effect on their 

ecto-bacterial loads, with group B birds having significantly higher bacterial loads 

than the control groups C and S (Fig. 1; See Results). Control individuals between 

groups C and S had no significant differences in their bacterial loads and were 

consolidated in a single control group (T) for all further analyses. Effectively, test 

group (B) contained birds with enhanced EB loads compared to control group (T) 

birds that had lower bacterial loads. 
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Figure 1: Ecto-bacterial loads for all birds in the Treatment groups B, C, and S. 

 

Measure of females’ sexually selected traits: 

After 30 days of treatments, the females’ traits implicated in male mate choice in 

zebra finches were measured. These traits were intensity of bill color, tail length of 

females and the number and weight of unfertilized eggs laid by females per cage (we 

assume that the number of unfertilized eggs laid by females are an indicator of their 

fecundity). Bills of all birds were digitally photographed at a fixed distance from a 

neutral light and their hues were calculated as the mean of five RGB (Red, Green and 

Blue) hue values taken at five random locations on the bill. Hue for each bill was 

calculated using Adobe Photoshop 5.0 (Fitze & Richner 2002). Bill hues were 

positively correlated with the orangeness of the bills (Bright et al. 2004). 

 

Mate choice set-up and experiment: 

The mate choice experiment was performed in the setup shown in Fig. 2. The central 

cage housed the male and each of the adjacent two cages housed a single female. 

Food and water was available in all cages ad libitum. The setup was lit with two 

fluorescent tubes of 60 Hz and 17 W. Cardboard blinds were arranged such that both 

females could see the male, but not each other (Fig. 2).  
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Figure 2: Cage for mate choice experiment. Complete lines indicate permanently blinded 

sides, serrated lines indicate two-way visibility sides, and the thick lines indicate perches. 

Area between the angled lines indicates the opaque male release chamber. 

 

To avoid any bias of placing the male towards any side of the cage, males were first 

released into a closed opaque box in the middle of the male cage. The pair of females 

was then released into adjacent cages and each male was tested using a pair of 

females, containing one from test group (B) and another from control group (T). 

Females were paired based on similarity of their tarsal lengths and hence size [For 

pairs: (Size Female 1) = 2.79 + 0.81 X (Size Female 2); r2 = 0.45, n = 17, p = 0.003] 

and each pair was used to test two males. The mate choice experiment commenced 

30 minutes later, by opening a trap door of the opaque box, releasing the male into 

the main cage enabling it to see and court females. The time spent by the male on 

both sides of the male cage was video-recorded for 45 minutes in total using two 

hidden cameras, placed on either side of the male cage, recording simultaneously 

(Fig. 2). The experiment and recordings were stopped after 45 minutes and the cages 

were blinded, blocking visibility between the cages of males and females. To control 

for the effect of side preference, females were swapped between the two cages. 

Following a 15-minute habituation period, during which the male was placed again 

in the central opaque box, we removed the cage blinds, released the male into the 
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main cage, and re-commenced our experiment and recordings for another 45 

minutes. By performing such a swap of females between cages, we tested the male’s 

choice between the same pair of females in different cages for a total of 90 minutes.  

 

Male mate choice: 

Male choice for a female was calculated as the percentage of time spent by the male 

on the perch near to a female, out of the total time spent by the male on perches 

(Jones et al. 2001). Courting time was calculated as the total time male spent on 

perches in front of both the females. We assumed that a male had chosen a female 

when he spent more than 50% of his perch time on the perch near to her. One male 

belonging to the control group (T) did not spend any time on any perch and hence 

was removed from the analyses. Statistical analyses were done using the software 

JMP 5.0.1a 

 

Results: 
 

Effect of EB treatments on bacterial loads of birds 

Treatment of group B (test) birds with EB suspension had a significant effect on their 

plumage bacterial loads. Bacterial sampling of the wing and tail feathers revealed 

that test birds (group B) had significantly higher feather bacterial loads than control 

(groups C and S) birds (Fig. 1; mean group T: 396.4, mean group B: 562.0, F 2, 33 = 

4.10, p = 0.02). The data was tested for homogeneity of variance across groups using 

Bartlett’s test and was found to be equal across all the three Treatment groups (F 

ratio = 1.8, df = 2, p = 0.16), satisfying the criteria for One-Way ANOVA. All 

control individuals were consolidated in a single control group (T) for all further 

analyses. Effectively, group B contained birds with enhanced EB loads compared to 

group T birds that had lower bacterial loads. Bacterial loads for all feathers, were 

found to exist within the observed bacterial loads of wild birds (Burtt & Ichida 

1999). 
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Effect of females’ bacterial loads on male mate choice and females’ sexually selected 

traits: 

We found no significant effect of the females’ bacterial loads on the male mate 

choice (t test: t = 0.87, n = 16, p = 0.39). We also found no significant effect of 

bacterial loads on the measured sexually selected traits of females (One-Way 

ANOVA: Bill hue: F 1, 17 = 0.03, p = 0.96; Tail length: F 1, 17 = 0.37, p = 0.69; 

Number of eggs laid: F 1, 8 = 0.39, p = 0.68, Weight of eggs laid: F 1, 8 = 0.27, p = 

0.77). Body mass of birds of both sexes was not affected by their EB treatments 

(Males: F 1, 17 = 0.73, p = 0.49; Females: F 1, 16 = 2.36, p = 0.13). Also, the bacterial 

loads of EB community did not cause any change in the immune status of their hosts 

(see Chapter 2: Materials and Methods, Results) 

 

Effect of males’ bacterial load on male mate choice: 

Males’ preference and their courting time could be governed by males’ microbial 

load. We found no significant effect of ecto-bacterial loads of males on the time they 

spent with females of either group (F 1, 16 = 0.46, p = 0.51). We also found that the 

treatment of males did not significantly alter the courting time of males (F 1, 16 = 

0.006, p = 0.94). 

 

Effect of absolute male size on male mate choice: 

Males’ preference and their courting time could be a function of absolute male size 

(Amundsen & Forsgren 2003). We found that male mate choice with respect to 

females’ group was significantly correlated to the tarsal length of the choosing male 

(Logistic regression: r2 = 0.52, n = 17, χ2 = 12.12, p = 0.0005; Wilcoxon Rank Test: 

χ2 = 8.63, p = 0.003; Fig 3). Males with longer tarsi (larger males) were found to 

prefer females with enhanced bacterial loads, whereas males with shorter tarsi 

(smaller males) preferred females with un-altered (lower) bacterial loads (the mean 

+/- S.E. of the percentile time spent by males with preferred females was found to be 

76.84 +/- 4.05). Although the biomass of males is significantly correlated with their 

body size (r2 = 0.33, n = 17, p = 0.015), there was only a marginal significance for 

the correlation observed between the choice of males and their body mass (r2 = 0.16, 

n = 17, χ2 = 3.75, p = 0.052). Courting time of males was also found to be 
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significantly affected by male size (r2 = 0.35, n = 17, p = 0.012), with larger males 

investing more time in courting females, compared to smaller males. 

 

 

Effect of relative male size on male mate choice: 

Male preference could also be a function of male size relative to the size of the 

females in the experiment (Foote 1988). Relative male size was computed as the 

difference between the absolute male tarsal length and the mean tarsal lengths of the 

females in one test (Amundsen & Forsgren 2003). We found no significant effect of 

the relative male size on male preference (r2 = 0.09, n = 17, χ2 = 2.27, p = 0.13) or on 

their courting time (r2 = 0.005, n = 17, p = 0.77).  

 

 

 

 

Figure 3: Male association with preferred females in relation to male tarsal length and 

Treatment group of female. 
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Discussion: 
 

Our results suggest an interaction between the body size of males and their mate 

choice with reference to the bacterial load of females. As male size in zebra finches 

is an indicator of male quality (Zann 1996), we suggest that a variation in male 

quality leads to a change in the male mate choice. We demonstrate that the observed 

variation in male mate choice was linked to the absolute size of males and not their 

size relative to females under choice. Our results also show that the courting time of 

males, measured by their total perch time, significantly increased with male size. 

This suggests that larger males invested more time to exercise their choice, compared 

to smaller males. However, we find that our results do not support our main 

hypothesis, as the enhanced bacterial loads of birds did not skew the overall male 

mate choice of zebra finches towards females with lower bacterial load. In addition, 

our results demonstrate that the interaction between the body size of males and their 

male mate choice of females with higher and lower bacterial loads occurred 

independent of the effect of bacterial loads on the measure of sexually selected traits 

of females.  

 

We find that larger males preferred females with enhanced bacterial loads whereas 

smaller males preferred those with un-altered bacterial loads. These findings suggest 

that males are able to distinguish between females of different treatments having 

different bacterial loads. Since the treatments had no measurable effect on the female 

body mass or other observed morphological traits, we suggest that the detection of 

increased bacterial load is independent of their effect on the measured traits.  

 

Mating opportunities vary with male size in the wild, with bigger males getting 

mating opportunities with more and particularly better females (Reid & Roitberg 

1995; Amundsen & Forsgren 2003). Smaller males, often excluded from mating in 

the wild, are less choosy in accepting mating opportunities (Parker 1983). We 

speculate that zebra finch males use different mate choice strategies depending on 

their size. We suggest that in wild birds, larger males infer females with an 
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asymptomatic increase in bacterial loads to have better tolerance to microbes, as an 

increase in their microbial load does not reduce their body condition. We suggest that 

in our experiment, larger males perceived females with an elevated bacterial load but 

an un-altered body condition to possess better tolerance to microbial loads. Better 

tolerance to microbes could be an indicator of mates’ body condition, immune 

response, and hence, fitness. Therefore, we suggest that larger males choose group B 

females, as they perceive them to possess better body condition, in view of their 

perceived tolerance to EB loads. 

 

Mating opportunities for small males are limited for two reasons: (1) due to a higher 

rejection rate by females and / or (2) by being competitively inferior to larger males 

(Amundsen & Forsgren 2003). Small males, if infected with higher microbial loads 

would experience a further reduction in their body condition and mating 

opportunities. In our experiments, we observe that smaller males prefer females with 

lower bacterial loads. We speculate that such a strategy, could aid the small males 

avoid contracting parasites and help them sustain their body condition and long-term 

mating opportunities. In addition, females with un-altered body condition and lower 

microbial loads can be perceived to have better microbe clearance rates. Together, 

this suggests, that given a choice, smaller males would court and mate with females 

having lower microbial loads to avoid getting infected and to select for better 

‘parasite clearance rate’ traits.  

 

The mechanism(s) by which males are able to detect the differences in bacterial loads 

of females, cannot be revealed by our experiment, as the enhanced bacterial load  did 

not change any of the measured morphological traits. This requires further 

investigation, although we suspect that such a change in the ecto-bacterial load of 

females could lead to subtle, yet detectable changes in certain behavioral and 

morphological traits, which could not be measured in this experiment. 

 

EB community isolates occur on wild birds (Burtt & Ichida 1999) and their loads in 

our experiment were found to in a range found in the wild. As male mate choice was 

found to be influenced by these microbial loads in captivity, we suggest that such 
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ecto-microbial loads could also alter male mate choice in wild. The present study 

demonstrates that variable loads of normal flora of birds can alter their male mate 

choice. Male mate choice in such cases depends on the size of the males and the 

microbial load of females. Further work should be done by using males, grouped 

based on their size, to mate with females of enhanced and un-altered bacterial loads, 

to understand fitness consequences of their choice. 

 

Summary: 
 

The parasite loads of individuals alter their mate choice. Socially monogamous 

species have mutual mate choice, wherein male mate choice gains significance with a 

decrease in mating opportunities. In this experiment, by experimentally enhancing 

the ecto-bacterial loads of zebra finches (Taeniopygia guttata), we test the hypothesis 

that male mate choice will be altered by the ecto-bacterial loads of females. We 

found that the size of males and the microbial load of females together governed the 

male mate choice, without the enhanced microbial load changing the expression of 

the females’ sexually selected traits. We thus establish a new interaction between 

microbial loads and male mate choice in zebra finches. 
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Chapter 4 
 

Differential degradation of black and white feathers by a 
community of feather-degrading bacteria 
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Introduction: 
 

Feathers contain more than 90% α-keratin and their chemical composition is 

conserved among bird species (Odonnell & Inglis 1974; Brush 1976). Feathers show 

large structural variation between species which lead to diverse morphologies and 

pigmentations (Prum et al. 1999; Shawkey & Hill 2004). Structural diversity in 

feathers could also create potential micro-niches for microbial growth (Shawkey & 

Hill 2004). Feathers are prone to bacterial degradation. Although a high diversity of 

feather-degrading bacteria have been isolated and characterized (Lucas et al. 2003; 

Shawkey et al. 2005), their precise role in evolution of feather traits is debatable 

(Grande et al. 2004).  

 

Melanin could play a role in reinforcing feather structure, as an increase in melanin is 

associated with a reduction in feather abrasion (Bonser 1996; Kose & Moller 1999). 

Alternatively, some authors suggest that the susceptibility to abrasion of white 

feathers arises from feather structure, rather than the presence or absence of melanin 

(Butler & Johnson 2004). Recent data indicates that both melanin-based and 

structure-based plumage ornamentations appear to be honest signals of mate quality, 

assessed either by competitors or by potential mates (Siefferman & Hill 2003). 

Feather ornamentation has been hypothesized to follow Gloger’s rule, wherein 

feathers tend to be darkly colored in habitats with high relative humidity and pale in 

low relative humidity (Burtt & Ichida 2004). Recent studies suggest that Gloger’s 

rule is linked to parasite loads, wherein high and low humidity areas correspond with 

high and low parasite loads, respectively (Burtt & Ichida 2004). This indicates that 

bacterial activity could be linked to feather ornamentation and the evolution of 

feather melanin polymorphism.  

 

The aim of our study was to find out whether bacterial feather degradation is a 

function of feather melanin dimorphism. A recent study (Goldstein et al. 2004) 

observed that Bacillus licheniformis, a keratinolytic bacterium, degraded non-

melanized white feathers significantly more than the melanized black feathers, when 

incubated in broth. This study, though did not observe bacterial growth associated 
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with feather degradation. Such a deficiency makes it difficult to conclude whether 

the observed difference in feather degradation was due to bacterial activity. In our 

studies, we further explored the prediction that melanized feathers should undergo 

less microbial degradation, as compared to non-melanized feathers. We tested our 

prediction in three different experimental setups, namely: feather degradation in 

broth, in air without broth (involving minimum exposure of feathers to water), and 

bacterial growth on feathers embedded in Petri plates. In our setup, we also tested 

whether feather degradation was correlated with bacterial growth. A community of 

bacteria is found on feathers of wild birds, which could effect feather degradation 

(Lucas et al. 2003). Therefore, we used a community of feather-degrading bacteria 

(called EB: Ecto-Bacteria) in our studies, rather than focusing on the dynamics of a 

single bacterium in culture. 

 

Methods: 
 

EB growth on feathers in Agar: 

Seventeen Tail feathers taken from separate zebra finches (Taeniopygia guttata), 

having alternate white and black bands, were UV sterilized (30 minutes) and fixed in 

Petri plates on sterile Water Agar. The plates were divided into two groups: a 

treatment group B, with 14 plates overlaid with 10 ml warm agar solution containing 

105 cells/ml of EB [a community of feather-degrading bacteria; (Lucas et al. 2003); 

cell number estimated by Direct Microscopic Counts] and a control group C, 

containing 3 plates overlaid with 10 ml sterile warm agar solution (Atlas 1995). All 

plates were incubated at 25°C for 10 days and the numbers of colonies on the black 

and white part of the feathers were counted under microscope, at 45X magnification 

(Fig. 1). Every black and white feather area was counted in three microscopic fields. 

The mean number of colonies counted, on the black and white part of each feather, 

was used for statistical analysis. 
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Figure 1: Image of bacterial colonies under magnification (45X) on black and white feathers 

of a zebra finch tail feather. 

 

 

 

Feather degradation by EB without broth: 

Twelve tail feathers, taken from separate zebra finches and containing alternating 

black and white bands, were UV sterilized (30 minutes) and kept aseptically in 

separate sterile 1.5 ml micro-centrifuge tubes. The tubes were divided equally into 

groups B and C. The six feathers in the group B tubes were soaked in 105 cells/ml of 

EB suspension [cell density estimated by Direct Microscopic Counts (Atlas 1995)], 

whereas the other six feathers (group C) were soaked in sterile distilled water. All 

tubes were then sealed with wax tapes and incubated at 25°C. The numbers of black 

and white broken ends (called barbs) on all feathers were counted at 10 X 

magnification, on the 30th day of their incubation. Every black and white feather was 

counted in three separate low power fields and their mean numbers of black and 

white barbs were computed and used for the statistical analysis. Thus, the setup 

aimed at observing the disparity in feather degradation between melanized and non-

melanized feathers, involving minimum exposure of feathers to water. 

 40



  
 

 

 

 

Feather degradation by EB in broth: 

Black and white feathers from fowl were UV sterilized (30 minutes). 100 μg black 

and white feathers were added to 20 tubes (ten for either feather type), containing 10 

ml sterile PBS. 100 μl of the EB suspension [105 cells/ml of EB suspension: cell 

density estimated by Direct Microscopic Counts (Atlas 1995)] was added to 18 test 

tubes (nine of either feather color) and the remaining two tubes, were kept as 

controls. All 20 tubes were incubated at 25°C for 10 days. Following incubation, a 

100 μl sample from all test and control tubes was plated out on sterile nutrient agar 

plates in two dilutions (Atlas 1995). The plates were incubated at 25°C overnight and 

their numbers of colonies were counted following the incubation (Atlas 1995). 

Immediately after sampling, the tubes were centrifuged at 5000 rpm for 5 minutes. 

The total protein present in 1 ml of the supernatants of all feather broths was 

quantified, using the Biorad Protein Assay kit. The total protein present in the 

supernatant of a sample was assumed to be an indicator of the feather degradation 

observed in that sample. All statistical analysis were done using JMP 5.0.1.  

 

Results: 
 

EB growth on feathers in Agar: 

The white bands of the feathers were found to have significantly higher numbers of 

colonies, than the black bands. (Fig. 2, t test; t = 2.38, n = 14, p = 0.003). We also 

found that the difference between the number of colonies on white and black bands, 

increases significantly with an increase in the total number of colonies (Fig. 3, r2 = 

0.69, n = 17, p < 0.001). 
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Figure 2: Number of colonies (mean ± SD) growing on white and black feathers. 

 

 

 

 

Figure 3: Difference in the number of colonies growing on white and on black bands in 

relation to the total number of colonies growing on the feathers. 
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Feather degradation by EB without broth: 

We found that on EB treatment, feathers had significantly more white barbs breaks, 

than black barb breaks (Fig.4, t test; t = 5.39, n = 6, p = 0.003). We found that 

feathers treated with EB developed more breaks, than control feathers (Analysis of 

Variance, F1, 11 = 41.67, p < 0.001). We also found that the difference in the number 

of breaks between white and black feather barbs, increases significantly with an 

increase in the total number of feather breaks (r2 = 0.73, n = 6, p = 0.02). 

 

 
Figure 4: Number of breaks on barbs of white and black feather 

 

Feather degradation by EB in broth: 

We found that on incubation in broth with EB, white feather broths had significantly 

more protein in supernatant, as compared to black feathers broths (Oneway ANOVA, 

F1, 17 = 10.67, p = 0.005). The bacterial density was also found to be significantly 

higher in white feather broths, than black feather broths (Fig.5, F1, 17 = 28.66, p < 

0.0001). We found the quantity of protein in supernatants of broth cultures to be 

positively correlated with their bacterial densities (Black feather broths: r2 = 0.72, n 

= 9, p = 0.003; White feather broths: r2 = 0.73, n = 9, p = 0.003).  
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Figure 5: Bacterial densities in broth containing black or white feather fragments 

 

Discussion:   
 

Our experiments provide new data supporting the hypothesis that melanized feathers 

undergo less microbial degradation, compared to non-melanized feathers. Goldstein 

et al (2004) used a single bacterial strain and provided some evidence for this 

hypothesis in an earlier study, though they neither showed that the observed feather 

degradation was a result of bacterial activity nor commented on the bacterial growth 

and activity in the presence and absence of melanin. Through our experiments, we 

demonstrate that the presence of melanin reduces both the degradation activity and 

the growth of feather-degrading bacteria (EB). By testing the hypothesis in separate 

experiments, we find that the EB community achieves significantly higher loads on 

white feathers, than on black feathers. We also observe that such differential 

degradation of black and white feathers occurs in humid air, outside broth cultures.  

 

We found that on incubation with EB, white feather broths witnessed significantly 

more feather degradation, than black feather broths. White feather broths also had 

significantly higher bacterial loads, than black feather broths, which significantly 

correlated with their observed feather degradation. Therefore, we conclude that in 
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broth cultures, EB degrades white feathers faster than black feathers. This observed 

feather degradation correlates positively with bacterial growth and density. Our 

results also imply that at higher bacterial loads, the difference in feather degradation 

between black and white feathers is significantly enhanced. We infer that the 

presence of melanin retards the rate of feather degradation by bacteria. We suggest 

that this inference be further tested in a separate experimental set-up, using 

increasing EB loads to degrade melanized and non-melanized feathers, to quantify 

the rate of feather degradation. Feathers from zebra finches and fowl followed 

similar pattern of differential degradation, which leads us to infer that the effects 

found in this experimental set-up would hold true across bird species. 

 

According to Gloger’s rule, relative humidity of an environment dictates the amount 

of melanin pigmentation observed in organisms habituating it (Burtt & Ichida 2004). 

Previous data also suggests that relative humidity is positively correlated with 

parasite load (Burtt & Ichida 2004). Our experiments present evidence on the 

inhibitory effect of melanin on the growth and activity of bacteria. This supports the 

hypothesis that Gloger’s rule operates through hosts’ bacterial loads, wherein 

increased humidity leads to increased bacterial loads, driving the hosts’ evolution of 

increased melanin production as a protection against feather degradation by bacteria. 

In nature, feather-degrading bacteria rarely occur in pure cultures (Lucas et al. 2005) 

and hence our results showing differential feather degradation by a community of 

bacteria could constitute a more suitable set-up to understand the effect of melanin 

on microbial dynamics, as compared to those of Goldstein et al (2004). 

 

Summary:  
 
Feathers are prone to abrasion and degradation by biotic and abiotic factors. Melanin 

is a pigment responsible for brown and black coloration of feathers and helps 

increase their resistance to abrasion. Recent studies have described that a number of 

microbes have the ability to degrade feathers individually. However, in nature, 

bacteria are always found in communities, instead of single isolates, leading to 
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potentially different results. In this study, we applied a community of feather-

degrading bacteria on black and white feathers, to test whether feather coloration 

altered the ability of micro-organisms to degrade feathers. We found, in three 

separate tests, that the presence of melanin significantly reduced the growth of a 

bacterial community and its’ associated feather degradation. Feather degradation was 

found to be associated with bacterial growth and the amount of free protein produced 

in solution. Our results confirm earlier results found for only one bacterial strain. 
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Appendix to Chapter 4 

 

Niche specialization of the cultivated community of  

feather-degrading bacteria on feathers of live birds. 
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Introduction: 
 

The total microbial load in a ton of soil is speculated to be more than 1016 cells 

(Curtis & Stoan 2005). There are estimated to be atleast 106 diverse bacteria in a 

gram of soil (Gans et al. 2005) of which only a fraction have been cultivated (Watve 

et al. 2000). Bacteria in different environments have been shown to exist either 

attached or unattached to stratum. Bacterial populations in environments as diverse 

as coastal lagoons (LaMontagne & Holden 2003), peat (Barkovskii & Fukui 2004), 

and human buccal cavity (Zhang et al. 2005) were found to contain co-existing 

communities of attached and un-attached bacteria. 

 

Many bacteria living attached to stratum, do so by either producing adhesins (Patti & 

Hook 1994), pili (Mouricout & Julien 1987), lipoteichoic acids (Sugarman 1980), or 

simply by producing amorphous layers of extra-cellular polysaccharides (Roberts 

1996). Attachment of micro-organisms to host tissues represents a critical phase in 

the development of many types of infections (Zhang et al. 2005). On the other hand, 

un-attached bacteria by definition are bacteria that do not attach themselves to the 

stratum. Recent data suggests that the un-attached and attached communities of 

bacteria sharing a niche do not differ functionally with respect to primary ecological 

roles (Worm et al. 2001), but that they differ metabolically in their in situ activities 

(Bonin et al. 2001). 

 

The avian plumage is one such ecological niche harbouring a diverse bacterial 

population (Muza et al. 2000), some of which have the capacity to metabolize feather 

keratin as their primary carbon and energy source (Burtt & Ichida 1999). The avian 

plumage is co-habited by both attached and un-attached bacterial communities, 

wherein the self-cleaning mechanisms of avian hosts decrease the loads of un-

attached, but not of bacteria living attached to the feathers (Lucas et al. 2005).  Lucas 

et al. (2005) also documented that such different communities could be separated by 

differential sonication of feathers in broth. Soil, the major source of avian ecto-

bacteria, contains bacteria known to be capable of feather degradation in vitro (Lucas 
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et al. 2003), though there is yet no indication on their feather degradation capability 

on intact avian plumage.  

 

Our previous data, using feather-degrading bacteria cultivated from soil, suggests 

that such bacteria are active and are able to degrade feathers in vitro with minimal 

water (Chapter 4). In this experimental set-up, we wanted to test the niche 

specialization of our bacterial isolates. Here, we investigate whether and which of 

our feather-degrading bacterial isolates (called EB: Ecto-Bacteria), are present on 

avian plumage as un-attached bacteria, or whether they attach themselves to feather 

stratum. 

 

Materials and Methods: 
 

Sixteen zebra finches (Taeniopygia guttata) were divided equally into two groups: T 

(Treatment) and C (Control). Both groups contained equal number of males and 

females and all individuals were caged individually. One hour prior to the treatment, 

the tail feathers of all the 16 birds were cleaned with 30% alcohol solution and 

dabbed dry with sterile filter paper.  

 

A bacterial suspension composed of a known feather-degrading bacterial community 

(EB; Table. 1) was prepared with a cell density of 106 cells/ml [cell density estimated 

by Direct Microscopic Counts (Atlas 1995)]. Tail feathers of each of the group T 

birds were treated with 1 ml of the bacterial suspension, applied using a sterile brush. 

Tail feathers of all group C birds were treated similarly, with one ml sterile PBS and 

both the groups were sampled 30 hours after the treatment. For sampling, four tail 

feathers of all the 16 birds were removed with sterile forceps and feathers from each 

bird were stored in separate sterile Petri plates.  

 

Following the sampling, three feathers from each individual were immersed in 10 ml 

sterile PBS, labelled (1) and sonicated for 10 seconds. The feathers were then 

removed and immersed in another tube containing 10 ml PBS, labelled (2) and 
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sonicated for 5 minutes. We assumed that bacteria that lived un-attached on feathers 

would require a smaller force (less sonication) to dislodge them from feathers, 

compared to bacteria living attached to feathers (which would require greater force 

and hence more sonication). The sonicated feathers were then discarded and all the 

(1) and (2) tubes were centrifuged at 5000 rpm for 20 minutes. The resulting pellet 

was re-suspended in 500 μl sterile PBS, 100 μl of which, was used to inoculate 10 ml 

sterile Luria Broth (LB). On incubation at 25° C for 16 hours, the LB culture tubes 

were centrifuged at 5000 rpm for 15 minutes and the resulting pellet was used for 

DNA isolation using Qiagen DNA Isolation kit. The fourth tail feather from all 

individuals was incubated at 25° C for 5 days, in sterile falcons labelled as (G), 

containing sterile PBS. Following incubation, the tubes were sonicated for 5 minutes 

and after discarding the feathers, were centrifuged at 5000 rpm for 20 minutes. The 

resulting pellet was used for DNA isolation using Qiagen DNA Isolation kit. 

 

Isolate Bacteria 

N Janthinobacterium lividum 

BL Bacillus licheniformis PWD1 

19S Pseudomonas fragi 

7 CFB group bacterium 

E Bacillus sp. 

1B Stenotrophomonas maltophilia 

5 Previous uncultured soil bacterium 

20 Arthrobacter sp 

J Bacillus sp. 

2Bf Actinomycetal soil bacterium 

 

Table 1: Composition of the EB community isolated from soil and used for this experiment. 

 

DNA isolated from all the tubes, along with the genomic DNA of pure cultures of all 

the 10 bacterial strains, was subject to amplification and endonuclease treatment 
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(Lucas et al. 2003). The reaction products were then run on a 2% agarose gel with 

100 bp. DNA marker along with the products of restriction and amplification of 

DNA from pure cultures, to identify and mark the presence or absence of known 

bacteria in all the test profiles.  

 

Bacteria that were detected only in (1) and in both (1) and (2) samples of the same 

individuals together were assigned to the group U. Bacteria detected only in (2) 

samples of individuals were assigned to group A. Bacteria that were absent in both 

(1) and (2) samples, were scored to be found missing and not assigned to any group. 

Bacteria found present in (G) samples were scored as positive. 

 

We counted the number of times every isolate occurred in groups U and A and we 

analysed the data using Student’s t test and Tukey-Kramer’s post hoc test. We 

assume that bacteria found in group U required a smaller force to be dislodged from 

feathers, as compared to those found in group A. Bacterial isolates found to be 

occurring in significant numbers in groups U and A were inferred to be living un-

attached and attached, respectively. The data was analysed for statistical significance 

using JMP 5.0.1. 

Results and Discussion: 
 

We found that EB community is divided between bacteria that live attached to the 

feathers and those that live un-attached (Table 2).  Bacterial isolates 19S 

(Pseudomonas fragi), 7 (CFB group bacterium), E (Bacillus sp.), and 5 (previously 

uncultured bacterium) were found to be present only in group U in all samples. This 

denotes that these isolates live un-attached on feathers, having little attachment with 

the substratum. Isolates N (Janthinobacterium lividum), BL (Bacillus licheniformis 

PWD1), and 1B (Stenotrophomonas maltophilia) were found to be present 

significantly in group U, although in some samples they were also found to be in 

group A. This implies that these isolates live predominantly as un-attached, but can 

attach themselves to feathers.  
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On the other hand, isolate J (Bacillus sp.) was found to be present only in group A, 

denoting that this isolate attaches itself strongly to feathers and requires a strong 

force to break its attachment. Isolates such as 20 (Arthrobacter sp.) and 2Bf 

(Actinomycetal soil bacterium) also were scored as bacteria living attached to 

feathers, though found to be present in group F of some samples. We suggest that 

isolates 20 and 2Bf are capable of attaching to feathers, though more than isolates N, 

BL, and 1B. 

 

The bacteria in the EB community were taken from the same source and share the 

function of feather degradation in vitro, but they behave differently with respect to 

inhabiting their niche in feathers, wherein some will attach to the feathers and others 

will exist un-attached (Table 2). All the EB isolates that attached themselves to 

feathers were gram positive. Previous studies  document the ability of other gram 

positive bacteria to attach and adhere to keratin from different cell types (Cole & 

Silverberg 1986; Tamura & Nittayajarn 2000), while there is no evidence for the 

adherence and attachment of gram negative bacteria to keratin and keratinous 

substrates. Therefore, it needs to be investigated whether the property of keratin 

attachment is related to the gram character of the bacterium and whether this is aided 

by production of specific structures such as adherins.  

 

Attachment to a substrate involves overcoming the free energy of its surface (Bakker 

et al. 2004), which if done by production of specific receptors or other organelles and 

compounds would be an energy dependent task. In such a scenario, the bacteria 

would have to be active on the surface. Our previous work shows that members of 

EB community are active and functional in vitro on feathers, with minimal access to 

water. Combining it with the observation that bacteria can attach to feathers in situ, 

we suggest that such bacteria are active on the feathers using either, the feather 

degradation, or degradation of other compounds on feathers, for their carbon and 

energy needs. Further work, should involve observing the gene expression of bacteria 

found to be living attached to feathers, to test the hypothesis that bacteria living 

attached to avian plumage are active, when present on live birds. 
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Isolate Bacteria 

Tukey - 

Kramer 

p < 0.05 

p Exists as 
Growth 

in vitro 

N 
Janthinobacterium 

lividum 
U > A 0.0002 Un-attached + 

BL 
Bacillus licheniformis 

PWD1 
U > A 0.0002 Un-attached + 

19S Pseudomonas fragi U > A < 0.0001 Un-attached + 

7 CFB group bacterium U > A < 0.0001 Un-attached + 

E Bacillus sp. U > A < 0.0001 Un-attached + 

1B 
Stenotrophomonas 

maltophilia 
U > A 0.0025 Un-attached + 

5 
Previously uncultured soil 

bacterium 
U > A < 0.0001 Un-attached + 

20 Arthrobacter sp A > U 0.0002 Attached + 

J Bacillus sp. A > U < 0.0001 Attached + 

2Bf 
Actinomycetal soil 

bacterium 
A > U 0.0486 Attached + 

 

Table 2: Niche preference of all the isolates of EB community. 
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Chapter 5 
 

Social and asymmetric sexual transmission of 
bacteria in birds 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The study presented in this chapter has been submitted and is in review in Oecologia. 
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Introduction: 
 

In the study of emerging diseases and zoonotic infections, little is known about the 

factors and mechanisms that promote the transmission of pathogens in wild and 

domestic animal populations (Daszak et al. 2000; Harvell 2004; Morens et al. 2004). 

Animals often carry various pathogens that are responsible for high economic losses 

in domestic animals, pose conservation issues in wild populations. Furthermore, 

three -quarters of emerging human diseases are of zoonotic origin (Woolhouse 

2002). Observational evidence in wild bird populations suggests that contact among 

individuals increases bacterial transmission (Faustino et al. 2004).  

 

Epidemiological models have been developed in order to understand the dynamics of 

zoonotic infection and transmission rates (Ludwig et al. 2003). These models have 

shown that an understanding of pathogen dynamics also requires an understanding of 

the physiology and social and sexual behaviors, of vertebrate hosts (Moutou & Artois 

2001; Dhondt et al. 2005). Recent studies in captive mammals suggest that grooming 

behaviors in animals could promote pathogen transmission (Weiss 2003; McGee et 

al. 2004). Most epidemiological studies of emerging diseases focus on the population 

patterns of diseases that rely on non-quantified behavioral mechanisms to explain the 

observed population patterns (Hutchings et al. 2003). Currently, there is a need for 

developing a better understanding of the routes and frequency of horizontal 

transmission and infection of animal pathogens. 

 

Birds are important animal reservoirs of pathogens such as Leshmania, West Nile 

Virus, H5N1 Avian Influenza virus and various bacteria, which can lead to zoonotic 

infections (Webby & Webster 2003). In nature, birds carry significant microbial 

loads on their feathers (Lucas et al. 2005), in their cloaca (Lamberski 2003) and in 

their semen  (Westneat & Rambo 2000), some of which can be potential pathogens. 

 

Given the essential function of feathers for efficient flight, insulation and signalling, 

birds spend a significant proportion of their time preening their feathers (self-

preening) with their beaks, to remove bacteria and other parasites (Moller 1991). 
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This behavior results in the maintenance of plumage condition, ensuring better 

functionality of feathers (Zampiga et al. 2004). Furthermore, birds are also known to 

preen the plumage of co-specifics [allo-preening; (Adkins-Regan & Robinson 1993; 

Pozis-Francois et al. 2004)] and this behavior could promote the horizontal transfer 

of bacteria between individuals. 

  

Avian copulation involves cloacal contact where sperm is transferred from males to 

females. The avian cloaca has the dual function of being the chamber for gamete 

transfer, as well as for excretion (Lombardo 1998) and has been documented to host 

bacterial communities (Stewart & Rambo 2000). The risks of bacterial transmission 

during copulations in birds are expected to be high. It has been proposed that the cost 

of multiple copulations in birds is the risk of exposure to pathogenic cloacal 

microbes, as this can decrease reproductive success and /or survival (Lombardo & 

Thorpe 2000). 

 

Using a captive population of zebra finches (Taeniopygia guttata) sharing the same 

environment and a traceable non-pathogenic soil bacterium Bacillus licheniformis 

PWD1 (Lin et al. 1995) as an experimental model system, we studied the frequency 

of self-infection and transmission of ecto-bacteria (EB) from avian plumage, to their 

gastro-intestinal tracts. We also examined whether the frequency of sexual 

transmission of bacteria in gender biased. We expected that, since males are sperm 

donors, copulations from infected males should have higher transmission rates of 

bacteria, than copulations from infected females. 

  

Methods: 

 

Birds 

Forty-eight zebra finches (Taeniopygia guttata) of the same sex were kept in cages 

(50 X 40 X 35 cm) for more than two months, prior to the experiments. Food and 

water were given to the birds ad libitum. The light and dark cycle was fixed to 16:8 
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hours and temperature and relative humidity was controlled to 25˚C and 60% (± 

S.D.), respectively. 

 

Microbiological techniques 

 

Bacillus licheniformis PWD1 (BL), a non-pathogenic soil bacteria, was procured 

from ATCC (American Type Culture Collection). Primers were designed specific to 

the kerA gene of the bacteria . The primers were designated as kerAfwd (5’ – AAC 

GGG TGT ATT AGG CGT TG – 3’) and kerArev (5’ – TTG TGA AGC TGA AAG 

GTT CG – 3’), which gave an amplification of 482 bp with the DNA of Bacillus 

licheniformis PWD1 (positive control). PCR was done with kerAfwd and kerArev 

primers at annealing temperature of 49˚C, along with a positive and negative control 

(genome of Bacillus licheniformis PWD1; PCR water and sterile buffer used for 

sampling, respectively). The PCR products were analyzed on a 2% agarose gel, 

alongside a 100 bp DNA marker, where the positive control gave an amplification of 

approximately 500 bp and the negative control did not respond. Hence, the presence 

of Bacillus licheniformis PWD1 in a sample was scored as a positive result by the 

presence of an amplified fragment of 500 bp, whereas the absence of BL was scored 

as a negative result, by the absence of amplified product. The numbers of positive 

and negative results were then counted and assigned to respective groups. 

 

The primers were tested with other bacteria in our collection (Lucas et al. 2003) and 

did not give any amplification. The primers were also tested with bacteria on skin, 

plumage and cloacal bacterial samples of the birds prior to the experiment and they 

did not give any detectable amplification.  

 

Ingestion and horizontal transmission 

 

All birds were tested to be BL free before the start of the experiments. Six birds were 

kept as controls and were housed in three separate cages. On nine birds in the 

Treated group, we applied once, a BL suspension of 105 cells/ml [cell density 

estimated using Direct Microscopic Counts (Atlas 1995)] on the plumage of the neck 
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and wings, with a sterile brush. Care was taken not to touch the beak of the birds 

with the brush. Nine Untreated birds were co-housed in pairs with the Treated birds. 

Treated and Untreated birds were handled in a similar way, using new and sterile 

rubber gloves for every bird. 

 

Cloacal bacterial sampling was done immediately before the treatments and 24, 48, 

96 hours afterwards. A sterile pipette tip was rubbed on the surrounding skin of the 

cloaca and was later rinsed in 100 μl sterile PBS for the cloacal skin sampling. A 100 

μl sterile tip was inserted in the cloacae and 100 μl of sterile PBS was used to flush 

sample the cloacae. The skin surrounding the cloacae was cleaned with 10% ethanol 

after the cloacal skin sampling, but prior to cloacal sampling. All the samples were 

then incubated in 10 ml sterile nutrient broth at 37˚C overnight. Cells were then 

harvested and their DNA isolated using Qiagen DNeasy tissue kit. This DNA was 

then used for PCR with the primers specific for kerA gene. The skin surrounding 

cloacae of all the birds (n = 48) and cloacal samples from all the control birds (n = 

12), were tested to be free of BL. 

 

 

Sexual transmission 

 

Males and females were randomly assigned to the "recipient" (12 males and females) 

and the "donor" group (12 males and females).  Before the experiment, birds were 

tested for the absence of Bacillus licheniformis PWD1 (BL), by sampling their cloaca 

with 25 μl of sterile PBS buffer, using a sterile micropipette. Samples, from wings, 

neck and the soil of their cages, were adsorbed on sterile agarose slabs. After 

culturing these samples overnight at 37° C, in nutrient media and harvesting their 

DNA, we tested them for presence of kerA gene. All the samples showed no 

amplification for the BL specific gene primers and hence BL was known to be absent 

in all the samples before the experiments were carried out.  
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For the experiment, we injected 25 μl of 105 cells/ml of BL as a tracer [estimated by 

Direct Microscopic Counts (Atlas 1995)], with a micropipette in the cloacae of the 

“donor” bird (of both sexes). We placed the “donor” bird immediately in a cage, 

where the "recipient" bird (of the opposite sex) had been placed 5 minutes before 

introducing the "donor" bird. The mating was video-recorded and the two birds 

where allowed to mate only once. The time interval between the release of the bird to 

the copulation was noted. The pairs were separated immediately after the first mating 

(mating time interval range: 31 – 346 seconds) and the cloacae, beaks and wing 

feathers of recipients and donors were sampled and tested for the presence of BL. A 

positive sexual transmission of bacteria was determined by the presence of BL in 

cloacae (and only the cloacae) of the recipient after a single copulation. The data was 

analyzed using the software JMP 5.1.  

 

Results and Discussion 
 

Ingestion and horizontal transmission of bacteria: 

 

After applying BL on feathers of zebra finches, we found that this ecto-bacterium is 

ingested by the birds and infests their digestive tract (Fig 1 a). The oral route of 

infection also led to the contamination of the cloacae (and hence the gut) of the 

untreated individual sharing the same cage (Fig 1 a), possibly through allo-preening 

(Adkins-Regan & Robinson 1993; Pozis-Francois et al. 2004). In contrast to 

controls, a significantly high proportion of zebra finches had their guts infested with 

BL, contracted from their own plumage (self-infected), or from the plumage of 

another co-habited (allo-infected) individual (Fisher test: Self Infection: n = 9, p = 

0.0004; Allo-Infection: n = 9, p = 0.002). After 48 hours of treatment, none of the 

control individuals were contaminated by BL, whereas we still detected BL in the 

cloaca of a few birds from the treated and untreated individuals. In all the 

individuals, BL was found to be absent from all samples 96 hours after the treatment 

(Fig. 1 a), revealing that, at the concentrations used in this experiment, BL led to 

transient gut infestations. 

 60



  
 

 

 

Here, we show that bacteria present on the plumage will be ingested and infest the 

gut of the host (Fig. 1 a). We propose that since bacteria were neither applied, nor 

found outside the cloaca of the birds, the ingestion of BL was probably mediated by 

the hosts’ self-preening activities. Our results suggest that self-preening of the 

plumage will lead to risks of contamination by ecto-bacteria present on feathers.  

 

Our study also shows that ecto-bacteria on the plumage of one bird will be rapidly 

transmitted to another bird sharing the same spatial location (Fig. 1 a). Birds in close 

contact commonly engage in social behaviors like allo-preening (Adkins-Regan & 

Robinson 1993). Hence, in our study allo-preening could have led to the transmission 

of bacteria among birds sharing the same environment. It has been proposed that 

close contact and social interactions, among individuals living in the same group 

could lead to horizontal transmission of bacteria (Faustino et al. 2004). Our study 

provides evidence for fast horizontal transmission and gut contamination by bacteria. 

This effect is likely to be important in wild bird populations, which harbour a variety 

of bacteria are found on their plumage (Lucas et al. 2005). 

 

Sexual transmission of bacteria: 

 

After infecting the cloaca of males and females with BL, we found that after a single 

copulation the sexual transmission of bacteria between sexes was significantly more 

frequent when infected males copulated with uninfected females, than vice versa (Fig 

1 b; Fisher exact-test, n = 24, p = 0.0006). This asymmetry in frequency of sexual 

transmission of BL between sexes was expected as the males are transferring sperm 

to the females (Westneat & Rambo 2000). In addition, we found that females can 

also transmit bacteria at a certain rate to males, suggesting that sexual transmission 

of pathogens can also take place through physical contact of the two cloaca. As 

proposed, sexual transmission of pathogens has thus the potential to affect the 

evolution of mating patterns and sexual behaviors (Sheldon 1993). 
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Figure 1: Horizontal and sexual transmission of Bacillus licheniformis PWD1 (BL) in 

zebra finches 

a. Proportions of zebra finches with BL gut infestation contracted from BL placed on their 

feathers (self-infected) or on the feather of another individual (allo-infected). BL was not 

applied on the feathers of control birds. 

b. Proportions of zebra finches contracting BL after a single mating with birds from the 

opposite sex that had been experimentally infected.  
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Results from our two experiments suggest the existence of a potential transmission 

link between the oral, faecal and genital routes of pathogens in birds. In this route, 

infectious micro-organisms present on the feathers can gain access to avian guts 

through preening and can get transmitted between individuals by allo-preening and 

sexual contact. Many wild birds live in large social groups, where horizontal 

bacterial transmission has been proposed to increase with group size (Spilling et al. 

1999). Our study suggests that external contamination in association with social 

contacts and copulations can promote rapid dispersal and horizontal transmission of 

pathogens among host population. 

 

Prevalence of avian infectious diseases is known to have seasonal and yearly 

dynamics and social and other behaviors have been hypothesized to be a factor in 

these dynamics (Altizer et al. 2004). Our data suggests that the evolution of self and 

allo-preening rates and mating frequencies are likely to be shaped in response to 

bacterial loads present on feathers and the risks of horizontal transmission of 

pathogens. In absence of experimental epidemiological data on wild vertebrates, such 

experimental models of sexual transmission could be used to quantify the behavioral 

factors shaping the dynamics of emerging diseases. 

 

Summary: 
 

Understanding the behavioral mechanisms that mediate pathogen transmission in 

social hosts like birds could provide the empirical bases for explaining the 

epidemiological dynamics of zoonotic infections. By experimentally infecting the 

feathers and cloaca of captive zebra finches (Taeniopygia guttata), with the 

bacterium Bacillus licheniformis PWD1 (BL), we examined the self contamination 

and horizontal transmission of birds sharing the same environment. We also 

examined whether sexual transmission of bacteria is gender biased. Our results show 

that bacteria placed on the plumage of the birds lead to self and allo-infections, 

possibly through preening behaviors. Furthermore, we found that sexual transmission 

of the bacteria was asymmetrical, being higher when males are the transmitting sex. 
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Our results suggest the existence of an oral – faecal – genital route of transmission 

for avian hosts, wherein bacteria on feathers get ingested through self and allo-

preening. Gut bacteria can then be transmitted sexually with transmission rate being 

higher when males are the infected sex.  
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Chapter 6 

 

Conclusion 
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This thesis documents the interactions between the load and activity of ecto-bacteria 

and their hosts’ morphology, physiology, and behavior. It also demonstrates the 

importance of social and sexual behaviors of birds in the transmission of potential 

pathogens within a population. 

 

Chapter 2 supports the hypothesis, that enhanced loads of a community of feather-

degrading ecto-bacteria (EB: Ecto-Bacteria), which comprise the normal flora of 

birds, can significantly alter the hosts’ sexually selected traits. Results demonstrate 

that an increase in the EB load of zebra finches significantly reduces the intensity of  

males’ bill color, a sexually selected trait (Zann 1996). They also significantly reduce 

the ability of males to enhance their bill color, in response to mating opportunities. 

Although the EB treatments do not elicit a cellular immune response from hosts, 

results indicate the presence of a carotenoid based response afforded against these 

symbionts. The source of carotenoids to mount such a response was found to be 

different between the sexes, with females recruiting circulating plasma carotenoids 

and males using carotenoids stored in their bills, effecting a change in intensity of 

males’ bill color. On EB treatments, the enhanced bacterial load was accompanied 

with a decrease in the uropygial gland volume. The uropygial gland secretions (preen 

oil) possess anti-microbial properties (Shawkey et al. 2003). This suggests that an 

increased secretion of preen oil, as a defense response to EB, leads to a decrease in 

uropygial gland volume over time. Such a reduction in uropygial volume can alter 

preen oil contents and reduce preen oil secretion over time, changing the plumage 

condition and attractiveness of birds. Altogether, these results indicate that the 

observed reduction in condition-dependent morphological traits, is effected by a 

trade-off between investment in morphological displays (such as beak color 

intensity) and in defense response to EB (carotenoid and preen oil based response). 

Hypothetically, the ingestion of EB while preening and their subsequent detection by 

intestinal immune tissues can trigger such a trade-off. Alternatively, EB activity on 

the feathers and skin of birds could mediate their detection and trigger a carotenoid 

response from their hosts. 
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Chapter 3 studies the effect of EB community on male mate choice in birds, 

following Chapter 2 results, where enhanced bacterial loads did not alter mate choice 

traits (body mass and intensity of bill color) in females. Chapter 3 results show that 

male mate choice varies with male size. They indicate that the bacterial load of 

females also affected the male mate choice, wherein larger males chose females with 

enhanced bacterial load and smaller males preferred females with lower bacterial 

load. This suggests that males of different sizes use different male mate choice 

strategies, while choosing between females with differing bacterial loads but similar 

morphological displays. I speculate that larger males choose for females with better 

tolerance to EB, implying preference for females with un-altered morphological 

displays despite enhanced bacterial loads. On the other hand, smaller males, with 

limited mating possibilities, would further reduce their mating opportunities on 

infection with microbes. Hence, given a choice, smaller males would avoid mating 

with infected females, thus avoiding infection to sustain their body condition and 

long-term mating opportunities. Results support this speculation, as they demonstrate 

smaller males avoiding proximity to females with higher bacterial load. Males can 

also perceive females with un-altered morphological displays and lower bacterial 

load, to have better microbial clearance rates. Together, this implies that the smaller 

male’s strategy is to avoid females with higher bacterial load and choose for females 

with a better microbial clearance rate, supporting the case for their choice of females 

with un-altered bacterial loads. Results also suggest that males detect a difference in 

the bacterial load of females, without the EB altering females’ condition-dependent 

morphological traits measured in this experiment. Identifying the mechanism for 

such detection requires further work. Hypothetically, the males could detect an effect 

of EB on some behavioral traits (such as song, courtship displays) of females. Such a 

change could mediate the detection of females’ bacterial loads. 

 

Taken together, Chapters 2 and 3 document the effect of EB on the behavior and 

morphology of birds. Chapter 4, on the other hand, documents the effect of avian 

morphology on the activity and growth of EB. The experiments tested the effect of 

feather melanin on the activity and growth of EB community in different conditions 

in vitro and found that the presence of melanin lowers bacterial growth and activity. 
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They also demonstrate the ability of EB community to degrade feathers outside 

broth. These results also help support speculations for a role for keratinolytic bacteria 

in the evolution of melanin based feather coloration. Additional experiments 

document that some EB isolates attach themselves to feathers on live birds, whereas 

others live freely on them. Activity of EB on feathers in minimal water conditions 

and their in situ attachment to feathers leads to the speculation of EB isolates being 

active on live birds. Such active EB can effect feather degradation and cause 

deterioration in plumage quality, a sexually selected trait in hosts. This could in turn, 

mediate the recognition of females with enhanced EB presence, as reported in 

Chapter 2. In addition, all the EB isolates found attached to feathers were found to be 

gram positive. Hence, it should be tested whether attachment to feather keratin is a 

trait linked to the gram character of a bacterium. 

 

The effect of symbionts on host body condition and mate choice, has been largely 

studied using pathogens and obligate parasites (Blanco et al. 1999). Contrasting with 

the stark differences caused by the presence of parasitic symbionts and pathogens 

(Latta 2003; Navarro et al. 2003; Sol et al. 2003), experimental manipulation of EB 

loads caused alterations in condition-dependent morphological traits and physiology 

of hosts without causing a change in body mass or cellular immune response of the 

hosts. The EB community used to treat hosts in Chapters 2 and 3 had a cell density 

similar to that of pond water frequented by birds (Al-Harbi 2003). Both the elevated 

and the un-altered EB load of birds were found to occur in wild (Burtt & Ichida 

1999; Lucas et al. 2005). This implies that the observed alterations in hosts’ 

morphology, physiology, and behavior, mediated by EB, could also occur in wild. 

Taking together Chapters 2, 3, and 4, we speculate that hosts’ body condition is 

dependent on symbiont load and that the symbionts’ activity and load depend on host 

morphology. In addition, we observe that the hosts’ response to symbionts depends 

on hosts’ physiology, which in turn depends on symbiont load. This implies that the 

hosts body condition and symbiont load and activity could be linked in a loop, 

wherein hypothetically, there should be no conflict of interest. 
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Finally, Chapter 5 suggests that preening (self-cleaning) behavior of birds aids EB 

access the avian gut; whereas allo-preening, a social interaction, is implicated in the 

horizontal transmission of EB. Since pathogens are often present on the plumage of 

birds (Hubalek et al. 1995; Nuttal 1997), such self-cleaning and social interactions 

can act as the route of infection and horizontal transmission of pathogens. These 

results also support the prediction from Chapter 2, that preening aids the EB access 

avian gut. Possibly, such ingestion of bacteria could also help hosts detect and 

respond to some symbionts, using intestinal immune tissues, apart from actively 

reducing ecto-bacterial load. Experiments also suggest that symbionts ingested 

during preening can be sexually transmitted, with the cloacae being the common 

chamber for faecal and genital exudates, implying a linked oral – faecal – genital 

route of transmission. Results demonstrate that sexual transmission is asymmetric 

between the sexes, with males sexually transmitting bacterial symbionts significantly 

more frequently than females. The risk of sexually transmitted pathogens has been 

suggested to drive the evolution of mating behaviors (Boots & Knell 2002). Together 

with Chapter 5, they suggest that bacterial loads are likely to shape the evolution of 

self-maintenance, social interactions, and mating behaviors and frequencies, due to 

the risks of horizontal transmission of pathogens. This result is significant to 

epidemiology of wild and zoonotic diseases, as it implicates important self-

maintenance, social, and sexual (intra-specific) interactions of birds in the dispersal 

of pathogens. In addition, this study proposes the use of similar animal models in 

investigating the social and behavioral factors shaping the epidemiological patterns 

of emerging diseases. 

 

In review, I conclude that this thesis has helped understand the effects of 

keratinolytic bacteria on their hosts. It has done so by contributing to establish a link 

between the load and activity of these symbionts and some morphological, 

physiological, and behavioral traits of their hosts. This work suggests that the hosts’ 

sex determines the mechanism of its defense response to symbionts. The thesis also 

sheds light on the effect of these symbionts on mate choice of birds. Although these 

experimental results do not clearly indicate the effect of such symbionts on the 

fitness of their hosts, we predict that these bacteria are opportunistically parasitic 
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symbionts of birds, as they reduce condition-dependent morphological and 

physiological traits and evoke hosts’ response to their increased presence. This thesis 

implicates social and sexual behaviors of birds in the transmission of bacterial 

symbionts, suggesting that hosts’ behavior negotiates pathogen dispersal. It also 

suggests a linkage between the faecal – oral and genital routes of pathogen 

transmission, in birds. Effectively, it provides us with an experimental system, which 

could test existing epidemiological models of transmission of avian pathogens.  
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Birds harbor a variety of bacteria on their plumage, some of which can degrade 

feathers in vitro. Whether these keratinolytic bacteria are active on live birds and can 

effect feather degradation on birds is debatable. The effect of such bacteria on the 

body condition and behavior of birds, is unknown. Using a community of feather-

degrading bacteria (EB), we investigate the interaction between the activity and load 

of such bacteria, on the morphology, body condition, and behavior of zebra finches 

(Taeniopygia guttata).  

In Chapter 2, we find that the elevated loads of such microbes lead to a reduction in 

the expression of morphological traits, such as male bill color (a sexually selected 

trait) and uropygial gland volume, without reducing body mass, or evoking a cellular 

immune response. We also suggest the presence of a carotenoid based defense 

response in hosts, to such elevated loads of microbes and document a sex-based 

difference in the source of carotenoids used for such a response. In Chapter 3, we 

investigated the effect of EB loads on male mate choice of zebra finches, wherein 

male choice of females with elevated and un-altered bacterial loads, varied with male 

size. We found that larger males preferred females with higher bacterial load and 

smaller males preferred females with lower bacterial load. Chapter 4 demonstrates 

that the presence of melanin in feathers reduces the growth and activity of the 

community of feather-degrading bacteria (EB) and that the EB community can effect 

feather degradation in humid conditions, without broth. Additional results also 

demonstrate that the EB community consists of bacteria that can attach themselves to 

feathers on live birds and those that can live freely on avian plumage. Finally, 

chapter 5 demonstrates that the self-maintenance, social and sexual behaviors of 

birds are implicated in the infection and horizontal transmission of bacteria. It also 

suggests a linked oral – faecal – genital mode of transmission of pathogens in birds. 

These results demonstrate that differential loads of normal flora of vertebrate hosts 

can effect changes in their morphology and behavior. They also shed light on the role 

of feather-degrading bacteria in the evolution of melanin polymorphism in birds and 

suggest that bacteria can be active on live birds. This thesis also highlights the 

importance of social and, sexual behaviors of birds, in epidemiology. 
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Les Oiseaux ont dans leur plumage diverses bactéries dont certaines dégradent les 

plumes in vitro, néanmoins. Il n'est pas clair, au vu de précédentes études, si ces 

bactéries kératinolytiques sont actives sur des oiseaux vivants, et si celles-ci 

dégradent effectivement le plumage de leur hôte. L'effet de ces bactéries sur la 

condition corporelle ainsi que le comportement des oiseaux n'est pas connu. A l'aide 

d'une communauté de bactéries dégradant les plumes (EB), non pathogènes, nous 

examinons les interactions entre l'activité et la charge bactérienne sur la 

morphologie, la condition corporelle et le comportement du diamant mandarins 

(Taeniopygia guttata). 

Dans le chapitre 2, nous montrons qu'une charge élevée de ces microbes mène à une 

réduction de l'expression de certains traits morphologiques, tels que la couleur du bec 

chez le mâle (un trait soumis à sélection sexuelle), ainsi que le volume de la glande 

uropygienne, sans qu'il y ait une réduction de la masse corporelle, ni déclenchement 

d'une réponse immune cellulaire. Nos données suggèrent la présence d'une défense 

chez l'hôte à des charges élevées de bactéries basée sur la présence de caroténoïdes. 

Nous montrons, de plus une différence liée au sexe dans la source des caroténoïdes 

utilisé pour cette réponse. Dans le chapitre 3 nous examinons l'influence de la charge 

bactérienne EB sur le choix des mâles chez le diamant mandarins. Des femelles avec 

une charge bactérienne normale et augmentée sont choisies par les mâles et ce choix 

varie avec la taille des mâles. Nous avons mis en évidence que les grands mâles 

préfèrent les femelles avec une charge bactérienne plus élevée. Les petits mâles 

préfèrent les femelles avec une charge bactérienne réduite. Le chapitre 4 démontre 

que la présence de mélanine dans les plumes réduit la croissance et l'activité de la 

communauté de bactéries dégradant le plumage (EB), et que cette communauté EB 

peut dégrader les plumes dans des conditions humides, sans milieu de culture liquide. 

De plus nous montrons que cette communauté consiste en des bactéries qui peuvent 

s'attacher sur les plumes d'oiseaux vivants ainsi que des bactéries libres. Pour finir 

nous montrons dans le chapitre 5 que la maintenance corporelle, l'interaction sociale 

et le comportement sexuel de ces oiseaux sont impliqués dans l'infection et la 

transmission horizontale de ces bactéries. Nos données suggèrent une transmission 

orale-fécale-génitale des pathogènes chez les oiseaux. 
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Ces résultats montrent que des charges différentes de la flore bactérienne habituelle 

et non pathogène de vertébrés peuvent affecter leur morphologie et leur 

comportement. Ils éclaircissent également le rôle des bactéries dégradant les plumes 

dans l'évolution du polymorphisme mélanique chez les oiseaux et suggèrent que ces 

bactéries peuvent être actives sur des oiseaux vivants. Cette thèse souligne également 

l'importance du comportement social et sexuel des oiseaux dans l'épidémiologie. 
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