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Abstract
Genome-wide association studies (GWASs) have been successful in discovering replicable SNP-trait
associations for many quantitative traits and common diseases in humans. Typically the effect sizes of SNP
alleles are very small and this has led to large genome-wide association meta-analyses (GWAMA) to
maximize statistical power. A trend towards ever-larger GWAMA islikely to continue, yet dealing with
summary statistics from hundreds of cohorts increases logistical and quality control problems, including
unknown sample overlap, and these can lead to both false positive and false negative findings. In this study
we propose a new set of metrics and visualization tools for GWAMA, using summary statistics from cohort-
level GWASs. We proposed apair of methods in examining the concordance between demographic
information and summary statistics. In method I, we use the population genetics F, statistic to verify the
genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the
GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be
detected. In method 11, we conduct principal component analysis based on reported allele frequencies, and is
able to recover the ancestral information for each cohort. In addition, we propose a new statistic that uses the
reported alelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity
between pairs of cohorts. Finally, to quantify unknown sample overlap across all pairs of cohorts we propose
amethod that uses randomly generated genetic predictors that does not require the sharing of individual-
level genotype data and does not breach individual privacy.
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I ntroduction
Genome-wide association studies (GWA Ss) have been successful in discovering SNP-trait associ ations for
complex traits’. To elucidate genetic architecture, which requires maximized statistical power for discovery
of risk alleles of small effect, large genome-wide association meta-analyses (GWAMA) are tending towards
ever-larger scale that may contain data from hundreds of cohorts. At the individual cohort level, GWAS
analysisis often based on various genotyping chips and conducted with different protocols, such as different
software tools and reference populations for imputation, inclusion of study specific covariates and
association analyses using different methods and software. Although solid quality control analysis pipelines
of GWAMA exist?, these analyses focus on quality control (QC) for each cohort independently. With ever-
increasing sizes of GWAMA thereis a need for additional QC that goes beyond the cohort-by-cohort
genotype-level analysis performed to date.

In this study, we propose a new set of QC metrics for GWAMA. In contrast to previous QC metrics, our
approach explores the genetic and QC context of the all cohortsin GWAMA together rather than by treating
them one at atime. These metricsinclude

(i) agenome-wide comparison of allele frequency differences across cohorts or against a common reference
population

(it) principal component analysis for reported allele frequencies

(iii) apairwise cohort statistic that uses allele frequency or effect size concordance to detect the proportion
of sample overlap or heterogeneity

(vi) an easy to implement analysis to pinpoint each between-cohort overlapping sample that does not require

the sharing of individual-level genotype data.

All these applications assume that there is a central analysis hub where summary statistic data from GWAS

are uploaded for each cohort. In addition, these metrics reveal information of interest other than merely QC.

Materialsand Methods
Overview of materials
Cohort-level summary statistics. The GWAS height GWAS summary statistics were provided by the
GIANT Consortium and were from 82 cohorts (174 separate files due to different ways a cohort was split
into different sexes, different disease statuses) representing a total of 253,288 individuals, and nearly 2.5
million autosome SNPs imputed to the HapMap2 reference®. The Metabochip summary statistics were for
body massindex (BMI) from 43 cohorts (120 files due to different ways a cohort was split into different
sexes, different disease statuses) representing atotal of 103,047 samples from multiple ethnicities with about
200,000 SNPs genotyped on customised chips*°. For convenience, we consider each file acohort. All the
summary statistics have already been cleaned using established protocols for GWAS meta-analysis®.
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03
.04 1000 Genomes Project samples. 1000 Genomes Project (1K G) reference samples® were used as the

.05  reference samples for calculating F,,. When assessing the global-level F,, measures, Y oruba represent

.06  African samples (YRI, 108 individuals), Han Chinese in Beijing represent East Asian samples (CHB, 103
.07 individuals), and Utah Residents with Northern and Western European Ancestry represent European samples
.08 (CEU, 99 individuals) were employed as the reference panels. For calculating within-Europe Fy,, CEU,

.09  Finnish (FIN, 99 individuals), and Tuscani (TSI, 107 individuals) were employed to represent northwest,

.10 northeast and southern Europeans, respectively. For analyses using a whole European panel, CEU, FIN, TSI,
11  GBR (British, 91 individuals), and IBS (Iberian, 107 individuals) were pooled together as an “averaged”

.12 European reference.

13

14  WTCCC GWASdata. WTCCC GWAS data has 2,934 shared controls for 7 diseases with atotal of 14,000
15  cases’. Individual GWAS was conducted for each disease using PLINK®, and their summary statistics used
16 toestimate Ay, (Seetext below). WTCCC GWA S data were also used for demonstrating pseudo profile
17  scoreregression (see text below).

18

.19  Simulated cohort-level summary statistics. M independent loci were generated for cohort-level summary
20  satistics. Each locus had allele frequency p;, which was sampled from a uniform distribution ranging from
21  0.1to0 0.5, and had genetic effect b;, sampled from a standard normal distribution N (0,1). After rescaling,

22 IM.2p;(1 —p)b? = h%. p and b were treated as true parameters. For a particular cohort with n samples, its

1

——— All cohorts
2npi(1-py)

23 B;~N(p;, %), b;~N(b;, — ). and the sampling variance for biisof =

2np;i(1-p;
24 were assumed to share common genetic architecture, and differences were only due to genetic drift, alele
25  frequencies and sampling variance of genetic effects.

26

27  Overview of the methods

28  F-based genetic distance between cohorts. For a cohort, its F, with reference cohorts, such as CEU, YRI,
29 and CHB, iscalculated. Given those three F,, values, the coordinate of this cohort can be uniquely projected
30 into the reference equilateral that has CEU, YRI, and CHB &t its corners.

31

32 Principal component analysis for cohort-level alleefrequencies. A genetic relationship matrix for

33 cohorts can be constructed based on received allele frequencies. Principal component analysis (PCA) can be
34 implemented on the genetic relationship matrix. The projection of the cohorts into PCA space can reveal the
35  genetic background and relative geographical distance between cohorts.

36

37  Aperq fOr detecting over lapping samples. In concept, A,,,.., resembles A

g¢» Which indicates population

38  dratification for aGWAS’, but A,,,,, measures the proportion of overlapping samples between a pair of

4
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cohorts. Based on reported genetic effects and their sampling variance, 4,,,.., can be constructed for a pair of
cohorts and follows a chi-square distribution with 1 degree of freedom. A,,,.., Will be closeto 1 when there
is no overlapping samples, smaller than 1 when there are overlapping samples, and greater than 1 when there
are heterogeneity between a pair of cohorts. For GWAMA over asingle trait across method, we assume

heterogeneity is zero.

Pseudo profile scoreregression for pinpointing overlapping samples/relatives. Pseudo profile score
regression (PPSR) provides a framework for pinpointing the overlapping samples/rel atives between cohort
without sharing genotypes. Each GWAS analyst generates pseudo profile scores (PPS) for each sample on a
set of loci, which are chosen by a GWAMA central analyst. If the similarity metric of PPS for a pair of
cohorts reaches a similarity threshold, say 1 overlapping samples and 0.5 for first-degree relatives, then
overlapping samples/relatives are found. PPSR can have a controlled type-l and type-1 error ratesin
pinpointing overlapping samples, and also can reduce the comprise of privacy. PPSR is an enhanced version

of Generypt™®, a previous method in pinpointing overlapping samples.

The technical details of these four methods can be found in the Supplementary notes.

Results
Population genetic quality control analysisusing F g,
Allele frequency differentiation among populations reflects population characteristics such as demographic
past and geographic locations™*2. In GWAMA only summary statistics such as allele frequencies are
available to the central analysis hub, and so it is not possible to run principal component analysis for each
cohort that requires individual-level data. Therefore it is difficult to quantify genetic distance between
cohorts or to areference in order to identify population outliers. Outlier cohorts can be due to real
differencesin ethnicity or mistakes in the primary analysis prior to uploading data to the GWAMA analysis
hub. Gross differentiation in allele frequencies at specific SNPs between GWAMA cohorts and a reference
(such as 1000 Genomes Project, denoted as 1KG)° are part of standard QC protocols? but checking for more
differentiation than expected across the entire genome is not usually part of the QC pipeline. We propose
that a genetic distance inferred from F,, which reflects genetic distance between pairwise populations, is a
useful additional QC statistic to detect cohorts that are population outliers. Using the relationship between

13-15

F,, and principal components™, our F,, Cartographer algorithm can be used to estimate the relative

genetic distance between cohorts (Supplementary notes, and Supplementary Fig. 1).

We applied the F;, metric to the GIANT Consortium body mass index (BM1) M etabochip cohorts (55 male-
only cohorts, 55 female-only cohort, and 10 mixed-sex cohorts; for convenience, we called each file a

cohort), which were recruited from multiple ethnicities®, such as Europeans, African Americansin The

5
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.75  Atherosclerosis Risk in Communities Study (ARIC) and cohorts from Jamaica (SPT), Pakistan (PROMISE),
.76  Philippines (CLHNS) and Seychelles (SEY'). For each Metabochip cohort, we sampled 30,000 (see Online
.77  method for details) independent markersto calculate F,, values with each of three 1KG samples (CEU, CHB,
.78 and YRI, respectively). For validation of the method, we also calculated F;, values against the 1IKG

.79  Japanese (JPT, Japanese in Tokyo, Japan), Indian (GIH, Gujarati Indian in Houston, US), Kenyan (LWK,
.80  Luhyain Webuye, Kenya) and European samples (IBS, Iberian populations, Spain; FIN, Finnish, Finland;
.81 TSI, Toscani, Italy, and GBR, British in England and Scortland, GBR), to see whether the known genetic
.82 origins of those cohorts can be recovered.

.83

.84  According to the origins of the samples, each Metabochip cohort showed a different genetic distance

.85 spectrum to the three reference populations (Fig. 1a). The JPT and Philippine cohorts had very small genetic
86  distancesto CHB, as expected, but large to CEU and Y RI; however, the Pakistan cohorts showed much

.87  closer genetic distances to CEU than to CHB and YRI, indicating their demographic history. The cohorts
.88  sampled from Jamaica, Seychelles, Hawaii, and the African American ARIC cohort had small genetic

.89 distancesto YRI, but large distances to CHB and CEU. For most European cohorts, as expected, the

90 distancesto CEU were very small compared with those to CHB and YRI. Given their relative distancesto
91 CEU, CHB, and YRI, using our F,, cartographer algorithm (Supplementary notes, and Supplementary
92  Fig. 1), the cohorts were projected into a two-dimensional space, called F;, derived principal components
93 (Fp¢) space, constructed by YRI, CHB, and CEU as the reference populations (Fig. 1b). The allocation of
94  the cohortsto the Fp Space resembles that of elgenvector 1 against eigenvector 2 in principal component
95  analysis (PCA)™, and issimilar to those observed in PCA using individual-level GWAS data for populations
96 of various ethnicities such as in 1KG samples®. Therefore, our method to place cohorts in geographical

97  regions from GWAS summary statistics works well a a global-population scale.

98

99  Wenext investigated whether our genetic distance method works at a much finer geographic scale. It is

'00  known that using individual-level data, principal component analysis can mirror the geographic locations for
'01  European samples™. Here, we analyzed the 103 GIANT European-ancestry Metabochip cohorts (48 male-
!02  only cohorts, 47 female-only cohorts, and 8 mix-sex cohorts) for fine-scale F,, genetic distance measure by
'03  using the CEU, FIN, and TSI reference populations, which represent northwest, northeast, and southern

'04  European populations, respectively. For each of the GIANT European-ancestry Metabochip cohorts, F,, was
'05  calculated relative to each of these three reference populations and showed concordance with the known

06  origin of the samples (Fig. 1c). For example, cohorts from Finland and Estonia were close to FIN but distant
!07  to TSI, cohorts from South Europe such as Italy and Greece had small genetic distance to TSI; and cohorts
08  from West European nations had small genetic distance to CEU. Similarly, the projected origin for each

!09  European-ancestry Metabochip cohort resembles their geographic location within the European map as
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10  expected (Fig. 1d). Therefore, our QC measure based upon population differentiation also works at afine
11 scale.

112

'13  Wenext applied the F,, genetic distance measuresto 174 GIANT height GWAS cohorts (79 male-only

'14  cohorts, 76 female-only cohorts, and 19 mixed-sex cohorts; excluding Metabochip data), which were all of
'15  European ancestry imputed to the HapMap reference panel®. Given the three F,, valuesto CEU, FIN, and
16 TSI (Fig. 2a), the geographic origin for each cohort can be inferred as for the GIANT BM| M etabochip data
17  (Supplementary notes). The projected coordinates of each GWAS cohort matches its origin very well (Fig.
18  2b). For example, a Canadian cohort, the Quebec Family Study (QFS), was closely located to DESIR, a

'19  French cohort, consistent with the French genetic heritage of the QFS'®. In addition, we also observe

20 complexity dueto mixed samples from different countries. For example, the DGI/Botnia study had samples
21 recruited from Sweden and Finland, and its inferred geographic location is in between of the Swedish

122 cohorts and Finnish cohorts'’. We also note that for the MIGEN consortia cohorts, which are from Finland,
23 Sweden, Spain and the US, the same allele frequencies were reported for all their sub-cohorts, and all

24 cohorts were alocated to southern Europe (very closely located to 1KG IBS cohort; Fig. 2b and

125  Supplementary Fig. 2). Asthe allele frequencies, used in QC steps to eliminate low quality loci, were not
126 directly used in estimating genetic effectsin the GWAMA, the reported allele frequenciesin MIGEN have
'27  not impacted on the published GWAMA results®.

28

'29  Next, we show that F,, can detect populations that have a different demographic past. Using all 1KG

30  European samples as the reference panel (that is, an “averaged” European reference panel), most cohortsin
'31  GIANT had F,, < 0.005 with this average, which agrees with previously reported results using individual
'32  level datafrom European nations™. A few cohorts showed large F,, such as the AMISH cohort with

33 F,, = 0.018, and the North Swedish Population Health Study (NSPHS)*® with F,, = 0.014. Consistent with
'34  these results, both these populations are known to have been genetically isolated (Supplementary Fig. 3).
135

36 Principal component analysisfor allele frequencies

137  Itiswell established that given individual-level data principal component analysis (PCA) can reveal the
'38  ancestral information for samples®. Given the same allele frequencies as used for F;,-based analysis above,
39  we conducted PCA for allele frequencies, denoted as meta-PCA. In meta-PCA each cohort was analogously
40 considered as an “individual”. For example, 120 Metabochip cohorts were considered as a sample of 120
41 “individuals’. Although the inferred ancestral information was for each cohort rather than any individuals,
42 implementation of meta-PCA was the same as the conventional PCA (Supplementary Notes).

43

44 Meta-PCA was tested with 1K G samples over nearly 1 million SNPs. The cohort-level allele frequencies
'45  were calculated first for 26 1KG cohorts, and meta-PCA was conducted. The projected cohorts were

7
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'46  consistent to their genetic origin (Fig. 3). In contrast, conventional PCA was also conducted on 1KG

47  individual genotypes directly, and the mean coordinates for each cohort was then calculated. Asillustrated in
48  Fig. 3, these two techniques resulted in nearly identical projection for 1KG, and the correlation between

49  cohort coordinates remained consistently high for the first eight eigenvectors, R? > 0.8. It indicated that
'50 meta-PCA could reveal genetic background for each cohort as precise as that based on individual-level data.
’51

52 We applied meta-PCA to 120 Metabochip cohorts for nearly 34 thousand common SNPs between

'53  Metabochip and 1KG variants, with the inclusion of 10 1KG cohorts (East Asian: CHB, JPT; South Asian:
'54  GIH; European: CEU, FIN, GBR, IBS, TSI; African: LWK, YRI) as the reference cohorts. Consistent with
!55  demographic information, the inferred ancestral information of each cohort agreed well with demographic
'56  information. For example, PROMISE (Pakistan) located very closeto GIH, CLHNS (Philippines) closeto
'57  CHB and JPT, ARIC (African American) and SPT (Jamaican) closeto YRI and LWK, and the European
'58  cohorts closeto CEU and FIN (Fig 4).

'59

60  Weaso applied meta-PCA to 174 GIANT height GWAS cohorts for nearly 1M SNPs, with the inclusion of
61 10 1KG reference cohorts. At the global-population level, the 174 cohorts were all allocated close to CEU
62 and FIN, consistent with their reported demographic information (Fig. 5). For fine-scale inference, we

63 conducted meta-PCA again but with the inclusion of the five European samples. As demonstrated, the

64  resolution of the inferred relative location between European cohorts reflected their real geographical

'65  locations, as previously observed using individual-level data™.

166

67  Theseresults were consistent to what observed from E, . as described in the last section, and also agreed well
'68  with demographic information. So, based on the reported allele frequencies, the demographic information
'69  could be examined by meta-PCA method.

70

71 Anmera t0 detect pairwise cohort heterogeneity and sample overlap

'72  For asingle cohort GWAS, A, provides atool for assessing average trait-SNP associations in GWAS’, and
73  an vaue departing from 1 may indicate undesired phenomena such as population stratification. In this study,
74  we use the summary statistics for apair of cohortsto calculate A,,..,, @ metric that examines heterogeneity
75  from the concordance of reported effect sizes and sampling variance. We use 30,000 markersin linkage

76  equilibrium aong the genome between a pair of cohortsto estimate 4,04,

Y77

278  For a SNP marker (i), given its reported estimated effect size (b;) and sampling variance (¢) in apair of

—p, )2 . .
79  cohorts 1 and 2, we can calculate atest statistic T; = %, the ratio between the squared difference of

O01it032;i

80  their reported effects to the sum of their reported sampling variances. Under the null hypothesis of no

'81  overlapping samples/heterogeneity, T follows a chi-square distribution with 1 degree of freedom
8
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182 (Supplementary nNotes). Ayerg = —22™0). the ratio between the median of the 30,000 T values and the

median(x?)’
'83  median of achi-square statistic with 1 degree of freedom (a value of 0.455), has an expected value of 1 for
'84  two independent GWAS summary statistics sets for the same trait. When there is heterogeneity between
85  estimated genetic effects, the expectation isA,,,.., > 1, and in contrast 4,,,.,, < 1 if there are overlapping
86  samples. In general, not only overlapping samples but aso close relatives present in different cohorts can
'87  lead to correlated summary statistics generating 4,,,.., < 1 (Supplementary notes). However, unlessthe
'88  proportion of overlapping relativesis substantial and their phenotypic correlation is high, the correlation of
'89  the summary statistics due to the effective number of overlapping samples (n,) is expected to be dominated
'90 by the same individuals contributing phenotypic and genetic information to different cohorts
'91  (Supplementary Fig. 4). Furthermore, if genomic control is applied to adjust the sampling variance™ then
92 Aeeq Will be reduced relative to its value without genomic control (Supplementary notes).
'93
'94  Weestimated 1,,,.., from published GWAS summary statistics for arange of traits (other than BMI and
'95  height) and were able to find examples of both deflated and inflated A,,,..,. First, we tested the 1,,,., On data
196  sets with known overlap. For example, GWAS summary statistics for schizophrenia were available in two
'97  phases: the first had 9,394 controls and 12,462 cases®, and in the next phase about 18,000 Swedish samples
'08  were added®. Such asubstantial overlap sample between these two sets of summary statistics led to the
'99  estimated value of A,,,,, aslow as 0.257 (Supplementary Fig. 5), consistent with this known overlap. In
300  contrast, heterogeneity between data sets (represented by A,,.., > 1), was observed between GWAS
301  summary statistics of rheumatoid arthritis from European and Asian studies?, for which A,,,,, = 1.09
302 (Supplementary Fig. 6). In addition, we note that the distribution of the empirical T-statistics deviates from
03 expectation at the upper tail of the distribution, suggesting differences in effect size or linkage

304 disequilibrium between these two ancestries.

306  Next, we estimated A, from pairs of cohorts from the 174 GIANT height GWAS cohort®. We found no
307  evidence for substantial sample overlap but do observe between-cohort heterogeneity, and technical artifacts.
308 From the 174 GIANT height GWAS (supplied data files)®, we calculated 15,051 cohort-pairwise A,ecq

09  values, resulting in a bell-shape distribution (Fig. 6a,b) with the mean of 1.013 and the empirical standard
10 deviation (S.D.) of 0.022, which was greater than theoretical S.D. of 0.014. The empirical mean and S.D can
111 beused to construct a z-score test for each 4,,,..,. These results are consistent with asmall amount of

12 heterogeneity, which is not unexpected due to variation of actual (unknown) genetic architecture and

113 analysis protocols. However, the mean is close to 1.0 and based upon this QC metric the results are

314 consistent with stringent quality control and data cleaning. The minimum A,,,.., value was around 0.88

315 (between SORBS MEN and SORBS WOMEN, Fig. 3c), with p-value < 1e-10 (testing for the difference

316  from 1), and the maximum was 1.245 (between SardiNIA and WGHS, Fig. 6d), with p-value < 1e-10,

117 leading to the most deflated and inflated 4,,,.., &cross GIANT height study cohorts; both were significant
9
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after correction for multiple testing. lllustrating A,,..., (Fig. 6b) highlighted that 20 cohorts from the MIGEN
consortium showed substantially lower 4,,.., With many other cohorts (right-bottom triangle in Fig. 6b)
than the average, consistent with over-conservative models for statistical association analyses being used in
these cohorts — which may be due to very small sample size (ranging from 36 to 320 for the 20 MIGEN
cohorts, with an average sample size of 132). Consistent with this, cohorts from MIGEN also have many of
their A5 < 1 (Fig. 7a). In contrast, the SardiNIA cohort (4,303 samples) showed heterogeneity with nearly
all other cohorts (Fig. 7b), perhaps due to unknown artifacts or aslightly different genetic architecture for

height as result of demographic history?.

We investigated the relationship between 1,,,.., (the mean of all 4,,.., values of agiven cohort with each of
the other 173 GIANT height cohorts) and A, among the GIANT height cohorts. If there are no technical
issues, such as inflated or deflated sampling variance for the estimated effects, we would expect to see: i) a
correlation between A, and sample size; ii) no correlation between 4,,,,, and sample size; iii) no
correlation between 1,,,.,, and A, (Supplementary Fig. S7). Consistent with a previous study?, for a
polygenic trait such as height 4. of each cohort was related to its sample size (correlation of 0.235, p =
0.0018). In contrast, the correlation between 4,,,,, ad sample size was of 0.116 (p = 0.127) (Fig 7a,b).
Nevertheless, the correlation between the mean of 1,,.., and A, was 0.836 (p<10e-16) for 174 GIANT
height cohorts (Fig 7c). We note that the 20 MIGEN cohorts had proportionally small ;. and 4,,,,,, with
very high correlation between them (p = 0.98); in contrast, the SardiNIA cohort, which had the largest 4,
showed the largest 4,4 (1.070 + 0.049), standing out as a special case among the GIANT height cohorts.
Assuming a polygenic model of h? = 0.5 over 30,000 independent loci, we simulated 174 cohorts using the
actual size samples from the GIANT height cohorts (Supplementary notes), and observed an increased
correlation (R? = 0.78) between 1,,,,,, and A, for simulated cohorts with sample sizes of the MIGEN
cohorts (Fig. 7d). Other effects, such as inflated/deflated sampling variance of the estimated genetic effects
could also lead to correlation between A,,,.,, ad A, (Supplementary Fig. S8). In addition, we constructed
asingle MIGEN analysis by combining the 20 MIGEN cohorts using an inverse variance weighted meta-
analysis®, and calculated A,,,,,, between this combined MIGEN cohort and all 174 cohorts. As expected, the
combined MIGEN had 4,6+, = 0.90 + 0.07 with 20 MIGEN cohorts due to overlapping samples. In
contrast, A0 = 1.01 + 0.02 with 154 other cohorts, was consistent with neither heterogeneity nor sample
overlap. Given that the MIGEN (2,340 samples) and SardiNIA (4,303 samples) cohorts contributed less than
3% of the total sample size (253,288 samples from the GIANT height GWAS cohorts), any impact of
unusua A,,.., vaues on the meta-analysis resultsis very small. Given no heterogeneity between a pair of
cohorts, adeflated 4,,,.., reflects the effective number of overlapping samples (Supplementary notes). For
example, the “combined MIGEN” had A,,,.., values proportional to the sample size of each MIGEN cohort
(Fig 7e).
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The statistical power of detection of overlapping samples is maximized when apair of cohorts has equal
sample size (Fig. 8a), or in other words the confidence interval for null hypothesis of no overlapping
samples depends on the sample sizes for a pair of cohorts. As acomparison, direct correlation that is
estimated between the genetic effectsfor a pair of cohorts has been proposed to estimate overlapping
samples®™®?, but it is confounded with genetic architecture, such as heritability underlying (Table 1). When
there was heritability, the estimated correlation between genetic effects was biased and leads to incorrect
overlapping samples for a pair of cohorts; when there was no heritability, the estimated correlation was
correct and agreed well with the one estimated with A,,,..,. As existence of heritability is one of the reasons

that trigger GWAMA, SO 4,04 1S Much proper in estimating overlapping samples between cohorts.

Another parameterization of A,,.., isto estimate it from differencesin allele frequencies between a pair of
cohortsinstead of differences between estimated effect sizes (Supplementary notes). We show that A,,,.:4
constructed on reported allele frequencies from genotyped loci from summary statistics can detect
overlapping samples between two cohorts regardless of whether the GWAS is from quantitative traits or
case-control data, even for pairs of different traits (Supplementary notes and Supplementary notes). For
example, 2,934 common controls were shared across the WTCCC 7 diseases’. From the 21 pairwise A,e¢4.,
we estimated a mean of the number of overlapping samples, assuming overlapping controls only
(Supplementary notes), of i1, =2,708 (S.D. = 58.4), which was very close estimate to the actual number of
overlapping samples (Supplementary Fig. 8). When constructing A,,.., 0n the reported genetic effects and
their sampling variance, the estimated mean estimate of the number of shared controlswas i, = 2,127 (S.D.
= 257.7), lower than that estimated from allele frequencies, which is likely due to real genetic heterogeneity
between diseases (Supplementary Fig. 8). In practice, publically available summary statistics may not
include sample specific allele frequencies, but may only be available with reference sample frequencies as a

conservative strategy to prevent identification of individuals in a cohort.

Detection of overlapping samples using pseudo profile scor e regression

GWAM A s have grown in sample size and in the number of cohorts that participate, and thistrend is likely to
continue. The probability that a sample is represented in more than one meta-analysis study is also likely to
increase, in particular when very large cohorts such as UK Biobank and 23andM e provide data to multiple
studies. While the metric A,,,.., Can be transformed to give an estimate of n, between cohorts for
guantitative traits, it cannot give an estimate of overlapping samples in case-control studies dueto the ratio
of the cases and controls in each study (Supplementary notes). Sharing individual genotype data (or
imputed genotypes) across the entire study would make it easy to detect identical or near-identical genotype
samples (representing real duplicate samples from individuals who participated in the two studies or
monozygotic twins). In fact, only a small number of common SNPs is needed to detect sample overlap, and

if thisis known then individuals could be removed and summary statistics regenerated or the meta-analysis
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analysisitself can be adapted to correct for potential correlation due to n,2. However, in many
circumstances, individual cohorts are not permitted to share individual-level data, either by national law or
by local ethical review board conditions. To get around this problem, Turchin and Hirshhorn'® created a
software tool, Gencrypt, which utilizes a security protocol known as one-way cryptographic hashesto alow
overlapping participants to be identified without sharing individual-level data. To our knowledge, this
encryption method has yet to be employed in meta-analysis studies. We propose an alternative approach,
pseudo profile score regression (PPSR), which involves sharing of weighted linear combinations of SNP
genotypes with the central meta-analysis hub. In essence, multiple random profile scores are generated for
each individual in each cohort, using SNP weights supplied by the analysis hub, and the resulting scores are
provided back to the analysis hub. PPSR works through three steps (Supplementary notes and
Supplementary Fig. 9), and the purpose of PPSR isto estimate a relationship-like matrix of n; X n;
dimension for a pair of cohorts, which haven; and n; individuals respectively. Each entry of the matrix is

filled with genetic similarity for a pair of samples from each of the two cohorts, estimated viathe PPSR.

We use WTCCC data as an illustration to detect 2,934 shared controls between any two of the diseases by
PPSR. Among 330K unambiguous SNPs, which are not palindromic (A/T or G/C alleles), we randomly
picked M = 100, 200, and 500 SNPs, to generate pseudo profile scores. It generated 21 cohort-pair
comparisons, leading to the summation for 488,587,090 total individual-pair tests. To have an experiment-
wise type | error rate = 0.01, type |1 error rate = 0.05 (power = 0.95) for detecting overlapping individuals,
we needed to generated at least 57 pseudo profile scores (PPS). We generated scores S = [s4, S, S3, -+, S57],
where each s isavector of M elements, sampled from a standard normal distribution (Supplementary
notes). S is shared across 7 cohorts for generating pseudo-profile scores for each individual. In total 57 PPS
were generated for each individual in each cohort. For apair of cohorts, PPSR was conducted for each
possible pair of individuals for any two cohorts over the generated pseudo-profile scores. Once the
regression coefficient (b) was greater than the threshold, here b = 0.95, the pair of individuals was inferred
to be having highly similar genotypes, implying that the individual was included in both cohorts
(Supplementary notes).

When using 200 and 500 random SNPs, all the known 2,934 shared controls were detected from 21 cohort-
pai r-wise comparison; when using 100 randomly SNPs, on average 2,931 shared samples were identified,
which is more accurate than using 4,,,.., constructed using either genetic effects or allele frequencies (Fig.
8b). In addition, for detected overlapping samples, there were no false positives observed — consistent with
simulations that show the method was conservative in the controlling type | error rate (Supplementary
notes). For comparison, we aso used the Gencrypt to detect overlapping samples using the same set of
SNPs as used in PPSR. Although Gencrypt guidelines suggest use of at least 20,000 random SNPs',
selecting 500 random SNPs in the WTCCC cohorts also provided good accuracy with Gencrypt, and on
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average about 2,920 (99.6% of the shared controls) overlapping samples were detected, only slightly lower
than PPSR. For example, for BP and CAD, Gencrypt detected 2,912 shared controls, but was unable to
identify about 20 overlapping controls, due to missing data (on average 1% missing rate). Increasing the

number of SNPs when using Gencrypt islikely to overcome the problem of missing data.

Furthermore, PPSR is able to detect pairs of relatives. For example, between the BD and CAD cohorts, two
pairs of apparent first-degree relatives were detected (Fig. 9a). In order to find additional first-degree
relatives between BD and CAD cohorts, at least 265 PPS were required to have atype | error rate of 0.01
and type Il error rate of 0.05 (Supplementary notes) for aregression coefficient cutoff of 0.45, athreshold
for first-degree relatives. As expected, all other individuals that did not show high relatedness did not reach
the threshold of 0.45 of the PPS regression coefficient for first-degree relatives (Fig. 9b). Gencrypt did not
detect any first-degree relatives.

The speed of PPSR depends on n; X n;, the sample sizes for a pair of cohorts, and the number of PPS for
each cohort; for the WTCCC data there are 21 cohort-pair comparisons, and each pair took about 20 minutes,
on acomputer with a2.3 GHz CPU, given about 5,000 x 5,000 = 25,000,000 comparisons. The average
sample size of GIANT is about 1,500, and takes about 2 minutes for each pair of cohorts. The two largest
datasets are deCODE with 26,790 samples and WGHS with 23,100 samples, and PPSR to detect overlapping
samples takes about 8.5 hours. As each pair of individuals is computationally an independent unit, analysis
jobs can be parallelized on a cluster. Therefore, even for meta-analyses involving many large cohorts, the

computation time is not alimiting factor.

PPSR for each individual uses very little personal information and can be minimized so that there is very

low probability of decoding it. One way to attempt to decode the genotypes from PPS is to reverse the PPSR,
so that the individual genotypes can be predicted in the regression (Supplementary notes). The individual-
level genotypic information that can be recovered by an analyst, who knows the S matrix (the weights for
generating PPS), is determined by the ratio between the number of markers (M) that generated PPS and the

number of PPS (K). Therefore, inferred information on individual genotypes can be minimized and tailored
to any specific ethics requirements. We suggest % > 5~10 to protect the privacy with sufficient accuracy

(Fig 9c). Of note, if ameta-analysis is conducted within a research consortium, the application of PPSR is
even safer because the exchange of information is between the consortium analysis hub and each cohort

independently.

Discussion
In this study, we provide a set of metrics for monitoring and improving the quality of large-scale GWAMA
based on summary statistics. These tools not only enrich the toolkit to analysts for GWAMA, but also
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provide informative summary and visualization for readers to understand the experimental design of
GWAMA. Asfar as we know, no GWAMA to date has checked cohort-level outliers based upon population
differentiation metrics or utilized estimated allelic effect sizes to identify and quantify sample overlap.

Using the F,, derived genetic distance measure, we can place all cohorts on an inferred geographic map and
can easily identify cohorts that are genetic outliers or that have unexpected ancestry. In application, we
should note that the F;, measure can identify unusual summary information, such as detected in the MIGEN
cohorts from GIANT Consortium GWAMAs, in which the same allele frequencies were reported for all
cohorts. Meta-PCA can also be used to infer the genetic background of cohorts. The high concordance
between F,. and meta-PCA indicates the both methods are robust. In practice, mete-PCA may be much
easier to implement when there are many cohorts, such as GIANT height cohorts and Metabochip BMI

cohorts, but the coordinates of a cohort may be slightly shifted with inclusion or exclusion of other cohorts.

There are limitation for both F,. and meta-PCA. Firstly, the inference depends on the choice of reference
cohorts. Meta-PCA is further upon the inclusion or exclusion of other cohorts. However, given the
application of the data, we believe the impact will not influence the inference of the genetic background of
cohortsin meta-analysis. Secondly, various mechanisms can give the identical projection in PCA™. The
purpose of both methods is to find the discordance between demographic information and genetic
information, or outliers. The projection is not attempt to discover the detailed demographic past that shapes a

cohort.

Our third metric A,,,.., provides information on sample overlap and heterogeneity between cohorts by
utilizing the estimated allelic effect sizes and their standard errors. In most meta-analyses, the overall 4,,..,
islikely to be slightly greater than 1 solely due to unknown heterogeneity, slight as observed, in generating
the phenotype and genotype data that cannot be accounted for by QC. The observed mean of 1,,,.., for the
GIANT height GWAMA was 1.03 but with more variation than expected by chance. The strong correlation
between A, and 4,,..., indicated the reported sampling of the reported data were systematically driven by
analysis protocols. For cohorts with A5 < 1 and A,,,.¢, < 1, itislikely that the GWAS modeling strategy
employed for GWAS in the cohort was too conservative, for example MIGEN cohorts might have on
average too small sample size for each cohort. Conversely, for cohortswith A > 1 and A, > 1 results
are too heterogeneous, perhaps reflecting systematically smaller sampling variances of the reported genetic
effects. As the GWAMA often uses inverse-variance-weighted meta-analysis®, such cohorts may lead to
incorrect weights to the different cohorts in the meta-analysis, suggesting that the statistical analysis in meta-
analyses can be improved by applying better weighting factors.
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It is well-recognised that overlapping samples may inflate the type-I error rate of GWAMA and therefore

lead to false positives. Although post-hoc correction of the test statistic is possible®®

, stringent quality
control ruling out overlapping samples makes the whole analysis easier and lowers the risk of false positives.
A better solution would be to rule out shared samples at the start, for pairs of cohorts that show deflated

Ameta, @nd we propose PPSR to accomplish this.

In summary, to maximize the inference from multi-cohort GWAMA, accurate cohort-level information on
alele frequencies, estimated effect sizes, and their sampling variance can be exploited to perform additional
measures that are likely to lead to reduction in the number of false positives and increasing statistical power

for gene discovery. All methods proposed are implemented in freely available software GEAR.
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26 Figure 1 Recovery of cohort-level genetic background and infer ence of their geographic locations for
27 GIANT BMI Metabochip cohorts using the F, derived genetic distance measure. (a) Genetic distance
28  spectrum for al Metabochip cohorts to CEU, CHB and Y RI. See Supplementary notes for more details. The
29 origins of the cohorts are denoted on the horizontal axis. (b) Projection for Metabochip cohort into Fp space
30 defined by YRI, CHB, and CEU reference populations. The x- and y-axis represent relative distances

31 derived from the genetic distance spectrum. Three dashed lines, blue for CEU, green for CHB, and red for
32 YRI, partitioned the whole Fp space to three genealogical subspaces. (c) The genetic distance spectrum for
33 Metabochip European cohorts to CEU — Northwest Europeans, FIN — Northeast European, and TSI —

34 Southern Europeans. The nationality of the cohorts are denoted on the horizontal axis. (d) The projection for
35  Metabochip European cohorts to the Fp. space defined by CEU, FIN, and TSI reference populations. The
36 whole space is further partitioned into three subspaces, CEU-TSI geneal ogical subspace (red and blue

37  dashed lines), FIN-TSI genealogical subspace (green-blue dashed lines), and CEU-FIN genealogical

38  subspace (red-green dashed lines), respectively. The open circles represent the mean of inferred geographic
39 locations for the cohorts from the same country. Cohort/country codes: AF, African; AU, Australia; DE,

40  Germany; EE, Estonia; EU, European Nations; Fl, Finland; FIN, Finsin 1000 Genomes Project (1KG); FR,
41  France; GBR, British in 1KG; GIB, Gujarati Indian in 1KG; GR, Greece; Hawaii, Hawaii in USA; IBS,

42 |berian Populationin Spainin 1KG; IT, Italy; M, Jamaica; JPT, Japanesein 1KG; LWK, Luhyain 1KG;
43 NO, Norway; PH, the Philippines; PK, Pakistan; SC, Seychelles; SCT, Scotland; SE, Sweden; TSI, Tuscany
44 in 1KG; UK, United Kingdom; US, United States of America.

45
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58  Figure 2 Using the genetic distance spectrum to infer the geographic originsfor GIANT height GWAS
59 cohorts. (a) Each cohort has three F,, values by comparing with CEU, FIN, and TSI reference samples. The
60 height of each bar represents its relative genetic distance to these three reference populations. The

61 nationalities of the cohorts were denoted along the horizontal axis. The grey triangles along the x-axis

62 indicate MIGEN cohorts. (b) Given the three F;, values, the location of each cohort can be mapped. The

63 whole space was partitioned into three subspaces, CEU-TSI genealogical subspace (red and blue dashed

64 lines), FIN-TSI genealogical subspace (green and blue dashed lines), and CEU-FIN genealogical subspace
65 (red and green dashed lines). DGI (in the blue box) had samples from the Botnia study. Across MIGEN

66 cohorts (denoted as red triangles in the red box), the same allele frequencies (likely calculated from a South
67  European cohort) were presented for each cohort. Cohort/country codes: AU, Australia; CA, Canada; CH,
68  Switzerland; DE, Germany; DK, Denmark; EE, Estonia; ES, Iberian Population in Spain in 1KG; Fl,

69  Finland; FR, France; GR, Greece; IT, Italy; IS, Iceland; NL, Netherlands; SE, Sweden; UK, United

»70  Kingdom; US, United States of America.
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78  Figure 3 Comparison between Meta-PCA and genotype PCA on 1K G. Top left panel is the projection of
»79  cohorts based on cohort-level allele frequency for 1KG samples on the first two eigenvectors. Bottom left
80  panel is conventional PCA based on individual genotypes on the first two eigenvectors. Top right panel is
81  the projection by taking the mean of the 1KG individuals within each cohort. Bottom right panel is the

82 correlation, measured in -, between meta-PCA and genotype PCA for thefirst twenty eigenvectors.
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»85  Figure 4 Recovery of cohort-level genetic background for GIANT BMI M etabochip cohorts using
86  meta-PCA. The x-axis and y-axis represent the first two eigenvectors from meta-PCA. In meta-PCA,

87  Metabochip cohorts could be classified into African ancestry (AFR), European ancestry (EAS), East Asian
88  Ancestry (EAS), and South Asian Ancestry (SAS). The 1KG cohorts, yellow open circles, were added for
»89  comparison.
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Figure5 Therecovery of cohort-level genetic background using meta-PCA analysisfor GWAS height
cohorts. The x-axis and y-axis represent the firs two eigenvectors inferred from meta-PCA. a) The genetic
background inferred with the inclusion of 10 1KG reference populations. b) The genetic background and
relative geographic location for 174 GIANT height cohorts. The large plot on top left was an overview of
174 cohorts, and the rest of plots were classified by the reported demographic information of cohorts. Within
each country-level plot, the small black points represent one cohort, and the large open circle the mean
coordinates for those cohorts from the same country.
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Figure 6 A,,.:, for the GIANT height GWAS cohorts. Given 174 cohorts, there are 15,051 A,,,,,, values,
which provide the overview of the quality control of the summary statistics.

(a) Thedistribution of 4,,,.,, from 174 cohorts/files used in the GIANT height meta-analysis. The overall
mean of 15,051 1,,.,, is 1.013, and standard deviation is 0.022. (b) The heat map for 4,,..,. Cohorts
showed heterogeneity (4,,.., > 1) areillustrated on left-top triangle, and homogeneity (4,0, < 1) On right-
bottom triangle. (c) Illustration for homogeneity between two cohorts (SORBS MEN & WOMEN), 4,010 =
0.876. (d) Illustration of SARDINIA & WGHS, this pair of cohorts has A,,.., = 1.245. The grey band

represents 95% confidence interval for A,,,..4.
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Figure 7 4,0, and Agc for GIANT height GWAS cohorts. (a) Sample size of each cohort against A4
The linear regression is presented as a dashed line, A4 = 1.021 + 0.0000033N, and R? = 0.013. (b) Sample
size of each cohort against A,,,,,, Which was the mean of a cohort’s A,,.,, over all other cohorts. The linear
regression is presented as adashed line, 4,,,.;, = 1.012 + 0.00000055N (N = reported sample size), and

R? = 0.055. (C) A against A,,,.., for each cohort, showing a strong correlation, R? = 0.70. The black dash
line indicates the regression slope for all 174 pairs: A,,,;,=0.7251+0.2814.+e. The red dashed line
indicates the regression slope for 20 pairs of MIGEN cohorts: 1,,,,.,=0.369+0.6311.+e. The side of each
circleis proportional to sampling size on logarithm scale. (d) Small sample size leadsto a correlation
between A,,,,, and A¢. using 174 GIANT height GWAS sample size. 30,000 independent loci, minor allele
frequency ranged from 0.1~0.5, were simulated, and h? = 0.5. The red dashed line indicates the regression
slope for 20 simulated MIGEN cohorts, A,,.;, = 0.488 + 0.5101,-+e (R? = 0.78). The side of each circle
is proportional to sampling size on logarithm scale. (€) A,,¢., for whole MIGEN to 174 cohorts. 20 MIGEN
files were combined together to make “whole MIGEN” via meta-analysis, and the summary statistics were
used to calculate A,,,.+, With 174 cohorts using 30,000 independent loci. As MIGEN cohorts were part of
“whole MIGEN”, their 4,,.., Werein general below 1. The dashed line is the mean of 4,,.,, of the “whole
MIGEN”". The subplot (red box) shows a strong correlation of 0.93 between 4., (for “whole MIGEN” vs
each MIGEN cohort), and sample size of each MIGEN cohort.
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'63  Figure 8 Pseudo profile scoreregression for the WTCCC 7 diseases. @) Statistical power for detecting
'64  overlapping samples between a pair of cohorts given type | error rate of 0.05. Top panel: The y-axis

'65  represents statistical power, and the x-axis the number of overlapping samples. Cohort 1 has 1,000, 5,000,
'66 10,000, or 25,000 samples, and cohort 2 has 1,000 samples. The two cohorts have 25, 50, 100, 200, and 500
'67  overlapping samples. Bottom panel: the corresponding 95% confidence interval is given for each scenario in
'68  thetop panel. The statistical power is maximized when the two cohorts have the same sample size. b) Each
'69  cluster represents apair of cohorts as denoted on the x-axis. Within each cluster, from left to right, the

70  detected overlapping controls using 4,,.., based either on effect size estimates or minor allele frequency
71 (MAF), PPRS using 100, 200, and 500 markers. WTCCC cohort codes. BD for bipolar disorder, CAD for
72 coronary artery disease, CD for Crohn’s disease, HT for hypertension, RA for rheumatoid arthritis, T1D for
73 type 1 diabetes, T2D for type 2 diabetes.
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'81  Figure 9 PPSR coefficientsfor identifying shared controls/r elatives between WTCCC BD and CAD
'82  cohorts. (a) Illustration for regression coefficients between WTCCC BD and CAD from 57 pseudo profile
'83  scores (PPS) generated from 500 markers. The x-axisis the PPSR regression coefficients and y-axis is real
'84  genetic relatedness (as calculated from individual level genotype data). The red points are the shared

'85  controls between two cohorts, and blue points are first-degree relatives. (b) The PPS regression coefficients
'86  for detecting overlapping first-degree relatives using 286 PPS generated from 500 markers. (c) Decoding
'87  genotypes from the PPS. Given the set of profile scores, one may run a GWAS-like analysis to infer the

'88  genotypes. The ratio between the number of markers (M) and number of pseudo profile scores (K)

'89  determines the potential discovery of individual-level information. The higher the ratio and, the higher the
'90  alele frequency, the less information can be recovered. From left to right, the profile scores generated using
91  different number of markers. The y-axisis aR? metric representing the accuracy between the inferred

'92  genotypes and the real genotypes. From left to right panels 100, 200, 500, and 1000 SNPs were used to

'93  generate 10, 20, 50, and 1000 profiles scores. In each cluster, the three bars are inferred accuracy using

'94  different MAF spectrum alleles, given with the SE of the mean.
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Table 1 The estimated correation for a pair of cohortsviatheir summary statistics

Vi = .2 P12 £ 5D V1,2 £SD
n n, My, h° M Q T Nuny

1,000 1,000 100 0.25 30,000 1,000 0.1 0.1072+0.0064 0.101+0.0093

1,000 2,000 100 0.25 30,000 1,000 0.0707 0.0814+0.0054 0.0709+0.0088
1,000 5,000 100 0.25 30,000 1,000 0.0447 0.0615+0.0055 0.0425+0.0096
1,000 10,000 100 0.25 30,000 1,000 0.0316 0.055640.0063 0.0325+0.0099
1,000 1,000 1 0.25 30,000 1,000 0.001 0.0092+0.0056 0.0017+0.0093
1,000 2,000 1 0.25 30,000 1,000 0.0007 0.012640.0053 0.0006+0.0079
1,000 5000 1 0.25 30,000 1,000 0.000447 0.0189+0.0060 0.0016+0.0090
1,000 10,000 1 0.25 30,000 1,000 0.000316 0.0259+0.0059 0.0008+0.0092
1,000 1,000 100 O 30,000 1,000 0.1 0.0996+0.0052 0.0944-0.0085

1,000 2,000 100 O 30,000 1,000 0.0707 0.0704+0.0048 0.0712+0.0097
1,000 5000 100 O 30,000 1,000 0.0447 0.0453+0.0057 0.0441+0.0090
1,000 10,000 100 O 30,000 1,000 0.0316 0.033510.0057 0.0325+0.0079

" Q isthe number of QTLs among M simulated loci. We also tried Q = 100, the results were nearly identical.
¥1,2 represents the true correlation due to overlapping samples
P, represents the estimated correlation estimated viathe method proposed by Bolormaa et a®®, and Zhu et 8’

"8sUud0I| [eUONRUIBIU| 0'F AG-DDR Japun
a|ge|rene apew si 1| "Aumadiad uljuudaid ayy Aejdsip 03 asuadl| e AlxHolq pajuelb sey oym ‘Japuny/ioyine ay si (Maiaal 1aad Ag payiiad jou
sem yaiym) uudaud siys Joy 1spjoy 1ybBuAdos syl "STOZ ‘9 Jequisdaq paisod uolsiaA sIyl 28/£€0/T0TT 0T/610"10p//:sdny :10p wudaid AixyHolq

1_Ameta

71,2 represents the estimated correlation estimate vVia dperq, 71,2 = Tins
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Method I: F;; derived genetic distance
F,, isameasure of genetic differentiation between populations. It is usually estimated using

individual-level genotype data from multiple samplesin two or more populations'. Here, we
calculate F,, using summary data on allele frequencies, which implicitly assumes Hardy-
Weinberg equilibrium genotype frequencies within populations. We use summary statistic
calculated F, asametric for quality control for each cohort. If the allele frequencies reported
for a cohort depart genome-wide from its expectation based on known ancestry due to
technical artifacts, then we may observe an unexpected F,, value when comparing to a

reference panel of know ancestry.

We calculate F,, between each cohort and areference panel, choosing the appropriate
reference sample depending on the purpose of the analysis. For the inference of global-level
diversity, we chose YRI, CHB, and CEU as the reference panels. For the inference of within-
Europe diversity, we chose CEU, FIN, and TSI as the reference panels. As the different alele
frequencies across three samples reflected the real diversity among these reference panels, we
did not apply any exclusion criteria on the reference alele frequency. Nevertheless, as
GIANT height GWAS samples were imputed to the HapMap panel, the majority of SNPs
matched to the 1K G reference samples comprised common SNPs. After ranking the
calculated Fy, in ascending order for all matched SNPs, we sampled 30,000 F,, evenly along
the ordered F;,. These 30,000 markers are quasi-independent and evenly distributed across
the genomes. The mean of the 30,000 F,, was employed to represent the F,, measure between
acohort and areference panel. The sampled 30,000 markers may differ from one pair of
cohorts to another pair, but as tested resample 30,000 markers caused ignorable changes of
the mean of F,,. Another reason we chose 30,000 markersisthat there are around 30,000
guasi-independent markers for GWAS data as observed in empirical data and expected from

theory?>,

In this study, F, is calculated from the alele frequencies estimated from cohorts, provided as
summary statistics. F;, is treated as a data statistic for measuring allele frequency
differentiation. In general the interpretation of F;, can vary with context®.
e P

Fy = ——
p(1-p)
with p; the estimated reference allele frequency in population i from a sample of n; aleles, p

(Equation 1)

is the weighted average frequency in the entire sample, and r is the number of populations.

51


https://doi.org/10.1101/033787
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/033787; this version posted December 6, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

850 Here, we only compared each cohort to the 1K G reference panel, sor = 2 and the equation
851  becomes

2 2 ~\2
m iz nii—p)7]
A )

(Equation 2)
853 inwhichn,; = ny +ny, andf = - p, + = p, isthe mean allele frequency. Alternative
1,2 12

854 edtimatorsfor F, are possible, and a comprehensive comparison of different F,, estimators
855  was recently reported®.

856

857  If thetwo cohorts are not that different in terms of their alele frequencies, for example, the

858  cohorts from European nations, p; ~ p; ~ p,

2nn; [E@D-E(p))]”
niZJ p(1-D)

860 At theright side of the equation, the first term represents the sampling variance for allele

859 E(F,) = . (Equation 3)
nilj
861 frequency for a pair of cohorts, and the second term represents the allele frequency difference

862  dueto divergence from a common ancestor. The estimated Fy, is influenced by sample size,

863 andF, > ni which is the sampling variance of F;, for a pair of cohorts'. As each 1KG
LJ

864  reference population has a sample size around 100, there is no disproportionate impact of
865 samplesizein calculating F,.

866

867  Fg Cartographer algorithm. The purpose of using the F,, Cartographer algorithm isto find
868  the coordinates of a cohort given its F, to the reference populations. The algorithm can be
869  expressed in Cartesian geometry. Given three reference populations, atarget cohort has three
870 F,, measures, F,, F,, and F;, respectively. Given a Cartesian coordinate system, the

871  coordinate for these three reference populations are (a4, b,), (a,, b,), and (as, bs),

872  respectively. The algorithm tries to find the coordinates (x, y) E;; ON each the edge (E; ;) that
873  connects reference populations i and j
Fj Fi .
874 (x, y)Ei,j = [(a] - ai)FLTFj +a;, (b] - bl)m + bl] (Equatlon 4)
875  The coordinates of the gravity of triangle, (x, y);, that connects E ,, E; 3, and E, ; are

XE12TXE 31 XEy3 YE12TYE 131 VEs ;3

N , . ) (Equation 5)

876 (‘xl y)G = (
877
878 Inference of cohort origins at the global level. To assess genetic background, for each

879  cohort we calculated its F;, values using CEU, CHB, and YRI asthe reference panel,

880  respectively. We denote these three F,, values as Fqgy;, Feppg, and Fyg;. These values reflect
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881  genetic distances between a cohort and the reference panels - the greater the value the further
882  the genetic distance. We developed an algorithm called F,, cartographer, which can map a
883  cohort to global genetic variation as previously observed using individual level data from
884  principal component analysis®. The stepsin the algorithm are as follows (Supplementary
885 Fig. 1):

886

887  Create the coordinates for the reference samples. Without loss of generality, these three
888  reference populations form an equilateral triangle, and we set the length of each edge to
889  unity. For example, the coordinates CEU, CHB, and YRI are (—/3, 1), (+/3, 1), and (0, -2),
890  respectively, and connecting the coordinates of the three reference populations formed an
891 equilateral triangle - the reference space. The gravity of this equilateral triangle isthe
892  origin of the Cartesian space. The choice for the coordinates for the reference population is
893  arbitrary.

894

895 Step 1 Createacohort triangle using Equation 4. Finding a point the distances of that to
896  both ends, which represent two populations, is proportional to theratio of the F,, values of
897  the cohort to these two reference populations. Similarly, find the points on the other two
898  edges. For example, Finland Twin Cohort (FTC) had F.y = 0.0102, Fyp; = 0.153, and
899  Fcyp = 0.099. On the CEU-YRI edge, apoint split the length to 0.0102:0.153, was

900 (—1.72, 0.98)51,2; On the CEU-CHB edge into 0.0102:0.099, was (—1.70, 1)51.3 ; and on the
901 YRI-CHB edgeinto 0.153:0.099, was (1.05, —0.18) E, 5+ CONNecting the three coordinates
902 created a“FTC” triangle inside the reference triangle.

903

904  Step 2 Find the gravity of the cohort triangle using Equation 5. The gravity of the“FTC”
905 triangle had its coordinates of (—0.79,0.60),... Which isinferred as the geographic

906  coordinates for FTC in Fp space. It had relative distances of 1.03, 2.55, and 2.72 to CEU,
907 CHB, and YRI, respectively. The shorter the distance, the closer the genetic background is.
908

909  Step 3 Repeat Steps 1, and 2 until the gravity of each cohort is found.

910

911 Plots of the coordinates for each cohort will show the relative distance of each cohort to the
912 reference samples. If acohort has equal distances to three reference populations, its gravity

913  will be closeto the origin of the reference triangle.
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916 Method II: Principal component analysis for cohort-level allele

917 frequencies
918  PCA has been widely used in genetics’ and recently proposed for controlling population

919  stratification for GWAS>®. We provide a new method that uses cohort-level alele
920 frequencies, often provided as summary statistics in meta-analysis. We call the new method
921 asmeta-PCA.

922
923 MetaPCA isbasedonaG = (C + K) X M matrix, which includes K reference populations

924  and C cohorts of question on M markers. In G, the m** column represents the reported

925 reference alele frequencies for the m** marker for (K+C) cohorts. The kernel correlation
926  matrix for PCA iscongtructed on = = G, X GI, in which G, is the standardization for G for
927  eachlocus (on each column of ¢). Compared with individual-level data PCA, in the context
928  of meta-PCA each cohort can be viewed as an individual in the conventional sense. Given £
929  matrix, al the implementation is the same as the individual-data PCA.

930

931  There are efforts in establishing genetic interpretation for PCA 8%2 The interpretation of
932  meta-PCA could be approached by F, . as described in the last section.

933
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Method Ill: The detection of overlapping samples with 4,,,.;,
Inference of cohort origins at thewithin-Europelevel. To assess genetic background, for

each cohort we calculated its F,, values using CEU, FIN, and TSI as the reference panel, with
coordinates (—/3, 1), (+/3, 1), and (0, -2), respectively. For FTC, it had F,, values of 0.0102,
0.0052, and 0.0157, to CEU, FIN, and TSI, respectively. Using the F, Cartographer
agorithm, the gravity of the FTC triangle had its coordinates of (0.274,0.361)g,.,.. It had
relative distances of 2.10, 1.59, and 2.42, to CEU, FIN, and TSI, respectively.

Genealogical subspace. Furthermore, we partition the Fp space into three subspaces. For
example, given coordinates of (—/3, 1), (v/3, 1), and (0, -2), for CEU, FIN, and TS,
respectively, connecting the origin and the coordinates for any two reference populations
created a subspace, which is defined as a genealogical subspace. We had three geneal ogical
subspaces. CEU-FIN genealogical subspace, CEU-TSI genealogical subspace, and FIN-TS]|
genealogical subspace, respectively. If a cohort islocated inside a subspace, it indicates that
this cohort may be derived from these two reference populations that creates the genealogical

subspace.

For European cohorts, the coordinates calculated from F,, Cartographer algorithm mirror the
origins of geographic locations of the cohorts, similar, but less refined, to what has been
observed in previous studies using individual level data for European samples™*“,

Effective number of overlapping samples (n,). If apair of cohorts has overlapping
samples, it leads to a correlation of the estimated genetic effects for each locus. In the recent
literature, two kinds of correlation due to overlapping samples were introduced. The first one
was defined by directly calculating correlation between all estimated test statistics, r =
cor(Zy, Z,), in which Z isavector of M matched loci between two cohorts **°. The second
one was defined on the correlation for single locus given overlapping samples, as introduced
by Lin and Sullivan'’. We used the second definition, and then extended the correlation due

to any relatives, a generalization of Lin and Sullivan.

For a pair of cohorts of sample sizesn, and n, (n; = n,), for M matched loci which have
GWAS summary statistics, for example additive effects and their standard errors. For the m‘"

locus, estimated association effect sizes are b, ,,, and b, ,,, with sampling variance Ulfl.m and

ng.m’ respectively. b, isassumed to be drawn from a normal distribution N (b, ,,, ng.m)’ and
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by~N(bym, 03, ). Incohort 1, wy, = % is proportion of samples with a k**-degree
! 1

relativesin cohort 2 with ny, |, the number of relatives of kth degree relatives shared between
the samples; the phenotypic variance is assumed to be the same across the cohorts for a
quantitative trait. For alocus, the genetic effect is estimated by linear regresson y; = a +
b;x + e in cohort 1 (the index for the locus is dropped for convenience). If the sampling

variance of alocus is assumed to be the same for any subset of samples

[E (1) — E (yapr ) E ()]
var (Xx,,)

1-hi_)o2 2
The standard error of b,, isg;,, = J% ~ f% in which h?,l is the proportion of
1 1

phenotypic variance explained by thelocus and o7, is the phenotypic variance of the trait.

— vK —_ yvK
by = Zy—oW1 ik = Zi—oW1 b1k

2
The sampling variance for g, , = f Lln This decomposition of the genetic effect can be
' WiqlkM1

applied to cohort 2. Consequently, the covariance between b, and b, for the locusis

cov(by, by) = COU(ZIIS:OWHkbl.k: 2]5:0W2|kb2.k) = Z§:0W1|kW2|kCOU(b1|k» b2|k)
inwhich cov(byx, byjk) = PrOk0b,10b, 1 1S the covariance between the genetic effects

estimated in two cohorts due to the k-degree relatives. p,, isthe phenotypic correlation for the

1

k
k-degree relatives, and 8;, is the genetic relatedness for the k-degree relatives. 6, = (5) is

the coefficient of identity for descent. For duplicated samples, p, = h* + p,|o, inwhich h? is
the heritability, and p,o, the environmental correlation to be close 1 for overlapping samples;

for other relatives (k > 1), p, ~ 6,h*.

Correlation between the estimated genetic effects. The covariance can be generalized as

02 o2 . . .
cov(by, by) = ZX_, W11 W21 01 s /nillni; After adjustment by the sampling variance, the

correlation between b, and b, is

K
cov(bq,by) K Zkzopkskn12|k no .
= = 2= = = E on
Pb, b, = . e=0Pk Ot/ W1k W2 1 s nlnz( guation 6)

inwhich n, = o0k, is the effective number of overlapping samples averaged over
all relative pairs that are across the two cohorts. As the variance explained by each locusis
small, and after further weighted by 8,,, the contribution from overlapping relative is small.
When ignoring the first and higher degree relatives n,, equals the contribution from

overlapping samples. Thisis consistent with the results from Lin and Sullivan*’, who
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994  considered overlapping samples only. So, the correlation at any single locus is largely

995  determined by the overlapping samples (n,,,) for summary statistics.

_ Ny - Ni12j0 .
996  pp, b, = S (Equation 7)

997  So, inthetext hereafter, n, indicates overlapping samples only, otherwise specified.
998

999  Correlation for case-control studies. The theory above is based on a quantitative trait, but it

1000 holds approximately true for case-control studies if alocus isfrom the null distribution of no

1001  association with the disease. Given n,, ., overlapping controls and n , ., overlapping cases,

1002  for alocus associated with disease its correlation of the regression coefficient is pj,_ 5, =

n1z.cmm+nn.mﬁ
N

1004  casesand controlsin the i** cohort. When it is balanced case-control design—R. = 1,

1003

asindicated by Lin and Sullivan®’, in which R; is the ratio between

Ni2.ctritN12.cs No
1005 = Mazc =
pbl'bz VY ny Viiny

1006  should be noticed that for case control data, n, is confounded with the number of overlapping

resembles the correlation for quantitative traits. However, it

1007  cases and controls.

1008
1009  Theory for A,,e¢q. FOr the summary statistics between apair of cohorts for the m* locus, we

1010 can construct astatistic

1011 Tm — (blm—bz.m)2 — [ (b1.m—b2.m)2 ] X [U§1m+°-§2.2m_2p1:2obl.mo'bz.m] (Equation 8)

2 2 2 2 2
%b1mtbom Ob1m ¥ Obrm ™ 2P120b1m b2 m Obim¥%bsm

1012 inwhich p, , isthe correlation between b, ,,, and b, ,,,.

2 2 2 2
1013 E(T.) = %b1m ¥ by m  2P12%b1m%bam [E(P1.m)—E (b2.m)]? Ob1mt%bam
(Tn) =1 2 2
o b1 mt%bsm

bl.m+a§2.m_2p1:2o-bl.mabz.m 61211_m+°'l§2.m_zpb1,b2 Ob1 m%ham
1014 pL220b1mob2moblm2+ob2m2=(1+H)(1—p1,2x) (Equation 9)

; ; [E (b1.m)—E (b2.m)]? 20p, 0b 2yman n
1015 |nWh|ChH: > 21m 2.m ,K': . im 22.m: 1 2,andp12 — 0 ’as
Tb1m ™ Obzm ~2P120b1mbam by m T bam ni+n; ’ Vnan;

1016  defined in Equation 7, is the correlation for this locus due to overlapping samples between
1017  thispair of cohorts. Of note, p; , is same for each locus regardless of a null locus or alocus
1018  associated to genetic effects. For convenience, the subscript b was dropped in the text

1019  heresfter.

1020

1021  Under the null hypothesis of no heterogeneity (H = 0) and no correlation (p;, = 0), To~ x1,

1022 astandard 1-degree-of-freedom chi-square distribution. p, , = % inwhichn, isthe
172
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effective number of overlapping samples. Of note, since the mgority of markers are likely
sampled from the null distribution or have very small effect sizes, we can approximate
E(by,,) = 0and E(b,,,) = 0, and therefore H =~ 0 for most marker pairs between apair of

cohorts. For the m*" marker that isin linkage disequilibrium with causal variants, E (b, ,,) =
251:1 B1.jt1.j, inwhich J; isthe number of causal variantsin linkage disequilibrium with the
m"™ marker for cohort 1, B, ; isthe j** causal variantsin linkage disequilibrium with the m**

marker, and ¢, ; isthe LD correlation between the m** marker and the j** causal variant®.

Similarly for E(b,,,,) = Z?: 1 B2.jt>. ;. If the cohorts are from the same ethnicity, the

differencein the LD correlation can be ignored, for example for samples from cohorts with

European ancestry. So, under a polygenic model H is expected to be zero, or close to zero.

TheT statistic is calculated for each matched SNP between apair of cohorts. After ordering
al T values, we evenly sample 30,000 independent markers from the order statistic of all T
values. Each pair of cohorts may sample T values based on 30,000 markers different from

another pair of cohorts.

2 _ median(T) _ 2n,
meta —

(Equation 10)

median(x3) = nitn,
in which median(y?) = 0.4549. Under the null hypothesis of no heterogeneity and
overlapping samples (n, = 0), plotting the ordered T against its corresponding quartiles
from yZ, will be along the diagonal, leading to 4,,,.., = 1. Heterogeneity between two
cohorts, equivalent to a “negative” number of overlapping samples, will drive 4,,,.,, > 1, and
overlapping sampleswill make 4,,,.,, < 1. Thedistribution of 4,,.., Can be assessed viathe
betadistribution, and 4,,,.., follows asymptotically a normal distribution N (1,0.0136) given
30,000 independent markers.

Factorsthat influence A,,¢¢4- A Number of factors will influence the 4,,¢¢4. 1) Sample
overlap, including close relatives across cohorts, reduces the value of 4,,,.., (Supplementary
Fig. 2) Conservative modeling, such asinclusion of covariates in the association model that

are genetically correlated with the phenotype or the ‘genomic control’ approach (adjusting

the sampling variance with A, z = JTL)’ will inflate the sampling variance, and deflate
GCO

Ameta- 3) Genetic heterogeneity, which can be caused by differencesin genetic architecture

or methodological difference, will inflate A,,,..4. 4) As characterized by Equation 10, the
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1054  lower bound (cohort 2 is completed included in cohort 1, givenny, > n, = n,) of A,,e¢q 1S

1055 1-— n_liﬂ upon the ratio of the samples sizes of the two cohorts.

nz

1056

1057  Estimating overlapping samples. As shown in Equation 10, A,,,.., IS alinear function of n,,,
1058  hence the statistical power to detect overlapping samplesis equivalent to asking how A,
1059  departs from the null distribution. Assuming H = 0, the overlapping samples can be

(ny+
2

1061 30,000 independent markers. Hence, using summary statistics only the proportion of

nitn,

1060  estimated asfi, = (1 — Anera) 2 and o7, = 72 % 0.0136 ~ 0.0068(n; + ) given

1062  overlapping samples can be estimated for quantitative traits. Given the type | error rate of
1063  0.05 (@ = 0.05), the statistical power for detecting 71, overlapping samples between two
1064 cohortsisp = @ (T, 7, 07,), iINwhich ®~1 represents the accumulation power function of
1065  anormal distribution with the mean of 7, and standard deviation of g . The statistical power
1066  isdetermined by T, the threshold for significance, 7i,, the real overlapping samples, and o5,
1067  the standard deviation of the null hypothesis that there is no overlapping samples. Without
1068  loss of generality, T = 1.960;, ~ 0.13(n, + n,) given a = 0.05. The 95% confidence
1069 interva is[—0.13(n; + n,), 0.13(n; + n,)]. The statistical power is maximized when

1070 n, = n,, i.e. when apair of cohorts has the same sample size.

1071

1072  For case-control studies, asfi, = 15 ceri/ R1R2 + Ny cs ‘/%, the estimate cannot
112

1073  distinguish between overlapping cases and overlapping controls;, whenR; = 1and R, = 1
1074  (balanced case-control design for both cohorts), i, = 145 ctr1 + N12.cs, iNdicating the overall

1075  overlapping samples between two cohorts, summed across cases and controls. If we know

1076  that only controls (cases) were shared between two cohorts, then fi, = 145 c¢ri+/ R1R>

1077 (i, = nypes ﬁ), so then an estimate of n,, indicates the number of overlapping controls

1078  (cases). Therefore, quantifying overlapping samples for case-control studiesis more difficult
1079  than that for quantitative traits.

1080
1081
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1082 Method IV: Pseudo profile score regression (PPSR)
1083  PPSR resembles the previously proposed Gencrypt method™, but PPSR is more powerful in

1084  detecting various degree of relatives and more robust to missing data and imputation errors.
1085  For each individual, the PPS can be generated as below

1086 A; = S X G; (Equation 11)
1087  inwhich 4; isthe PPSfor the i" individual, S isaK X M score matrix, and G; is vector for

1088  the genotypes for the chosen M loci.

1089 In detail,
ail 5'11 512 SlM gil
Qi _|S21 S22 - Sam || 9i2
Aig Sk1 Sg2 - SkM gim
1090

1091  inwhich ay isthe k" profile score for the i*” individual, sy, is the additive effect at the
1092  m®™ locus (m from 1 to M) for the k** profile score, and g;,,, is the standardized genotype at
1093  the k™ locus for the it" individual. Each s, the pseudo genetic effect, follows a standard
1094 normal distribution N(0,1); each pseudo genetic effect is independent to another. For each
1095  PPS, var(a;) = ZM_ var(gimsy) = EM_, g%, var(s,) = M, inwhich s,_isthe k** column

1096 for the S matrix, and on average each locus explains% of the variation. For an individual a

1097  pair of PPS, say a;; and a;;, hascov(a;;, a;;) = XM _, gizmcov(sllm, Slzm) = 0.

1098
1099  Each PPScan be seen as atrait with h? = 1 becauseit does not have any sampling variance.

1100  Forapair of individuals, individual i and individual j, when both A; and A; have been

1101  standardized, their covariance for the k** PPS cov(a;, ajl) = 6h?, inwhich 6 isthe

1102  relatedness scores in terms of identity by state®. Depending on the relatedness between a pair
1103  of individuals, 8 = 1 for monozygous twins or to aduplicated sample, 6 = 0.5 for first-
1104  degreerelatives such as parent and offspring or full sibs. In general, for r*"-degree of

1105 relatives, E(6,) = 0.5".

1106
1107  Thetheory presented above provides atheoretical basis for detecting overlapping samples

1108  using PPS other than sharing individual level genotypes. Assuming that each individual has
1109 K independent PPS (4; having K elements), for individual i and j, we can regress A; on A4;,

1110 A;=u+bAj+e; (Equation 12)
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1111 inwhich u isthe grand mean, b is the regression coefficient, and e;; isthe residual. E(b) =

1112 244D _ g poyy = 0 if individual i is not correlated with individual j, E(b) = 0.5 for

var(Aj)

1113  first-degree relatives, and E(b) = 1 if individua i and j are genetically same, say an
1114  overlapping sample or the homozygous twins. The sampling variance of b isg? =

2 2 p2
O'Ai—O'A].BT

1115

—pg2 . . . .
= ! Ifr. Under the null distribution for no related or overlapping samples,
A.
]

1 . . . . ..
1116  b~N(O, E)' Theresidua e;; accounts the discordant genotypes, including missing genotypes

1117  and genotyping or imputation errors. For current GWAS data, after quality control, the
1118  discordant rateis often smaller than 1%.

1119
1120  If now we have C cohorts for which the individual genotypes of which cannot be disclosed to

1121 thecentral analysis hub, overlap between cohorts can be identified if PPS are supplied. By
1122 regressing their PPS to each other the overlapping individuals could be detected if b =~ 6,..
1123 Assuming thereare N, samples in each cohort, atotal of N = 3¢ _; X1 ...i N;, X N,

1124  regressions need to be carried out as defined in Equation 12. If we want to control the

1125 experiment-wisetype | error rate a under the null hypothesis and type Il error rate g (with
1126  power= 1 — B) for b = 6, the required number of pseudo profile scores for each individua
1127 s

- - 2 - 2 -
1128 K> (Z“ 2 1: a )) (Equation 13)

1129  inwhichz_gy and z;_) are z scores under the given p-values a the subscripts. To

1130  accommodate technical errors, such as missing genotypes and genotype error, a cutoff of 0.95
1131  for b isadopted for detection of overlapping samples, and 0.4~0.45 for detecting first-degree
1132 relative.

1133
1134  The standardization of genotypes can either use the allele frequency from each cohort, or

1135  from areference sample. Throughout the study, we used the allele frequency calculated from
1136  WTCCC bipolar disorder cohort as the reference, and using it as an approximation to

1137  standardize genotypes for all cohorts in comparison.

1138

1139  Workflow for PPSR. Given the statistical method for detecting overlapping samples as
1140  described above, the whole workflow for detecting can be split into three steps

1141 (Supplementary Fig. 9).
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1142
1143 Instep 1, therequired typel and typell error rates are defined and from that the

1144  required number of pseudo profilesto be generated. The GWAMA central analyst selects
1145  consensus SNP markers across cohorts, and determines additive effects matrix S that will be
1146  used to generate pseudo profile scores for each cohort. In order to avoid strand issues, the loci
1147  having palindromic loci (A/T alleles or G/C alleles) are excluded.

1148
1149 In step 2, each cohort generates PPSR for each individual with the set of consensus

1150 markersand the marker weightsreceived from the GWAMA coor dinator . After
1151 generate the PPS, they send them back to the coordinator. This will be afile that contains N
1152  rowsand K columns with pseudo-profile scores.

1153
1154 Instep 3, thecoordinator runs PPSR for each samplein a cohort on each PPS generated

1155  for another cohort. Thefinal product of running PPSR isto generate an; x n; matrix for a
1156  pair of cohorts, which have n; and n; samples respectively. For each pair of individualsin
1157  comparison, we take the one from cohort i as the response variable and from cohort j asthe
1158  predictor variable in PPSR. In principle, swapping the response variable and the predictor
1159  variable do not affect the performance of PPSR. Each entry, the regression coefficient of
1160  PPSR, inthen; X n; matrix represents genetic similarity for these pair of individualsin
1161  comparison. Once the regression coefficients are above the threshold, it indicates there are
1162  samplesduplicated. The central analyst can then request each cohort that isimplicated in
1163  containing samples that are also in other cohorts to drop those samples, without revealing
1164  where the duplication occurred.

1165

1166  Privacy issues when using PPSR. Asthe exchange of the PPS is within ameta-analysis
1167  facility, itis not as vulnerable as that of releasing the GWAS summary to the public domain
1168  asdiscussed in previous studies™ . However, as PPS are generated from genotypes, it is
1169  worth to consider whether the PPS will reveal individual genotype information, or can be
1170  decoded from PPS. As a demonstration for the principle-of-proof, we consider to reverse
1171  Equation 11 to estimate genotypes. We consider the case where the additive effect matrix in
1172  Equation 11 is known, otherwise it is nearly impossible to recover genotype information.
1173  Given the workflow of PPSR, the analysts who coordinate the meta-analysis know the
1174  additive effect matrix, S in Equation 11, and receive PPS from each cohort have the

1175  information to decode genotypes that are employed to generate PPS.
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After reversing Equation 11, using the standard regression method, the genotype in each
locus can be estimated as

Ai=pu+gmXsmt+e (Equation 14)

In detail,
Qi Sim
e =p+ gm Si:m +e
Qg Sim

inwhich s, isthem*®® column in the additive effects matrix in Equation 11. Although

E(gim) = 9im,» Which is an unbiased estimate of the genotype, its sampling varianceis

M —(1_ 21,2
Og, = \/Zmzl[l APmPJ%m The sampling variance can be further writtenas g, =
K im

,%E(?m) becauses? =1and[1— (1 - p,,)?]isdenoted asP,. The greater the ratio

between % and E (,,), the larger the sampling variance, and consequently the lower

probability to construct the real genotype.

Without loss of generality, the accuracy of the estimated g, a continuous variable, and g, a
discrete variable with values of 2, 1, and O, can be measure using the squared correlation
(R?)*

R? = #ﬁm (Equation 15)
inwhich E(g?) and E (0;) are:
E(9%) = PaaXia + PaaXia + PaaXéa
E(02) = Paa () Can = 20) + Paa(Xaa = 2P)? + Paa (Xaa — 2P)*
Xaa = 2, %40 = 1,and x4, = 0if Aisthereference dlele, and Py, Paq, ad p,, are

weighted frequency given the distribution of g. f = pas + 0.5P4,.

When the reference alele frequency follows a uniform distribution between (a4, a,),
assuming that the loci follow Hardy-Weinberg proportions, p.4 = p?, pas = 2pq, and

Paa = G2, in Which p follows auniform distribution between a; and a, andq = 1 — p.

2, 1 e 1o 3
pAA:f p :§P |a1:§(a2_a1)
a

1
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2 2 2 3 az 2 2 2 3 3
pAa:f 2pq=(p —3P )|a1=(az—a1)—§(az—a1)
a

1

o 2 1 3|1-a 1 3 3
b= | @ =3@h=5l0-a)t - (- )]
1

—ay

~ Paa ~ PAa ~ Paa
1199 and = —" =——>2  and =
Paa PaA+Paa+Paa’ Paa PAA+PAa+Paa’ Paa PaatPaatPaa

1200
1201  If the reference allele frequency follows a uniform distribution between (0, 0.5), R? =

5

> 5
12 —
1202 %y =
12 3K K

1203
1204  Given M loci with MAF of 0.5, the expected frequencies for A4, Aa, and aa are p,, = 0.25,
1205 Pag = 0.5, Fye = 0.25,and f = 0.5. E(g*) = 1.5, and E(c?) = 0.5. Plugging them in to

1206 the Equation 13 leadstoR? = —>> =

M=
0.5+1.5E 1+3E

1207  Equation 13 can be rewritten asR? = 1+1 s inwhich ¢ = 3 if MAFis0.5,and ¢ = 1.6 if

Yk

1208 MAFin nearly from a uniform distribution. From Equation 13, it is easy to calculate the ratio

1209  between the number of markers and the number of PPS given a controlled R?,

1210

(Equation 16)

M _ 1-R?
- =
K @R?

1211

1212 For uniform distribution of MAF, if R? < 0.1 is set asthethr%hold,% > 5.4;if R < 0.05,
1213 % > 11.4,andif R? < 0.01,% > 59.4. In general, the higher the ratio between M and K, the
1214  lessinformation can beinferred. We suggest% > 5~10 may be sufficient.
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