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Abstract

We study the investment decision problem of a duopoly with price competition on a
market of finite size driven by stochastic shocks on profit. Each player has the choice between
two technologies: a large unit and a small one. We prove that different equilibria may exist
depending on the parameters’ values: simultaneous investment equilibrium in the small unit
or two preemption equilibria (preemption with the large or the small unit). Whatever the
cost advantage of the small capacity technology, there is always a range of the profits for
which the outcome consists in an asymmetric investment. More surprisingly, uncertainty has
almost no effect on the type of equilibrium that emerge. We also prove that for some values
of the demand, the preemption equilibrium in the large unit is more efficient than the joint
adoption equilibrium.

1 Introduction

When a firm contemplates the possibility to undertake an investment, it has to consider all the
technologies that are available on the market. Not only is the choice of the production process
very important, but also the production capacity that has a direct effect on the total profit of
the firm. Indeed, even if an investor alone preferred to invest in a large unit, the presence of
competitors could make her invest in her least preferred technology, namely, the small unit in
order to be able to sell a lower quantity but at a higher price. This effect could arise for any
kind of investment, also in the R&D sector. As different authors already argued (Kulatilaka
and Perotti [20] or Grenadier [13] for instance) an investment in R&D expenditures can be seen
as a growth option on a future opportunity. Payoffs coming from research efforts may be very
high, but may also be significantly reduced by the presence of other participants: competition
can be very fierce. This is what happens in the pharmaceutical industry and more precisely
in the development and production of vaccines where the number of firms is quite restricted:
there are three or four major firms. Moreover, in this branch, the high production costs and
the difficulties to obtain a permit to market a vaccine represent barriers to entry so that any
investment can be considered as irreversible. Therefore the correct calibration of the capacity
choice is a key element of such an investment decision.
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This paper proposes to study the investment decision of a firm in a competitive framework
when it has the choice between different technologies to produce the same output. We consider
a duopoly model with price competition on a market driven by stochastic shocks on profit.
Each firm has the choice between two capacity sizes to undertake an investment.1 Focusing
on Markov Perfect Equilibria, we prove that different equilibria may emerge according to the
parameter values. There are different types of preemption equilibria (the first mover choosing
the small or the large capacity) and a simultaneous investment equilibrium. With this paper,
we aim at studying the tension between two main effects: on the one hand, the choice for each
firm would induce the participants to delay investment in order to choose the technology that
is shown to be the most profitable; on the other hand, the presence of competitors make every
firm reluctant to wait. Without the threat of preemption, the first effect dominates and the
leader still takes the time to ensure an investment in the most profitable technology. With the
threat of preemption, we prove that the second effect always dominates the first one: firms do
not delay investment anymore. On the contrary, we prove that there is always a preemption
incentive.

Our analysis provides different innovative insights on timing of new technology adoption
under uncertainty in a competitive framework. It proposes a complete comparative static anal-
ysis with respect to the cost advantage of the small capacity technology and to uncertainty of
the shock on profit. The first feature to point out is the heterogeneity in the outcomes of the
investment strategy for both participants. Although firms are ex-ante identical, the outcome is
heterogenous is most cases whatever the cost advantage of the small capacity technology. This
result meets the conclusion of Besanko and Doraszelski [3] who study a capacity accumulation
game in an oligopolistic industry. They conclude that under Cournot competition, the industry
is composed of equal-sized firms. On the contrary under Bertrand competition, they claim that
the industry tends to an asymmetric structure. They link their results with several empirical
studies that our theoretical analysis could reinforce. This heterogeneity in the outcome can be
explained with the strategic advantage of the first mover firm who invests in the large unit.
In doing so, she delays the entry of her opponent who will invest later in the small capacity
technology. Therefore, she takes advantage of the high profit flow as long as she is alone. This
effect of course diminishes as the cost advantage of the small unit increases.

Unlike the majority of models dealing with strategic investment that highlight a strategic
advantage for the second mover (see Hoppe [15] or Mason and Weeds [23] for instance), in
our setting the leader still has a strategic advantage meaning that the outcome of the game
consists in a preemption equilibrium (the first investor choosing the small or the large unit) for
most of the parameters values. This is in part due to the setting we chose in which the second
mover does not have the choice: it is always more profitable to invest in the small capacity
technology. However, the fear of preemption is so high that the first mover may invest in her
least preferred technology, meaning that if she were not threatened by the preemption from
the other participant, she would invest in the other technology. As we already mentioned, we
also propose a comparative static analysis with respect to uncertainty. We conclude that if
uncertainty plays a role on the level of the thresholds that trigger investment, it has no effect on
the type of equilibrium that might emerge. This is the cost advantage of one technology relative
to the other that is the key factor. This conclusion completes the one of Mason and Weeds [23].

In this work, we also propose a welfare analysis that leads to results in contradiction with
the existing literature. Indeed, since the pioneer work of Fudenberg and Tirole [9], it has mostly
being the case that a simultaneous investment equilibrium Pareto dominates a preemption equi-
librium. In our model, for all parameters values, there is a region on which two equilibria
coexist: a mixed strategy equilibrium that consists in a preemption equilibrium in the large

1This extreme choice between only two capacity sizes makes the model much easier. We are thus able to solve
it completely.
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capacity technology and a simultaneous investment in the small capacity technology. A welfare
analysis shows that it is very likely that the preemption equilibrium is more efficient. From
the firms’ perspective, the preemption equilibrium is less interesting since their expected profit
is much smaller than in the simultaneous investment case. However, the consumer surplus is
much higher in the case of the preemption equilibrium since prices are much lower when the
large capacity has been installed. We thus show that the total surplus may be continuous or
discontinuous as the value of the shock on profit increases. Locally, the expected surplus may
not be increasing in the state variable, and waiting may not always be more efficient.

This work comes within the scope of timing game of entry that has been first developed by
Reinganum [27] and Fudenberg and Tirole [9]. Reinganum studies the diffusion of a new tech-
nology in a duopoly when the players have precommitment to adoption dates and she shows that
the outcome is a “diffusion” equilibrium (firms adopt a different dates). Fudenberg and Tirole
model the adoption of a new technology as a timing game and show that two equilibria could
emerge: a preemption equilibrium in which the payoffs of the two players are equalized and a
joint adoption equilibrium, the latter being Pareto dominant. The introduction of an “option
value” by Arrow and Fisher [1] and Henry [14] has considerably influenced the understanding
of investment under uncertainty. Hoppe [16] proposes a very interesting review of literature
on the timing of new technology adoption. A whole series of paper have introduced competi-
tion in the pioneer models, reducing the option value to almost zero. For instance Kulatilaka
and Perotti [20] propose a model close to ours but without technology choice. They show that
strategic investment with strong preemptive effect and high uncertainty tend to favor invest-
ment. Grenadier [13] describes a Cournot Nash equilibrium when each firm faces a sequence of
investment opportunities. He derives a symmetric equilibrium and finds that with competition,
the traditional NPV rule becomes approximatively correct. His work has triggered off many
reactions. Extensions have been proposed by Back [2] in the case of Bertrand competition or
Novy-Marx [25]. Many papers dealing with timing game of entry also introduced uncertainty
in the initial framework of Fudenberg and Tirole [9]. For instance Hoppe [15] highlights the
strategic advantage of the second mover in introducing uncertainty on the profitability of the
technology. The second mover has a strategic advantage since she learns the quality of the
technology thanks to the first investor’s action. Boyer at al. [5] propose a model where firms
face sequential investment under Bertrand competition and prove that the equilibrium results
in a joint investment. Weeds [32] considers a model of R&D competition with two uncertainty
sources: a technological uncertainty and an economic uncertainty on the patent influence the
investment decision. The resulting equilibrium is either sequential or simultaneous, the latter
being the most efficient. Mason and Weeds [23] study the effect of uncertainty in the investment
decision of a monopoly and show how greater uncertainty may hasten investment. Our model
can be distinguished from these ones since we focus on a choice between asymmetric investments
in a competitive setting. Moreover, we propose a detailed analysis for different values of the
uncertainty of the shock on profit and of the cost advantage of the small capacity technology.

The remainder of the paper is organized as follows. Section 2 describes the model. Section
3 examines the case of a natural leader and a natural follower. Section 4 is devoted to the
situation where the constraint on the entry’s order of the players is relaxed: preemption is thus
possible. In section 5, we derive the welfare analysis and section 6 concludes. The appendix
contains lengthier proofs.
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2 The model

Time is continuous and indexed by t ≥ 0. We consider a duopoly model where each firm has the
choice between two technologies to undertake a unique investment. The two technologies differ
in their production capacity. Both firms are risk neutral and discount future revenues and costs
at a constant risk-free rate r. Variable costs are normalized to zero. Investment is irreversible
and takes place in a lumpy way. The characteristics of the technologies are the following:

- technology 1 has a capacity of 1 and its sunk cost is equal to I1,

- technology 2 has a capacity of 2 and its sunk cost is equal to I2.

We suppose that the profit of each firm is subject to random shocks Xt described by a
geometric Brownian motion

dXt

Xt
= µdt+ σdWt (1)

where X0 = x, µ and σ are positive constants and {Wt}t≥0 is a standard Brownian motion.
We denote Π (ni, nj , Xt) the instantaneous expected profit flow of firm i when it holds ni unit
whereas its rival holds nj units, and the shock equals Xt:

Π (ni, nj , Xt) = Xtπ (ni, nj) , (2)

where π (ni, nj) is the deterministic part of the profit of firm i.
At any date t, the demand side of the market is described by a linear demand function:

Q (Pt) = 3− Pt, (3)

where Pt is the market price.
Concerning competition, within each instant [t, t+ dt), the timing of the game is the follow-

ing:

(i) first, each firm decides whether to invest or not, and if yes chooses the technology to invest
in, given the realization of Xt;

(ii) next, each firm quotes a price given its investment and that of its rival;

(iii) last, consumers choose from which firm to purchase. Production and transfers take place.

Nash equilibrium in pure strategy does not always exist in such capacity constrained price
competition game. It may be thus necessary to focus on mixed strategy equilibria. The following
lemma gives the instantaneous profit function π (ni, nj) in each state of the world of this Bertrand
Edgeworth competition game.2

Lemma 1 In the different states of the world, the instantaneous expected profits are equal to:

- π (1, 0) = 2, π (2, 0) = 9/4, and π (0, nj) = 0, ∀nj ∈ {0, 1, 2}

- π (2, 1) = 1, π (1, 2) = 1/2, π (1, 1) = 1, and π (2, 2) = 1/4.

Pure strategy equilibrium does not exist if the state of the world is (1, 2) or (2, 2). In these
two cases, expected profits are computed. Firms do not produce at full capacity except in the
states (1, 0) and (1, 1). With this Lemma, we see that competition is quite fierce: if too many
capacity units are installed, the expected profit may brutally decrease. We focus on Markov
Perfect Equilibria (MPE) in which firms’ investment and pricing decisions depend only on the
current value of the shock x and the firms’ capital stock measured in units of capacity (ni, nj).

2Kreps and Scheinkman [18] clearly explain how to compute the expected profit in each state of the world.
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time
each firm decides whether to 
invest or not and if yes, chooses
the technology in which to invest.

each firm quotes a price
given its capacity level and
the one of its rival.

consumers choose from
which firm to purchase. 
Production and transfer take
place.

At each instant:

Figure 1: Timing.

3 Asymmetric players: a natural leader and a natural follower

As a benchmark, we focus on the case of a natural leader (L) and a natural follower (F ). The
natural leader invests first and the natural follower may enter the market only once the first
investment occurred. Moreover, according to Lemma 1, once the leader has made her capacity
choice, the follower does not have the choice any more. She always invests in technology 1:
indeed, π(1, 1) = π(2, 1) and π(1, 2) > π(2, 2). In the next subsections, we solve this problem
by backward induction, focusing first on the behavior of the follower.

3.1 Follower’s strategy

The follower’s strategy depends on the leader’s choice.

3.1.1 The leader has invested in technology 1

We are here in the classic setting of optimal stopping time models. Let us first compute the
expected net discounted profit of the follower when she is going to invest in technology 1, given
that the leader has invested in technology 1 and that the shock equals x

ΦF
11 (x) = E

[∫ +∞

0
e−rtΠ (1, 1, Xt) dt|X0 = x

]
− I1 =

Π (1, 1, x)
r − µ

− I1 =
x

r − µ
− I1. (4)

The option value created by such a possible investment is

V F
11 (x) = sup

τ
E
[
e−rτΦF

11 (Xτ ) |X0 = x
]
. (5)
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This problem can be easily solved.3 The solution is

V F
11 (x) =


(

x
xF∗11

)β ( xF∗11
(r−µ) − I1

)
if x ≤ xF∗11 ,

x
(r−µ) − I1 if x > xF∗11 ,

where
xF∗11 =

β

β − 1
(r − µ) I1, (6)

and β is the positive root of the second order equation

1
2
σ2β (β − 1) + µβ − r = 0. (7)

The investment strategy of the follower is to invest in technology 1 as soon as x crosses the
threshold xF∗11 . If x < xF∗11 , she prefers to wait and see the evolution of demand. As β > 1,
xF∗11 > (r − µ) I1. Indeed the follower values the information she can collect on the demand and
prefers to delay investment: this is a classic result of the real option theory.

3.1.2 The leader has invested in technology 2

The problem is very similar in the case where the leader has invested in technology 2. We thus
give directly the expression for the profit function and the option value.

ΦF
12 (x) = E

[∫ +∞

0
e−rtΠ (1, 2, Xt) dt|X0 = x

]
− I1 =

x

2 (r − µ)
− I1. (8)

V F
12 (x) =


(

x
xF∗12

)β ( xF∗12
2(r−µ) − I1

)
if x ≤ xF∗12 ,

x
2(r−µ) − I1 if x > xF∗12 ,

where
xF∗12 =

β

β − 1
2 (r − µ) I1. (9)

Here, investment in technology 1 is triggered as soon as x reaches the threshold xF∗12 . Note that
xF∗12 = 2xF∗11 . The follower invests earlier if the leader has invested in technology 1 than if she
has invested in technology 2. Indeed, when the leader invests in technology 2, the follower’s net
profit is twice less than if the leader had invested in technology 1. V F

11 (x) is greater than V F
12 (x)

whatever the demand value x. The follower prefers that the leader invests in technology 1. We
now turn to the analysis of the leader’s strategy.

3.2 Leader’s investment decision: two auxiliary problems

The leader has the choice between the two technologies. In a first step, we consider two auxiliary
problems when the leader does not have this choice.

3See for example Dixit and Pindyck, Chapter V [7].
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3.2.1 Leader’s investment decision in technology 1

The leader’s profit flow depends on whether or not the follower has already invested. Indeed, her
instantaneous profit flow is modified by the entry of the follower. The expected net discounted
profit of the leader equals

ΦL
1 (x) = E

[∫ τF∗11

0
e−rt2Xtdt+

∫ +∞

τF∗11

e−rtXtdt|X0 = x

]
− I1, (10)

where τF∗11 = inf
{
t|Xt = xF∗11

}
. If x ≥ xF∗11 , there is a simultaneous investment by the two players

and the expected net discounted profit of the leader is equal to

ΦL
1 (x) = E

[∫ +∞

0
e−rtXtdt|X0 = x

]
− I1. (11)

We obtain that

ΦL
1 (p) =

 2x
r−µ −

xF∗11
(r−µ)

(
x
xF∗11

)β
− I1 if x ≤ xF∗11 ,

x
r−µ − I1 if x > xF∗11 .

If x ≤ xF∗11 , when the leader invests, she is alone on the market. The term −xF∗121
r−µ

(
x
xF∗11

)β
represents the loss in the leader’s profit induced by the potential entry of the follower. On the
contrary, if x ≥ xF∗11 , both the leader and the follower enter at the same time.

As usual, the option value of the investment in technology 1 has the following expression

V L
1 (x) = sup

τ
E
[
e−rτΦL

1 (Xτ ) |X0 = x
]
, (12)

and is analytically equal to

V L
1 (x) =

{ (
x
xL∗1

)β
ΦL

1

(
xL∗1

)
if x ≤ xL∗1 ,

ΦL
1 (x) if x > xL∗1 ,

where
xL∗1 =

β

β − 1
r − µ

2
I1. (13)

3.2.2 Leader’s investment decision in technology 2

If the leader invests in technology 2, the expected payoff and the option value equal

ΦL
2 (x) =

 9x
4(r−µ) −

5xF∗12
4(r−µ)

(
x
xF∗12

)β
− I2 if x ≤ xF∗12 ,

x
r−µ − I2 if x > xF∗12 .

V L
2 (x) =

{ (
x
xL∗2

)β
ΦL

2

(
xL∗2

)
if x ≤ xL∗2 ,

ΦL
2 (x) if x > xL∗2 ,

where
xL∗2 =

β

β − 1
4
9

(r − µ) I2. (14)

Note that x∗2 > x∗1. What happens in the case where the leader has indeed the choice between
the two technologies?
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3.3 Leader’s investment decision when she has the choice

If the leader has the choice between the two technologies, the stopping time problem she faces
is:

V L (x) = sup
τ

E
[
e−rτ max

(
ΦL

1 (Xτ ) ,ΦL
2 (Xτ )

)
|X0 = x

]
. (15)

Indeed, while the investment has not been undertaken, the leader still has the choice between
the two technologies. This kind of problems has been studied by Décamps et al. [6] for instance
and we remind their main results. First of all, as we do not want one technology to dominate
strictly the other, we put some restrictions on the parameters’ values.

Lemma 2 Under the assumption

A1 : I2 <
(

1 +
5β

4 (β − 1)

(
1− 1

2β−1

))
I1, (16)

there are two thresholds x̃ and ˜̃x, such that

- ∀x ∈ [0, x̃[, ΦL
1 (x) > ΦL

2 (x),

- ∀x ∈
]
x̃, ˜̃x[, ΦL

1 (x) < ΦL
2 (x),

- ∀x ∈
]˜̃x,+∞[, ΦL

1 (x) > ΦL
2 (x).

Proof : We study ΦL
1 (x) − ΦL

2 (x). This function is differentiable everywhere except for
x = xF∗11 and x = xF∗12 . We want to determine the parameters’ values such that this function is
positive, then negative to finally end up positive. This comes down to finding a condition under
which the minimum of this function is strictly negative.

We first study this function on
[
0, xF∗11

]
.

ΦL
1 (x)− ΦL

2 (x) =
xF∗11

r − µ

(
x

xF∗11

)β ( 5
2β+1

− 1
)
− x

4 (r − µ)
+ I2 − I1

This function is decreasing and attains its minimum at x =
(

1
4β

2β+1

5−2β+1

) 1
β−1

xF∗11 . As
(

1
4β

2β+1

5−2β+1

) 1
β−1

>

1∀x ∈
[
0, xF∗11

]
,ΦL

1 (x)− ΦL
2 (x) is strictly decreasing on this interval.

We then study this function on
[
xF∗11 , x

F∗
12

]
.

ΦL
1 (x)− ΦL

2 (x) =
5xF∗12

4 (r − µ)

(
x

xF∗12

)β
− 5x

4 (r − µ)
+ I2 − I1.

This function is either increasing or decreasing and then increasing on
[
xF∗11 , x

F∗
12

]
, depending in

the ranking of
(

1
2

) 1
β−1 relative to 1

2 .

Then, it follows that in order this function to have two zeros, it is necessary and sufficient
that ΦL

1

(
xF∗11

)
− ΦL

2

(
xF∗11

)
< 0 what comes down to I2 <

(
1 + 5β

4(β−1)

(
1− 1

2beta−1

))
I1.

Note that we have proven that x̃ < xF∗11 < ˜̃x < xF∗12 . 2

Note that by proving this Lemma, we have also proved that x̃ < xF∗11 < ˜̃x < xF∗12 .
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Figure 2: Net profits ΦL
1 (x) and ΦL

2 (x).

On Figure 3.3, we represent the net profit functions in both cases, ΦL
1 (x) and ΦL

2 (x), when
r = 0.05, µ = 0.02, σ = 0.1, I1 = 50 and I2 = 85.

Assumption A1 implies that technology 2 should not be too expensive. Indeed, in the
opposite case, it would not be worth investing in it, and technology 1 would always be the
preferred technology. Before going further with the analysis of the leader’s behavior, a second
restriction has to be put on the parameters’ values, indeed that at the indifference point, x̃,
the two technologies are already profitable. If this were not the case, then it would never
be worthwhile to invest in technology for low levels of x. This restriction is summarized in
Assumption A2.

A2 : ΦL
1 (x̃) = ΦL

2 (x̃) > 0. (17)

It is shown in the Appendix that this assumption is not satisfied if I2/I1 is too low. This
is quite intuitive. If the cost advantage of technology 1 is small, there is no reason to invest in
technology 1 when x is small. Any investor would be better off by investing in technology 2.
In the Appendix, Assumption A2 is expressed with the help of the parameters of the model so
that Assumption A2 can be represented as a function of β and I2/I1.

Let us introduce the three sets

EL =
{
x ≥ 0|V L (x) = max

(
ΦL

1 (x) ,ΦL
2 (x)

)}
,

EL1 =
{
x ≥ 0|V L (x) = ΦL

1 (x)
}
, and EL2 =

{
x ≥ 0|V L (x) = ΦL

2 (x)
}
.

EL is the “exercise region” (also called “investment region”) of the leader when she can choose
between the two technologies, EL1 (resp. EL2 ) is the exercise region of the leader when technology
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Figure 3: Assumptions A1 and A2.

1 (resp. 2) is the preferred one. According to Décamps et al. [6], we know EL is the disjoint
union of the two exercise sets EL1 and EL2 . They show the following theorem that we apply to
our setting: The indifference points x̃ and ˜̃x do not belong to the exercise region EL.4 Therefore,
EL1 can also be decomposed into two disjoint sets:

EL1 = EL1 ∪ E
L
1 ,

where EL1 =
{

0 ≤ x < x̃|V L (x) = ΦL
1 (x)

}
and E

L
1 =

{
x > ˜̃x|V L (x) = ΦL

1 (x)
}

. Concerning

the leader’s exercise region in technology 2, we have that EL2 ⊂
]
x̃, ˜̃x[. We will see in the next

subsections that depending on the values taken by the parameters of the model, the exercise
region for investment in technology 1, EL1 , does not always exist (is empty). Lemma 3 gives a
first result on the exercise region E

L
1 .

Lemma 3 The exercise region E
L
1 is never empty.

Proof : Suppose that EL1 = ∅. Then, ∀x > ˜̃x, V (x) > ΦL
1 (x) > ΦL

2 (x). at the same
time, ∀x ≥ xL∗1 , V L

1 (x) = ΦL
1 (x). But, when x → +∞, V L (x) = V L

1 (x). This leads to
limx→+∞ΦL

1 (x) > limx→+∞ΦL
1 (x), a contradiction. 2

When demand is high enough, whatever the parameters’ values, the leader is going to invest
in technology 1 and E

L
1 is never empty. Let us now focus on the other exercise region in

technology 1, EL1 .
4See proposition 2.2 p.431 [6].
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3.3.1 The case of two exercise regions: EL1 is empty

In this part, we study the case where EL1 is empty. Let us consider

A3 : ΦL
1

(
xL∗1

)
< V L

2

(
xL∗1

)
. (18)

Assumption A3 implies that, at the threshold xL∗1 , the option value of investing in technology
2 is strictly greater than the expected discounted net profit of investing in technology 1. The
leader prefers not to invest immediately in technology 1 and to keep alive the option to invest
in technology 2.

Lemma 4 We have the following result concerning the shape of EL1 .

- If 9I1 > 8I2, EL1 = ∅.

- If 9I1 < 8I2, EL1 = ∅ if and only if(
9I1
8I2

)β (I2
I1
− 5

2
β

(
2I2
9I1

)β)
− 1 + β

(
1
2

)β
> 0.

The condition given in this lemma is satisfied if and only if the ratio I2/I1 is small enough.
Indeed, when technology 2 is relatively cheap, the leader does not want to waste her opportunity
of receiving high revenues and thus she refrains from investing in technology 1 for low values of
x. This condition is also satisfied if β is quite high (meaning that σ is quite low, r and µ being
constant). Indeed in this case, the probability that x takes high values quite in a near future is
low high, and the leader takes advantage of the time she is alone on the market.

Under Assumption A3 and according to Décamps et al. [6], we know that the leader’s option
value is equal to:

V L (p) =


B2x

β if x ≤ xL∗2 ,
ΦL

2 (x) if xL∗2 < x ≤ x3,
Axα +Bxβ if x3 < x ≤ x4,
ΦL

1 (x) if x > x4,

where

B2 =
(

1
xL∗2

)β
ΦL

2

(
xL∗2

)
,

and x3, x4, A and B can be numerically obtained thanks to the value matching and smooth
pasting conditions at x3 and x4.

The leader invests in technology 2 if x ∈
[
xL∗2 , x3

]
, he invests in technology 1 if x ≥ x4. The

indifference point ˜̃x does not belong to any exercise region as we already mentioned: ˜̃x ∈ [x3, x4].
Between these two exercise regions

[
xL∗2 , x3

]
and [x4,+∞[, the leader faces an inaction region

in which she prefers to wait rather than to invest in one of the two technologies.
In the case of a unique inaction region, two equilibria may arise: a sequential equilibrium (the

leader invests in technology 2 and the follower invests in technology 1 at xF∗12 ) when x ∈
[
xL∗2 , x3

]
and a simultaneous investment in technology 1 equilibrium ∀x ≥ x4.

3.3.2 The case of three exercise regions: EL1 is not empty

To ensure the existence of EL1 , we need to assume that

A4 : ΦL
1

(
xL∗1

)
≥ V L

2

(
xL∗1

)
. (19)
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Lemma 5 Under Assumption A4, EL1 and EL2 are not empty.

This implies that at xL∗1 , the leader prefers to invest immediately in technology 1 rather
than to wait to invest in technology 2. This is a sufficient condition for EL1 not to be empty.
Assumption A4 is the contrary of Assumption A3, and then we know according to Lemma 4
that it is satisfied when when I2/I1 is high enough. Indeed, in this case the leader prefers to
earn profit quite early in the time by investing in technology 1 because she knows that demand
has to be quite high in order an investment in technology 2 to be profitable. In this case, the
leader’s option value is a succession of three disjoint exercise regions: EL1 , EL2 and E

L
1 .

V L (x) =



B1x
β if x ≤ xL∗1 ,

ΦL
1 (x) if xL∗1 ≤ x ≤ x̂2,

Axα +Bxβ if x̂2 ≤ x ≤ x̂3,
ΦL

2 (x) if x̂3 ≤ x ≤ x̂4,

Axα +Bxβ if x̂4 ≤ x ≤ x̂5,
ΦL

1 (x) if x ≥ x̂5,

where

B1 =
(

1
xL∗1

)β
ΦL

1

(
pxL∗1

)
,

and x̂2, x̂3, x̂4, x̂5, A, B, A and B can be numerically obtained thanks to the value matching
and smooth pasting conditions at x̂2, x̂3, x̂4 and x̂5.

In this case with three exercise regions, when x ∈
[
xL∗1 , x̂2

]
, the equilibrium is a sequential

investment in technology 1 for the two players, when x ∈ [x̂3, x̂4, ], the equilibrium is a sequential
investment in technology 2 for the leader and then 1 for the follower, and when x ∈ [x̂5,+∞[.
Let us now introduce the possibility for any player to preempt her rival.

4 Symmetric players: when preemption is allowed

When no constraint holds on the order players enter the market, each player may want to
preempt her rival in order to take advantage of high profit flows the time she is alone on the
market. Three kinds of equilibria may emerge:

- an equilibrium where the first mover invests in technology 1,

- an equilibrium where the first mover invests in technology 2,

- an equilibrium where the two players have an incentive to simultaneously invest in tech-
nology 1.

If the two players only focus on technology 1, until x < xF∗11 , each of them wants to be the
first to move in order to take advantage of the time period she is alone on the market. In fact
there is a gain in being the first mover as soon as ΦL

1 (x) ≥ V F
11 (x). Thus the threshold x1 such

that ΦL
1 (x1) = V L

11 (x1) is decisive. In fact, as soon as ΦL
1 (x) ≥ V L

11 (x), or equivalently x ≥ x1,
there is the risk of being preempted.

As in the previous case, the threshold x2 such that ΦL
2 (x2) = V F

12 (x2) plays a key role in the
other preemption equilibrium. Indeed, as soon as x ≥ x2 or equivalently Φl

2 (x) ≥ V F
12 (x), there

is a gain in being the first who moves and invests in technology 2.
In these two mixed strategy equilibria, one should check that no other player has an incen-

tive to deviate and play an other strategy (investing in technology 2 for the first case, and in
technology 1 for the second case).
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This means that there are 4 types of equilibria (one equilibrium in pure strategy and three
in mixed strategies) for which we carefully describe the possible outcomes:5

- preemption equilibrium with technology 1, PR1: this equilibrium may happen if
x ∈

[
x1, x

F∗
11

]
and if no player has an incentive to deviate. The two possible outcomes of

this mixed strategy equilibrium are:

(i) one player immediately invests in technology 1, the other waits and optimally re-
sponds to this action by investing in technology 1 when x crosses the threshold xF∗11 ,

(ii) the two players immediately invest in technology 1.

- preemption equilibrium with technology 2, PR2: this equilibrium may happen if
x ∈

[
x2, x

F∗
12

]
and if no player has an incentive to deviate. It is also necessary that

x ∈
[
x̃, ˜̃x]. Indeed the first mover must have an incentive to invest in technology 2. The

two possible outcomes of this mixed strategy equilibrium are:

(i) one player immediately invests in technology 2, the other waits and optimally re-
sponds to this action by investing in technology 1 when x crosses the threshold xF∗12 ,

(ii) the two players simultaneously invest in technology 2.

- preemption equilibrium with both technologies 1 and 2, PR12: this equilibrium
happens when, either in PR1 or in PR2, a player has an incentive to deviate and invests
in the other technology. In this equilibrium, outcomes are different whether x is less than
xF∗11 or not. If x < xF∗11 , the outcomes of this mixed strategy equilibrium, denoted PRI

12,
are:

(i) one player immediately invests in technology 1, the other waits and optimally re-
sponds to this action by investing in technology 1 when x crosses the threshold xF∗11 ,

(ii) one player immediately invests in technology 2, the other waits and optimally re-
sponds to this action by investing in technology 1 when x crosses the threshold xF∗12 ,

(iii) the two players immediately invest in technology 1,

(iv) the two players immediately invest in technology 2,

(v) the two players immediately invest one in technology 1, the other in technology 2.

If x ≥ xF∗11 , the outcomes of this mixed strategy equilibrium, denoted PRII
12, are:

(i) one player immediately invests in technology 2, the other waits and optimally re-
sponds to this action by investing in technology 1 when x crosses the threshold xF∗12 ,

(ii) the two players immediately invest in technology 1,

(iii) the two players immediately invest in technology 2,

(iv) the two players immediately invest one in technology 1, the other in technology 2.

- simultaneous equilibrium in technology 1, SI: this equilibrium may happen if x ≥
xF∗11 . This is a pure strategy equilibrium in which each player immediately invests in
technology 1.

5The intensities with which all the equilibria are played and the condition under which players do not have
interest to deviate are in the Appendix.

13



Note that in all the three preemption equilibria, if x is lower than the threshold that triggers
the equilibrium (x2 or x2), when investment will be triggered (at x2 or x2 depending in the
type of equilibrium), the two players have the same payoff. There will be no mistake in the
investment at this point. However, if x is higher than x2 or x2 at the beginning of the game,
then a mistake may happen since the leader is better off than the follower.

To derive the equilibrium, it is thus fundamental to know exactly how the different thresholds
are ranked. Therefore let us introduce

E12 = {(β, I2/I1) ;x1 < x2} , E1I = {(β, I2/I1) ;x1 < x̃} , and E2I = {(β, I2/I1) ;x2 < x̃} .
(20)

Lemma 6 We have the following result:

E12 ⊂ E1I ⊂ E2I (21)

The different thresholds are thus ranked according to four possible outcomes:

- x̃ < x2 < x1 < xL∗1 < xF∗11 < ˜̃x < xF∗12 (case I),

- x2 < x̃ < x1 < xL∗1 < xF∗11 < ˜̃x < xF∗12 (case II),

- x2 < x1 < x̃ < xL∗1 < xF∗11 < ˜̃x < xF∗12 (case III),

- x2 < x1 < x̃ < xL∗1 < xF∗11 < ˜̃x < xF∗12 (case IV).

Proof : The ranking xF∗11 < ˜̃x < xF∗12 has been proved in Lemma 2. And we already noted
that xL∗1 < xF∗11 .

We first suppose that ∃ (β, I2/I1) ∈ E1T ∩ E12 = ∅. In this case, there is x ∈ [x1, x2] such
that

V F
12 (x) > ΦL

2 (x)
> ΦL

1 (x)
> V F

11 (x) ,

where the first inequality holds since x > x̃, the second since x > x1 and the third since x < x2.
But V F

11 (x) > V F
12 (x) ∀x. This leads to a contradiction implying that E12 ⊂ E1I .

It is straightforward to extend this reasoning to obtain that E12 ⊂ E2I and E1I ⊂ E2I .
Therefore, E12 ⊂ E1I ⊂ E2I . 2

This result means that if ∃ (β, I2/I1) ∈ E1I (meaning that max [x1, x2] < x̃, ), then there
is a preemption motive to invest in technology 1 but not in technology 2 ∀x ∈ [x1, x̃]. On
the contrary, if ∃ (β, I2/I1) ∈ E1T (meaning that max [x2, x̃] < x1), then there is a preemption
motive to invest in technology 2 but not in technology 1 ∀x ∈ [x2, x1]. Lemma 6 suggests that
E1I corresponds to situations where technology 2 is quite expensive relative to technology 1
and E1T corresponds to situations where technology 2 is quite cheap. The distinction between
E2I and E1I and between E12 and E12 is less important and specifies more exactly the starting
points of these regions where the preemption motive exists. The following lemma helps us in
determining the influence of the cost advantage I2/I1.

Lemma 7 For a given β,

(i) suppose that I2/I1 is such that x1 = x2. If I2 increases, then x1 < x2,

(ii) suppose that I2/I1 is such that x1 = x̃. If I2 increases, then x1 < x̃,
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(iii) suppose that I2/I1 is such that x2 = x̃. If I2 increases, then x2 < x̃.

Proof : Recall that x̃ satisfies

β

β − 1
5− 2β+1

2β+1

(
x

xF∗11

)β
− β

4 (β − 1) x
xF∗11

+ k − 1 = 0, (22)

positive before and negative after. x1 satisfies

2β
β − 1

x

xF∗11

− β + 1
β − 1

(
x

xF∗11

)β
− 1 = 0, (23)

negative before and positive after. x2 satisfies

9β
4 (β − 1)

x

xF∗11

− 5β + 2
2β+1 (β − 1)

(
x

xF∗11

)β
− k = 0, (24)

negative before and positive after.
x1 does not depend on I2 and when I2 increases, x̃ increases. Therefore if (β, k) ∈ E12,

then (β, k′) ∈ E12 with k′ > k. Similarly, as x2 increases when I2 increases, if (β, k) ∈ E2I ,
then (β, k′) ∈ E2I with k′ > k. And finally, because of the properties of E12, E1I and E2I if
(β, k) ∈ E1I , then (β, k′) ∈ E1I with k′ > k. 2

This Lemma has direct consequences:

- (i) implies that when the cost advantage of technology 1 increases (meaning that technology
2 becomes more expensive), the threshold that triggers PR1 moves away from the one that
triggers PR2. This means that the preemption incentive with technology 1 increases as
I2/I1 increases.

- (ii) tells a very similar story: the preemption incentive with technology 1 increases as I2/I1
increases. Here the comparison concerns the indifference point x̃. Whereas the preemption
incentive is triggered in the zone where technology 2 is the preferred technology of any
first mover, if I2/I1 increases, it is triggered earlier (for x < x̃).

- (iii) implies that when technology 2 becomes more expensive relative to technology 1, the
point up to which technology 2 is the preferred technology for a first mover (x̃) becomes
greater than the threshold that triggers PR2 (x2). This means that as technology 2
becomes more costly, the preemption incentive exists in a region for x on which nobody
is ready to invest in technology 2. Thus there is a region where the dominance of one
technology over the other is more importance than the preemption incentive. On [x2, x̃],
competition with technology 2 is meaningless since technology 2 is totally dominated by
technology 1.

The expressions for the boundaries B3 (β, I2/I1), B4 (β, I2/I1) and B5 (β, I2/I1) of E12, E1I

and E2I are determined in the Appendix. They are very complicated and it is quite tricky to see
how they evolve as the different parameters move. More precisely, the shape of the boundary
with respect to β is very tricky. However thanks to the results of the previous two lemmas, we
are already able to state the following proposition:

Proposition 1 The boundaries of E12, E1I and E2I satisfy:

B3 (β, I2/I1) > B4 (β, I2/I1) > B5 (β, I2/I1) . (25)

Moreover for a given β as I2/I1 increases,
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- you cannot switch from Case II to Case I,

- you cannot switch from Case III to Case II,

- you cannot switch from Case IV to Case III.

Proof : This proposition is a direct consequence of the previous two lemmas. 2

The different regions are represented in Figure 4.
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b

1.2
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1.8

2.0

2.2

2.4

I2 êI1

IV

III

II

I

no investment in technology 2

the two technologies are not
profitable enough

Figure 4: The different regimes.

We already mentioned that the effect of β (or uncertainty) on the shape of the different
regions E12, E1I and E2I is very difficult to obtain. However, thanks to Figure 4, we are able
to have some insights. First note that β is a decreasing function of uncertain, σ2, that varies
from 1 (when σ2 tends to +∞) to r/µ (when σ2 = 0). When there is no uncertainty, all the four
boundaries get closer and the most likely region that remains corresponds to E12 (or Case IV).
In fact as uncertainty decreases, the different regions narrow and end up disappearing except
E12. When uncertainty is very high, and thus β close to 1, the regions corresponding to Cases
II and III are maximal.

The question is then to know which equilibrium occurs when. Next proposition determines
the different equilibria that emerge.

Proposition 2 The equilibrium for x ∈
[
min (x1,max (x̃, x2)) , xF∗11

]
depends of the parameters’

values and is represented in Figures 4 and 4:

(i) Case I: as x increases, the equilibrium is first PR2, then PRI12 and finally PR1,

(ii) Case II: as x increases, the equilibrium is first PRI12 and then PR1,
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(iii) Cases III and IV: as x increases, the equilibrium is PR1.

In the four cases, for x ∈
[
xF∗11 ,

˜̃x[, the equilibria are PRII12 and SI, and for x ∈
]˜̃x,+∞[, the

equilibrium is SI.

Proof : See the Appendix. 2

I
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x

x 2

x 2

x 1

x 1 x11
F∗

x11
F∗

x

x

PR2 PRI
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PRI
12 PRII

12

PR1

PR1

SI

SI

SI

SI

PRII
12

Legend:

-PR1: preemption equilibrium with technology 1,

-PR2: preemption equilibrium with technology 2,

-PR12: preemption equilibrium with technologies 1 or 2,

-SI: simultaneous investment equilibrium in technology 1.

x

x

Figure 5: The different equilibria in Cases I and II.

The description of the different equilibria lead to the following comments. We consider first
the case where x < xF∗11 since the outcome is the same in the four cases for higher values of x.

Note that Cases I and II and Cases III and IV work together. In Cases I and II, the
preemption equilibria succeed one another as the value of the shock x increases. When it is
very low and technology II is very cheap (Case I), the equilibrium begins with PR2 and then
(also in Case II) switches to PRI12 and finally then to PR1. As x increases, technology 2 is first
favored, then technology 1 comes into play and finally technology 2 is abandoned. In PR2 that
is a mixed strategy equilibrium, there always exists the risk that the two players simultaneously
invest in technology 2 what leads to a disaster for the two players because of the fierce price
competition. Their expected payoff in this case is indeed quite low (see Lemma 1). Therefore
when x increases, the potential loss that is an increasing function of x also increases, and players
have an incentive to deviate and invest in technology 1 that is safer. Therefore the equilibrium
switch to PRI12 where the two strategies, investing in technology 1 and investing ni technology
2, are played. And when x continues to increases, there is a threshold above which technology 2
is totally abandoned. With Proposition 1 and Figure 4 we know that Cases I and II occur when
I2/I1 is quite low. In Cases III and IV, the unique equilibrium is PR1 on

[
x1, x

F∗
11

]
. Indeed,

technology 2 is quite expensive relative to the gain in profit therefore it is totally abandoned. An
interesting point to highlight is that uncertainty plays almost no role on the type of equilibrium
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Figure 6: The different equilibria in Cases III and IV.

that arises. Indeed, we see in Figure 4 that the boundary between Cases I and II and Cases
III and IV is a function that is almost independent of β and thus of uncertainty. Of course, β
plays a role on the thresholds x1, x̃... that trigger the different equilibria but not on the type
of equilibrium itself. This implies that the cost advantage determines the technology investors
chose whereas uncertainty determines the timing of investment. Going further, we can argue
that uncertainty only has a minor impact on the industry structure.

When x > xF∗11 , the four cases lead to the same outcome:

- two equilibria for x ∈
[
xF∗11 ,

˜̃x]: SI and PRII12,

- SI for x ≥ ˜̃x.

Lemma 8 For a given β, the size of the interval
[
xF∗11 ,

˜̃x] decreases when I2 increases.

Proof : We know from Lemma 2 that ˜̃x ∈ [xF∗11 , x
F∗
12

]
. Therefore ˜̃x satisfies

2β
β − 1

x

xF∗11

− 5
2β+1

β

β − 1

(
x

xF∗11

)β
− I2
I1

+ 1 = 0. (26)

As this expression is positive when x < ˜̃x and negative otherwise, it follows that ˜̃x decreases
when I2 increases. Noting that xF∗11 does not depend on I2, the result is proved. 2

As I2/I1 increases, the interval on which the two equilibria coexist narrows. Why do the two
equilibria coexist on this interval? First as the threshold xF∗11 is crossed, the two players have
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an incentive to invest simultaneously in the small unit. But in the same time, the values of the
shock x are still less than ˜̃x meaning that technology 2 is still the preferred choice of the first
mover. Once xF∗11 is crossed, there is no choice anymore since the first and the second mover
want to invest immediately in technology 1.

5 Welfare Analysis

The welfare analysis is meaningful in the case where there are multiple equilibria that is when
x ∈

[
xF∗11 ,

˜̃x]. The first step consists in computing the total surplus in all the states of the world.
Following Kreps and Sheinkman [18], we have the following lemma:

Lemma 9 The instantaneous expected surplus in the different states of the world is

S10 = 5/2 S11 = 4
S21 = 3/2 + 4 ln 2 ('4.27) S20 = 27/8
S22 = 167/64 + 383/32 ln 2− 189/32 ln 3 ('4.42)

We thus compare the welfare in SI and in PRII12 when x belong to this interval. In the case
of the simultaneous investment equilibrium, the surplus is easily computed since this equilibrium
is a pure strategy one. Thus

SSI (x) =
S11x

r − µ
− 2I1. (27)

The welfare in the case of PRII12 is less straightforward to compute since there may be different
outcomes. It is thus the expected value of the surplus in the different outcomes.6

The surplus is the sum of the profit of the two firms and the consumers’ surplus. The
expected profit of each firm in PRII12, equals to V F

21 , is smaller than the profit in case of a
simultaneous investment in technology 1, x

r−µ − I1. On the contrary, for most of the parameters
values, the consumers surplus is higher in the case of PRII12 than in the case of SI. Indeed, with
an investment in the large capacity technology, produced quantities are higher and prices are
lower. Therefore, PRII12 is more favorable for the consumers, whereas SI is more favorable for
the firms. In the case of PRII12, there is a jump in the total surplus as x crosses xF∗11 , due to the
discontinuity in the expected payoff of the firms (V F

12

(˜̃x−) < ΦL
1

(˜̃x+

)
). Locally (around ˜̃x),

the expected surplus is thus not increasing in x and waiting may not be optimal.
The comparisons of the total surplus in the two equilibria allows to determine which ef-

fect dominates. Because of the complexity of the expression of the intensities, we compute
numerically the difference SSI (x) − SPRII12 (x) on the interval

[
xF∗11 ,

˜̃x] for different parameters
values.

First note that for a given β and I2/I1, SSI (x) − SPRII12 (x) is decreasing. This means that
for x < x, SSI (x)− SPRII12 (x) > SSI (x)− SPRII12 ((x). The efficiency of SI decreases relative to
the efficiency of PRII12. Three cases happen:

6The expression of the expected surplus is

SPRII12
(x) =

2v2 (1− v1 − v2)

1− (1− v1 − v2)2 − 2v1 (1− v1 − v2)

(
S20x

r − µ − I2 +

(
x

xF∗12

)β (
(S21 − S20)xF∗12

r − µ − I1
))

+

+
2v1v2

(
S21x
r−µ − I1 − I2

)
+ v2

1

(
S11x
r−µ − 2I1

)
+ v2

2

(
S22x
r−µ − 2I2

)
1− (1− v1 − v2)2 − 2v1 (1− v1 − v2)

. (28)
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Figure 7: The difference in surplus.

- SSI (x)−SPRII12 (x) negative on
[
xF∗11 ,

˜̃x]. The gain in efficiency in the case of PRII12 increases
when x increases,

- SSI (x)−SPRII12 (x) is positive and then negative as x increases from xF∗11 to ˜̃x. SI is more
efficient for low values of x and then PRII12 is more efficient for high values,

- SSI (x)− SPRII12 (x) is always positive on
[
xF∗11 ,

˜̃x]. The gain in efficiency in the case of SI
decreases as x increases.

In almost all the outcomes of the mixed strategy equilibrium, the instantaneous expected
surplus is higher than in the case of SI. This effect is magnified as x increases, hence the
shape of the difference. On Figure 5, we see that for a given β and x, SSI (x) − SPRII12 (x) is
increasing when I2/I1 increases, meaning that PRII12 becomes less efficient relative to SI as the
cost advantage of technology 1 increases. This results is very intuitive, since as I2 becomes more
expensive, any investor is more reluctant to invest in it. Thus if β = 2 and I2/I1 = 1.25, PRII12

is more efficient than SI on the whole interval. If if I2/I1 increases to 1.8, this is SI that is the
most efficient, and if I2/I1 = 1.55, SI is first the most efficient and then PRII12 as x increases
from xF∗11 to ˜̃x. On Figure 5, we allow the other parameter β to vary.

When I2/I1 = 1.3, ∀β PRII12 is always the most efficient equilibrium. On the contrary, when
I2/I1 = 1.8, PRII12 is the most efficient equilibrium if β is low (equal to 1.5), but when there is
no uncertainty (β = 2.5), SI is first the most efficient equilibrium and then this is PRII12. If the
cost advantage of technology 1 is low, whatever the uncertainty, PRII12 is more efficient than SI.
But if the cost advantage of technology 1 is high, then uncertainty comes into play:

- with high uncertainty, PRII12 is more efficient,
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- with low uncertainty, SI is more efficient.

Uncertainty increases the option values in PRII12, therefore its surplus increases.

6 Concluding remarks

This paper analyzes the investment strategy of a duopoly with price competition on a market
of finite size with shocks on profit. Each firm has the choice between two technologies: a large
unit and a small unit.

We first study the case where one firm is constrained to invest second. We find that, depend-
ing on the parameters values, there are one or two inaction region(s). In these regions, the first
mover does not invest in any technology whereas without choice, she would have immediately
invested in one of the two. The leader prefers to wait and see which technology turns out to
be the most profitable to invest later in it. The inaction regions reveal the existence of a choice
value for the leader.

When no constraint on the investment’s order holds any more, the inaction regions disappear.
The fear of being preempted indeed makes firms invest earlier. Depending on the parameters’
values, three types of equilibria exist: a simultaneous investment equilibrium in which both
firms invest in the small unit and two mixed strategy equilibria. We show that whatever the
cost advantage of the small capacity technology, there is always an equilibrium with asymmetric
investment. Moreover, even under fierce competition, the first mover still has a strategic ad-
vantage meaning that there is a preemption incentive. We also propose a detailed study of the
role of uncertainty: it does not play any role in the type of equilibrium that emerges, but on
the level of thresholds that trigger investment. Last, we lead a welfare analysis that reveals a
Pareto dominance of the preemption equilibrium relative to the joint adoption equilibrium.
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A Computations of the intensities in the different equilibria

A.1 PR1

In this mixed strategy equilibrium, the player is indifferent between not moving and investing in technol-
ogy 1. Therefore, denoting the expected utilities of investing U∅ and not investing U1, we have:

U∅ = V F11 , (29)

U1 = (1− t) ΦL1 + t (δ − I1) . (30)

Equating the two expressions implies that

t =
ΦL1 − V F11

ΦL1 − δ + I1
(31)

that is positive and less than 1. PR1 is an equilibrium if and only if no player has an incentive to deviate
and invest in technology 2. The condition for PR1 to be an equilibrium is thus that

(1− t) ΦL1 + t (δ − I1) > (1− t) ΦL2 + t (δ − I2) . (32)

Therefore function f :

f (x) =
(
V F11 (x)− δ (x) + I1

) (
ΦL2 (x)− ΦL1 (x)

)
−
(
ΦL1 (x)− V F11 (x)

)
(I2 − I1) (33)

is highly important. If it is negative, then PR1 is an equilibrium.

A.2 PR2

In this equilibrium, the expected utilities of waiting and investing in technology 2 are equalized:

U∅ = V F12 , (34)

U1 = (1− u2) ΦL2 + u2 (δ/2− I2) , (35)

implying that

u2 =
Φ2 − V F12

ΦF2 − δ/4 + I2
(36)

that is positive and less than 1. In order PR2 to be an equilibrium, no player should have an incentive
to deviate:

(1− u2) ΦL2 + u2 (δ/4− I2) > (1− u2) ΦL1 + u2 (δ/2− I1) . (37)

Thus, function

g (x) =
(
V F12 (x)− δ (x) /4 + I2

) (
ΦL2 (x)− ΦL1 (x)

)
−
(
ΦL2 (x)− V F12 (x)

)
(δ (x) /4 + I2 − I1) (38)

is highly important and PR2 is an equilibrium if and only if g (x) > 0.

A.3 PR12

We have to distinguish whether x is greater than xF∗11 or not.

A.3.1 x < xF∗11

In this equilibrium, the expected utilities of waiting, investing in technology 1 and investing in technology
2 are equalized:

U∅ =
s1V

F
11 + s2V 12F

s1 + s2
, (39)

U1 = (1− s1 − s2) ΦL1 + s1 (δ − I1) + s2 (δ/2− I1) , (40)

U2 = (1− s1 − s2) ΦL2 + s1 (δ − I2) + s2 (δ/4− I2) . (41)
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Equating the three terms allows to solve and find s1 and s2. Denoting

D = ΦL2 − ΦL1 + δ/4 + I2 − I1, (42)

A = −
(
δ

4

)2

+
δD

4
(δ − I1)− δ

4
(
ΦL2 − ΦL1 + I2 − I1

)(δ
4
− I1

)
, (43)

B = −
(
ΦL2 − ΦL1

) δ
4

ΦL1 +
(
ΦL2 − ΦL1

)
D (δ − I1)−

(
ΦL2 − ΦL1

) (
ΦL2 − ΦL1 + I2 − I1

)(δ
2
− I1

)
+

+
δ

4

(
δ

4
+ I2 − I1

)
ΦL1 +

δ

4
(
ΦL2 − ΦL1

)(δ
2
− I1

)
−D2V F11 +

(
ΦL2 − ΦL1 + I2 − I1

)
DV F12 , (44)

C =
(
ΦL2 − ΦL1

)(δ
4

+ I2 − I1
)

ΦL1 +
(
ΦL2 − ΦL1

)(δ
4

+ I2 − I1
)

ΦL1 +
(
ΦL2 − ΦL1

)2(δ
2
− I1

)
−D

(
ΦL2 − ΦL1

)
V F12 .

(45)
s1 is the smallest solution of the second order equation As2 +Bs+ C = 0, leading to

s1 =
−B −

√
B2 − 4AC
2A

, (46)

and

s2 =
ΦL2 − ΦL1 − s1

(
ΦL2 − ΦL1 + I2 − I1

)
ΦL2 − ΦL1 + δ/4 + I2 − I1

. (47)

A.3.2 x ≥ xF∗11

In this equilibrium, the expected utilities of waiting, investing in technology 1 and investing in technology
2 are equalized:

U∅ = V 12F , (48)

U1 = v1 (δ − I1) + v2 (δ/2− I1) , (49)

U2 = (1− v1 − v2) ΦL2 + v1 (δ − I2) + v2 (δ/4− I2) . (50)

Equating the three terms allows to solve and find v1 and v2:

v1 =

(
ΦL2 − V F12

) (
δ/2− I1 − V F12

)
V F123δ/4−

(
ΦL2 − δ/4 + I2

)
(δ − I1) +

(
ΦL2 − δ + I2

)
(δ/2 + I1)

, (51)

and

v2 =
ΦL2 − V F12 − v1

(
ΦL2 − δ + I2

)
ΦL2 − δ/4 + I2

. (52)

B Computations of the boundaries of E12, E1I and E2I

The boundary of E12 equals

B3 (β, k)
2β
β − 1

a3 (β, k)− β + 1
β − 1

(a3 (β, k))β − 1, (53)

where

a3 (β, k) =
β − 1
β

k − 5β+2
2β+1(β+1)

9
4 −

5β+2
2β(β+1)

. (54)

The boundary of E1I equals

B4 (β, k) =
2β
β − 1

a4 (β, k)− β + 1
β − 1

(a4 (β, k))β − 1, (55)
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where

a4 (β, k) =
β − 1
β

5−2β+1

2β+1
β
β+1 − (k − 1)

5−2β+1

2β+1
2β
β+1 −

1
4

. (56)

The boundary of E2I equals

B5 (β, k) =
9β

4 (β − 1)
a5 (β, k)− 5β + 2

2β+1 (β − 1)
(a5 (β, k))β − k, (57)

where

a5 (β, k) =
4 (β − 1)

β

5−2β+1

5β+2 βk − (k − 1)
5−2β+1

5β+2 9β − 1
. (58)

C Proof of Proposition 2

We first state a Lemma that allows to have preliminary results.

Lemma 10 We have the following results concerning the equilibria:

(i) PR1 and PRI12 never coexist,

(ii) PR2 and PRI12 never coexist,

(iii) PR2 and PRII12 never coexist,

(iv) as x increases but still remains less than xF∗11 , the equilibrium cannot switch from PR1 to PR12,

(v) PR2 is never an equilibrium in cases II and III.
In case I, it is an equilibrium for some values of x and as x increases but still remains less than
xF∗11 , the equilibrium cannot switch from PRI12 to PR2.
In case IV, it may be an equilibrium for some values of x and as x increases but still remains less
than xF∗11 , the equilibrium cannot switch from PR2 to PRI12,

(vi) when x < xF∗11 , PRI12 is never an equilibrium in cases III and IV,

(vii) when x ∈
[
xF∗11 ,

˜̃x], PRII12 and SI are the two equilibria,

(viii) when x > ˜̃x, SI is the unique equilibrium.

Proof :
(i) Suppose the two equilibria exist for the same values of x. PR12I is characterized by the equality

between the utility with the three strategies: U∅ = U1 = U2. This leads to

s1V
F
11 + s2V

F
12

s1 + s2
= (1− s1 − s2) ΦL1 + s1 (δ − I1) + s2 (δ/2− I1) (59)

= (1− s1 − s2) ΦL2 + s1 (δ − I2) + s2 (δ/4− I2) . (60)

PR1 is characterized by U∅ = U1 > U2. This leads to

V F11 = (1− t) ΦL1 + t (δ − I1) (61)
> (1− t) ΦL2 + t (δ − I2) . (62)

Computing the difference between U2 and U1 in the two equilibrium and comparing the two expressions
implies that

(t− s1 − s2)
(
ΦL2 − ΦL1 + I2 − I1

)
> s2δ/4. (63)(

ΦL2 − ΦL1 + I2 − I1
)
> 0 and s2δ/4 > 0. Thus, t > s1 + s2.

As V F11 > V F12 , s1V F11 + s2V
F
12 < (s1 + s2)V F11 , leading to

(1− t) ΦL1 + t (δ − I1) > (1− s1 − s2) ΦL1 + s1 (δ − I1) + s2 (δ : 2− I1) (64)
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and thus
(s1 + s2 − t)

(
ΦL1 − δ + I1

)
> s2δ/2. (65)

The left hand side is negative and the right hand side is positive. Therefore there is a contradiction, and
the two equilibria never exist for the same value of the shock x.

(ii) Suppose the two equilibria exist for the same values of x. PRI12 is characterized as in the previous
paragraph. PR2 is characterized by U∅ = U2 > U1. This leads to

V F12 = (1− u2) ΦL2 + u2 (δ/4− I2) (66)
> (1− u2) ΦL1 + u2 (δ/2− I1) . (67)

The same steps as before imply that u2 < s1 + s2. Using as before V F11 > V F12 leads to

(u2 − s1 − s2)
(
δ/4− I2 − ΦL2

)
> s13δ/4. (68)

This leads to a contradiction since the left hand side is negative and the right hand side is positive. The
two equilibria never exist for the same value of the shock x.

(iii). Suppose that the two equilibria exist for the same value of x. PR12II is characterized by the
equality between the utility with the three strategies: U∅ = U1 = U2. This leads to

V F12 =
v1 (δ − I1) + v2 (δ/2− I1)

v1 + v2
(69)

= (1− v1 − v2) ΦL2 + v1 (δ − I2) + v2 (δ/4− I2) . (70)

PR2 is, as before, characterized by U∅ = U2 > U1:

V F12 = (1− u2) ΦL2 + u2 (δ/4− I2) (71)
> (1− u2) ΦL1 + u2 (δ/2− I1) . (72)

This implies that
v1 (δ − I1) + v2 (δ/2− I1)

v1 + v2
> (1− u2) ΦL2 + u2 (δ/4− I2) . (73)

But this is not possible since ΦL1 > δ−I1 and the four quantities v1, v2, u2 and 1−u2 are positive. There
is thus a contradiction and the two equilibria PR2 and PRII12 never coexist.

(iv). We are going to prove that function f is either positive then negative or negative when x
increases from x1 to xF∗11 . To do so, we have to differentiate function f three times. It is straightforward
to show that the sign of the third derivative of function f is the same than the sign of

g
′′′

(y) =
4β (2β + 1)
β − 1

(
1− 5

2β+1

)
yβ+2 +(β + 1)

(
1
4
− β

(
1− 5

2β+1

))
y+(β − 2) (β − 1)

(
I2
I1
− 5

2β+1

)
(74)

where y = x/xF∗11 . With β the solution of 1− 5/2β+1 = 0 (it is negative if β < β and positive otherwise)
and β the solution of 1/4 − β

(
1− 5/2β+1

)
= 0 (it is negative if β > β and positive otherwise), three

cases have to be distinguished (note that β < β):

(a) if β < β, then g
′′′

is decreasing on [y1, 1], first positive then negative,

(b) if β < β < β, then g
′′′

is increasing and positive on [y1, 1],

(c) if β > β, then g
′′′

is increasing on [y1, 1], first negative and then positive.

These three cases lead to the same conclusion for g
′′

and thus for f
′′
. Either it is positive or negative

and then positive as y increases from y1 to 1. Indeed f
′′
(1) > 0:

f
′′

(1) = β

(
1− 5

2β+1

)
+
β

4
+ (β − 1) (β − 2)

(
I2
I1
− 1
)

(75)
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is positive ∀β ≥ 1 and I2 > I1. As f
′
(1) = (I2/I1 − 1) (β − 1) > 0, either f

′
is positive or negative and

then positive as y increases from y1 to 1.
The last point is to focus on f (i.e. on the condition itself). First note that g (1) = 0. In order to

have our result, it remains to show that f (y1) < 0 ⇒ f ′ (y1) < 0. f (y1) < 0 is possible if and only if
y1 < ỹ.7 It is also straightforward to show that

f ′ (y1) = (1− y1)

[
− 2β2

(1 + β)2

(
1− 5

2β+1

)
y1 +

β (β − 1)
(β + 1)2

(
1− 5

2β+1

)
− k − 1
β + 1

]
+ (2y1 − 1) (k − 1) .

(76)
In order to sign this expression, we solve the second order equation

2β2

(1 + β)2

(
1− 5

2β+1

)
t2 +

(
−β (3β − 1)

(β + 1)2

(
1− 5

2β+1

)
+

(2β + 3) (k − 1)
β + 1

)
t+

β (β − 1)
(β + 1)2

(
1− 5

2β+1

)
−

− (β + 2) (k − 1)
β + 1

, (77)

whose roots are

y±1 =

(
β(3β−1)

(β+1)2

(
1− 5

2β+1

)
− (k−1)(2β+3)

β+1

)
±
√

∆
4β2

(β+1)2

(
1− 5

2β+1

) (78)

where ∆ is the usual determinant.
It is straightforward to see that y+

1 > 0 whereas y−1 < 0⇔ β < β. Tow cases have to be distinguished:

(a) when β < β, the coefficient of the second order equation is negative, meaning that the expression
is first increasing then decreasing.In this case, y+

1 < y−1 and we have to check that y1 < y+
1 knowing

that Assumptions A1 and A2 are satisfied and that y1 < ỹ.

1.05 1.10 1.15 1.20 1.25 1.30
b

1.05

1.10

1.15

1.20

1.25

1.30

I2 êI1

B3(β,I2/I1)

B2(β,I2/I1)

h′ y 1 < 0

h′ y 1 > 0

Figure 9: The different boundaries.

7Recall that the variable y is equal to the variable x normalized by xF∗11 .
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(b) when β > β, the coefficient of the second order equation is positive, meaning that the expression
is first decreasing and then increasing. In this case, we have to check that y1 < y−1 . But in this
case we can easily prove it by finding a lower bound for y+

1 , indeed y+
1 is the lowest when k equals

1 and in this case 1 is the same than y1. Therefore, y1 < y+
1 and the resulted is proved.8

(v) This point is very similar than the previous one, as far as we have to study the equilibrium
condition under which a player trying to preempt with two units does not have an incentive to deviate
and invest in the small unit:

h (x) =
(
V F12 (x)− δ (x) /4 + I2

) (
ΦL2 (x)− ΦL1 (x)

)
−
(
ΦL2 (x)− V F12 (x)

)
(δ (x) /4 + I2 − I1) . (79)

On again we introduce the variable y = x/xF∗11 . By deriving three time function h, it can be shown that
three cases may happen:

(a) if β < β, h
′′′

is decreasing, positive then negative,

(b) if β < β < β + 1, h
′′′

is increasing and always positive,

(c) if β > β + 1, h
′′′

is increasing, negative then positive.

As h
′′

(1) > 0, h
′′

is either positive or negative and then positive as y increases from y2 to 1. Moreover
as h′ (y2) < 0, h′ is either negative or negative and then positive as y increases from y2 to 1. Proving that
h′ (y2) < 0 is quite tricky and necessitates different steps. First we work with another variable, indeed
z = x/xF∗12 . Computations lead to:

h′ (z2) = A (β, k) z2
2 +B (β, k) z2 + C (β, k) , (80)

where

A (β, k) =
β

(5β − 2) (β − 1)2

(
3 (5− 2β)

2
+

9β
5β − 2

(
2β − 5

2

)(
−5β2 + 10β + 4

))
, (81)

B (β, k) =
β

(5β − 2)2 (β − 1)

(
2β − 5

2

)(
9 (5β − 2) + 2k

(
5β2 − 19β − 13

))
+

4− 5k − β
(β − 1) (5β − 2)

+

+
1− βk

2 (β − 1)
+

9 (k − 1)
2

, (82)

C (β, k) =
2βk

5β − 2

(
2β − 5

2

)(
4k

5β − 2
− 1
)

+ k (k − 1)
(

2
5β − 2

− 1
)
. (83)

Coefficient A (β, k) is negative if β < β or β > β, it is positive in the other cases. Moreover, it can be
shown that the two roots of the second order equation, y+

2 and y−2 , are such that:

(a) if β < β, y+
2 and y−2 are negative, h′ (y2) is increasing and then decreasing, being first negative,

then positive and finally negative,

(b) if β < β < β, y+
2 is positive and y−2 is negative, h′ (y2) is decreasing and then increasing, being

first positive, then negative and finally positive,

(c) if β > β, y+
2 and y−2 are positive, h′ (y2) is increasing and then decreasing, being first negative,

then positive and finally negative.

In the three cases, h′ (y2) is negative.
The last step is to show that it is not possible to have for the same parameters’ values h (y2) > 0 and

h (1) > 0. Recall that h (y2) > 0 is equivalent to y2 > ỹ, or equivalently x2 > x̃. TERMINER CA

(vi). Note that
f (y1) > 0⇔ ỹ < y1. (84)

8In fact, we proved that when β > β, f ′ (y1) is negative whether y1 is greater than ỹ or not.
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Moreover, in (iv), we proved that function f is either positive then negative or negative when x increases
from x1 to xF∗11 . Thus when x̃ > x1 (what happens in cases III and IV),f is always negative and PR1 is
always an equilibrium.

(vii). When x ∈
[
xF∗11 ,

˜̃x], PR1 cannot be an equilibrium anymore, and PR2 is not an equilibrium

neither. Therefore the only possible equilibria are SI and PRII12.

(viii.) In this case, the nobody has an interest to invest in technology 2, thus the unique equilibrium
that remains is SI. 2

This Lemma helps us to state Proposition 2. 2
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