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Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden

Abstract

Observations gained from model organisms are essential, yet it remains unclear to which degree they are applicable to
distant relatives. For example, in the dicotyledon Arabidopsis thaliana (Arabidopsis), auxin biosynthesis via indole-3-pyruvic
acid (IPA) is essential for root development and requires redundant TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1
(TAA1) and TAA1-RELATED (TAR) genes. A promoter T-DNA insertion in the monocotyledon Brachypodium distachyon
(Brachypodium) TAR2-LIKE gene (BdTAR2L) severely down-regulates expression, suggesting reduced tryptophan
aminotransferase activity in this mutant, which thus represents a hypomorphic Bdtar2l allele (Bdtar2lhypo). Counterintuitive
however, Bdtar2lhypo mutants display dramatically elongated seminal roots because of enhanced cell elongation. This
phenotype is also observed in another, stronger Bdtar2l allele and can be mimicked by treating wild type with L-kynerunine,
a specific TAA1/TAR inhibitor. Surprisingly, L-kynerunine-treated as well as Bdtar2l roots display elevated rather than
reduced auxin levels. This does not appear to result from compensation by alternative auxin biosynthesis pathways. Rather,
expression of YUCCA genes, which are rate-limiting for conversion of IPA to auxin, is increased in Bdtar2l mutants. Consistent
with suppression of Bdtar2lhypo root phenotypes upon application of the ethylene precursor 1-aminocyclopropane-1-
carboxylic-acid (ACC), BdYUCCA genes are down-regulated upon ACC treatment. Moreover, they are up-regulated in a
downstream ethylene-signaling component homolog mutant, Bd ethylene insensitive 2-like 1, which also displays a Bdtar2l
root phenotype. In summary, Bdtar2l phenotypes contrast with gradually reduced root growth and auxin levels described
for Arabidopsis taa1/tar mutants. This could be explained if in Brachypodium, ethylene inhibits the rate-limiting step of
auxin biosynthesis in an IPA-dependent manner to confer auxin levels that are sub-optimal for root cell elongation, as
suggested by our observations. Thus, our results reveal a delicate homeostasis of local auxin and ethylene activity to control
cell elongation in Brachypodium roots and suggest alternative wiring of auxin-ethylene crosstalk as compared to
Arabidopsis.
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Introduction

The root system plays a fundamental role for plant growth and

survival, not only by providing support, water and nutrients for the

shoot, but also by participating in secondary functions, such as

hormone biosynthesis or storage of photoassimilates [1,2]. Root

system architecture, that is the number and arrangement of

different root types and their branching pattern, is highly plastic

and determined by developmental and environmental factors that

interact to optimize soil exploration. This is particularly important

for the capture of growth limiting macronutrients, including

nitrogen and phosphorus, whose edaphic distribution strongly

influences post-embryonic root development and, therefore, root

system architecture [2–4]. However, the root system can only

respond to variation in such resources within its inherent

developmental limits of growth rate and branching capacity,

which are genetically determined. Optimization of root system

architecture through breeding is therefore of particular interest in

crops to increase root system plasticity with respect to biotic and

abiotic stresses [5,6].

Our knowledge about the molecular genetic control of root

growth and branching has been largely obtained from analyses of

the dicotyledon plant model system Arabidopsis thaliana (Arabidop-

sis) through mutagenesis approaches [2,7]. The genes identified

through these efforts have greatly benefitted the isolation of

corresponding loci in monocotyledons, such as rice or maize [8–

11]. Many of them encode proteins with regulatory functions, and

among them components of plant hormone signaling pathways are
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particularly preeminent. For example, interference with the auxin-

signaling pathway by mutation typically impairs primary root

elongation or root branching, and in extreme cases even abolishes

root formation [12–14]. The same is true for loss-of-function

mutations in genes that encode enzymes involved in tryptophan-

dependent auxin biosynthesis. In particular, auxin biosynthesis

from tryptophan via indole-3-pyruvic acid (IPA) has been shown to

be essential for root formation [15,16]. Two enzyme classes define

this pathway: the TRYPTOPHAN AMINOTRANSFERASE OF

ARABIDOPSIS 1 (TAA1) and TAA1-RELATED (TAR) pro-

teins, which catalyze the conversion of tryptophan to IPA; and the

family of YUCCA cytochrome P450s, which catalyze the

conversion of IPA to indole-3-acetic acid (IAA), the major active

form of auxin [15–18]. Whereas the YUCCA genes were originally

identified through a gain-of-function approach that led to auxin

over-accumulation [19], TAA1/TAR genes were identified through

loss-of-function approaches [16,20,21]. For instance, one study

isolated the taa1 mutant because of its root growth resistance to the

application of 1-aminocyclopropane-1-carboxylic-acid (ACC), a

rate-limiting precursor for the biosynthesis of another hormone,

ethylene [16]. This phenotype arises as a consequence of reduced

auxin biosynthesis, which is normally up-regulated by ethylene

through induction of TAA1/TAR gene expression. This finding

also illustrates the dosage-dependent action of auxin, because

although auxin and its perception are essential for root formation

and growth, excess auxin application, biosynthesis or signaling are

eventually inhibitory [22–24]. Indeed, it has been suggested that

depending on the species, auxin levels might be supra-optimal for

root growth [25].

Phylogenetic analysis has identified bona fide TAA1/TAR

homologous genes in monocotyledons, with varying degrees of

redundancy. For instance, whereas maize contains five genes of

this family, only two are found in both rice and the monocotyledon

model system, Brachypodium distachyon (Brachypodium) [26]. So far,

only one TAA1/TAR-related mutant has been identified in

monocotyledons, the vanishing tassel 2 (vt2) mutant of maize [26].

Despite the presence of multiple TAA1/TAR homologs in maize,

vt2 null mutants display rather severe shoot phenotypes, such as

dwarfism, reduced axillary meristem formation and associated

impaired inflorescence development. Free auxin levels are reduced

to ca. one third of wild type levels in vt2 mutants, suggesting that

VT2 encodes the predominant TAA1/TAR activity in maize.

Here we report the isolation and characterization of a Brachypo-

dium mutant in the TAR2-LIKE (BdTAR2L) gene. Unlike vt2, this

Bdtar2l mutant displays only mild shoot phenotypes. However, we

observed dramatic root phenotypes, which surprisingly appear to

result from upwardly disturbed auxin homeostasis.

Results

Isolation of a T-DNA insertion mutant of BdTAR2L
In an effort to identify genetic factors that influence root system

architecture in Brachypodium, we monitored seedlings from

transgenic lines obtained in our lab through T-DNA transforma-

tion in tissue culture. One regenerated line stood out because of

the occurrence of longer seminal (primary) roots (Fig. 1A–B), a

phenotype that co-segregated recessively with the T-DNA

insertion (x2 test two-tailed p value = 0.7697). Isolation of the

flanking genomic DNA by an inverse PCR strategy [27] revealed

that this line contains only one T-DNA locus, whose integration

site is located in the Bd2g04290 gene. Both the copy number and

the insertion site were confirmed by whole genome sequencing of

the homozygous mutant line (Fig. S1A). Bd2g04290 is one of the

two TAA1/TAR homologs of Brachypodium, the other one being

Bd2g34400 [26]. Based on their closest homologs in Arabidopsis,

we named them Brachypodium distachyon TAR2-LIKE (BdTAR2L,

Bd2g04290) and Brachypodium distachyon TAR1-LIKE (BdTAR1L,

Bd2g34400), respectively. Quantitative RT-PCR (qPCR) to

monitor expression of both genes in dissected seedling tissues

indicated that BdTAR1L expression is dominant in the root

meristem, whereas relative BdTAR2L expression increases strongly

in the elongating and mature parts of the root, and in the shoot

tissues (Fig. S1B). The T-DNA insertion in this Bdtar2l mutant is

located 140 bp upstream of the ATG codon, thereby presumably

disrupting the 59 UTR, but not the coding sequence (Fig. 1C). To

determine whether and to what extent the T-DNA insertion affects

BdTAR2L expression, we quantified BdTAR2L mRNA levels by

qPCR in 4-day-old seedlings. Indeed, expression was still detected

both in shoot and root tissue, however at severely reduced levels of

less than 20% and 5%, respectively, as compared to wild type or

an unrelated transformant (the unrelated transformant line was

included in all our assays to control for any tissue culture

regeneration effects and contains a single copy T-DNA insert in a

non-annotated, possibly repetitive region as determined by whole

genome sequencing) (Fig. 1D–E). Therefore, it appears that our

Bdtar2l mutation represents a hypomorphic allele, which we thus

named Bdtar2lhypo. Interestingly, plants that are homozygous for the

Bdtar2lhypo mutation display dramatically elongated roots (Fig. 1F–

G), compared to which the shoot phenotype is rather mild. We

could not detect any difference to wild type in the vegetative

growth pattern, but observed a general decrease in overall leaf size

to ca. 80% of wild type (Fig. 1H–M). Reproductive development

in the mutant progresses normal without any apparent defects in

inflorescence development, and plants are fully fertile.

Increased cellular anisotropy in Bdtar2lhypo roots
A closer look at the mutant roots revealed that their phenotype

is principally due to increased cellular anisotropy, which is most

apparent in the post-meristematic, differentiated region. For

Author Summary

The plant hormone auxin is pivotal for root system
development. For instance, its local biosynthesis is
essential for root formation and growth in the dicotyledon
model Arabidopsis. Thus, increasing interference with
auxin biosynthesis results in increasingly shorter roots,
partly because of reduced cell elongation. In this study, we
isolated a hypomorphic mutant in an auxin biosynthesis
pathway enzyme in the monocotyledon model Brachypo-
dium. Counterintuitive, this mutant displays a dramatically
longer seminal root, because mature cells are thinner,
more elongated and therefore more anisotropic than in
wild type. Interestingly, this phenotype can be mimicked
in wild type by pharmacological interference with produc-
tion of a key auxin biosynthesis intermediate, but also by
interference with the biosynthesis of another plant
hormone, ethylene. The latter controls auxin biosynthesis
in Arabidopsis roots. Surprisingly however, auxin levels in
the Brachypodium mutant are elevated rather than
reduced, because of a simultaneous up-regulation of the
second, rate-limiting step of the pathway. Ethylene
normally represses this second step, suggesting an
inverted regulatory relation between the two hormones
as compared to Arabidopsis. Our results point to a
complex homeostatic crosstalk between auxin and ethyl-
ene in Brachypodium roots, which is fundamentally
different from Arabidopsis and might be conserved in
other monocotyledons.

Brachypodium Auxin Balance & Root Cell Anisotropy
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instance, mature cortical cell length in Bdtar2lhypo roots reaches

typically ca. 150% of wild type control (Fig. 2A–B), which would

largely account for the overall increase in root length. We did

indeed not observe a difference in root meristem size, measured as

the number of cells that constitute the division and transition zones

of the meristem in the central metaxylem cell file (Fig. 2C–D).

Also, metaxylem cell length at equal position in the meristem is

similar in Bdtar2lhypo and wild type up to the elongation zone, from

where on cells elongate dramatically faster in Bdtar2lhypo than in

wild type (Fig. 2C). At the same time, the transverse total as well as

stele area of mature roots is reduced in Bdtar2lhypo to ca. 85% of

wild type, accompanied by a slight reduction in the number of cells

along the circumference of the innermost cortex layer (Fig. 2E–H).

A quantitative analysis of transverse sections using an automated

segmentation pipeline indicated that the number of cells in the

outer six cell layers is indeed slightly reduced in Bdtar2lhypo mutants

(Fig. 2I–J). Moreover, except in the epidermal layer, transverse cell

area is in tendency smaller in Bdtar2lhypo (Fig. 2K). Therefore,

mature root cells are overall thinner and longer than in wild type.

Interestingly, this change in cellular anisotropy also manifests in

the morphology of the root hairs, which are extensions of the

epidermal cells and shorter in Bdtar2lhypo (Fig. 2L–M). In summary,

while the decreased diameter of Bdtar2lhypo roots can be explained

by a combination of a slight decrease in cell proliferation and in

expansion in the radial dimension, their increased length can be

attributed to enhanced cell elongation. Thus, the Bdtar2lhypo root

phenotype largely results from increased cellular anisotropy.

Characterization of another loss-of-function allele of
BdTAR2L

To independently corroborate the effects of reduced BdTAR2L

expression, we obtained another mutant allele from the Brachy-

podium T-DNA collection in which the gene is disrupted by a T-

DNA insertion in the second intron (Fig. S1C) [28]. In semi-

quantitative RT-PCR, a cDNA fragment comprising the borders

of exons 1 and 2 was nearly undetectable (Fig. S1D), and

compared to the Bdtar2lhypo allele, BdTAR2L expression in the root

as monitored by qPCR was even more severely reduced, to 1–2%

of wild type levels (Fig. 3A). However, since we could not exclude

production of some residual full-length transcript, we designated

this allele a quasi-null mutant (Bdtar2lqnull). Compared to their wild

type background, Bd21-3, Bdtar2lqnull mutants again display an

elongated root phenotype, which is however not as drastic as in

Bdtar2lhypo mutants (Fig. 3B–C). This could again be largely

attributed to increased cell elongation, which reaches about 125%

of wild type (Fig. 3D–E). Moreover, Bdtar2lqnull mutants also

display shorter root hairs (Fig. 3F). At the same time, transverse

root and stele area are reduced to about the levels observed in

Bdtar2lhypo mutants, without a change in the number of cortical cell

layers (Fig. 3G–I). Therefore, similar to Bdtar2lhypo, Bdtar2lqnull

mutants display increased cell elongation and cellular anisotropy

in the root. Unlike in Bdtar2lhypo mutants, however, exaggerated

root growth is not sustained in Bdtar2lqnull mutants although the

enhanced cell elongation is maintained (Fig. 3J). This is because of

a gradual consumption of the root meristem as development

Figure 1. Isolation of the Bdtar2lhypo mutant and characteriza-
tion of macroscopic phenotypes. (A) Four-day-old tissue culture
grown seedlings of wild type (accession Bd21), an unrelated control
transformant (control) (the unrelated transformant line was included in
all our assays to control for any tissue culture regeneration effects) and
the transgenic line segregating the Bdtar2lhypo mutation. (B) Seminal
root length quantification of the different genotypes at 4 days after
germination (dag). (C) Schematic presentation of the BdTAR2L gene and
the location of the T-DNA insertion in the Bdtar2lhypo mutant. (D–E)
Relative expression level of BdTAR2L in different genotypes at 4 dag as
determined by qPCR and normalized with respect to the housekeeping
gene, BdUBC18. (F) Root elongation in wild type, control and

homozygous Bdtar2lhypo mutants, assayed at 4 dag. (G–H) Quantifica-
tion of seedling phenotypes at 4 dag. (I) Leaf number at 18 dag. (J–L)
Different size parameters of the 5th leaf of plants, assayed at 18 dag. (M)
Representative image of adult plants at 18 dag. Size bars are 1 cm;
differences as compared to wild type are not significant unless
indicated otherwise; error bars indicate standard error; * = p,0.05;
** = p,0.01; *** = p,0.001.
doi:10.1371/journal.pgen.1003564.g001
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proceeds (Fig. 3K). Compared to Bdtar2lhypo, Bdtar2lqnull mutants

also display more severe shoot phenotypes, notably a clearly

reduced shoot length in young seedlings (Fig. 3L) and a dwarf

stature as an adult (Fig. 3M), which is accompanied by severely

reduced fertility. Collectively, our mutant characterizations

therefore suggest that the Bdtar2lhypo and Bdtar2lqnull mutants

indeed represent an allelic series that displays the consequences

of gradually reduced BdTAR2L dosage.

Mimic of the Bdtar2lhypo phenotype by L-kynerunine
treatment of wild type plants

The low BdTAR2L expression level in the mutants is not

compensated by up-regulated BdTAR1L expression (Fig. S1E) and

therefore should result in overall decreased tryptophan amino-

transferase activity. However, the Bdtar2lhypo long root phenotype

is counterintuitive in this respect, because progressive loss-of-

function of TAA1/TAR activity in Arabidopsis leads to

progressively impaired rather than enhanced root growth [16].

The same is true when Arabidopsis wild type plants are grown on

a specific competitive inhibitor of TAA1/TAR enzymes, L-

kynerunine [29]. To test whether L-kynerunine also inhibits root

growth in Brachypodium, we transferred 2-day-old seedlings onto

media with different L-kynerunine concentrations and assayed

root growth two days later. Strikingly, root elongation was

stimulated rather than inhibited already at concentrations as little

as 1 mM (Fig. 4A–B). Higher concentrations, up to 100 mM,

strongly promoted root elongation up to 150–200% of the mock

controls. Moreover, we observed exaggerated cell elongation

upon L-kynerunine treatment (Fig. 4C–D), which therefore

mimics the Bdtar2lhypo root phenotype. Interestingly, unlike wild

type, the Bdtar2lhypo mutant hardly responded to L-kynerunine

treatment (Fig. 4A–D). Finally, similar to the Arabidopsis taa1

mutant [20], both Bdtar2l alleles were hypersensitive to the

application of the toxic tryptophan analog, 5-methyl-tryptophan

(Fig. 4E–F), which is an artificial substrate for TAA/TAR

enzymes. 5-methyl-tryptophan can be detoxified by its conversion

to IPA [20], and therefore 5-methyl-tryptophan hypersensitivity is

indicative of reduced IPA production. Thus, the data are

consistent with the idea that reduced TAA1/TAR activity in

the Bdtar2l mutants is indeed responsible for the mutant

phenotypes.

Figure 2. Cellular root phenotypes of Bdtar2lhypo mutants. (A)
Representative Nomarski optics images of mature root portions. s: stele;

c: cortex layers; e: epidermis; arrowheads point out top and bottom of
individual cells in the 3rd cortex layer; (B) Quantification of mature
cortex cell length at 4 dag. (C) Confocal image of a 4-day-old
Brachypodium wild type (Bd21) root meristem (top) and quantification
of the progression of cell elongation per cell position (for the 60 cells
above the stem cell niche) in the central metaxylem (cmx) (bottom). co:
columella; DZ: division zone; TZ: transition zone; EZ: elongation zone;
(D) Quantification of meristem size as number of metaxylem cells in the
combined DZ and TZ. (E) Representative light microscopy images of
transverse sections across the mature root. (F–H) Quantification of total
area and stele area in root sections, as well as number of cells in the
circumference of the innermost cortex layer. (I) Illustration of the
segmentation process for quantification of root sections. Overlay of
segmented cell shapes (green) on the section (top), labeling of cell
layers after filtering (bottom). (J) Combined epidermal and cortical cell
number in root sections. (K) Transverse cell area in root sections, for
different cell layers from outside to inside. (L) Representative
microscopy images of root hairs at 4 dag. (M) Quantification of root
hair length in 4-day-old seedlings. Size bars are 100 mm; differences as
compared to wild type or mock are not significant unless indicated
otherwise; error bars indicate standard error; * = p,0.05; *** = p,0.001.
doi:10.1371/journal.pgen.1003564.g002
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Altered root branching patterns in the Bdtar2l mutants
While other auxin-dependent processes, such as gravitropism,

appeared unaffected in Bdtar2l mutants (Fig. S1F), we also

observed a root system branching phenotype. In Bdtar2lhypo

mutants, coleoptile node root formation is slightly reduced

(Fig. 5A), but unlike the seminal roots, coleoptile node roots

elongate normally (Fig. 5B). Contrary to the coleoptile node root

phenotype, the number of emerged lateral roots from the seminal

root is increased in Bdtar2lhypo (Fig. 5C). This increase is also

evident once lateral root number is normalized for total root

length (Fig. 5D), even if the total number of lateral roots is small.

Because it was difficult to follow this phenotype over a longer

period in the tissue culture system (due to the limited growth space

on our 20 cm dishes) [30], we employed an alternative assay, i.e.

lateral root emergence that has been triggered by removal of the

seminal root meristem. In this assay, Bdtar2lhypo mutants showed

enhanced lateral root formation capacity (Fig. 5E), again also

holding up once normalized for seminal root length (Fig. 5F).

Again, this phenotype could be copied by L-kynerunine treatment

of wild type (Fig. S1G). Considering that increased Bdtar2lhypo root

length can be largely explained by cell elongation, it therefore

appears that Bdtar2lhypo mutants have a genuinely higher capacity

of seminal root branching.

Auxin levels are elevated rather than reduced in Bdtar2l
roots

Collectively, our genetic as well as pharmacological analyses

suggest that reduced tryptophan aminotransferase activity in

Brachypodium results in increased root cell elongation and

anisotropy. This contrasts with gradually reduced root growth in

Arabidopsis taa1/tar single and double mutants. As expected, in

Arabidopsis this root growth reduction is accompanied by

gradually decreased free auxin levels [17]. Thus, the most

parsimonious explanation for the Bdtar2l phenotype is that auxin

levels might normally be supra-optimal for cell elongation in

Brachypodium, similar to what has been proposed for rice [25].

To our surprise then, we found that free auxin levels are elevated

rather than reduced in Bdtar2l seminal roots (Fig. 6A; Fig. S1H), in

particular in the elongating and mature parts where the expression

of BdTAR2L is relatively high as compared to BdTAR1L (Fig. S1A).

Consistently, elevated auxin levels where also observed upon L-

kynerunine treatment (Fig. S1I). To determine whether this could

arise from compensatory up-regulation of proposed alternative

auxin biosynthesis pathways [31], we checked the expression of

various homologs of corresponding rate-limiting enzyme genes in

Bdtar2l roots, i.e. AMIDASE-LIKE 1-LIKE (BdAMI1L), NITRILASE

1-LIKE (BdNIT1L), ALDEHYDE OXIDASE 1-LIKE (BdAO1L) and

BdAO2L. However, with the exception of a slight increase in

BdAO1L expression, no significant upward changes were detected

(Fig. 6B). By contrast, the expression of four YUCCA homologs,

selected for the reported root-specific expression of their respective

counterparts in rice [32], is significantly up-regulated in Bdtar2l

roots (Fig. 6C; Fig. S1J), amounting to more than triple in

combined transcript levels in Bdtar2lhypo (Fig. 6C) and one-and-a-

half in Bdtar2lqnull, corresponding with the respective auxin levels.

The increased BdYUCCA expression could account for the

increased auxin levels, because it has been determined that

YUCCA gene expression is rate-limiting for auxin biosynthesis via

the IPA pathway [17,33].

Bdtar2lhypo roots are restored to wild type by application
of the ethylene precursor ACC

Root growth resistance to enhanced ethylene production,

conferred by application of ACC, contributed to the isolation of

the taa1/tar mutants in Arabidopsis, because ethylene promotes

auxin biosynthesis via the IPA pathway through transcriptional

Figure 3. Phenotypes of the Bdtar2lqnull mutant in comparison to its wild type background, Bd21-3. (A) Relative expression level of
BdTAR2L in different genotypes at 4 dag as determined by qPCR and normalized with respect to the housekeeping gene, BdUBC18. (B–C) Root
elongation in wild type and Bdtar2lqnull mutants, assayed at 4 dag. (D) Representative Nomarski optics images of mature root portions. Arrowheads
point out top and bottom of individual cells in a cortex layer; (E) Quantification of mature cortex cell length at 4 dag. (F) Representative microscopy
images of root hairs at 4 dag. (G) Representative light microscopy images of transverse sections across the mature root. (H–I) Quantification of total
transverse area and stele area in sections from mature roots. (J) Relative seminal root length in Bdtar2lqnull mutants during root growth progression.
(K) Progressive breakdown of root meristem as indicated by shrinkage of the meristematic zone. (L) Seedling shoot length at 4 dag. (M) Adult shoots.
Size bars are 1 cm (B, M) or 100 mm (D,F,G); differences as compared to wild type or mock are not significant unless indicated otherwise; error bars
indicate standard error; * = p,0.05; *** = p,0.001.
doi:10.1371/journal.pgen.1003564.g003
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regulation of TAA1/TAR and YUCCA genes [16,34]. By contrast,

we found that expression of BdTAR2L and BdTAR1L is only mildly

ethylene-responsive (Fig. 6D). Moreover, the expression of the four

BdYUCCA genes tested is negatively regulated by ACC application

(Fig. 6E). Thus, in Brachypodium, the ethylene pathway might

repress rather than promote auxin biosynthesis via the IPA

pathway, mainly by down-regulating BdYUCCA expression. A

prediction from this observation is that the Bdtar2l root phenotypes

might be rescued by enhanced ethylene signaling. To test this

notion, we transferred 2-day-old Bdtar2lhypo seedlings onto media

containing increasing amounts of ACC and monitored root

growth over the two days that followed. Indeed, ACC treatment

strongly impaired Bdtar2lhypo root elongation and reduced growth

to about the level of wild type mock controls (Fig. 7A–B).

Moreover, ACC treatment restored cell elongation to wild type

length in Bdtar2lhypo (Fig. 7E–F).

The Bdtar2lhypo root phenotype can be mimicked by
reduced ethylene biosynthesis or signaling

The above results suggested that inhibition of ethylene

biosynthesis or signaling in Brachypodium roots should mimic

the Bdtar2lhypo root phenotype. We tested this notion by

transferring 2-day-old seedlings onto media that contained

aminoethoxyvinylglycine (AVG), an inhibitor of a rate-limiting

enzyme in ethylene biosynthesis, ACC synthase [35]. Following

root growth over the two days that followed revealed that

Bdtar2lhypo roots are largely resistant to AVG, while wild type roots

Figure 4. Effect of L-kynerunine (L-kyn) treatment on root elongation of different genotypes. (A) Representative images of 4-day-old
seedlings, transferred onto media with indicated L-kyn concentration at 2 dag. (B) Quantification of root length after 2 days of indicated L-kyn
treatment. (C) Representative Nomarski optics images of mature root portions formed during indicated L-kyn treatment. Arrowheads point out top
and bottom of individual cells in the 3rd cortex layer; (D) Quantification of mature cortex cell length after 2 days of indicated L-kyn treatment. (E–F)
Relative root elongation of indicated mutants and their respective wild type backgrounds after 2 days of indicated 5-methyl-tryptophan treatment.
Size bars are 1 cm (A) or 100 mm (C); differences as compared to wild type or mock are not significant unless indicated otherwise; error bars indicate
standard error; * = p,0.05; ** = p,0.01; *** = p,0.001.
doi:10.1371/journal.pgen.1003564.g004
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display a dramatic increase in elongation that approached the

levels observed in Bdtar2lhypo (Fig. 7C–D). Investigation of cortical

cells revealed that again this effect could be explained by increased

cell elongation (Fig. 7E, G). Higher levels of AVG eventually

slowed down elongation rate of Bdtar2lhypo roots, but still promoted

root elongation in wild type. A cautionary note on AVG is that it

not only inhibits ACC synthase, but also other enzymes that

require pyridoxal 59-phosphate (PLP) as a cofactor [36,37]. Since

the activity of TAA1/TAR enzymes is stimulated by PLP [16], it

appears possible that AVG treatment impairs their function to

some degree, mimicking L-kynerunine treatment. Thus, for

independent confirmation we took advantage of a mutant from

the Brachypodium T-DNA collection, in which a homolog of the

Arabidopsis gene ETHYLENE INSENSITIVE 2 (EIN2), an essential

positive regulator of ethylene signaling [38–40], carries a T-DNA

insertion in the promoter, 469 bp upstream of the start codon

(Fig. 7H). As a consequence, expression of this EIN2-LIKE

(BdEIN2L1, Bd4g08380) gene is significantly down-regulated

(Fig. 7I). Strikingly, this hypomorphic mutant (Bdein2l1hypo) displays

a Bdtar2l root phenotype (Fig. 7J–K), and while this is not

accompanied by up-regulation of BdTAR1L or BdTAR2L (Fig. 7L),

it is accompanied by increased BdYUCCA expression (Fig. 7M).

Finally, similar to Bdtar2l mutants, auxin levels are elevated in the

elongating parts of Bdein2l1hypo roots (Fig. S1K), thereby corrob-

orating our above findings.

Root elongation is only slightly stimulated by L-
kynerunine or AVG treatment in Arabidopsis

The observed stimulatory effects of L-kynerunine and AVG

treatment on root elongation have not been described for

Arabidopsis. However, given the morphological differences

between Arabidopsis and Brachypodium roots, in particular the

more than three-fold difference in thickness, it is conceivable that

the concentration of those substances required for root penetration

and biological action might be different as well. The described

largely inhibitory effect of those treatments on root elongation in

Figure 5. Root branching phenotypes of Bdtar2lhypo mutants. (A)
Coleoptile node root formation in 25-day-old plants. (B) Quantification
of coleoptile node root elongation. (C) Representative images of 8-day-
old seminal roots, note emerged lateral roots. (D) Quantification of
emerged lateral root number at 8 dag, normalized for seminal root
length. (E) Representative images of 8-day-old seminal roots, 4 days
after removal of the root tip. Note emerged lateral roots. (F)
Quantification of emerged lateral root number after seminal root tip
removal, normalized for seminal root length (per cm). Size bars are
1 cm; differences as compared to wild type are not significant unless
indicated otherwise; error bars indicate standard error; ** = p,0.01;
*** = p,0.001.
doi:10.1371/journal.pgen.1003564.g005

Figure 6. Auxin homeostasis in Bdtar2lhypo roots and its relation to the ethylene pathway. (A) Free auxin (IAA) content in wild type and
Bdtar2lhypo root segments at 4 dag. The root tip comprised the terminal 8 mm of the roots, the elongated parts all above this. (B) Expression levels of
the homologs of various genes encoding rate limiting enzymes in alternative auxin biosynthesis pathways in wild type and Bdtar2lhypo roots at 4 dag.
(C) Expression levels of YUCCA homologs in wild type and Bdtar2lhypo roots at 4 dag. (D) Expression levels of BdTAR1L and BdTAR2L in wild type at 3
dag and after 3 h of ACC treatment. (E) Expression levels of YUCCA homologs in wild type at 3 dag and after 3 h of ACC treatment. All expression
levels were determined by qPCR and normalized with respect to the housekeeping gene, BdUBC18; differences as compared to wild type or mock are
not significant unless indicated otherwise; error bars indicate standard error; * = p,0.05; ** = p,0.01; *** = p,0.001.
doi:10.1371/journal.pgen.1003564.g006
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Arabidopsis could therefore have resulted from application of too

high concentrations. These considerations prompted us to revisit

the response of Arabidopsis to an extended concentration range of

both L-kynerunine and AVG. Interestingly, relatively low

concentrations as compared to Brachypodium of both treatments

indeed slightly promote root elongation (Fig. S1L–M), although by

far not as strong as in Brachypodium.

Discussion

The root systems of dicotyledons and monocotyledons display

some fundamental differences in their organization and ontogeny,

as exemplified by the respective model systems, Arabidopsis and

Brachypodium [30]. Despite these differences, the principal genes

involved in root formation, growth vigor and branching are

expected to be homologous in the two systems. This is based on

experience in other species such as maize, where several causative

mutations that affect root system development are in homologs of

auxin signaling components [9,41]. The effect of manipulating the

IPA branch of auxin biosynthesis has been investigated in another

monocotyledon crop, rice, through gain- and loss-of-function

approaches. For instance, both over-expression and down-

regulation of the YUCCA homolog OsYUCCA1 by transgenic

means results in strongly reduced root growth [42], whereas a

knockout in another YUCCA homolog, CONSTITUTIVELY

WILTED 1, displays reduced root branching [43]. Compared to

those mutants, the enhanced root elongation phenotype of Bdtar2l

mutants is unusual. Our initial interpretation was therefore that

auxin levels are supra-optimal for cell elongation in the

Brachypodium seminal root, as has been suggested for seminal

root growth in rice [25]. However, repeated independent

measurements of multiple samples clearly indicated that auxin

levels are increased rather than decreased in Bdtar2l mutant roots.

This is particularly pronounced in the Bdtar2lhypo allele, and in

tendency also observed in the Bdtar2lqnull allele, correlating with

quantitatively corresponding BdYUCCA up-regulation. The com-

paratively severe shoot phenotypes of the Bdtar2lqnull allele, its less

pronounced root cell elongation, and the observation that the root

meristem gradually breaks down as development progresses

indicate that compared to the Bdtar2lhypo allele, IPA levels are

eventually limiting in Bdtar2lqnull mutants. This idea is supported by

the dose-response curve of wild type to L-kynerunine, where

increasing amounts promote cell elongation up to a certain

threshold, beyond which root growth is inhibited. Further

corroborating this idea, a threshold also exists for the Bdtar2lhypo

Figure 7. Manipulation of the ethylene pathway and its impact
on root growth. (A) Representative images of 4-day-old seedlings,
transferred onto media with indicated ACC concentration at 2 dag. (B)
Quantification of root length after 2 days of indicated ACC treatment.

(C) Representative images of 4-day-old seedlings, transferred onto
media with indicated AVG concentration at 2 dag. (D) Quantification of
root length after 2 days of indicated AVG treatment. (E) Representative
Nomarski optics images of mature root portions formed during
indicated ACC or AVG treatment. Arrowheads point out top and
bottom of individual cells in the 3rd cortex layer; (F–G) Quantification of
mature cortex cell length after 2 days of indicated ACC or AVG
treatment. (H) Schematic presentation of the BdEIN2L1 gene and the
location of the T-DNA insertion in the Bdein2l1hypo mutant. (I) Relative
expression level of BdEIN2L1 in the Bdein2l1hypo roots at 4 dag. (J)
Representative seedlings of wild type and Bdein2l1hypo mutants at 4
dag. (K) Quantification of root length in wild type and Bdein2l1hypo

mutants at 4 dag. (L) Expression levels of BdTAR1L and BdTAR2L in wild
type and Bdein2l1hypo roots at 4 dag. (M) Expression levels of YUCCA
homologs in wild type and Bdein2l1hypo roots at 4 dag. All expression
levels were determined by qPCR and normalized with respect to the
housekeeping gene, BdUBC18; size bars are 1 cm (A, C) or 100 mm (E);
differences as compared to wild type or mock are not significant unless
indicated otherwise; error bars indicate standard error; * = p,0.05;
** = p,0.01; *** = p,0.001.
doi:10.1371/journal.pgen.1003564.g007
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mutant, which moreover is hypersensitive to L-kynerunine

treatment as concentrations that still promote root elongation in

wild type are inhibitory in Bdtar2lhypo.

A similar dose-response curve is observed for AVG treatment,

which inhibits the rate-limiting step in ethylene biosynthesis, but

might also impinge on TAA1/TAR activity because of its

generic action on enzymes that use PLP as a co-factor

[16,36,37]. Stimulation of root growth by AVG treatment has

also been reported for rice [25], although the reported dosage

response is quantitatively different from our assays with

Brachypodium. For instance, while in rice 0.05 mM AVG

promoted root growth and 1.0 mM was already inhibitory, in

Brachypodium 5.0 mM was still stimulating. In part, this could

be due to technical issues, for instance the concentration needed

in the tissue culture media to reach the same tissue penetration

in roots of different thickness or cell permeability. In light of our

results, it appears possible that the response of rice to AVG

treatment is similar to Brachypodium, i.e. that it could reflect a

combined effect of reducing TAA1/TAR as well as ACC

synthase activity, thereby boosting auxin levels by removing the

inhibitory effect of ethylene on YUCCA expression as long as

interference with TAA/TAR1 activity does not lead to limiting

IPA levels. The finding that YUCCA expression is rate limiting

for auxin biosynthesis in Arabidopsis [17,33] supports this

interpretation, suggesting that this is also likely the case in

Brachypodium and/or rice.

Corroborating the effects of AVG application and circumvent-

ing its ambiguity, the root phenotype of the Bdein2l1hypo mutant

confirms the involvement of the ethylene-signaling pathway in

auxin homeostasis. However, based on the observed regulatory

logic of this hormone crosstalk, a central finding of our study is

that the regulation of the IPA branch of auxin biosynthesis

through the ethylene pathway observed in Arabidopsis roots might

not be conserved in Brachypodium. This idea is based on several

convergent observations, for instance that unlike their Arabidopsis

counterparts, expression of BdTAR2L as well as BdTAR1L is hardly

ethylene-responsive or that BdYUCCAs are repressed upon ACC

treatment and up-regulated in Bdein2l1hypo, consistent with the

latter’s Bdtar2l phenotype. Moreover, unlike Arabidopsis taa1/tar

mutants, Bdtar2lhypo mutants are not ACC-resistant. Rather, ACC

treatment essentially restores the Bdtar2lhypo phenotype to wild type.

Thus, our data thus support a scenario in which the effects of

auxin biosynthesis through the IPA branch on root cell elongation

are mediated by the ethylene pathway rather than vice versa. Such

an inversion of a regulatory relationship could alternatively reflect

a shift in the key nodes of the regulatory network linking auxin and

ethylene through feedback loops and is a simple way for

evolutionary adaptation. Indeed, feedback of ethylene on auxin

biosynthesis by repressing YUCCA expression, rather than

promoting TAA1/TAR as well as YUCCA expression as in

Arabidopsis, is a central feature of the mutant phenotypes

described in our paper (Fig. 8). How this feedback is mediated

remains unclear for the moment. The recent discovery of an

enzymatic link between auxin and ethylene biosynthesis suggests

that this crosstalk might very well respond directly to IPA levels

[44]. Hypomorphic mutants, such as those employed in our study,

might become a crucial tool in future efforts to elaborate such a

scenario.

Materials and Methods

Molecular biology and genetics procedures, such as genomic

DNA isolation, genotyping, sequencing or qPCR were performed

according to standard procedures as described [45,46].

Plant materials and growth conditions
The community standard diploid inbreed Brachypodium distachyon

line Bd21 was used for transformation and as a control in all

experiments [47], except for the Bdtar2lqnull mutant (stock id

JJ9248.0) and the Bdein2l1hypo mutant (stock id JJ110.0), which

together with their Bd21-3 wild type background line were

obtained from a Brachypodium T-DNA collection (http://

brachypodium.pw.usda.gov/TDNA/) [28]. Genotyping, for in-

stance to establish homozygous mutant lines, was performed using

oligonucleotides 59-CGT GAG AGC TAG TGG GAT AG-39

and 59-ATG GGT GGC TGA TGG CGT AG-39 (BdTAR2L wild

type allele for Bdtar2lhypo), 59-CGT GAG AGC TAG TGG GAT

AG-39 and 59-TTG AAG GAG CCA CTC AGC CGC G-39

(Bdtar2lhypo T-DNA insertion); 59-GCG GTT CCC TGT TCA

TCT TC-39 and 59-CAC AGC GAA ACA ACA CAC AG-39

(BdTAR2L wild type allele control for Bdtar2lqnull), 59-GCG GTT

CCC TGT TCA TCT TC-39 and 59-TAC GAG CCG GAA

GCA TA AAG-39 (Bdtar2lqnull T-DNA insertion); 59-GTA CCT

TTC TCC GTC AAG AG-39 and 59-GAA GGA GGC ATC

AGG ACA TG-39 (BdEIN2L1 wild type allele), 59- GTA CCT

TTC TCC GTC AAG AG -39 and 59-CTC CGC TCA TGA

TCA GAT TG-39 (Bdein2l1hypo T-DNA insertion); Arabidopsis

thaliana experiments were performed with the standard Col-0

accession. For tissue culture growth, the lemma of mature seeds

was carefully peeled off with forceps before seed sterilization in

1 ml of 70% ethanol per seed for 1 min. After ethanol removal,

seeds were soaked in a solution of 1.3% sodium hypochlorite plus

one drop of Tween-20 per 50 ml for 5 min. with gently rocking,

then rinsed with sterile deionized water three times. The sterilized

seeds were stratified for 2 days at 4uC to ensure synchronous

germination on vertically oriented 10 or 24 cm square plates of

half-strength Murashige-Skoog (MS) media (2.45 g/l MS salts with

vitamins, 1% sucrose, 1% agar, pH 5.7) in a growth chamber

under continuous light of 100–120 mE intensity at 22uC. To

quantify leaf number, sheath/blade length and blade width, 2-day-

old Brachypodium seedlings were transferred into pots with soil,

watered every 2–3 days and incubated at 22uC under a 20 h

photoperiod. Leaf features were measured 18 days after

germination (dag), crown roots were counted 25 dag. Arabidopsis

seedlings were grown as described [46].

Figure 8. A schematic overview of the regulation of trypto-
phan-dependent auxin (indole-3-acetic acid) biosynthesis via
indole-3-pyruvic acid (IPA) by ethylene action in Arabidopsis
(A) and Brachypodium (B).
doi:10.1371/journal.pgen.1003564.g008
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Seminal root length and lateral root number
quantification, and root gravitropism assays

To determine root length, seedlings growing in vertically

oriented plates were either scanned or photographed with a

digital camera to measure root length using the ImageJ software,

version 1.47b. For lateral root quantification after seminal root

meristem removal, 2 mm of the root tip were cut from the seminal

root of 4-day-old plants with a scalpel. The number of visible

lateral roots was then scored 4 days later. For gravitropism assays,

Brachypodium seeds were germinated for 2 days in vertically

oriented plates. To induce gravitropic response, plates were then

rotated 90u and grown for another 24 hours. Plates were scanned

on a flatbed scanner before and after gravitropic stimulation.

Transformation of Bd21 and FST-retrieval
Embryonic calli generation of Bd21 was performed according to

[48], subsequent transformation with the pVec8GFP plasmid and

plant regeneration according to [47], and retrieval and mapping of

the region flanking the right border of the T-DNA insert in

Bdtar2lhypo mutants according to [27]. A total of 48 transgenic lines

were produced, among which the Bdtarlhypo mutant was a chance

hit.

Whole genome sequencing and T-DNA insertion
mapping

Whole genome sequencing of genomic DNA isolated from

Brachypodium seedlings was performed on the Illumina HiSeq

2000 platform, generating more than 250 mio. paired-end reads of

100 bp length. The Bowtie 2 software [49] was used for the

alignment on the Brachypodium distachyon reference genome (http://

mips.helmholtz-muenchen.de/plant/brachypodium/download/

index.jsp), revealing coverage of ca. 100 reads per bp. For

detection of T-DNA insertions, reads that aligned on the T-DNA

reference sequence were selected for alignment on the genome.

This procedure confirmed the localization of the Bdtar2lhypo insert

on chromosome 2 (position: 3,030,511). The precise position of the

control line insert remains undetermined because it could not be

mapped to a unique annotated region, however it is clear that it

does not disrupt any annotated gene. Finally, coverage of the T-

DNA reference sequence was similar to genome coverage,

confirming the presence of a single insertion in both sequenced

genomes.

Hormone and inhibitor treatments
The hormone and inhibitor treatments were done on plates,

except in the case of qPCR, for which treatments were carried out

in liquid media for 3 h. Briefly, Brachypodium seeds were

germinated on standard plates as described above. At 2 days after

germination, seedlings were then transferred to media containing

the respective hormone or inhibitor, or mock. For Arabidopsis

treatments, 4-day-old seedlings were transferred.

Auxin measurements
Auxin measurements were performed on eight independent

samples of pooled roots per genotype excised from 4-day-old

seedlings as described [50].

Microscopy
Seminal roots of 4-day-old seedlings were fixed in a solution of

1% glutaraldehyde, 4% formaldehyde and 50 mM sodium

phosphate buffer (pH 7.2). Fixed roots were thoroughly rinsed

four times with water. To determine transverse root and cell area,

roots were cut into 0.5–1 cm pieces and embedded in 6% agarose.

Sections of 75 mm were obtained approximately 2 cm from the

root tip using a Leica-VT 1000S vibratome. Sections were stained

with 0.1% toluidine blue solution for 30 s and washed. For

quantification of cortical cell length, unstained roots were cleared

with 10% potassium hydroxide solution at 95uC for 30 min. Roots

were mounted on glass slides with 50% glycerol and photographed

either in light field or differential interference contrast using a

Leica DM5500B compound microscope. For visualization of

meristem structure, seminal roots were stained following the mPS-

PI procedure [45] before imaging with a Zeiss LSM 700 confocal

microscope. Cortical cell length, root hair length, meristem size

and central metaxylem cell length were quantified using the

ImageJ software, version 1.47b.

qPCR and oligonucleotides
qPCR reactions were performed using a Stratagene MxPro

3005P Real-Time PCR System (Stratagene). Three technical

replicates were analyzed for each sample. The specificity of each

amplification reaction was verified by DNA melting curve analysis

and gel electrophoresis of the amplified products. Not reverse

transcribed samples and non-template controls were included in

every assay to rule out genomic DNA contamination. The final

threshold cycle (Ct), efficiency and initial fluorescence (R0) for

every reaction were calculated with the Miner algorithm [51].

Relative expression levels were obtained from the ratio between

R0 of the target gene and R0 of the reference gene, UBIQUITIN-

CONJUGATING ENZYME 18 (BdUBC18). The following oligonu-

cleotides were used: BdUBC18 (Bd4G00660), 59-GGA GGC ACC

TCA GGT CAT TT-39 and 59-ATA GCG GTC ATT GTC

TTG CG-39; BdTAR1L (Bd2G34400), 59-GAA TCG GGA TGG

TGG CCT CG-39 and 59-ATT GTC GGA TCG CCG TGA

TC-39; BdTAR2L (Bd2G04290), 59-GGC TCC ATA CTA CTC

TTC GTA TC-39 and 59-CAG TAG TAG GCC AGG TCG

TG-39; BdYUCCA1L (Bd1G28967), 59-GCA ATG GCT CAA

GGG AAG TG-39 and 59-TGT GGC AGT TTG ATG CTT

CC-39; BdYUCCA7L (Bd1G00587), 59-GCA GTG GCT CAA

GGG AAG C-39 and 59-TGT GGT ATG CTG TGG CGA TG-

39; BdYUCCA8L (Bd5G01327), 59-CCC AGT TCA TCT CCT

ACC TC-39 and 59-GGT ACT CGA CGG TGG ACT TC-39;

BdYUCCA13L (Bd2G10302), 59-GTC GTC CGC AGC GAG

CTT CA-39 and 59-GGG GGT TTG GAG CTT CAT GG-39;

BdAMI1L (Bd5G27490), 59-CGA CTT CTC CCT CGG AAC

TG-39 and 59-GTT GCT GAC GCG AGA CAA TG-39;

BdNIT1L (Bd3G49620), 59-CCC CTG CCA CCA TTG ATA

AAG-39 and 59-GTC TTC TTT TCC CTT GGC AG-39;

BdAO1L (Bd1G52740), 59-GGC TGT GGC GAA GGT GGA

TG-39 and 59-ACC CTC AGT GGT GAT AAC TG-39; BdAO2L

(Bd1G56667), 59-GTG GAC CCA GTG CAA ATG TG-39 and

59-CAT ATA CAG CCT CCC CAG AAG-39; BdEIN2L1

(Bd4G08380), 59-AGA ATC TTG CCC AGA TTT GC-39 and

59-GCA AAC CAT ATG CCT GTG AG-39;

Supporting Information

Figure S1 Supplemental Figure. (A) Overview of whole genome

sequencing data obtained for the Bdtar2lhypo mutant and the

unrelated control transformant. Reads are 100 bp paired-end,

border refers to reads that connect the T-DNA insert to the

genomic location. (B) Relative BdTAR1L and BdTAR2L expression

in dissected tissues from 4-day-old seedlings as determined by

qPCR and normalized with respect to the housekeeping gene,

BdUBC18 (ratio of the ratios, i.e. ((BdTAR1L/BdUBC18)/

(BdTAR2L/BdUBC18))). (C) Schematic presentation of the

BdTAR2L gene and the location of the T-DNA insertion in the
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Bdtar2lqnull mutant. (D) Semi-quantitative RT-PCR of BdTAR2L

and BdTAR1L in the Bdtar2lqnull mutant and its wild type

background, Bd21-3. (E) Relative BdTAR1L expression in 4-day-

old roots of the two Bdtar2l mutants compared to their wild type

backgrounds. (F) Reorientation of root growth after change of the

gravity vector by 90 degrees. (G) Quantification of emerged lateral

root number at 10 dag in wild type, 8 days after transfer on mock

or L-kynerunine, normalized for seminal root length. (H) Free

auxin (IAA) content in wild type and Bdtar2lqnull elongated root

segments at 4 dag, i.e. excluding the terminal 8 mm of the root tip.

(I) Free auxin (IAA) content in wild type root tip and elongated

root segments at 4 dag, after a preceding 2 d treatment with mock

or 10 mM L-kynerunine. (J) Expression levels of YUCCA homologs

in wild type and Bdtar2lqnull roots at 8 dag. (K) Free auxin (IAA)

content in wild type and Bdein2l1 root tips and elongated root

segments at 4 dag. (L) Time course of root elongation in

Arabidopsis wild type (Col-0) seedlings after transfer on media

with indicated concentration of L-kynerunine at 2 dag. (M) Time

course of root elongation in Arabidopsis wild type (Col-0) seedlings

after transfer on media with indicated concentration of AVG at 2

dag. Expression levels determined by qPCR were normalized with

respect to the housekeeping gene, BdUBC18; differences as

compared to wild type or mock are not significant unless indicated

otherwise; error bars indicate standard error; * = p,0.05;

** = p,0.01; *** = p,0.001.

(TIF)
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