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A B S T R A C T

Agents may form coalitions. Each coalition shares its endowment among its agents by applying a sharing rule.
The sharing rule induces a coalition formation problem by assuming that agents rank coalitions according to
the allocation they obtain in the corresponding sharing problem. We characterize the sharing rules that induce
a class of stable coalition formation problems as those that satisfy a natural axiom that formalizes the principle
of solidarity. Thus, solidarity becomes a sufficient condition to achieve stability.
1. Introduction

According to the Merriam-Webster Dictionary, solidarity is defined
as unity (as of a group or class) that produces or is based on community of
interests, objectives, and standards. It is a fundamental ethical principle
that can be traced back to ancient philosophers such as Socrates and
Aristotle, and it is also connected to the slogan of the French revolution.
It is also one of the six titles of the Charter of Fundamental Rights of
the European Union.

The principle of solidarity has been often invoked in the axiomatic
approach to economic design. It can be formally stated as follows:
‘‘if the environment (e.g., resources, technology, population, or pref-
erences) in which a group of people find themselves changes, and if
no one in this group is responsible for the change, the welfare of all of
them should be affected in the same direction: either they all end up at
least as well off as they were initially, or they all end up at most as well
off’’ (Thomson, 2023). Axioms formalizing this idea have been crucial
to characterize egalitarian allocation rules in diverse settings (Martínez
& Moreno-Ternero, 2022; Moreno-Ternero & Roemer, 2006; Moulin,
1987a; Moulin & Roemer, 1989; Roemer, 1986). They have also been
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1 Other stability concepts have been analyzed in the literature. See, for instance, Karakaya (2011) and Gusev (2021).

instrumental to characterize focal egalitarian rules in the axiomatic
theory of bargaining and cooperative game theory (Chun & Thomson,
1988; Kalai, 1977; Kalai & Smorodinsky, 1975; Thomson & Myerson,
1980; Young, 1988). Thus, the egalitarian implications of the principle
of solidarity have been well explored. Here, we focus on less explored
implications, highlighting its role as a means to guarantee stability in
the context of coalition formation.

Coalition formation itself has been the object of a large literature
dealing with a plethora of social and economic issues such as cartel
formation, lobbies, customs unions, conflict resolution, public goods
provision, political party formation, etc. (Grabisch & Funaki, 2012;
Ray, 2007; Ray & Vohra, 2015). A central concern in this literature
has been stability, that is, immunity of a coalitional arrangement to
‘‘blocking’’ (Perry & Reny, 1994; Pulido & Sánchez-Soriano, 2006;
Seidmann & Winter, 1998). To be precise, a partition of agents into
coalitions is (core) stable if there is no coalition in which each of its
members strictly prefers it to the coalition to which they belong in
the partition.1 Our focus here is stability for environments in which
coalition members have an endowment to be shared. In these contexts,
vailable online 24 November 2023
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we can define for each agent a preference over the possible coalitions
she can be part of, depending on the sharing rule used to distribute
the endowment of each coalition: if the payoff an agent receives in one
coalition is larger than her payoff in another, then this agent will prefer
the former to the latter. As preferences are derived from a sharing
rule, we can speak of ‘‘the coalition formation problem induced by the
sharing rule’’. And a natural question is whether there exist conditions
on the sharing rule that guarantee the existence of stable partitions in
the coalition formation problems that induces. We show that solidarity
s such a condition, formalized by the following axiom: the arrival of
ew agents in a coalition, whether or not it is accompanied by a change
n the endowment available for this coalition, should affect the welfare
f all incumbents in the same direction.

Our solidarity axiom is reminiscent of the axiom of population mono-
tonicity (Thomson, 1983) but it is actually equivalent to the combina-
tion of two axioms that appear frequently in the literature: endowment
monotonicity and consistency.2 The former says that when a bad or good
hock changes the endowment of a group, all its members should share
n the calamity or the windfall. Thus, it has obvious solidarity under-
innings and it has long been used in axiomatic work (Bergantiños &
oreno-Ternero, 2022; Moreno-Ternero & Vidal-Puga, 2021; Moulin,

992; Moulin & Thomson, 1988). The latter says that if a sub-group of
gents secedes with the endowment allocated to their members, then
he rule allocates the remaining endowment to the remaining agents
n the same way. As such, it has been referred as a ‘‘robustness’’, often
‘coherence’’, or ‘‘operational’’ principle (Balinski, 2005; Gudmundsson
t al., 2023; Moreno-Ternero & Roemer, 2012; Thomson, 2011, 2019),
lthough solidarity underpinnings have also been provided (Thomson,
012). Alternative forms of consistency have indeed been suggested as
xioms of stability in related contexts (Harsanyi, 1959; Lensberg, 1987,
988).

Our main result actually states that a sharing rule satisfies solidarity
f and only if it induces non-circular coalition formation problems. These
roblems preclude the existence of rings (which arise when there is a
ycle of coalitions with at least one agent in the intersection of any
wo consecutive coalitions who prefers the latter to the former, while
he rest of the intersection-mates do not have the opposite preference)
nd satisfy the weak pairwise alignment property (if one agent in the
ntersection of two coalitions ranks them in one way, no other agent
n the intersection ranks them in the opposite way). As a non-circular
oalition formation problem admits a stable partition, our result implies
hat requiring solidarity the sharing rule guarantees stability of the
nduced coalition formation problem in the sense that these problems
ill have a non-empty core.

The closest research to our work is Gallo and Inarra (2018), which
ombines coalition formation and rationing problems (O’Neill, 1982).
pecifically, they assume that agents in each coalition have ‘‘claims’’
ver an endowment associated with the coalition. The endowment
s not sufficient for claims to be fully honored and, thus, has to be
ationed. The rule that is used for that purpose induces agents’ pref-
rences over coalitions. Within the domain of continuous rules, they
how that the properties of endowment monotonicity and consistency
uarantee the existence of stable partitions in the induced coalition
ormation problems.3 We generalize that result to any resource allo-
ation situation (i.e., not necessarily rationing) and without imposing
ontinuity.

Another closely related paper is Pycia (2012). We shall be more
recise about the connection once we formally introduce our result
ater in the text. But we mention at least now that Pycia (2012) analyzes

2 The solidarity axiom we consider was called population-and-resource
onotonicity in the context of rationing problems (Chun, 1999). See
lso Moreno-Ternero and Roemer (2006).

3 Gallo and Inarra (2018) wrongly state that these properties are not only
ufficient but also necessary.
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a general model of coalition formation (including cases in which not all
coalitions are feasible) and shows that, under two regularity conditions,
there is a stable partition if agents’ preferences are generated by a
sharing rule imposing Nash bargaining (Nash, 1950) over coalitional
outputs.4 By contrast, our result characterizes rules inducing stability
without resorting to the regularity conditions, but only referring to the
case in which all coalitions are feasible.

Our result can be applied to other settings than those mentioned
above. We first analyze surplus sharing problems, closely related to
rationing problems, and then we develop an application based on the
problem of prize allocation in competitions where agents are ranked
(Dietzenbacher & Kondratev, 2023). Finally, we show that our result
also gives insights into resource allocation situations in which some
coalitions are not feasible.

The rest of the paper is organized as follows. In Section 2, we in-
troduce the preliminaries of the model (sharing problems and coalition
formation problems). In Section 3, we present our benchmark analysis
and result. In Section 4, we present applications of our result to several
problems such as bargaining, rationing, surplus sharing, or ranking
problems. We conclude in Section 5. The proof of the main result has
been relegated to Appendix.

2. Preliminaries

2.1. Sharing problems

Let 𝑁 be a finite set of agents. Consider a situation where a coalition
of agents 𝐶 ⊆ 𝑁 has an endowment 𝐸 ∈ R+. A sharing problem is a
pair (𝐶,𝐸). Let  denote the class of such problems.

An allocation for (𝐶,𝐸) ∈  is a vector 𝑥 = (𝑥𝑖)𝑖∈𝐶 ∈ R|𝐶|

+ that
atisfies non-negativity, for each 𝑖 ∈ 𝐶, 0 ≤ 𝑥𝑖, and efficiency, ∑𝑖∈𝐶 𝑥𝑖 =
. A (sharing) rule is a function 𝐹 defined on  that associates with
ach (𝐶,𝐸) ∈  an allocation 𝐹 (𝐶,𝐸) for (𝐶,𝐸). The payoff of agent 𝑖
n problem (𝐶,𝐸) under rule 𝐹 is denoted by 𝐹𝑖(𝐶,𝐸). We denote by 
he set of all rules.

We now introduce several axioms for rules.
The first axiom states that small changes in the endowment do not

ead to large changes in the chosen allocation.
Endowment continuity: For each (𝐶,𝐸) ∈  and each {𝐸𝑗}∞𝑗=1 with

𝑗 → 𝐸, 𝐹 (𝐶,𝐸𝑗 ) → 𝐹 (𝐶,𝐸).
The second axiom states that if the endowment increases, then each

gent receives at least as much as she initially did.
Endowment monotonicity: For each pair (𝐶,𝐸), (𝐶 ′, 𝐸′) ∈  , with
= 𝐶 ′ and 𝐸 < 𝐸′, and each 𝑖 ∈ 𝐶, 𝐹𝑖(𝐶,𝐸) ≤ 𝐹𝑖(𝐶 ′, 𝐸′).
The third axiom states that if some agents leave a coalition with the

ayoffs assigned to them by the rule, and the situation is reassessed at
hat point, and the rule reapplies, then each remaining agent receives
he same payoff as she initially did.
Consistency: For each (𝐶,𝐸) ∈  , each 𝐶 ′ ⊂ 𝐶, and each 𝑖 ∈ 𝐶 ′,

𝑖(𝐶 ′,
∑

𝑖∈𝐶′ 𝐹𝑖(𝐶,𝐸)) = 𝐹𝑖(𝐶,𝐸).
We finally introduce the axiom of solidarity: the possible arrival of

ew agents (with or without the endowment changing) does not affect
wo incumbent agents in opposite directions.
Solidarity: For each pair (𝐶,𝐸), (𝐶 ′, 𝐸′) ∈  , with 𝐶 ⊆ 𝐶 ′, and each

air 𝑖, 𝑗 ∈ 𝐶, 𝐹𝑖(𝐶,𝐸) > 𝐹𝑖(𝐶 ′, 𝐸′) implies 𝐹𝑗 (𝐶,𝐸) ≥ 𝐹𝑗 (𝐶 ′, 𝐸′).

The next lemma relates the previous axioms.

emma 1. The following statements hold:

(i) Endowment monotonicity implies endowment continuity.
(ii) Solidarity is equivalent to the conjunction of endowment monotonicity

and consistency.

4 From a different perspective, Lensberg (1987) obtains the same functional
orm.
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Proof. (𝑖) Let 𝐹 be a rule satisfying endowment monotonicity. Let
(𝐶,𝐸) ∈  and {𝐸𝑗}∞𝑗=1 be a sequence of endowments such that 𝐸𝑗 → 𝐸.

hen, for each 𝑗, |𝐸𝑗 − 𝐸| = |

∑

𝑖∈𝐶 𝐹𝑖(𝐶,𝐸𝑗 ) −
∑

𝑖∈𝐶 𝐹𝑖(𝐶,𝐸)|. Then, by
ndowment monotonicity, for each 𝑗,
∑

𝑖∈𝐶
𝐹𝑖(𝐶,𝐸𝑗 ) −

∑

𝑖∈𝐶
𝐹𝑖(𝐶,𝐸)| =

∑

𝑖∈𝐶
|𝐹𝑖(𝐶,𝐸𝑗 ) − 𝐹𝑖(𝐶,𝐸)|.

Thus, for each 𝑖 ∈ 𝐶, |𝐹𝑖(𝐶,𝐸𝑗 ) − 𝐹𝑖(𝐶,𝐸)| ≤ |𝐸𝑗 − 𝐸|. As |𝐸𝑗 − 𝐸| →

0, it follows that for each 𝑖 ∈ 𝐶, |𝐹𝑖(𝐶,𝐸𝑗 ) − 𝐹𝑖(𝐶,𝐸)| → 0. Equivalently,
for each 𝑖 ∈ 𝐶, 𝐹𝑖(𝐶,𝐸𝑗 ) → 𝐹𝑖(𝐶,𝐸).

(𝑖𝑖) Let 𝐹 be a rule satisfyng solidarity. Then, it is straightfor-
ward to see that it also satisfies endowment monotonicity. As for con-
sistency, let (𝐶,𝐸) ∈  and 𝐶 ′ ⊂ 𝐶. Then, by solidarity, either for
each 𝑖 ∈ 𝐶 ′, 𝐹𝑖(𝐶,𝐸) ≥ 𝐹𝑖(𝐶 ′,

∑

𝑖∈𝐶′ 𝐹𝑖(𝐶,𝐸)), or for each 𝑖 ∈ 𝐶 ′,
𝐹𝑖(𝐶,𝐸) ≤ 𝐹𝑖(𝐶 ′,

∑

𝑖∈𝐶′ 𝐹𝑖(𝐶,𝐸)). Thus, for each 𝑖 ∈ 𝐶 ′, 𝐹𝑖(𝐶,𝐸) =
𝐹𝑖(𝐶 ′,

∑

𝑖∈𝐶′ 𝐹𝑖(𝐶,𝐸)), as desired.
Conversely, let 𝐹 be a rule satisfying endowment monotonicity and

consistency. Let (𝐶,𝐸), (𝐶 ′, 𝐸′) ∈  be such that 𝐶 ⊆ 𝐶 ′. By endowment
monotonicity, if 𝐶 = 𝐶 ′ and 𝐸 ≥ 𝐸′, then for each 𝑖 ∈ 𝐶, 𝐹𝑖(𝐶,𝐸) ≥
𝐹𝑖(𝐶 ′, 𝐸′), whereas if 𝐶 = 𝐶 ′ and 𝐸 ≤ 𝐸′, then for each 𝑖 ∈ 𝐶,
𝐹𝑖(𝐶,𝐸) ≤ 𝐹𝑖(𝐶 ′, 𝐸′). Thus, either way, solidarity holds. Assume next
that 𝐶 ⊂ 𝐶 ′. By consistency, for each 𝑖 ∈ 𝐶,

𝐹𝑖(𝐶,
∑

𝑖∈𝐶
𝐹𝑖(𝐶 ′, 𝐸′)) = 𝐹𝑖(𝐶 ′, 𝐸′).

By endowment monotonicity, if 𝐸 ≤
∑

𝑖∈𝐶 𝐹𝑖(𝐶 ′, 𝐸′), then for each
𝑖 ∈ 𝐶, 𝐹𝑖(𝐶,𝐸) ≤ 𝐹𝑖(𝐶,

∑

𝑖∈𝐶 𝐹𝑖(𝐶 ′, 𝐸′)) = 𝐹𝑖(𝐶 ′, 𝐸′), whereas if 𝐸 ≥
∑

𝑖∈𝐶 𝐹𝑖(𝐶 ′, 𝐸′), then for each 𝑖 ∈ 𝐶, 𝐹𝑖(𝐶,𝐸) ≥ 𝐹𝑖(𝐶,
∑

𝑖∈𝐶 𝐹𝑖(𝐶 ′, 𝐸′)) =
𝐹𝑖(𝐶 ′, 𝐸′). Thus, either way, solidarity holds. □

2.2. Coalition formation problems

Consider a situation where each agent ranks the coalitions that she
may belong to. Formally, let 𝑁 be a finite set of agents and 𝐶 ⊆ 𝑁 be a
coalition. The collection of non-empty coalitions is denoted by 2𝑁 . For
each agent 𝑖 ∈ 𝑁 , let ≿𝑖 be a complete and transitive preference relation
over coalitions containing 𝑖. Given 𝐶,𝐶 ′ ⊆ 𝑁 such that 𝑖 ∈ 𝐶 ∩ 𝐶 ′,
𝐶 ≿𝑖 𝐶 ′ means that agent 𝑖 finds coalition 𝐶 at least as desirable as
coalition 𝐶 ′. The binary relations ≻𝑖 and ∼𝑖 are defined as usual. A
(hedonic) coalition formation problem is just a preference profile
that consists of a list of preference relations, one for each 𝑖 ∈ 𝑁 ,
≿= (≿𝑖)𝑖∈𝑁 . Let  denote the class of such problems.

A partition is a set of non-empty coalitions whose union is 𝑁 and
whose pairwise intersections are empty. Formally, a partition is a list
𝜋 = {𝐶1,… , 𝐶𝑚} such that (i) for each 𝑙 = 1,… , 𝑚, 𝐶𝑙 ≠ ∅, (ii)
⋃𝑚

𝑙=1 𝐶𝑙 = 𝑁 , and (iii) for each pair 𝑙, 𝑙′ ∈ {1,… , 𝑚}, with 𝑙 ≠ 𝑙′,
𝐶𝑙 ∩ 𝐶𝑙′ = ∅. Let 𝜫 denote the set of all partitions. For each 𝜋 ∈ 𝛱
and each 𝑖 ∈ 𝑁 , let 𝝅(𝒊) denote the coalition in 𝜋 that contains agent
𝑖. A partition 𝜋 ∈ 𝛱 is stable for ≿ if there is no coalition 𝑇 ⊆ 𝑁
such that for each 𝑖 ∈ 𝑇 , 𝑇 ≻𝑖 𝜋(𝑖). The set of all stable partitions for ≿
is the core of ≿. The literature on coalition formation mostly focuses
on identifying properties of the preference profiles that guarantee the
existence of stable partitions.

We now introduce several concepts and properties defined for coali-
tion formation problems. First, a ring is an ordered list of coalitions
(𝐶0, 𝐶1,… , 𝐶𝑙−1), with 𝑙 > 2, such that for each 𝑘 = 0, 1,… , 𝑙−1 (modulo
𝑙) and each 𝑗 ∈ 𝐶𝑘∩𝐶𝑘+1, 𝐶𝑘+1 ≿𝑗 𝐶𝑘, with at least one agent with strict
preference in each intersection.5 That is, in a ring there is at least one
agent in the intersection of any two consecutive coalitions who prefers
the latter to the former, while those agents who do not prefer the latter
to the former are indifferent. It can be easily checked that the lack of
rings guarantees the existence of a stable partition.

5 See, for instance, Inal (2015) and Pycia (2012) for different definitions of
ings, under the name of cycles.
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The next property, originally introduced by Pycia (2012), requires
that all agents in the intersection of two coalitions rank them in the
same way.

Pairwise alignment: A coalition formation problem ≿∈  is pair-
wise aligned if for each pair 𝐶,𝐶 ′ ⊆ 𝑁 and each pair 𝑖, 𝑗 ∈ 𝐶 ∩ 𝐶 ′,
𝐶 ≿𝑖 𝐶 ′ if and only if 𝐶 ≿𝑗 𝐶 ′.

The common ranking property (Farrell & Scotchmer, 1988), states
hat there is a common ranking of all coalitions that agrees with all
gents’ preferences. Formally, there is an ordering ≿ over 2𝑁 such that
or each 𝑖 ∈ 𝑁 and each pair 𝐶,𝐶 ′ ⊆ 𝑁 with 𝑖 ∈ 𝐶 ∩𝐶 ′, 𝐶 ≿𝑖 𝐶 ′ ⇔ 𝐶 ≿
𝐶 ′. Note that the common ranking property precludes the existence of
rings. In addition, when all coalitions are feasible, the common ranking
property coincides with the pairwise alignment property (Footnote 6 in
Pycia, 2012).

A weakening of the pairwise alignment property, introduced by Gallo
and Inarra (2018), requires that if one agent in the intersection of two
coalitions ranks them in one way, no other agent in the intersection
ranks them in the opposite way.

Weak pairwise alignment: A coalition formation problem ≿∈ 
is weakly pairwise aligned if for each pair 𝐶,𝐶 ′ ⊆ 𝑁 and each pair
, 𝑗 ∈ 𝐶 ∩ 𝐶 ′, then 𝐶 ≻𝑖 𝐶 ′ implies 𝐶 ≿𝑗 𝐶 ′.

Note that, unlike pairwise alignment, weak pairwise alignment allows
ne agent to have a strict preference over two coalitions while any
ther agent in the intersection is indifferent between them.

The class of coalition formation problems that satisfy weak pair-
ise alignment and do not have rings is dubbed non-circular coalition
ormation problems by Gallo and Inarra (2018). This class includes
he problems that satisfy the common ranking property (the proof is
traightforward). It is also related to the class of problems that satisfy
he top-coalition property (see Banerjee et al., 2001). Formally, a
oalition 𝐶 ′ ⊆ 𝐶 is a top coalition of 𝐶 if for each 𝑖 ∈ 𝐶 ′ and each 𝑆 ⊆

with 𝑖 ∈ 𝑆, we have 𝐶 ′ ≿𝑖 𝑆. A coalition formation problem satisfies
he top-coalition property if each coalition 𝐶 ⊆ 𝑁 has a top coalition.
he non-circular coalition formation problems are included in the class
f problems satisfying the top-coalition property (see Theorem 1 in
allo & Inarra, 2018). A weaker version of the top-coalition property
uarantees the existence of a stable partition and, in consequence, so
oes the top-coalition property (Theorem 1 in Banerjee et al., 2001).
o complete the relations between the properties, the top-coalition
roperty neither implies weak pairwise alignment nor precludes the
xistence of rings (see Examples 1 and 2 in Gallo & Inarra, 2018).
inally, weak pairwise alignment does not guarantee the existence of a
table partition (Example 3 in Gallo & Inarra, 2018). All these relations
re illustrated in Fig. 1.

. Benchmark analysis

Given a set of sharing problems, one for each coalition, and a
haring rule, a coalition formation problem is induced as follows: each
gent computes her payoff in each problem with the sharing rule,
nd ranks coalitions accordingly. Formally, given a set of problems
(𝐶,𝐸𝐶 )}𝐶⊆𝑁,𝐸𝐶∈R+

, the coalition formation problem induced by
ule 𝑭 ∈  is the list of preference relations ≿𝐹= (≿𝐹

𝑖 )𝑖∈𝑁 defined as
ollows: for each 𝑖 ∈ 𝑁 , and each pair 𝐶,𝐶 ′ ⊆ 𝑁 such that 𝑖 ∈ 𝐶 ∩ 𝐶 ′,
𝐶 ≿𝐹

𝑖 𝐶 ′ if and only if 𝐹𝑖(𝐶,𝐸𝐶 ) ≥ 𝐹𝑖(𝐶 ′, 𝐸𝐶′ ).
Our main result characterizes all rules that induce non-circular

oalition formation problems. They happen to be those that satisfy the
olidarity axiom. The proof can be found in Appendix.

heorem 1. A sharing rule 𝐹 satisfies solidarity if and only if for any set
of sharing problems {(𝐶,𝐸𝐶 )}𝐶⊆𝑁,𝐸𝐶∈R+

, the coalition formation problem
induced by 𝐹 , ≿𝐹 , is non-circular.

The next result follows from Theorem 1 and the relations among
properties presented above (see Fig. 1).
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Fig. 1. Relations among properties.
Corollary 1. If a sharing rule 𝐹 satisfies solidarity, then for any set of
sharing problems {(𝐶,𝐸𝐶 )}𝐶⊆𝑁,𝐸𝐶∈R+

, the core of the coalition formation
problem induced by 𝐹 , ≿𝐹 , is non-empty.

Corollary 1 implies that, when the sharing rule satisfies solidarity,
then stability is guaranteed. These results are illustrated in Fig. 2.

Fig. 2. Sharing rules and their induced coalition formation problems.

Theorem 1 and Corollary 1 relate to Pycia (2012) as follows. On the
one hand, note that our results apply to resource allocation situations
generating hedonic coalition formation problems (i.e., all elements
of 2𝑁 are feasible coalitions) while his results also apply to situa-
tions where not all coalitions are feasible, such as matching problems.
Nevertheless, we show in Section 4 that our results can also give
some insights for any resource allocation situation where only some
coalitions are feasible.

On the other hand, Pycia (2012) shows that pairwise alignment is
a necessary and sufficient condition to guarantee the non-emptiness
of the core in all the situations he analyzes (his Theorems 1 and 2).
By contrast, by weakening pairwise alignment and demanding absence
of rings, we define a property of non-circularity that is weaker than
pairwise alignment and is sufficient to guarantee the non-emptiness of
the core in our setting (where all coalitions are feasible). Consequently,
this may lead to differences between the sharing rules that yield stabil-
ity in the induced coalition formation problems in Pycia (2012) and
371
those that do so in our setting. More precisely, Pycia (2012) charac-
terizes the sharing rules obeying strict endowment monotonicity6 and
non-satiability7 and guarantee that, for any of the resource allocation
situations he considers, all induced coalition formation problems have
a non-empty core (his Corollary 1).8 However, we characterize the
sharing rules that generate non-circular coalition formation problems
by the axiom of solidarity (our Theorem 1). Therefore, those sharing
rules guarantee stability in the resource allocation situations where
all coalitions are feasible (our Corollary 1). The above are not minor
technical differences because, as the following example illustrates,
some interesting sharing rules inducing stability in the situations where
all coalitions are feasible are covered by our result, but not by Pycia’s.

Example 1. Consider a sharing rule giving priority to some agent over
others. Moreover, she receives in each non-singleton coalition at most 𝑘
units of the endowment, while this bound does not apply for the other
agents. Then, 𝐹 allocates the first 𝑘 units of the endowment of any
coalition to this agent (if she is in the coalition), while the remaining
units of the endowment (if any are left) are shared equally among
the other agents within the coalition. If the prioritized agent is not in
the coalition, the rule simply selects equal sharing of the endowment
among all coalition members.

Formally, let 𝑁 = {1,… , 𝑛} and consider the following sharing rule:

𝐹𝑖(𝐶,𝐸𝐶 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min{𝐸𝐶 , 𝑘} if 𝑖 = 1 ∈ 𝐶 𝑎𝑛𝑑 𝐶 ≠ {1},
𝐸𝐶−min{𝐸𝐶 ,𝑘}

|𝐶|−1 if 1, 𝑖 ∈ 𝐶 𝑎𝑛𝑑 𝑖 ≠ 1,
𝐸𝐶
|𝐶|

otherwise.

It can be checked that this rule satisfies solidarity. Then, by our
results, it also guarantees stability. We illustrate this by showing the
existence of a stable partition for an example. Let 𝑁 = {1, 2, 3, 4},
𝑘 = 10, and consider the following coalitional endowments:

𝐶 {12} {13} {14} {123} {124} {134} {1234} others
𝐸𝐶 10 12 14 16 20 24 28 0

Then, 𝐹 yields the following allocations:

6 Formally, for each pair (𝐶,𝐸), (𝐶,𝐸′) ∈  , with 𝐸 < 𝐸′, and each 𝑖 ∈ 𝐶,
𝐹𝑖(𝐶,𝐸) < 𝐹𝑖(𝐶,𝐸′).

7 Formally, for each 𝐶 ⊆ 𝑁 and each 𝑖 ∈ 𝐶, lim𝐸→∞ 𝐹𝑖(𝐶,𝐸) = ∞.
8 He also includes the axiom of endowment continuity, but this axiom is

implied by strict endowment monotonicity, thanks to our Lemma 1 presented
above.
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𝐶 {12} {13} {14} {123}
𝐹 (𝐶,𝐸𝐶 ) (10, 0) (10, 2) (10, 4) (10, 3, 3)

𝐶 {124} {134} {1234} otherwise
𝐹 (𝐶,𝐸𝐶 ) (10, 5, 5) (10, 7, 7) (10, 6, 6, 6) (0)𝑖∈𝐶

As a consequence, the coalition formation problem induced by 𝐹 , ≿𝐹 ,
is the following:

≿𝐹
1 ≿𝐹

2 ≿𝐹
3 ≿𝐹

4
12 ∼ 13 ∼ 14 ∼ 1234 134 134
∼ 123 ∼ 124 ∼ 124 1234 1234
∼ 134 ∼ 1234 123 123 124

1 2 ∼ 12 ∼ 23 ∼ 13 14
∼ 24 ∼ 234 3 ∼ 23 ∼ 4 ∼ 24 ∼

∼ 34 ∼ 234 ∼ 34 ∼ 234

Note that partitions {{134}, {2}} and {{1234}} are stable. In this
example ≿𝐹 does not satisfy pairwise alignment; for instance, {124} ≻𝐹

2
{123}, whereas {124} ∼𝐹

1 {123}. However, it satisfies weak pairwise
alignment and it has no rings, i.e., it is a non-circular problem. The
reason why this rule is not covered by Pycia’s results is that it neither
satisfies strict endowment monotonicity nor non-satiability.

The next example shows that, although solidarity is sufficient to
guarantee stability in the induced coalition formation problems, it is
not necessary.

Example 2. Consider a variant of Example 1, reflecting a situation in
which agent 1 has priority over the rest of the agents, but only when the
grand coalition is formed. Moreover, in the grand coalition she receives
at most 𝑘 units of the endowment, as before, while this bound does not
apply in other coalitions or for other agents. Then, 𝐹 allocates the first
𝑘 units of the endowment of the grand coalition to agent 1, while the
remaining units (if any are left) are shared equally among the other
agents. If the coalition is not the grand coalition, the endowment is
simply shared equally among all coalition members.

Formally, let 𝑁 = {1,… , 𝑛} and consider the following sharing rule:

𝐹𝑖(𝐶,𝐸𝐶 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min{𝐸𝐶 , 𝑘} if 𝑖 = 1 𝑎𝑛𝑑 𝐶 = 𝑁,
𝐸𝐶−min{𝐸𝐶 ,𝑘}

|𝐶|−1 if 𝑖 ≠ 1𝑎𝑛𝑑 𝐶 = 𝑁,
𝐸𝐶
|𝐶|

otherwise.

It can be checked that this rule does not satisfy solidarity ; in par-
ticular (Lemma 1), it is not consistent. However, it never generates
rings and, therefore, it induces coalition formation problems with a
non-empty core. To see this, note that the rule imposes equal sharing
for each coalition 𝐶 ≠ 𝑁 . Thus, all agents agree on the ranking of all
subcoalitions of 𝑁 . Then, the common ranking property restricted to
all subcoalitions of 𝑁 is satisfied. Finally, it is easily checked that, for
this rule, bringing coalition 𝑁 into the picture does not generate any
ing.

We illustrate this rule for a particular example. Let 𝑁 = {1, 2, 3},
𝑘 = 6, and consider the following coalitional endowments:

𝐶 {12} {13} {23} {123} otherwise
𝐸𝐶 10 8 6 15 0

Then, 𝐹 yields the following allocations:

𝐶 {12} {13} {23} {123} otherwise
𝐹 (𝐶,𝐸𝐶 ) (5, 5) (4, 4) (3, 3) (6, 4.5, 4.5) (0)𝑖∈𝐶

The coalition formation problem induced by 𝐹 , ≿𝐹 , is the following:

≿𝐹
1 ≿𝐹

2 ≿𝐹
3

123 12 123
12 123 13
13 23 23
372

1 2 3 (
Note that partitions {{12}, {3}} and {{123}} are stable. However, ≿𝐹

does not satisfy weak pairwise alignment as {123} ≻𝐹
1 {12}, whereas

{12} ≻𝐹
2 {123}.

. Applications and related work

In many economic models, agents differ in characteristics (such as
tility functions, claims, or ranking positions) that could be taken into
ccount to distribute a given endowment among them. Our results
how that, regardless of these characteristics, as long as the sharing
ule satisfies solidarity, it will induce a coalition formation problem
ith a non-empty core. In this section, we first relate our results to
xisting results for bargaining (Pycia, 2012) and rationing (Gallo &
narra, 2018), and we then develop two novel applications, for surplus
haring and ranking problems. Finally, we illustrate how our results can
e applied to resource allocation situations with permissible coalitions.

argaining problems

We first consider the problem of coalition formation in bargaining
ntroduced by Pycia (2012). In this model, agents have utility functions.
ormally, let 𝑁 = {1,… , 𝑛} and, for each 𝑖 ∈ 𝑁 , let 𝑢𝑖 ∶ R+ → R+

denote agent 𝑖’s (non-decreasing) utility function. For each 𝐶 ⊆ 𝑁 , let
𝑢𝐶 = (𝑢𝑖)𝑖∈𝐶 be the profile of utility functions of coalition 𝐶 and 𝐸𝐶 ∈
R+ the endowment of coalition 𝐶. A bargaining problem is a triple
(𝐶,𝐸𝐶 , 𝑢𝐶 ). An allocation for (𝐶,𝐸𝐶 , 𝑢𝐶 ) is a vector 𝑥 = (𝑥𝑖)𝑖∈|𝐶|

∈ R|𝐶|

+
such that ∑𝑖∈𝐶 𝑥𝑖 = 𝐸𝐶 . A (sharing) rule is a function 𝐹 that associates
with each (𝐶,𝐸𝐶 , 𝑢𝐶 ) an allocation. Given a set of bargaining problems
{(𝐶,𝐸𝐶 , 𝑢𝐶 )}𝐶⊆𝑁,𝐸𝐶∈R+

, the coalition formation problem induced by
rule 𝑭 , ≿𝐹 , is defined as in Section 3.

The two focal rules in this model are the so-called Nash bargaining
solution, 𝑁 , and the Kalai–Smorodinsky bargaining solution, 𝐾𝑆. The
first one selects for each problem the solution that maximize the
product of agents’ utilities (Nash, 1950). The second one equalizes the
relative gains – the gain of each player relative to its maximum possible
gain – and maximizes this equal value (Kalai & Smorodinsky, 1975).
Formally, for each bargaining problem (𝐶,𝐸𝐶 , 𝑢𝐶 ),

𝑁(𝐶,𝐸𝐶 , 𝑢𝐶 ) = argmax
∏

𝑖∈𝐶
𝑢𝑖(𝑥𝑖),

and 𝐾𝑆(𝐶,𝐸𝐶 , 𝑢𝐶 ) selects the maximal feasible vector 𝑥 such that for
each pair 𝑖, 𝑗 ∈ 𝐶,
𝑢𝑖(𝑥𝑖)
𝑢𝑖(𝐸𝐶 )

=
𝑢𝑗 (𝑥𝑗 )
𝑢𝑗 (𝐸𝐶 )

.

The Nash bargaining solution guarantees a non-empty core of the
induced coalition formation problem (Pycia, 2012). As the Nash bar-
gaining solution satisfies solidarity, we know from our Theorem 1 that it
induces non-circular coalition formation problems and, thus, stability is
guaranteed. The core of the coalition formation problem induced by the
Kalai–Smorodinsky bargaining solution can be empty for some coali-
tional endowments (Pycia, 2012). As this solution violates solidarity, we
know from our Theorem 1 that it does not always induce non-circular
coalition formation problems.

Rationing problems

As we mentioned in the Introduction, our results generalize those
obtained by Gallo and Inarra (2018) to any resource allocation situation
(beyond rationing problems). We analyze in this subsection how our
results apply to the particular case of rationing. In a rationing problem
agents have claims over an endowment that is not sufficient to fully
honor all claims and sharing rules take those claims into account to
generate allocations.9 Formally, let 𝑁 = {1,… , 𝑛} and, for each 𝑖 ∈ 𝑁 ,

9 This model is renamed as generalized claims problems by Gallo and Klaus
2022).
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let 𝑑𝑖 ∈ R+ denote agent 𝑖’s claim. For each 𝐶 ⊆ 𝑁 , let 𝑑𝐶 = (𝑑𝑖)𝑖∈𝐶 be
he claims vector of coalition 𝐶 and 𝐸𝐶 ∈ R+, with 𝐸𝐶 ≤

∑

𝑖∈𝐶 𝑑𝑖, be the
ndowment of coalition 𝐶. A rationing problem is a triple (𝐶,𝐸𝐶 , 𝑑𝐶 ).
n allocation for (𝐶,𝐸𝐶 , 𝑑𝐶 ) is a vector 𝑥 = (𝑥𝑖)𝑖∈|𝐶|

∈ R|𝐶|

+ such that,
or each 𝑖 ∈ 𝐶, 𝑥𝑖 ≤ 𝑑𝑖 and ∑

𝑖∈𝐶 𝑥𝑖 = 𝐸𝐶 . A (sharing) rule 𝐹 is
function that associates with each (𝐶,𝐸𝐶 , 𝑑𝐶 ) an allocation. Given
set of claims problems {(𝐶,𝐸𝐶 , 𝑑𝐶 )}𝐶⊆𝑁,0≤𝐸𝐶≤

∑

𝑖∈𝐶 𝑑𝑖 , the coalition
ormation problem induced by rule 𝑭 , ≿𝐹 , is defined as in Section 3.

A focal family of sharing rules for rationing problems is the so-
alled family of parametric rules (Young, 1987). The payoff of each
gent given by a parametric rule is obtained by a function that only
epends on her individual claim and a common parameter. Formally,
rule 𝑆 is parametric if there exists a function 𝑓 ∶ [𝑎, 𝑏] × R+ → R+,
here [𝑎, 𝑏] ⊂ R ∪ {±∞}, that is continuous and weakly monotonic in

ts first argument and such that:

(𝑖) 𝑓 (𝑎, 𝑥) = 0 and 𝑓 (𝑏, 𝑥) = 𝑥 for all 𝑥 ∈ R+, and
(𝑖𝑖) for each (𝐶,𝐸𝐶 , 𝑑𝐶 ), there is 𝜆 ∈ [𝑎, 𝑏], such that 𝑆𝑖(𝐶,𝐸𝐶 , 𝑑𝐶 ) =

𝑓 (𝜆, 𝑑𝑖) .

The family of parametric rules includes some well-known rules such
s the proportional rule, 𝑃 , the constrained equal-awards rule, 𝐶𝐸𝐴,
nd the constrained equal-losses rule, 𝐶𝐸𝐿 (see Thomson, 2019).10

roposition 1 in Gallo and Inarra (2018) states that parametric rules
nduce coalition formation problems with a non-empty core. As these
ules satisfy solidarity (see Thomson, 2019), our Theorem 1 guarantees
hat they induce coalition formation problems that are non-circular
nd, therefore, by our Corollary 1, the induced cores are non-empty.11

A focal non-parametric rule is the so-called random arrival rule.12 For
his rule, one considers all possible arrival orderings of agents. For each
rder, agents are fully reimbursed until the endowment runs out. Then,
he rule takes the average over all orders (see O’Neill, 1982; Thomson,
019). Formally,

𝐴𝑖(𝐶,𝐸𝐶 , 𝑑𝐶 ) =
1

|𝐶|!
∑

≻∈𝐶

min{𝑑𝑖,max{𝐸 −
∑

𝑗∈𝐶,𝑗≻𝑖
𝑑𝑗 , 0}},

where 𝐶 denotes the set of strict orders in 𝐶. Gallo and Inarra (2018)
show that the random arrival rule can generate a coalition formation
problem with an empty core. As this rule does not satisfy solidarity,
we know from Theorem 1 that it does not always induce non-circular
coalition formation problems.

Surplus sharing problems

We consider here the related case of coalition formation in surplus
sharing problems. Surplus sharing problems (Moulin, 2002) are com-
plementary to rationing problems in the sense that endowments exceed
the sum of claims. Formally, let 𝑁 = {1,… , 𝑛} and, for each 𝑖 ∈ 𝑁 , let
𝑑𝑖 ∈ R+ denote agent 𝑖’s claim. For each 𝐶 ⊆ 𝑁 , let 𝑑𝐶 = (𝑑𝑖)𝑖∈𝐶 be
the claims vector of coalition 𝐶 and 𝐸𝐶 ∈ R+, with 𝐸𝐶 ≥

∑

𝑖∈𝐶 𝑑𝑖, be
the endowment of coalition 𝐶. A surplus sharing problem is a triple
(𝐶,𝐸𝐶 , 𝑑𝐶 ). An allocation for (𝐶,𝐸𝐶 , 𝑑𝐶 ) is a vector 𝑥 = (𝑥𝑖)𝑖∈𝐶 ∈ R|𝐶|

+
such that, for each 𝑖 ∈ 𝐶, 𝑑𝑖 ≤ 𝑥𝑖 and ∑

𝑖∈𝐶 𝑥𝑖 = 𝐸𝐶 . A (sharing)

10 Formally,
𝑃 (𝜆, 𝑑𝑖) = 𝜆𝑑𝑖, for all 𝜆 ∈ [0, 1], 𝑑𝑖 ∈ R+,

𝐶𝐸𝐴(𝜆, 𝑑𝑖) = min
{

𝜆, 𝑑𝑖
}

, for all 𝜆, 𝑑𝑖 ∈ R+,

𝐶𝐸𝐿(𝜆, 𝑑𝑖) = max
{

0, 𝑑𝑖 −
1
𝜆

}

, for all 𝜆 ∈ [0,+∞], 𝑑𝑖 ∈ R+.

11 In our benchmark analysis endowments are not constrained, whereas
n this application they cannot be above the coalition’s aggregate claim.
evertheless, the proofs of Theorem 1 and Corollary 1 are also valid (with
inor modifications) under that premise.
12
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Gallo and Inarra (2018) refer to this rule as the Shapley value.
rule 𝐹 is a function that associates with each (𝐶,𝐸𝐶 , 𝑑𝐶 ) an allocation.
Given a set of surplus sharing problems {(𝐶,𝐸𝐶 , 𝑑𝐶 )}𝐶⊆𝑁,𝐸𝐶≥

∑

𝑖∈𝐶 𝑑𝑖 , the
coalition formation problem induced by rule 𝑭 , ≿𝐹 , is defined as in
Section 3.

We define some focal surplus sharing rules. We start with the coun-
terpart of the family of parametric rules (Moulin, 1987b). Formally,
a (surplus sharing) rule 𝑆 is parametric if there exists a function 𝑓 ∶
[0,+∞] × R+ → R+, that is continuous and weakly monotonic in both
arguments, such that:

(𝑖) 𝑓 (0, 𝑥) = 0 and 𝑓 (+∞, 𝑥) = +∞ for all 𝑥 ∈ R+, and
(𝑖𝑖) for each (𝐶,𝐸𝐶 , 𝑑𝐶 ), there is 𝜆 ∈ [0,+∞], such that 𝑆𝑖(𝐶,𝐸𝐶 , 𝑑𝐶 ) =

𝑓 (𝜆, 𝑑𝑖).

The family of parametric rules includes some well-known rules such
as the proportional rule, 𝑃 , the uniform gains rule, 𝑈𝐺, and the equal
surplus rule, 𝐸𝑆 (see Thomson, 2019).13 All parametric rules for surplus
sharing problems satisfy solidarity. Thus, our Theorem 1 guarantees that
they induce coalition formation problems that are non-circular and, as
our Corollary 1 states, that the core is not empty.14

However, there are also (non-parametric) rules for surplus sharing
problems that do not satisfy solidarity. For instance, let us consider the
following extension of the random arrival rule from rationing problems
to surplus sharing problems. First, award all agents their claims as many
times as the endowment allows. Then, assign the residual endowment
(if it exists) sequentially according to an ordering of the agents. The ex-
ended random arrival for surplus sharing problems (ERA) gives each agent

the average of the awards so calculated over all possible orderings.
Formally,

𝐸𝑅𝐴𝑖(𝐶,𝐸𝐶 , 𝑑𝐶 ) = 𝑘𝑑𝑖 +
1

|𝐶|!
∑

≻∈𝐶

max{𝐸 − 𝑘
∑

𝑗∈𝐶
𝑑𝑗 −

∑

𝑗≻𝑖
𝑑𝑗 , 0},

here 𝑘 =
⌊

𝐸𝐶
∑

𝑗∈𝐶 𝑑𝑗

⌋

, and 𝐶 denotes the set of strict orders in 𝐶.15

The following example shows that this rule does not guarantee
tability and also illustrates that parametric rules do.

xample 3. Let 𝑁 = {1, 2, 3, 4} and 𝑑 = (1, 3, 3, 10). Consider the
following coalitional endowments:

𝐶 {13} {23} {124} otherwise
𝐸𝐶 5 8 17

∑

𝑖∈𝐶 𝑑𝑖

Then, the 𝐸𝑅𝐴 rule yields the following allocations:

𝐶 {13} {23} {124} otherwise
𝐸𝑅𝐴(𝐶,𝐸𝐶 , 𝑑𝐶 ) (1.5, 3.5) (4, 4) (1.33, 4.33, 11.33) (𝑑𝑖)𝑖∈𝐶

The coalition formation problem induced by 𝐸𝑅𝐴, ≿𝐸𝑅𝐴, is the follow-
ing:

≿𝐸𝑅𝐴
1 ≿𝐸𝑅𝐴

2 ≿𝐸𝑅𝐴
3 ≿𝐸𝑅𝐴

4
13 124 23 124
124 23 13 4 ∼ 14 ∼ 24 ∼
1 ∼ 12 ∼ 14 ∼ 2 ∼ 12 ∼ 24 ∼ 3 ∼ 34 ∼ ∼ 34 ∼ 134 ∼
∼ 123 ∼ 134 ∼ ∼ 123 ∼ 134 ∼ ∼ 123 ∼ 134 ∼ ∼ 234 ∼ 1234
∼ 1234 ∼ 1234 ∼ 234 ∼ 1234

13 Formally,

𝑓𝑃 (𝜆, 𝑑𝑖) = 𝜆𝑑𝑖, for all 𝜆 ∈ [0,+∞], 𝑑𝑖 ∈ R+,

𝑓𝑈𝐺(𝜆, 𝑑𝑖) = max{𝜆, 𝑑𝑖}, for all 𝜆 ∈ [0,+∞], 𝑑𝑖 ∈ R+,

𝑓𝐸𝑆 (𝜆, 𝑑𝑖) = 𝑑𝑖 + 𝜆, for all 𝜆 ∈ [0,+∞], 𝑑𝑖 ∈ R+.

14 A similar caveat to the one made at Footnote 11 applies here.
15 ∑

𝑑 , 𝑑 ).
Note that 𝐸𝑅𝐴𝑖(𝐶,𝐸𝐶 , 𝑑𝐶 ) = 𝑘𝑑𝑖 + 𝑅𝐴𝑖(𝐶,𝐸𝐶 − 𝑘 𝑗∈𝐶 𝑗 𝐶
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Observe that this problem is not a non-circular coalition formation
problem. Although weak pairwise alignment is satisfied, ({124}, {13}, {23}
is a ring and it is easily checked that the core is empty.

Consider now the uniform gains rule (a parametric rule). This rule
yields the following allocations for this problem:

𝐶 {13} {23} {124} otherwise
𝑈𝐺(𝐶,𝐸𝐶 , 𝑑𝐶 ) (2, 3) (4, 4) (3.5, 3.5, 10) (𝑑𝑖)𝑖∈𝐶

The coalition formation problem induced by 𝑈𝐺, ≿𝑈𝐺, is the following:

≿𝑈𝐺
1 ≿𝑈𝐺

2 ≿𝑈𝐺
3 ≿𝑈𝐺

4
124 23 23 4 ∼ 14 ∼ 24 ∼
13 124 3 ∼ 13 ∼ 34 ∼ ∼ 34 ∼ 124 ∼
1 ∼ 12 ∼ 14 ∼ 2 ∼ 12 ∼ 24 ∼ ∼ 123 ∼ 134 ∼ ∼ 134 ∼ 234 ∼
∼ 123 ∼ 134 ∼ ∼ 123 ∼ 234 ∼ ∼ 234 ∼ 1234 ∼ 1234
∼ 1234 ∼ 1234

Observe that this problem satisfies weak pairwise alignment and has
no rings. Then, it is a non-circular coalition formation problem. In
particular, partition {{23}, {1}, {4}} is stable.

Ranking problems

Dietzenbacher and Kondratev (2023) introduce the problem of prize
allocation in competitions, in which agents are ranked and a prize
endowment has to be shared among the participants of a competition
according to their ranking. With this idea in mind, we propose a model
where agents are ranked and all coalitions can be formed. Then, the
rule may take the ranking of the agents into account to derive the
individual payoffs. This model can be applied to any setting where
agents can be ordered according to some characteristic (such as their
expertise or past performance).

Formally, let 𝑁 = {1,… , 𝑛} be the set of agents. A ranking 
is a bijection  ∶ 𝑁 ⟶ 𝑁 that assigns to each agent a position,
i.e., (𝑖) is the position of agent 𝑖 in the ranking. We say that agent
∈ 𝑁 has a higher position in the ranking than agent 𝑗 ∈ 𝑁 if
(𝑖) < (𝑗). For each 𝐶 ⊆ 𝑁 , let 𝐸𝐶 denote the endowment of coalition
and 𝐶 the projection of ranking  to 𝐶. That is, the position of

gent 𝑖 in coalition 𝐶 is the number of agents, including herself, that
ave a higher position in that coalition. Formally, for each 𝑖 ∈ 𝐶,
𝐶 (𝑖) = |{𝑗 ∈ 𝐶 ∶ (𝑖) ≤ (𝑗)}|. For each coalition 𝐶 ⊆ 𝑁 , denote by

𝐶,𝐸𝐶 ,𝐶 ) the ranking problem faced by coalition 𝐶. An allocation
or (𝐶,𝐸𝐶 ,𝐶 ) is a vector 𝑥 = (𝑥𝑖)𝑖∈𝐶 ∈ R|𝐶|

+ such that ∑

𝑖∈𝐶 𝑥𝑖 = 𝐸𝐶 .
(sharing) rule 𝐹 is a function that associates with each (𝐶,𝐸𝐶 ,𝐶 )

n allocation. Given a set of ranking problems {(𝐶,𝐸𝐶 ,𝐶 )}𝐶⊆𝑁,𝐸𝐶∈R+
,

he coalition formation problem induced by rule 𝑭 , ≿𝐹 , is defined
s in Section 3.16

We reformulate the family of interval rules considered in Dietzen-
acher and Kondratev (2023) for each ranking problem (𝐶,𝐸𝐶 ,𝐶 ).

Informally, given a ranking problem (𝐶,𝐸𝐶 ,𝐶 ), each interval rule
works as follows: first, a set of disjoint intervals is defined. Then, if
the average endowment 𝐸𝐶

|𝐶|

does not belong to any of the intervals,
he endowment 𝐸𝐶 is equally split among the agents. Otherwise, the

agents get the lower bound of the interval to which 𝐸𝐶
|𝐶|

belongs. If there
s endowment left, each agent is allocated up to the upper bound of that
nterval following the ranking 𝐶 . The formal definition is as follows.
Interval rule for ranking problems: Let 𝐴 =

{

(𝑎1, 𝑏1), (𝑎2, 𝑏2),…
}

with 𝑎1, 𝑎2,… ∈ R+ and 𝑏1, 𝑏2,… ∈ R+ ∪ {+∞} be a family of disjoint

16 Lucchetti et al. (2022) consider a different approach to induce coalition
ormation problems using a ranking of agents (which is not exogenous, but
ather deduced from a ranking over the different coalitions). They also focus on
he study of core stable partitions. However, neither coalitional endowments
or sharing rules do appear in their model and, thus, our results cannot be
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pplied therein.
intervals. The interval rule associated with 𝐴, 𝐼𝐴, is such that for each
𝐶,𝐸𝐶 ,𝐶 ) and each 𝑖 ∈ 𝐶,
𝐴
𝑖 (𝐶,𝐸𝐶 ,𝐶 ) =

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎𝑘 if |𝐶|𝑎𝑘 ≤ 𝐸𝐶 ≤ (|𝐶| − 𝛽)𝑎𝑘 + 𝛽𝑏𝑘;

𝑥 if (|𝐶| − 𝛽)𝑎𝑘 + 𝛽𝑏𝑘 ≤ 𝐸𝐶 ≤ (|𝐶| −𝐶 (𝑖))𝑎𝑘 +𝐶 (𝑖)𝑏𝑘;

𝑏𝑘 if (|𝐶| −𝐶 (𝑖))𝑎𝑘 +𝐶 (𝑖)𝑏𝑘 ≤ 𝐸𝐶 ≤ |𝐶|𝑏𝑘;
𝐸𝐶
|𝐶|

otherwise,

where 𝛽 = 𝐶 (𝑖) − 1 and 𝑥 = 𝐸 − (|𝐶| −𝐶 (𝑖))𝑎𝑘 − 𝛽𝑏𝑘.
As Dietzenbacher and Kondratev (2023) mention, the interval rule

with 𝑎𝑘 = 𝑏𝑘 = 0 for each 𝑘 coincides with Equal Division while the
interval rule with 𝑎1 = 0 and 𝑏1 = +∞ coincides with Winner Takes
All, both well-known rules.

Theorem 1 in Dietzenbacher and Kondratev (2023) states that these
are the only order-preserving17 rules that satisfy solidarity.18 Conse-
quently, our Theorem 1 yields the following.

Corollary 2. The interval rules are the only order-preserving rules for
ranking problems that induce non-circular coalition formation problems.

Corollary 2 also implies that the interval rules guarantee stability
in the induced coalition formation problems. Other interesting rules
proposed by Dietzenbacher and Kondratev (2023) do not yield stability.
The following example illustrates this fact.

Example 4. Let 𝑁 = {1, 2, 3} and (𝑖) = 𝑖 for each 𝑖 ∈ 𝑁 . Consider the
following coalitional endowments:

𝐶 {12} {13} {23} {123} otherwise
𝐸𝐶 20 15 14 21 0

Consider first the interval rule 𝐼𝐴 with 𝐴 = {(𝑎1, 𝑏1), (𝑎2, 𝑏2), (𝑎3, 𝑏3)} =
(2, 9), (9, 10.5), (10.5,+∞)}. This rule yields the following allocations:

𝐶 {12} {13} {23} {123} otherwise
𝐼𝐴(𝐶,𝐸𝐶 ,𝐶 ) (10.5, 9.5) (9, 6) (9, 5) (9, 9, 3) (0)𝑖∈𝐶

The coalition formation problem induced by 𝐼𝐴, ≿𝐼𝐴 , is the following:

≿𝐼𝐴
1 ≿𝐼𝐴

2 ≿𝐼𝐴
3

12 12 13
13 ∼ 123 23 ∼ 123 23

1 2 123
3

Observe that this coalition formation problem satisfies weak pairwise
alignment and has no rings. Then, it is a non-circular coalition formation
problem. In particular, partition {{12}, {3}} is stable.

We finally consider a class of rules for ranking problems based on
the family of proportional rules defined in Dietzenbacher and Kon-
dratev (2023).

Proportional rule for ranking problems: Let 𝛬 =
{

𝜆1, 𝜆2,… 𝜆|𝑁|

}

with 𝜆1 > 0 and 𝜆𝑘 ≥ 𝜆𝑘+1 for each 𝑘 ∈ {1,… , |𝑁|−1}. The proportional
rule associated with 𝛬, 𝑃𝛬, is such that for each (𝐶,𝐸𝐶 ,𝐶 ) and each
𝑖 ∈ 𝐶,

𝑃𝛬
𝑖 (𝐶,𝐸𝐶 ,𝐶 ) =

𝜆𝐶 (𝑖)
∑

𝑗∈𝐶 𝜆𝐶 (𝑗)
⋅ 𝐸𝐶 .

A proportional rule assigns an allocation to the agent in position 𝑗 in the
ranking proportionally to 𝜆𝑗 . There exist rules within this family that
do not satisfy solidarity and do not guarantee stability. An instance is
the rule obtained when |𝑁| = 3, 𝜆1 = 3, and 𝜆2 = 𝜆3 = 1. It yields the
following allocations for this problem:

17 If (𝑖) < (𝑗), then 𝐹𝑖(𝐶,𝐸𝐶 ,𝐶 ) ≥ 𝐹𝑗 (𝐶,𝐸𝐶 ,𝐶 ).
18 Dietzenbacher and Kondratev (2023) do not use the axiom of solidarity,

but the separate axioms of endowment monotonicity and consistency.
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𝐶 {12} {13} {23} {123} otherwise
𝑃𝛬(𝐶,𝐸𝐶 ,𝐶 ) (15, 5) (11.25, 3.75) (10.5, 3.5) (12.6, 4.2, 4.2) (0)𝑖∈𝐶

The coalition formation problem induced by 𝑃 , ≿𝑃 , is the following:

≿𝑃𝛬

1 ≿𝑃𝛬

2 ≿𝑃𝛬

3
12 23 123
123 12 13
13 123 23
1 2 3

Note that this problem is not a non-circular coalition formation prob-
lem. In particular, ({12}, {23}, {13}) is a ring and, as 23 ≻2 123, while
23 ≻3 23, weak pairwise alignment is also violated. Moreover, it can
asily be shown that this problem has an empty core.

haring problems with permissible coalitions

In some resource allocation situations not all coalitions are feasible
nd, consequently, our results cannot be directly applied. Instances are
atching problems (e.g., Demange & Gale, 1985; Roth & Sotomayor,
990), network games (e.g., Jackson, 2005; Jackson & Wolinsky, 2003),
iver sharing problems (e.g., Alcalde-Unzu et al., 2015; Ambec & Spru-
ont, 2002) or legislative bargaining problems (e.g., Le Breton et al.,
008; Puy, 2013). However, we propose a way to partially circumvent
his issue. Suppose that the resource allocation situation involves just
collection of permissible coalitions  ⊂ 2𝑁 and, therefore, sharing

roblems are only defined for these coalitions.19 We propose to define,
or each non-permissible coalition, an auxiliary sharing problem with a
ero endowment. We then define an enlarged model that encompasses
he sharing problems for permissible coalitions as well as the auxiliary
haring problems for non-permissible coalitions. Then, Theorem 1 and
orollary 1 can be applied to this enlarged model. Thus, the induced
oalition formation problem has a non-empty core if the sharing rule
atisfies solidarity. If so, note that there is a stable partition formed by
oalitions of , given that only those may have a positive endowment.
learly, such a partition is also stable in the original model. To summa-
ize, given a resource allocation situation where not all coalitions are
ermissible, we can always obtain a stable partition by constructing
uch an enlarged model, and then applying a sharing rule that satisfies
olidarity therein. Observe that solidarity refers to the sharing rule in the

enlarged model, as our results require that all coalitions are feasible.
However, the application of a sharing rule satisfying solidarity in the
original model does not guarantee stability. That is illustrated with the
following example.

Example 5. Let 𝑁 = {1, 2, 3} and  = {{12}, {13}, {23}, {1}, {2}, {3}}
be the set of permissible coalitions. Consider the following coalitional
endowments:

𝐶 {12} {13} {23} {𝑖}
𝐸𝐶 9 9 9 0

Now, consider the following sharing rule 𝐹 : for each (𝐶,𝐸𝐶 ) ∈  , with
𝐶 ∈ ,

𝐹 (𝐶,𝐸𝐶 ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

2
3𝐸𝐶 ,

1
3𝐸𝐶

)

if 𝐶 = {12},
(

2
3𝐸𝐶 ,

1
3𝐸𝐶

)

if 𝐶 = {23},
(

1
3𝐸𝐶 ,

2
3𝐸𝐶

)

if 𝐶 = {13},

𝐸𝐶 otherwise.

Note that this rule gives priority to one agent within each pair, but
hoever has priority depends on the coalition. It can be checked that

his rule satisfies solidarity. And it yields the following allocations:

19 To ensure the existence of partitions, we assume that singletons are
ermissible (i.e., for each 𝑖 ∈ 𝑁 , {𝑖} ∈ ).
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𝐶 {12} {13} {23} {𝑖}
𝐹 (𝐶,𝐸𝐶 ) (6, 3) (3, 6) (6, 3) (0)

The coalition formation problem induced by 𝐹 , ≿𝐹 , is the following:

≿𝐹
1 ≿𝐹

2 ≿𝐹
3

12 23 13
13 12 23
1 2 3

Observe that ({12}, {23}, {13}) is a ring and that this coalition formation
problem has an empty core.

Consider now the enlarged model in which the grand coalition gets
a zero endowment:

𝐶 {12} {13} {23} {𝑖} {123}
𝐸𝐶 9 9 9 0 0

We know, by Corollary 1, that the application to this enlarged model of
any sharing rule that satisfies solidarity guarantees the non-emptiness
of the core of the induced coalition formation problem. Specifically,
we can guarantee that there is a stable partition in which the grand
coalition is not included. Consider, for instance, the uniform sharing
rule, 𝑈𝑆, the rule that divides the endowment of each coalition equally
among its members (and, thus, it obviously satisfies solidarity).20 Then,
𝑈𝑆 yields the following allocations:

𝐶 {12} {13} {23} {𝑖} {123}
𝑈𝑆(𝐶,𝐸𝐶 ) (4.5, 4.5) (4.5, 4.5) (4.5, 4.5) (0) (0, 0, 0)

The coalition formation problem induced by 𝑈𝑆, ≿𝑈𝑆 , is the following:

≿𝑈𝑆
1 ≿𝑈𝑆

2 ≿𝑈𝑆
3

12 ∼ 13 12 ∼ 23 13 ∼ 23
1 ∼ 123 2 ∼ 123 3 ∼ 123

Observe that this problem has three stable partitions: {{12}, {3}},
{{13}, {2}} and {{23}, {1}}, all of them formed by permissible coali-
tions.

5. Concluding remarks

We have studied coalition formation problems in a context in which
coalitions have to share collective resources. We have characterized the
sharing rules that induce non-circular coalition formation problems as
those satisfying a natural axiom formalizing the principle of solidarity.
This implies that such a solidarity axiom guarantees the existence of
(core) stable partitions in the induced coalition formation problems.
Our result can be applied to canonical problems of resource allocation
long studied such as bargaining, rationing, or surplus sharing problems
as well as to other problems recently considered, such as ranking
problems.

Although our benchmark model requires that all coalitions are
feasible, we have also seen that we can partially apply the results
to resource allocation situations where not all coalitions are feasible.
By contrast, a similar argument cannot be applied to situations where
agents are equipped with individual endowments such as revenue shar-
ing in hierarchies (e.g., Harless, 2020; Hougaard et al., 2017). Exploring
whether the connection between solidarity (in the resource alloca-
tion problem) and stability (in the corresponding coalition formation
problem) extends to these cases is left for further research.

The class of non-circular coalition formation problems is not the
only class in which stability is guaranteed. As mentioned already,
various other properties have been introduced to guarantee the exis-
tence of stable partitions in hedonic games. Most of them, like the
so-called top-coalition property and ordinal balance (Bogomolnaia &

20 Formally, for each (𝐶,𝐸 ) ∈  and each 𝑖 ∈ 𝐶, 𝑈𝑆 (𝐶,𝐸 ) = 𝐸𝐶 .
𝐶 𝑖 𝐶
|𝐶|
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Jackson, 2002) are sufficient conditions for the non-emptiness of the
core. The somewhat related notion of pivotal balance (Iehlé, 2007), is
both necessary and sufficient for the existence of a core stable partition.
Nevertheless, all these properties guarantee the non-emptiness of the
core even though they allow for the presence of rings.21 A natural
research question would be to identify properties of sharing rules that
induce coalition formation problems satisfying, for instance, ordinal
balance or pivotal balance. However, this is a challenging question as
these properties allow for the existence of rings in preferences. As it is
known, the non-emptiness of the core when rings exist is contingent on
various factors, including the number of coalitions in the ring and their
positions within the preferences of the agents involved (see Bonifacio
et al., 2022). This last factor is relevant because the higher these
positions are, ceteris paribus, the more difficult it is to have a non-
mpty core.22 In our model, these positions depend significantly on
he coalitional endowments. Note also that we give full flexibility to
he values of these coalitional endowments. Therefore, if a particular
haring rule can generate a ring for some coalitional endowments,
hanging the endowments of all the coalitions outside the ring to 0
ould suffice to generate a coalition formation problem (induced by

hat rule) with all the coalitions of the ring occupying the first positions
n the agents’ preferences. Therefore, it seems very difficult to formulate
eneral properties of sharing rules that only generate rings compatible
ith non-empty core coalition formation problems. A hypothetical

haracterization of sharing rules that allow for rings but guarantee a
on-empty core would be based on restricting the values of coalitional
ndowments. To summarize, the search for a characterization of the
haring rules that induce coalition formation problems satisfying any of
he above conditions (that allow for rings but guarantee a non-empty
ore) is a daunting task that is beyond the scope of this paper. We
ave focused instead on the non-circular property, which conveys the
ppealing feature of excluding rings altogether (an aspect that can be
aturally linked to sharing rules).

Finally, another interesting question is the study of the compu-
ational complexity of coalition formation problems. Ballester (2004)
tudies the complexity of coalition formation games and shows that
he computation of stable partitions is NP-complete. The computational
omplexity of stable partitions in additive coalition formation problems
as been studied by Sung and Dimitrov (2010). More recently, Gairing
nd Savani (2019) focus on symmetric additively separable coalition
ormation problems. The study of the computational complexity of
on-circular coalition formation problems is left for further research.

ppendix. Proof of Theorem 1

emma 2. If 𝐹 satisfies solidarity, then for each {𝐸𝐶}𝐶⊆𝑁 , ≿𝐹 satisfies
eak pairwise alignment.

roof. Let 𝐹 be a sharing rule that satisfies solidarity. Then, by
emma 1, 𝐹 satisfies endowment monotonicity and consistency. Let
, 𝐶 ′ ⊆ 𝑁 , 𝐸𝐶 , 𝐸𝐶′ ∈ R+, and 𝑖, 𝑗 ∈ 𝐶 ∩ 𝐶 ′.

If 𝐶 ⊂ 𝐶 ′ or 𝐶 ′ ⊂ 𝐶, then by solidarity, either [for each 𝑘 ∈
𝑖, 𝑗}, 𝐹𝑘(𝐶,𝐸𝐶 ) ≤ 𝐹𝑘(𝐶 ′, 𝐸𝐶′ )] or [for each 𝑘 ∈ {𝑖, 𝑗}, 𝐹𝑘(𝐶,𝐸𝐶 ) ≥
𝐹𝑘(𝐶 ′, 𝐸𝐶′ )]. Therefore, agents 𝑖 and 𝑗 do not rank 𝐶 and 𝐶 ′ in opposite
ways.

21 See the example at page 213 in Bogomolnaia and Jackson (2002) for a
oalition formation problem satisfying ordinal balance and having a ring but
lso a non-empty core. The same example is valid for pivotal balance.
22 To see the importance of these positions in the non-emptiness of the core
hen rings exist, see, for instance, Examples 2 and 3 in Gallo and Inarra
376

2018).
Otherwise, 𝐶 ⊄ 𝐶 ′ and 𝐶 ′ ⊄ 𝐶. Then, for each 𝑘 ∈ 𝐶, let 𝑥𝑘 =
𝑘(𝐶,𝐸𝐶 ), and for each 𝑘′ ∈ 𝐶 ′, let 𝑥′𝑘′ = 𝐹𝑘′ (𝐶 ′, 𝐸𝐶′ ). Consider the
haring problems ({𝑖, 𝑗}, 𝑥𝑖 + 𝑥𝑗 ) and ({𝑖, 𝑗}, 𝑥′𝑖 + 𝑥′𝑗 ). By consistency,

𝑥𝑖, 𝑥𝑗 ) = 𝐹 ({𝑖, 𝑗}, 𝑥𝑖 + 𝑥𝑗 ) and (𝑥′𝑖 , 𝑥
′
𝑗 ) = 𝐹 ({𝑖, 𝑗}, 𝑥′𝑖 + 𝑥′𝑗 ).

Assume, without loss of generality, that 𝑥𝑖 + 𝑥𝑗 ≥ 𝑥′𝑖 + 𝑥′𝑗 . Then, by
ndowment monotonicity, for each 𝑘 ∈ {𝑖, 𝑗}, 𝑥𝑘 = 𝐹𝑘({𝑖, 𝑗}, 𝑥𝑖 + 𝑥𝑗 ) ≥
𝑘({𝑖, 𝑗}, 𝑥′𝑖 + 𝑥′𝑗 ) = 𝑥′𝑘. Therefore, for each 𝑘 ∈ {𝑖, 𝑗}, 𝐹𝑘(𝐶,𝐸𝐶 ) ≥
𝑘(𝐶 ′, 𝐸𝐶′ ). Consequently, agents 𝑖 and 𝑗 do not rank 𝐶 and 𝐶 ′ in
pposite ways.

Hence, ≿𝐹 satisfies weak pairwise alignment, as desired. □

We now show that if 𝐹 satisfies solidarity, then ≿𝐹 has no rings. We
eed the following auxiliary lemma.

emma 3. Let 𝐹 be a sharing rule that satisfies solidarity. Let 𝐶 ⊆ 𝑁 and
𝐶1,… , 𝐶𝑚} be a set of coalitions such that

⋃𝑚
𝑘=1 𝐶𝑘 = 𝐶. Then, there is

𝑙 ∈ {𝐶1,… , 𝐶𝑚} such that for each 𝐸𝐶𝑙
∈ R+, there exists 𝐸𝐶 ∈ R+ for

hich 𝐹𝑖(𝐶𝑙 , 𝐸𝐶𝑙
) = 𝐹𝑖(𝐶,𝐸𝐶 ) for each 𝑖 ∈ 𝐶𝑙.

roof. Let 𝐹 be a sharing rule that satisfies solidarity. Then, by
emma 1, 𝐹 satisfies endowment continuity and consistency. Let 𝐶 ⊆ 𝑁
nd {𝐶1,… , 𝐶𝑚} be such that ⋃𝑚

𝑘=1 𝐶𝑘 = 𝐶.
We first prove that there exists 𝑗 ∈ 𝐶 such that lim𝐸𝐶→∞ 𝐹𝑗 (𝐶,𝐸𝐶 ) =

. Suppose otherwise. Then, for each 𝑗 ∈ 𝐶, there exists 𝑀𝑗 ∈ R+
uch that for each 𝐸 ∈ R+ arbitrarily large, 𝐹𝑗 (𝐶,𝐸) < 𝑀𝑗 . Let

≡ max𝑗∈𝐶 𝑀𝑗 . Then, for each 𝑗 ∈ 𝐶, 𝐹𝑗 (𝐶, |𝐶|𝑀) < 𝑀 and,
herefore, ∑𝑗∈𝐶 𝐹𝑗 (𝐶, |𝐶|𝑀) < |𝐶|𝑀 , which contradicts the definition
f an allocation.

Now, as ⋃𝑚
𝑘=1 𝐶𝑘 = 𝐶, there is 𝐶𝑙 ∈ {𝐶1,… , 𝐶𝑚} such that 𝑗 ∈

𝑙. We then construct 𝛼 ∶ R+ → R+ such that for each 𝜉 ∈ R+,
(𝜉) =

∑

𝑖∈𝐶𝑙
𝐹𝑖(𝐶, 𝜉). Then, 𝛼(0) = ∑

𝑖∈𝐶𝑙
𝐹𝑖(𝐶, 0) = 0 and lim𝜉→∞ 𝛼(𝜉) =

im𝜉→∞
∑

𝑖∈𝐶𝑙
𝐹𝑖(𝐶, 𝜉) = ∞. As 𝐹 satisfies endowment continuity, 𝛼 is

ontinuous. Then, for each 𝐸𝐶𝑙
∈ R+, there exists 𝐸𝐶 ∈ R+ for which

(𝐸𝐶 ) = 𝐸𝐶𝑙
. By consistency, for each 𝑖 ∈ 𝐶𝑙, 𝐹𝑖(𝐶𝑙 , 𝐸𝐶𝑙

) = 𝐹𝑖(𝐶,𝐸𝐶 ), as
esired. □

emma 4. If 𝐹 satisfies solidarity, then for each {𝐸𝐶}𝐶⊆𝑁 , ≿𝐹 has no
ings.

roof. Let 𝐹 be a sharing rule that satisfies solidarity. Suppose by
ontradiction that there exists {𝐸𝐶}𝐶⊆𝑁 such that ≿𝐹 has a ring
𝐶0, 𝐶1 … , 𝐶𝑙−1). Then, for each 𝑘 = 0,… , 𝑙 − 1 (modulo 𝑙), there is at
east one agent, say agent 𝑗𝑘+1 ∈ 𝐶𝑘+1 ∩ 𝐶𝑘, such that 𝐶𝑘+1 ≻𝐹

𝑗𝑘+1
𝐶𝑘.

Let �̂� ≡
⋃𝑙−1

𝑘=0 𝐶𝑘. By Lemma 3, there is 𝐶𝑘 ∈ {𝐶0, 𝐶1,… , 𝐶𝑙−1} and
̂
�̂� ∈ R+ such that for each 𝑖 ∈ 𝐶𝑘, 𝐹𝑖(𝐶𝑘, 𝐸𝐶𝑘

) = 𝐹𝑖(�̂�, �̂��̂� ). Assume
ithout loss of generality that 𝐶𝑘 = 𝐶0.

Consider now {𝐸′
𝐶}𝐶⊆𝑁 such that 𝐸′

𝐶 = 𝐸𝐶 for each 𝐶 ∈ 2𝑁 ⧵ {�̂�},
nd 𝐸′

�̂�
= �̂��̂� . We denote by ≿𝐹 ′ the coalition formation problem when

is applied and the endowments are {𝐸′
𝐶}𝐶⊆𝑁 .

By construction, for each 𝑖 ∈ 𝐶0, 𝐹𝑖(�̂�, 𝐸′
�̂�
) = 𝐹𝑖(𝐶0, 𝐸′

𝐶0
) and,

herefore, 𝐶0 ∼𝐹 ′
𝑖 �̂�. In particular, 𝐶0 ∼𝐹 ′

𝑗0
�̂� and 𝐶0 ∼𝐹 ′

𝑗1
�̂� (possibly 𝑗0 =

1). Similarly, for each 𝑖′ ∈ 𝐶𝑘 ∩𝐶𝑘+1 with 𝑘 = 0, 1,… , 𝑙 − 1 (modulo 𝑙),
𝑖′ (𝐶𝑘, 𝐸′

𝐶𝑘
) = 𝐹𝑖′ (𝐶𝑘, 𝐸𝐶𝑘

) and 𝐹𝑖′ (𝐶𝑘+1, 𝐸′
𝐶𝑘+1

) = 𝐹𝑖′ (𝐶𝑘+1, 𝐸𝐶𝑘+1
), which

mplies 𝐶𝑘+1 ≻𝐹 ′

𝑖′ 𝐶𝑘 ⇔ 𝐶𝑘+1 ≻𝐹
𝑖′ 𝐶𝑘 and 𝐶𝑘+1 ∼𝐹 ′

𝑖′ 𝐶𝑘 ⇔ 𝐶𝑘+1 ∼𝐹
𝑖′ 𝐶𝑘. In

articular, for each 𝑘 = 0, 1,… , 𝑙−1 (modulo 𝑙), 𝐶𝑘+1 ≻𝐹 ′
𝑗𝑘+1

𝐶𝑘. Then, by
ransitivity, �̂� ≻𝐹 ′

𝑗0
𝐶𝑙−1 and 𝐶1 ≻𝐹 ′

𝑗1
�̂�. As 𝐹 satisfies solidarity, it follows

y Lemma 2 that ≿𝐹 ′ satisfies weak pairwise alignment and, therefore,
1 ≿𝐹 ′

𝑗2
�̂�. As 𝐶2 ≻𝐹 ′

𝑗2
𝐶1, it follows by transitivity that 𝐶2 ≻𝐹 ′

𝑗2
�̂�.

imilarly, we have that for each 𝑘 ∈ {3,… , 𝑙 − 1}, 𝐶𝑘 ≻𝐹 ′
𝑗𝑘

�̂�. Then,
e have deduced that �̂� ≻𝐹 ′

𝑗0
𝐶𝑙−1 and 𝐶𝑙−1 ≻𝐹 ′

𝑗𝑙−1
�̂�. If 𝑗𝑙−1 = 𝑗0, this

ontradicts transitivity. Otherwise, this implies that ≿𝐹 ′ does not satisfy
eak pairwise alignment, which contradicts Lemma 2. □

Lemmas 2 and 4 prove one implication of Theorem 1, while the
ther is proven by the following lemma.
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Lemma 5. If 𝐹 does not satisfy solidarity, then there is {𝐸𝐶}𝐶⊆𝑁 such
hat ≿𝐹 does not satisfy weak pairwise alignment.

roof. Let 𝐹 be a sharing rule that does not satisfy solidarity. Then,
here exist 𝐶,𝐶 ′ ⊆ 𝑁 , with 𝐶 ′ ⊂ 𝐶, 𝑖, 𝑗 ∈ 𝐶 ′ and 𝐸𝐶 , 𝐸𝐶′ ∈ R+
uch that 𝐹𝑖(𝐶,𝐸𝐶 ) > 𝐹𝑖(𝐶 ′, 𝐸𝐶′ ) and 𝐹𝑗 (𝐶,𝐸𝐶 ) < 𝐹𝑗 (𝐶 ′, 𝐸𝐶′ ). Then,
or {𝐸𝐶}𝐶⊆𝑁 , we have that 𝐶 ≻𝐹

𝑖 𝐶 ′ and 𝐶 ′ ≻𝐹
𝑗 𝐶. Hence, ≿𝐹 does not

atisfyweak pairwise alignment. □
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