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A B S T R A C T

Purpose: 5-methylcytosine RNA modifications are driven by NSUN methyltransferases.
Although variants in NSUN2 and NSUN3 were associated with neurodevelopmental diseases,
the physiological role of NSUN6 modifications on transfer RNAs and messenger RNAs
remained elusive.
Methods: We combined exome sequencing of consanguineous families with functional char-
acterization to identify a new neurodevelopmental disorder gene.
Results: We identified 3 unrelated consanguineous families with deleterious homozygous var-
iants in NSUN6. Two of these variants are predicted to be loss-of-function. One maps to the first
exon and is predicted to lead to the absence of NSUN6 via nonsense-mediated decay, whereas
we showed that the other maps to the last exon and encodes a protein that does not fold correctly.
Likewise, we demonstrated that the missense variant identified in the third family has lost its
enzymatic activity and is unable to bind the methyl donor S-adenosyl-L-methionine. The
affected individuals present with developmental delay, intellectual disability, motor delay, and
behavioral anomalies. Homozygous ablation of the NSUN6 ortholog in Drosophila led to
locomotion and learning impairment.
Conclusion: Our data provide evidence that biallelic pathogenic variants in NSUN6 cause one
form of autosomal recessive intellectual disability, establishing another link between RNA
modification and cognition.
© 2023 The Authors. Published by Elsevier Inc. on behalf of American College of Medical

Genetics and Genomics. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

Intellectual disability (ID) and developmental delay (DD)
are neurodevelopmental disorders characterized by highly
heterogeneous phenotypes that affect 1% to 3% of the
general population.1,2 The introduction of next-generation
sequencing technology revealed the association of many
single genetic defects, implicating >1700 genes in ID.2-4

Although autosomal dominant de novo variants are the
predominant cause of ID in outbred populations,5,6 auto-
somal recessive gene defects are the leading genetic cause of
ID in countries with frequent parental consanguinity.7 The
extreme heterogeneity of autosomal recessive ID (ARID)
hinders identification of a molecular diagnosis in more than
half of the patients, indicating that many recessive causative
genes are still unknown.8-12 Consanguineous families thus
provide a unique opportunity to identify novel recessive
causative genes.13

RNA modifications have emerged as an important post-
transcriptional regulation mechanism, modulating gene
expression of different biological processes.14 Over the
years, >170 RNA modifications have been identified in both
coding and noncoding RNAs.15,16 Among these, the 5-
methylcytosine (m5C) is a widespread RNA modification
found in different RNA types, including messenger RNA
(mRNA), ribosomal RNA, and transfer RNA (tRNA).17-19

This modification is implicated in different molecular pro-
cesses, such as RNA stability,20-22 processing,23 and
translation,24-28 to control different biological function, such
as gametogenesis, as well as cell growth, differentiation, and
migration in tumorigenesis and neurodevelopment
processes.22,29-32 Different levels of m5C in mRNA have
been observed among mammalian tissues.19,33 Most of the
m5C RNA modifications are driven by RNA methyl-
transferase of the NOL1/NOP2/SUN domain (NSUN)
family, a family counting 7 members in human (NSUN1-
7).34 Nsun transcripts are developmentally regulated during
mouse embryogenesis and show tissue-specific enrich-
ment.35 Pathogenic variants in NSUN2 and NSUN3 were
previously associated with autosomal recessive neuro-
developmental disorders (respectively, MIM: 611091 and
MIM: 619012), highlighting the importance of m5C RNA
modification in neurodevelopment.28,36-45 NSUN5 (aka,
WBSCR20A) and its 2 truncated paralogs NSUN5P1 and
NSUN5P2 (aka, WBSCR20B and WBSCR20C, respectively)
map to the region commonly deleted in Williams-Beuren
syndrome or its flanking sequences and may contribute to
certain of its phenotypical features.46

The physiological role and cellular function of NSUN6-
deposited m5C marks on tRNAs and mRNAs remain
elusive.26,47-50 Here, we report on 3 consanguineous unre-
lated individuals with DD and ID, carrying biallelic dele-
terious variants in NSUN6. The homozygous deletion of the
Drosophila ortholog of NSUN6 led to locomotion and
learning impairment. Overall, our data provide evidence that
biallelic pathogenic variants in NSUN6 cause one form of
ARID and establish another link between RNA modification
and cognition.
Materials and Methods

Variant identification and protein modeling

The exome of affected individual 1 was captured with
biotinylated probes (Twist Human Core Exome EF Multi-
plex Complete kit), following the manufacturer recom-
mendations and paired-end (2 × 75 bp) reads on an Illumina
NextSeq 500 sequencer. Sequences were analyzed in
accordance with the SeqOne software procedures based on
good practice from the Broad Institute (Internal Pipeline:
BWA-MEM, GATK v3.6; SeqOne Pipeline: v 1.2, 2018).
Variants were filtered according to their level of coverage
(>10-fold), their frequency in Genome Aggregation Data-
base (gnomAD) (<1%), their quality, and the predicted
impact on the protein.

The exome from the affected individuals 2 and 3 was
captured using the xGen Exome Research Panel v2 (Inte-
grated DNA Technologies) and sequenced using the Illu-
mina HiSeq4000 platform according to the manufacturer’s
protocols. The overall mean-depth base coverage was 145-
and 138-fold and 98% and 97% of the targeted region was
covered at least 20-fold, for individuals 2 and 3, respec-
tively. Read mapping and variant calling were performed as
described.51,52 Variants not passing the quality and not
predicted to affect the protein were filtered out. Homozy-
gous and hemizygous variants with a minor allele frequency
(MAF) < 1% in the general population (1000 Genomes,
Exome Variant Server, and gnomAD) were retained
(Supplemental Table 1).

Nonsynonymous variants were modeled using the PDB
entry 5WWR.53 Chains A (NSUN6) and C (tRNA) were
used to highlight the position of the variants with Swiss-
PdbViewer.54

Methylation assay

Histidine-tagged NSUN6 variants and human tRNA tran-
scripts were prepared and purified as previously described.53,55

Methylation assays and enzymatic kinetic measurement
methods have been previously described in detail.53,55 Briefly,
a reaction mixture consisting of 200 μM 3H-S-adenosyl-L-
methionine (SAM), 50 mM Tris–HCl, pH 7.0, 100 mMNaCl,
10mMMgCl2, 100μg/mLbovine serumalbumin, 5mMDTT,
and 5 μM tRNAs (GCA) was initiated by the addition of 500
nM enzyme. At time intervals ranging between 2 and 8 mi-
nutes, 5 μL aliquots were removed to glass fiber filter disks and
soaked in 5% trichloroacetic acid to precipitate the labeled
methylated tRNA. After washing, the amount of radioactive
[methyl-3H] tRNA on each disk was measured in a Beckman
Ls6500 scintillation counting apparatus.



F. Mattioli et al. 3
RNA mass spectrometry analysis

tRNA transcripts (200 ng) reacted with NSUN6-WT or
NSUN6-D323N were hydrolyzed with 0.2 μL benzonase,
0.25 μL phosphodiesterase I, and 0.25 μL bacterial alkaline
phosphatase in a 20 μL solution including 4 mMNH4OAc at
37 ◦C overnight. After complete hydrolysis, the products
were dissolved in acetonitrile and then applied to ultra-
performance liquid chromatography–mass spectrometry/
mass spectrometry (UPLC-MS/MS). The nucleosides were
separated on a Hilic column (Atlantis HILIC Silica 3 μM,
2.1 × 150 mM column) and then detected by a triple quad-
rupole mass spectrometer (AB Sciex QTRAP 6500+) in the
positive ion multiple reaction monitoring mode. The nucle-
osides were quantified using the nucleoside-to-base ion mass
transitions of m5C (Q1/Q3 = 258.1/126.1) and A
(Q1/Q3 = 268.1/136.2). Quantification was performed by
comparison with the standard curve obtained from pure
nucleoside standards running in the same batch.Mobile phase
A contains 50% acetonitrile and 50%deionizedwater.Mobile
phase B contains 95% acetonitrile and 5% deionized water.

Isothermal titration calorimetry assay for SAM
binding

Isothermal titration calorimetry (ITC) measurements were
performed at 25 ◦C, using MicroCal PEAQ-ITC (Malvern
Panalytical) or isothermal titration microcalorimetry ITC-
200 (Malvern Instruments). Experiments were performed
by titration of 20 injections of 2 μL 1 mM SAM into the
sample cell containing around 50 μM purified NSUN6-
D323N mutant protein solution. The SAM and
corresponding protein were held in the same buffer (50 mM
Tris-HCl (pH 7.0) and 100 mM NaCl). Titration of SAM to
the same buffer was used as control. Binding isotherms were
fitted by nonlinear regression using MicroCal PEAQ-ITC
analysis software or Origin Software version 7.0 (Micro-
Cal). The ITC data were fitted to a one-site binding model
using the 2 software as described.

Drosophila stocks

To generate the mutant allele for Nsun6 using the CRISPR-
Cas9 system, 2 independent guide RNAs (gRNAs) were
designed using the CRISPR guide RNA design tool from
benchling.com. The oligonucleotides were annealed, and
gRNA1 was cloned into the pBFv-U6.2 and gRNA2 into the
pBFv-U6.2B vector. Subsequently, gRNA1 was subcloned
into pBFv-U6.2B-gRNA2 to combine both gRNAs in the
same plasmid. The plasmid was injected into embryos of
attP40 flies y[1]v[1] P{y[+t7.7]=nos-phiC31int.NLS}X; P
{y[+t7.7]=CaryP}attP40) using the F1 transformant service
of FlyORF. Resulting flies carrying the gRNA transgene
were further crossed with CAS-0001 (y2 cho2 v1;
attP40(nos-Cas9)/CyO). Offspring males carrying nos-Cas9
and the gRNA transgenes were further crossed with the
balancer line Mkrs/Tm6b. Next, resulting male offsprings
were individually crossed with Mkrs/Tm6b and screened for
the expected deletion. Positive mutants were isogenized by
backcrossing females 7 times with Canton-S males.

Behavior assays

For the negative geotaxis assay, 5-day-old male flies were
placed 1 day before the experiment in groups of 10 in-
dividuals into a fresh food vial. On the day of the experi-
ment, these flies were transferred without anesthesia into
measuring cylinders and allowed to adapt to the new envi-
ronment for 15 minutes. The flies were gently tapped to the
bottom of the cylinder, and the number of flies climbing
above a 10-cm mark was measured. The assay was repeated
for each group 6 times. Four individual groups were used
per genotype.

Four days before the courtship learning experiment, male
test subjects were collected directly after eclosure and kept
isolated in individual vials until the day of experiment. In
addition, female Canton-S (Wild-type) virgins were
collected, and a standardized premated female culture was
established by combining 20 wild-type virgins with 10 wild-
type males. On the day of experiment, a premated female
was placed to each isolated male, and the cap of the tube
was gently pushed into the tube to increase the contact be-
tween the flies (training phase). Sixteen naive male flies per
genotype were left isolated. After 1.5 hours, the naive and
trained male flies were directly transferred into courtship
chambers together with a wild-type female virgin, and the
flies were recorded for 10 minutes. Sixteen female-male
pairs were recorded in parallel, whereas naive and trained
male flies were included in each recording to avoid differ-
ences because of the circadian time. The time the male
spends courting was quantified by observing distinct
courtship behavior as orienting toward and following the
female, tapping, extending and vibrating the wing, licking,
and (attempting) copulation. The videos were randomized to
allow a blinded scoring of the male courtship behavior. The
courtship index was calculated as Ci = (time spent
courting)/(total amount of time) and the learning index as
learning index = (Ci(naive)-Ci(trained))/(Ci(naive)).
Results

Patients with biallelic variant in NSUN6

We identified 3 unrelated individuals with biallelic delete-
rious variants in NSUN6 and presenting with DD/ID through
exome sequencing.

Individual 1 is a girl born from first cousin parents from
Yemen. She is presenting with severe growth delay, ID,
global DD, motor delay, microcephaly, and seizures
(Table 1). Specifically, her pregnancy was complicated with
oligohydramnios, and she was delivered prematurely at 34

http://benchling.com


Table 1 Clinical features of patients with homozygous NSUN6 variants

Patient Individual 1 Individual 2 Individual 3

Variant hg19 NC_000010.10:g.18940108_
18940109del

NC_000010.10:g.18840856C>T NC_000010.10:g.18834949_
18834952del

Variant NM_182543.5 c.25_26del c.967G>A c.1320_1323del
Variant NP_872349.1 p.(Leu9Glufs*3) p.(Asp323Asn) p.(Glu441Profs*15)
Consanguineous parents + + +
Country of origin Yemen Pakistan Iran
Sex F M M
Age at last examination 14 mo 11 y 23 y
Height 56 cm (<3rd percentile) 135 cm (10th percentile) 161 cm (<3rd percentile)
Weight 3 kg (<3rd percentile) 39 kg (>50th percentile) 59 kg (10th percentile)
OFC 34 cm (<3rd percentile) 51 cm (2nd percentile) 55 cm (<25th percentile)
Motor delay + + −
Speech impairment + + +
Intellectual disability + + +
Behavioral anomalies n.a. + (aggressiveness and

sleeping difficulties)
+ (ASD, ADHD)

Seizures + − −
Brain anomalies + n.a. −

ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; F, female; M, male; n.a., not available; OFC, occipital frontal circumference.
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weeks of gestation with a birth weight of 1.4 kg and a head
circumference of 30 cm. She was described as dysmorphic
and with mild low-set ears and moderate jaundice at birth. A
computed tomography scan at 6 days of age reported mild
cerebellar atrophy and lissencephaly. A follow-up magnetic
resonance imaging at 2 months of age confirmed hypoplastic
cerebellar vermis. Sagittal T1-weighted midline image
showed prominent cerebrospinal fluid space at posterior
fossa. There was incomplete lobulation of the vermis, with
absence of the prepyramidal fissure. The vermis was rotated
superiorly with widening of the tegmento-vermian angle.
Ventricular system and basal cisterns were normal. The
signal intensity of the parenchyma was normal, and there was
no cortical dysplasia or evidence of subependymal hetero-
topia. Corpus callosum was normal. No lissencephaly find-
ings were reported. At 14 months of age, her weight, height,
and head circumference were below the mean for her age
(3 kg, 56 cm, and 34 cm, respectively). She was not walking,
standing, seating, or rolling over in bed. She was unable to
pronounce any words or syllables. Her face did not look
particularly dysmorphic except for her notorious micro-
cephaly. She has 4 unaffected siblings and 1 affected brother
who died at 4 years of age with the same symptoms
and blindness (Figure 1A). We identified a homozygous
frameshift variant by exome sequencing:
NM_182543.2:c.25_26del; NP_872349.1:p.(Leu9Glufs*3).
Segregation analysis could not be tested. This variant is
observed in 2 heterozygous individuals in gnomAD (MAF =
0.000009188) and in the REGENERON Genetics Center
database (MAF = 0.000004). It is not present in TopMed nor
in the Iranome database. This homozygous frameshift variant
maps to the first exon of NSUN6, suggesting that the mutated
transcript is likely eliminated by nonsense-mediated decay,
leading to the absence of the enzyme.
Affected individual 2 is an 11-year-old boy presenting
with moderate ID, speech impairment, global DD, motor
delay, and behavioral anomalies (aggressiveness and
sleeping difficulties). Height, weight, and occipital frontal
circumference at last investigation were respectively
135 cm, 39 kg, and 51 cm, respectively (Table 1). We
identified the homozygous missense variant
NM_182543.5:c.967G>A; NP_872349.1:p.(Asp323Asn) in
affected individual 2 born from consanguineous Pakistani
parents. Despite the relatively mild amino acid change
(Grantham score = 23), this variant has a Combined
Annotation Dependent Depletion score of 32 and is pre-
dicted to be deleterious by different prediction tools:
PolyPhen2 = probably damaging (1); SIFT = Deleterious
(0); MutationTaster = Disease causing (0.99); and GERP
score = 5.78. It is present in 7 heterozygous individuals
from South Asia in gnomAD but not at the homozygous
state (MAF = 0.00002797). It is absent in other gnomAD-
assessed populations, as well as from the TopMed, the
Iranome, and the REGENERON Genetics Center databases.
Sanger sequencing showed that the disease status segregated
with the variants, that is, the variant is present at the ho-
mozygous state only in the proband, whereas it is hetero-
zygous in his 2 unaffected sisters and his parents
(Figure 1A).

The third individual is affected by mild ID, autism, and
attention-deficit/hyperactivity disorder (Table 1). He was born
from Iranian consanguineous parents and exome sequencing
revealed the presence of a homozygous 4bp-deletion leading to
a frameshift in NSUN6 (NM_182543.5:c.1320_1323del;
NP_872349.1:p.(Glu441Profs*15)). Sanger sequencing
showed the presence of the frameshift at the heterozygous state
in the 2 parents and confirmed its homozygous state in the
affected son (Figure 1A). This variant is reported only at the



Figure 1 Identification of biallelic variants in NSUN6. A. The pedigree and genotypes of the 3 reported families. On the bottom, the
localization of the identified NSUN6 variants at the DNA (exons are depicted in the upper part) and protein level. In the schematic repre-
sentation of the protein, dark blue indicates the RRM, light blue indicates the catalytic core, and green indicates the PUA domain. B. NSUN6
3D protein modeling. Asp323 is in direct contact with the base 72 of the tRNA in the NSUN6 structure bound to tRNACys (GCA)-
G2A:C71U. In the image are shown Asp323, Lys248, and C72. The 3′ end of the tRNA is the end of the orange ribbon on the middle right of
the figure. The NSUN6 structure is the gray ribbon; tRNACys (GCA)-G2A:C71U is the orange ribbon. C. The relative positions in the
NSUN6 structure bound to tRNACys (GCA)-G2A:C71U of Asp323 and Phe458, respectively, mutated and absent in the affected in-
dividuals, are shown. The NSUN6 structure and the tRNACys (GCA)-G2A:C71U are depicted with the same color than in panel B. Asp323
shown in red space-filling model is in direct contact with the base 72 of the tRNA in the NSUN6 structure bound to tRNACys (GCA)-
G2A:C71U shown in blue space-filling model. The Phe458 in pink space-filling model that would be missing from a truncated protein
lacking the last 29 amino acids and is positioned in the catalytic site is also shown. A zoom-in view from the back of the same model can be
seen in Supplemental Figure 1. PUA, pseudouridine synthase and archaeosine transglycosylase; RRM, RNA recognition motif; tRNA,
transfer RNA.
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heterozygous state in 51, 2, and 62 individuals, respectively, in
gnomAD (MAF= 0.0002002), the Iranome database (MAF=
0.00125), and TopMed (MAF = 0.000 4938) and a MAF =
0.00004 in the REGENERON database. Contrary to the
frameshift variant of individual 1, the mapping of this frame-
shift variant in the last exon of NSUN6 suggests that the tran-
script likely escapes nonsense-mediated decay and is translated
into a truncated protein, a hypothesis we could not test because
of the unavailability of the patient’s cells or RNA. Would our
hypothesis be correct, this would lead to a truncated protein
lacking the last 29 amino acids in particular Phe458, which,
similar to Asp323, is pivotal for the recognition and methyl-
ation of the C72 of the tRNA, a known methylation target of
NSUN6.53,55,56 Asp323 is essential for the binding of the
methyl donor SAM and both NSUN6-Asp323Ala and
NSUN6-Phe458Ala lack enzymatic activity.53 Three-
dimensional protein modeling shows that both Asp323 and
Phe458 are positioned in the catalytic sitewithAsp323 indirect
contact with C72 of the tRNA (Figure 1B and C, Supplemental
Figure 1). Although the missense change Asp323Asn seems
minor, the presence of the amine group in the Asn sidechain
does not accommodate the C72 at the same position and the
negative charge of Asp, which possibly stabilizes the orienta-
tion of the tip of Lys248, would be lost (Figure 1B).
Functional analyses of the identified NSUN6
variants

We engineered the identified missense and the last-exon
truncating NSUN6 variant to characterize them further func-
tionally. We tried to express in Escherichia coli an amino-
terminally histidine-tagged NSUN6 protein lacking the last
29 residues that mimics the Iranian variant. These encompass
the last helix and, notably, the last β-strand (Phe458-Lys465),
which is located between β-strands Gly366-Thr372 and
Gln395-Gln397 to create an antiparallel β-sheet. Thus,
absence of the Phe458-Lys465 C-terminal strand is likely to
severely affect the protein fold (Supplemental Figure 2).
Consistent with this hypothesis, no soluble protein could be
harvested unlike wild type, Asp323Asn, and other missense-
containing NSUN6 proteins produced previously.53 We were
similarly unable to purify the same truncated protein tagged
at its carboxy-terminal end. Our results confirm that the C-
terminal amino acids are important for the overall architecture
of NSUN6.

We then assessed the enzymatic activity and the ability to
bind the methyl donor SAM of the identified missense
variant p.(Asp323Asn). Purified tRNACys(GCA) and
tRNAThr(UGU) were incubated with 6 histidine-tagged
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NSUN6-Asp323Asn and NSUN6-WT and analyzed by
methylation assay and RNA mass spectrometry. Whereas
m5C-modified tRNAs were identified upon incubation with
the wild-type enzyme, m5C level was undetectable in
presence of NSUN6-Asp323Asn (Figure 2A and B). Our
results show that the Asp323Asn variant identified in the
affected Pakistani individual 2, like the previous assessed
engineered mutant NSUN6-Asp323Ala, cannot catalyze
m5C modification on tRNAs53 (Figure 2A and B). We then
tested the ability of the NSUN6-Asp323Asn variant to bind
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SAM by ITC and confirmed that Asp323 is essential for
SAM binding because NSUN6-Asp323Asn has lost the
ability to bind this methyl donor (Figure 2C) in contrast to a
high binding affinity of NSUN6-WT to SAM reported
previously (Kd = 1.7 μM ± 0.1).53 In conclusion, our results
confirmed that the function of the assessed variants is
impaired.
Drosophila model

We investigated whether the loss of the enzymatic activity
of NSUN6 is associated with defects in higher cognitive
functions. Toward this aim, we took advantage of the fact
that Drosophila melanogaster has a clear one-to-one
ortholog of NSUN6, CG11109 (hereafter called Nsun6),
which acts in a conserved manner.49 We generated Nsun6
knockout mutants using the CRISPR-Cas9 system and
verified the deletion by real-time quantitative reverse tran-
scription polymerase chain reaction. The resulting mutant
has a deletion of 585bp in exon 2 that leads to the loss of the
Nsun6 transcript (Figure 3A and B). No obvious morpho-
logical defects were observed in the Nsun6 mutants
compared with the wild-type flies. Nsun6 mutants displayed
locomotion defects in the negative geotaxis assay with
significantly less flies climbing 10 cm in 10 seconds
(Figure 3C). Next, we aimed to test the learning ability of
Nsun6 mutants using the courtship conditioning paradigm.
Importantly, naive Nsun6 males did not display any defect
in their normal courtship behavior (CiWT: 0.52 vs CiNsun6:
0.62) (Figure 3D). To quantify the learning ability of the
flies, we determined the time they spent courting upon
entrainment with a nonreceptive female. As expected, both
entrained wild-type flies and Nsun6 mutants displayed a
significant reduction in the courtship behavior in compari-
son to the naive males (trained CiWT: 0.07; trained CiNsun6:
0.32) (Figure 3D), but the learning index of Nsun6 mutant
flies was significantly reduced compared with wild-type flies
(Figure 3E). Our results indicate that loss of Nsun6 impairs
cognitive functions.
Discussion

We present 3 unrelated consanguineous individuals carrying
different homozygous deleterious variants in NSUN6.
Affected individuals present with a neurodevelopmental
disorder characterized by ID, global DD, motor delay, and
behavioral anomalies (eg, aggressiveness or attention-
deficit/hyperactivity disorder) (Table 1). Although the
truncating variant that maps to the first exon is predicted to
lead to the loss of NSUN6, we showed that the missense and
the last-exon truncating variant impair the methyltransferase
activity of the encoded enzyme by affecting, respectively, its
catalytic site or its proper folding. The variable severity of
the phenotype could result from differences in the level of
NSUN6. For example, we cannot exclude residual
enzymatic activity from the last-exon frameshift variant that
is associated with impaired folding and the less severe
phenotype (individual 3).

NSUN6 best described targets are the C72 of tRNACys

and tRNAThr.47,53,56 Impairment of their function would be
consistent with the fact that most RNA methyltransferases
previously linked to ID target tRNA. However, NSUN6 was
recently shown to also target multiple mRNAs at a CTCCA
consensus sequence motif.26,49,50,57 Although these modi-
fications do not seem to alter the stability of the targeted
transcripts, they are associated with an increase in trans-
lation levels.26,47,50,57 Most of the targeted mRNAs encode
protein- and RNA-binding proteins of genes implicated in
neurodevelopmental disorder (eg, NOVA2 and HUWE1),
suggesting that NSUN6 might regulate neurodevelopment
through fine-tuning of their expression. Some of the mRNA
targets were identified and validated taking advantage of
Nsun6 homozygous knockout mouse strains. Although these
animals exhibited no apparent phenotypes contrary to our
Drosophila strain ablated for Nsun6, they were not assessed
for cognitive function, and brain was not within the tissues
screened for NSUN6 methylase targets.26,50 This discrep-
ancy warrants further deep phenotyping of both Nsun6
mouse and Drosophila knockouts, as well as a screen for
NSUN6 targets in the central nervous system (eg, in genes
linked to ID) to better understand the role of this enzyme in
brain development.

Some NSUN6 paralogs have been associated with syn-
dromic ARID. NSUN2 is linked to a form of ID associated
with a wide array of ocular symptoms, brain anomalies,
chronic nephritis, and Dubowitz syndrome–like traits, such
as facial dysmorphism, microcephaly, and growth
retardation,36-44 whereas NSUN3 variants caused oxidative
phosphorylation deficiency with lactic acidosis, mitochon-
drial encephalomyopathy, failure to thrive, cerebral atrophy,
and seizures.28,58 Although NSUN5 is hemizygous in pa-
tients with Williams-Beuren syndrome,46 the homozygous
ablation of its mouse ortholog affects cognition and brain
morphology. Depending on the strain, these animal models
presented also with a delay in the development of the car-
diac outflow tract and a decrease in body weight.59-63 Sys-
tematic assessment of mice homozygously deleted for
Nsun5 by the International Mouse Phenotyping Consortium
also showed decreased locomotor activity and changes in
blood cell composition. These phenotypic differences
probably reflect both differences in the expression patterns
of NSUN genes35 and in the targets of the encoded enzymes.
For example, NSUN5 methylates ribosomal RNA impairing
growth and lifespan,60,64 whereas NSUN2 and NSUN6 are
responsible for the lion’s share of m5C mRNA modifica-
tions. In contrast, NSUN3 modifies the mitochondrial
tRNAMet facilitating its binding to the nonuniversal AUA
and AUU codons and allowing mitochondrial translation to
be efficient.28,45

In conclusion, we add NSUN6 to the list of RNA
methyltransferases associated with monogenic ID by iden-
tifying 3 families with homozygous deleterious variants in
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Figure 3 The loss of Nsun6 causes locomotion and learning defects. A. Schematic of the Nsun6 locus and the deletion generated by
CRISPR/Cas9. B. qPCR analysis of the Nsun6 transcript level in WT and Nsun6 mutant flies. Rpl15 was used as a normalization control.
Bars show median ± s.e.m. of biological duplicates. C. Negative geotaxis assay. Relative number of flies of the indicated genotype that climb
over 10 cm in 10 seconds. Bars represent the mean± s.e.m. of 6 independent measurements with 10 flies each. P values were determined with
an unpaired, two-tailed t test. D. Quantification of courtship behavior of naive and trained WT and Nsun6 mutants. The Ci is defined as time
spent courting/total time. Bars show median ± s.e.m. of all replicates (WT naive: n = 13, WT trained: n = 14, Nsun6 naive: n = 11, and
Nsun6 trained: n = 16). P values were determined with an unpaired, two-tailed t test. E. Quantification of the learning index of WT flies and
Nsun6 mutants. The learning index is defined as: (Average of Ci naive – Ci trained)/Average of Ci naive. Bars show median ± s.e.m. P values
were determined with an unpaired, two-tailed t test. Ci, courtship index; s.e.m., standard error of the mean; WT, wild-type.
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its encoding gene. This new gene-phenotype link will
readily help with diagnosis and reproductive options.
Data Availability

The data supporting the conclusions of this article are
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