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Abstract

The tumor microenvironment is a complex and dynamic cellular community comprising the tumor epithelium and
various tumor-supporting cells such as immune cells, fibroblasts, immunosuppressive cells, adipose cells, endothelial
cells, and pericytes. The interplay between the tumor microenvironment and tumor cells represents a key contributor
to immune evasiveness, physiological hardiness and the local and systemic invasiveness of malignant cells.
Nuclear receptors are master regulators of physiological processes and are known to play pro−/anti-oncogenic
activities in tumor cells. However, the actions of nuclear receptors in tumor-supporting cells have not been widely studied.
Given the excellent druggability and extensive regulatory effects of nuclear receptors, understanding their
biological functionality in the tumor microenvironment is of utmost importance. Therefore, the present review
aims to summarize recent evidence about the roles of nuclear receptors in tumor-supporting cells and their
implications for malignant processes such as tumor proliferation, evasion of immune surveillance, angiogenesis,
chemotherapeutic resistance, and metastasis. Based on findings derived mostly from cell culture studies and a
few in vivo animal cancer models, the functions of VDR, PPARs, AR, ER and GR in tumor-supporting cells are relatively
well-characterized. Evidence for other receptors, such as RARβ, RORγ, and FXR, is limited yet promising. Hence, the
nuclear receptor signature in the tumor microenvironment may harbor prognostic value. The clinical prospects of a
tumor microenvironment-oriented cancer therapy exploiting the nuclear receptors in different tumor-supporting cells
are also encouraging. The major challenge, however, lies in the ability to develop a highly specific drug delivery system
to facilitate precision medicine in cancer therapy.
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Background
In human cells, there are 48 nuclear receptors (NRs)
that play integral roles in numerous physiological func-
tions such as metabolism, cell development, immunity,
and stress response. Classically, following direct lipo-
philic ligand binding, NRs will recognize and bind to
specific DNA motifs across the genome, which are
known as NR response elements. The binding of an NR
to its response element and transcriptional activation of
target genes often require homodimerization of NRs or

heterodimerization with retinoid X receptor (RXR)
coupled to the recruitment of coactivator proteins,
although certain receptors are functionally active as a
monomer [1, 2]. Independent of ligand binding, the
activities of NRs can also be modulated by posttrans-
lational modifications such as phosphorylation, ubiquiti-
nation, and SUMOylation, or indirect recruitment to the
genome by other DNA-bound transcription factors via
tethering mechanisms [2, 3]. Increasing evidence has
also unveiled the pivotal roles of NRs in chromatin
remodeling [4]. Furthermore, certain NRs such as pro-
gesterone receptor (PR) and peroxisome proliferator-ac-
tivated receptor (PPAR)-γ possess different isoforms
resulting from alternative splicing. Variations in the
tissue expression profile, ligand affinity and target genes
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between different isoforms have been reported, further
enlarging the scope of the cellular events coordinated by
NRs [5, 6] Hence, given the complex and multifaceted
regulatory network coordinated by NRs, their impacts on
human physiology are undoubtedly highly consequential.
In drug development, NRs are ideal therapeutic targets

because their activities can be readily induced or
repressed with small molecules that mimic their natural
ligands, allowing fine manipulation of the biological
functions or pathological processes controlled by the
receptors. This possibility is particularly true for endo-
crine receptors such as thyroid hormone receptor
(THR), vitamin D receptor (VDR), estrogen receptor
(ER), androgen receptor (AR), glucocorticoid receptor
(GR) and PR, as well as adopted orphan receptors such
as farnesoid X receptor (FXR), RAR-related orphan
receptor (ROR) and PPARs with well-characterized
endogenous ligands. In this context, the involvement of
NRs in various types of cancer has been extensively
documented [7, 8]. Clinically, strategies that aim to block
AR and ER, namely, androgen deprivation therapy and
selective ER modulators, are widely employed to treat
prostate and breast cancer, respectively, strongly sup-
porting the practicality of NRs as druggable targets
to improve cancer treatment outcomes.
Recently, the tumor microenvironment (TME) has

swiftly garnered the attention of the cancer research
community and has been accepted as the key contribu-
tor to tumor progression. The interplay between TME
and the tumor epithelium empowers the aggressiveness
of tumor cells by enhancing tumor proliferation,
chemoresistance, immune evasion and metastatic ten-
dency [9]. Other than cancer cells, TME is populated by
highly heterogeneous groups of cells, including cancer-
associated fibroblasts (CAFs), tumor-associated macro-
phages (TAMs), endothelial cells, adipose cells,
myeloid-derived suppressor cells (MDSCs), and other
immune and inflammatory cells. All members of the
microenvironment function cooperatively with the
assistance of a vast variety of cytokines, chemokines,
growth factors, and other signaling molecules, to com-
pose a dynamic and ever-evolving network that offers
sharpened stress responses and enhanced survivability to
the malignant cells [9].
In this context, although NRs in tumor cells have been

widely studied, their implications in TME are compa-
ratively underappreciated. Given the pro-oncogenic roles
of TME as well as the pronounced regulatory effects and
excellent druggability of NRs, understanding the roles of
these receptors in TME is of great interest. The impli-
cated NRs in various tumor-supporting cells in TME
presented in this review are illustrated in Fig. 1. Know-
ledge of the NR expression profile not only helps to pro-
vide a fundamental understanding in the realm of cancer

biology but also harbors enormous clinical value in
cancer therapy. Thus, this review aims to highlight
key findings of the biological functions of NRs in dif-
ferent cell types presented in TME in relation to their
pro−/ anti-tumor activities. The empirical findings are
also discussed concerning the challenges, limitations
and future direction of the current research paradigm
with high hopes of developing a new anti-cancer
strategy by exploiting NRs in TME.

Cancer-associated fibroblasts/myofibroblasts as key
accomplices in tumor malignancy
Regulatory roles of CAF steroid hormone nuclear receptors
in hormone-dependent cancers
Forming one of the most abundant cell populations in
TME, CAFs are known to be pivotal modulators of
tumorigenicity and cancer progression. A much larger
number of studies have been conducted on CAFs than
on other stromal cells in TME, particularly in terms of
steroid hormone NRs. Therefore, this review of the
actions of NRs in CAFs is subdivided into two parts in
accordance with steroid and nonsteroid hormone NRs.
CAFs are primarily composed of fibroblasts and myofi-

broblasts, of which the latter displays a mixed phenotype
of fibroblast and smooth muscle cells by having a pro-
minent rough endoplasmic reticulum of fibroblasts and
contractile filaments (e.g., smooth-muscle actin) of
smooth muscle cells [10]. The crosstalk between the
tumor and CAFs assists tumor cells in acquiring unique
characteristics such as enhanced proliferation, metastatic
and angiogenic properties, immune evasion and che-
moresistance [11, 12]. It has been postulated that dys-
regulated activities of certain nuclear factors in CAFs
could contribute to their tumor-supportive roles. CAFs
have markedly distinct gene expression profiles of NRs
compared with their normal cognate fibroblasts. Indeed,
CAFs isolated from human breast tumors exhibit vastly
different NR fingerprints compared with normal breast
fibroblasts, as exemplified by the downregulation of
THR-β, VDR, ROR-α, and PPAR-γ in CAFs [13]. Fur-
thermore, NR signatures also differ among CAFs isolated
from different types of tumors [13–15]. Such disparities
in NR profiles could be an intrinsic characteristic of
fibroblasts at different anatomical positions, or due to
cellular signals released by different host cancer cells
and other surrounding stromal cells. In this context, our
recent study using clinical cutaneous squamous cell car-
cinoma has confirmed the differential gene expression of
NRs in CAFs compared with normal fibroblasts [15]. We
have also shown that the transcriptomes of tumor cells
cocultured with CAFs can be altered by reversing the
expression pattern of selected NRs, namely, PPARβ/δ,
VDR, AR and retinoic acid receptor (RAR)-β receptor, to
result in functional changes such as impaired invasiveness,
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reduced proliferation, and altered energy metabolism and
redox response [15]. More importantly, when the squa-
mous cell carcinoma cultures are exposed to conditioned
medium from CAFs pretreated with either RARβ or AR
antagonists, the CAF-induced cisplatin resistance is com-
pletely abolished [15]. Our study strongly supports the
druggability of NRs in TME, notably AR and RARβ, which
can mediate a CAF-directed cancer therapy.
In line with our findings, AR in the tumor stroma has

been consistently found to be a predominant factor in
the prognosis of prostate cancer [16]. Nevertheless,
unlike squamous cell carcinoma, in which the inhibition
of AR of CAFs could be beneficial, low levels or loss of
AR in the stromal cells of prostate cancer are associated
with poorer clinical outcomes [17–22]. Such an asso-
ciation is mind-boggling given that androgen deprivation
therapy, which aims to suppress AR signaling in tumor
cells, often serves as the frontline treatment of prostate
cancer [23]. Genome-wide CHIPseq has revealed that AR
in prostate CAFs has distinct binding sites and binding
sequence motifs compared with tumor cells, suggesting
differences in AR-regulated genes between the two cell
populations [24]. This finding could explain the discrep-
ancy in AR function between prostate CAFs and cancer
cells. The tumor stroma liberates various androgen-re-
sponsive growth factors and cytokines that modulate the
cell fate, proliferation and drug sensitivity of prostate

cancer cells [25–27]. These paracrine factors are favorable
for the growth of tumor cells present in this environment.
Although ablation of ARs in CAFs could attenuate cancer
proliferation [28], the loss of AR signaling activity is also
linked to the onset of metastatic phenotypes such as in-
creased stemness, enhanced cell migration and weakening
of the extracellular matrix (ECM) structure and integrity
[22, 29, 30]. As a result, the suppression of AR in CAFs
may potentially exacerbate the epithelial-mesenchymal
transition and metastasis of prostate cancer, underpinning
the association of AR loss in CAFs with adverse clinical
outcomes in prostate cancer progression. In short, the
pathological roles of AR in CAFs are well-implicated in
the development of prostate cancer, making it an attrac-
tive therapeutic target. However, considering the opposite
effects of AR blockade in tumor and stromal cells, an ideal
anti-androgenic agent should decrease tumor AR but
enhance stromal AR activity [16]. It is also worth
mentioning that the current understanding of AR in CAFs
is mostly derived from hormone-dependent tumors, espe-
cially prostate and breast cancers [16, 31]. Thus, in light of
the evidence mentioned above, it is worthwhile to extend
research on AR to other types of tumors to better
characterize its roles in cancer biology.
In addition to AR, steroid hormone NRs in CAFs,

including ERα and β, PR and GR, are also relatively
well-studied. The expression of ERα has been detected

Fig. 1 Tumor microenvironment, tumor-supporting cells and the identified nuclear receptors in cancer progression. AR, androgen receptor; ER,
estrogen receptor; FXR, farnesoid X receptor; GR, glucocorticoid receptor; PPAR, peroxisome proliferator-activated receptor; PR, progesterone
receptor; ROR, RAR-related orphan receptor; VDR, vitamin D receptor
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in the CAFs of breast [13], endometrial [32], cervical
[33] and prostate cancers [34], but not in colorectal
carcinoma [35]. However, the clinical implications of
ERα are diverse. In some studies, ERα-expressing CAFs
have been reported to promote prostate and endometrial
cancer cell proliferation [32, 36]; in other studies, CAFs
attenuated prostate tumor cell invasiveness and immune
cell infiltration by altering the levels of anti-angiogenic
factors, ECM remodeling factors as well as chemokines,
in addition to conserving chemosensitivity in certain
breast cancer cell lines [37–39]. Similarly, divergent
results have also been obtained in clinical biopsies, in
which one association study found a positive correlation
between ERα expression in CAFs with advanced prostate
cancer stage [34], while the reverse trend was found in
cervical cancer [33]. Despite these perplexing findings, a
recent comparative transcriptomic study demonstrated
differential expression patterns between CAFs isolated
from early- and late-stage cervical cancer, with the latter
being more metabolically and proliferatively active upon
estradiol exposure [40]. Treatment with ER antagonists,
namely, ICI182780 and methylpiperidino pyrazole, not
only reverses the aforementioned changes but also sup-
presses the expression of genes linked to angiogenesis
and cell adhesion [40]. Additionally, liver receptor
homolog-1 (LRH-1), which is an orphan NR, is tran-
scriptionally responsive to estrogen treatment and ERα
activation [41]. In breast cancer-derived CAFs, LRH-1,
which is highly expressed in these cells, can upregulate
aromatase (CYP19) gene expression [13, 42]. This obser-
vation is indicative of an ERα-mediated loop of estrogen
biosynthesis via LRH-1 in CAFs, which may contribute
to the increased tumor cell proliferation. Hence, disrup-
ting the paracrine signaling directed by ERα in CAFs
may be beneficial, making NR an exploitable target for
cancer therapy. However, further investigation is
warranted to clarify the conflicting results about the
tumorigenic properties of ERα.
While ERα is well-implicated in TME of many hor-

mone-dependent cancers, its role is less pronounced in
the CAFs of breast cancer, likely because its expression
is predominantly localized in the tumor epithelium in-
stead of the surrounding fibroblasts [43–45]. In contrast,
ERβ, which is the other ER isotype, is widely found in the
breast cancer stroma [35, 46]. Despite their structural
similarities, the bioactivities of ERα and β in tumor epithe-
lium are largely counteractive, whereby ERβ is
anti-proliferative and ERα-antagonizing [47, 48]. Whether
ERβ in CAFs also confers an anti-tumor effect is
uncertain. One study revealed that progesterone and epi-
dermal growth factor receptors are highly expressed in the
uterine stroma of ERβ-knockout mice, especially when
17β-estradiol and progesterone are coadministered [49].
This phenomenon contributed to the hyperproliferation

and impaired cellular differentiation observed in the
uterine epithelium of ERβ-knockout mice [49]. Con-
versely, PR also exhibits ERα-antagonizing properties in
tumor cells [50]. Its expression in cancer-associated
stroma is repressed in comparison to benign stroma in
prostate glands [51, 52]. Stromal PR actively takes part in
stromal cell differentiation [52]. Although conditioned
medium from PR-positive CAFs has a negligible effect on
prostate cancer cell proliferation, cell motility and mig-
ration are vastly inhibited via the suppression of
stromal-derived factor-1 and interleukin (IL)-6 [51]. These
findings highlight the importance of stromal ERβ and PR
in stroma-tumor epithelium crosstalk in modulating can-
cer progression, but tissue-specific inhibition or activation
of these NRs in CAFs is imperative to outline the feasibi-
lity of exploiting them as therapeutic cancer targets.
Next, GR is differentially expressed in TME compared

with normal tissues [53], with remarkably high expression
in CAFs [54, 55]. In cancer-associated myofibroblasts,
treatment with dexamethasone successfully induces
nuclear translocation of GR, resulting in an anti-inflam-
matory phenotype marked by the repression of IL-1β,
monocyte chemoattractant protein 1, C-C motif ligand 5,
tumor necrosis factor-α (TNFα) and intercellular adhesion
molecules [56]. Coincidentally, several pro-invasive para-
crine signals, such as tenascin C, hepatocyte growth factor,
transforming growth factor β (TGFβ), are also significantly
suppressed [56]. Further investigation showed that
dexamethasone-induced activation of GR in myofibro-
blasts, but not in cancer cells, can nullify the proliferative
effect of myofibroblasts on tumor cells and potentially in-
hibit epithelial-mesenchymal transition, but it is associated
with pro-migratory behavior [57]. Apart from the tumor
epithelium, paracrine factors from myofibroblasts also
interact with the surrounding endothelial cells to promote
cell motility and angiogenesis [58]. These activities are
dampened by the conditioned medium from
dexamethasone-treated myofibroblasts together with a
decline in urokinase-type plasminogen activator and
angiopoietin-like protein-2 [58]. In general, GR activation
in myofibroblasts exhibits tumor-inhibiting effects. It is,
however, noteworthy that current evidence for this
phenomenon originated from one research group, render-
ing further validation pertinent.

Nonsteroid hormone nuclear receptors - Anti-tumor
properties of VDR, PPARγ, RXR and FXR and pro-tumor
effects of PPARβ/δ and RARβ in CAF
In addition to steroid hormone NRs, VDR in CAFs is
also increasingly appreciated as a key anti-carcinogenic
target. Ferrer-Mayorga et al. (2017) reported a positive
correlation between the gene expression of stromal VDR
with overall survival and progression-free survival in
colorectal cancer [59]. Genes such as CD82 and S100A4,
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which are responsive to calcitriol in CAFs, are also asso-
ciated with clinical outcomes and stromal VDR expres-
sion in patients with colorectal cancer, supporting a
clinical value of VDR agonists in cancer treatment [59].
Conversely, pancreatic and hepatic TME is enriched by
myofibroblast-like stellate cells, which upon activation, be-
come proinflammatory, fibrogenic and tumor supportive
[60, 61]. Based on a transcriptomic analysis, calcipotriol,
which is a nonhypercalcemic vitamin D analog, maintains
the quiescent state and modifies the secretomes of pancre-
atic stellate cells by reducing the expression of inflam-
matory cytokines, ECM components, and growth factors
[62]. Similar trends have also been observed in hepatic
stellate cells [63, 64]. Combined therapy with gemcitabine
plus calcipotriol tremendously improves the treatment
outcomes of mice with orthotopic pancreatic ductal
adenocarcinoma transplant, as evidenced by intratumoral
aggregation of chemotherapy agents, a diminished tumor
size and a higher survival rate [62]. A very recent report
also suggests a regulatory role of VDR on CAF-liberated
exosomal miRNA (e.g., miR-10a-5p and miR-181a-5p)
[65]. Hence, exposure of CAFs to VDR ligands may
modulate the stroma-tumor crosstalk not only via pa-
racrine signaling but also by manipulation of the exosomal
content. Despite promising results from preclinical
studies, most clinical trials that employed vitamin D for
cancer therapy and prevention have yielded underwhel-
ming results, which reflects an inadequate understanding
of VDR actions in both tumor and stromal cells [66–68].
Thus, an in-depth dissection of the biological roles of
VDR in TME is critical to enable effective VDR-centric
cancer treatment.
Several studies have also examined the activities of

PPARs in CAFs. PPARγ has been found to be highly
expressed in the myofibroblasts of colon adenocarcinoma
biopsies, but not in normal colon tissues [69]. When
hypoxic breast tumor cells are exposed to pioglitazone
(PPARγ agonist) and/or 6-OH-11-O-hydrophenanthrene
(RXR agonist), the resultant exosomes are unable to
trigger CAF activation compared with exosomes from
tumor cells subjected to the control treatment, suggesting
that these NR agonists can disrupt the tumor-stroma
crosstalk [70]. In the same study, coactivation of PPARγ
and RXR in CAFs was found to effectively silence the
pro-inflammatory response and metastatic phenotype by
suppressing the expression of IL-6, carbonic anhydrase IX,
metalloproteinase (MMP)-2 and MMP9 [70]. A simi-
lar anti-proliferative effect of PPARγ activation on
melanoma-derived CAFs has also been reported using
the PPARγ agonist 15d-PGJ2 [71]. Accordingly, activation
of PPARγ in CAFs could potentially act as a tumor
suppressor by modifying the activation and supportive
properties of CAFs in cancer development. Unlike PPARγ,
which is associated with anti-tumor effects upon ligand

binding, PPARβ/δ in CAFs has a pro-tumor action. This
phenomenon was clearly demonstrated in our recent
study, in which the tumor burden was significantly
lowered in fibroblast-specific PPARβ/δ knockout mice
subjected to either chemical (azoxymethane or dex-
tran sulfate sodium), genetic (APCmin/+) or combinatory
(APCmin/+ with dextran sulfate sodium) tumorigenic
induction [72]. Mechanistically, PPARβ/δ ablation in
CAFs significantly escalates H2O2 liberation into the
TME, exposing the tumor epithelium to increased oxi-
dative stress to subsequently trigger NRF2-mediated sig-
naling that attenuates tumor growth [72]. The regulatory
effects of PPARβ/δ on oxidative stress, reactive oxygen
species production, and antioxidant mechanism are in line
with a previous study examining the wound microenvi-
ronment [73]. In short, both PPARγ and PPARβ/δ in
CAFs play a significant modulatory role in cancer
development, of which the former acts on the local
inflammation and cancer invasiveness while the latter
alters the redox balance in TME.
FXR is an integral regulator of genes responsible for

lipid, cholesterol and bile acid metabolism [74]. Loss of
function of FXR is strongly linked to carcinogenesis in
the liver, intestines and colorectal region where the
receptor is highly expressed [75, 76]. Interestingly, in
breast cancer cells exposed to the FXR agonist GW4064,
conditioned medium from CAFs fail to promote
enhanced growth, motility, and invasiveness [77]. This
observation reflects a neutralizing effect of FXR acti-
vation on the tumorigenic paracrine signaling conferred
by CAFs. Likewise, the characteristics of CAFs subjected
to GW4064 are also profoundly altered. For instance,
the genes involved in the cytoskeleton and cellular
movement as well as a wide variety of growth factors are
significantly downregulated, subsequently leading to loss
of the tumor-supportive effects of CAFs [78]. The ability
of an FXR inhibitor, guggulsterone, to completely reverse
the GW4064-mediated anti-tumor effects further cor-
roborates the necessity for FXR activation in eradicating
the tumor-promoting features of CAFs [68]. In short,
the evidence thus far for the benefits of FXR activation
in CAFs is scarce, yet remarkably promising [78].
As mentioned earlier, our group has demonstrated that

suppression of RARβ in CAFs via genetic knockdown or
with an antagonist named LE135 consistently lowers the
chemoresistance of tumor cells that are otherwise pro-
moted by wild-type/untreated CAFs [15]. This result
also complements a previous study that concluded that
RARβ inhibition creates a hostile microenvironment that
suppresses tumorigenesis through stromal remodeling,
including impaired angiogenesis and reduced inflamma-
tory cell recruitment and cancer-associated myofibro-
blast numbers [79]. In fact, our study also predicts that
activation of VDR and GR, as well as inhibition of AR in
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CAFs, can potentiate the efficacy of chemotherapy, all of
which are in excellent agreement with current under-
standing of these NRs in CAFs, as discussed previously.
Collectively, based on preliminary data from various
sources, NRs in CAFs or myofibroblasts are undoubtedly
druggable targets that could serve as a new strategy to
improve the clinical outcomes of pre-existing thera-
peutic approaches. For certain receptors such as AR and
ERα, their pro-oncogenic roles in CAF could be
dependent on the cancer types and biochemical signals,
resulting in the contradictory findings obtained thus far.
Hence, diversifying the research to other cancer types
and escalating cell-based methodology to preclinical
animal study are commendable efforts to strengthen the
concept and clinical prospects of CAF-oriented cancer
therapy via NR inhibition.

The steroid hormone nuclear receptors PPARs and RORγ
are crucial mediators of TAM and MDSC formation
Apart from CAFs, TME is also occupied by numerous
bone marrow-derived cells such as TAMs, MDSCs,
neutrophils and tumor-infiltrating lymphocytes. Among
these cells, TAMs and MDSCs are known to exhibit
evident tumor-supporting and immune suppressive
activities [80, 81]. Like CAFs, the steroid hormone NRs
in TAMs also have profound impacts on cancer progres-
sion. It is widely accepted that TAMs, which more
closely resemble alternatively activated M2 macrophages,
are activated by Th2 cytokines such as IL-4, IL-10, and
IL-13 [82]. M2 macrophage polarization is also pro-
moted by exposure of the monocytes to glucocorticoids,
which stimulates GR activation [83]. This process is
accompanied by a significant downregulation of proteins
linked to lysosomal activity, antigen presentation, and
proinflammatory proteins, indicating immunosuppres-
sive effects [83]. Additionally, GR also functions syner-
gistically with p38MAPK to regulate the expression a
CD20 homolog, MS4A8A, the overexpression of which
in TAMs significantly enhances the tumor burden [84].
Taken together, classic GR signaling may play a domi-
nant role in the tumor-supporting activities of TAMs.
In contrast to GR, the role of AR, ER, and

PR-dependent tumorigenesis is poorly defined. The pres-
ence of TAMs influences the expression of ERα, ERβ
and PR in tumor cells [85–87]. Reciprocally, the number
of TAMs also appears to be modulated by steroid hor-
mone NRs of tumor cells, particularly ER [88]. More-
over, in wound healing and lung inflammatory studies,
activation of AR, ERα and PR by their cognate steroid
hormones would favor macrophage activation in an
alternative manner, producing M2 macrophages that
compel cellular repair and angiogenic processes [89–91].
The studies suggest that steroid hormones are vital
determinants in the alternative differentiation of

macrophages to modulate pulmonary inflammation and
wound recovery. However, there is no direct evidence
supporting the contribution of AR, ER, and PR to the for-
mation of M2 macrophages in TME. Thus, future research
should focus on explicating the roles of these NRs in
TAM formation and tumor-supporting events.
The three isotypes of PPARs, PPARα, PPARβ/δ, and

PPARγ, are widely known to influence carcinogenic
activities. However, current evidence is somewhat para-
doxical concerning their roles in tumor cells, leading to
the speculation that their actual functions could be
dependent on the ligands, cancer types or even cancer
stages [92]. In immune cells, PPARs also govern the fate
of macrophage activation, likely because the maturation
of macrophages is tightly linked to their metabolic state.
To enable alternative activation of macrophages,
immune cells must undergo oxidative metabolism,
which is modulated by PPARs [93]. Macrophages that
are unable to clear the metabolic checkpoint due to de-
letion of PPARγ, PPARβ/δ and PPARγ coactivator 1β
(PGC-1β), are incapable of expressing the alternative
phenotype [94–96]. In contrast, treatment with PPARα
or -γ agonists fosters the enrichment of M2-related
biomarkers in macrophages [97]. Recently, a ligand-inde-
pendent mechanism that involves PPARγ in TAM differ-
entiation has also been described, which involves the
cleavage of PPARγ by caspase-1 and thereby produces a
41-kDa receptor fragment that translocates into mito-
chondria and interacts with medium-chain acyl-CoA de-
hydrogenase [98]. This interaction shuts down the
enzyme and attenuates fatty acid oxidation, leading to
intracellular aggregation of lipid droplets that drive
TAM differentiation [98]. These results support the
pro-tumor activities of PPARγ via promoting TAM for-
mation. Likewise, PPARβ/δ also seems to follow a simi-
lar trajectory [99]. Notwithstanding, other empirical
findings support a counterargument [100, 101]. The
clinical use of thiazolidinedione is also not associated
with an increased risk of many malignancies [102].
Collectively, the roles of PPARs in TAM differentiation
and tumor progression undoubtedly remain an open
topic necessitating further investigation.
RORs are classified as orphan NRs, which belong to a

subfamily of thyroid hormone-like receptors. RORs are
subcategorized into RORα, −β and -γ, the last of which
is highly expressed in thymus and lymphoid tissues and
linked to immune cell differentiation and immune
system regulation [103]. Interestingly, RORγ is also a
crucial element in hematological malignancies. For
example, RORγ knockout mice are predisposed to thymic
and lymphoblastic lymphomas [104, 105]. In addition,
patients with multiple myeloma display an overexpression
of RORγ in their peripheral blood mononuclear cells
[106]. The roles of RORs in tumorigenesis vary in different
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cancers [103]. Nonetheless, in TME, activation of RORγ
with an agonist (SR1078) promotes the formation of
MDSCs and TAMs [107]. RORγ-dependent myelopoiesis
is mediated by key regulators such as Socs3, Bcl3,
and C/EBPβ, as well as macrophage-specific transcription
factors, including IRF8 and PU.1 [107]. In the same study,
RORγ could confer pro-tumor effects by shielding MDSCs
from apoptotic death, promoting tumor growth and
restricting tumor-infiltrating neutrophils, while ablation of
the receptor successfully attenuates these processes [107].
These results position RORγ as an attractive target, and
hence, the pharmacological effects of RORγ antagonists or
inverse agonists in TAMs and MDSCs with respect to
tumor development are of immense interest.
To summarize, research on NRs in TAMs or MDSCs

is still in its infancy. Most of the available studies
emphasize the effects of NRs on the fate of macrophage
activation. This information is critical not only to inhibit
the alternatively activated M2 macrophage pathway, which
subsequently reduces the TAM count, but also to achieve
reprogramming of M2 to M1 macrophages to initiate
tumoricidal effects such as the induction of proinflamma-
tory and anti-tumor immune responses in TME.

Ceasing angiogenesis - targeting GR, PPAR and VDR of
endothelial cells in TME
The vascular endothelium is an essential tissue that
maintains blood perfusion in addition to regulating the
trafficking of nutrients and leukocytes to surrounding
tissues. In TME, the integrity of the vascular endothe-
lium is often jeopardized by factors such as hypoxia and
chronic growth factor stimulation. Genetic abnormalities
are also not uncommon in tumor endothelial cells [108].
As a cumulative result of atypical physiological condi-
tions and genetic mutations, tumor endothelial cells
differ significantly from normal endothelial cells by
being highly proliferative, pro-angiogenic and more dis-
organized and leaky regarding the vasculature [109, 110].
Recent cancer research has identified PPARs as poten-

tial therapeutic targets and prognostic indicators for
cancer therapy. Indeed, the expression of PPARγ is asso-
ciated with slower progression and a lower incidence of
tumor recurrence in bladder cancer [111]. This corre-
lation is lost when certain angiogenic factors, namely,
basic fibroblast growth factor and platelet-derived endo-
thelial growth factor, are coexpressed in the tumors,
indicating a possible role of PPARγ in angiogenesis in
cancer progression by interacting with these growth
factors [111]. Activation of PPARγ in endothelial cells is
predominantly linked to anti-angiogenic activities, as
exemplified by decreased expression of pro-angiogenic
factors, reduced proliferation, impaired endothelial cell
migration and tubule formation [112], but conflicting
results have also been reported [113, 114]. Similar to

PPARγ, fenofibrate-induced PPARα activation in various
tumor cell lines concomitantly suppresses proangiogenic
vascular endothelial growth factor (VEGF) biosynthesis
and increases anti-angiogenic thrombospondin 1 and
endostatin [115]. These bioactivities are translated into
reduced endothelial cell proliferation and neovasculari-
zation as well as impaired growth of the subcutaneous
tumor xenograft in mice [115]. Unlike PPARα and –γ,
PPARβ/δ appears to be proangiogenic. Treatment with
the PPARβ/δ ligand GW501516 promotes endothelial
tube formation, whereas the maturation of microvessels
in tumors is severely disrupted in PPARβ/δ knockout
mice, leading to diminished blood flow to the tumors
[116, 117]. Taken together, all three isotypes of PPARs
are actively involved in the angiogenesis performed by
endothelial cells, which is one of the most critical
processes in cancer development, sustaining the rapid
expansion of tumor cells and opening the window for
the metastatic process. However, the findings are not
strictly based on tumor-derived endothelial cells. Given
the functional variations between tumor-associated and
normal endothelial cells, further validation is pertinent.
Next, VDR is closely associated with the development

of endothelial cells in TME. In this context, calcitriol,
which is an active metabolite of vitamin D, has been
widely studied regarding its roles in bone and mineral
metabolism, as well as the differentiation of both normal
and malignant cells. At a low dosage, calcitriol exhibits
an anti-proliferative effect on cancer cells such as breast,
colon, and prostrate while promoting differentiation, cell
cycle arrest and eventually apoptosis [118]. A similar
growth inhibitory effect has also been observed in
tumor-derived endothelial cells, but not in normal ones
[119]. Generally, increased levels of VDR ligands trigger
a self-regulatory pathway by enhancing the expression of
CYP-24b, a key enzyme in vitamin D catabolism [120].
As a result, VDR ligands are degraded and unable to
trigger VDR-mediated anti-proliferative effects [121].
However, overexpression of CYP-24 has been reported
in various cancers such as prostate, colon and breast
cancer, explaining the varying calcitriol sensitivity and
calcitriol resistance in these patients [122]. Moreover,
the anti-proliferative effect of VDR in endothelial cells
also relies on the epigenetic silencing of CYP-24, which
is achieved via hypermethylation at the CpG islands of
CYP-24 promoter regions [123]. Transcriptional acti-
vation of CYP-24 is prevented by the hypermethylation
pattern, leading to growth inhibition in tumor-derived
endothelial cells [123]. One study has also suggested a
link between VDR and angiogenesis in TME modulated
by a pro-oncogenic protein named DKK-4 [124]. The
expression of DKK-4 is inversely correlated to that of
VDR, while endothelial cells are more prone to migrate
and form microvessels when they are exposed to
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conditioned medium from DKK-4-expressing cells [124].
The pro-tumor effects of DKK-4 are effectively elimi-
nated by treatment with calcitriol. Thus, these studies
support the use of VDR ligands that target the tumor
endothelium with minimal disturbance to the normal
vasculature.
Multiple studies have demonstrated the anti-angiogenic

effects of glucocorticoids in normal and malignant cells,
as well as during wound healing [125, 126]. In tumor cells,
glucocorticoids exert a direct inhibitory effect on the
secretion of VEGF, which can be reversed by GR antago-
nist treatment [127]. This observation suggests that the
anti-angiogenic effect is GR-dependent. Logie et al. (2010)
reported that glucocorticoids have a negligible effect on
the proliferation, viability and migration properties of
endothelial cells, but instead, the hormone enhances
thrombospondin-1 expression and impairs cell-cell con-
tact, thus preventing the formation of endothelial tubules
even in the presence of VEGF and prostaglandin F2a [128].
The potent angiogenic inhibitory activity of GR has also
prompted research on the nanosized drug delivery system
to maximize the anti-tumor effect of GR [129].
Unlike GR, ERα is linked to the pro-angiogenic

process in TME. Treatment with 17β-estradiol increases
the vessel density and stabilizes the endothelium vascu-
lature in tumors, making the blood vessels more resist-
ant to insults from hypoxia and necrosis [130]. Increased
neovascularization in the tumor environment ensures
adequate oxygenation of the tumors and minimizes
tumor cell death due to the hypoxic environment [130].
However, ERα-dependent angiogenesis is primarily
mediated by Tie2-expressing cells, which are not of
hematopoietic origin [130]. Therefore, the true identity
of Tie-2 positive cells in TME, and their relationship
with tumor endothelial cells, remain to be clarified.

Adipose cells are emerging players in tumor
aggressiveness
Adipocytes, also known as fat cells, are regulators of
human physiological processes such as tissue homeosta-
sis, and they are the primary site for energy storage in
the form of intracellular triglycerides packaged in lipid
droplets [131]. Additionally, they are also endocrine cells
that secrete hormones and cytokines to regulate human
physiological processes such as inflammation and the
reproductive system [132]. The functions of adipose cells
in TME resemble those of fat depots, but in a
tumor-supportive manner [133]. Emerging evidence also
supports a role for dysfunctional adipose tissues in field
cancerization mediated by prolonged local inflammation
[134]. However, our understanding of the role of adipose
cells in TME is still considerably limited.
One recent study has shown that the recruitment of

preadipocytes occurs more readily in prostate cancer

cells than normal prostate tissues, a process that
enhances the invasiveness of prostate cancer in mice
with orthotopic xenografts [135]. Mechanistically, neigh-
boring adipocytes significantly increase the expression of
miRNA-301a in tumor cells, which serves to suppress
AR signaling in these cells [135]. The inhibition of AR
signaling is followed by alterations in the gene expres-
sion of TGF-β via the serine/threonine kinase receptor
or TGF-β receptor and its downstream genes such as
Smad3 and matrix-metalloproteinase-9, fueling meta-
static processes [135]. Coculturing human Simpson
Golabi Behmel Syndrome (SGBS) preadipocyte cells,
which are considered to be a representative in vitro
model of white preadipocytes, and ER-positive MCF7
breast cancer cells results in the suppression of ERα
expression in MCF7 cells [136]. Cohabitation of preadi-
pocytes and MCF7 cells also significantly enhances the
epithelial-mesenchymal transition of MCF7 tumor cells,
as documented by overexpression of FOXC2 and
TWIST1, and changes in N- and E-cadherin expression
[136]. As a consequence, the expression of HIFα, TGF-β
and lectin-type oxidized LDL receptor 1 in SGBS adipo-
cytes are elevated [136]. Both studies have demonstrated
that the presence of adipose cells in TME can impact
both NR signaling and oncogenic processes in cancer
cells. However, the studies did not aim to delineate the
activities of NRs in tumor-associated adipose cells and
their contribution to cancer progression, an aspect that
has been minimally explored to date. In light of the emer-
ging roles of adipose cells in field cancerization as well as
the predominant actions of various NRs in adipocyte
biology, it will be interesting to unearth this relationship.

Implications of existing research for stroma-directed
anticancer therapy via nuclear receptor manipulation
For years, targeting the tumor epithelium has been the
sole cornerstone of cancer research, which has resulted
in the clinical use of aggressive therapeutic methods
such as surgery, radiation and chemotherapy to elimi-
nate cancerous cells regardless of the inflicted extensive
collateral damage. However, the effectiveness of tra-
ditional anti-cancer strategies is increasingly challenged
by treatment failures such as interpatient responsiveness,
onset of chemoresistance, and local and distal recurrence,
which are partly attributable to the genetic heterogeneity
and genome instability of tumors and continuous tumor
evolution [137]. Tumor evolution follows a Darwinian
model, which also predicts the insufficiency of targeting
the cancer epithelium alone, underscoring the need for
alternative therapeutic strategies.
Stroma-directed anticancer therapy will require a

different therapeutic approach aimed at multiple and
interacting cells. Stromal cells are generally considered
to be more genetically stable, and thus the occurrence of
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mutations that may lead to resistance to drug treatments
are minimal compared with the large tumor mutation
burden observed in cancer cells. By consolidating the
NR profile of various stromal cells across different
tumor types, we can highlight NRs that have been thus
far identified to regulate the assistive properties of tumor
stroma in carcinogenesis, as summarized in Table 1 and
Fig. 2. Certain NRs are clearly consistently observed
across different tumor types; for instance, VDR, PPARs,
ER, GR and AR in CAFs, as well as GR and PPARs in
TAMs and endothelial cells. Modulating the activities of
these NRs in stromal cells may potentially serve as a
common adjunct therapy for the treatment of a wide
range of cancers. In this context, by targeting NRs in
stromal cells, the resultant physiological changes and
drug responses could be more predictable, explaining
why selected NRs, notably PPARs and GR, are consis-
tently found to be crucial modulators of tumorigenesis
in a cancer type-independent manner.
For stroma-directed therapy to be a viable strategy as

part of a multimodality approach or as adjunctive treat-
ment to conventional tumor treatment, we also need to
address the relative population of different stromal cells
in different tumor types. For example, CAFs are rela-
tively rare in brain, renal and ovarian cancers. In such
instances, the depletion of CAFs or the disruption of
CAF functions is likely to provide only marginal benefits.
Similarly, while next-generation cancer treatment using
immunotherapies such as PD-1 checkpoint blockade and
Chimeric Antigen Receptor T-cell (CART) therapy are
swiftly gaining attention, the efficacy of CAR-T therapy
is dependent on the immune cell interactions in the
TME [138, 139]. A recent characterization of immune
infiltrates has shown that tumor genotypes, such as the
tumor mutation burden, determine immunophenotypes
and tumor escape mechanisms [140]. In cases where
immunotherapy is less successful, stroma-directed therapy
targeting other stromal cells may rise to be the predomi-
nant player. Moreover, if the efficacy and universality of
stroma-directed therapy by targeting NRs are validated,
the strategy can even be used to treat rare cancers simply
because of the comparable physiological functionality of
stromal cells in TME. These speculations and effectiveness
of NR-based stroma-directed therapy can be further tested
by extensive exploration of the NR signatures in TME
across different types of cancers.

Limitations, challenges, and future perspectives
To a certain extent, manipulating NRs of key tumor-
supporting cells can sensitize tumor cells to anti-cancer
treatments by interfering with the stroma-tumor cross-
talk. However, current knowledge is still too incomplete
for reliable translation into favorable clinical outcomes
for different cancer types because of several limitations.

First, the available data are derived primarily from
hormone-dependent tumors, most notably breast and
prostate cancers. Hence, our understanding of the roles of
NRs in TME is fundamentally based on cancer-associated
cells that are more actively involved in steroid hormone
modulation and signaling. The effects of steroids differ
from cancer to cancer [141], raising concerns about the
generalizability of the results to cancers that are less
hormone-dependent. Second, concerning the abovemen-
tioned limitation, current findings mostly include studies
of steroid hormone NRs such as GR, ER, AR, and PR, be-
cause the development of hormone-dependent cancers is
highly sensitive to steroids, facilitating detection of the
biological roles of steroid receptors in tumorigenesis. As a
result, our knowledge about NRs in TME is markedly
skewed towards steroid receptors. In contrast, orphan
NRs such as ERRs, RORs and LRH-1 have demonstrated a
strong linkage with carcinogenesis [142]. However,
exploiting them as a potential cancer therapy is underap-
preciated due to the lack of well-characterized ligands.
This situation is anticipated to change in the near future
because the US Food and Drug Administration has re-
cently approved the first use of RNA-based gene silencing
drug (siRNA) to knock down the expression of defective
transthyretin for the treatment of polyneuropathy in
patients with hereditary transthyretin-mediated amyloi-
dosis [143, 144]. Given that targeting orphan NRs with
RNA interference technology could someday become a
therapeutic option, the recent approval is believed to have
sparked more intensive research on the impacts of orphan
NR suppression in cancer development.
Furthermore, the roles of NRs in TME have been

established mainly based on cell culture studies via
coculturing methods or with the use of conditioned
medium from tumor-supporting cells. Empirical data
from in vivo animal studies of TME are limited because
cell-specific activation or inhibition of an NR, especially
with a pharmacological approach, is remarkably challen-
ging in animal models. Although genetic engineering
can be used to obtain targeted stimulation or knock-
down in animals [36, 37], it is associated with tedious
preparation, relatively high costs and arduous adminis-
tration, rendering this approach less desirable in actual
clinical settings compared with the use small molecules.
However, cell-specific modulation of the specifically
targeted NR is crucial because the same receptor can
have opposing effects in different cancer-associated cells.
This phenomenon is demonstrated by GR, the activation
of which in cancer-associated myofibroblasts reduces
tumor proliferation [57] but promotes the M2 pheno-
type in macrophages, thus contributing to TAM diffe-
rentiation and consequently tumor promotion [83].
Hence, given the heterogeneity of cellular populations in
TME and their diverse physiological response to NR
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modulation, future research should also focus on the
development of cell-specific drug delivery to achieve
targeted manipulation of NR signaling in relevant cells.
The effects of NRs in TME on exosomes have scarcely

been explored. Considering the vital roles of exosomes in
cell-cell communication, which mediates various oncogenic
processes, it is worthwhile to investigate how NR signaling
in cancer-supporting cells calibrates the stroma-tumor
interaction by regulating the exosomal content and liber-
ation. Additionally, stroma-tumor communication is a dy-
namic and reciprocal action. Therefore, understanding how
neighboring cancer cells affect NR signaling in the
cancer-associated cells and downstream functional alter-
ations can further reveal the true nature of TME. Essen-
tially, in-depth dissection of the interplay between
tumor-supporting cells and malignant cells may reveal add-
itional exploitable targets to improve cancer therapy.

Conclusions
NRs of tumor-supporting cells in TME play an essential
role in various oncogenic processes. The NR signature
of TME can serve as a crucial marker to pinpoint the
fragility of the disease and guide the therapeutic strat-
egy, with the ultimate goal of improving cancer progno-
sis. In light of the striking druggability of NRs, the
future clinical prospect of developing a TME-oriented
cancer therapy by targeting these receptors is promis-
ing. Among the 48 NRs in humans, the oncogenic
functions of VDR, PPARs, AR, ER and GR in
tumor-supporting cells are the best-characterized to
date. Evidence of other receptors, such as RARβ, RORγ,
and FXR, is limited yet promising. Given the heterogen-
eity of cellular populations within TME, more
intensive research in understanding the molecular
mechanisms of cell-cell interactions and how to

Fig. 2 Summary of the so far identified nuclear receptors in the tumor microenvironment which play an active role in the modulation of
oncogenic processes in different cancer types. AR, androgen receptor; CAF, cancer-associated fibroblast; ER, estrogen receptor; FXR, farnesoid X
receptor; GR, glucocorticoid receptor; LHR-1, liver homolog receptor-1; MDSC, myeloid-derived suppressive cells; PPAR, peroxisome proliferator-
activated receptor; PR, progesterone receptor; RAR, retinoic acid receptor; ROR, RAR-related orphan receptor; RXR, retinoic X receptor; TAM, tumor-
associated macrophage; THR, thyroid hormone receptor; VDR, vitamin D receptor
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master intercellular communication is of paramount
importance. The ability to exploit NRs in TME in a
highly specific and precise manner, in this case, can lay
the foundation for precision medicine in cancer therapy
and may even allow us to transform tumor-supporting
cells into tumor foes.
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