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Periinfarct rewiring supports recovery
after primary motor cortex stroke

Mitsouko van Assche1, Elisabeth Dirren1, Alexia Bourgeois1,2,
Andreas Kleinschmidt1, Jonas Richiardi3 and
Emmanuel Carrera1

Abstract

After stroke restricted to the primary motor cortex (M1), it is uncertain whether network reorganization associated

with recovery involves the periinfarct or more remote regions. We studied 16 patients with focal M1 stroke and hand

paresis. Motor function and resting-state MRI functional connectivity (FC) were assessed at three time points: acute

(<10 days), early subacute (3weeks), and late subacute (3months). FC correlates of recovery were investigated at three

spatial scales, (i) ipsilesional non-infarcted M1, (ii) core motor network (M1, premotor cortex (PMC), supplementary

motor area (SMA), and primary somatosensory cortex), and (iii) extended motor network including all regions struc-

turally connected to the upper limb representation of M1. Hand dexterity was impaired only in the acute phase

(P¼ 0.036). At a small spatial scale, clinical recovery was more frequently associated with connections involving ipsile-

sional non-infarcted M1 (Odds Ratio¼ 6.29; P ¼ 0.036). At a larger scale, recovery correlated with increased FC

strength in the core network compared to the extended motor network (rho¼ 0.71;P¼ 0.006). These results suggest

that FC changes associated with motor improvement involve the perilesional M1 and do not extend beyond the core

motor network. Core motor regions, and more specifically ipsilesional non-infarcted M1, could hence become primary

targets for restorative therapies.
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Introduction

The severity of paresis after stroke is mainly deter-
mined by the localization and extent of the lesion.1 In
contrast, the neural correlates of motor recovery are
less well defined. Reorganization in brain networks is
increasingly identified as a surrogate of clinical recov-
ery.2,3 However, whether this process differently affects
local perilesional tissue4 and distant cortical areas3

remains largely unknown, limiting the development of
efficient restorative therapies.

After stroke limited to the primary motor cortex
(M1), the clinical relevance of connectivity changes
from and to the perilesional tissue has not been deter-
mined in humans. In non-human primates with M1
lesion, new transcallosal and intrahemispheric axons
reinnervate the adjacent M1 during recovery.5–7 In
rodents, improved motor function is related to restora-
tion of interhemispheric functional connectivity (FC)

involving the peri-infarct.8 In humans, difficulties to
recruit patients with reproducible focal cortical lesions
make it challenging to establish the clinical relevance of
connection changes with the peri-infarct. Human and
non-human primate studies reporting selective M1
lesions are limited to small case series.9–11
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Beyond the peri-infarct, limited knowledge exists on
how stroke restricted to M1 affects the core motor net-
work that includes M1, the premotor cortex (PMC),
the supplementary motor area (SMA), and the primary
somatosensory cortex (S1). In non-human primates,
such lesions trigger new connections, between ipsile-
sional M1 and contralesional PMC, and between M1
and S1 in the lesioned hemisphere.6 Following subcor-
tical strokes in humans, motor recovery is consistently
associated with restoration of connections between
ipsilesional M1 and contralesional core motor areas
including M1,12,13 suggesting a pivotal role of interhe-
mispheric connections.14 The heterogeneity of lesion
size and location is however a usual limitation of
human studies, especially with cortical involvement.
It is therefore unclear whether connectivity changes in
the core motor network of patients with cortical lesions
restricted to M1 are clinically relevant.

At a larger scale, how brain areas beyond the core
motor network contribute to recovery after M1 stroke
has not been established in human nor in animal stud-
ies. Stroke-induced motor deficits are more explained
by lesion location than large-scale changes in function-
al networks.1,15 Furthermore, computational simula-
tion of M1 “lesions” results in connectivity changes
of limited spatial extent.16 Conflicting evidence exist
regarding the impact of strokes beyond the core
motor network, in patients with heterogeneous
lesions.17 So far, no studies have specifically compared
the functional relevance of FC changes within and out-
side the core motor network, in patients with stroke
restricted to M1.

We investigated the FC correlates of motor recovery
in a unique population of patients with strokes limited
to M1. The following hypotheses were tested:

(i) Restoration of function correlates with increased
FC involving the ipsilesional non-infarcted M1.

(ii) Lesions of M1 affect the core motor network
rather than larger-scale networks.

We performed detailed motor examinations and
assessed resting-state MRI FC at three time points
within 3months of stroke. We used a fine-grained par-
cellation of motor areas to evaluate FC changes at dif-
ferent scales, from individual connections within the
core motor network to global changes within and out-
side the core motor network.

Material and methods

We prospectively included 16 consecutive stroke
patients with a lesion restricted to M1 and contralateral
hand paresis, among 1656 stroke patients admitted in
our Stroke Center during the study period. All patients

were right-handed (10 males; age 72.9� 11.9 y; Figure

1, Supplementary Table 1, Supplementary Figure I).

Exclusion criteria were significant carotid or intracra-

nial artery stenosis (>50%), history of psychiatric dis-

ease, concomitant psychotropic medications, clinical or

radiological evidence of previous stroke, relevant white

matter disease (Fazekas score> 2). All patients under-

went standard physical therapy. Detailed motor func-
tion and imaging data were obtained at three time

points (TP) during recovery: acute (TP1; <10 days

after stroke), early subacute (TP2; 3weeks), and late

subacute stage (TP3; 3months).18 In three patients,

one MRI scanning session was not performed due to

technical issues (N¼ 2) and patient refusal (N¼ 1).

Therefore, correlations between MRI data and between

clinical and MRI data over time (TP1 vs TP2 and TP2

and TP3) were based on the analysis of 14 pairs. For

control purposes, the same behavioural and imaging

measures were acquired at one time point in 16 right-

handed healthy subjects matched for age, gender, and

cardiovascular risk factors (10 males; 70.3� 9.7 y). The
study was conducted in accordance with the Helsinki

declaration and was approved by the local ethics com-

mittee (Commission cantonale d’�ethique de la

recherche de Gen�eve). Written informed consent was

obtained from each participant.

Behavioural measures

We assessed hand motor function using measures of

dexterity (nine-hole pegboard task), isometric grip

strength (JAMAR dynamometer, Asimow

Engineering Co., Los Angeles, CA), the Fugl-Meyer
and NIH stroke scales (see Supplementary Table 1).

A two-point discrimination test was performed on the

index fingers to rule out sensory deficits. For dexterity

and grip strength, performance of the paretic hand was

normalized by performance of the unaffected hand,

leading to a laterality ratio (i.e., paretic/unaffected

hand performance). Thus, the laterality ratio is >1

when dexterity of one hand is impaired and tends

towards 1 when the paretic hand improves (and the

opposite for grip strength). Due to data non-

normality (Kolmogrov-Smirnov test), we used

Wilcoxon tests to assess recovery of motor hand func-
tion over time.

Imaging acquisition

All images were obtained on a 3T MRI

(MAGNETOM Prisma, Siemens Healthcare,

Erlangen, Germany; 64-channel head-coil) on the

same day as behavioural testing. Resting state func-

tional images were acquired with a gradient EPI

sequence (TE/TR¼ 30/1200ms, voxel size¼ 3mm
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isotropic, 400 volumes). Wakefulness was monitored

using eye-tracking. Respiratory movements were

recorded using a transducer at the level of maximum

respiratory expansion (BioPac Inc, Santa Barbara,

USA). T1 anatomical scans were collected using an

MPRAGE sequence (TE/TR¼ 2.27/2300ms, voxel

size¼ 1.0 mm3 isotropic). T2-weighted (TE/TR¼ 108/

6090ms, voxel size¼ 0.4� 0.4� 4.0mm) and DWI

(TE/TR¼ 52/4300ms, voxel size ¼1.4�1.4� 4.0mm)

sequences were acquired for lesion mapping. Brain

MRI angiography (TOF) and precerebral Doppler

ultrasound were performed to rule out intracranial or

precerebral stenosis.

Delineation of the infarct

Each infarct was delineated on T2 images (with help

from DWI images) by experienced stroke neurologists/

neuroscientists (MVA, EC, ED). We used MRIcron for

outlining and estimating lesion volumes (https://

people.cas.sc.edu/rorden/index.html).

Data analysis

Overall strategy. In patients with similar M1 lesions, we

investigated the FC correlates of hand motor recovery

at three time points within three months of stroke. Two

approaches were considered. In the first, small scale

Figure 1. Lesions in the primary motor cortex (axial DWI, radiological convention).
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approach, we studied the correlation between recovery
and FC changes in individual connections of the core
motor network, focusing on the ipsilesional non-
infarcted M1. In the second approach, we compared
the global impact of stroke on the core and on a
larger scale motor network using the measure of
global connectivity strength. To that purpose, we iden-
tified relevant connections using Network-Based
Statistics (NBS). Regions of interest (ROIs) were
defined within the Brainnetome atlas,19 which subdi-
vides M1 into five subregions consistent with the
motor homunculus, including the upper limb area
(A4ul). Moreover, this cross-validated connectivity-
based atlas provides a structural connectome for all
subregions referenced in this atlas.

Functional connectivity pre-processing. Anatomical and
functional data were preprocessed using SPM12
(www.fil.ion.ucl.ac.uk/spm) and in-house MATLAB
scripts.20 Functional images were realigned for each
subject. T1 anatomical images were co-registered to
the mean image of the functional data and segmented
into grey matter, white matter, and cerebrospinal fluid
(CSF) tissue maps. The Brainnetome atlas was then
mapped onto the native grey matter map and co-
registered to the functional images. The following
regressors were introduced (i) the six motion parame-
ters, (ii) the average CSF signal, and (iii) respiratory
fluctuations using RETROICOR.21 Time-courses were
filtered in 4 frequency subbands using a wavelet trans-
form. Analyses were centered on the frequency range
0.03<f< 0.06Hz.22 We computed pairwise Pearson
correlation coefficients between the 246 regions of the
Brainnetome atlas19 and then obtained connectivity
matrices for each subject, including the infarcted
area. Finally, we flipped left and right hemisphere
ROIs in patients with right lesions (N¼ 4) to ensure
consistency of lesion side across subjects.23 There was
no difference in motion across time points24 (Friedman
test; v2(2)¼0.462, P¼ 0.794).

Anatomical definition of ROIs. We explored three distinct
networks as follows: The core motor network comprised
canonical sensorimotor cortical regions, namely, M1,
PMC, SMA, and S1 (corresponding to a total of 28
regions in the Brainnetome atlas; full list in
Supplementary Table 2); The extended motor network
was defined based on the connectogram provided with
the Brainnetome atlas,19 and included 106 ROIs struc-
turally connected to A4ul (upper limb region of M1;
see full list in Supplementary Table 2). We chose A4ul
as the seed region for the definition of the extended
motor network because (1) all patients presented with
isolated hand paresis and (2) the M1 upper limb region
was consistently damaged in our patients. The core

motor network was part of the extended motor net-
work. Finally, the non-core motor network included
all ROIs from the extended motor network that were
not part of the core motor network.

Small-scale analysis: FC correlates of clinical recovery within the

core motor network. We determined, for each connection
within the core motor network, the correlation between
FC changes and changes in motor dexterity across time
as follows: Raw correlation coefficients were first
extracted from the 28 ROIs, approximately
Gaussianized using Fisher R-to-Z transform, and nor-
malized by total strength (sum of edge weights). The
final quantity of interest was the difference in
Gaussianized, normalized FC between two consecutive
time points. Correlations between temporal changes in
individual connection values (27*28/2¼ 378 edges) and
changes in hand dexterity were computed using
Spearman correlation. The significance of each corre-
lation was assessed using Storey’s positive false discov-
ery rate (pFDR) multiple comparison correction
technique to account for the large number of edges.
For each edge, we also calculated the median of the
temporal FC changes across subjects (median delta
FC) to show the trend of connectivity changes.
Spearman correlation, uncorrected P-values, pFDR
corrected P-values, and median delta FC are reported
in Table 1. Finally, we tested whether top correlations
between FC change and dexterity changes (those with
P< 0.01 uncorrected) involved more frequently the
ipsilesional M1 than expected by chance, using
Fisher’s exact test (a¼ 0.05).

Large-scale analysis: Clinical relevance of global changes in FC

over time. We first identified connected components
(linked edges) showing the greatest FC increase
(respectively decrease) over time by applying the NBS
toolbox25 to the extended motor network ((106 x 105)/
2¼ 5565 edges). In NBS, each paired t-statistic
(between time point pairs) had to reach a value |T|>
2.5 for the connection to be retained for the next step of
the analysis (equivalent P< 0.01). Then, supra-
threshold connections were systematically searched
for any interconnected components to derive networks
of FC increase (or decrease) among the 106 ROIs. The
null distribution of the connected component size was
derived using a non-parametric permutation approach
(5000 permutations. Finally, community structure in
significant NBS networks was identified using the
Louvain method, implemented in the Brain
Connectivity Toolbox.26 For ease of description, the
106 ROI of the extended motor network were labeled
according to 15 regions (Supplementary Table 2).

We then computed the total strength (sum of edge
weights) among edges showing increased (respectively
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decreased) FC over time in the core and non-core

motor networks, and assessed their correlations with

changes in motor performance using Spearman coeffi-

cients. To evaluate whether the core motor was more

engaged in clinical recovery than the non-core network,

the clinical relevance of FC changes was further eval-

uated using the strength fraction,27 defined here as the

total strength ratio between the core and non-core

motor network. BrainNet viewer28 was used for data

visualization.

Results

Motor behaviour

Hand dexterity (Nine hole peg test) significantly

improved in patients from TP1 to TP2 (median later-

ality ratio at TP1: 1.18 (IQR¼ 1.06–1.71) and at TP2:

1.03 (IQR¼ 0.94–1.27); Wilcoxon test, P¼ 0.01) but

not between TP2 and TP3 (P¼ 1; Figure 2). There

was no change in grip strength (JAMAR dynamome-

ter) between TP1 and TP2 (P¼ 0.41), nor between TP2

and TP3 (P¼ 0.06; Figure 2). Compared to controls,

hand dexterity was significantly impaired at TP1 in

stroke patients (median laterality ratio in con-

trols¼ 1.06 (IQR¼ 0.98–1.1); Mann-Whitney test,

P¼ 0.036), but not at TP2 (P¼ 0.98), nor at TP3

(P¼ 0.42). Grip strength was not different from con-

trols at any time point (TP1: P¼ 0.14; TP2: P¼ 0.21;

TP3: P¼ 0.38).

Motor deficit and lesion volume

Median lesion volume was 0.57 cm3 (IQR¼ 0.38–1.6).

Lesion volume correlated with loss of dexterity

(Spearman rho¼ 0.67, P¼ 0.005), but not with

recovery of motor function (dexterity from TP1 to

TP2: P¼ 0.47).

Changes in functional networks and recovery

Small-scale analysis: FC correlates of clinical recovery within the

core motor network. Table 1 shows correlations between
FC changes of individual connections and clinical
recovery. 2 connections had significant correlations
after multiple comparisons corrections (pFDR< 0.05:
iA4tl -cA6dl rho¼ 0.837; pFDR¼ 0.023 and iA6cvl –
cA6dl; rho¼ 0.793; pFDR¼ 0.048) (Table 1, Figure 3
and Supplementary Figure II). 8 connections had
weaker, non-significant correlations (P< 0.01 uncor-
rected). Within these, the ipsilesional A4ul (infarcted
region) was not involved in any of these correlations.

Table 1. Correlations between changes in FC and changes in hand dexterity (%) from TP1 (<10 days) to TP2 (3weeks).

Node 1 Node 2 rho P value (uncorrected) P value (pFDR) Median delta FC

1 i A4tl c A6dl 0.837 0.0003 0.0229 0.0189

2 i A6cvl c A6dl 0.793 0.0012 0.0476 0.0435

3 i A6cvl c A6cvl 0.741 0.0035 0.0973 –0.0699

4 i A4tl c A6m 0.736 0.0038 0.0790 0.0931

5 i A4ll c A4tl 0.732 0.0041 0.0683 0.1699

6 i A4tl c A4hf 0.697 0.0073 0.1013 –0.1699

7 i A6dl c_A4ul –0.688 0.0084 0.0991 –0.0113

8 i A4t i A6cvl 0.679 0.0095 0.0987 0.0149

Spearman correlations (rho) (P< 0.01 uncorrected) are displayed, as well as corresponding P values, and pFDR-corrected P values. Median delta FC is

the cross-subject median of FC changes. A4¼M1 area; ll: lower limb; ul: upper limb; t: trunk; hf: head face; tl: tongue larynx; A6: area 6; dl: dorsolateral;

m: medial (SMA); cdl: caudal dorsolateral; cvl: caudal ventrolateral; vl A1/2/3: Primary sensory cortex; tru: trunk; A2: area 2.

Figure 2. Evolution of motor performance over time. Laterality
ratios of hand performance (medians) for hand dexterity
(paretic/unaffected performance, in red) and grip strength
(unaffected/paretic performance for illustration, in black) at three
time points (acute: 3 days; early subacute: 3 weeks; late subacute: 3
months). Vertical bars represent 25–75th percentiles. **P¼ 0.01.
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By contrast the other nodes of the ipsilesional (non-
infarcted) M1 were involved in 5 out of 8 connections
(including 5/7 positive correlations and 0/1 negative
correlation). The proportion of connections involving
the ipsilesional M1 was significantly higher than con-
nections between other regions of the core motor net-
work (odds ratio (OR)¼6.29; P ¼ 0.036). The
median FC change was positive in 6/8 correlations
(most patients showed increase in connectivity) and
negative in 2/8.

Large-scale analysis: Clinical relevance of global changes in FC

over time. We analyzed changes in connectivity at a

larger spatial scale using three distinct motor networks.

The extended motor network included all 106 ROIs

structurally connected to A4ul.19 The core motor net-

work was part of the extended motor network and

included M1, PMC, SMA, and S1 (28 ROIs). Finally,

the non-core network contained the 78 ROIs included

in the extended but not in the core motor network.

TP1 to TP2. From TP1 to TP2, NBS identified a net-

work of 50 edges of increased FC in the extended

motor network (PFWER ¼0.042; Figure 4(a);

Supplementary Table 3). 26% of these edges were ipsi-

lesional, 12% contralesional, and 62% interhemi-

spheric. More edges were located in the core motor

network than in the non-core network (OR¼ 2.60; P

¼ 0.02). Similarly, more edges were identified within

the core network than between the core and non-core

networks (OR¼ 2.68; P ¼ 0.04). No correlation was

observed between motor performance and total

strength in the core (rho¼ 0.32, P ¼ 0.26) or non-

core networks (rho¼ 0.09, P ¼ 0.76) taken separately.

However, improvement in hand dexterity was signifi-

cantly associated with an increase in strength fraction

(ratio of connectivity strengths between core and non-

core motor areas; rho¼ 0.71, P ¼ 0.006; Figure 4(b)),

suggesting a stronger engagement of the core motor

network in clinical recovery. We then searched for

communities within the NBS network, in order to dis-

tinguish clusters of regions which would be more fre-

quently interconnected (Figure 5(c)). We found that the

main community contained areas that largely matched

the clinically relevant connections identified previously

in the a priori defined core motor network (ipsilesional

and contralesional M1, contralesional SMA, and con-

tralesional S1).
We further evaluated patters of decreased connectiv-

ity from TP1 to TP2. NBS identified a network of

decreased FC composed of 71 edges within the extend-

ed motor network (PFWER¼ 0.002; Supplementary

Figure IIIA; Supplementary Table 4). 31% of these

edges were ipsilesional, 17% were contralesional, and

52% interhemispheric. There was no significant differ-

ence in the percentage of edges encompassed within the

core motor network, the non-core network or between

both networks (core vs. non-core OR: 2.53, P ¼ 0.053;

core vs. edges connecting core and non-core nodes OR:

0.75, P¼ 0.7). There was no correlation between

changes in hand dexterity and strength fraction

(rho¼-0.11; P ¼ 0.70). We further identified four com-

munities within this NBS network (Supplementary

Table 4B). No community included both M1 regions

concomitantly. (Supplementary Figure IIIA).

Figure 3. Correlation between changes in dexterity and
Functional Connectivity (FC) changes in the core motor network
from TP1 (< 10 days) to TP2 (3weeks). Correlations between %
change in hand dexterity and FC changes in the core motor
system (P< 0.01 uncorrected). Each node represents a compo-
nent of the core motor network (SMA, premotor, primary
motor and somatosensory cortices). Primary motor cortex
nodes (A4) are topographically represented, in agreement with
their spatial organization on the motor homunculus. Significant
correlations after correction for multiple comparison
(pFDR<0.05) are indicated (*). Positive correlations are repre-
sented in red and negative in black. Line widths are proportional
to the rho correlation values (see Table 1 for detailed values).
The dashed circle highlights the lesion site in M1, corresponding
to the A4ul (upper limb) node. i¼ ipsilesional hemisphere,
c¼ contralesional hemisphere. A4¼M1 area; ll: lower limb; ul:
upper limb; t: trunk; hf: head face; tl: tongue larynx); A6: area 6;
dl: dorsolateral; m: medial (SMA); cdl: caudal dorsolateral; cvl:
caudal ventrolateral; vl A1/2/3: Primary sensory cortex; tru:
trunk; A2: area 2.
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TP2 to TP3. NBS identified 94 edges forming a network
of increased FC within the extended motor network
(PFWER ¼0.004; Figure 5(a); Supplementary Table 3).
31% of these edges were ipsilesional, 13% were con-
tralesional, and 56% interhemispheric. The proportion
of edges was similar within the core network, the non-
core network, and between both networks (core vs.
non-core OR: 0.63, P ¼ 0.5; core vs. edges connecting
core and non-core nodes OR: 0.57, P¼ 0.4). In addi-
tion, there was no correlation between changes in hand
dexterity and strength fraction (rho¼-0.23; P ¼ 0.42).
We further identified four communities within this
NBS network (Figure 5(b)). No community included
both M1 regions concomitantly. From TP2 to TP3,
NBS identified 126 edges forming a network of
decreased FC within the extended motor network
(PFWER ¼0.0004; Supplementary Figure IVA;
Supplementary Table 3A). 33% of these edges were
ipsilesional, 29% were contralesional, and 63%

interhemispheric. There were significantly more edges

with decreased connectivity from TP2 to TP3 within

the core network than within the non-core network

(OR: 6.84, P < 0.001). Similarly, more edges were iden-

tified within the core network than between the

core and non-core networks (OR: 7.84, P< 0.001).

However, there was no correlation between changes

in hand dexterity and strength fraction (rho¼�0.23;

P¼ 0.42). We further identified 3 communities within

this NBS network, one of which included most regions

defining the core motor network (ipsilesional and con-

tralesional M1, contralesional SMA, and contrale-

sional S1) (Supplementary Figure IVB).

Discussion

In our cohort of patients with isolated M1 stroke and

associated hand paresis, we demonstrated that (i) hand

dexterity was impaired in contrast to grip strength, (ii)

Figure 4. Global increases in Functional Connectivity (FC) between TP1 (<10 days) and TP2 (3weeks). (a) Network of FC increase
(NBS network; T>2.5) between the acute and the early subacute stages (colour-coded node types). (b) The ratio of FC strength
between the core and non-core networks correlates significantly with recovery of hand dexterity (rho¼0.71, P¼0.006). (c) Adjacency
matrix showing the mean differences in connectivity weight according to connection type between the two time points. The white
squares outline regions being more often interconnected, i.e., communities. *Areas of the core motor network. M1¼ Primary motor
area, PMC¼ Premotor cortex, SMA¼ Supplementary Motor Area, S1¼ Primary somatosensory cortex; see full list of nodes in
Supplementary Table 2.
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functional recovery related to reorganization of FC in

the core motor system (M1, PMC, SMA, and S1),

mobilizing specific connections involving the non-

infarcted part of M1, and (iii) restoration of motor

performance was more strongly related to FC increase

within the core motor network than beyond the core

network.

Recovery of hand dexterity

Hand dexterity, assessed with the 9-hole peg test, was

significantly affected in contrast to grip strength.

Because strokes commonly affect cortical and subcor-

tical regions, it is challenging to determine whether cor-

tical strokes are more likely associated with impairment

of grip strength or dexterity. Previous studies showed

that loss of hand dexterity was associated with a corti-

cal involvement,29 as previously reported in 4 patients

with a lesion limited to M19 and in rodent studies.30

Alteration of finger movements following isolated M1

lesions was also observed in non-human primates

tested with precision-grip.31 In that study and despite

loss of dexterity, the primates remained able to walk,

climb, or jump with ease. In our patients, we found that

lesion volume correlated with the severity of initial loss

of function but not with recovery. Complete normali-

zation of hand dexterity was observed within 3weeks

after stroke (TP2) with standard rehabilitation therapy.

Several studies have reported incomplete long-term

recovery of hand function following lesions of the M1

hand representation in the adult monkey.10,31 Whereas

our patients recovered 9-hole peg test performances

comparable to controls, we cannot exclude that the

use of other tests to assess skilled movements and

strength (e.g. finger pitch) may have detected persistent

changes in motor performance.

Role of the non-infarcted M1 in the recovery of hand

dexterity

Recovery of function was associated with changes in

FC between specific nodes of the core motor network.

Because all patients suffered from hand paresis, we

considered that the upper limb subregion was consis-

tently infarcted. In non-human primates, focal damage

of M1 triggers functional remapping to the adjacent

M1, more specifically in the territory formerly occupied

by the elbow and shoulder.10 In stroke patients with

good recovery, a shift of hand-related brain activation

to the rim of the infarct is described,32,33 such as a

dorsal displacement of hand representation during

movement of the paretic hand in patients with M1

strokes.9 Our data highlight the role of M1 areas adja-

cent to the infarcted M1, for motor recovery. It is still

unknown whether this process reflects unmasking of

pre-existing, but mostly silent, connections involving

non-infarcted regions, or axonal sprouting towards

these perilesional regions. Increased coupling between

ipsilesional M1 and contralesional dorsolateral PMC

appeared clinically relevant in our study, as previously

Figure 5. Global increases in Functional Connectivity (FC) between TP2 (3weeks) and TP3 (3months). (a) Network of FC increase
(NBS network; T>2.5) between the early subacute and late subacute stages (colour-coded node types). (b) Adjacency matrix showing
the mean differences in connectivity weight according to connection type between the two time points. The white squares outline
regions being more often interconnected, i.e., communities. *Areas of the core motor network. M1¼ Primary motor area,
PMC¼ Premotor cortex, SMA¼ Supplementary Motor Area, S1¼ Primary somatosensory cortex; see full list of nodes in
Supplementary Table 2.
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described in patients with subcortical motor
strokes.36,37 In our study, better recovery was also asso-
ciated with increased connectivity between ipsilesional
and contralesional M1 areas. These results are consis-
tent with previous studies including subcortical and
cortical stroke patients, reporting a correlation between
motor impairment and altered connections between
homotopic M1.34,35 The importance of interhemi-
spheric connections has also been reported between
the ipsilesional M1 and contralesional prefrontal
cortex and SMA.23 As a whole, our results emphasize
the clinical relevance of functional reorganization
between nodes of the core motor network, in which
ipsilesional non-infarcted M1 may play a significant
role. Our findings may orient restorative therapies to
target non-infarcted ipsilesional M1, for instance by
modulating its excitability.38

Assessment of the clinical relevance of global
changes in FC over time

Applying NBS to the extended motor network, we
found a large-scale network of increased FC between
TP1 (<10 days) and TP2 (3weeks). This network
included connections within and outside the core
motor network. Improvement of motor function
between TP1 and TP2 was specifically associated with
an increased strength fraction between core and non-
core areas. This suggests that better recovery is
observed when the core motor network is more strong-
ly engaged, compared to non-core regions that also
have associative and integrative functions. The associ-
ation between loss of function and global network
strength has been studied in other neurological dis-
eases. In brain tumor patients, motor recovery was
related to an increased mean FC strength in the core
motor network.39 In our cohort, a relative FC increase
within the core motor network may reflect a greater
demand within the main nodes of the motor network
during recovery. At later time-points (early to late sub-
acute stages), despite stability of motor function, we
observed a significant decrease in FC mainly in the
core motor network as compared to the non-core net-
work. The clinical significance of these findings is
uncertain. Early after stroke, decreased connectivity
has been described in the motor network especially
between homologous regions. Normalisation of initial-
ly decreased interhemispheric FC has been associated
with clinical recovery.12 However, persistence of
reduced connectivity has been shown beyond the
motor network, within subcortical regions associated
with effort and cognitive processing.13 The clinical
impact of decreasing FC following stroke has only
rarely been assessed. One longitudinal study showed
that patients had increased connectivity between

lesioned M1 and cerebellum, thalamus, middle frontal

gyrus posterior parietal cortex at onset, compared to

healthy subjects. These relative increases in connectiv-

ity were not consistently observed in later time points,

indicating a probable decrease in FC with time for

these connections.23 Increases and decreases of FC

that are not correlated with motor recovery may reflect

adaptive mechanisms that develop after restoration of

function and/or changes in non-motor functions. The

increase and decrease FC that are not correlated with

motor recovery may reflect adaptive mechanisms that

develop after restoration of function and/or changes in

non-motor functions.
There are several limitations to this study. First, this

study is limited to 16 consecutive cases. However,

patients presenting with a lesion restricted to M1 are

rare. Our patients were prospectively recruited among

1656 patients admitted to our stroke unit during the

study period. Further, our study includes a larger

number of patients with lesion restricted to M1 com-

pared to previous reports. Additionally, patients were

scanned at three time points, giving us the opportunity

to study the clinical relevance of connectivity changes

over time. Secondly, and despite our best efforts, there

is still some heterogeneity in lesion size and localisa-

tion, including some involvement of surrounding white

matter. Even following experimental lesions in rodent

and non-human primate studies, resulting damage is

not strictly limited to M1. Third, we restricted our def-

inition of the core motor network to the SMA, PMC,

M1 and S1. However, other cortical and subcortical

brain regions may be considered as part of the motor

network. For instance, we did not include the cerebel-

lum nor the intraparietal sulcus that have shown to

play a role in motor recovery. Previous studies have

indeed demonstrated that, in well-recovered patients,

effective connectivity was enhanced between M1 and

the intraparietal sulcus.40,41 Finally, we limited our

study to three months after stroke and cannot deter-

mine further changes in FC. However, we observed

complete restoration of function at three weeks

already. Other data, in more severe stroke patients,

suggest that most of recovery occurs within three

months after stroke.42

In conclusion, we demonstrated, based on a unique

population of stroke patients with a lesion restricted to

M1, the clinical relevance of functional changes in con-

nectivity at different spatial scales during recovery. Our

results highlight the importance of the non-infarcted

M1 and the core motor network for recovery, as

opposed to larger-scale networks. Our findings may

orient restorative therapies, to specifically modulate

non-infarcted M1 connectivity.
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