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Abstract

Di↵erent types of continuous longitudinal data are widely used in social sciences and

other fields. These data are referred to as panel data, cohort studies, growth curves or

simply time series. This thesis focuses on the modeling and clustering of continuous

data sequences, using a latent-level Markovian type model. To improve the separation

of the sequences on di↵erent clusters, di↵erent types of covariates can be included on

the visible and on the latent level. In the strict clustering use, this model reduces to

a specific type of Gaussian mixture model estimated through time, with means and

variances of the components (clusters) that capture the auto-regressive dependence

across time periods.

A particular attention is paid to the estimation of the model parameters and the as-

sessment of their variability. Specific procedures are proposed for this purpose. Finally,

applications of the model to various datasets are also provided and discussed.

Résumé

Di↵érents types de données longitudinales sont fréquemment utilisés en sciences so-

ciales et diverses autres domaines (données de panel, études de cohortes, courbes de

croissances, séries temporelles). Cette thèse se concentre sur la modélisation et la clas-

sification de séquences de données continues à l’aide d’un modèle Markovien latent.

L’inclusion de diverses variables aux niveaux visible et latent améliore la séparation

des séquences en classes distinctes. Lorsqu’il est utilisé pour obtenir une classification

stricte, ce modèle revient à une mixture Gaussienne, estimée à travers le temps et dont

les moyennes et variances prennent en compte la dépendence au fil du temps.

L’estimation des paramètres du modèle et de leur variabilité sont des sujets prin-

cipaux de ce travail, et des procédures spécifiques sont proposées afin de les résoudre.

Plusieurs applications de ce modèle à des données réelles sont discutées afin d’illustrer

la versatilité du modèle.
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Chapter 1

Introduction

1.1 Clustering longitudinal data sequences

Longitudinal data are a central topic in social sciences surveys. Di↵erent types of contin-

uous longitudinal data are widely used in many fields and even though the problematic

of modelling and clustering such data can be fairly similar, often di↵erent methods are

employed in each domain. Various names are also given to this type of data. In addi-

tion to continuous longitudinal data, one may discuss about developmental trajectories

Jones, Nagin & Roeder [72], panel data, cohort studies Genolini and Falissard [57],

growth curves Reinecke and Seddig [123] or simply time series. In some cases of time

series clustering, the problematic and assumptions are very similar to the continuous

longitudinal data clustering.

Finding an appropriate model to analyse a set of longitudinal data sequences is

not trivial, especially when the main purpose is to perform a classification of these

sequences in mutually exclusive groups, and especially when the data are continuous.

In many cases, the clustering of such data is problematic, because of the scarcity of

reliable and well implemented methods to cope with continuous longitudinal data in

the social sciences field.

A large variety of clustering methods exist in the literature such as various hierarchi-

cal (agglomerative or divisive) and partitional Paterlini and Krink [109] (K-means etc.)

algorithms, density-based, mixture Celeux and Govaert [29], and spectral methods Von

Luxburg [166]. However, most of them were designed for transversal data and their

use with longitudinal data is not straightforward. A common approach for clustering

sequences is by seeking some dissimilarity measures that are supposed to quantify the

distance between every pair of sequences. For nominal data such measures can be ap-

1
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propriate, for instance the well-known Optimal Matching (OM) procedure described by

Abbott and Tsay [1] and frequently used in social sciences.

Although OM has been successfully applied in many social sciences problems, it still

su↵ers from several major issues. The first and most important one is its data-driven

nature. The lack of modelling and the subjective choice of the cost function used to

evaluate the di↵erence between each couple of sequences make the OM a non-consistent

approach. Furthermore, the lack of parameters and inference procedures make this

method less useful when we attempt to explain the di↵erences between groups at the

population level. Another issue is the di�culty to take into account covariates during

the clustering process: OM is only a distance measuring between observed sequences

and it ignores any other characteristics of the subjects under stuy. Moreover, OM is

applicable to discrete or categorical data only, whereas many datasets are continuous.

Finally, regarding specifically the data analysed in social sciences, it has been argued

that since the optimal matching procedure was originally proposed for DNA sequences,

it may not directly translate to any other kind of data. Wu [171] takes as example a

binary sequence in which the cost of the transition from unemployment to employment

is the same as the cost of the opposite change if we use OM, even though in social

sciences these transitions are considered as completely unequal from psychological and

social perspectives. The limits of OM highlight the need for alternative approaches in

the continuous sequence clustering problem.

When it comes to discriminating between continuous data, a popular approach is

to use a continuous distance measures, such as Euclidean, Mahalanobis, Manhatan etc.

However, when these measures are adapted to transversal uni- ou multi-variate data,

they adapt poorly to longitudinal data. The reason is the ignorance of the time order

when applying transversal measures to longitudinal data, an issue we will detail later.

The most appropriate answer to this problem appears to be the model-based clus-

tering, which takes into account the di↵erences between the sequences’ distribution

through time. The most popular models for clustering are the mixture models. How-

ever the ordinary Gaussian mixture models are still not adapted to longitudinal data

for the same reasons. This is also the case with many other machine learning and other

algorithms that we will mention in this thesis.

Probably the most popular model, properly adapted to clustering of continuous

longitudinal data (at least in social sciences), is the Growth Mixture Models (GMM).

It represents a mixture of mixed models and the clusters are usually formed according

to the specific shapes of the sequences. However depending on the assumptions of

the models and their adequacy to the data, GMM should not be the only choice for
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researchers. We will also detail this model and provide examples.

Much less popular in social sciences are the methods of clustering of time series.

Even though time series clustering is not intended to cope with the exact same prob-

lems as longitudinal data (mainly because of the di↵erence in length, number of se-

quences and dimensionality), these methods could often be applied in the latter case

too. Therefore we will also provide a brief overview of some of them.

An alternative consist in using models that can combine a latent and a visible part,

the visible part including several models (or components), and the latent part deter-

mining which of these models corresponds best to each data sequence. The assumption

is that the data distribution is not a single independent process, but rather a mixture of

distributions depending on an unobserved variable that determines the current distri-

bution, or state, of the observations. This latent variable may simply indicate the class

for each observation, or, as we will see later, may include more than one component to

model the same class. For the most part of this thesis however, we will be interested in

the former case.

There are di↵erent types of latent variable models, but many can only handle

transversal and not longitudinal data Vermunt [163]. The main model considered in

this thesis belongs to the family of Hidden Markov Models Rabiner [118], whose e�cacy

has been proven by many applications in di↵erent fields, such as speech recognition Ra-

biner [117], or molecular biology Felsenstein and Churchill [52], Krogh et al. [82] and

theoretical developments, such as the Double Chain Markov Model Berchtold [13]. This

model named Hidden Mixture Transition Distribution Model (HMTD) is a two-level

model: a visible level that models the successive observations of a sequence and a latent

level that drives the visible one Berchtold [15], Bolano & Berchtold [24]. The HMTD

can take into account covariates at both levels. Since each state of the latent variable

implies a di↵erent modeling of the observations at the visible level, the model belongs

to the class of non-homogeneous Markovian modelings.

The e�cacy of the model has been illustrated first by Berchtold [15] on price in-

flation time series. Later Wang, Smith and Hyndman [167] applied HMTD on the

Canadian lynx dataset. They use this popular dataset to compare the HMTD empiri-

cal coverages of the prediction intervals, to those obtained using the best specifications

of AR, SETAR, GMTD and MAR models obtained by other authors. The results put

HMTD on a par with the best among the used models.

Our aim is to present the HMTD model not only as a modelling procedure, but also

as a continuous data clustering tool. It represents an alternative to the other methods

with di↵erent assumptions. A big attention is paid on its complex estimation procedure.
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The big problem here, is the need to be adapted to clustering and modelling simultane-

ously. The estimation algorithm must also support every di↵erent specification of the

model described in this thesis. This issue is important from a theoretical point of view,

but the implementation and the computational part are then especially complex. The

algorithm needs to satisfy all possible data types, including various model specifications

and covariate types on di↵erent levels.

1.2 Main contributions

The main contributions of this thesis are the following:

• First, the estimation procedure of the HMTD model using a Generalized Expec-

tation Maximization is discussed, and a new specific optimization procedure is

implemented and compared to the most known heuristic optimization alterna-

tives.

• A general framework of model-based clustering procedure is provided and two

di↵erent bootstrap implementations are proposed for parameter inference in fre-

quentist estimation.

• Covariates are introduced at the latent level, but instead of influencing the transi-

tion matrix, they are used to improve the initial cluster membership probabilities

estimation.

• The use of HMTD model for clustering of continuous sequences is illustrated with

real world data examples, especially somatic trouble trajectories and internet

addiction trajectories.

The thesis is organized as follows:

In Chapter 2, we introduce the concepts related to the HMTD model. We begin

by introducing the Markov modelling and go through the latent variable modelling and

the models that are closely related to HMTD, such as Mixture Transition Distribution,

Hidden Markov Models, Double Chain Markov Models, mixture models etc. Then we

present the inclusion of covariates to the model. The covariates can be included on

both levels of the model: visible as well as hidden. The latent level covariates are

now estimating the initial probability matrix since in (strict) clustering the transition

probability matrix is diagonal. In the last Section, we introduce the particularities

of the sequence clustering. Then we go through some of the most popular clustering



1.2. MAIN CONTRIBUTIONS 5

methods for transversal data, before focusing on the longitudinal data. Some clustering

methods used in closely related fields, such as time series methods and mixed e↵ect

models, are also briefly presented in this chapter.

Chapter 3 addresses the estimation of the HMTD model. The most important al-

gorithms, such as Forward-Backward, and Viterbi, and the likelihood function of the

model are detailed. Since we focus on the frequentist estimation, the di↵erent variants

of the Expectation-Maximization algorithm are also discussed. Then we discuss the

di�culties in deriving the Likelihood function for some specifications of the model and

mention possible ways to solve this problem. The chosen estimation algorithm of the

model is discussed in details. Since it requires intense computations to optimize the

likelihood function, we also discuss the existing methods and present a new optimisation

procedure. At the end, this procedure is compared to the most popular heuristic opti-

mizations through examples, including an optimization of an HMTD model likelihood.

A short version of this chapter has already been published in 2017 (see Taushanov and

Berchtold [152]).

In Chapter 4, we focus on the uncertainty in clustering in general, but especially

when inferring the parameters of the models. The main objective is to discuss the

stability and the uncertainty when estimating mixture models for clustering, and to

provide alternatives for assessing the significance of the parameter estimates under the

frequentist framework. We first introduce mixture models for clustering and the role of

bootstrap. A general plan for clustering is proposed. Even though our aim is HMTD

clustering, this plan may be followed by any model-based clustering of sequences (in

the frequentist perspective). The di↵erent uncertainty types in clustering are presented.

We also review the major issues related to both Bayesian and frequentist estimation of

mixture models, such as the label-switching problem, and mention some of the existing

solutions. At the end, we stress on the problem of estimating confidence intervals for

the visible-level parameters, and we propose two di↵erent bootstrap procedures based

on a previously obtained clustering solution. We also summarize di↵erent methods for

clustering validation and stability assessment, and an example using somatic troubles

data is presented. A part of this last example was recently accepted for publication by

the Swiss Journal of Sociology Berchtold A., Suŕıs J.-C., Meyer T. and Taushanov Z.

[19].

In Chapter 5, we provide another example of the use of HMTD clustering on real

data. Clustering solutions are obtained using Growth Mixture Modelling and HMTD.

Both solutions are discussed and interpreted according to the data. We also provide

a general comparison between GMM and HMTD in terms of methodology and we list
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the di↵erences between both models and their specificities. nternet addiction data are

used for this example. A slightly di↵erent version of this chapter has been accepted for

publication in the post-proceedings volume of the LaCosa II conference that was held

in Lausanne in 2016 (see Taushanov and Berchtold [153]).

A concluding chapter ends the manuscript, summarizing our main findings and

opening the way for further researches.



Chapter 2

The HMTD model and related

concepts

In this chapter, we begin by briefly recalling a series of important concepts used through-

out this thesis. Then we describe in details the main model considered here, the HMTD

model. Finally, we discuss some alternative methods for the clustering of continuous

data sequences.

2.1 Some important recalls

2.1.1 Markov Chains

In longitudinal data (or in time series) analysis one often attempts to model the data

using the previous observations. One model that allows us to do that is the Markov

chain. We start by briefly introducing the Markov property and the Markov chain in

order to clarify its structure, before discussing more advanced models.

The Markov chain introduced by the Russian mathematician Andrey Markov con-

stitutes the basis of our model framework. It is a probabilistic model that integrates the

dependence between the observations of a random variable across time. Many publica-

tions describe this model in details (Boussau et al. [25], Kemeny and Snell [75], Kemeny,

Snell and Knapp [76]). The stability and the structure of the Markov models are de-

tailed by Meyn and Tweedie [99]. Even in their basic version, these models are still

applied in numerous di↵erent fields such as genetics Ocone [107], music Pardo and

Birmingham [108] and many others.

Let us consider a discrete variable X
t

taking values in the finite set v
t

2 {1, ...,m}.

7
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We can often assume that the value at time t is influenced by all past observations of the

variable. However, the Markov hypothesis considers that the conditional probability

distribution of the future state of the Markov process depends only on the present state

and not on any other previous state. This is called the Markov property.

The Markov property defines a first order Markov chain, but in general a Markov

chain can be of any order. In a Markov chain of order ` for instance, the ` previous

values are used to predict X
t

(see Figure 2.1):

P (X
t

= v0|Xt�1 = v1, . . . , X0 = v
t

) ⇠= P (X
t

= v0|Xt�1 = v1, . . . , Xt�`

= v
`

)

= a
v

`

,...,v1,v0 (2.1)

where the probability a
v

`

,...,v1,v0 is a part of a transition matrix A. In a 1-st order (`=1)

model and with m=3, the matrix A has the form:

A1 =

0

B@
a11 a12 a13
a21 a22 a23
a31 a32 a33

1

CA

If we consider a 2-nd order system, still with m=3, the matrix A grows considerably:

A2 =

0

BBBBBBBBBBBBBBBBBB@

a111 0 0 a112 0 0 a113 0 0

a211 0 0 a212 0 0 a213 0 0

a311 0 0 a312 0 0 a313 0 0

0 a121 0 0 a122 0 0 a123 0

0 a221 0 0 a222 0 0 a223 0

0 a321 0 0 a322 0 0 a323 0

0 0 a131 0 0 a132 0 0 a133
0 0 a231 0 0 a232 0 0 a233
0 0 a331 0 0 a332 0 0 a333

1

CCCCCCCCCCCCCCCCCCA

In general, A is a partially sparse matrix of size m` ⇥m`. Therefore, the major issue

with high order Markov chains is the rate of increase of the number of elements in

the transition matrix as the order increases. In a matrix of m states, we have m`+1

elements. As each line of the matrix is a probability distribution summing to 1, the

number of parameters to estimate is m`(m� 1) and therefore it increases exponentially

with the order. This is due to the fact that each combination of the ` values preceding

the last one has a di↵erent influence. In other words, in a Markov chain the influence of



2.1. SOME IMPORTANT RECALLS 9

each period’s state X
t�`

is not independent from the states observed during the other

periods X(t�`+1)...X(t�1).

We must note that for simplification reasons we consider that the transition matrix

remains the same for any time t, which indicates that the modelling is homogeneous in

time. This assumption will be relaxed in some models that we will present later in this

chapter.

2.1.2 Finite Mixture models

Mixture models in their simplest form represent a combination of several di↵erent dis-

tributions. The Gaussian Mixture Model (GMM ) is among the most popular mixture

models. In a GMM a latent variable (represented by a vector s) indicating the mem-

bership of each observation to a given distribution (component g) may be added. This

latent variable has also an importance for the formulation and the estimation of the

model. If µ
g

and �2
g

are the mean and variance of each component, GMM takes the

following linear combination form of Gaussian distributions:

p(X|�, µ,⌃) =
kX

g=1

�
g

N (X|µ
g

, �2
g

)

where

�
g

= p(s
g

= 1)

corresponds to the weight of each component and s
g

is the g-th binary element of the

vector s indicating the distribution membership of each observation, and

kX

g=1

�
g

= 1, 8�
g

� 0

The presence of the latent allocation variable S = s
i

n

i=1 indicating the true compo-

nent that emitted x
i

p(x
i

|s
i

, µ,⌃) = N (x
i

|µ
s

i

, �2
s

i

)

also allows us to use the Expectation Maximisation (EM) algorithm in order to simplify

the estimation of the model. Therefore the joint distribution p(x, s) may be used

instead of the marginal p(x), and this is especially important for the maximization of

the likelihood. One can then work on the individual component distributions within

the mixture. More details about the estimation procedures will be provided in chapter

3.
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𝑋1 ... 𝑋𝑡−𝑙 ... 𝑋𝑡−2 𝑋𝑡−1 𝑋𝑡 

(a) Markov chain of order `: each combination of past states has its own influence on

the current state
 

 

 

 

 

 

 

 

 

𝑋1 ... 𝑋𝑡−𝑙 ... 𝑋𝑡−2 𝑋𝑡−1 𝑋𝑡 

 𝑙  2  1 

(b) MTD model of order `: each past state influences the current one independently

from the others

Figure 2.1: Structure of a Markov chain and a MTD model



2.1. SOME IMPORTANT RECALLS 11

2.1.3 The Mixture Transition Distributions model

MTD As mentioned above, the number of parameters to estimate for a Markov chain

of order ` is considerable and it grows exponentially with the order ` of the chain.

Therefore, the estimation time, the size of the transition matrix, and the interpretation

issues of the model increase accordingly. A possible solution to this problem is to

question the necessity of considering all the possible combinations (interactions) of the

past observations of the variable. If one supposes that the previous observations of

the variable have an impact that is independent from the other lags, a large number

of parameters can be spared. Making this hypothesis transforms the Markov model

into the MTD model (Mixture Transition Distribution), introduced by Raftery [119]

for the modelling of high-order Markov chains, and developed later by Mehran [96] and

by Berchtold [11, 12, 14, 15] among others. Berchtold & Raftery [17] also reviewed the

di↵erent versions of the model.

The major benefit of this model is that it allows an approximation of high-order

Markov chains with fewer parameters than the full model by considering the e↵ect of

each lag on the present value as independent from the e↵ect of the other lags. According

to this model the e↵ect of each observation is considered separately (see Figure 2.2 and

equation 2.2). LetX be a discrete random variable taking values in a finite set N=1,...,n,

and consider an `-th order dependence among successive observations of X. Then, the

full `-th order Markov chain is approximated as:

P (X
t

= x0|Xt�1 = x
t�1, . . . , Xt�`

= x
t�`

) =
P

`

i=1 �i

P
i

(X
t

= x
t

|X
t�i

= x
t�i

)

= �1P (x
t

= x
t

|X
t�1 = x

t�1) + . . .+ �
`

P (x
t

= x
t

|X
t�`

= x
t�`

)

=
`X

g=1

�
g

a
x

t�g

x

t

where a
i

t�g

,i

t

is an element of a transition probability matrix A of the same dimension

m⇥m as the one of a first-order Markov chain, and that is independent from the order

of dependence. A weighting parameter �
g

is associated to the g-th lag of the process.

The weighting parameters are interpreted as the relative importance relative of each

past period in explaining the value of the variable X measured at time t.

`X

g=1

�
g

= 1

The structure of the MTD model may be seen as similar to the one of an autoregres-

sive model. Numerous generalizations applicable to di↵erent domains exist. Examples
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include an infinite number of past periods, missing data inclusion, spatial models, etc.

A version of the MTD model has also been developed for continuous observed vari-

ables. The basic equation then becomes:

F (x
t

|x
t�1 . . . x1) =

`X

g=1

�
g

f
g

(x
t

|x
t�g

) (2.2)

The model represents then a mixture of distributions, one distribution for each lag of

the model. By extension, each component of the model may use several lags of the

variable X
t

:

F (x
t

|x
t�`

. . . x
t�1) =

`X

g=1

�
g

f
g

(x
t

|x
t�1, . . . , xt�`

)

Various distributions may be used for each component of the model. However, we

generally assume that they all follow the Gaussian distribution:

f
g

�
x
t

|x
t�r

g

. . . x
t�1

�
= �

✓
x
t

� µ
g,t

�
g,t

◆

Some generalizations have also been proposed for the modelling of continuous time

series. For instance the Gaussian MTD (GMTD) (see Le, Martin and Raftery 1996)

which includes additional terms for the modelling of outliers, and the mixture autore-

gressive model (MAR) from Wong and Li (2000).

We must note that MTD is not the only proposed solution to reduce the number of

parameters of a Markov chain. Another example is the Variable Length Markov Chains

(VLMC) model detailed by Bühlmann and Wyner [26] and by Rissanen [125]. This

model assumes that the number of previous values used in the modelling may change

according to the state in which the chain is at time t. Some prediction algorithms

have been tested in the discrete case Begleiter et al. [9]. Shmilovici et Ben-Gal applied

this model to DNA sequences Shmilovici and Ben-Gal [139]. The use of VLMC for the

analysis of categorical sequences in social sciences was developed by Gabadinho and

Ritschard [55].

2.1.4 The Hidden Markov Model

The Markov chains and derived models such as MTD allow only to model variables

that have been really observed, which limits the possibilities. However, a phenomenon
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can sometimes be modelled even if it is not directly observed. We speak then of a latent

process. The observed data are then only the visible manifestation of this phenomenon.

An example is the well-being of a person that cannot be directly measured by a specific

variable, but, instead, that can be represented by several observable variables such as

self-reported health, living conditions, somatic symptoms, etc. In such cases, it may

be better to use a more flexible generalization of Markovian models that we obtain by

adding a latent variable to the model.

The Hidden Markov Model (HMM) is a two level model that has both a hidden

and an observed part. Figure 2.2 (a) illustrates the dependence structure between

both levels. The HMM is used to model the probability distribution of time-depending

sequences of data. Consider a latent variable S
t

taking values in a discrete space {1,...,k}
and an observed variable X

t

in a finite set {1,...,m}. A latent Markov chain with

unobserved states, but whose transition matrix can be estimated, determines the states

of the latent variable. Each state of the latent variable generates the observations of the

visible variable X according to its distribution function. The conditional distribution

of S
t

depends only on its ` preceding states P (S
t

) = f(S
t�1, ..., St�l

). The observed

variable X
t

depends only on the corresponding latent variable value S
t

. This model

may be extended to a continuous variable X.

The HMM has two basic assumptions. The first one is the independence between the

successive observations of X. Conditional on the state that generated the observation

x
t

, x
t

is independent from any other observation x. The second assumption is that the

latent process respects the Markov property.

To specify a standard first-order HMM, we need to estimate the probability distribu-

tion for the initial states P (S1) (vector ⇡ of length k for a first order Markov chain), the

transition matrix A defining P (S
t

|S
t�1) and the output model or emission probabilities

P (X
t

|S
t

). In the discrete case, m� 1 parameters have to be estimated for each state of

S, which makes a total of k(m � 1) emission parameters. Since these parameters and

models do not change over time, the standard HMM is a time invariant model.

In the case of continuous data, if X is a d-dimensional vector of multivariate Gaus-

sian distributions, one element for the mean and the standard deviation of each element

of X is estimated, or in total d parameters for the mean and d(d+1)
2

for the variance-

covariance matrix. In total, we have then kd(d+3)
2

emission parameters, plus k(k�1) for

the (first-order) latent transition matrix, and k � 1 for the initial state probabilities.

The estimation of a HMM was detailed by Rabiner [117] in a very influential paper

about the applications of HMM to voice recognition. MacDonald and Zucchini [88] also

discussed similar applications. HMMs have also been used in various fields including
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graphology and biology Boussau et al. [25], Felsenstein and Churchill [52].

Among other developments, Altman [4] proposed the Mixed HMM. This model

includes the estimation of fixed and random e↵ects. The author describes both fre-

quentist and bayesian estimation, even though convergence with more than one fixed

e↵ect appears to be slow. See also Maruotti [90] for more details about this model.

Continuous state-space models

Unlike the visible part, the latent variable in a HMM is necessarily discrete. If we

relax this assumption and we allow S to follow a continuous distribution, we obtain

a kind of state-space model called Kalman filter, or alternatively a linear Gaussian

state-space model that is also referred to as a linear dynamical system Bishop [23].

It was initially been developed in order to estimate the true location of an object in

space (Apollo mission) and is widely used nowadays in GPS tracking applications. This

framework has been developed in order to estimate a continuous time-varying variable

S (for instance coordinates) that cannot be measured precisely and the observations X

contain some additional noise ✏ with mean zero. As the process evolves in time, one

solution is to estimate it using a weighted average in order to cancel out the independent

error terms, but a much more precise way is to define a probabilistic model that captures

the evolution in time of the latent variable.

The two levels of a Kalman filter may be represented as

S
t

= HS
t�1 + u

t

X
t

= V S
t

+ w
t

with

u ⇠ N(0,�)

w ⇠ N(0,⌃)

where � and ⌃ are the covariance matrices for the error terms u and w. V represents

the visible level model which maps the state space on the observed space and H is

responsible for the transition between the hidden states. The parameters of the Kalman

filter are usually estimated by maximizing the likelihood using an EM algorithm.

2.1.5 The Double Chain Markov Model

The HMM su↵ers an important limitation for the representation of social phenomena:

the lack of direct influence of the past observed values on the current observation of
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𝑋1 𝑋2 𝑋𝑡−2 𝑋𝑡−1 𝑋𝑡 
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(a) HMM 

 

 

 

               

 

𝑋1 𝑋2 ... 𝑋𝑡−2 𝑋𝑡−1 𝑋𝑡 

𝑆0 𝑆1 𝑆2 ... 𝑆𝑡−2 𝑆𝑡−1 𝑆𝑡 

(b) DCMM

Figure 2.2: Structure of the HMM and DCMM models

X. A possible remedy is a generalized version of the HMM called the Double Chain

Markov Model (DCMM) (Figure 2.2 (b)). This model contains the same elements as

an HMM, but with one extension: the successive realizations of the observed variable

are dependant from each other via a second Markov chain. A possible representation

of this model consists in a non-homogeneous Markov model, whose transition matrix is

able to evolve across time. The DCMM is especially suitable to model animal Berchtold

and Sackett [18] and human Chariatte et al. [34] behaviors.

2.2 HMTD model

The Hidden Mixture Transition Distribution (HMTD) model HMTD, together with

its estimation procedure, inference and applications, is the central topic of this thesis.

Similarly to the DCMM, the HMTD model is a two-level model: a visible level that

represents the sequences of successive observations (longitudinal data) and a latent level



16 CHAPTER 2. THE HMTD MODEL AND RELATED CONCEPTS

 

 

 

 

 

               

 

 

 

 

𝐶1 𝐶2 ... 𝐶𝑘 

𝑋1 𝑋2 ... 𝑋𝑡−2 𝑋𝑡−1 𝑋𝑡 

𝑆0 𝑆1 𝑆2 ... 𝑆𝑡−2 𝑆𝑡−1 𝑆𝑡 

𝐶′1 𝐶′2 ... 𝐶′𝑘 

HMTD

Figure 2.3: Structure of the HMTD model

that drives the visible one ? ] (Figure 2.3). The latent variable is categorical, whereas

the observed one can be categorical or continuous, even if we will concentrate in this

thesis on continous variables. The transitions across time in both levels are modelled

by Markovian processes. Each level of the latent variable implies a di↵erent modeling of

the observed process, with possibly a di↵erent number of lags and di↵erent covariates.

It is therefore a kind of non-homogeneous modeling. The di↵erence with the DCMM

lies in the possibility to use a continuous variable at the observed level, and in the

degree of generalization of the model, with the inclusion of various extensions that will

be described hereafter.

2.2.1 The visible level

The observations of the visible variable X can be categorical, discrete or continuous.

They depend on their past values by the means of a Markovian process of order ` > 0

if the variable X is categorical or discrete (` = 0 is equivalent to a HMM, as there is

no longer visible level modeling), or by Gaussian distributions if X is continuous. The

parameters of the visible level (coe�cients, number of lags, mean and variance) depend

on the current latent state S
t

of the hidden Markov chain. Each component (sub-
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model) g can take its own p
g

lags for the mean and q
g

lags for the standard deviation,

and r
g

= max(p
g

; q
g

) indicates the total number of lags necessary for the computation

of the component g (µ
g

or �2
g

). Therefore, equation 2.2 becomes:

F (x
t

|x
t�1 . . . x1) =

kX

g=1

�
g

f
g

�
x
t

|x
t�1, . . . , xt�r

g

�

using Gaussian distributions

f
g

�
x
t

|x
t�1, . . . , xt�r

g

�
= �

✓
x
t

� µ
g,t

�
g,t

◆

where µ
g,t

and �
g,t

are respectively the mean and the standard deviation of the g-th

component at time t.

The dependance between the successive observations is taken into account by consid-

ering the mean µ
g,t

and possibly the standard deviation of each component as functions

of the past. Thus the auto-regressive model is respected for µ
g,t

:

µ
g,t

= �
g,0 +

p

gX

i=1

�
g,i

x
t�i

For �
g,t

several distinct specifications have been proposed by Berchtold [15]:

�
g,t

=

vuut✓
g,0 +

q

gX

j=1

✓
g,j

x2
t�j

, q
g

� 1

�
g,t

=

vuut✓
g,0 +

q

gX

j=1

✓
g,j

(x
t�j

� µ
g,t

)2, q
g

� 1

�
g,t

=

vuut✓
g,0 +

q

gX

j=1

✓
g,j

�
x
t�j

� x̄t�1
t�q

g

�2
, q

g

� 2

Wong and Li [169] also proposed to use an ARCH specification very popular in the

finance field:

�
g,t

=

vuut✓
g,0 +

q

gX

j=1

✓
g,j

✏2
g,t�j

, q
g

� 1

with

✏
g,t�j

= x
t�j

� µ
g,t�j
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The modelling of the standard deviation of each component in addition to its expec-

tation, allows to take into account the possible heteroskedasticity of the data. However,

on the contrary, considering the standard deviation of each component as a constant,

we can reduce the number of parameters to be estimated in the model. Note that

standard deviations that are fixed as constant in time (�2
k,t

= �2
k

for t 2 (1, 2, . . . , T )),

still often imply di↵erent variances for each component: �2
k=1 not necessarily equal to

�2
k=2, . . . �

2
k=K

, in a model with K components (�2
k=1 \ �2

k=2 \ · · · \ �2
k=K

6= ;). It is

therefore important to choose between the optimal fitting of the data and the parsimony.

Besides the temporal dependence between successive observations, X can also be

influenced by covariates that can be incorporated in the HMTD model at both the

latent and the visible level.

2.2.2 Visible level covariates

At the visible level, the covariates are introduced in the model by adding terms to the

autoregressive specification of the mean. This has already been proposed by Berchtold

& Raftery [17] for the MTD model, and applied in the analysis of missed appointments

in a hospital [34], but it was not yet theoretically formalised.

Consider a set of n
cov

covariates Y1, . . . , Yn

. The mean of each visible component

takes then the following form:

µ
g,t

= �
g,0 +

p

gX

j=1

�
g,j

x
t�j

+
n

covX

cov=1

�
g,cov

y
cov

These covariates may be time-dependant or fixed. Numerical covariates are introduced

directly into the model, when dummy variables are used for categorical covariates.

Similarly, covariates could also be included in the modelling of the standard deviation,

but this is more complex since it would require a set of constraints in order to keep the

standard deviation non-negative.

2.2.3 The latent level

The latent part of the model is a discrete homogeneous Markov chain of any order ` (if

` = 0, the HMTD reduces to a mixture model). The discrete latent variable S takes

values in a finite set 1, . . . , k, where k is the number of components of the model. In

the standard case of a first-order Markov chain, k is also the number of states of the

hidden process. The parameters of the latent part of the HNTD model are then the
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elements of the matrix of transition probabilities A = [a
ij

] between the k hidden states,

and ⇡, the matrix of initial probabilities for each state.

Whereas the visible level allows the representation of any type of observed values,

the latent one is separating the observed data into a finite number of di↵erent situations

(components), each of them corresponding to a distinct sub-part of the observed data.

Therefore, the HMTD belongs to the class of non-homogeneous Markovian modeling.

Since the latent transition matrix A is responsible for the switching between compo-

nents, it deserves particular attention especially on the choice of its form which governs

the use of the model. As an example, we consider here a particular situation with k = 4

components for the latent variable S and a first-order dependence (` = 1), but the same

considerations hold for any other choice of k and `.

• If we consider a free form for A i.e. without imposing any constraints during the

estimation, we are in search for the optimal model that describes the data as well

as possible. No hypotheses are made on A in this case. If the model requires

k > 1 latent states (components), the data are considered as non-separable into

homogeneous groups.

• If a diagonal constraint is imposed to A, the HMTD model turns into a tool

for the clustering of data sequences. The identity matrix A indicates that each

sequence is ”trapped” into a single component for the whole observation period.

The components correspond then to clusters. We must note that this precise

specification of the latent part turns the model into a specific mixture model

since no transition between the latent states is possible.

A =

0

BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

CCCA

• Another possibility is to fix the order of transition between the states. This may

be done either compulsory, with no possibility to remain in the same state,

A =

0

BBB@

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1

1

CCCA
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or gradually, by allowing the individual to either stay in the same state, or to

switch to the next state at each period:

A =

0

BBB@

a1 1� a1 0 0

0 a2 1� a2 0

0 0 a3 1� a3
0 0 0 1

1

CCCA

In the latter case, the HMTD model is adapted to represent phenomena that

evolve in time without possibility of backtracking. For example, every distinct

life part (baby, child, teenager, adult, etc.) can be represented by one di↵erent

latent state. Leaving the exact moment of the transition to the next state free

allows for the assumption that the age of the transition is a characteristic unique

to each individual, rather that a general law.

• Several groups of incompatible latent states can also co-exist by using a matrix

of the following form:

A =

0

BBB@

a1 1� a1 0 0

a2 1� a2 0 0

0 0 a3 1� a3
0 0 a4 1� a4

1

CCCA

This structure may be used in the case of a clustering into two mutually exclusive

groups of individuals, keeping a non-homogeneous modeling of observed data

within each group. This may also be interpreted as a kind of fuzzy clustering in

which it is possible for a given observed sequence to be represented by di↵erent

visible models, with a non-null probability to switch anytime from the curent

model to another one. In the example, the sequences are clustered in two di↵erent,

but not necessarily homogeneous groups. Within each group they can still exhibit

particularities by switching between the two states or not. This approach opens

a possibility for simultaneously modeling and clustering the data sequences.

• The last matrix can also be modified in order to allow a transition from one group

to another, but without transition in the opposite sense (one way only transition
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between groups):

A =

0

BBB@

a1 1� a1 0 0

a21 a22 1� a21 � a22 0

0 0 a3 1� a3
0 0 a4 1� a4

1

CCCA

This can correspond to individuals that su↵ered a major and irreversible event

in their lives, like an accident with severe disability consequences. The first two

latent states correspond then to the life before the accident, and the two others

to the post accident situation.

Besides A, we also need an initial probability matrix ⇡ that determines the proba-

bility of appartenance of the first ` (order of the latent Markov chain) observations of

each sequence to each group. In the case of a first-order matrix, ⇡ is a vector of size k

with one probability for each component of the model, but in the case of higher-order

models, ⇡ becomes a multidimensional array of size (k`�1, k, `).

The aforementioned examples of A illustrate the large flexibility of HMTD modeling

and its adaptability to various situations. However, a further step can be taken by

adding covariates at the latent level too.

2.2.4 Latent level covariates

One motivation for the inclusion of latent covariates is the unequal probabilities accross

individuals with di↵erent characteristics to belong to a given cluster. Such is the case,

for instance, for the access of men and women to high responsibility positions, or for

kids from di↵erent minorities to achieve higher education in some countries. These

examples clearly suggest a di↵erence in the initial cluster probabilities based on known

individual characteristics.

Since clustering is the main objective of this thesis, the matrix A is most often

constrained to be diagonal, even though the other specifications discussed previously

could also be useful in some cases. Therefore, the only possible influence (and the

most intuitive one) of covariates on the latent part of the HMTD model is via the

matrix of initial probabilities ⇡. When A is diagonal, it is necessarily of first-order, and

⇡ = [⇡1, . . . , ⇡k

] is a (1⇥ k) vector.

In our specification of the HMTD model, the latent covariates influence the initial

probabilities ⇡ via a multinomial logistic regression. For each covariate, we then need
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to estimate k� 1 additional parameters (c⇥ (k� 1) in total if c is the number of latent

covariates)

f(g, i) = �0,g + �1,gx1,i + �2,gx2,i + · · ·+ �
c,g

x
c,i

where f(g, i) is a linear function that predicts the probability of sequence i to be

assigned to component (or cluster) g, �
c,g

is the regression coe�cient associated to the

c-th latent covariate to explain membership to the g-th component. In matrix form, we

have

f(g, i) = �0g + �
g

x
i

f(g, i) = ln

✓
P (i = g)

P (i = ref)

◆

where ref denotes the reference component chosen for the multinomial regression.

Since the individual corresponding to each observed data sequence can have its own

characteristics, hence its own covariate values, a di↵erent ⇡ vector has to be estimated

for each individual i with probabilities

⇡̂
ig

= P (i = g) =
exp(f(g, i))

P
g=k

g=1 exp(f(g, i))

As the use of multinomial regression allows, any type of covariates may be used

(continuous, discrete as well as nominal). Indeed a non-linear relationship with covari-

ates may also be added i.e. �f(x) instead of �x, for example to investigate a possible

quadratic e↵ect of age. However the linearity in parameters is still respected.

The output of the latent covariates model is a n⇥k matrix ⇡̂ of estimated probabil-

ities, where each line contains the probabilities of individual i to belong to each cluster.

As a consequence, we do not dispose of a single vector of latent initial probabilities

⇡, but instead we have one ⇡̂
i

for every individual. However, notice that whatever

the number of individuals or sequences n, the number of parameters to be estimated

through the multinomial regression is always c(k � 1).

We must note that if only categorical covariates are introduced at the latent level,

we will have at most
Q

g=c

g=1 mg

distinct estimated vectors ⇡̂
i

instead of n (provided that
Q

g=c

g=1 mc

< n), where m
g

is the number of modalities of the g-th covariate, and c the

total number of covariates. In other words, individuals with the exact same values on

all covariates will have the same initial probability vector ⇡. On the other hand, when

at least one covariate is truly continuous, with a di↵erent value for each individual,

then this case will not happen and each individual will have its own ⇡̂
i

.
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The advantage of the inclusion of latent-level covariates is that the reestimation of

the initial probabilities ⇡ can take into account the own characteristics of each indi-

vidual. In the clustering framework discussed in this thesis, this is even more crucial,

since ⇡ is the only parameter at the latent level that is not fixed (A being an identity

matrix in the most standard specification).

The ⇡
i

vectors of initial probabilities influence the membership of each observed

sequence to a specific component of the model, but the final assignation of each sequence

to the most likely component is realized through the Viterbi algorithm Viterbi [165].

This algorithm will be discussed later in the chapter dedicated to the estimation of the

HMTD model.

2.2.5 Multi-sequence datasets

Even though if is perfectly possible to apply the HMTD model on a single long time

series, in the context of social sciences it is more common to apply it to a large number

of sequences in parallel, each one corresponding to a di↵erent individual in the sample.

Moreover, when using the HMTD for the purpose of clustering, it is of course mandatory

to have more than sequence. In order to obtain a sample that is representative of the

population uner study, it is common to associate a sampling weights to each sequence.

A correct analysis of the data requires these weights to be taken into account. In the

case of HMTD, each sequence may be of a di↵erent length and it only influences the

final results proportionally to this length. Therefore, if we replace the information on

length by a vector of weights, it is straightforward to integrate sampling weights during

the estimation of an HMTD model.

2.2.6 Choice of Gaussian distributions

One decisive advantage of the HMTD approach is that it is extremely versatile, with the

possibility to work with di↵erent types of data, to model and to cluster data sequences,

and to include covariates and large order time dependence into the modelling, while

remaining very parsimonious. For continuous data, Gaussian distributions are generally

used at the visible level, but any other continuous distribution could be chosen as well.

However, following Rossi [128], there are two main reasons why Gaussian distributions

are often preferred: one of them is the possibility to model univariate data as well

as multivariate data, but the most important one is the ability to approximate any

other distribution by a mixture of Gaussian distributions, using only a relatively small

number of components.
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Identifiability of the model

Generally a model is identifiable if every parameter set defines a unique density

function, that is:

f(x,⇥
i

) = f(x,⇥
j

)

if and only if ⇥
i

= ⇥
j

.

In mixture models this definition includes two types of identifiability, as discussed in

the literature: the one of the probability density function of the mixture, but also one of

the parameters permutation (a.k.a. labelling identifiability, source of the label-switching

problem). In the latter meaning of the term, the parameters of a mixture model are

not identifiable because there exist k! di↵erent permutations of the k components that

all result in the same cumulative density function. It will be discussed later in the

label-switching section.

Here we will explore the identifiability in terms of uniqueness of density of the

mixture for each parameter set. This represents a major issue that comes prior to

the parameter inference and answers the question whether distinct sets of parameters

result in distinct mixture distributions (regardless of the parameters’ order). A mixture

is defined as identifiable if every distinct set of parameters (⇥
i

6= ⇥
j

) generates a

distinct mixture density. As we deal with longitudinal data, we also need to discuss

the identifiability of parameters across time. Tse and Anton [159] provide a necessary

condition for identifiability of parameter ⇥ in this case: there exists an infinite set of

non-negative numbers S such that for t 2 S with non-zero probability

P (x
t

|X t�1,⇥
i

) 6= P (x
t

|X t�1,⇥
j

)

where X t�1 = {x1, x2, . . . , xt�1}, ⇥i

6= ⇥
j

.

This concept is important because if a mixture model is identifiable, sampling from

it would converge to the exact correct parametrization as the sample size increases.

However, we must note that the lack of identifiability does not necessarily mean that

the model is di�cult to estimate.

Recall that in our case, the model that we use for clustering is a generalization of

mixture of Gaussian distributions. The particularity of the model structure, compared

to a Gaussian mixture, is the presence of auto-regressive dependence on past obser-

vations included in the calculation of the parameters (means and variances) of each

Gaussian distribution within the mixture. Therefore we can separate the identifiability

problem in two sub-problems: identifiability of a finite Gaussian mixture model and of

an auto-regressive AR process.
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In his paper from 1961, Teicher [154] is the first author to define the identifiability

conditions for a mixture model. Later Teicher [155] (1963) also proved that a finite

mixture of Gaussian distributions is identifiable (for more details see also Titterington,

Smith and Makov [156] and Yakowitz and Spragins [173]).

This reduces the question about the identifiability of the model to the problem

whether the parameter equations for the means µ
g,t

= '
g,0 +

P
p

g

i=1 'g,i

x
t�i

and the

variances �2
g,t

= ✓
g,0 +

P
q

g

j=1 ✓g,jx
2
t�j

of each component g are identifiable.

If we take the example with the mean expression, it can be rewritten as the following

AR(p
g

) process:

X
t

=

p

gX

i=1

'
g,i

X
t�i

+ '
g,0 + ✏

t

where '
g,0 is a constant and ✏

t

is normally distributed with 0 mean and finite variance

�2
g,t

Equivalently the process is represented as:

'(B)X
t

= ✏
t

+ '
g,0

where '(B) = 1� '1B � '2B2 � · · ·� '
p

g

Bp

g .

This process has a unique solution (p
g

roots), which is also stationary if the roots of

'(B) are not located on the unit circle: |B| 6= 1 or '(B) = 1� '1B · · ·� '
p

g

Bp

g 6= 0.

To summarize, we have an identifiable process (AR) that determines the parameters

of another identifiable model (finite Gaussian mixture), therefore the complete model is

identifiable. The parameters of the Gaussian distributions (µ and �) are not necessarily

fixed and can be recalculated on each time period. Here we need to mention that the

identifiability is a theoretical property of a model which does not depend on the observed

data but only on the model. It states that by increasing the number of observations

to infinity, the parameter estimates converge to the unique set of parameters which

determine a unique density function.

Finally it is important to mention that despite the fact that the property is re-

spected, identifiability issues may appear when over-fitting the mixture model by adding

too many components. In this case either some of the components become null and

do not include any observations, or a single cluster is covered by two or more similar

components (see McLachlan and Peel [94]).
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2.3 Alternative clustering and classification meth-

ods

2.3.1 Unsupervised versus supervised clustering

The clustering and classification of time-varying data is one of the central topics of this

thesis. In this section, we provide a small overview of clustering methods that have been

applied on continuous sequences. However at first a brief clarification of the distinction

between clustering and classification must be done.

Put simply, a classification is the task of learning how to assign sequences to pre-

defined classes, whereas in clustering these classes do not exist a priori and they have

to be found from the data. In a machine learning perspective, one opposes supervised

learning (classification) where a training dataset defines the classes, and unsupervised

learning (clustering) where no data class membership is observed. In the former, one

attempts to find the features of the data that match a defined partitioning output. In

the latter, one attempts to find the partitioning that regroups the observations at best.

2.3.2 Sequence clustering: The longitudinal data and time se-

ries problematic

As we discuss the clustering of continuous longitudinal data, we cannot omit one very

important particular case of longitudinal data: time series. Often, the problematic in

time series clustering is very similar to the one of longitudinal data. In the former

usually, the number of time periods t is larger than the number of sequences n, whereas

in the latter n > d. Another belief that is generally assumed (but not necessarily always

correct) is that longitudinal data are a collection of iid variables observed over time,

whereas time series are observations of stochastic processes that might be dependant.

Since there is no clear distinction between both cases, we will discuss the di↵erent

approaches that can treat both data types, while still focussing on the ones that have

also been applied to social sciences longitudinal data.

Three particular types of clustering are known in time series clustering according

to Aghabozorgi, Shirkhorshidi & Wah [2]: “whole time-series clustering”, “subsequence

clustering” and “time point clustering”. The first type aims to partition di↵erent series

with the use of dissimilarity measures. The second type includes clustering of di↵erent

smaller parts (time windows) of the same long sequence, and the time point clustering

is di↵erent from “whole time-series clustering” only by the fact that some points may
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be considered as noise instead of being a part of a cluster. Therefore, only the “whole

time-series clustering” is applicable to our research.

On the contrary of time series, in longitudinal data, and especially in the social

sciences, it is rare to cope with very long sequences, and therefore dimensionality re-

duction is less important than in time series clustering, except when the data are

multidimensional with a very large number of possibly correlated variables. In this

case, the multidimensionality would require feature selection (or extraction) prior to

the partitioning of the data, but this is relatively rare in social sciences.

Another particularity of longitudinal data clustering is the frequent use in practice

of well known and approved transversal methods instead of proper longitudinal ones. A

possible reason may be the scarcity of methods really adapted to continuous longitudinal

data, the smaller number of software implementations of such methods, or the more

limited popularity of the longitudinal approaches. In the next section, we present

several frequently used clustering alternatives. We also discuss the advantages and

disadvantages of their use when dealing with data sequences.

2.3.3 Aims and assumptions in continuous sequence clustering

One of the particularities of continuous data clustering in practice lies in the sensitivity

of the partition results with respect to the clustering method, the number of clusters,

or the parameter estimates. The variety of approaches for the clustering of continuous

data sequences necessarily results in large di↵erence among results (partitions). One

reason is the di↵erent underlying assumptions of each method, or in other words, the

characteristics chosen by the researcher in order to define the similarity or dissimilarity

between two sequences.

Even if there is no need for a dimensionality reduction to be performed, time-series

(as well as longitudinal data) clustering diverges in general in function of the point of

view taken by the researcher, and in function of the assumptions of the di↵erent methods

regarding the notion of similarity between sequences. Aghabozorgi, Shirkhorshidi &

Wah [2] distinguish three ways of time series partitioning:

• In time - One is interested in finding sequences that change together or simulta-

neously. Their correlation is measured during the same time periods.

• In shape - Similar paterns of evolution are researched, despite possible di↵erences

in timing. An example is the Dynamic Time Warping approach.
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• In change (structural) - A typical behaviour accross time, such as an autoregres-

sive structure for instance, is researched within each sequence. This is the case of

the HMTD model clustering that we are interested in, but also of HMM, ARIMA,

GARCH models, etc. A model is fitted to each sequence, and the dissimilarity

between sequences is captured by the di↵erence in the parameters that we obtain.

Another example of “in change” partitioning is based on global features that have

been extracted from every sequences Wang, Smith and Hyndman [167]. Simple

features such as skewness, kurtosis, seasonality, trend etc. are extracted from

the sequences and used as input for other clustering approaches (though usually

transversal) such as Self-Organizing Maps (SOM) or K-means for instance. We

can qualify this method as a feature extraction procedure and therefore it could

be more useful in large data (in terms of number of sequences but especially in

number of periods). However, covariates appear to be not usable in this procedure,

what we consider as an important limitation.

Aghabozorgi, Shirkhorshidi & Wah [2] state that similarity measures based on the

shape of the sequences are more often used for short sequences, whereas structure-based

approaches are more appropriate for long time series. However, no objective threshold

is discussed for the respective e�cacy of each approaches, and there is no objective rule

for choosing. Approaches based on dynamic programming appear to be most e↵ective

according to the authors.

The shape-based approaches are also based on raw (untransformed) data. They

usually use distance similarity measures combined with conventional clustering methods

that are adapted to transversal data (like SOM for instance). The adaptation to time-

varying data is made through the selection of proper similarity measures.

2.3.4 Dimensionality reduction

Many longitudinal data studies are characterised by a large number of variables whose

mutual (in)dependence is not known and must be considered. Surveys are overwhelmed

with potential correlations and therefore clustering is also often combined with dimen-

sion reduction methods, i.e. feature extraction or feature selection. Besides the case

when there are too many potentially not important variables that need to be reduced

in order to perform proper clustering, feature extraction may be performed before a

standard clustering method also in order to neutralise outliers. A Principal Component

Analysis (PCA) for instance can be used to combine several variables into one, but by
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doing this it also reduces the influence of the outliers when they are projected to the re-

sulting components. A clustering on these components instead of the original variables

may then be a simpler and more e�cient task, with more interpretable results. Various

other feature extraction or reduction techniques exist and some of them can also be

used when dealing with very long sequences. However, this topic is less discussed in

social sciences, and it is not central in this thesis.

2.3.5 Transversal methods

A time serie X = X1, . . . , XT

can also be represented as a unique point in a multi-

dimensional space, where each dimension d represents an observation of the serie at

time t. Therefore, the number of dimensions represent the number of measures in

time D = T . By making this representation, we lose the notion of sequence, which

implies numerous problems especially related to the interpretation of the clusters. For

example, groups can often be formed simply because they are in similar states in one

or more disjoint periods, what is a non-sense in terms of interpreting the partitions.

Therefore, it is important to take into account that a time serie (and longitudinal data in

general) cannot be represented as simple collection of points in a T -dimensional space,

because often in reality the T distinct dimensions are far from being independent. Since

we do not consider the crucial information of the ordering of the measures, the time

dependence between the observation is lost.

However, it is not uncommon for these methods to be used on time-dependent

data, so we briefly present some examples. Some researchers are ready to sacrifice this

loss of information for the sake of simplicity and the possibility to use more advanced

transversal methods. This is most often done with discrete or categorical data. But

there exist also a non negligible number of continuous longitudinal data clustering

problems that have been treated using transversal tools. Therefore, it is necessary to

briefly overview some of the frequently used transversal models.

Some of these methods make use of a given metric indicating a distance between

sequences. After the distance between every pair of sequences is computed, a distance

matrix is constructed and used to create clusters. Multidimensional clustering methods

are often directly applied on the sequences, neglecting the time order. Depending on

the approach, the distance can be measured between static points in a multivariate

space, rather than between ordered time-varying sequences. An issue of such procedure

is the possibility to form clusters based just on the proximity at a single time point (for

instance at t=5), that can be considered as the “most discriminant dimension” of the
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data. This procedure can be criticised, because it is based on distance measures that

are di�cult to interpret for time-dependant data, since they neglect the evolution and

dependence in time. Some specific procedures are described hereafter.

Optimal matching

One of the most used algorithm for measuring the distance between data sequences,

especially in the social sciences, is the Optimal Matching (OM). We already mentioned

the important inconvenients of this method, but it is important to mention that it does

not belon to the model-based clustering procedures, since it is a data-driven approach.

Therefore, no inference on the results seems feasible. It is also more appropriate for

discrete and nominal data, but applications on discretized continuous data are also

frequent. Once the dissimilarities between data sequences are found, classical clustering

tools may be applied.

Multidimensional scaling

Multidimensional Scaling (MDS) is an alternative method generally used on transversal

data. This is a form of non-linear dimensionality reduction. It is frequently used

as a data visualization technique taking a distance matrix as input and returning a

coordinate matrix, using eigenvalue decomposition, which minimizes a loss function.

K-means

One of the simplest and most popular transversal clustering method is the K-means al-

gorithm. It separates data observations into k di↵erent clusters, where each observation

is associated to the cluster with the closest mean µ
j

.

Even though it is mostly associated with means, what the k-means algorithm per-

forms is essentially variance minimization. The function F () (representing the sum of

squared errors within the clusters) is minimised:

F =
kX

j=1

n

jX

i=1

(||x(j)
i

� µ
j

||)2

where n
k

is the number of data points in the k-th cluster and x are the observations. K-

means (like the EM algorithm) iterates between two repetitive steps until convergence.

After randomly attributing each observation to a class, one first computes the mean of

each class (E-like step) and then the observations are re-assigned to the nearest cluster
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by minimizing the distance to the cluster means (M-like step). The algorithm stops

when no more observation moves from one class to another (see Bishop [23]) .

Though being basically a transversal data-driven method, a version of k-means

(called KmL) was developed for longitudinal data clustering by Genolini and Falis-

sard [57] in 2010. However this method seems to ignore the time sequencing of the

observations, by computing the Euclidean or Manhatan distance between sequences.

Thus we return to the situation in which a sequence is viewed as a single point in a

multidimensional space, with all its related issues. Moreover, this approach can also

be criticised, since it uses the Gower adjustment of the Euclidian distance, and this

adjustment simply ignores the time periods where missig observations occurs:

D
Gower

(x
it

, x
jt

) =

vuut 1P
!
ijt

TX

t=1

(x
it

� x
jt

)2 ⇤ !
ijt

where !
ijt

= 0 if one of the sequences (x
i

or x
j

) in unobserved on time t, and 1 otherwise.

That leads to a clustering based only on a part of the available data.

Neural networks and self organizing maps

Neural Networks, inspired by the central nervous system in biology, are statistical learn-

ing models that are mainly used in machine learning and particularly in supervised

learning where we usually need to observe some output before using the model. There-

fore, they are more suited for classification rather than for clustering. Some related

models, such as Self Organizing Maps (SOM) invented by Kohonen [81] and Adaptive

Resonance Theory, were however developed to perform clustering. The latter has also

been applied to the clustering of time-varying data Tomida, Hanai, Honda & Kobayashi

[157].

SOM are a tool for the visualization of high-dimensional data, and it attempts

to “convert complex non-linear statistical relationships between high-dimensional data

items into simple geometric relationships on a low-dimensional display” Kohonen [81].

Therefore, it is a dimensionality reduction tool (most often on two dimensions) and it

relates to a non-parametric regression model.

A distance measure is used by SOM in order to select the best node (best matching

unit). This is again an important part of the procedure which indicates its perfect adap-

tation to multivariate data, but also an inconvenient when dealing with time-varying

sequences. Nevertheless, SOM has been applied for time-varying data clustering, for

example by Cherif, Cardot & Boné [35] and Sarlin [133]. The conclusion of these au-
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thors was that the results depend on the seasonality and on the characteristics of the

series.

2.3.6 Longitudinal methods

Even if they are less known than models for the clustering of transversal data, there

exist clustering models that are adapted to time-varying continuous data. Even though

some of them were developed in other fields and are not popular in social sciences,

we introduce now several of these models and we discuss briefly their advantages and

disadvantages.

Functional clustering

The basic idea of Functional Data Analysis (FDA) is to represent each data sequence

by a smooth function. Functional data techniques are also often applied to time series

Pérez, Cao & Vilar-Fernández [110]. Each sequence X
t

is seen as a curve and it is

expressed as a linear combination of basis functions b
f

(like splines for example):

X
i,t

=
X

f

c
i,t

b
f

(t) + ✏
i,t

Each sequence is approximated using traditional methods. For the sake of computa-

tional simplicity, the linear methods are generally preferred Rossi [127]. The analysis is

then performed on the functional representations, instead of on the sequences of original

observations.

Chiou and Li [36] group longitudinal data using functional clustering (a method

they called k-centres functional clustering). As a functional analysis method, the aim

is to find a particular shape of trajectory, or a representative curve pattern, that fits

well as many sequences as possible. At the beginning, data curves are fitted using

spline approximations. One attempts to find the cluster to which an observed curve

x
i

belongs to by minimizing the distance to the cluster curve (truncated Karhunen-

Loève expansion x̃k with its own mean and covariance structure) over all clusters k 2
{1, . . . , k}:

k̂(x
i

) = argmin||x
i

� x̃k||
Functional methods provide interesting results in long time series, but they are less

used when the length of the sequences is small, because in this case the possibility of

over-fitting is important. This problem is also very well known in spline approximation,
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when the bandwidth is reduced, and this is also the case when we work with short

sequences which are typical in social sciences longitudinal surveys.

A popular approach that can be applied in FDA are the wavelet transforms that

can also be used in time series clustering. Applications of wavelets for clustering exist

in the recent literature such as Antoniadis et al. [5]. The clustering strategy they

implemented consists in four steps. At first the data are preprocessed and paths are

estimated. Then the feature extraction is performed and the most relevant features

are selected. The number of clusters is chosen and, finally, the sequences are clustered

using a k-means algorithm with the selected features.

Other examples are provided by Song et al. [142] who first determine the functional

principal components (FPCs) using basis function expansions, then perform a clustering

based on the FPC scores, while Leng and Müller [85] represent the expression profiles

using a linear combination of FPCs and perform a functional logistic regression of the

scores to classify the expression profiles into groups. The main problem lies in the choice

of the number of basis functions and of the nots (the joint points of these functions),

which introduces the problem of under- or over-fitting the data.

As a kind of summary, Jacques and Preda [68] separate functional data clustering

methods into four groups:

1. In raw-data methods, one does not need to reconstruct the functional form of the

data since the function is considered to be directly observed on a large number of

points. However no place for observation errors is left in these methods and they

are not recommended by the authors.

2. In filtering methods, the curves are first approximated into a finite basis of func-

tions (a form of dimension reduction) using splines or functional PCA for instance.

Then, a clustering (such as k-means or SOM) is performed using the resulting pa-

rameters or coe�cients.

3. The adaptive methods perform simultaneously dimensionality reduction of the

curves and clustering, leading to a functional representation of data depending

on clusters. Instead of taking the coe�cients on the last point as fixed, they

are considered as random variables following a given distribution that is proper

to each cluster. A probabilistic modelling either on expansion coe�cients or on

functional PCA scores is performed.

4. In distance-based methods, the clustering methods use measures of distance or
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dissimilarity between two functions. Depending on these measures, a relation

with the first two methods is possible.

Dynamic time warping

Very popular in speech recognition, Dynamic Time Warping (DTW) is an algorithm

for measuring the similarity between two time series (discrete or continuous). A partic-

ularity of this method is that the similarity may vary in speed between the series. For

instance, a slow or a fast pronunciation of the same sentence are equally recognisable.

If we take an example of two sequences X = {x1, x2, ..., xn

} and Y = {y1, y2, ..., xm

},
in order to align both series using DTW, one first constructs an n ⇤ m matrix D of

squared distances where the element D
i,j

indicates the distance between the corre-

sponding points d(x
i

, y
j

). If we name p a given path from d(1, 1) to d(n,m) defined as

p = {p1, ..., pl, ..., pL}, pl = d(x
n

l

, y
m

l

), L = n +m � 1, the DTW would correspond to

the path trough the distance matrix that minimises its total distance:

DTW = min
p

{
L

pX

i=1

d
n

i

,m

i

}, p 2 P nm

where P is the set of di↵erent paths trough the matrix D. If we see the distance path

as a cost function, the aim of the DTW is to find the optimal alignment between a pair

of sequences by minimizing the cost function. Therefore, the path trough the lowest

values (“valleys”) of the distance matrix is found. This indicates that one finds the

smallest distances, even if the time indexes of one of the series are delayed. Being a

distance measure, DTW needs to be combined with a clustering algorithm (such as the

k-nearest-neighbour for instance) in order to cluster sequences.

Mixed e↵ect analysis models

Co↵ey, Hinde and Holian [38] use a mix between functional analysis and mixture model

called curve-based clustering methods for time-course gene expression data. In a first

step, they attempt to smooth the sequences in order to eliminate the noise from the

measurement and to recover the missing data. A spline regressions approach (penalized

spline) is chosen by the authors and a penalization of the curvature is used to prevent

over-fitting. Then, they use mixtures of mixed e↵ect models for the clustering of the

smoothed series. In this case, each model includes a given time e↵ect. However, more

complex non-linear time e↵ects could be di�cult to capture by this approach.
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Growth mixture models

GMM Model-based clustering is very popular since several decades. In particular,

di↵erent variants of mixtures of linear models have been applied for the clustering of

longitudinal data Ciampi et al. [37]. For instance, Celeux et. al [31] and McNicholas

and Murphy [95] applied mixtures of linear mixed models to cluster gene expression

data. Celeux et. al [31] chose the LMM in order to take into account data variability

and considered a mixture of LMM in order to cluster the gene sequences. McNicholas

and Murphy used a modified Gaussian Mixture model (the ”expanded parsimonious

Gaussian mixture model (EPGMM) family”) in order to obtain a specific covariance

structure. However, the most popular example of mixture modelling (especially used

in longitudinal data studies in the social sciences, but also in medical research etc.)

are the Growth mixture models (GMM 1). In order to evaluate the performance of the

HMTD approach as a tool for clustering sequences of continuous data, a gold standard

alternative has to be used, and the GMM approach appears to be the most obvious

choice especially in the domain of social sciences.

Growth modelling includes many often similar models that aim to discover the

patterns of (and model) individual change in a longitudinal data framework Reinecke

and Seddig [123] McArdle and Epstein [92]. Basic growth models assume that all

trajectories belong to the same population and may be approximated by a single average

growth trajectory using a single set of parameters. There exist several models with

similar assumptions. Such are the latent class growth analysis LCGA which assumes

null variance-covariance for the growth trajectory within each class Nagin [105]Jung and

Wickrama [74], and the heterogeneity model Verbeke and Lesa↵re [161] which goes a

bit further, but still imposes the same variance-covariance structure within each group

of subjects. Therefore, the more flexible GMM will be discussed in this section and

used later on in our analysis as gold-standard.

The GMM developed by Bauer [8], Muthén and Shedden [104], Wang and Bodner

[168] is a model designed to discover and describe the unknown groups of sequences

that share a similar pattern. This method may be represented as a mixture of mixed-

e↵ects models and each of the unknown sub-populations follows a distinct linear mixed

e↵ect model. Its main advantage over other similar models (like the heterogeneity

model Verbeke and Lesa↵re [161]) is that it allows for the estimation of a specific

variance-covariance structure within each class Francis and Liu [53]. Within-class inter-

1Note: from now on GMM denotes Growth Mixture Models and no longer Gaussian Mixture

Models
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individual variation is allowed for the latent variables via distinct intercept and slope

variances, represented by a class-specific fixed e↵ects and random e↵ects distribution. In

other words, the variation around the group-specific expected trajectory is distinct for

each group, which implies heterogeneity in the growth trajectories. These advantages

made the model a reference in the continuous longitudinal data modelling with various

applications in criminology Francis and Liu [53], Reinecke and Seddig [123], health and

medicine Muthén and Shedden [104], Ram and Grimm [121], psychology and social

sciences Muthén [102] among others.

The GMM contains two parts and uses both observed and latent variables. The

observed ones consist in a p-dimensional vector of continuous dependant variables X

(often a variable with repeated measurements) and a q-dimensional vector of covariates

Y . The latent variables are represented as a continuousm-dimensional vector ⌘. Finally,

to indicate the group into which each subject is classified, a dummy variable with

multinomial distribution is used and stored in a k-dimensional binary vector c Muthén

and Shedden [104]. The equation of the GMM for an individual i is then

X
i

= ⇤⌘
i

+ ✏
i

(2.3)

where ⇤ is a p ⇥m parameter matrix (or matrix with basis vectors) that can be seen

as a matrix of factor loadings; ⌘
i

is a vector of latent continuous variables and ✏
i

is the

error term vector with zero mean.

In our case, the matrix ⇤ of latent variable parameters has one column with param-

eters for the latent factor accounting for the intercept and another one with parameters

for the latent factor accounting for the slope.

The general equation for every ⌘ is:

⌘
i

= Ac
i

+ �y
i

+ ⇣
i

(2.4)

where � is a m ⇥ q parameter matrix, ⇣
i

is a m ⇥ 1 vector of zero mean residuals

(and covariance matrix  ). A is a matrix containing columns of intercept parameters

for each class and c
i

is a vector of dummy variables indicating which latent group the

sequence i belongs to.

If we make the assumption that some time-independent covariates z could influ-

ence the distribution of the group membership c
i

, a multinomial logistic regression is

considered (with parameters a and b):

P (c
i

= k|z
i

) =
expa

k

+b

k

z

i

P
k

c=1 exp
a

c

+b

c

z

i
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An alternative notation of the first part of the model for a subject i being part of

class k at time t is:

X
i,t|c

i

=k

= Y1i(t)
T� + Y2i(t)

T�
k

+ V
i

(t)Tu
ik

+ w
i

(t) + ✏
i,t

(2.5)

where Y1i is vector of covariates with common fixed e↵ects �, Y2i is vector of covariates

with class-specific fixed e↵ects �
k

, V
i

is a set of covariates with individual class-specific

random e↵ects u
ik

. Finally, w
i

(t) is an autocorrelated Gaussian process with null mean

and covariance equal to cov(w
i

(t)w
i

(s) = �2
w

exp(�⇢|t� s|). Note that the equation 2.5

is equivalent to the more general equation 2.3.

Further developments of the GMM exist, such as the non-parametric GMM which

uses a non-parametric distribution for the random e↵ects (NGMM Muthen and As-

parouhov [103]), but they will not be discussed here because they do not compare

directly to the HMTD.

The GMM is estimated by maximization of the likelihood using an ordinary EM

algorithm. The continuous latent variables ⌘ and the group membership variables c are

considered as missing data. We used the R package lcmm Proust-Lima, Philipps, and

Liquet [113] to compute the GMM.
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Chapter 3

Estimation of the HMTD model

In this chapter, I discuss the estimation of the HMTD model and I propose a new ad

hoc heuristic adapted to the specificities of the model. 1

3.1 Introduction

Depending on its specification, the estimation of the HMTD model is not straightfor-

ward. Considering that the GMTD model, the MAR model and even a basic finite

mixture model could be represented as special cases of HMTD by fixing some param-

eters to zero, we understand how adaptable the model is. However its versatility and

adaptable nature present also an important challenge when we attempt to implement an

estimation procedure able to cope with all possible specifications of the model. As we

will discuss in this chapter, such general estimation procedure should not rely directly

on the Likelihood derivatives. One of the ways to achieve this goal is the development

of a heuristic optimization method that should be as fast as possible, but also it needs

to reach an optimum of the likelihood.

Many studies deal with the problem of finding the optimum of a function without

using its derivatives. Although numerous methods cope with this problem, some more

popular than others, there is no unique method that can optimally cope with all the

situations. In this paper, we present a search method with hill-climbing features specif-

ically designed to deal with the maximization of the log-likelihood of a hidden mixture

transition distribution (HMTD) model for continuous variables, but which could also

1A short version of this chapter has been published as Taushanov Z & Berchtold A (2017). A

direct local search method and its application to a markovian model. Statistics, optimization and

information computing 5:19-34. doi:10.19139/soic.v5i1.253 Taushanov and Berchtold [152].

39
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be used in many other problems that have similar characteristics. One advantage of

this method appears when we do not have a fixed set of constraints, but we cannot ac-

cept all mathematically correct solutions. For instance, an extremely high value for the

autoregressive coe�cient of the mean appears occasionally as the most likely solution

through the Nelder-Mead method, but such a value is non-interpretable with regard to

the data meaning. This occurs especially in the case of datasets containing either short

sequences or a small number of sequences. As a local search, our approach begins to

explore the neighbourhood of the initial solution without going too far in the parame-

ter space, thus avoiding aberrant solutions or numerical irregularities in the objective

function.

In this chapter, we explore the potential of the aforementioned method to improve

the estimation of the parameters of an HMTD model for continuous variables. This

model can be used to both describe (model) longitudinal data and cluster multiple

sequences. The most time-consuming part of the modelling is the estimation of the

parameters that maximize the log-likelihood. As the log-likelihood equation is not

easy to derive explicitly, we need a procedure that allows us to rapidly maximize our

log-likelihood function without using any derivatives. In the following sections, we

briefly present the HMTD estimation tools and procedure, followed by our heuristic

estimation procedure, which we compare with some other well-known heuristic methods,

and finally, we present and analyse the results of di↵erent numerical experiments.

3.2 Estimation principles

3.2.1 Log-likelihood computation and the EM algorithm

Before introducing the likelihood equations of the model, we need to present the context

of its computation. Let us first consider the case of the simpler HMM that implies no

dependence between the observations, but on a latent level. In this case the likelihood

is obtained by marginalizing over the latent variables S: p(X) =
P

S

f(X,S|⇥). As

stated by Bishop [23], the problem is that we have to sum over exponentially many

paths (kn) through one latent chain of length n, which is impossible even for a small size

dataset. Furthermore, the likelihood function consists in a summation over the visible

models for the di↵erent possible settings of the latent variable, which results in complex

expressions when maximizing the likelihood. Since the latent states that generate the

data have di↵erent distributions at each t, depending on the previous states, we need

to pass through every possible paths (among T k paths in total). Therefore, in order to
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find a more e�cient way to maximize the likelihood, one must estimate the distribution

of the unobserved part of the model. For this reason a version of the Expectation-

Maximization (EM) algorithm first published by Dempster, Laird & Rubin [41] is used.

In its basic form, the EM algorithm consists in two steps alternating until conver-

gence: First, initial values for all the visible level parameters

⇥0 = {✓00,1 . . . ✓0
q,k

,�0
0,1 . . .�

0
p,k

} are chosen. Then, in the Expectation step, using this

initialization, the posterior distribution of the latent states is estimated P (S|X,⇥0)

(specified by the transition matrix A and initial probabilities vector ⇡). The so-obtained

⇡̂ and Â are used to calculate the expectation of the complete data log-likelihood

Q(⇥|⇥0) = E
S|X,⇥0(lnP (X,S|⇥)).

In the M-step one attempts to find the visible parameters ⇥ (⇥ = {✓,�} in the HMTD)

that maximize the quantity:

⇥1 = argmax
⇥

Q(⇥|⇥0)

Then the latent parameters are estimated again and the log-likelihood is recomputed,

and so on until convergence.

Let us now illustrate the likelihood computations with the HMTD equations. To

begin, we consider only the visible level of the model. Considering that the model is a

mixture of Gaussians with �
g

indicating the weight of the g-th mixture component

F (x
t

|x
t�1 . . . x1) =

kX

g=1

�
g

f
g

✓
x
t

� µ
g,t

�
g,t

◆
,

we can write the likelihood of a series x
r+1 . . . xT

knowing the previous r observations

as:

L(⇥|X) = f⇥(X) =
TY

t=r+1

kX

g=1

�
g

f
g

✓
x
t

� µ
g,t

�
g,t

◆

the incomplete log-likelihood expression then becomes:
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logL =
TX

t=r+1

log

"
kX

g=1

�
g

f
g

✓
x
t

� µ
g,t

�
g,t

◆#

=
TX

t=r+1

log

2

4
kX

g=1

�
g

1q
2⇡�2

g,t

exp

✓
�(x

t

� µ
g,t

)2

2�2
g,t

◆3

5

= (T � r) log(
1p
2⇡

) +
TX

t=r+1

log

"
kX

g=1

�
g

�
g,t

exp

✓
�(x

t

� µ
g,t

)2

2�2
g,t

◆#

=
(r � T )

2
log(2⇡) +

TX

t=r+1

log

"
kX

g=1

�
g

�
g,t

exp

✓
�(x

t

� µ
g,t

)2

2�2
g,t

◆#

In this equation we have the likelihood of the data considering only the observed

part of the model and ignoring the latent one. In EM framework this is considered as

incomplete data.

Let us now consider a vector z
t

indicating the “true” component g that generated

the observation x
t

with z
g,t

= 1 if X
t

⇠ f
g

and 0 elsewhere. In this case we can note

P (Z
i

= z
i

) = � and the distribution of Z
i

is multinomial:

Z
i

⇠ Mult
g

(1,�)

where � = {�1, . . . ,�g

}T . Then, if we have both {x
r+1 . . . xT

} and the correspond-

ing latent vectors {z
r+1 . . . zT}, we can compute the complete data log-likelihood (see

Berchtold [15]) for one sequence:

L
c

(⇥|X) = f
c⇥(X) =

TY

t=r+1

kX

g=1

z
g,t

✓
�
g

f
g

✓
x
t

� µ
g,t

�
g,t

◆◆

logL
c

=
TX

t=r+1

log

 
kX

g=1

z
g,t

�
g

f
g

✓
x
t

� µ
g,t

�
g,t

◆!

=
TX

t=r+1

log

2

4
kX

g=1

z
g,t

�
gq

2⇡�2
g,t

exp

✓
�(x

t

� µ
g,t

)2

2�2
g,t

◆3

5

As z
g,t

is a binary indicator, at time t only one z
g,t

is one, the others being equal to 0.

Therefore we have

log

"
kX

g=1

z
g,t

�
g

f
g

✓
x
t

� µ
g,t

�
g,t

◆#
= log


0 + · · ·+ 0 + 1⇥ �

g

f
g

✓
x
t

� µ
g,t

�
g,t

◆
+ 0 . . .

�
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Thus we can split the elements of the logarithm by ignoring (taking out of the log) the

sum sign

=) =
TX

t=r+1

kX

g=1

z
g,t

log


�
gp

2⇡ ⇥ �
g,t

exp

✓
�(x

t

� µ
g,t

)2

2�2
g,t

◆�

= (T � r) log(
1p
2⇡

) +
kX

g=1

log(�
g

)
TX

t=r+1

z
g,t

�
TX

t=r+1

kX

g=1

z
g,t

log(�
g,t

)

�
TX

t=r+1

kX

g=1

z
g,t
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)2
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g,t

logL
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=
(r � T )

2
log(2⇡) +

kX

g=1

log(�
g

)
TX

t=r+1

z
g,t

�
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log(�
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)�
TX

t=r+1

kX

g=1

z
g,t

(x
t

� µ
g,t

)2

2�2
g,t

The log-likelihood computation would be straightforward if we knew the complete

data. However, typically we only have the incomplete data X and our only knowledge

of the latent variables Z is their posterior distribution p(Z|X, (�, ✓)) determined by Â

and ⇡̂. This is where the EM algorithm is useful. During the expectation step (E), the

visible parameters of the models are considered as known and the expectation of the

unobserved variables is computed:

ẑ
g,t

=

�

g

�

g,t

f
g

⇣
x

t

�µ

g,t

�

g,t

⌘

P
k

g=1
�

g

�

g,t

f
g

⇣
x

t

�µ

g,t

�

g,t

⌘ , for each g = 1 . . . k

During the maximization step (M), the so-obtained expectations of the latent states

ẑ
g,t

are plugged in the logL
c

equation. Then all the model parameters are reestimated.

The component weights are reestimated as

�̂
g

=

P
T

t=r+1 ẑg,t
T � r
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If we take as example a model with µ
g,t

= �
g,0 + �

g,1xt�1, the first derivative of the

log-likelihood with respect to �1 is:

@ logL
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If we generalize this result, the mean parameters �
g,j

are estimated from the roots

of the following
P

k

g=1 pg equations (supposing that each component may include a

di↵erent number p
g

of lags for the mean):

for each lag j = 1, . . . , p
g

:
TX

t=r+1

z
g,t

x
t

w
j

�2
g,t

=

p

gX
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�̂
g,s
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ẑ
g,t

w
j

w
s

�2
g,t

!

where !
j

=

(
1 for j = 0

x
t�j

otherwise.

The root of these equations can be computed.

The last set of parameters to be re-estimated for each component of the model

separately are the variance parameters ✓
g,j

. If the variances are not constant, the

roots of another set of
P

k

g=1 qg equations must be found. For instance, deriving the

log-likelihood with respect to ✓
g,1 and considering that �2

g,t

= ✓
g,0 + ✓

g,1x2
t�1, we obtain:
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Again, deriving with respect to any lag leads to the following general equation

Berchtold [15]:

for each lag j = 1, . . . , q
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x2
t�j

otherwise (if we choose the first specification of �
g,t

)

From the above equations, we obtain that if the standard deviation of a component

g is specified as constant, (�g, t = ✓0 and ✓
g,1 = ✓

g,2 = · · · = ✓
g,q

g

= 0), we need to solve

the equation:

✓̂
g,0 =

P
T

t=r+1 ẑg,t(xt

� µ
g,t

)2
P

T

t=r+1 ẑg,t
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However, if this is not the case and �
g,t

is in its autoregressive form, no single solution

can be found. The impossibility to compute these solutions indicates that we cannot

employ the ordinary M-step of the regular EM algorithm, since it requires these solu-

tions of the derivatives in order to maximize the log-likelihood function. Therefore, we

need to find another way to insure the log-likelihood maximization with respect to all

parameters.

3.2.2 GEM algorithm and alternatives

GEM algorithm

One solution is to implement an EM algorithm in which the M-step avoid the use of the

derivatives. We will use a form of the Generalised EM algorithm (GEM) (see McLach-

lan and Krishnan [93]), with a maximization procedure related to the one proposed

by Berchtold [14]. The idea behind this approach is to perform the maximization of

logL within the M-step by using an optimization procedure that does not rely on the

derivative equations. It is designed for cases where a solution of the M-step does not

exist in a closed form. In this procedure, the only requirement for the maximization

step when choosing the new visible parameters ⇥i+1 is to fulfill the inequality:

Q(⇥(i+1),⇥(i)) � Q(⇥(i),⇥(i))

instead of maximising Q w.r.t. ⇥. This implies that necessarily L(⇥i+1) � L(⇥i) i.e.

the likelihood does not decrease at each step.

This is the procedure on which we base the estimation of the model and for the

rest of this chapter we will focus on implementing an optimal heuristic optimization for

the M-step. GEM has already been implemented for HMTD using a genetic algorithm

Berchtold [15], but a gradient-type algorithm can also be used McLachlan and Krishnan

[93].

CEM, SEM and alternatives

The Expectation Conditional Maximization (ECM) algorithm is another interesting

class of GEM algorithm. It has been applied on HMTD (see Wang, Smith and Hyndman

[167]) with positive results. The di↵erence with EM is that instead of the usual M step,

we have several di↵erent steps that are computed consecutively. Thus the monotone

convergence property of EM is present since ECM still maximizes the complete-data

likelihood, even though instead of one M-step, one implements several (s) CM steps
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(often one for each parameter of the model ⇥ = {✓1 . . . ✓s}). Each of these CM steps

is performed over a constrained space in which the parameters that are not being

calculated are considered as fixed. The parameters are then estimated separately, using

either a close form or an iterative solution. Thus, if ⇥i+1,s is the solution after the s-th

CM step of the i+ 1-th iteration, the maximization step respects:

Q(⇥(i+1,s),⇥(i)) � Q(⇥(i+1,s�1),⇥(i)) � Q(⇥(i),⇥(i))

Other EM-type algorithms exist, such as the SEM (see Celeux, Chauveau & Diebolt

[28]) that was first designed to compute the likelihood for finite mixture models. It

contains an additional stochastic step between the E and M steps in which the values

of z
t

are drawn at random, i.e. the data are associated to the components and the

coe�cients are estimated accordingly. The random drawing within the S part prevents

the SEM from converging towards the nearest optimum, especially since ⇥
i+1 may

actually decrease Q(⇥(i+1),⇥(i)).

We need to highlight that the estimation procedure may also be more complex,

depending on the presence and nature of covariates on the visible, but also on the latent

level of the model, in addition to the number of components and lags. The specification

of the latent level, namely the constrained form of the transition matrix, but also the

order of its corresponding Markov chain, have an influence on the computational part.

For instance, any order >1 of the latent level Markov chain imposes the use of a partially

sparse transition matrix (ex: the matrix of order 2 in Figure 2.1.1). On the other side,

when ordinary clustering is the aim of the analysis, a diagonal matrix of ones is used,

which transforms the model into a simpler mixture model and the latent part estimation

is no longer necessary except for the initial probabilities ⇡
i

for each state.

3.2.3 Properties of the (G)EM algorithm

3.2.4 Forward-backward algorithm and latent parameters es-

timation

Before considering the possible versions of the M-step of the EM algorithm, we need

to detail how the likelihood is computed during the E-step. From the initial values

(and after each re-estimation) of the visible-level parameters, one needs to compute

the transition probabilities of the latent states given the entire observed sequences and

the specification of the model. This is done using the Forward-Backward algorithm

introduced by Rabiner [117].
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Once the visible-level parameters �
g,t

and ✓
g,t

are initialised or re-estimated, one

needs to estimate the latent parameters. For this purpose, the forward-backward algo-

rithm (FB) is employed. The main objective is to estimate the latent state probabilities

(transition probabilities A and initial probabilities ⇡) when the visible-level parameters

are considered as known. It is a commonly used tool in HMM which computes the

posterior marginal probability of the latent variables given the observed sequences (and

the current model M with the visible part parameters) P
M

(S
t

|X1:T ) at every time

t 2 1, ..., T . The algorithm consists in two dynamic computation passes: a forward pass

and a backward one. The computation is carried out a first time forward, starting from

t=1, and then a second time backward, starting from t = T . Both sets of probabilities

are then combined by ”smoothing” the information obtained from the forward pass and

the one obtained from the backward pass.

The forward part is estimating the probabilities to be in a given latent state at a

given time, knowing the observations up to this time: P
M

(S
t

|X1:t). But in order to do

this, we first need to estimate the joint probabilities

↵
t

(j) = P
M

(X0, . . . , Xt

, S
t

= j).

Given a vector of initial probabilities for each state ⇡
j

= P (S0 = j), at t = 0 we have:

↵0(j) = P
M

(X0, S0 = j) = P (X0|S0 = j)P (S0 = j) =
1

�
j

p
2⇡

exp

✓
�(x

t

� µ
j,t

)2

2�2
j

◆
⇡
j

Knowing that P (X0|S0 = j) = f
j

(X0) is a Gaussian distribution with parameters µ
j

and �
j

, and that P (S0 = j) = ⇡0(j), we obtain

↵0(j) =
1

�
j

p
2⇡

exp

✓
�(x

t

� µ
j,t

)2

2�2
j

◆
⇡
j

As P (S
t

= j) =
P

K

i=1 aij↵t�1(i), with a
ij

an element of the transition matrix A, we

obtain the following equation that is solved consecutively for each t until t = T :

↵
t

(j) = P
M

(X0, . . . , Xt

, S
t

= j) =
1

�
j

p
2⇡

exp

✓
�(x

t

� µ
j,t

)2

2�2
j

◆
KX

i=1

a
ij

↵
t�1(i)

The probabilities of the latent states at each time t, given the observations up to

this time are:

P
M

(S
t

= j|X1, . . . , Xt

) =
P
M

(X0, . . . , Xt

, S
t

= j)

P
M

(X1 . . . Xt

)
=

↵
t

(j)

P
M

(X1 . . . Xt

)
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After calculating the forward probabilities ↵
t

, we need to proceed in the exact same

manner for the backward pass, but starting from the end of the sequence t = T up to

t = 1. This will provide us with the backward probabilities �
t

. We start from a given

latent state and we look for the probabilities of observing all the future observations

up from this state. We consider the initial state as known and therefore each �
t

(i) = 1.

Continuing backwards we obtain:

�
t

(i) = P
M

(X
t+1, . . . , XT

|X
t

, S
t

= i) =
KX

j=1

a
ij

�
t+1(j)

1

�
j

p
2⇡

exp

✓
�(x

t+1 � µ
j,t+1)2

2�2
j

◆

A normalization is applied in the computations of ↵
t

(j) and �
t

(i) to correct the

numerical problems that occur if one state has an excessively small probability.

After passing the algorithm in both directions, we can compute the marginal proba-

bilities �
t

of the latent states at any time, knowing the entire sequence of observations:

�
t

(i) = P
M

(S
t

= i|X1:T ) = P
M

(S
t

= i|X1:t, X(t+1):T )

=
P
M

(S
t

= i, X1:t, X(t+1):T )

P
M

(X1 . . . XT

)

=
P
M

(X1:t, X(t+1):T |St

= i)P (S
t

= i)

P
M

(X1 . . . XT

)

=
P
M

(X1:t|St

= i)P (X(t+1):T |St

= i)P (S
t

= i)

P
M

(X1 . . . XT

)

=
P
M

(X1:t, St

= i)P
M

(X(t+1):T |St

= i)

P
M

(X1 . . . XT

)

=
↵
t

(i)�
t

(i)

L(X0 . . . XT

)

Combining the forward and backward probabilities results in a “smoothing” proba-

bility computation of �
t

. The latter represent an estimation of the most probable state

of the latent variable at each time t of the observed sequence. However, this does not

result in the most probable sequence of hidden states. The reason is that even though

the latent level transition probabilities are used in the calculation of ↵
t

and �
t

, they

are not respected when combining both to obtain �
t

. In other words, we have the

most probable states independently, but we do not know how likely they are to occur

successively in this exact sequence i.e. P (S
t

= i)P (S
t+1 = j) 6= P (S

t

= i, S
t+1 = j).

Fortunately, there exists another tool called the Viterbi algorithm, which can provide

us with this optimal latent sequence and which we will describe later.
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After computing �
t

over the entire sequence, there is one more set of probability

that we need in order to estimate the latent transition matrix A. The joint probability

of two successive states (i and j) given the entire sequence of observations is called

✏
t

(i, j) and represents a three dimentional array of size [k` ⇥ k ⇥ n� 1], where ` is the

order of dependence of the hidden Markov chain. It is computed as:

✏
t

(i, j) = P
M

(S
t

= i, S
t+1 = j|X0, . . . , XT

)

=
P (X1:t, X(t+1):T |St

= i, S
t+1 = j) P (S

t

= i, S
t+1 = j)

P (X1:T )

=
P (X1:t|St

= i)P (X
t+1|St+1)P (X(t+2):T |St+1 = j)P (S

t+1 = j|S
t

= i)P (S
t

= i)

P (X1:T )

=
P (X1:t|St

= i)P (S
t

= i)P (X
t+1|St+1)P (X(t+2):T |St+1 = j)P (S

t+1 = j|S
t

= i)

P (X1:T )

=
↵
t

(i) 1
�

j

p
2⇡

exp(� (x
t+1�µ

j,t+1)
2

2�2
j

) �
t+1(j) a

ij

L(X0 . . . XT

)

After computing all the probabilities �
t

and ✏
t

for every t 2 {1, . . . , T}, it becomes

easy to re-estimate the latent part transition probability array A. Its estimation is

provided by the ratio of the sums over all periods of all ✏
t

-s and �
t

-s:

â
ij

=
T�1X

t=1

P (S
t+1 = j|S

t

= i, X0, . . . , XT

)

=

P
T�1
t=1 P

M

(S
t

= i, S
t+1 = j|X1:T )P

T�1
t=1 P

M

(S
t

= i|X1:T )

=

P
T�1
t=1 ✏

t

(ij)
P

T�1
t=1 �

t

(i)

For what concerns the vector of initial probabilities for each latent state ⇡
i

at time

t = 0, they are computed from the sums of all �
t

:

⇡
i

=

P
T�1
t=1 �

t

(i)

T � 1

It is important to precise that since longitudinal data are often composed of multiple

data sequences, the latent level parameters A and ⇡
i

are estimated separately on each

sequence and then aggregated at the end:
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Atot =
nX

i=1

w
i

A(i)

where w
i

is the weight of a sequence i and A(i) indicates its corresponding estimation

of A. The weights are either provided with the data (from the design of the survey), or

proportional to the length of each sequence otherwise.

The above formulas consider the estimation in the most common latent specification

where the order of the hidden Markov chain is ` = 1. However in general, ✏
t

denotes the

probability of `+ 1 successive states of the latent chain. Therefore, for a second order

chain for instance, we have an array of size (k2 ⇥ k ⇥ n � 1) for ✏
t

(i, j, k) = P
M

(S
t

=

i, S
t+1 = j, S

t+2 = k|X0, . . . , XT

), from which one can estimate the matrix A of size

(k2 ⇥ k2) giving the transition probabilities conditionally on the two previous states.

After re-estimation of all latent parameters, the log-likelihood equation is:

L(X0 . . . XT

) =
KX

i=1

↵
t

(i)
KX

j=1

a
ij

�
t+1(j)

1

�
j

p
2⇡

exp

✓
�(x

t+1 � µ
j,t

)2

2�2
j

◆

To provide a more concrete example with a specified model, if all components have

two lags for both the mean and the standard deviation (p
k

= 2 and q
k

= 2) and two

visible-level covariates c1 and c2, then the above equation becomes:

L(X0 . . . XT

) =
KX

i=1

↵
t

(i)
KX

j=1

a
ij

�
t+1(j)

⇥ 1

�
j

p
2⇡

exp

✓
�(x

t+1 � (�
j,0 + �

j,1xt

+ �
j,2xt�1 + �

cov1c1 + �
cov2c2))

2

2(✓
j,0 + ✓

j,1x2
t�1 + ✓

j,2x2
t�2)

◆

As seen before, solving the likelihood derivative equations is complex for the stan-

dard deviation parameters, because of the lack of unique solutions. An additional

complexity is that every component may often use its own numbers of lags for the

mean and the standard deviation. Depending on the data and the objectives, it is

possible to choose a component with constant mean and variance, together with an-

other one with a two period memory for the mean and one for the standard deviation

(for instance we may have: µ
g=1 = �1,0 and �

g=1 = ✓1,0 for the first component and

µ
g=2 = �2,0 + �2,1 ⇥X

t�1 + �2,2 ⇥X
t�2 and �2,t =

p
✓2,0 + ✓2,1x2

t�1). Thus, in order to
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allow the HMTD model to be as flexible as possible (allow heterogenious modelling),

we attempted to implement an estimation procedure that is not the fastest for some

given specifications, but that is as generalisable as possible over the variety of model

specifications and uses. This is why we explored the use of heuristic methods (that

does not use the derivatives of the likelihood function) within the E-step of a GEM

algorithm, in order to optimize the log-likelihood function.

3.2.5 Viterbi algorithm

In HMMs, one is often interested in the most probable sequence of latent states that

could lead to the observed sequence. The most popular solution to this problem is the

algorithm proposed by Andrew Viterbi Bishop [23], Viterbi [165] (and other authors

simultaneously).

Suppose we have a sequence of length T and k latent states. This leads us to a

set of kT possible paths, a number that grows exponentially with the number of time

periods. Even though we could compute the path probability using the initial ⇡
i

, the

transition probability matrix A and the probability distribution for each state, it would

be di�cult to do this for all the paths. The Viterbi algorithm makes the task easier

computationally by following only k paths at each time. Suppose that we need to find

the optimal path up to time t for state S
t

= i. Even though many paths lead to this

point, only one of them is the most probable. Therefore, at t we need to consider only

k optimal paths. While we move to t+ 1, this number becomes k2, but again only one

of them is the most likely for each state, and therefore we keep only k of them. At time

T , only one state will be the most likely, and only one optimal path will lead to it. If

we call V
t,i

the probability of the path that is the most likely up to the state i at time

t, we can calculate these probabilities iteratively, starting with

V
i,1 = P (X1|S1 = i)⇥ ⇡

i

and maximizing

V
j,t

= max
j2{1,...,K}

P (X
t

|S
t

= j)⇥ a
i,j

⇥ V
i,t�1 for each t 2 {1, . . . , T}

By tracking all the optimal paths, we can then find the sequence corresponding to V⇤
k,T

.
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3.2.6 Maximization of the log-likelihood function

The procedure for log-likelihood maximization follows the general principle of the

expectation-maximization (EM) algorithm, even if an alternative Markov Chain Monte

Carlo approach for hidden Markov models estimation was discussed by Ryden [132]

and Scott [135]. In Figure 3.1, we briefly illustrate the main steps of the estimation

procedure. After initializing the visible parameters (step 1), we apply the aforemen-

tioned forward-backward algorithm in the E-step (2) to re-estimate the parameters of

the latent part of the model on the basis of the parameters of the visible part. Then, we

calculate the resulting log-likelihood (3). During the maximization step (4), we try to

improve the log-likelihood by changing the parameters of the visible part of the model,

using the heuristic procedure described in the next Section. These modified values of

the visible parameters are in turn used in step 2 to compute the corresponding log-

likelihood value, which indicates whether the changes in the visible parameters were

beneficial. The algorithm iterates until a stopping criterion is satisfied.

The di�culties in deriving the log-likelihood equation (for non-constant variance

specifications) compels us to use a heuristic (or direct) estimation procedure (in step

4) to find parameter estimates that do not decrease the log-likelihood. Because of

that modification of the M-step (optimization methods instead of having equations to

maximize), our procedure is qualified as a generalized EM algorithm (GEM) rather

than a standard EM.

This procedure can also be applied on multiple sequences or longitudinal data.

Likelihood computations are performed separately on each independent sequence, and

results are then averaged over all sequences.

3.3 Visible parameters estimation procedure

We discuss now the estimation of the parameters of the visible part of the HMTD model.

We start with an unoriented search of the maximum of the log-likelihood function. This

implies the introduction of an arbitrarily chosen initial point in our parameter space.

This point is chosen without any information, but by making some “semi-educated

guess” by using our knowledge of the nature of the data and parameters. In other

words, we try to ensure that the initial solution is not too unlikely, in order to avoid

falling in a region of the solution space corresponding to a very low likelihood.
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1. Initialize vis-
ible parameters

2. Use Forward-
Backward algorithm
to re-compute the
latent parameters
A and ⇡ using
the visible ones

4. Modify visi-
ble parameters �
and ✓ (optimiza-
tion procedure)

3. Calculate the
logL and compare

5. After i iterations
we obtain the solution
with maximal logL

Figure 1: Steps in the estimation procedure

of the model, and our heuristic procedure is used here. These reestimated values of the visible
parameters are in turn used in step 2 to finally receive the corresponding log-likelihood value,
which indicates whether the changes in the visible parameters were beneficial. This helps the
optimization procedure to improve the visible parameters again, and so on until the stopping
criterion is satisfied.

The di�culties in deriving the log-likelihood equation compels us to use a heuristic (or direct)
estimation procedure (in step 4) to find parameter estimates that do not decrease the log-likelihood.
Because of that modification of the M-step (optimization methods instead of having equations to
maximize), our procedure is qualified as a generalized EM algorithm (GEM) rather than a standard
EM.

This procedure can also be applied on multiple sequences or panel data. Towards this, compu-
tations must be performed separately on each independent sequence, and results are then averaged
over all sequences.

3. Parameter estimation procedure

We start with an unoriented search of the maximum of the log-likelihood function. This implies
the introduction of an arbitrarily chosen initial point in our parameter space. It is chosen without
any information but by making some “semi-educated guess” by using the knowledge of the nature
of our data and parameters. In other words, we try to ensure that the initial solution is not too
unlikely to avoid falling in a region of the solution space corresponding to a near-zero likelihood.

3.1. Limits in the solution space

As the process describing the mean (and possibly the standard deviation) of the HMTD model
is autoregressive (AR), we need to define the possible solution space for our parameters � and ✓.

4

Figure 3.1: Steps in the estimation procedure.

3.3.1 Limits in the solution space

As the process describing the mean (and possibly the standard deviation) of the HMTD

model is autoregressive (AR), we need to define the possible solution space for our

parameters. We have to consider here only the parameters of the visible part of the

model, since the latent parameters are re-estimated using elements calculated by the

forward-backward procedure, before returning the log-likelihood of the model. For

each component of the model, we have parameters �0 . . .�p

for the mean and ✓0 . . . ✓q
for the variance. Since the model could be used with any continuous variable, we cannot

exclude the possibility to have a non-stationary AR process. Therefore, we cannot define

any strict bounds on our parameter space. As an example, we can imagine a process

in which one hidden state implies a constant increase in the observed variable. For

what concerns the constants �0i and ✓0i, we also have little prior knowledge. However,

we know that especially in the case of a constant standard deviation, ✓0i cannot be

negative and should be “comparable” to the standard deviation of the data. One good

strategy is to fix some initial arbitrary bounds around the empirical variance of the

data, and further modify them whenever the current solution provided by the estimation

algorithm approaches these limits. This will be beneficial especially at the beginning of
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the estimation procedure because it will allow us to start from a most probable region

of the solution space and prevent the algorithm from immediately spending time in

exploring highly unlikely areas. In other terms, we can start in a narrow parameter

space and broaden it gradually when the current solution approaches the limits. Thus

we introduce ”floating” limits to the solution space.

In practice, after having set limits, we can calculate the log-likelihood of a number

of randomly chosen potential solutions. The initial values for the whole estimation pro-

cedure can then be chosen either as the parameter values giving the best log-likelihood,

or as a centroid of the best solutions.

Another important point to be considered is the likely presence of dependence be-

tween (some of) the parameters. Noting that

�
i0 + �

i1xt�1 · · ·+ �
ip

x
t�p

⇡ µ
i

and

✓
i0 + ✓

i1x
2
t�1 · · ·+ ✓

iq

x2
t�q

⇡ �2
i

we observe that increasing all the �
i

parameters simultaneously leads to a larger mean

for the component i (if the past observations are positive), which at certain points may

diminish its probability. Therefore, all � are interdependent. This information could

also be incorporated in the estimation procedure in order to improve its e�ciency. The

same finding is valid for the variance of each component.

3.3.2 Searching the optimal solution

We describe here in detail the heuristic procedure used to re-estimate the visible pa-

rameters of the model (box 4 in Figure 3.1). Notice that after each use of this heuristic,

the estimation procedure has to also re-estimate the latent parameters (box 2). Our

heuristic is related to the algorithm implemented by Berchtold [14] in the case of the

discrete MTD. An important feature is that we do not make use of any derivatives of

the underlying log-likelihood objective function. First, we need to introduce an initial

vector of parameters. As discussed above, a good guess for the � and ✓ parameters is

one that gives us a value close to respectively the mean and variance of our data. From

this initial vector, we evaluate the change in the log-likelihood when each of the param-

eters is modified. Therefore, we consecutively increase and diminish each parameter

before measuring the �logL corresponding to the change. After computing all these
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changes, we modify the entire vector of parameters in the direction that is optimal for

each parameter separately.

We considered di↵erent versions of this procedure. The first one consisted in modi-

fying only the parameter that enhances the most the log-likelihood and then re-estimate

again the influence of the other parameters. Such a procedure make sense if our param-

eters are strongly dependent, but according to our experience, this dependence does

not generally play a central role. The assumption of such a dependence costs too much

in terms of computational time, and it appeared to be not su�ciently useful during our

experiments.

If we modify all parameters simultaneously, in the direction that is optimal for them

independently of all other parameters, in most of the cases we obtained a faster con-

vergence towards the local maximum. However, this approach ignores any dependence

between the parameters, which could be problematic. For instance, if one compo-

nent with larger mean could fit the data better, we would see that an increase in �
i0

would improve our log-likelihood, and an increase in �
i1 or �

i2 would also be benefi-

cial. According to the aforementioned approach, we should then increase all of these

parameters simultaneously. Although we make several independently beneficial steps

simultaneously, this could lead to a decrease of the log-likelihood, because we amplify

the e↵ect of increasing the mean, making it too large.

To fix this problem, we can include the modification of the previous parameters

before testing the influence of the next one on the log-likelihood (a method that we

name “S” in our outputs). For instance, we test the e↵ect upon the log-likelihood

of a change in parameter �
i2 with respect to the solution obtained after saving the

modifications made on the previously tested parameters (i.e., �
i0 and �

i1 if the order of

optimization is not permuted). By doing this, we account for the dependence between

the parameters without introducing any additional computational costs.

One potential problem that remains after this change is that we may improve the log-

likelihood by modifying not the “most important” parameter (in terms of log-likelihood

increase) at first place, and therefore compel the most important one to adjust to the

last modification of less important parameters (increase �
i1 to increase the mean and

adjust �
i0 to it, instead of proceeding in the opposite order when the latter coe�cient

increases the most the fitness). In other words, we make a step in the less important

dimension of the solution space before making a step in the most important one. This

could slow down the speed of convergence of our approach. Introducing a permutation

in the order of update of our parameters can solve this problem. Such a permutation

is indicated by “P.” Changing the order of modification after each iteration, according
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to the absolute improvement of the log-likelihood (�logL) may lead us faster to the

optimal solution.

We can rarely improve the log-likelihood by both increasing and decreasing the same

parameter. This would be possible only if the current value of this parameter corre-

sponded to a (local) minima of the solution space, a very rare situation. Introducing

a one-direction improvement check (“E”) can help us spare calculations: if an increase

of a parameter increases the fitness, we update the parameter without checking what

happens if we decrease it. However, if the fitness value decreases in the first case, we

also need to see what happens when we decrease the value of the parameter.

Finally, we also need to sacrifice some precision by introducing a minimal change

step for each parameter according to its absolute value and initial limits (“M”). This

would prevent us from spending too many computations unnecessarily, considering

infinitesimal updates of the parameters. Moreover, it seems logical to allow the step

to vary during estimation. Noting that all parameters need to evolve in a di↵erent

manner, we also need to allow an independent variation of their step size.

The logic of this procedure is simple: assuming that our initial guess is arbitrary,

in many cases, it will be very far from the optimum. That means that once the good

direction for re-estimating a parameter is found, we need to accelerate the convergence

by increasing the relative change of the given parameter. In order to keep the procedure

stable, we introduce a limit to the change rate. When we approach the optimal value of

one parameter (i.e., when a further big leap worsens our log-likelihood), we shrink its

relative change considerably (up to a limit) in order to improve its estimation accuracy.

If the modification of the other parameters changes the optimal value for this parameter

(interdependence), we increase its amplitude of change once again, and so on until

convergence. The di↵erent amplitudes of the change may play a role in determining

the order of parameter re-estimation.

We implemented two types of limits for the step of each parameter: in relative

(min and max limits) and in absolute (only min limits) values. The relative value

limits are measured by fractions of the amplitude of the parameter limited by its initial

constraints, and these fractions are the same for all parameters (e.g., between 0.5%

and 30%). However, for the autoregressive parameters, a precision of more than 0.01

(in absolute value) does not seem necessary. Consequently, we fixed at 0.005 times the

initial amplitude for the mean and the variance (normally distributed around the mean

and variance of the data) as the lower absolute limits for the corresponding parameters.

As said before, the heuristic procedure used to re-estimate the visible part of the

model alternates with the forward-backward algorithm used for the latent part of the
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model. In practice, there are two main possibilities for the visible parameters: either

we try to reestimate each of them once before going to the latent parameters, or we

allocate a fixed number of function calls to the heuristic, and we go to the latent part

when this number is reached. This second possibility means that some parameters could

be reestimated several times by the heuristic before going back to the reestimation of

the latent parameters. When some visible parameters are far from the optimum, this

method may speed up the convergence.

3.3.3 Stopping criterion

The estimation procedure continues until a local optimum is reached, that is, the value

of the log-likelihood remains the same for two consecutive iterations, which implies that

no further change of the parameters improves the fitness. However, this situation is

often reached too quickly and does not necessarily imply an optimal solution. Therefore,

we need to “jitter” the solution in order to continue the procedure. This is done by

adding random noise to the solution that we scale to 0.1 of the value of the corresponding

parameter (making sure that the variance parameters remain positive). Then, we repeat

the procedure until the maximal number of iterations is reached.

For most versions of the algorithm, the optimal solution is one of those achieved

immediately before one of the jitters, and therefore, we need to store the parameter

values only at this moment.

3.3.4 Pseudo-code

An illustration of the whole procedure including the four above-discussed improvements

(S, E, M, and P) is given by the following pseudo-code:

Pseudo-code for SEMP procedure:

WHILE number of function calls < max function calls

FOR each parameter i of the solution V in the given Order

Increase V(i) and calculate logL

IF new logL is higher than the saved value

save the new V(i) and increase its future change step Change(i)

ELSE

decrease V(i) and calculate logL
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IF new logL is higher

save and increase Change(i)

ELSE

decrease Change(i)

END

END

END

Change the Order of the parameters according to the logL increase

IF last logL = previous logL (no change of any parameter improves the fitness)

save the parameters and logL

jitter the vector of parameters to escape local optimum

END

END

Notice that before using the heuristic procedure for the first time, the maximal and

minimal percentage change and minimal absolute change for the AR parameters have

to be chosen. Refer to Section 3.5 for examples.

3.4 Alternative procedures

This heuristic approach can be compared to other existing search methods described

in the literature. We will consider the following alternatives: Particle Swarm Opti-

mization (PSO) Elbeltagi, Hegazy & Grierson [48], Kennedy & Eberhart [77], Shi &

Eberhart [138], Simulated Annealing (SA) Cerny [33], Kirkpatrick, Gelatt Jr & Vec-

chi [80], Genetic Algorithm (GA) Holland [67], Srinivas & Patnaik [144], Di↵erential

Evolution (DE) Storn & Price [148], Nelder-Mead simplex algorithm (NM) Nelder and

Mead [106], Singer & Nelder [140], and the Limited memory version of the Broyden--

Fletcher-Goldfarb-Shanno (BFGS) algorithm (L-BFGSB) Byrd et al. [27].

Simulated annealing

SA This method, named after a procedure of heating and cooling of metals, is based

on the thermodynamics theory that matter becomes more solid upon cooling. It was

independently implemented by Kirkpatrick, Gelatt and Vecchi [80] and Cerny [33]. The

algorithm starts from a random point in the solution space and continues with a random

guess. The resulting position may be accepted with a given probability even if the



60 CHAPTER 3. ESTIMATION OF THE HMTD MODEL

evaluated fitness at that point is less good. Note that this is a minimization algorithm,

and therefore, higher fitness is associated with lower “energy.” The probability of

acceptance of a new solution is determined by an acceptance probability function. It

depends on the temperature t (time-dependent) and on the energies of the old and new

solutions: e and e1. The probability of each point always remains positive in order to

be able to escape from local optima. As t tends to zero, the acceptance probability

P (ee1, t) of a solution with higher energy (e < e1) also approaches zero, which makes

the procedure greedy. In other words, as time advances, the algorithm becomes less

tolerant to solutions with smaller fitness.

The parameters of this procedure are the neighbor selection function, the acceptance

function, the temperature function, and the initial temperature. We need to highlight

that the SA relies on finding “lucky jumps” that improve the position.

Particle swarm optimization

The PSO was first developed by Kennedy and Eberhart [77] and Shi [138]. It was

also used as a simulation of the behavior of bird flocks and fish schools. It consists

in introducing a group of candidate solutions (particles) that move into the search

space. They are guided by some random process but also have a velocity v influenced

by their personal best solution and the global best solutions. The current position of

each particle is computed for each dimension separately. The constants and random

functions, which determine the influence of the personal and the global best solutions,

as well as the number of swarms, are parameters of the PSO.

After each iteration, the velocity of each particle is updated. As time advances, the

particles tend to group near the best solution found. Therefore, convergence can be

reached either when the swarms come together (even if it is a local optimum), or when

the global optimum is reached by one of them. The e�cacy of PSO has been proved in

several studies ([48]).

Genetic algorithm

The genetic algorithm (GA) is a (meta)heuristic search that is inspired by natural selec-

tion [67]. In this well-known approach, the candidate solutions, represented by a binary

coded vector of the parameters, are transformed and combined in order to obtain better

solutions. During each iteration of the algorithm, a given proportion of the population

is selected through a fitness-based procedure to create a new generation of o↵spring.
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From this selection, we choose two or more solutions that would be the “parents” of an

o↵spring. From these parents, the new solutions are most often obtained via two op-

erations: crossover (mixing part of the two parents solutions) and mutation (randomly

changing some parameter values of a solution); however, various other techniques also

exist such as elitism (the best overall current solution is kept unchanged). The fittest

solutions survive until the next iteration of the algorithm.

Apart from the selection procedure, it is important to tune the mutation probability,

crossover probability, and the population size. We must note that a very high mutation

rate could be a reason for the loss of good solutions and a very high crossover probability

may lead to a premature convergence of the algorithm toward a less than optimal

solution. However, the former problem is attenuated by elitist selection.

There are many di↵erent versions of GA. One of them is an adaptive version of GA

in which the crossover and mutation probabilities adapt in each generation in order to

preserve the diversity of the population and to sustain the convergence capacity Srinivas

& Patnaik [144].

Di↵erential evolution

Di↵erential evolution (DE) is an evolutionary method introduced by Storn & Price

[148] that uses a group of candidate solutions (agents) spread in the search space. The

agent positions, represented by d-dimensional vectors, are combined to create new ones

and only the new positions with higher fitness are accepted. While DE is very similar

to GA, the major di↵erence is that DE uses vectors of real numbers instead of binary

representations, which has an influence on the crossover and mutation procedures.

New parameter vectors are generated by adding one vector to the weighted di↵erence

of two other vectors (mutation procedure). Those parameters are mixed with another

determined “target” vector (crossover procedure) to obtain a “trial” vector. If the trial

vector has a better fitness, it replaces the target vector (selection procedure). During

one iteration, each agent serves once as a target vector.

Nelder-Mead simplex algorithm

The Nelder-Mead (NM) method was introduced by Nelder and Mead [106]. The al-

gorithm is calculated using N + 1 points x (vertices of the polytope), where N is the

number of dimensions of our solution space. It consists in three main steps: ordering

(of each point according to its fitness), centroid calculation (x0), and transformation.

The latter step may include three di↵erent transformations:
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1. Reflection: We compute the reflected point x
r

= x0 + ↵(x0 � x
n+1). If this point

is between the best and the second worst point in terms of fitness, we replace the

worst with it and return to the beginning;

2. If the reflected point is the fittest one, we compute the expanded point x
e

=

x0 + �(x0 � x
n+1)). Then, we replace the worst point with the best point chosen

between the expanded and the reflected points, and we return to the beginning.

3. If the reflected point is the worst or second worst one, we compute the contracted

point x
c

= x0 + ⇢(x0 � x
n+1)). If the contracted point is not the new worst, we

replace the worst with it. If it is the worst, we replace all but the best point by

x
i

= x1 + �(x
i

� x1) (shrinkage).

The method requires to select values for parameters ↵, �, ⇢, and �. The lack of

possibility to introduce constraints is a major issue of the Nelder-Mead algorithm for

our problem. For instance, solutions with very high auto-regressive parameter values

are not acceptable for our problem. Another issue mentioned by Singer & Nelder [140]

is that the method can take a big amount of iterations with negligible improvement in

the function while being far from the optimum, which results in premature termination

of iterations.

L-BFGS-B

We also considered a limited memory version of the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm Byrd et al. [27], which is a quasi-Newton method for optimization

with constraints. It uses the approximation to the Hessian matrix to perform a search

through the parameter space. It finds a direction of search and then determines the

optimal step size. The L-BFGS-B version of this algorithm adapts the method to the

use of bound constraints.

Comments

Although there also exist many hybrid procedures combining several of the previous

algorithms that are reported to work well (for instance, PSO-SA Fang, Chen & Liu [49],

PSO-GA Premalatha & Natarajan [112] etc.), we have no evidence of any advantages

in our particular case, and hence, we do not consider them further.

The study of these di↵erent optimization methods, including our own heuristic,

shows that each method is particularly adapted to a particular kind of problem, of
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objective function, and of solution space. No search procedure seems to be able to find

the solution quickly in all problems. Therefore, determining the best procedure for our

specific problem is related to the question of how complex the objective function is.

However, if we intend to apply the HMTD model to any dataset, we cannot expect to

always have the same kind of solution space. This make us surmise that no absolute

“best” procedure can be found. The di�culty then lies in finding a procedure able to

find an acceptable solution for the largest possible set of situations. Note that not all

of these methods increase the likelihood at each iteration. Some explore the parameter

space before, aiming to discover a higher likelihood region, others accept some lower

likelihood solutions occasionally with a defined probability.

3.5 Numerical experiments

We describe in this section the di↵erent numerical experiments employed to evaluate

the performance of our heuristic when used with the HMTD model. All computations

were made in the open source R language R Core Team [116]. The Mersenne Twister

pseudorandom number generator Matsumoto & Nishimura [91] was used for generating

random values when required. A personal computer under Windows 10, with an Intel

Xeon E5-2650 running at 2.00 GH with 8 physical cores was used for the simulations.

All syntaxes are available on GitHub: https://github.com/ztau/5352

3.5.1 Comparison between several versions of the heuristic

We performed a first numerical experiment to compare di↵erent versions of our heuristic

procedure. We used the following HMTD model specification: a hidden Markov chain

of order two, two hidden states with constant variance, and autoregressive mean with

one lag. Therefore, the visible parameter vector has the following content:

(✓1, ✓2,�1,0,�2,0,�1,1,�2,1)

All datasets are available and documented in R R Core Team [116]. For each

dataset, we compare 6 di↵erent specifications of the model, starting with a standard

implementation without S, E, M, and P options, and going up to a specification in-

cluding these 4 refinements (SEMP). The initial solution is the same for all procedures,

because the same seed was used for the random generator. We used the first stopping

criterion, that is, until a local optimum is reached (two consecutive iterations with same

log-likelihood), without jittering. Results are provided in Table 3.1. We observe that
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after including all aforementioned improvements, our approach becomes more e�cient

and precise in most cases, however more evidence is needed. Even if we cannot clearly

identify from our experiments one variant of the algorithm that would always be better

than the others, the methods with most of the above-mentioned features generally have

better performances. Our choice would then be the “SEMP” method, because it gives

the most consistent results. However more examples will be provided to investigate this

claim.

Table 3.1: Comparison between di↵erent variants of the heuristic. Use of the first

convergence to a local optimum as stopping criterion, without jittering. For each com-

putation, we provide the log-likelihood and the required number of iterations. Source

of the datasets: R.

Di↵erent variants of the heuristic

R dataset Standard S SE SEP SEM SEMP

UKDriverDeaths -141.60 -138.95 -127.95 -128.05 -128.08 -128.70

52 65 162 177 123 111

sunspot.month -127.19 -127.19 -120.21 -117.85 -120.20 -113.12

52 52 108 165 108 202

faithful -89.16 -91.23 -83.79 -85.46 -83.31 -87.90

104 52 189 144 231 95

JohnsonJohnson -41.54 -47.33 -39.64 -39.39 -39.62 -39.68

143 52 141 160 142 96

sunspots -205.70 -217.57 -203.39 -207.08 -203.53 -204.01

156 52 185 96 198 144

Seatbelts -86.66 -84.29 -78.52 -79.10 -78.55 -78.05

52 65 153 128 153 176

3.5.2 Comparison between the new heuristic and the standard

optimization procedures

In order to compare the performances of our heuristic with other methods, we ran a

second set of simulations using the same HMTD model as in Section 3.5.1. Again, we

fitted the model on several time series available in R. The di↵erent tested procedure

are four versions of our heuristic (S, SE, SEM, SEMP) as well as the SA, GA, NM, DE

and PSO procedures.
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Most of the optimization methods are not too di�cult to implement. However, in

order to avoid any influence of the coding upon our results, we performed our compar-

isons by using the most common package available in R for each method: “SA” (Xiang

et al. [172]), “GA” (Scrucca [136]), “PSO” (Bendtsen [10]), “optim” (package “stats”

included in the base distribution of R), and “DEoptim” (Mullen et al. [101]). The num-

ber of iterations of most algorithms was limited in order to obtain comparable results.

As we used di↵erent datasets with di↵erent characteristics, it was di�cult to calibrate

the constants and parameters of each optimization procedure (for instance, the velocity

constants for PSO, the ↵, �, ⇢, and � parameters for the Nelder-Mead algorithm, etc.).

Therefore, we chose to leave all these parameters to their default values as chosen by

the conceptors of the R implementation of each algorithm. The only parameters for

which we chose the initial values were the limits of the parameter space, the initial

solution for the HMTD parameters, and the maximal number of calls of the objective

log-likelihood function.

The variants of our heuristic di↵ered from each other by the presence of the dif-

ferent options previously described. They all include the modification of the previous

parameters (S), the second variant adds the one-directional check (E) allowing us to

spare function calls. The third one includes the minimal absolute parameter change

(M) defined as 1/300 of the initial ✓ parameters, 1/200 of the initial �
i,0 parameters

and 0.01 for the autoregressive � parameters. The last variant adds the permutation of

the parameters during the procedure (P).

Maximization of the log-likelihood

For each procedure, we measured the time to convergence, the maximal log-likelihood

reached and the number of calls to the function computing the log-likelihood of the

HMTD model. The latter measure gives us the best indicator of e�ciency of each

procedure because the e↵ectiveness of the implemented code is not considered and

the time of evaluation of the log-likelihood is much more important than the one of

the creation of a new parameter vector (or solution) by each method. Globally, the

execution time appears to be proportional to the number of function calls.

Table 3.2 provides for each dataset and each estimation algorithm the maximum log-

likelihood, the number of calls of the objective function (or the corresponding number of

iterations for some algorithms) required to achieve this maximum, and the optimization

time in seconds. We can see that among the existing methods, PSO has a good overall

performance in terms of both speed and achieved maximal log-likelihood values. Its
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Table 3.2: Comparison between the di↵erent versions of the hill-climbing heuristic, PSO,

SA, GA, L-BFGS-B, Nelder-Mead, and DE: For each computation, we provide the log-

likelihood, the number of function calls, and the running time in seconds (between

brackets). NA means that the algorithm was unable to converge to a usable solution.

The best solution found for each dataset is in bold.

R dataset S SE SEM SEMP PSO SA GA LBFGSB NM DE

Seatbelts -176.93 -171.48 -171.70 -172.46 -174.87 -174.98 -178.69 -179.82 NA -175.05

507(35.2) 503(37.9) 503(38.1) 500(38.0) 490(36.9) 768(58.0) 1000(63.2) 35(34.3) 42(94.7)

UKDriverD. -130.22 -127.79 -128.36 -128.27 -132.66 -132.66 -135.47 -139.44 NA -132.74

507(17.9) 506(19.1) 502(18.8) 508(19.8) 490(18.7) 716(26.7) 1000(30.9) 10(4.9) 42(47.9)

sunspot.m. -119.45 -122.70 -112.18 -118.51 -117.86 -117.86 -122.56 -122.40 NA -117.28

507(26.4) 509(28.6) 510(28.7) 511(28.8) 490(28.2) 547(32.1) 1000(49.2) 36(26.2) 42(69.7)

faithful -69.03 -67.82 -57.34 -60.99 -71.40 -85.10 -73.07 -60.07 -58.18 -71.42

507(44.8) 500(48.4) 501(48.1) 511(49.2) 490(51.3) 287(29.2) 1000(77.1) 40(49.5) 501(47.8) 42(126.8)

JohnsonJ. -39.60 -41.20 -39.63 -39.75 -41.19 -41.17 -44.33 -40.29 -39.94 -41.35

507(17.4) 504(18.7) 508(18.9) 501(18.8) 490(18.0) 300(11.0) 1000(30.8) 42(20.1) 501(18.4) 42(46.3)

lh -29.53 -33.40 -32.71 -32.40 -29.08 -29.06 -34.50 -21.46 -20.88 -29.91

507(51.9) 508(56.3) 510(56.5) 509(56.8) 490(59.2) 500(56.5) 1000(94.1) 36(51.4) 501(55.2) 42(139.9)

ldeaths -535.03 -534.47 -533.39 -537.41 -523.81 -592.85 -591.14 -554.66 NA NA

507(78.4) 509(85.7) 504(83.3) 507(83.7) 490(80.6) 500(78.1) 1000(137.0) 7(14.9)

nottem[1:10] -26.25 -22.59 -22.60 -22.59 -22.91 -22.89 -26.78 -23.22 -22.51 -23.49

507(7.9) 509(8.8) 508(8.6) 519(8.9) 490(8.4) 500(8.4) 1000(14.0) 41(8.9) 501(8.4) 42(21.2)

nottem[1:30] -92.75 -85.17 -85.15 -85.25 -88.77 -88.77 -97.13 -88.89 -95.01 -89.35

507(25.4) 506(27.7) 507(27.9) 509(28.5) 490(26.8) 500(27.3) 1000(45.8) 42(29.8) 501(27.0) 42(69.6)

lynx -157.05 -157.34 -157.72 -156.65 NA NA NA -166.79 NA NA

507(18.0) 504(19.2) 505(19.3) 509(19.9) 31(15.3)
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closest concurrent is the Nelder-Mead simplex optimization algorithm, whose main

drawback is the lack of possibility to introduce constraints. Unfortunately, this is

a major issue in our case, because some infeasible solutions may spuriously achieve

higher log-likelihood values (for instance: autoregressive coe�cients above 100’000). It

happened several times during our experiments, therefore we had to ban the Nelder-

Mead method despite its overall good performance.

The genetic algorithm was too slow in our experimets, and it was surpassed by all

other methods. A possible reason is that GA appears to perform well in very di�cult

problems, and not well enough in simple ones, as suggested by Pukkala & Kurttila

[114]. The simulated annealing, L-BFGS-B, and di↵erential evolution performed rather

well, but not better than PSO and NM. These results suggest that PSO remains the

biggest competitor of our hill-climbing heuristic.

Among the di↵erent versions of our heuristic, it is di�cult to determine an overall

best method. It appears that the “one-directional” check enhances the procedure,

allowing us to use the function calls elsewhere instead of wasting them to check both

directions. Introducing a minimal parameter change is definitely better even if we have

less precision in the answers. However, the permutation of the parameters according

to their importance for the log-likelihood improvement does not seem to improve the

performance. Therefore, our choice tends to the third method (SEM).

Acceptability of the solutions

A higher log-likelihood of a given solution does not necessarily imply its superiority

over another solution. It is also very important to discuss the usefulness of a potential

solution in terms of its interpretability before we accept it. Therefore, we need to

examine the values of the hidden parameters (A and Pi) that one solution implies. For

instance, if we test a model with two hidden components but the hidden transition

matrix A of our solution suggests that one of the states is improbable, we may reject

that solution because a simpler model could be more appropriate, the improbable state

being probably associated to only a very few number of (maybe extreme) observations.

As an example, we chose our experiment with the “JohnsonJohnson” data. This

choice was made because of the availability of answers from all procedures, and because

of the proximity of the best log-likelihood values achieved. These data represent the

quarterly earnings in US dollars per Johnson & Johnson share during the period 1960-

1980 (Figure 3.2). The Figure suggests a di↵erent behavior before and after 1970, with

a higher variability in the second part of the series. A two-component HMTD model
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Figure 3.2: The “JohnsonJohnson” dataset.

could then prove to be appropriate.

Let us first explore the visible parameters of the solutions of each procedure (Table

3.3). If we take a close look at it, we can see that some of them appear to be relatively

close to each other. For instance, the solutions of our four hill-climbing heuristic all

assume one component with a low standard deviation (✓0,1 around 0.5 except for “S”),

and a slightly negative autocorrelation for the mean (�1,1 between [-0.107;-0.069]). The

other component has a relatively large standard deviation and positive autocorrelation

for the mean.

If we look at the solutions (Table 3.3), we can also observe a common part in the

solutions of PSO, SA, GA, and DE. However, in this case, only one component appears

similar in their solutions: the second one for SA and the first for PSO, GA, and DE,

with ✓0, �0, and �1 parameters in the intervals, respectively [3.59;6.25], [3.95;8.05],

and [0.16;0.61]. Note that the order of the two components is random and that we

chose not to change it in presenting the results. This logic is fully confirmed if we

look at the transition matrix A and the initial probabilities Pi (Table 3.4). Values

of zero and one indicate that only one component of the model is used for the entire

sequence of observations (probably more iterations are necessary), whereas the hill-

climbing heuristic, NM, and L-BFGS-B algorithms use both components equally to

model the data sequence. To go one step further and to decide whether a simpler one-

component model should be used to model this particular dataset, we could compute

di↵erent HMTD models, and rely on the Bayesian information criterion (BIC).

Observing the log-likelihood values, we also see that even if they are all indeed very



3.5. NUMERICAL EXPERIMENTS 69

Table 3.3: Optimal solutions: visible parameters for each method on the Johnson and

Johnson dataset.

✓0,1 ✓0,2 �0,1 �0,2 �1,1 �1,2

S 12.20 8.079 8.871 9.194 -0.069 0.181

SE 0.506 4.538 8.151 9.358 -0.107 0.154

SEM 0.512 4.082 7.823 8.626 -0.069 0.192

SEMP 0.562 4.086 8.153 8.581 -0.099 0.182

PSO 3.674 9.629 3.953 60.26 0.611 0.033

SA 5.148 3.594 55.02 4.175 0.225 0.585

GA 6.250 6.216 8.056 41.30 0.165 0.265

L-BFGS-B 5.113 1.970 7.782 4.190 0.437 0.482

NM 3.118 0.238 3.042 8.702 0.754 0.051

DE 3.747 10.27 4.892 51.24 0.497 0.408

Table 3.4: Optimal solutions: hidden parameters for each method on the Johnson and

Johnson dataset. Since each row of both the transition matrix A and the probability

distribution of the first two hidden states Pi is a probability distribution of two elements

summing to one, we only provide the first one of each of them. A11,1 is the transition

probability from the state defined by X
t�2 = 1, X

t�1 = 1 to X
t

= 1; A21,1 is the

transition probability from the state defined by X
t�2 = 2, X

t�1 = 1 to X
t

= 1, Pi1 is

the unconditional probability of the first hidden state to be X1 = 1, and so on.

A11,1 A21,1 A12,1 A22,1 Pi1 Pi1,1 Pi2,1

S 0.38 0.60 0.40 0.37 0.59 0.58 0.59

SE 0.53 0.69 0.41 0.06 0.85 0.84 0.88

SEM 0.49 0.66 0.39 0.07 0.83 0.82 0.86

SEMP 0.50 0.65 0.38 0.07 0.79 0.78 0.82

PSO 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SA 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GA 1.00 1.00 1.00 1.00 1.00 1.00 1.00

L-BFGS-B 0.40 0.53 0.44 0.33 0.18 0.22 0.17

NM 0.56 0.84 0.70 0.71 1.00 1.00 1.00

DE 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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close (which is the reason why we chose this dataset), all methods from the first group

achieved values similar to each other and slightly higher than those from the second

group. That lead us to two suggestions. The first one is that the second group was

probably trapped in a local optimum using only one component and it was not able

to escape from it. The second is that the model specification with two components

is slightly more appropriate for this dataset compared to another one using only one

component (in which case the latent part of the model would not have been necessary).

In other words, using two components, and thus using the hidden layer of the HMTD

model, improved the modelling.

3.5.3 Sequence length and speed of convergence

We performed a last set of numerical simulations to evaluate the influence of sample size

on the di↵erent heuristics, and to compare their speed of convergence. We generated

data sequences according to a two-component HMTDmodel. Both components followed

a Gaussian distribution with variance �2 = 0.52 and mean µ
t

= 1 + 0.2 ⇤ x
t�1 for the

first one, and �2 = 22 and µ
t

= 3 + 0.6 ⇤ x
t�1 for the second one. The probability

to start with the first component was set to 0.75, and the hidden transition matrix

between components was

A =

"
0.75 0.25

0.40 0.60

#

We considered 5 sequence lengths (15, 25, 50, 100, 200 and 300 data points), and we

generated 200 sequences of each length.

Number of function calls and convergence

The various optimization methods follow very di↵erent procedures, and rely on very

di↵erent convergence and stopping criteria. Therefore, they also require very di↵erent

amounts of time to reach an optimum, what is crucial in comparing them, because

a procedure that requires more calls of the objective function has higher chances of

reaching a better solution, but at the cost of more computing time. For instance, even

a slight change in the stopping criterion of one specific method could result in a slightly

better performance in exchange of a higher execution time. The speed of convergence to

the optimum is therefore an important criterion when choosing an optimization method.

We decided to compare the di↵erent heuristic by allocating them a fixed maximal

number of log-likelihood function calls (500). Often, the di↵erent methods managed to
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converge with this number of function calls (perhaps because of the bounded parameter

space), but some did not succeed. This raises the question of the presence of error due

to the non-convergence of some methods during some iterations. A possible solution

is to only analyse the solutions that have converged. However by doing this we would

omit the fact that for a given dataset, some methods did simply not succeed to find

an acceptable solution, whereas others did. As we would inevitably obtain di↵erent

proportions of solutions, we would arrive in a situation where we compare only the

successful solutions, what could benefit the method with the less tolerant stopping

criterion. Therefore, we chose to include all solutions obtained with a given number of

function calls. This probably introduces a non-convergence error in our analysis, but

results allow us to fulfil the main objective of the simulation, that is to find the fastest

procedure that o↵ers acceptable solutions by treating equally all the methods.

Results

Table 3.5 summarizes our results by providing for each sequence length and each op-

timization method the mean and standard deviation of the log-likelihood of the 200

datasets.

Table 3.5: Results of the simulations with 500 log-likelihood function calls. We gener-

ated 200 series of each data length, and we provide the mean and standard deviation

of the 200 log-likelihood.

Data SEM SEMP NM PSO L-BFGS-B GA DE

length

15 µ -25.42 -25.87 -24.80 -25.36 -26.13 -27.97 -27.74

� 6.05 6.75 6.17 6.03 6.06 10.85 6.97

25 µ -45.83 -46.85 -44.93 -45.67 -46.96 -53.84 -49.74

� 8.05 10.13 8.05 8.09 7.74 86.21 9.84

50 µ -97.62 -100.28 -96.84 -98.41 -100.25 -110.43 -107.60

� 10.59 13.99 10.44 11.25 10.12 85.15 20.42

100 µ -200.62 -204.38 -199.18 -202.21 -205.23 -234.00 -219.43

� 15.45 19.21 14.60 15.64 14.50 388.30 29.92

200 µ -408.95 -416.68 -406.25 -414.84 -417.99 -450.80 -450.95

� 21.64 31.83 20.27 25.23 22.31 270.48 78.72

300 µ -615.56 -626.65 -612.02 -625.61 -630.34 -668.43 -678.95

� 26.44 40.70 25.13 31.97 30.60 151.42 138.86

Results show that Nelder-Mead appears to be the best method to maximize the log-
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likelihood of the model, right before the SEM and PSO. However, even though it is very

popular in numerical optimization, as we mentioned, this method su↵ers from a major

issue: the impossibility to fix constraints. This may often be problematic, especially

if we analyse small datasets where spurious optima exist. Among examples that we

experienced during the optimization are negative standard deviations, and exceedingly

high autocorrelation values, leading to non-interpretable solutions, even if they may be

better from a strict mathematical point of view. For these reasons NM should be used

only if the datasets are large enough and there are no hard constraints imposed by the

model or the nature of the data.

The other methods compared here do not su↵er from such a limitation, and among

them the SEM and PSO appear as the best choices. The advantage in favour of SEM

increases with the length of the data sequence. On the other hand, it appears that

permuting the re-estimation order of the coe�cients is not useful (SEM leads to better

results than SEMP). Overall, our new heuristic behaves well against its competitors

allowing to reach good and interpretable results in all situations.

3.5.4 Simulated data experiment

We run a simulation experiment to be able to compare the results obtained using each

optimization procedure with the parameters that generated the data. After a burn-in

period of 2000 data points, we simulated one sequence of 500 data points by using

a model with two hidden states, first order dependence for the latent level, constant

variance and one lag for the mean at the visible level. The true visible-level parameters

were: ✓0,1=8, ✓0,2=3, �0,1=4, �0,2 =1, �1,1 =0.3, �1,2 =-0.2. The hidden transition

matrix was defined as:

A =

 
0.3 0.7

0.2 0.8

!

and both hidden states had the same 50% initial probability. The visible parameters and

the log-likelihood achieved by each procedure are given in Table 3.6. We observe that

all methods reached a very similar value for the log-likelihood. However, the parameters

are not very similar even if they approach their true value. The largest di↵erence is ob-

served for the standard deviations (✓0,1 and ✓0,2). We note that in this case L-BFGS-B

and SEM give us slightly higher log-likelihoods, but their solutions are not the closest

ones to the parameters. In both cases, the constant of the mean of the first component

(�0,1 = 15.01 and 15.44) compensates for the positive auto-regressive coe�cient �1,1,

which tends to vanish. Similar problems are encountered with the Nelder-Mead and
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SE algorithms, suggesting that an important local optimum is present. We hypothesize

that by increasing the length of the sequence, the auto-regressive coe�cients will cap-

ture better the time dependence (if such exists) and therefore they will become more

important to discriminate the sequences, what is likely to solve this problem.

✓0,1 ✓0,2 �0,1 �0,2 �1,1 �1,2 LL f.calls

True param. 8 3 4 1 0.3 -0.2

SE 11.83 3.853 14.56 1.224 0.058 -0.166 -1496.71 5000

SEM 18.12 5.034 15.44 1.230 -0.044 -0.171 -1496.17 5006

SEMP 44.52 1.406 3.536 1.123 0.516 -0.218 -1496.27 5008

PSO 43.80 14.60 3.583 1.129 0.527 -0.222 -1496.26 4662

GA 36.49 14.94 5.546 0.708 0.476 -0.090 -1504.15 5000

L-BFGS-B 17.93 14.60 15.01 1.207 0.000 -0.166 -1496.07 49

NM 8.511 6.343 14.80 1.208 0.028 -0.160 -1496.64 345

Table 3.6: Optimal solutions for the simulated data: Visible parameters obtained using

each method after 5000 iterations, log-likelihood, and number of calls to the function

evaluating the log-likelihood.

On the other hand, the three other methods (SEMP, PSO, GA) have detected

the positive parameter �1,1, what resulted in a more accurate estimation of ✓0,1 as

well. In general, the estimation of the standard deviation parameters remain quite

inaccurate, apart from the fact that all the procedures estimated correctly a smaller

standard deviation for the second component. By observing these results, we may think

that as the number of data points increases, the estimation procedures increase their

accuracy. This intuition is confirmed after replicating the same experiment with four of

the optimization algorithms on a sequence of 1000 observations (Table 3.7). However,

that seems to apply to the parameters related to the mean of each component, but not

to the standard deviation.

Properties of the proposed heuristic optimization and

the GEM algorithm

If we explore the properties of an EM algorithm, we know that the M step ensures the

increase of the marginal log-Likelihood and thus (most often) the convergence to an

optimum that may be global or just local.
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✓0,1 ✓0,2 �0,1 �0,2 �1,1 �1,2

True parameters 8 3 4 1 0.3 -0.2

SEM 47.32 0.767 3.069 0.938 0.419 -0.205

SEMP 47.11 0.186 3.175 0.947 0.402 -0.186

PSO 39.73 13.24 2.967 0.968 0.408 -0.212

GA 19.90 15.61 16.26 1.037 -0.069 -0.123

Table 3.7: Optimal solutions performed with a sequence of 1000 observations: visible

parameters obtained using each method after 5000 iterations.

Recall that the ”expectation” step computes the fixed parameters of the latent

part and the maximization step is then used to re-estimate the visible-level parameters

by maximization of the model’s fit to the data. As discussed, because of the non-

existence of unique closed form solutions of the derivative equations of the M-step in

case of non-constant component variance, it is replaced by a heuristic optimization.

The convergence of the resulting Generalized EM (GEM) algorithm depends on this

maximization procedure.

In general, heuristic procedures rely on systematic behaviour of random evolution

and therefore their convergence cannot be proved mathematically. This is also the

case of the used heuristic. However, the way that this procedure is implemented also

simulates to an extent the behaviour of the M step: only parameter values that increase

the Likelihood are accepted and if this is impossible after exploring all directions in every

dimension of the parameter space, the step size is reduced before the next iteration. If

the smallest modification of the parameters is still not beneficial, then one assumes that

a local optimum is reached and the procedure is restarted. Of course, this procedure is

computationally expensive and this must be taken into account when the complexity

of the solution space increases.

By construction at every iteration i of the modified M-step only visible-level param-

eters that increase the likelihood are accepted, which indicates:

Q(⇥|⇥i+1) � Q(⇥|⇥i)

As showed by Little and Rubin [87] (chapter 8.4.1), the aim of each M-step of EM

(and GEM) is to find a ⇥i+1 that improves the complete-data likelihood Q(⇥|⇥i+1),

but this also leads to increasing the likelihood function of the observed data at each

step.

Therefore the monotonicity property of the ordinary EM algorithm is preserved in
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the GEM (see also section 3.2 and 3.3 of McLachlan and Krishnan [93] for more details).

However, the rate of convergence with the heuristic optimizations is generally slower

because of the lack of information obtained from the likelihood function derivation and

the need of exploration of the neighbourhood instead.

In the procedure that we implemented, some of the parameters can be constrained.

Note that if this is done, the convergence of both the EM and the GEM algorithm is

not granted: McLachlan and Krishnan [93] cite several examples in the literature, in

which the algorithm is guaranteed to converge and a few where it is not. Specific proofs

of convergence are therefore required for each problem. The convergence properties of

a GEM algorithm have been showed in Dempster, Laird & Rubin [41] and Wu [170].

However, the latter also mentions some exceptions in which the EM algorithm converges

to a saddle point instead of to a local optimum. GEM also does not necessarily converge

to a single point (see McLachlan and Krishnan [93] and the references therein).

3.6 Discussion

In this chapter we proposed a new heuristic approach for the M-step of the GEM algo-

rithm optimization of the HMTD model. Our motivation was that the HMTD model

is very complex, with many constraints on the solution space, and hence, standard

available algorithms may have di�culties in finding acceptable solutions. Of particu-

lar importance is the fact that the log-likelihood function of the HMTD is di�cult to

di↵erentiate. Thus, our approach does not use any derivatives.

Since our method can be qualified as a hill-climbing method, it can be compared to

other neighbourhood search or hill-climbing methods (stochastic hill climbing, random

restart hill climbing, etc.). Therefore, it also shares some of the issues of these meth-

ods. Among them is the ascension of ridges (or descend of alleys): All of these methods

update each dimension separately, and therefore, if the direction of the ridge (or alley)

is not aligned to the axis of one dimension, the algorithm has to progress in zig-zag,

spending more time. Such problems may be solved, but we need to be able to detect the

problem first in order to eliminate it. A typical situation of ridge is manifested when a

change in one dimension introduces a possibility to improvement in another dimension

that was not possible until then. If this relation between two variables continues on the

same sense for more than two consecutive iterations, we can include the simultaneous

change feature that we developed before. This feature should spare a lot of unneces-

sary steps. However, when the number of dimensions increases, the detection of such

situations becomes more di�cult. We need to highlight that the possible inclusion of
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simultaneous change distinguishes such procedure from standard hill-climbing methods,

because it allows the solution to evolve in more than one dimension simultaneously.

Similar to the majority of optimization algorithms, our heuristic procedure requires

to start from a good set of initial values. Therefore, it is a good idea to draw a number

of randomly chosen points in the parameter space, evaluate them, and select either

the fittest one or the centroid (mean or median point) of the best five solutions. This

solution may be beneficial for our procedure despite the additional computations. Our

approach is also better adapted to smooth functions, and its drawbacks are obvious if

we test it on more rough functions with many local optima. In this case, our approach

brings us only to the nearest optimum. The solution then is to add some noise to the

parameters after reaching an optimum in order to escape this optimum in the case it is

a local one, what we called “jittering”.

During a test with the Rastrigin function with 40 parameters, we also observed

another interesting particularity: the re-estimation step needed to be higher when

we attempted to optimize high-dimensional problems. The reason was probably the

diminishing sensibility of the function to the modification of a single parameter as di-

mensionality increases. When the outcome remained unmodified after changing one

parameter, the algorithm was trapped into the current solution. A possible remedy to

this situation could be to introduce higher initial values for the re-estimation step and

to rise the maximum possible value of this step as the number of dimensions increases.

Another issue is that for some solutions, the computed log-likelihood decreases even

below the minimal number that the machine can consider (especially if we calculate

it using highly unlikely values for the parameters). As it is easier to work with log-

likelihood instead of the likelihood itself, we need to ensure that the returned value

of the likelihood is not rounded to 0 (log(0) = �1). To fix this problem, we impose

the likelihood to be greater or equal to the minimal number for the machine that we

use. This problem also shows the importance of the initial solution to our approach in

order to avoid areas where the objective function is flat (i.e., the log-likelihood around

remains null despite the changes in the parameters). These flat areas are also an issue

for the local search methods, and they are one more reason to include bounds.

In addition to the di↵erent approaches used throughout this paper, another alter-

native would be the meta-optimization, implemented first by Mercer & Sampson [98],

which applies one optimization method to tune the parameters of another one. This

procedure has been previously applied to many situations, but in our case, it does not

guarantee an improvement of performance, especially if we modify the configuration of

the model (number of lags, latent states, etc.). The notion of hyper-heuristics is also
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worth mentioning. These are techniques that are applied to heuristic methods in order

to determine the most appropriate of these for a given problem or, alternatively, to

generate a new heuristic method by combining existing heuristics. The aim is to find

a more general optimization procedure. However, again, we do not know whether the

objective function remains similar when we change the specification of the model, which

is necessary when we choose the number of components for instance. Moreover, as ob-

served, the best optimization method changes in function of the chosen specification of

the model, even when applied on the same dataset.

Even if our heuristic shows good performance, it could be improved in di↵erent ways.

First of all, and as already mentioned, the performance of our hill-climbing approach

is influenced by the initial solution. As the speed of convergence to a local optimum is

rather fast, in simple problems we may want to introduce parallel computing starting

from di↵erent points instead of using the “jitter” procedure. That would allow the

algorithm to explore the presence of any local optima, without consuming additional

time in practice, provided that nowadays most computers have multi-core processors.

The performances of most of the procedures tested here are also influenced by the limits

of the parameter space. Since the choice of these limits is very arbitrary, an introduction

of “floating” limits (limits that serve as orientation, but are broadened as soon as the

current best solution approaches them) may be a solution. Another possibility, directly

related to the structure of the HMTD model, would be to estimate simultaneously,

instead of sequentially, the visible and latent parameters. In this case we would need to

introduce constraints on the hidden transition matrix A in order to ensure that it will

remain a proper transition probability matrix. Such estimation procedure appears to be

computationally demanding taking into account the increasing number of dimensions.

The complexity of the solution space arising from statistical models such as the

HMTD (especially when the number of components, lags and/or covariates increases)

and the additional specificities associated with each particular dataset imply that no

one optimization algorithm can be demonstrated to be always the best, and that even

with a good algorithm, the fine tuning of its parameters can have a very high impact

on the final result. That being said, the contingencies of applied research imply that

finding the best overall solution in terms of fit to the data, hence of log-likelihood, is

not always required. In most situations, increasing the log-likelihood by one or two

points is useless, since it will not imply a dramatic change in the parameters, hence

in the interpretation that will be made of the model. The focus then has to be put

on the speed of convergence (what disqualifies GA) and on the probability to find an

acceptable solution, that is one that is not influenced by the boundaries of the solution
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space and that is sounds in regard of the dataset. Regarding these requirements, the

new heuristic presented in this paper for the HMTD model works well by minimizing

the number of situations with useless results, and it could be applicable to many similar

statistical models.



Chapter 4

Clustering uncertainty

In this chapter we will explore important concepts that are necessary to understand

a complete mixture models clustering procedure from the beginning to the end. We

focus on frequentist estimation and our major objective is to assess how uncertain the

parameters of the clustering solution are and how to obtain confidence intervals for

the parameters. To understand the problematic, we need to discuss the estimation

procedure, the important ways to choose an optimal clustering solution, the problems

that arise during the construction of the intervals based on this solution (label-switching

among others). Because bootstrap is the method found most appropriate to obtain

these intervals, we will explore how is it possible to overcome the label-switching and

other problems when bootstrapping the data. At the end, an important overview which

summarizes the entire procedure will be provided.

4.1 Introduction

Cluster validation is a complex task with multiple aspects on which there is rarely

consensus. Evaluating the quality of clustering is important for every researcher. This

is true for not only the choice of number of clusters and clustering method but also

the reliability of clustering. Di↵erent aims of clustering require di↵erent features: for

example, pattern recognition requires the separation of clusters, social network analysis

requires that small within-cluster distances be researched, and the clustering for infor-

mation reduction requires that the resulting components both represent the data well

enough and neutralize the outliers present in the original variables Hennig et al. [66].

In all the domains of application of clustering, however, a major concern is uncer-

tainty of the obtained solution; that is, how sure can one be that the obtained clustering

79
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reflects the true structure of the population.

Several distinct types of uncertainty generally exist in computer data modeling,

according to Kennedy & O’Hagan [78]. The authors classify them as follows:

• Parameter uncertainty is one of the parameter values used in computer data

modeling. These values are unknown and often correspond to some features of

the data.

• Model uncertainty arises from the model?s adequacy for the data. All mod-

els have underlying assumptions supposed to correspond to the true underlying

data-generating process. However, because the models are only approximations

of the reality, there always exists a di↵erence between estimated and real data

distribution.

• Residual variability indicates the di↵erence between the outputs of a particular

model on two di↵erent occasions (points in time, for instance) even when all the

conditions are exactly the same.

• Parametric variability arises when some parameters cannot be specified and are

left to vary according to some approximate distribution.

• Uncertainty can arise also from ameasurement (observation) error. It is inevitable

especially when the data are not directly and objectively observed (for example, in

social sciences, the observations of individuals are often reported by themselves).

• Uncertainty about coding is another problem that must be considered.

Numerical uncertainty is also important, especially in complex models. Numerical

optimization or approximation may often introduce numerical errors. This is also true

for the heteroscedastic mixture transition distribution (HMTD) models that use the

generalized expectation maximization (EM) algorithm with a forward-backward algo-

rithm to maximize (or estimate) log-likelihood. Interpolation and extrapolation due

to the lack of data in some regions are also a source of errors. The unequal spacing

between time series observations is a simple example of a cause for such uncertainty.

Uncertainty can broadly be categorized as aleatory and epistemic types, according

to Der Kiureghian & Ditlevsen [42]). The former type encompasses all uncertainty

that cannot be reduced by the researcher. On the contrary, epistemic uncertainty may

be reduced by collecting more data or enhancing the model, for instance. The poor

distinction between these two uncertainty types may lead to the prediction of a very
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small part of data variance (with a bias toward aleatory uncertainty), or to over-fitting

and the modeling of spurious relations between the variables when the epistemic part is

overestimated. Although the distinction between these two broad uncertainty types is

not obvious in most situations, epistemic uncertainty may be a good topic for general

discussion.

Here, we distinguish between the search for optimal clustering in terms of model

choice and number of clusters, and inference on model parameters; that is, their es-

timation, significance, and variability. Although we focus on the latter, because the

distinction between the two parts is not obvious, we need to discuss both parts.

In the frequentist framework for mixture models, parameter inference may be per-

formed using bootstrap in three di↵erent ways, that we will be detailed later in this

chapter. One method is to resample from the entire sample before fitting the clustering

model. By doing this, we mix the parameter and model uncertainties, but this can make

our task much more complex. In another approach, we can isolate both uncertainty

types. A third approach is a hybrid solution by which we assume that the clustering

is correct and draw ”stratified” samples, but still we mix both types of uncertainties.

This approach may be appropriate if a small-size cluster is discovered in the optimal

clustering.

In general, once we choose a model and approve the clustering of a given number of

clusters, several questions arise:

• To what extent are the parameters of the chosen solution meaningful?

• How much would they vary if another sample is drawn from the same population?

and

• Of the optimal parameters, which are the ones truly important to define the

clusters, and which are the ones spuriously estimated?

Let us now take a small example on the importance of parameters. Assume that we

have a two-component Gaussian Mixture Model (GMM) for the optimal clustering of a

two-dimensional dataset and that we estimate a given covariance matrix. We find the

covariance between the variables (�̂2
1,2), but how can we be sure that this covariance

(i.e., an elliptical shape of the cluster) really exists? If no di↵erence can be found

between the variances and covariances for each cluster, then the much simpler k-means

clustering variance minimization model would be as appropriate for the problem as the

GMM. Such questions are important because the aim of the researcher is often not

only to find a good clustering for the given sample, but also to understand the nature
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and specificity of the clusters in the underlying population. Therefore, the clusters?

stability and significance are critical.

In this chapter, we first introduce the use of bootstrap in mixture models for clus-

tering and then briefly explore the widely used alternative of Bayesian analysis for such

models. Section 2 introduces the well-known label-switching issue and some solutions to

it. Section 3 focuses on the parameter inference approaches and presents the proposed

bootstrap procedures in frequentist estimation. Finally, we explore some methods to

choose, compare, and validate an initial stable clustering solution, on which the pro-

posed bootstrap methods rely. In the following chapter, we will provide an example

that illustrate these points.

4.1.1 Mixture models for clustering

Mixture models are frequently used for data clustering. However, most of the studies

consider only univariate or multivariate transversal data. Therefore, we first briefly

overview some of the important characteristics and issues of the mixture models most

often discussed and used with transversal data, although most of them can also be

applied to longitudinal data.

In a basic variant of the GMM, mixture models are similar to nonprobabilistic K-

means clustering, except that the clustering method is “softer.” In other words, the

observations cannot be defined as arising from one particular mixture, but instead have a

probability of arising from any of the clusters. The GMM is also more flexible, allowing

the variances and covariances to change, thereby introducing elliptical distributions.

To illustrate the similarity between the two clustering models, note that we can obtain

the same answers from GMM and K-means clustering by modifying just two features

of the GMM. The first modification is to fix the variances of each GMM component

(ex: ✓
c

= 1) and the covariances between them, and the second is to make the prior

distribution of the GMM uniform on each iteration of the EM algorithm (see Bishop

[23] for more details on GMM)

Mixture models belong to the so-called ill-posed problems because they do not satisfy

all the three properties of a well-posed mathematical problem (i.e., a solution exists, the

solution is unique, and the behavior of the solution changes continuously with the initial

conditions). More precisely, one can have multiple solutions, and, most importantly,

small modifications in the data have large impacts on the results. Two completely

di↵erent parameterizations can lead to a similar joint distribution, meaning that a

unique solution does not necessarily exist. This is also an inversed problem because the
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data provide information on the parameters indirectly; that is, we extract information

on the data-generating process from the data itself. Thus, there actually exists a non-

null probability that one of the model?s components is empty and the sample does not

provide any information about its parameters; this possibly explains why the likelihood

function can become unbounded Marin, Mengersen and Robert [89].

The optimal solution in mixture models can typically be found by maximizing the

likelihood. Depending on the model complexity, it could be di�cult to find an optimal

solution, especially because the likelihood function can contain multiple local optima.

A major reason for this is the identifiability problem (or the genuine multimodality

problem). Furthermore, for some models (such as the HMTD), deriving the likelihood

function could be di�cult, requiring the use of a heuristic procedure and thus more

computational time.

Another important issue in parameter inference arises from the fact that a likeli-

hood is invariant to a permutation of components. This implies that all other things

being equal, every likelihood optimization solution can result in a di↵erent order of

components. This is the so-called label-switching problem, which is common for mix-

ture models and especially important when assessing the parameter uncertainty of a

mixture model. This issue arises every time we try to infer the parameters specific

to each component. The problem is often aggravated by the identifiability (genuine

multimodality) problem, which we will discuss in more detail shortly.

Finally, we also find a singularity problem, which we will discuss in detail in the

following section. When clustering data, assessing the uncertainty of the parameters is

crucial. We need to find the significant parameters for every class and hence have to

discover the particular features of each class (including covariates) in order to distin-

guish it from the others. We will discuss the classification issues in more detail later in

this chapter.

4.1.2 Use of bootstrap in clustering

When discussing parameter significance and uncertainty in frequentist estimation, one

should consider the bootstrap method. The bootstrap was introduced by Efron [46] in

1979 and represents a major development of the jackknife. One objective in clustering

is to eliminate as much as possible the sampling error that we obtain when clustering

a small sample in place of the true population. If the sample size n is very large, one

may divide it and cluster the di↵erent independent parts, but since it is often limited

in practice, the only way to approximate the true underlying distribution F of the data
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is through the empirical distribution F̂
n

of the sample. In bootstrap, we draw samples

of size n with replacement from the original sample.

The bootstrap is widely used to empirically estimate the variability of a parame-

ter estimate (mainly in its nonparametric form) in various classification and clustering

techniques. For instance, in random forests, one forms bootstrap samples from the

original sample to generate multiple training sets (bagging). This procedure has also

been found useful in clustering, such as in averaging with k-means to reduce the compu-

tational time in large data samples Davidson and Satyanarayana [40], assessing cluster

stability, and selecting the number of clusters Fang and Wang [50].

4.1.3 Estimation procedure: Frequentist or Bayesian

In this section, we discuss two methods commonly used to estimate the parameters of

a mixture model: the frequentist and Bayesian approaches. The two approaches have

di↵erent concepts for the parameters: in the frequentist perspective, the parameters are

fixed and an error term may be computed around the estimates; this indicates how close

the real parameters can be to the estimation. These error terms are often estimated

through bootstrap resampling. From the Bayesian point of view, the parameters are

not fixed but random variables with a given distribution. Both concepts have positive

and negative sides, neither concept being superior to the other. However, one needs to

discuss the advantages and disadvantages of both concepts before choosing one.

According to McLachlan and Peel [94], the Bayesian approach for mixture models

entails some di�culties. Improper prior distribution, for instance, results in improper

posteriors. The label switching due to lack of prior information on how to distinguish

the components results in multimodality in the likelihood function (with k! di↵erent

modes, where k is the number of components). Label switching is a problem not

in the maximum-likelihood (ML) estimation of the mixture, but in the Markov Chain

Monte Carlo (MCMC), because the labels may switch between di↵erent iterations when

sampling parameter realization from the posterior distribution. Although the authors

stress that ML estimation is invariant on label switching and therefore not problematic,

we must note that to assess the stability (or standard error) of the ML estimates, one

needs to address this problem because after the re-estimation of each bootstrap sample,

one should identify the components to which the parameter estimates of each iteration

belong (their order is random).

Rydén [131] reviews the advantages and drawbacks of both the frequentist (EM)

and Bayesian (MCMC) estimations for Hidden Markov Models (HMMs). He particu-
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larly examines three cases: selection of the model order, continuous-time HMM, and the

HMMs where several latent variables influence the observed data in an overlapping way.

Bootstrap is used with the Expectation-Maximization (EM) algorithm to estimate the

intervals for the parameter estimates. The comparison is purely from a computational

perspective. The conclusion is that no approach is clearly superior to the other, but this

depends on the specific problem. In his examples, the Bayesian analysis appears faster.

On the other hand, in the frequentist approach, ”i.i.d. bootstrap replicates require no

analyses of correlations, etc., in order to assess the precision of the results.” Therefore,

the authors state that the serial dependence of the sampler imposes additional prepara-

tory analyses; note that a single long sequence is estimated by the authors. Since the

sequences of parameter samples are not independent from one another in MCMC, this

dependence multiplies their variances by a constant C
↵

, which should be calculated.

Therefore, one must check the consecutive MCMC iterations for whether the cases in

which a parameter exceeds its CI upper bound, for instance, are autocorrelated, and

to what extent. For instance, several of the most extreme parameter values can be ob-

tained in just a few consecutive iterations. Using this information, one might estimate

the extent of inflation of the parameter quantile variance and correct the problem (see

the appendix in Ryden’s article for details).

Note that their bootstrap procedure was parametric (we will discuss parametric

bootstrap later in this chapter), indicating that the sequences were generated from

the estimated model. Moreover, the label-switching problem was simple and could be

resolved by just one identifiability constraint for the means. Of course, when we need

only a point estimate, the EM approach is simpler and faster.

Dias & Wedel [45] compare the performance of the EM, Stochastic EM, and MCMC

(see also Celeux, Chauveau & Diebolt [28] for a comparison between the EM and

SEM) when estimating a Gaussian mixture, particularly when there are sharp ridges

and a saddle point in the likelihood. The authors point out the slow convergence of

the ordinary EM and the label-switching vulnerability of the SEM and MCMC, and

attempt di↵erent methods to solve the latter issue. In the concrete example of Dias

& Wedel [45], the SEM and MCMC appear to be faster, while the MCMC su↵ers less

from degenerate solutions due to components with single observations (although this

speed of convergence claim is not unanimously approved in the literature). The authors

finally show the superiority of the MCMC for their examples with problematic surface

of the likelihood function and warn about the costly implementation, especially the

label-switching problem that attenuates the advantages of MCMC. In our opinion, the

latter issue can be more dangerous when considering more complex mixture models.
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The large possible number of parameters and lack of a common principle to distinguish

the component parameters in the HMTD model can cause problems when solving the

label-switching issue. This is the main reason why we prefer the EM approach instead

of the Bayesian approach for the model estimation. Although the MCMC can be faster

and accurate in simple HMTD specifications, in more complex cases we may not be

able to estimate it owing to the latter problem.

Frequentist analysis of mixture models

The frequentist estimation of mixture models usually uses the EM algorithm or some of

its variants (see Celeux, Chauveau & Diebolt [28]). EM estimation starts by choosing

k points (number of clusters) randomly in the parameter space. This represents the

means of the distributions. In the first step, we estimate the probabilities that each

observation is generated from one of the k components, and the procedure continuous

as detailed in Chapter 2.

One problem arises when we attempt to estimate a GMM using the ML framework,

the singularity problem (see Bishop [23]). This issue arises when one component is

stuck to a single observation of the data. Because it contains only one observation, the

marginal distribution of the component becomes spiky and the variance becomes null.

The resulting covariance matrix is singular (its determinant is null and therefore it is

not invertible). This could happen with a single extreme value, for instance, and also

when the variance of a component is very small.

When we consider the likelihood of the GMM

P (X|⇥, ⇡) =
KX
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a null variance of the component k results in an infinite value of the likelihood of the

data point j on which the component is stuck:
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As Bishop explained, the singularity problem does not occur in Bayesian analysis

or when we have a single component model because the variance cannot be null if
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we cannot have a single observation in the component. In the latter case, even if

the components collapse at one point, the multiplicative likelihood due to the other

data points will be null and the total likelihood will become 0. This is also another

advantage of the separate bootstrap inference approach using one component, which

we will discuss later, because the number of observations per component do not change

throughout the iterations. For Bishop, this problem illustrates an over-fitting issue

when the ML approach is used. A remedy for this would be to employ a suitable

heuristic technique that detects the collapsing of a Gaussian component, resets the

mean, and increases the variance.

Bayesian analysis for mixtures

As with the frequentist estimation, we consider it necessary to briefly introduce the

Bayesian inference. The Bayesian mixture model has become very popular since the

1990s following the development of MCMC methods. One reason is that this method

allows complicated structures of the model to be decomposed into simpler structures

through the use of latent variables. Consider the Bayesian formula

P (✓|x) = P (x|✓)P (✓)

P (x)

. The quantity of interest in Bayesian inference is the distribution of parameters, given

the data P (✓|x). In order to estimate this, we need to suggest a prior distribution for

the parameters (P (✓)). We also need to compute the likelihood which represents our

thought (based on a model) of the data distribution, given the parameters (P (x|✓)).
P (x) is the evidence that the data are generated by the model and represents the most

complex part of the equation. To calculate it, we need to integrate over all the possible

values of the parameters P (x) =
R
✓

P (x, ✓)d✓. However, because we do not know their

distribution, we often have to sample them using MCMC. Furthermore, because we use

a Bayesian framework, we need to choose a prior distribution for every parameter we

want to infer.

In sampling using MCMC, we first decide an initial arbitrary parameter value ✓0 (of

dimension p). The Markovian part arrives when we choose to move to another proposed

value ✓1 (or stay with the current one). This proposal point in the parameter space

could be made in di↵erent ways—at random or by using a more complex approach

with some assumptions. The Metropolis sampler, for instance, simply draws from a

Gaussian distribution around the current point within a determined range (standard

deviation).
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In order to decide whether the new point ✓1 is better and we should accept it, we

calculate the probability of obtaining the data from the model with this parameter

value; that is, we compute the log-likelihood (P (x|✓1). However, we do not have to

simply find the optimal value (and therefore be stuck with it), but rather get a posterior

distribution of the parameters; that is, we obtain a sample of parameter values with

more points in the regions with higher probability. Some acceptance probability is often

attributed to the new point even when it does not increase the log-likelihood. However,

this probability usually increases with the likelihood of the new point, since the aim is

to obtain a posterior distribution covering the more probable regions of the parameter

space. Therefore, each region could be visited according to its probability approximated

by the log-likelihood using the acceptance ratio.

If we draw a new point in the neighborhood with a higher probability, we usually

retain it, but if its probability is lower, we can still accept it. Therefore, the sampler

moves around the high-probability regions and does not stay for long in the lower ones.

To sample from the correct region of the joint distribution ✓ = {✓1, . . . , ✓k} ⇠
p(✓1, . . . , ✓k), we have various types of samplers. The most well-known samplers are the

Metropolis-Hastings (MH) and Gibbs samplers. Therefore, we briefly introduce them.

In random-walk Metropolis algorithms, generally, the acceptance probability is im-

portant and should not be too small or too large.

An advantage of the MH sampler is that we do not have to know the posterior

distribution beforehand. If we have an intuition of the posterior distribution, however,

and we have a multidimensional problem but are not able to directly sample from the

joint distribution, another approach may be more appropriate.

The Gibbs sampler is applied in such situations because it does not need to sam-

ple from the joint distribution, but sample alternately from the conditional distribu-

tions. Gibbs may be seen as a special case of MH when we have the full conditional

distributions (i.e., the conditional distributions of every ✓, given all other variables

P (✓
i

|✓1, ..., ✓i � 1, ✓
i

+ 1, ..., ✓
k

)). The Gibbs sampler has been used for the estimation

of mixtures even before Tanner & Wong [151] it became popular through Gelfand &

Smith [56] (see Marin, Mengersen and Robert [89]). In short, the procedure is as follows

(if ✓ = {✓1, ✓2}):

1. Initialize the parameter values (✓(0)1 , ✓(0)2 ).

2. Then, sample from ✓(j)1 ⇠ p(✓1|✓(j�1)
2 ) (for instance, the unobserved variables

indicating the component generating the observation, conditional on the means

and variances of the components).
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Contrary to the MH sampler, Gibbs sampling always accepts the sample.

3. Now, using the estimation obtained above, sample from ✓(j)2 ⇠ p(✓2|✓(j)1 ).

4. Iterate the last two steps until convergence.

In general, each ✓1 or ✓2 may be multivariate for the Gibbs sampler.

Note that the sequence of parameter estimations ✓1,...,J follows a Markov chain and

is therefore not independent. The relaxation of the i.i.d. assumptions generally applies

to all the MCMC methods. The accept-reject methods provide i.i.d. sampling but

have several inconveniences, especially with multivatriate problems such as ours, and

therefore are not discussed here.

When applying the Gibbs sampling to mixture models, the steps consist of the

successive estimation of z (the variable indicating the component from which the ob-

servation is generated), p̂ (the mixing probabilities), and ✓̂ (the parameters of each

component). The latter parameters may imply several additional steps based on the

underlying distribution. For a Gaussian mixture, for instance, the means µ̂ may be

sampled first, and then the variances �̂2 generated.

According to Jasra, Holmes & Stephens [69], the Gibbs sampler is not the most

appropriate sampler since it does not explore many regions of the posterior and thus

”cannot visit all of the modes of a mixture target.” They adopt the MH updates of the

parameters and discard the latent variables. For full convergence, the sampler needs

to visit all the n! modes, that is, all labeling combinations. This illustrates one major

concern in Bayesian statistics: Can the MCMC sampler manage to visit su�ciently the

support of the underlying parameter distribution?

Another important issue in Bayesian analysis is the decisive role of the choice of

priors for the parameters. This problem is illustrated in Aitkin [3] with an example of

the Galaxy data used by various authors to find the optimal number of components in

a mixture model. Likelihood and Bayesian analyses show that the various Bayesian im-

plementations reach contradictory conclusions on the number of components because of

the di↵erent opinions on the appropriate prior distribution and hyperparameter choice.

In this context, Aitkin concludes that the complexity of the prior structures needed for

Bayesian analysis leaves the user confused about ”what the data say”, and although

likelihood analysis has some inconvenience, it is well understood and more straightfor-

ward to answer some questions using the bootstrap method.
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4.2 The label-switching problem

4.2.1 The label-switching problem and multimodality

Label switching is a major issue in the Bayesian estimation of mixture models. As

discussed, it is also an issue in frequentist estimation when (and only if) one needs to

use a resampling procedure, such as bootstrap, to evaluate the validity of the solution.

However, much more research has been dedicated to the Bayesian mixture models; for

example, see Celeux, Hurn and Robert [30], Stephens [147], Sperrin, Jaki and Wit [143],

and Jasra, Holmes & Stephens [69].

Label switching arises from the invariance in the permutation of component labels.

It causes the need for methods that can identify the components obtained after each

iteration of an MCMC sampler (in the Bayesian framework) or solution of a Bootstrap

sample. In the Bayesian estimation of mixture models, label switching arises when one

attempts to use marginal distributions to summarize joint posterior distributions and

provide estimations using the posterior mean of the latter.

We must note that in EM procedure, if one is interested, for instance, only in

the density of the mixture, label switching is not an issue because it is invariant to

labeling permutations. This is the case, for instance, when one uses the model for data

prediction.

An issue that arises with label switching is the multimodality problem; this means

the presence of multiple modes in the distribution. In fact, if we have k components in

a mixture model, the number of modes is of order O(k!), as we have all possible per-

mutations of the indices. Moreover, if we use an exchangeable prior on the parameters,

all the marginal distributions, and therefore all the posterior parameter expectations,

are identical Marin, Mengersen and Robert [89]. Many authors (Rodriguez & Walker

[126] Celeux, Hurn and Robert [30]) stress that label switching is necessary for the

convergence of MCMC. If no label switching occurs, it means that the sampler is not

exploring all the mixture model?s k! possible posterior distribution modes that should

be explored. This is then seen as a symptom of poor sampler mixing, and various mod-

ified samplers have been proposed to remedy this problem (see Rodriguez & Walker

[126] (2014) and the references therein).

However, there is another type of multimodality that is more problematic, especially

in frequentist estimation, where the solutions obtained with each bootstrap sample are

completely independent of one another. As mentioned, the mixture models are ill-posed

problems, and therefore two completely di↵erent mixtures may result in very similar
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total density distributions. This results in multiple ”genuine” modes (or multiple local

maxima) in the likelihood function, because several di↵erent parameterizations allow

for very close likelihood values, and thus equivalent fitting, to the data. This issue

aggravates the label-switching problem, and we cannot find the corresponding unique

labeling of the parameter estimates because of incompatibility of the two parameteri-

zations (genuine multimodality). Particularly, in such cases, relabeling algorithms fail

because they attempt to label the parameters as if they correspond to a simple permu-

tation of the same parameters. Thus, the fact that similar mixture distributions may

be obtained with completely di↵erent mixtures is ignored.

Several papers deal with the label-switching problem under genuine multimodality

(see Grün and Leisch [61], Stephens [147]). The goals are typically not only to relabel

the parameters, but also to separate the solutions in di↵erent modes by including more

clusters than the components of the mixture, for instance.

However, hereafter we will focus only on the label-switching issue; we will also

briefly overview some of the existing strategies to solve the issue. The first strategy

is to introduce identifiability constraints to remove the symmetry of the likelihood;

this strategy has been shown to fail in some cases (Stephens [147]). Various relabeling

approaches Stephens [147], Celeux, Hurn and Robert [30] have also been presented. We

also mention methods that could minimize a label-invariant loss function.

4.2.2 Solutions to the label-switching problem

Several papers during the last 20 years have proposed various solutions to the label-

switching problem. Sperrin, Jaki and Wit [143] divide them into three general types:

identifiability constraints, deterministic relabeling algorithms, and probabilistic rela-

beling algorithms.

Identifiability Constraints

The first (and oldest) type of solution involves the use of identifiability constraints. This

consists of simply constraining the parameter space of the components Richardson &

Green [124]. For example, a simple three-component Gaussian mixture can result in the

following constraints: µ1 < µ2 < µ3. The parameter constraints are chosen such that

only one label permutation can satisfy all of them. These constraints are called artificial

because they do not originate from any knowledge about the data, but rather reflect the

model or the researchers thoughts on how many groups exist and what characteristics

di↵erentiate them.
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In Bayesian analysis, the introduction of such constraints means truncating the prior

distributions, which can be done by adding the indicator function ⇡(✓, p)I
µ1...µ

k

. This

means imposing identifiability constraints on the components from the initial stage.

Although imposing constraints can be e↵ective in simple models, it can be di�cult

to implement in more complex models or when two or more types of parameters account

for the same component in the model. As illustrated in Celeux, Hurn and Robert [30],

a three-component mixture ordered by either means, variances, or mixing probabilities

give completely di↵erent and incompatible results. Therefore, the choice of constraints,

especially for multivariate problems, is not obvious and can have a crucial impact on the

final results Yao [175]. Furthermore, McLachlan and Peel [94] argue that the di↵erences

between the parameters of each component are overestimated in this approach: they

are “pushed apart” by the constraints, truncating the parameter space of the compo-

nents. Richardson & Green [124] provide an example with a two-component mixture

by mixing the proportions close to 0.5 and those with relatively close means. When

the overlapping components are relabeled by ordering the means, the estimates are bi-

ased with clearly overestimated di↵erences. The truncated distributions (obtained with

the constraints) do not necessarily respect the modes in the prior and the likelihood.

Instead of considering one single mode, there is a risk of including di↵erent modes in

the same truncated distribution. The resulting posterior distribution can fall between

two or several modes in a low-probability region. Such cases are illustrated in Marin,

Mengersen and Robert [89] and Celeux, Hurn and Robert [30].

Deterministic approach

In a deterministic relabeling algorithm, one permutation matches another if they are

“close” according to a given criterion.

First, characteristic C is defined, and then the distance between the iterations of the

optimization process is measured using the chosen loss function L(C it1;C it2). L is large

when the discrepancy between the characteristics of two iterations is large. This char-

acteristic may be defined in various ways. For Cron and West [39], it is a classification

vector Ẑ with elements ẑ
i

= argmax
j21:k⇡j

(x
i

), which assigns each observation to its

component using the last iteration classification probability (⇡
j

(x
i

)). The loss function

here is the misclassification that Ẑ implies compared to the classification vector ẐR

of some reference solution. A specific algorithm is then used to find the optimal label

permutation.

Another example of a loss function for relabeling is introduced in Celeux, Hurn and
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Robert [30]. A collection of reference points (noted as t1, ..., tn) is placed in the param-

eter space. The distance d(t
i

, ✓) between t
i

and the closest parameter ✓
i

is measured

according to a given metric, Baddeley metric in this case. Each ✓
i

is a d-dimensional

parameterization (the MCMC vector sample). For instance, it has the dimension 2*3

when we model a two-component Gaussian mixture with µ, �2 and p. The loss function

L then becomes

L(✓, ✓̂) =
nX

i=1

(d(t
i

, ✓)� d(t
i

, ✓̂))2

.

The loss is higher when the distance between t
i

and the nearest ✓̂
j

di↵ers more than

that between t
i

and the nearest ✓
j

. The objective is to have zero loss between the

two point configurations when they coincide: L(✓, ✓̂) = 0 if and only if ✓̂ = ✓. The

choice of reference points is therefore very important, with a part of the simulation

e↵ort dedicated to find an appropriate choice of points t
i

and the rest allocated to

estimate the expectation of the di↵erence in distances (to mainly estimate E(d(t
i

, ✓))

by sampling from the posterior (MCMC sample) and averaging at the end. Since only

the point closest to the given fixed point t
i

is taken, there is no labeling problem in this

case.

Jasra, Holmes & Stephens [69] stress that these methods are an “automatic way

to apply or induce an identifiability constraint,” and not “a fully decision theoretic

method,” because one cannot derive a loss function for every quantity of interest. They

mention another common problem for identifiability constraints and relabeling algo-

rithms: if the data are not well separated between components, one component may

overweight and dominate the others Gruet, Philippe & Robert [59]. Therefore, one

should be careful when using this method if there are several similar components.

Finally, another possibility is to first properly estimate the parameters without

imposing ordering identifiability constraints on the parameter space. Then, one may

apply ex-post reordering constraints after the simulations have been performed. A

loss function depending on labeling can then be used (Marin, Mengersen and Robert

[89]). In this method, simulations are performed normally and the components are

“reordered” ex post; the posterior mean is then the simple average of the parameters

after the reordering. This method uses a Monte Carlo approximation of the Maximum

A Posteriori (MAP) estimator. In general, the MAP estimator corresponds to the

maximum of the posterior distribution of the parameters ⇥ (considered as random

variables here),

⇥̂
MAP

(x) = argmax
⇥

f(x|⇥)g(⇥)
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, and equals the MLE in case of a uniform (constant) prior.

For each of the simulated samples, we choose the parameter permutation closest to

the approximate MAP estimator permutation. Rodriguez & Walker [126] (2014) briefly

review the deterministic methods with loss functions based on the classification prob-

abilities on each iteration of the MCMC, which should be matched to the estimated

”true” classification probabilities; this is equivalent to using the allocations of the obser-

vations rather than classification probabilities. The authors also present an interesting

alternative of using the data themselves to undo the label?switching problem. They

use the center and the dispersion of the clusters within the data. This method can be

e↵ective in case of distribution with a small number of parameters. However, it could

be di�cult to apply in the HMTD model because several parameters of the model are

responsible for the mean and variance of the distribution of the sequences within each

component. It is also a problem for longitudinal data because di↵erent clusters with

di↵erent properties or sequence paths may display an identical center and dispersion.

Probabilistic approach

Probabilistic relabeling algorithms are another family of tools for the label-switching

issue. This approach does not consider the permutation of each solution as certain, but

has a probability distribution that needs to be estimated. Sperrin, Jaki and Wit [143]

describe it as an application of the EM algorithm, where the missing data is the order of

the components at each MCMC iteration. The advantage of this method over the two

previous ones is that it quantifies the uncertainty of the chosen permutation and calcu-

lates the probability of the accepted one to be the “true” permutation. Furthermore,

it recovers the tails of the posterior distributions using such methods Sperrin, Jaki and

Wit [143], Yao [174]. The vector of parameters needs to be known in advance and the

discrete density of the permutations must be estimated. The latter is estimated via an

EM algorithm, conditioning on the data the last estimates of the parameters and the

last allocation vector z. The missing data in the EM algorithm are the permutations

applied at each stage, and the available data are the output of the MCMC sampler.

Sperrin, Jaki and Wit [143] suggest that quantifying the uncertainty is informative

on the number of components since a high uncertainty suggests an ambiguity between

the components and therefore a too high number of components.
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Label switching and frequentist estimation

All the above methods were developed for the Bayesian estimation of standard mixture

models without hidden layers and for transversal data. However, because of the fast

development of the Bayesian methods, much attention was not paid to frequentist

mixture model estimation. To the best of our knowledge, only one recent paper by Yao

[175] in 2015 has considered label switching in the frequentist approach. The author

proposes two solutions, one based on the complete likelihood that is not invariant

to label permutation, and the other based on the idea of minimizing the Euclidean

distance between the classification probabilities and latent labels. In both propositions,

however, the latent labels (or group membership) of each observation must be known a

priori. This is not problematic when using the parametric bootstrap, but such bootstrap

methods are highly criticized and rarely suitable for real-world data. When using the

nonparametric bootstrap, the latent labels are not known and have to be estimated,

but this would introduce another source of bias in the procedure. Furthermore, if data

clustering is the goal of mixture modeling, this would mean that we need to pre-cluster

the data before clustering them, which appears to be illogical.

Some critics to these approaches

All the methods presented above can be criticized. In complex models with more than

one parameter for each state (as with the HMTD model), or models with multiple

states, most of these methods are di�cult to implement. Introducing constraints for

several parameters simultaneously is highly likely to bias the results. Jasra, Holmes &

Stephens [69] a�rm that label switching can easily be solved in frequentist estimation

by applying simple inequality constraints. In our opinion, this solution cannot be

generalized over all kinds of mixture models, and more attention needs to be paid when

using constraints even in simple mixture model with unequal variances (especially when

some components are close) or in more complex mixtures when the parameters are not

independent of each other. For instance, in the HMTD model, the mean consists of a

constant and an autoregressive (AR) part, and, as mentioned before, by increasing the

AR part and decreasing the constant (or vice versa), we can obtain exactly the same

mean for a given cluster. Thus, imposing separate constraints for every AR coe�cient

and constant would hardly be feasible even for only two components. Furthermore,

if, for example, the first or second AR coe�cient is not significant even for one single

component, the constraints on this level could be misleading.
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Dias & Wedel [45] also find that identifiability constraints tend to deteriorate the

solutions compared to other approaches based on loss functions and clustering, for

example. Furthermore, their examples were only based on simple two- and three-

component Gaussian mixtures.

Therefore, the use of identifiability constraints is generally not a good answer to

the label-switching problem (especially for less simple models), whether the constraints

are imposed before or after optimization. Moreover, relabeling and other methods

are computationally costly and some are applicable only to the Bayesian framework

(especially those that use successive iterations).

The e�ciency of the approaches for large datasets, parameter space, or number

of clusters represents a major issue for all the approaches, according to Zhu and Fan

[177], who proposes alternatives to tackle this particular problem. In fact, some of the

relabeling methods may need more computational time than the MCMC itself, and for

the algorithms that attempt to match each observation to the previous one, the high

correlations in MCMC may be problematic Cron and West [39].

The biggest problem in all the approaches, however, is the probability of mislabeling,

especially when the components of the mixture overlap or are more complex (in our

case, several parameters account for each component). This may also be a problem

when the number of clusters increases.

From our experience, a major issue that aggravates the above-mentioned problems,

especially in EM estimation, is again the problem of ”genuine multimodality.” A similar

likelihood value can sometimes be obtained even with an empty component, although

a solution obtained with less components is more di�cult to interpret and does not

provide an acceptable partition. This problem becomes even more important when us-

ing an EM-type algorithm that is known to converge to the nearest optimum and often

fails to explore the entire parameter space with a more ”complex” model with multi-

ple components and parameters. In other words, the e↵ectiveness of label-switching

strategies is less preoccupying in the EM estimation of HMTD than the occurrence of

incompatible solutions (for which a true relabeling does not exist).
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4.3 Parameter inference

4.3.1 Inference and standard error approximation in mixture

models

In real-world clustering problems, one often has no a priori knowledge of the di↵erent

classes. However, through inference on mixture models (or model-based clustering,

in general), one may try to reconstitute the latent group membership or provide an

estimation of the parameters (indicating the characteristics of di↵erent groups), or

even find the optimal number of groups. One needs to not only have an optimal

clustering solution (in terms of Bayesian Information Criterion (BIC), for instance),

but also explore the variability of the estimated parameters and assess the stability of

the underlying clusters. This is important when estimating the role of the covariates

in clustering. These di↵erent objectives reflect the various sources of uncertainty that

we will discuss further in the next sections, but now we overlook them and focus on

measuring the coe�cients’ significance and dispersion.

Usually, every solution includes nonzero values for all parameters. However, it is

important to verify whether this parameter estimate is significant, or whether it is due

to a local optimum or just randomness. Therefore, we need to compute the confidence

intervals (CI) for the parameter estimates of the optimal clustering solution in order to

validate them. One traditional way to do this is to approximate the standard deviation

of each parameter, but this can be done using other methods as well, which we will

discuss.

Several approaches to compute the CIs exist in mixture models, but from the type

of the models and their complexity, not all of these methods are feasible. We enumerate

below some well-known methods:

• Finite-di↵erence approximation of the Hessian matrix is the most logical

choice for estimating parameters and their standard errors since the Maximum

likelihood estimate (MLE) is asymptotically normal. That is, as the sample size

increases, we have ✓̂
ML

���!
n!1

N (✓, I
�1

n

), where I is the information matrix at

the true parameter ✓. I can be estimated from the data as the Hessian of the

log-likelihood at the ✓̂
ML

. Thus, one can easily estimate a two-sided CI for any

parameter:

✓̂MLE

i,j

± z1�↵

2
(Î�1)

iip
n

. As Rydén [131] has stated, from the covariances and the fact that the product of
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Gaussians results in a �2(q) distribution, one may build a confidence ”elipsoid” for

the parameters corresponding to the region defined by (✓�✓
MLE

)T Î(✓�✓
MLE

) 
�2
1�↵

(q). Note that the asymptotic normality assumption is very important for

such interval computation. This becomes especially problematic when the param-

eters are clearly non-Gaussian, like the variances that are truncated (✓
k

> 0).

Moreover, one may encounter problems when estimating the Hessian One exam-

ple is the HMTD model we used here, whose log-likelihood derivatives are very

complex because of the complexity of the log-likelihood equation for the vari-

ance parameters and the di↵erent number of parameters and components (and

therefore the large number of distinct possible log-likelihood equations).

Even for the simple hidden Markov models, calculation of the Hessian may become

infeasible, like when we deal with time series or longitudinal data of large length,

as discussed in Visser, Raijmakers & Molenaar [164]. The di�culty in obtaining

the second derivatives of the likelihood function prevents one from obtaining the

Fisher information.

• Likelihood profiles are presented as expansions of the likelihood function around

the ML estimate of each parameter separately (Visser, Raijmakers & Molenaar

[164]). Assume that we have a two-parameter model (� and ✓). If we are interested

in �, then ✓ is treated as a nuisance parameter in order to obtain the profile

likelihood

L
p

(�) = max
✓

L(�, ✓)

. The value of � that maximizes this function is denoted by �
M

. Then, one moves

� away from this maximum, and using the new value of �0, re-estimates the ratio

R
p

= �2(log(L
p

(�
M

))� log(L
p

(�0))) = �2 ln
L
p

(�
M

)

L
p

(�0)
.

The procedure is repeated until we find the value of �0, when R
p

= 3.841. The

latter value is a threshold corresponding to the Type-I error ↵ = 5% for a �2(1)

distribution with one degree of freedom. This represents finding the limits �0 of

the region beyond which the likelihood ratio test becomes significant (i.e., the null

model becomes significantly di↵erent from the optimal one).

By repeating the procedure on both sides of the ML estimate and for each pa-

rameter separately, we obtain the CIs.
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This procedure is an alternative to obtaining the intervals by estimating the stan-

dard error, in which case the normality assumption is again crucial. The separate

computation on both sides of the estimate allows us to obtain unsymmetric in-

tervals.

However, in case one does not want to rely on asymptotic normality, there are

several alternatives. Three of them are given below:

• Nonparametric bootstrap is the most frequently used bootstrap method. It

consists of building samples by drawing at random observations with replacement

from the original sample. The model is fitted to each of the resulting samples, to

obtain a corresponding number of parameter estimations. The 95% CIs are then

estimated by simply using the percentile method: the CI intervals are given by the

2.5% and the 97.5% percentiles of the distribution. For the frequentist mixture

model, the bootstrap is the main tool used to obtain parameter inference. Fried-

man, Hastie and Tibshirani [54] relate it also to the Bayesian methods, suggesting

that bootstrap may be considered to provide a noninformative, nonparametric

posterior distribution for the parameters: it “approximates the Bayesian e↵ect of

perturbing the parameters, and is typically much simpler to carry out.”

• The jackknife method has also been used to estimate parameter variability for

hidden Markov models. As an old predecessor of the popular nonparametric

bootstrap, this method is similar to it, except that the subsamples are formed

by removing one observation at a time from the original sample. As regards a

misclassified Markov model, the jackknife has not shown better results than the

bootstrap, as demonstrated by Rosychuk, Sheng & Stuber [129]. This is not

surprising and explains why the method has often been replaced by the nonpara-

metric bootstrap since its discovery.

• The parametric bootstrap uses an original dataset to obtain the ML estimate

of a given model. The estimated parameters are then used to generate a new

dataset of the same size. The model is fitted to the artificial data and the optimal

parameters are estimated again. The procedure is repeated n times, to result in

an empirical distribution around the ML estimate of the parameters. We then

compute the standard errors, to obtain the desired CI for each parameter.

The most obvious problem with the parametric bootstrap is the assumption that

the model can perfectly explain all the features of the data. Since this assumption
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is almost never verified in the real world, the possibility of obtaining incorrect re-

sults is considerable. Using the parametric bootstrap with more complex models

could result in higher specification errors of the estimations. This type of boot-

strap is useful only when we know the form of the underlying distribution Efron

and Tibshirani [47]. Therefore, this method seems to be the least appropriate for

our parameter variability estimation problem.

A critic of nonparametric bootstrap is that a data pattern not observed in the

sample has a zero probability to appear in the bootstrap samples. However, as

Dias and Vermunt have shown, the same problem can occur with parametric

bootstrap if one parameter estimate is on the limit of the parameter space Dias

& Vermunt [44].

In a mixture model, the most straightforward of these methods to approximate the

covariance matrix of ⇥̂ is to compute the inverse of the information matrix. Another

approach (of Dietz and Böhning) is mentioned by McLachlan and Peel [94]. This is

based on the log-likelihood change resulting from omitting a given variable in the MLE.

However, as the authors state, ”the estimates of the covariance matrix of MLE based

on the expected or observed information matrices are valid inferentially only asymp-

totically,” and ”for mixture models (...) the sample size has to be very large before the

asymptotic theory of maximum likelihood applies.” The standard errors calculated from

the information matrix are also found to be too unstable, and a bootstrap resampling

approach is recommended instead.

Another motivation to use resampling approaches for our particular problem is as

follows. As already mentioned, the complexity of the likelihood function might make

it more di�cult to obtain the Fisher information, and therefore (for the frequentist

models) we usually need to bootstrap the data.

Visser, Raijmakers & Molenaar [164] compared three methods to compute the CIs

of the parameters of an HMM that is applied on single long sequences. The first method

attempted finite-di↵erence approximations of the Hessian. The three piecewise linear

approximation methods, quadratic and cubic polynomial approximations, resulted in

erratic and often small CIs. Bootstrap and the likelihood profile methods, on the other

hand, provided similar and better results.

All these points make us focus on the nonparametric bootstrap to compute the CIs.
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4.3.2 Alternative bootstrapping procedures in clustering

Nonparametric bootstrapping does not guarantee that the underlying clusters will be

represented equally in bootstrap iterations. Combined with the genuine multimodality

issue, this may sometimes lead to incompatible clustering solutions, necessarily intro-

ducing a bias in the CIs and therefore in the conclusions on their significance. The

problem is even more important when small samples are considered or one of the clus-

ters is small. In addition, the label-switching issue can sometimes be very di�cult to

solve when working with rather complex mixture models (that have multiple compo-

nents or parameters per component).

Therefore, the best solution would be to avoid, rather than deal with, these issues.

This is our motivation for using di↵erent bootstrap methods for parameter validation.

We propose two possible alternatives to the straightforward nonparametric bootstrap

method in the following section and discuss their advantages and disadvantages.

Separate bootstrap

Nonparametric bootstrap has been used previously to compute the intervals of parame-

ters in mixture models. In combination with label-switching solutions, this method has

shown positive results. Grün and Leisch [60] showed that bootstrap is useful to evaluate

the stability of parameters when estimating finite mixture models, and recommend it

in addition to multiple initialization of EM estimation. Using simulated data, the au-

thors apply both parametric and nonparametric bootstrap, to find that the parametric

bootstrap is also a useful tool to analyze the stability of parameter estimates. However,

the examples provided are based on very simple models (and only simulated data) with

two-component mixtures, for which the application of simple identifiability constraints

is su�cient. The use of bootstrap on more complex models appears more di�cult and

may bias the estimations from misidentification of components. Our proposal for such

problems is to apply bootstrap estimation only after a reliable valid optimal solution

(cluster partition) is found. This is equivalent to saying that once an acceptable solution

has been found, each cluster can be considered a mutually independent populations.

Then, the bootstrap procedure is performed separately on each cluster, with the CIs

computed using a single-component model for each generated sample.

Indeed, this could imply that we consider the chosen solution the best that could be

found, and neglect the fact that another may exist, possibly yielding to a lower BIC.

However, in clustering, di↵erent solutions can be obtained with di↵erent models and

a lower BIC does not necessarily imply a better, more useful solution. Therefore, one
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needs to find the solution most suitable to the data based on our knowledge of the data.

In this case, by applying the bootstrap to the chosen clustering partition, we do not

measure the stability of the solution, but rather isolate the variability and significance

of the parameters for this particular clustering partition. This makes sense especially

when two iterations (or final solutions) of a given complex model may be completely

incompatible (due to cluster instability, for instance), resulting in the relabeling strategy

proving wrong.

Another advantage of this approach is that we avoid the typical singularity problem,

that we discussed, in likelihood maximization, because we use a single-component model

for constructing the intervals.

This procedure may be e↵ective even outside the ”hard” clustering problem, such

as in a transition allowed between hidden states in time series modeling, or in ”soft”

clustering (recall the di↵erent forms for the matrix A in chapter 1). In this case, one

would need a long time-series for estimation, and only the same-state sequence is used to

estimate the CI of parameters. By bootstrapping the part of the time-series associated

to each hidden state separately, we would be able to interpret the di↵erent components

of the model more accurately and with more certainty.

However, note that the parameters for the components weights are indeed not in-

ferable through separate bootstraps, but must be assessed beforehand while choosing

the optimal model solution (they are considered a part of it).

On the other hand, a separate bootstrap has the advantage of completely eliminating

the issue of genuine multimodality that we discussed earlier. Single-component models

imply that we cannot deal with another genuine mixture solution that gives similar

joint density results. Furthermore, the label-switching and singularity problems are

relaxed.

Stratified bootstrap

One reason for finding it di�cult to correctly identify the clusters obtained from a

bootstrap sample is the di↵erence in proportion of data in each cluster between the

original sample and the bootstrap samples. This is especially so when the proportion

of data belonging to each cluster is very di↵erent from one clust another. One possible

solution is to include the proportion of cluster proportions in the bootstrap procedure

and ensure equal presence of all the presumed clusters in each sample. Now, assume that

our original sample of raw unlabeled data x1...xn

is treated by a clustering procedure

with c classes. The obtained solution attributes class labels !
j

j 2 [1, ..., c] to each
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observation. These class labels are then used for a bootstrap on the original sample,

but by using a sampling procedure that respects the initial clusters proportions at each

iteration. In other words, we create the bootstrap samples by selecting a quantum of

data from each cluster proportional to its presence in the chosen clustering partition.

The full clustering model is then applied on the bootstrap sample. This approach may

be seen as a kind of “stratified” bootstrap, where the “strata” are defined by a model

solution (partition) obtained from the original sample before performing the bootstrap.

It is important to note that these proportions are at the center of this procedure because

they insure that any further solution will preserve the features of the classes of the initial

approved solution.

The advantage of this procedure is that it maintains the proportions of the already

validated clustering obtained from the original sample. This may result in a more

stable bootstrap estimate for the parameters compared to the ordinary nonparametric

bootstrap sampling of the original data. The e↵ect is particularly important in small

samples (or larger samples with small but clearly distinct clusters), because in a basic

nonparametric bootstrap on a small size sample, the representativity of each possible

underlying class in the data is not respected, probably leading the clustering model to

find a completely di↵erent solution compared to that of the original sample. In other

words, very small but distinct classes may “vanish” in resampling (for example, voters

of small political parties in a survey, or low-probability components in a mixture). In

this case, all the relabeling methods will prove useless, because the components of each

solution would simply be incompatible to each other. Of course, our approach will not

suppress the label-switching issue, but can reduce it by increasing the probability of

finding bootstrap solutions close to the original solution.

Compared to the “separate bootstrap” presented above, the initial solution in the

stratified bootstrap has less influence on the final results because the elements of each

class are still represented and can still be drawn during the resampling procedure (model

uncertainty is still present).

Simulation experiment

In this experiment, we compare the behavior of three bootstrap procedures to evaluate

the CIs of the HMTD parameters used for clustering. The three bootstrap procedures

(ordinary nonparametric, “separate,” and “stratified” bootstraps) are applied to simu-

lated data. The data consist of 150 sequences of length 25 generated (after a burn-in

period) through either of the following second-order or first-order AR processes. One
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hundred sequences were generated from

x
t

= 2.5 + 0.4⇥ x
t�1 + 0.3⇥ x

t�2 + ✏1; ✏1 ⇠ N (0, 22)

, and 50 sequences were generated from

x
t

= 0 + 0.9⇥ x
t�1 + 0⇥ x

t�2 + ✏2; ✏2 ⇠ N (0, 22)

.

Thus, the parameters that we attempt to estimate are �01 = 2.5,�02 = 0,�11 =

0.4,�12 = 0,�21 = 0.3,�22 = 01, ✓1 = 2 and ✓2 = 2. Table 4.1 summarizes the results

obtained from 300 bootstrap replications. In each case, we provide the 95% and 99%

CIs obtained for the parameters, with the top part of the table corresponding to the

first component, and the bottom part corresponding to the second component.

In this experiment, the initial ”true” model is the first two-component solution that

we obtained, and using it, we performed 300 bootstrap iterations for each method. The

parameters were initialized, as usual, randomly around the values corresponding to the

observed mean and standard deviations of the entire dataset. In this initial clustering

solution, a small part of the sequences were misidentified: nine sequences were wrongly

assigned to the second group, while three were misclassified in the first group. This small

misclassification in the initial separation on clusters could introduce some bias into the

CIs for the proposed methods that use the initial solution (“separate” and “stratified”).

However, this is similar to what can be expected in real situations. Moreover, since the

proportion of misidentification is small, the CIs should still be able to recover the true

parameter values. As observed in Table 4.1, this is indeed the case for all parameters.

As expected, the label-switching issue arose when we attempted to relabel the ordi-

nary and stratified bootstrap solutions. However, since our example contains simulated

data consisting of only two components, although the sequences from the two generat-

ing processes were overlapping, we could easily solve the problem by crossing the group

memberships of the initial solution and the bootstrap solutions, and selecting the label

that had the best match. However, the complexity of the likelihood function caused

some bootstrap solutions to get stuck in local optima and exhibit irregularities, the

most common one being convergence to a one-cluster solution. We need to identify

such degenerated solutions and remove them from the CI calculation in order to avoid

1Notice that the coe�cient corresponding to the 2-nd lag in component 2 is not required, since its

value is zero, but we choose to keep it in order to check that it is correctly estimated to zero by the

optimising algorithm and by the bootstrap procedure.
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Figure 4.1: 95% and 99% CIs obtained for the parameters using three types of boot-

strapping.

First component �2
1 �01 �11 �21

True values 4 2.5 0.4 0.3

Ordinary 95 % (3.633; 4.215) (2.076; 2.915) (0.339; 0.422) (0.276; 0.362)

bootstrap 99 % (3.561; 4.353) (1.905; 3.024) (0.328; 0.478) (0.254; 0.369)

Separate 95 % (3.645; 4.100) (2.261; 2.830) (0.341; 0.422) (0.275; 0.357)

bootstrap 99 % (3.555; 4.119) (2.189; 2.922) (0.332; 0.427) (0.267; 0.368)

Stratified 95 % (3.640; 4.206) (2.084; 2.870) (0.331; 0.422) (0.276; 0.375)

bootstrap 99 % (3.572; 4.457) (2.000; 3.016) (0.313; 0.431) (0.237; 0.386)

Second component �2
2 �02 �12 �22

True values 4 0 0.9 0

Ordinary 95 % (3.746; 4.406) (-0.022; 0.272) (0.839; 0.983) (-0.060; 0.123)

bootstrap 99 % (3.683; 4.522) (-0.055; 0.414) (0.640; 1.003) (-0.074; 0.312)

Separate 95 % (3.808; 4.380) (-0.023; 0.178) (0.895; 0.997) (-0.062; 0.053)

bootstrap 99 % (3.737; 4.452) (-0.052; 0.200) (0.882; 1.004) (-0.075; 0.062)

Stratified 95 % (3.721; 4.461) (-0.011; 0.232) (0.841; 0.989) (-0.060; 0.113)

bootstrap 99 % (3.639; 4.558) (-0.059; 0.347) (0.663; 1.006) (-0.082; 0.296)

additional bias. One obvious way to discover these solutions is to check the presence of

all components. Irregularities are, however, not limited to the absence of one compo-

nent. A local optimum can consist of a solution incompatible with the initial solution

even when all components are used. For instance, highly influential or extreme solutions

may be drawn several times in the same subsample (especially when n is small), creat-

ing their own component. A numerical likelihood optimization problem can also lead

to aberrant solutions. Therefore, we need to check for the presence of extreme values in

the parameters of each component after the relabeling procedure. In our experiment,

19 out of 300 solutions were found to be irregular for the stratified bootstrap, and 20

were found irregular for the ordinary bootstrap procedure. The separate version was

not involved, because all calculations were made separately for both the components in

the initial solution.

As mentioned earlier, all the CIs e↵ectively recover the true values of the parame-

ters. The separate bootstrap provided a systematically narrower CI compared to the
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two other approaches, but this was as expected, because the uncertainty is lower when

we estimate the initial solution correctly (despite a small number of misclassified se-

quences). On the other hand, the ordinary and stratified bootstrap yielded similar

results, certainly because the model was simple enough to be easily estimated with the

ordinary procedure. In more complicated real-world situations (and with more unequal

size clusters), a di↵erence could appear, with a larger CI for the ordinary bootstrap

compared to the stratified procedure.

4.4 Validation, comparison, and stability

When discussing the uncertainty in clustering, we cannot focus only on the dispersion

of the parameter estimates in each cluster. Putting the sample representativity aside,

the actual cluster membership of the sample units is unknown, just as the number of

clusters, and, in some cases, even the presence of any “real” separation between the

data units. One may generalize the problem as

Clustering uncertainty =

8
>>><

>>>:

Presence and type of heterogeneity

Number of clusters

Stability of partition

Significance of the parameters (characteristics of the clusters)

The presence of several levels of uncertainty makes the independent assessment

of the estimates’ variability impossible. Dealing with one of these problems without

considering the others may lead to unstable and unreliable results. For instance, if the

number of clusters is incorrect, the membership of a data unit will also be incorrect, in

turn making the parameter estimates incorrect as well. On the other hand, incorrect

parameter estimates may lead to a di↵erent optimal number of clusters and erroneous

cluster memberships, since close clusters may merge together and erratic parameter

estimates result often in unlikely empty clusters.

Therefore, a model-based clustering would generally make it very di�cult to cope

with all the above problems simultaneously, and one may better isolate and solve these

issues separately and in a given order. Here, we describe our point of view on how a

complete model-based clustering analysis should be performed, proposing a given order

for solving the issues as follows:

1. Before clustering, one may ask oneself as to what the properties of the data that

are supposed to be captured in the clusters are. Then, a clustering method with
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compatible assumptions must be chosen. If one models phenomena with values

that are constantly increasing linearly, one may privilege linear instead of AR

paths as a basis for the clustering. The opposite may be true when no specific

shape of the path is relevant, but rather the behavior over time, which is typically

the case for longer but less stable sequences, for instance.

One might also use data visualization or other methods to confirm the presence of

heterogeneity in the data, although visualization might be complex when dealing

with longitudinal or multidimensional data, especially when the sample size is

large.

2. Once compatible methods are chosen, one can find the correct number of clusters.

Numerous criteria have been proposed for this purpose, the most usual one being

the Bayesian Information Criterion (BIC).

3. The stability of the obtained solutions must also be assessed. If every bootstrap

sample results in a completely incompatible clustering with the same model, it is

di�cult to justify the selected solution. For instance, the same distribution may

often be approximated by di↵erent Gaussian mixtures, and it can be problematic

if this problem persists for the bootstrap samples.

4. Assessing the variability of parameters in a model-based clustering is the final step

in solving a clustering issue. At this point, the clusters should have already been

decided and validated. If this is not the case, it would be di�cult to distinguish

one kind of variability from another.

Our main interest here is to obtain CIs for the parameters, because it is crucial

in social sciences (as well as in other fields) to understand the covariates or char-

acteristics of the population that are significant sources of dissimilarity between

the individuals.

All the above-mentioned sources of variability are often confounded. Hereafter, we

discuss some methods to cope with the di↵erent uncertainties.

4.4.1 Clustering and distance between clusters

The researcher must first decide the characteristics of the data that make them belong

to the same cluster. This is decisive for both selecting the most appropriate clustering

method and choosing an appropriate validation method for the obtained clusters. An
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expert view on the data and clustering process can reveal important factors that would

improve the usability of the final clustering, but this would apply only if it is well-

founded and does not reflect the expert a priori ideas or bias (e.g. Berchtold et al.

[16]).

Various suitable scaling and projection methods are available for multidimensional

data on how to visualize the data (Ratio MDS). For instance, principal component

analysis (PCA) is the most traditional projection tool.

As mentioned earlier, a large variety of distance (dissimilarity) measures exists in the

literature, such as optimal matching and its variations for a discrete longitudinal case.

Euclidean, Mahalanobis, Metropolis, and Chord distances can deal with continuous

data, but only transversal ones. Their use in longitudinal data is meaningless because

the sum of the distances over all the periods does not allow us to measure the distance

between two sequences. Computing such distances leads to representing the sequences

as single points in a multivariate space, neglecting the time dependence between the

observations. Model-based approaches also have their assumptions on distance. One

must choose the correct approach from the conclusions based on visualization of the

data and the a priori knowledge about their nature.

4.4.2 Choice of number of clusters and model

Bayesian and Akaike information criteria Di↵erent criteria exist in the literature

aiming to select the most optimal among a group of models, including the choice of

optimal number of clusters.

Probably the oldest commonly used criterion is the Akaike Information Criterion

(AIC) first presented by Akaike at a symposium in 1971 (Armenia, former USSR).

Its first term includes the log-likelihood computed at the maximum likelihood esti-

mate (MLE) of the parameters, thus it privileges the solutions that generate a higher

probability of observing the given sample from the model (i.e., higher log-likelihood

logL = ln(P (X|K, ⇥̂MLE

k

))). At the same time, the second term penalizes for the

complexity of the model in order to avoid overfitting. The penalty increases with the

number of independent parameters p to estimate in the model:

AIC = �2logL+ 2p

Another very common general-purpose criterion is the Bayesian Information Cri-

terion (BIC) from Schwarz [134]. It represents an asymptotic result obtained under

the assumption that the data are distributed from an exponential family distribution.
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Inspired from the AIC, BIC increases the penalty term proportional to the size of the

data (n):

BIC = �2logL+ ln(n)p

Minimization of AIC or BIC is the simplest way to choose the optimal number of

clusters in model-based clustering.

However, these criteria are not necessarily the most appropriate for all types of

models and purposes. One of the disadvantages of BIC (and AIC) as a criterion for

the number of clusters is that by privileging the fit to the data, a single non-Gaussian

cluster may be represented by two or more Gaussian clusters which provide better

fitting. Therefore BIC may sometimes over-estimate the number of clusters.

Note that for models containing several parameters for each component (cluster), by

increasing the number of parameters one may penalize the criterion more severely com-

pared to the case of having only one parameter per component. Given the HMTD model

we are using, if one adds two lags for the mean of each cluster (⇥
k

= {'
k,0,'k,1,'k,2, ✓k,0}),

the optimal solution may contain less clusters than when we use only one lag for the

mean (⇥
k

= {'
k,0,'k,1, ✓k,0}) because of the penalty term.

Integrated Complete Likelihood After the paper of Biernacki, Celeux and Govaert

[21] in 2000, another criterion has gained popularity in mixture models particularly for

clustering use - the Integrated Complete Likelihood (ICL).

In order to understand this method we must recall the notion of Integrated (or

marginal) Likelihood (IL). Referred as the evidence of the model, it is important con-

cept in Bayesian statistics. In general, its computation consists in marginalising out

(integrating) the parameters in the likelihood function. The sampled values are used

for this purpose. The aim is to obtain a remaining variable that represents the particu-

larity of the model itself: for instance in mixture models often the selection of optimal

number of components (variable k) is a major issue. Therefore one needs a likelihood

function that indicates the probability that the data come from a mixture with k clus-

ters, without assuming particular values for any other parameters (function of k only).

In this case the marginal likelihood of interest is integrated over all other parameters

(noted ⇥), but K:

P (x|K) =

Z

⇥

p(x|⇥, K)p(⇥|K)d⇥

The objective is to compute the model evidence of one model with k1 components,
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against another model with k2 components. The posterior odds ratio is computed by

multiplying the prior odds ratio by the ratio of the marginal likelihoods (called Bayes

factor): p(k1|x)
p(k2|x) =

p

M

(K1)
p

M

(K2)
p(x|K1)
p(x|K2)

In cases of clustering where the mixture components are not well separated an

alternative version of IL using the complete data is often recommended (Biernacki,

Celeux and Govaert [21], Celeux [32]). The Integrated Complete Likelihood (ICL)

makes use of the true missing data z (i.e. the allocation of observations to clusters) in

addition to the observations x in the computation of the log-Likelihood of the model. It

is however, not easy to estimate and several approximation methods have been proposed

by Celeux [32].

The first and most straightforward computation of ICL proposed by Biernacki et al.

is the BIC-like approximation denoted ICL
BIC

. This approximation of the ICL uses

the value of the BIC, penalized by the mean entropy of the solution:

ICL
BIC

(K) = BIC(K)�
KX

g=1

nX

i=1

p(z
i

|x, ✓̂
k

, �̂
k

, K) log p(z
i

|x, ✓̂
k

, �̂
k

, K)

where p(z
i

|x, ✓̂
k

, �̂
k

, K) is the probability that the observation is generated by the

i-th component.

By taking into account the entropy, the ICL privileges the partition that provides

more separated clusters compared to the classic BIC criterion. The latter is well suited

to evaluate the fit of the model to the data and select the optimal data generating model,

but ICL is more adapted to clustering where the discrepancy between groups matters,

because it eases the interpretability of each cluster.

Various di↵erent computations of the ICL also exist in the literature (see Celeux

[32]). Biernacki, Celeux and Govaert [22] and Bertoletti, Friel and Rastelli [20] discuss

methods of exact computation of ICL using for instance di↵erent prior distributions.

However, we must note that these papers, like the majority of the publications, focus

on Bayesian estimation of the mixtures and are not adapted to the frequentist case.

Therefore for the examples in the next chapters we will implement the computation

of the ICL
BIC

approximation.

Other criteria Other approaches to choose the number of clusters, besides the above-

mentioned, also exist. Some of them are based on bootstrap re-sampling. While such

strategies are often used to measure the stability of clustering, another goal may be

to choose the optimal number of clusters k for a given dataset and clustering method.
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Fang and Wang [50], for instance, aim to find the number of clusters for which the

average dissimilarity between the partitions (instability S) is minimal. More concretely,

the bootstrap stability assessment follows four steps:

1. Generate B pairs of bootstrap subsamples with size n (number of observations)

(X
b

, X 0
b

), b = 1, . . . , B.

2. Using the same method, calculate the clustering partitions P
bk

, P 0
bk

for each sub-

sample on k clusters.

3. To calculate the clustering dissimilarity s
bk

between the pairs of subsample clus-

tering partitions, check whether or not every pair of observation falls within the

same group in both partitions,

s
bk

=
1

n2

nX

i=1

nX

j=1

|1{P
bk

(x
i

) = P
bk

(x
j

)}� 1{P 0
bk

(x
i

) = P 0
bk

(x
j

)}|

Then, define the clustering instability as the average of all dissimilarities between

the b pairs of samples,

s̄
Bk

=
1

B

BX

b=1

s
bk

4. Repeat these calculations over all the possible number of clusters k. Now, the

optimal number of clusters is the one for which the instability is minimal.

k̂ = argmin
k2[2...K]s̄Bk

Although this procedure is designed to find the optimal number of clusters for the same

clustering method, it could also be applied to compare the stability of the solutions

of two di↵erent methods for a given dataset, provided the same number of clusters is

chosen. The authors also propose a similar procedure to estimate the standard error of

the estimated clustering instability.

Other methods are based on the between- and within-cluster sum of squared dis-

tances. The gap statistic, for instance, is a very popular method for k-means (Tib-

shirani, Walther, and Hastie, 2001). It evaluates the goodness of clustering based on

average dispersion within the clusters as compared to a reference distribution. It is

calculated with di↵erent number of clusters in order to choose the optimal number.

Note that the indices based on between and within sum of squares and those based on

dissimilarity are not adapted to continuous longitudinal data.
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4.4.3 Validation of clustering, comparison, and stability as-

sessment

Validating a clustering and comparing two clustering solutions

The two large categories of clustering validation indices are the internal and the external

indices. The former are mostly based on distances (Euclidean, Mahalanobis etc.) or

dissimilarities between observations. Often they compare the within and between sum

of squares of the clusters and aim to evaluate the separation of the data that the models

provide. The internal indices are described in details by Hennig [64]. One could imagine

to apply distance-based indices on transformations of the data, such as AR coe�cients

fitted on each sequence, variances and average values, but such approaches can be

highly criticized. This kind of measures are easily applicable to transversal multivariate

data for instance, but they are not adapted directly to continuous longitudinal data.

Therefore they will not be discussed in this thesis.

The external validation indices however can be independent from the nature of the

data when applied to the membership of the observations. Often they are used to

approve a model by comparing the resulting partition to the true class membership.

However, in unsupervised learning, one may use a reference solution instead of the true

classes (which are unknown). This is why we will more focus now on the external

measures.

A recent review of these measures is provided by Meila [97] who distinguishes be-

tween four types of clustering comparison criteria. The first one is the comparison by

set matching. An example is the misclassification error distance; this approximates the

probability of the cluster labels disagreeing on an observation “under the best possible

label correspondence.” First, the clusters of the two compared partitions P 1 and P 2 are

matched to find their corresponding equivalents. Then, one estimates the “unmatched

probability mass” using the formula

H(P 1, P 2) = 1� 1

n
max
M

KX

k=1

n
k

,M(k)

whereM is the mapping of the clusters of P 1 into P 2 (both partitions do not necessarily

have the same number of clusters k), and n
k

is the number of observations in the cluster

k.

The second type of comparison is by information theoretic criteria. It calculates the

joint entropy of two clusterings, their marginal entropy, and their mutual information

(representing the average (over all points) clustering information that we obtain about
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one of the clustering partitions if we know the other). These quantities allow us to

obtain the variation of information between two clusterings.

The last two categories of measures comparing the clustering partitions (obtained

by any method) are by counting pairs and by adjusted indices. Several indices that

we mention below (Rand, Jaccard, etc.) are part of these categories along with their

adjusted versions. Basically, they count the number of data point pairs on which both

partitions agree or disagree. Since they never reach 0, they are sometimes adjusted to

correct this problem.

One can measure the proportion of sequences assigned to the same cluster in two

distinct clusterings using, for instance, the adjusted Rand index, the Jaccard index,

or the Fowlkes and Mallows index Steinley [146]. These indices can also be used

to validate a clustering. For instance, the Rand index allows the comparison of two

clustering partitions even when the number of clusters are di↵erent. Considering a set of

observed sequences S = s1 . . . sn and two di↵erent clustering partitions V = {v1 . . . vr}
and W = {w1 . . . wr

} with subsets (clusters) r and m respectively, the index takes into

account

• a - the number of pairs of elements belonging to the same cluster in V and the

same cluster in W ;

• b - the number of pairs of elements belonging to the same cluster in V and a

di↵erent cluster in W ;

• c - the number of pairs of elements belonging to di↵erent clusters in V and the

same cluster in W ;

• d - the number of pairs of elements belonging to di↵erent clusters in V and W .

We can compute the Rand index by creating a table from the two clustering partitions:

V cluster /W cluster 1 . . . r Total

1 n11 . . . n1r n1.

...
...

. . .
...

...

m n
m1 . . . n

mr

n
m.

Total n
.1 . . . n

.r

n
..

where n
m,r

is the number of observations clustered at the same time in the m-th and

r-th groups in partitions V and W , respectively. Then,
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a =

P
M

m=1

P
R

r=1 n
2
mr

� n
..

2

b =

P
M

m=1 n
2
m.

�PM

m=1

P
R

r=1 n
2
mr

2

c =

P
R

r=1 n
2
.r

�PM

m=1

P
R

r=1 n
2
mr

2

d =

P
M

m=1

P
R

r=1 n
2
mr

+ n2
..

�PM

m=1 n
2
m.

�PR

r=1 n
2
.r

2

and the Rand index is written as

R(V,W ) =
a+ d

a+ b+ c+ d
=

a+ d�
n

2

� (4.3)

A transformation of the Rand index adjusted for chance is the Adjusted Rand

Index (ARI), proposed by Rand [122]. ARI measures the similarity between two data

clusterings, but instead of varying between 0 and 1, it takes negative values when its

value is smaller than the expected index value. Acording to Hennig [65], ARI may also

be used to compare two clustering methods on the same dataset.

The Jaccard similarity measure is also based on membership of the observations to

a given cluster. It is calculated as

J(V,W ) =
{V \W}
{V [W} =

{V \W}
{V }+ {W}� {V \W}

where

V,W ✓ x
n

, J(V,W ) 2 [0; 1]

This measure represents the part of the observations belonging to both sets divided by

the total number of observations in either of sets V and W (partitions of observations

x
n

) Bank and Cole [6]. Since the labels are not always identifiable when V and W are

clustering partitions, the Jaccard index Meila [97] is computed as

J(V,W ) =
a

a+ b+ c
.

Another example is the silhouette statistic proposed by Rousseeuw [130], which can

be calculated with any distance metric.
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Assessing the stability of clustering

The stability of clusters needs to be assessed because the methods of clustering usually

partition the data even when there is no true clustering inside, or when the clustering

model is only partially adapted or not adapted at all to the data. Several criteria are

often used for a “good clustering”. According to Jin [71]:

• Compactness involves reducing the within-cluster variation. A specific method

to achieve this is the K-means algorithm that performs well when the data are

clearly separated, but does not perform well when the cluster structure is more

complex.

• Connectedness implies that neighboring data should belong to the same clus-

ter. Density-based methods implement this principle. According to Jin, they are

adapted to detect irregular shape clusters, but “lack robustness when there is

little spatial separation between clusters.”

• Spatial separation is a criterion that “gives little guidance during the clustering

process.” As Jin underlines, it should be combined with other objectives, “most

notably [the] measures of compactness or balance of cluster sizes.” Spatial separa-

tion is actually the opposite of connectedness: the observations must be connected

within a group, but there must be spatial separation between the di↵erent groups.

Instability can result not only from the clustering method, but also from fromfea-

tures of the data or a mismatch of the data to the model or bad preprocessing choices”

Hennig [65]. On the other hand, clustering stability is defined in many di↵erent ways

(see Steinley [145] and the references therein), such as the stability of data with regard

to the choice of the clustering method, measuring clustering robustness against the

randomness of the sample Fang and Wang [50], and the ability of the cluster solution

to be recognized in di↵erent random samples of the population.

Leisch [84] details the existing resampling methods to assess the stability of a cluster-

ing. In this perspective, he highlights two sources of randomness in cluster partitioning:

sampling and the algorithm. Clustering every bootstrap sample separately is one way

to assess the influence of sampling on the stability of a clustering. A cluster is said

to be stable if it is still present (identifiable) when the data su↵er some nonessential

modifications. Such modifications can be:

• bootstrapping (the empirical as well as parametric version);
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• jittering, which consists in adding noise to the original data sample (note that

jittering alone was not recomended by Hennig [64] for stability assessment);

• subsetting, which is a kind of cross-validation wherein one draws a training set

from the original sample of random size ⇡n (where ⇡ 2 [0, 1]) and uses the rest of

the observations as a validation set;

• replacing points by noise.

We might add that the clustering should be present when a new (or unused) sample

is received from the same population.

Leisch also presents a general approach to evaluate the cluster stability in several

steps as follows:

1. From the original sample, draw two training samples Ai, Bi and one evaluation

sample �i, where i is the iteration (1  i  I).

2. Cluster Ai, Bi using the same number of clusters k. The resulting partitions are

⇧A

i

and ⇧B

i

.

3. Predict the membership of the evaluation set �i from the partitions obtained on

the training samples.

The author provides examples with a k-means-type approach with transversal

data, that is, assigns the �i points to the nearest centroids from Ai and Bi.

However, given the model-based clustering approach that we promote in this

thesis, we could use the estimated sets of parameters ⇥̂
A

i , ⇥̂
B

i obtained during

both partitions, to obtain the following partitions on �i: ⇧�Ai

and ⇧�Bi

.

4. The resulting two clusterings are compared using the given statistic si.

5. The above procedure is repeated I times (1  i  I).

6. si is summarized.

Some examples of the statistics and particular procedures following this general

scheme are provided. Among them is the procedure implemented by Hennig [64] (2007),

which measures the local stability (instead of the global one) of each cluster within a par-

tition. At first, only one sample is drawn using bootstrap (the other data modifications

mentioned above could also be used). Instead of the evaluation set �i, Hennig uses the

intersection between the original sample X and the bootstrap sample Ai (�i = X \Ai,
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which is equivalent to the bootstrap sample without the repeating observations). The

Jaccard similarity measure is computed between the k-th cluster of the original sample

(A
k

) and each of the bootstrap clusters ⇧�A,i

k⇤ . The maximum Jaccard agreement cor-

responds to the maximum of these measures, and represents the stability of the cluster

k:

ji
k

= max
1k⇤K

{A
k

\ ⇧�A,i

k⇤ }
{A

k

[ ⇧�A,i

k⇤ } , where A,B ✓ x
n

By averaging the stability (ji
k

) over all iterations i, one obtains an indicator of the

stability of each particular cluster A
k

from the original sample.

When we attempt to use a simple nonparametric bootstrap to provide parameter

estimate CIs for clusters on longitudinal data, we need to determine whether all the

resulting clustering partitions are mutually compatible. For instance, if we obtain a

group of monotone decreasing sequences in one clustering partition, a group with the

same property should also be identifiable in a clustering partition obtained from another

bootstrap sample using the same method. Hence, the stability measure is an important

indicator that one should take into account. However, following Hennig et al. [66], a

large stability is not su�cient to validate a clustering solution. A low or high stability

does not depend only on the applied method, because methods that are less influenced

by single observations or small modifications of the data can give meaningless but

stable clusters. Clustering is useful only when the data really exhibit several clusters,

and the model assumptions need to be adapted to the data. However, a low stability

can be an indicator of potential problems. In order to accept a clustering solution, data

visualization is recommended, along with a thorough knowledge of the data and their

source.

Dias & Vermunt [44] used bootstrap methods to measure the classification uncer-

tainty in latent class models that represent mixtures of conditionally independent multi-

nomial distributions. They measured the uncertainty at both individual and aggregate

levels, to provide examples with longitudinal data. Another use of the procedure is to

identify observations characterized by higher classification uncertainty. However, the

authors show that the number of clusters is fixed, indicating that it should have been

optimized beforehand. This method is not a↵ected by label switching as the measures

do not depend on the labels.

The aim is to maximize the estimated probability ↵̂
ik

that observation i belongs to

the given cluster k:

↵̂
ik

=
⇡̂
k

f
k

(x
i

; ⇥̂
k

)
P

K

c=1 ⇡̂c

f
c

(x
i

; ⇥̂
c

)
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where ⇥̂
k

and ⇡
k

are respectively the parameters and the probability of component k,

and its distribution is f
k

(x
i

; ⇥̂
k

). The “soft” partitioning is transformed into a “hard”

partitioning by assigning the observation to the class k that maximizes its probability

of membership (a.k.a. the optimal Bayes rule):

k̂
i

= argmax
k

↵̂
ik

At the individual level, the uncertainty is measured by the misclassification risk for

each observation i:

e
i

= 1�max
k

↵
ik

and at the aggregate level, the entropy is calculated as

E(↵) = �
nX

i=1

KX

c=1

↵
ik

log↵
ik

4.5 Conclusion

In this chapter, we explored the particularities and issues that arise when assessing

the uncertainty of the parameter estimates of mixture models in the presence of label

switching and other problems. We also described some methods to validate an initial

clustering solution, and we proposed two bootstrap methods to achieve this goal. They

rely on the first clustering partition “approved” by the researcher to di↵erent extents.

We also listed some methods to approve (or validate) such partition before using it

for that purpose. The use of these two alternative procedures, especially the separated

bootstrap method, implies a way of considering the clustering process by separating the

model choice and validation from parameter uncertainty. The use of ordinary nonpara-

metric bootstrap implies that the tasks of discovering the optimal clustering model,

validating it, and calculating the parameter intervals are performed simultaneously.

On the other hand, the stratified bootstrap is a hybrid solution that uses the initial

solution, but that leaves the possibility of a model choice error. However, it ensures

that the initial clusters are well represented throughout the bootstrap sampling. In the

separated version, the current model obtained from the original sample is hypothesized

to be correct, such that we only need to validate its parameters, for instance when we

try to simplify the model (e.g., when some lag parameters are not significant), or to

merge two clusters into a single one, should their parameters be close enough to do

that.
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When the chosen initial clustering solution corresponds to a local optimum in the

estimation procedure, or when the number of components is not appropriate, the initial

solution may contain more misidentified sequences that could introduce bias into the

CI calculation. This is especially true for the separated bootstrap method, and this

highlights the importance of the initial solution for this method. However, when the

sequences are well identified from the beginning, and the chosen number of components

is appropriate, this method can prove advantageous over its alternatives. Furthermore,

model uncertainty is not always a primary objective in practice, because the researcher

often attempts to find not only the stability of a clustering solution, compared to all

other possible solutions, but also an adequate clustering based on the knowledge of the

data behavior and the aim of the study. In this case, one may ask the question, “If

this clustering appears correct and meaningful considering our knowledge about the

data, how much could its characteristics vary?” rather than, “Is this really the one

and only clustering that is appropriate for those data?”. While a separated bootstrap

is clearly more appropriate to answer to the first question, the ordinary and stratified

bootstraps are better suited to answer to the second one. Therefore, each procedure

finds its utility, depending on the problem to be solved.

In addition to the above considerations, the stratified version may also be useful for

small-size samples, or when at least one of the groups appears evident but small, and

it is not certain to be represented in the bootstrap samples.

Before introducing an example in the following chapter, hereafter we summarize

our point of view on how a full clustering procedure in the frequentist mixture model

estimation should be performed:
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procedure Frequentist mixture clustering

1. Apply a model to find the appropriate solution(s)

2. Evaluate the model uncertainty and compute the stability of the clustering par-

titions

3. Use a method to compare the possible candidate solutions

4. Evaluate the interpretability of the solutions

if A stable, interpretable solution is validated then

Use separate bootstraps

Pros: Eliminates the label-switching problem;

Eliminates the genuine multimodality problem as well as the singularity

issue

Cons: The selected model must be tested and accepted beforehand

else

if The solution does not correspond to all criteria or is not entirely satisfactory

then

Stratified bootstrap

combined with label-switching and multimodality solutions.

Pros: Small important samples do not ”vanish”;

Multimodality issues should be a bit less important than in ordinary

bootstraps

Cons: Label switching is present;

Multimodality and singularity problems cannot be ignored

else No stable or interpretable clustering is found

Ordinary bootstrap

combined with label-switching and multimodality solutions.

Pros: No assumption for the model (! more flexibility)

Cons: Label switching is present; singularity issue is possible

Multimodality is present; small clusters may vanish.

end if

If label switching or multimodality are too di�cult to solve ! Separate boot-

strap

end if

end procedure



Chapter 5

Coping with clustering uncertainty:

example

In this Chapter, we provide an example of some of the concepts developed in the

previous chapter. We illustrate these concepts through the somatic complaints data.1

The specific aim of this chapter is not only to study the concrete problem of the somatic

complaints data (which was the objective of the published paper), but also to re-consider

the example by focussing on the concepts that have been developed in the previous

chapter. Therefore the chapter includes additional parts also for illustration purposes.

5.1 Introduction

Somatic complaints such as headaches, stomach aches or sleep disturbances are very

common at all ages. They are a leading reason for seeking medical care, accounting

for up to 50% of new medical outpatient visits Mohapatra, Deo, Satapathy & Rath

[100]. These symptoms often appear during childhood and then increase through ado-

lescence and adulthood. In Switzerland, a study showed an increase in the number

and importance of these symptoms among 11-15 year olds between 1996 and 2004 Dey,

Jorm & Mackinnon [43]. In addition to lowering the quality of everyday life, the pres-

ence of somatic complaints is often a clue for more serious problems, either already

present or likely to grow rapidly. Understanding the causes of somatic complaints is

therefore crucial to prevent and/or identify and treat more important health problems.

1Some parts of this Chapter, and especially the final model clustering the trajectories of somatic

troubles into five groups, are taken from a paper accepted for publication in the Swiss Journal of

Sociology Berchtold A., Suŕıs J.-C., Meyer T. and Taushanov Z. [19].
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Accordingly, a Dutch study showed that young adults with severe somatic disabilities

since childhood achieved less life milestones than their healthy peers, or achieved them

with delay, implying a lower probability of full social and professional integration Ver-

hoof, Maurice-Stam, Heymans & Grootenhuis [162]. A higher level of somatic issues

at mid-age has also been associated with reduced accumulation of social capital from

adolescence throughout the life course Jonsson, Hammarström & Gustafsson [73].

The main purpose of this study was to assess the presence and development of

somatic complaints among adolescents and young adults living in Switzerland during a

life period during which crucial transitions occur, such as labour market entrance and

the foundation of a family. With regard to the development of individuals from mid-

adolescence to young adulthood, we searched to identify specific subgroup trajectories

of somatic complaint development and link these trajectories both to personal and

socio-economic factors prone to shape the overall trajectory, as well as to critical life

events. Given the scarcity of previous longitudinal studies analysing somatic complaints

among adolescents and young adults, it was di�cult to predict which would be the

most likely shapes of these trajectories, excepted maybe a slight trend to an increase

of the number of complaints during early adolescence associated with a high variability

between individuals. Moreover, it was reasonable to postulate than some adolescents

experience only a very small number of complaints, which corresponds to a quite flat

trajectory with a low average value.

5.2 Data and modeling

We used data from the Transitions from Education to Employment study [TREE].

TREE is a follow-up survey of the Swiss sample tested by the Programme for Interna-

tional Student Assessment (PISA) survey in 2000, collecting longitudinal data among

more than 6,000 school leavers from 2001 (mean age 16 years) to 2014. Data available

to date include PISA 2000 (baseline survey) and nine follow-up panel waves carried out

between 2001 and 2014 (at annual intervals between 2001 and 2007), but the study is

still ongoing and a further wave is planned for 2019. The presence of eight somatic

troubles (stomach ache, lack of appetite, lack of concentration, vertigo, sleeping dis-

order, nervousness, fatigue, headaches) was regularly surveyed on each TREE panel

wave, drawing on the Berner Fragebogen zum Wohlbefinden Jugendlicher (Grob et al.

[58]). There were five possible answers for each somatic trouble ranging from never to

everyday. These answers were recoded from 0 to 4 and then summed in order to obtain

an overall somatic trouble score ranging from 0 to 32. This score was then used as the
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dependent variable in our analyses.

Several covariates were included in the model, either fixed or time-varying. The fixed

covariates were gender (female/male), country of birth (Switzerland/other), academic

track attended at mandatory school (high/extended/basic), residence (rural area/urban

area), PISA reading literacy (6 levels from 0 = very low to 5 = very high; treated as

a numerical scale hereafter), highest parental socio-economic status (ISEI scale) and

family wealth (scale representing the possessions of the family such as cars and TV

sets). Residence was included based on the hypothesis that living in an urban area can

be more stressful than living in a rural area, which could in turn favour the development

of somatic troubles. All variables were measured in 2000 as part of the PISA survey. On

the contrary, critical life events were measured at each subsequent wave of the TREE

survey. The number of surveyed critical life events varied between 12 and 16 across panel

waves, including an open text option from the second wave onward. Reported events

comprised relocation of parental family; moving out of the parental home; parental and

own separation or divorce; death, serious accident/illness or unemployment of relevant

others; trouble with the police; unhappy love; serious conflicts in the family, at school

or at work; pregnancy and parenthood. Two time-varying covariates were computed

from these life events. The first one was the number of critical life events reported each

year. The second one was a dichotomous factor indicating whether at least one critical

event was reported or not. Finally, the consumption level of four types of substances

(alcohol, tobacco, cannabis, tranquilizers/sleeping pills) was assessed at each TREE

wave with five possible answers ranging from ”never” to ”every day”.

In the first step, the HMTD model was used to identify the required number of

groups for classifying the data sequences, and the order of dependence for the autore-

gressive modelling of the mean value of the somatic troubles scale. No covariates were

used at this point. Models were compared on the basis of their log-likelihood, their

Bayesian Information Criterion (BIC) values (Raftery [120]), and the number of se-

quences assigned to each group, thereby discarding solutions with very few sequences

in some groups. Then, time-invariant covariates were introduced one by one at the hid-

den level. All significant covariates were then introduced simultaneously in the model

to improve the clustering. Finally, the time-varying covariate representing the occur-

rence of critical life events was added at the visible level to improve the modelling of

the mean of the somatic trouble score.

Critical life events were mainly shocks occurring at a precise time, but whose e↵ects

could be felt for a long period. Specific examples were the death of a family member,

an unhappy love or a sudden hospitalization. Their impact on somatic troubles could
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therefore be easily conceptualized. On the other hand, substance use was mostly a

continuous behaviour that was di�cult to break into specific events. Even the beginning

of consumption of a specific substance was di�cult to assess, because 1) someone could

begin (and cease) to use a substance several times, and 2) our dataset could not be used

to determine whether a specific substance was used before the first wave. Moreover, a

sudden change in the level of consumption could not always be clearly identified in our

data, because questions about substance use only referred to the month preceding the

survey panel. Therefore, we chose to integrate critical life events and substance use in

two di↵erent ways in our analyses. Critical events were used as a time-varying covariate

influencing the average level of somatic troubles into each group of the clustering, when

the association between substance use and trajectories was established a posteriori on

the final clustering using a chi-square test.

Continuous covariates were standardized in order to ease the convergence of the

optimization algorithm. The Type I error was fixed to 5%.

5.3 Results

Data from N = 1161 respondents continuously observed from 2001 to 2014 were included

in all analyses. These individuals represent only 18% of the total TREE sample, but

we preferred not to impute missing data, based on further analyses. However it is

important to note this information. Table 5.1 summarizes the main information about

the sum score for somatic complaints. This scale showed good psychometric properties

with a Cronbach’s alpha value ranging from 0.78 (T1) to 0.82 (T6). Whatever the wave,

the score was highly variable from one respondent to another, but the central tendency

measured by the mean and the median did not vary much. Most scores were below 20,

but each year a small number of larger values were observed.

Table 5.2 and Table 5.3 describe the covariates considered in this study. When com-

paring our data with the full TREE sample, females and students in the pre-gymnasial

school track were over-represented, while German speaking youths were slightly under-

represented. This will be discussed later, but it did not a↵ect our results. The number

of critical life events increased year to year, which is to be expected given the probabil-

ity of experiencing some of the events surveyed, such as getting married or becoming

a parent, increases with age. Moreover, the variability between respondents also in-

creased with age, even though few individuals reported many events in a given survey

wave.



5.3. RESULTS 125

Table 5.1: Main characteristics of the somatic complaint score.

Year 2001 2002 2003 2004 2005 2006 2007 2010 2014

Minimum 0 0 0 0 0 0 0 0 0

Maximum 32 29 28 28 31 32 27 25 28

Median 6 6 6 6 5 6 6 6 5

Mean 7.14 6.91 7.07 6.75 6.27 7.14 6.85 6.26 6.05

Standard deviation 4.83 4.81 4.79 4.76 4.58 4.76 4.59 4.31 4.24

Cronbach’s alpha 0.78 0.80 0.80 0.80 0.80 0.82 0.80 0.79 0.79

Table 5.2: Main characteristics of the time invariant covariates measured in year 2000.

We provide the prevalence of each category and the corresponding percentage for cat-

egorical variables, and the mean and standard deviation for numerical variables.

Variable Categories Distribution

Gender Female 749 (64.51%)

Male 412 (35.49%)

Country of birth Switzerland 1097 (94.49%)

Other 64 (5.51%)

Academic track atten- High 574 (49.44%)

ded at lower secondary Extended 432 (37.21%)

education level Basic 155 (13.35%)

Residence Rural area 433 (37.30%)

Urban area 728 (62.70%)

(PISA) Reading literacy 0 - 5 2 3.50 (1.00)

Highest parental ISEI 16 - 90 2 53.18 (15.45)

Family wealth -2.93 - 3.38 2 0.05 (0.76)
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Table 5.3: Main characteristics of the critical life events score.

Year 2001 2002 2003 2004 2005 2006 2007 2010 2014

Minimum 0 0 0 0 0 0 0 0 0

Maximum 6 5 7 12 6 8 8 14 9

Median 0 0 0 0 1 1 1 2 2

Mean 0.69 0.69 0.70 0.74 0.91 1.09 1.09 2.26 2.57

Standard deviation 0.97 0.93 0.94 1.06 1.11 1.26 1.23 1.50 1.50

Number of

respondents

reporting > 0 518 526 536 547 605 664 680 1041 1085

events

As a first step, we considered HMTD models with 2 to 8 hidden groups and a first-

or second-order dependence for the mean of the somatic complaint score. Based on the

BIC, the preferred model was the second-order model with 6 groups. Using the previous

two observations of the dependent variable to explain the current observations yielded

better results than using only the immediately preceding observation. We subsequently

added the fixed covariates one by one at the hidden level. Five covariates contributed to

improve the fit of the model: gender, residence, reading literacy, socio-economic status

and family wealth. These covariates were then introduced together at the hidden level,

and we added the time-varying critical life events covariate at the visible level, either

in its continuous or dichotomous form. Both versions of this latter covariate proved

useful in improving the clustering of the somatic complaint score trajectories, but the

best results were obtained with the continuous covariate. Finally, since two of the six

groups were very close in terms of trajectories and parameters, we computed the same

model with only five groups. This model was chosen as the final solution.

Table 5.4 displays the parameters of the final HMTD model, and Figure 5.1 shows

the clustering of the somatic complaint trajectories into the five groups identified by

the model. Trajectories must be analysed in terms of average value and of variability,

both during a particular sequence or between sequences. Accordingly, the figure and

the model parameters indicated that 1) the groups di↵ered both in terms of average

level of somatic complaints and variability; 2) inter-subject variability remained high,

2Minimal and maximal values observed in the sample.
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even within the same cluster, indicating that almost all individuals followed their own

trajectory; and 3) intra-subject variability (that is across time for a specific individual)

was high for the trajectories classified in groups 1 to 3, and much lower for trajectories

classified in groups 4 and 5. Group 5, which comprises about half the sample (n =

528), was used as the reference group for the analysis. Regarding the covariates used

at the hidden level, gender was the most important one for distinguishing between the

groups, with more males in group 4 and fewer in groups 1 to 3 as compared to group

5 (see Table 5.5). The proportion of females classified in each of the five groups were

80%, 90%, 76%, 49%, and 68% respectively. The only other significant covariate was

reading literacy, which was lower in group 2. When considering other groups as the

reference (data not shown), it appeared that groups 1, 2 and 4 significantly di↵ered

in terms of gender, while groups 4 and 5 di↵ered from group 2 regarding the reading

literacy level, with a significantly lower reading literacy level in group 2. On the other

hand, the residence, socio-economic and family wealth covariates were never significant,

even though some coe�cients were very close to significance, especially the coe�cient

of the critical life events covariate in the case of group 5.

Group 4 comprised the respondents with lower overall somatic complaint scores and

with relatively low changes between periods, that is the individuals with the overall

lowest level of somatic complaints. Both lags of the dependent variable and the critical

life events covariate were significant at the visible level. Compared to group 4, group

5 comprised respondents with a slightly higher variability of scores over time, while

average scores varied more and were significantly higher in a number of cases. On

the other hand, groups 1 to 3 comprised respondents with substantially more complex

trajectories of somatic complaints: both their variability and their overall level was

higher, especially in group 1, and no influence of the critical life events covariate was

observed. Moreover, the individuals classified into these three groups had generally one

or several periods with a high level of somatic complaints. Both lags of the dependent

variable were significant in group 2, while only the first lag was significant in groups 1

and 3, indicating that in these two latter groups, the past levels of somatic complaints

had less e↵ect on the current level.
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Table 5.4: Parameters of the final HMTD clustering model. At the hidden level, the

last group served as reference for the computation of the multinomial regression used

to add the fixed covariates to the model. We provide for each parameter the point

estimation and the 95% confidence interval. Parameters significant at the 95% level are

printed in bold.

Hidden level: Clustering of somatic complaints trajectories into 5 groups

Groups Residence Gender Reading literacy Hisei Family wealth

(urban area) (male)

1 0.42 -1.00 -0.13 0.06 0.16

[-0.08;0.93] [-1.59;-0.41] [-0.39;0.12] [-0.18;0.31] [-0.16;0.47]

2 0.43 -2.10 -0.47 -0.03 0.13

[-0.25;1.12] [-3.29;-0.91] [-0.81;-0.12] [-0.36;0.30] [-0.29;0.56]

3 0.02 -0.30 -0.14 0.03 0.04

[-0.32;0.35] [-0.65;0.05] [-0.32;0.04] [-0.14;0.21] [-0.19;0.26]

4 0.03 0.44 -0.02 0.03 0.18

[-0.26;0.31] [0.15;0.72] [-0.17;0.13] [-0.12;0.18] [-0.01;0.37]

5 Ref Ref Ref Ref Ref

Visible level: Observed levels of somatic complaints

Factors explaining the mean level of somatic complaints

Groups Variance Constant Lag 1 Lag 2 Critical life

events

1 26.99 11.68 0.20 -0.09 -0.08

(n=46) [21.31;32.56] [10.15;13.62] [0.09;0.33] [-0.22;0.01] [-0.47;0.39]

2 20.55 9.55 0.16 0.29 0.17

(n=30) [15.48;25.34] [7.90;11.99] [0.04:0.26] [0.15:0.41] [-0.39;0.68]

3 18.01 6.29 0.28 0.01 0.14

(n=204) [16.92;19.06] [5.79;6.92] [0.24;0.33] [-0.05;0.06] [-0.10;0.36]

4 3.39 2.25 0.23 0.11 0.14

(n=353) [3.18;3.57] [2.06;2.45] [0.20;0.27] [0.08;0.15] [0.04;0.23]

5 7.21 1.71 0.42 0.31 0.05

(n=528) [6.80;7.62] [1.48;1.96] [0.38;0.46] [0.27;0.34] [-0.05;0.16]
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Table 5.5: Main characteristics of the respondents classified in the five groups of the

final model. We display, separately for each group, the percentage of each category for

categorical variables, and the mean and standard deviation for numerical variables.

Groups

Variables Categories 1 2 3 4 5

Gender Female 80.4% 90.0% 75.5% 49.0% 67.8%

Male 19.6% 10.0% 24.5% 51.0% 37.2%

Country of birth Switzerland 87.0% 86.7% 92.6% 95.2% 95.8%

Other 13.0% 13.3% 7.4% 4.8% 4.2%

Academic track attended High 58.7% 40.0% 52.5% 45.6% 50.6%

at lower secondary Extended 26.1% 30.0% 28.9% 36.0% 31.1%

education level Basic 15.2% 30.0% 18.7% 18.4% 18.4%

Residence Rural area 17.4% 33.3% 38.7% 38.0% 38.3%

Urban area 82.6% 66.7% 61.3% 62.0% 61.7%

(PISA) Reading 0 - 5 3.35 3.10 3.46 3.53 3.53

literacy (0.92) (1.09) (0.96) (0.98) (1.02)

Highest parental 16 - 90 54.70 48.90 52.84 54.15 52.78

ISEI (15.71) (16.67) (15.53) (15.70) (15.15)

Family wealth -2.93 - 3.38 0.20 -0.03 -0.01 0.14 0.00

(0.74) (0.82) (0.75) (0.73) (0.77)



130 CHAPTER 5. COPING WITH CLUSTERING UNCERTAINTY: EXAMPLE

2002 2004 2006 2008 2010 2012 2014

0
5

10
15

20
25

30

Group.1

Year

So
m
at
ic_

tro
ub

les

2002 2004 2006 2008 2010 2012 2014

0
5

10
15

20
25

30

Group.2

Year

So
m
at
ic_

tro
ub

les

2002 2004 2006 2008 2010 2012 2014

0
5

10
15

20
25

30

Group.3

Year

So
m
at
ic_

tro
ub

les

2002 2004 2006 2008 2010 2012 2014

0
5

10
15

20
25

30

Group.4

Year

So
m
at
ic_

tro
ub

les

2002 2004 2006 2008 2010 2012 2014

0
5

10
15

20
25

30

Group.5

Year

So
m
at
ic_

tro
ub

les

Figure 5.1: Somatic complaint trajectories of the final five groups identified by the

model.
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Table 5.6: Relationships between the five groups of the final model and substance use.

For each wave of the study, we provide the Cramer?s V measure giving the level of

association between groups and substance use, and the corresponding p-value.

2001 2002 2003 2004 2005 2006 2007 2010 2014

Alcohol V 0.05 0.06 0.08 0.05 0.08 0.07 0.07 0.08 0.09

p 0.706 0.441 0.018 0.758 0.011 0.057 0.200 0.035 0.002

Tobacco V 0.09 0.08 0.09 0.07 0.08 0.09 0.09 0.07 0.08

p 0.001 0.039 0.002 0.107 0.016 0.001 0.004 0.194 0.010

Cannabis V 0.06 0.08 0.08 0.08 0.07 0.06 0.09 0.06 0.08

p 0.466 0.045 0.035 0.018 0.121 0.483 0.001 0.447 0.007

Tranquilizers V 0.13 0.10 0.16 0.10 0.13 0.10 0.16 0.13 0.09

& sleep. pills p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Lastly, we compared the final clustering with the variables measuring the level of

substance consumption (Table 5.6). Overall, the level of association was not very

strong, but it was nevertheless highly significant in many cases. The association with

alcohol consumption tended to change rapidly from one period to the next, but with

no discernible trend. Similar findings were observed for cannabis consumption, where

significant and non-significant associations alternated. The pattern of tobacco use was

more distinct: the association with the five groups of the clustering was always sig-

nificant except for 2004 and 2010. Compared to groups 4 and 5, daily smokers were

represented at a substantially higher proportion in group 1, and to a lesser extent in

groups 2 and 3 (data not shown). Finally, the association between the five groups and

the use of tranquilizers and sleeping pills was highly significant for each period. Even

if the consumption level was rarely higher than 1-3 times per month in all groups,

and if most respondents did not consume at all, the average consumption level was

significantly higher among respondents clustered into group 2 (data not shown).

5.4 Optimal clustering and validation

The model described before represents our final solution for the clustering of the somatic

trouble trajectories. However, as noted before, the HMTD model often needs to be

optimized several times before a solution is chosen. The presence of covariates at the

visible and/or hidden level makes the parameter space even more complex and the

maximization of the log-likelihood even more di�cult.



132 CHAPTER 5. COPING WITH CLUSTERING UNCERTAINTY: EXAMPLE

Number of clusters In this study, we needed first to choose the number of clusters.

An optimal solution for every number of clusters between two and eight was computed.

The solutions were compared both in terms of interpretability and in terms of BIC and

ICL. A five component solution was found to be the most appropriate and interpretable

for this dataset.

However, as stated before, the solution space includes often several local optima. In

order to insure that our model choice was not biased because of this issue, a bootstrap

computation approach was used between the neighboring (and most plausible) number

of components. In this case, we compared clusterings with four, five and six components.

For all three models without covariates we drew 50 bootstrap samples and for each of

them the BIC was computed. Sometimes, due to the complexity of the solution space,

some solutions contained one or more empty clusters. Only the bootstrap iterations

that had no empty clusters in any of the three model specifications were considered, in

order to be able to compare them. We computed the average AIC and BIC for each

number of clusters, but since the parameter number penalty term is the only di↵erence

between AIC and BIC, AIC / BIC. In order not to be influenced by single extreme

BIC values, we also ordered each group of three solutions from the smallest to the largest

BIC, and we computed the average rank over the iterations. Table 5.7 summarizes our

results.

Table 5.7: Comparison of bootstrap solutions with 4 to 6 clusters.

4 clusters 5 clusters 6 clusters

average AIC 41440.43 41387.38 41481.26

average BIC 41521.34 41488.52 41602.63

average BIC rank 2.01 1.71 2.28

Even though we cannot claim that these results are statistically significant, we

observe that the solution with five groups seems better than the one with four groups,

and the six-group solution takes the last place. We must note that, in order to take into

account the increase in complexity of the parameter space as the number of clusters

increases, we allowed a larger number (linearly) of iterations to optimize the likelihood

of the more complex models. However, this choice seems not to have biased our results,

since even with more iterations allowed, the 6 clusters solutions ranked last, and with

less iterations allowed, the 4 clusters solution ranked second.
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However, as explained in the previous chapter, AIC and BIC are not the only criteria

for the choice of number of components. The ICL for instance, has the important

advantage to take into account the separation within the data by including the entropy

of each separation. In Table 5.8 we present the optimal solutions for each number of

clusters, their entropy, log-likelihood and ICL values. For simplicity and parsimony the

models are again computed without covariates.

Table 5.8: Log-likelihood, entropy, and ICL approximation for each number of clusters

number of clusters 2 3 4 5 6

logL -20636.88 -20615.08 -20597.64 -20540.22 -20518.66

Entropy -452.13 -658.12 -855.40 -1027.85 -1241.60

ICL 41743.47 41914.66 42085.85 42152.24 42331.65

The results here indicate that the two-clusters solution appears better. The main

reason is that it is less penalized by the entropy of the solutions. Actually, in our case

the gain in terms of log-likelihood from increasing the number of clusters is clearly

inferior to the loss in terms of entropy and this trend appears to be rather linear.

One explanation of this rather unexpected result is that the data are not getting

much better separation compared to the increasing penalty for the number of compo-

nents implied in the entropy. To illustrate this, let us take an example with the maximal

entropy (uncertainty of clustering) for a single data point in two models: with two and

four clusters. With two clusters the maximum entropy is 2⇥ 0.5⇥ log(0.5) = �0.693,

whereas with four clusters we have: 4⇥ 0.25⇥ log(0.25) = �1.386.

An important reason is also the fact that we cope with longitudinal data. With

several periods for the same individual, we tend to have general means that are less

distinct between the individuals, for instance the sequences (1,2,3,4) and (4,3,2,1) have

exactly the same means and variances, although they are very di↵erent. Indeed, this

di↵erence is supposed to be captured by the other parameters (AR part for the mean)

and they should still be discerned by the components, but perhaps the small number

of periods is not allowing the clear separation based on the AR terms of the mean.

Moreover the fact that we were able to compute only the BIC approximation and

not the true value of ICL, could also play a role in our results. However, the suggested

ICL solution with only 2 large clusters was not as interesting in terms of interpretation,

because few particular features were distinguishable between both groups.
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Choice of solution and stability Once the number of components was chosen, we

explored di↵erent solutions corresponding to di↵erent optima. In order to choose and

validate a clustering, we also evaluated the stability of these candidate solutions. From

the di↵erent procedures and indices previously mentioned, we needed first to choose the

one that seems most appropriate to our data and particular problem. Since the indices

based on dissimilarity or Euclidean distances are not adapted to continuous sequences,

the only possibility was to assess the stability by set matching, i.e. to compare the

membership of the observations after resampling. The procedure we adopted is based

on the one proposed by Hennig [64], but with some modifications. Instead of evaluating

the stability of every cluster separately, we tried to measure the stability of the entire

clustering partitions in order to compare their global stability and choose one of them.

For each iteration i:

1. A bootstrap sample xi

n

with n observations is randomly chosen.

2. A clustering on the resulting sample is performed. According to Hennig, the

repeating observations may introduce a bias and need to be taken out of the

sample Hennig [64].

3. The obtained partitions are compared to the original ones on the basis of the

Rand or Jaccard indices.

4. The above steps are repeated m times and the indices are averaged and compared.

The choice of this procedure is motivated by the invariance to the labels when using

the Rand or Jaccard indices. Since only the membership to either the same or a di↵erent

class is taken into account, switching the labels does not have an impact on the index.

For instance the two following sets match perfectly:

X = {1, 1, 2, 3, 1, 3}, Y = {2, 2, 3, 1, 2, 1} ! Rand(X, Y ) = 1

When using these indices, we need to also take into account some issues related

to this index. The value of the Rand index does heavily depend on the cluster sizes

within the partitions. That means that for the same number of divergences between

two partitions, the values of the index are very di↵erent depending on the size of the

clusters containing misclassified data. For instance, both of the following pairs of sets

contain only two di↵erences, but they do not achieve the same Rand and Jaccard values

(using the R packages fossil and clusteval):
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X = {1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4},Y = {1, 1, 1, 1, 1, 1, 1, 2,3, 3,3, 4}
Rand(X,Y ) = 0.924 Jaccard(X,Y ) = 0.808

X = {1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4},Y = {1, 1, 1, 1, 1, 1, 1, 2,1, 3,1, 4}
Rand(X,Y ) = 0.742 Jaccard(X,Y ) = 0.553

The same is true for the three following situations:

X = {1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3},Y = {1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,3,2, 3, 3, 3, 3, 3}
Rand(X,Y ) = 0.869 Jaccard(X,Y ) = 0.636

X = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3},Y = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,2,1, 2, 3, 3, 3}
Rand(X,Y ) = 0.830 Jaccard(X,Y ) = 0.726

X = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3},Y = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,3,2, 3, 3}
Rand(X,Y ) = 0.961 Jaccard(X,Y ) = 0.929

In this case, the indices strongly privilege the errors that increase the smaller clus-

ters. In the last two examples, we see that by exchanging the labels of two observations,

both indices penalize more the errors made in the largest cluster, even though the pro-

portions of the final clusters remain the same. The fact that the last example results in

much higher stability indices is not convenient to achieve our aim of measuring cluster

stability. The values of both indices are explained by the proportion and the size of the

clusters within each partition, rather than by the misclassification in each iteration.

In my opinion, the sizes of the clusters should not be neglected, but the inter-

pretability of the clusters is the most important argument for the choice of a clustering

solution. All above mentioned approaches and indices should then only be considered

as a complementary validation means.

We provide now an illustration with three alternative solutions (compared to the

one fully described in the previous subsections) obtained with five clusters on the same

dataset of somatic trouble trajectories. These alternative solutions are represented on

Figures 5.2 to 5.4. These solutions correspond to local optima. From the three Figures,

we observe that they do not seem to be optimal for this problem, because each solution

contains at least one very small cluster. These small clusters lack interpretability and

they could represent a situation of overfitting of the model, preventing generalizability.

Their BIC values are also fairly close to the BIC of the chosen solution, but the latter

remains slightly higher.

However, it is interesting that these solutions remain more stable according to the

results of the Rand and Jaccard indices shown on Table 5.9. These results are obtained

after 50 bootstrap iterations of the above-mentioned stability evaluation procedure and
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they show a considerable advantage of all the alternative solutions over the chosen

one. Note that the Jaccard values are systematically smaller than the Rand values.

The main di↵erence is that the Jaccard formula omits the true negatives, that is the

number of pairs of observations that are not clustered together in both partitions (noted

d in equation 4.3). These results are surprising and may be due to the di↵erence in the

cluster sizes between solutions that we illustrated above.

Table 5.9: Comparison of alternative solutions: average Rand and Jaccard indices.

Rand Jaccard BIC

original solution 0.628 0.450 -20668.58

alternative solution 1 0.905 0.875 -20726.44

alternative solution 2 0.930 0.906 -20673.59

alternative solution 3 0.893 0.854 -20836.22

After observing the figures of the alternative solutions, we might conclude that

evaluating the stability of the solutions via Rand and Jaccard indices is probably not

the most reliable criterion to chose a clustering solution. If the interpretability of the

solution is superior, the stability indices should not be taken into account, especially if

the BIC confirms this choice. For these reasons, we still prefer the chosen solution.

5.5 Discussion

The main finding of this study was the identification of several apparently distinct

groups of somatic complaints trajectories based on a scale representing the sum of

eight di↵erent complaints. These trajectories remained distinct throughout the entire

observation period covered by the TREE data, which is from age 16 to age 30. As these

trajectories already di↵ered at age 16, we can hypothesize that factors already present

during childhood, and thus beyond the control of youths themselves, may be the cause

of such a di↵erentiation. Since it is known that a higher level of somatic complaints is

associated with subsequent health issues, we can conclude that 1) possibly some groups

of adolescents in Switzerland were experiencing a situation of vulnerability beginning

before adolescence, and that 2) this condition may be likely to persist even beyond

the period covered by our study. A second conclusion is that if critical life events may

be related to somatic complaints, this relationship was visible only among individuals
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Figure 5.2: Alternative five-component solutions obtained for comparison: solution 1
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Figure 5.3: Alternative five-component solutions for comparison: solution 2
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Figure 5.4: Alternative five-component solutions for comparison: solution 3
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with low levels of somatic complaints. For their counterparts with high levels of somatic

complaints, the impact of critical life events could have been masked by the inherent

variability observed in somatic complaint scores. This brings us back to the fact that

even if critical life events experienced during the transition period of adolescence and

young adulthood could have an impact on somatic complaints, this impact remains

limited, and the most important causes of a high level of somatic complaints are to be

found elsewhere. This also leads us to the assumption that if somatic complaints are

triggered by the occurrence of critical life events, the influence of such events appears

to be mainly of short duration, as the somatic complaint score often decreased one

period later. Thirdly, the consumption of tobacco and tranquilizers and sleeping pills

was significantly associated with the typology of somatic complaint trajectories: higher

substance consumption appears to be associated with the groups reporting the highest

overall somatic scores. As most substance use began during the period covered by this

study rather than before, it should not be considered as a cause of somatic complaints

but rather as a consequence, especially in the case of tranquilizers and sleeping pills,

which can be used to relieve some of these complaints.

The typology of somatic complaint trajectories identified in this study illustrates

both the importance and the long lasting aspects of somatic complaints: important

di↵erences were observed between respondents classified into each group, with clearly

di↵erentiated overall somatic complaint levels. Moreover, even though both inter- and

intra-subject variability may be high, many respondents classified in the first three

groups stayed at a high level of reported complaints during the entire period of obser-

vation, i.e. from 16 to 30 years. In terms of life course, that means that the presence of

somatic complaints early in life may be susceptible to deploy e↵ects during the whole

adolescence and (at least) the beginning of adulthood. Since many important determi-

nants for the entire life (such as the entrance into the labour market, and the beginning

of a steady relationship) are also taking ground during the same period, somatic com-

plaints could be a very important indicator for the success or not of the entire life of

an individual.

Finally, regarding the stability of the retained solution, we note that the choice of a

five-cluster solution appears to be superior in terms of BIC to alternative four- and six-

cluster solutions. Moreover, even if the stability of the final clusters can be questionned

on the basis of the Jaccard and Rand measures, the retained solution presents the

advantage of being more interpretable, hence more useful from a medical point of view.



Chapter 6

Clustering of IAT trajectories

In this chapter, I propose a full application of the HMTD model to the clustering of

Internet Addiction Test (IAT) trajectories.1

6.1 Introduction

The clustering of trajectories has gained much interest in recent years from the scien-

tific community, especially in the social sciences, because the number of longitudinal

studies, as compared to cross-sectional ones, has been constantly increasing. As regards

categorical data, the most common approach relies on the Optimal Matching (OM) to

compute a distance between each pair of trajectories before clustering them, whereas

the Growth Mixture Model (GMM) can be applied for continuous data. However, these

two approaches su↵er from some shortcomings, calling for the need to develop and ap-

ply alternative approaches. For instance, OM requires the choice of a substitution cost

measure and other parameters. GMM gives a lot of importance to the shape of se-

quences. Therefore, there is a risk to overfit the data when nonlinear trajectories are

considered on quite short sequences. The other issues of GMM include computational

load, presence of local optima, missing data treatment, model selection criteria, the

need for large sample size, and unclear Type I error rates Wang and Bodner [168].

In this paper, we study the use of a specific class of Markovian Models called the

Hidden Mixture Transition Distribution (HMTD) model Bolano & Berchtold [24] for

clustering purpose. Even if this model-based approach was developed as a tool for the

analysis of continuous trajectories, it also allows for their clustering without a priori

1A slightly di↵erent version of this chapter has been accepted for publication in the post-proceedings

volume of the LaCosa II conference Taushanov and Berchtold [153].

141



142 CHAPTER 6. CLUSTERING OF IAT TRAJECTORIES

knowledge of cluster membership. Moreover, covariates can be easily included in the

model.

The HMTD and GMM clustering approaches are applied and compared on a dataset

of trajectories of the Internet Addiction Test (IAT). Excessive Internet use, especially

among youths, is an emerging health issue in the medical literature, with studies show-

ing contrasting results. Suŕıs, Akre, Piguet, Ambresin, Zimmermann and Berchtold

[150] show a significant association between problematic Internet use and several so-

matic disorders, including back, weight, musculoskeletal, and sleep problems. Moreover,

several chronic conditions are also significantly associated with problematic Internet use.

In contrast, another study finds no significant Internet use e↵ect on the development

of overweight among youths Barrense-Dias, Berchtold, Akre and Suŕıs [7].

While several alternative approaches have been introduced over the years Skarupova,

Olafsson and Blinka [141], the tool most often used to quantify the degree of addiction to

Internet is still the Internet Addiction Test (IAT), developed by Young [176]. However,

since the test’s scale is based on 20 items and is quite long, its psychometric properties

are matters of controversy Faraci, Craparo, Messina and Severino [51] and the test

is not considered suitable for the successive measurement of the same subjects (test-

retest). Its use in longitudinal contexts remains problematic because of the di�culty to

distinguish between the real evolution of subjects and changes due to behavior of the

IAT itself.

To gain information on the behavior of the IAT in longitudinal studies, we need to

compare the typical trajectories of the repeated IAT measurements with other charac-

teristics of the subjects under study. Thus, we first cluster the IAT trajectories into a

finite set of meaningful groups and then compare these groups with the known charac-

teristics of subjects that are either time-invariant or evolve over time. Specifically, the

goals of this study are (1) to separate the Internet addiction trajectories into an optimal

number of meaningful categories using HMTD, (2) to explore how does the introduc-

tion of the covariates influence the previous optimal partition, and (3) to compare the

HMTD clustering with an equivalent GMM clustering in order to gain information on

the respective strengths of both approaches. We hypothesize that (1) the IAT scores

computed for the same person can vary considerably over time, implying that the tra-

jectories are di�cult to classify; (2) a classification using covariates is easier to interpret

than a classification without any additional information on the clustered variable itself;

and (3) the HMTD approach can lead to more sound and easier-to-use solutions as

compared to the solutions obtained using GMM. However, we must stress that it is

impossible to conclude that one method is superior to another, especially using real
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data, without knowing the true cluster membership. So this work must be considered

as a first step in the comparison of HMTD and GMM as clustering tools.

6.2 Data and methods

6.2.1 Data

The data we considered are from ado@Internet.ch Suŕıs JC, Akre, Berchtold, Fleury-

Schubert, Michaud and Zimmermann [149], a longitudinal study on the use of Internet

among youths in the Swiss canton of Vaud (the largest canton in the French-speaking

part of Switzerland). The data were collected five times with six months of interval,

between Spring 2012 (T0, baseline) and Spring 2014 (T4) using an online questionnaire.

The data for the first time were collected from schools during the computerlab periods.

Then, the students who agreed to participate in the study were contacted again by

email from T1 to T4 to answer follow-up questionnaires on their home computer. A

convenience sample of n=185 adolescents who answered all five questionnaires is used

for the present study (67% females; mean age at T0: 14.1 years). For more details on the

overall design of the study and data collection, see Piguet, Berchtold, Zimmermann and

Suŕıs [111], Suŕıs JC, Akre, Berchtold, Fleury-Schubert, Michaud and Zimmermann

[149].

The main outcome is the IAT score measured at each wave for each subject. The IAT

developed by Young [176] and validated in French by Khazaal and colleagues Khazaal

et al. [79] is a scale ranging from 0 to 100, based on the answers to 20 items whose

possible answers range from Never (coded 0) to Always (5). Examples of items are,

How often do you find yourself staying online longer than you intended? and How often

do you fear that life without the Internet would be boring, empty, and joyless?

In addition to the IAT, we also considered several important characteristics of the

subjects, either fixed in time [gender, age at baseline, and education track at baseline

(extended requirements vs. basic requirements)] or evolving over time [emotional well-

being (measured by the WHO-5 index) and Body Mass Index (BMI, computed from

auto-reported measures of height and weight)]. Note that the WHO-5 index was not

evaluated on the third wave of the study, and so for the present paper, we imputed values

as the simple mean between the values of the second and fourth waves. Similarly, we

imputed the BMI for the second wave of the study as the mean between the values of

the first and third waves.
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6.2.2 Clustering using the HMTD model

We used a specific class of Markovian Models, the HMTD model, to cluster the longi-

tudinal sequences of continuous data. This model combines a latent and an observed

level Bolano & Berchtold [24]. The visible level is a Mixture Transition Distribution

(MTD) model that was first introduced by Raftery in 1985 as an approximation of high-

order Markov chains Raftery [119] and then developed by Berchtold [14], Berchtold and

Sackett [18] and Berchtold & Raftery [17]. Here, we used a Gaussian version of the

MTD model, where the mean of the Gaussian distribution is a function of past obser-

vations. Because of the small size of each sequence of the observed outcome (five data

points, from T0 to T4), long dependencies between successive observations could not

be considered, and therefore we fix the dependence order for the mean of the Gaussian

distributions of each component to one:

µ
g,t

= �
g,0 + �

g,1 xt�1

where �
g,0 is the constant for the mean for component g and �

g,1 is the autoregressive

parameter indicating the dependence from the previous observation x
t�1. Similarly the

variance of each component can be written as a function of the past periods variability:

�2
g,t

= ✓
g,0 +

P
S

s=1 ✓g,s x
2
t�s

. However given the small number of time periods in our

dataset, and for the sake of simplicity, we decided to treat the variance as a constant:

�2
g,t

= ✓
g,0.

In addition to the clustering based on the IAT variable only, we performed a second

clustering adding information from five covariates (gender, age at T0, education track

at T0, WHO-5, and BMI). These covariates are introduced as additional terms in the

specification of the mean of each visible component of the model, and the categorical

variables are introduced as dummy variables. We then rewrite the mean of the g-th

component as

µ
g,t

= �
g,0 + �

g,1 xt�1 + �
g,2 Gender(male) + �

g,3 Age

+�
g,4 Education(extended) + �

g,5 WHO � 5 + �
g,6 BMI

with female and basic requirements used as reference modalities for Gender and Edu-

cation, respectively.

In practice, continuous covariates are centered around the sample mean before com-

puting the clustering model in order to allow for a better convergence of the estimation
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algorithm. A comparison of the two specifications of the mean, with and without co-

variates, illustrates whether the inclusion of covariates in the model helps to improve

the clustering process. It must be mentioned that, in addition to these two HMTD

models, many other specifications were tried, following a hierarchical approach Bolano

& Berchtold [24], but none of these alternative specifications seemed to give a more

useful clustering of IAT trajectories.

We used a bootstrap procedure to obtain confidence intervals for each parameter, but

since our goal here was to validate not the initial classification itself, but the parameters

associated with the model describing each visible component of the model, we adopted

the following approach: Instead of performing the bootstrap on the whole original

sample, we divided the original sample into as many groups as can be retained in the

final classification. We then applied a single-component version of the HMTD model

to each sub-sample separately in order to estimate the coe�cients using bootstrap. By

applying the model on the sub-samples separately, instead of on the initial sample, we

avoided the so-called label-switching problem that is very common in latent variable

clustering. The inconvenient of separate bootstrapping is that since we rely on the

validated clustering solution, we ignore the model uncertainty including the weights of

each cluster. We computed the confidence intervals using 1000 bootstrap samples, and

we used the results to evaluate the significance of the estimated parameters.

All computations were done using R, and a specific package should be released soon.

In the meantime, a first version of the R syntaxes is available on:

https://github.com/ztau/5352.

6.2.3 GMM as a gold standard alternative

To evaluate the HMTD approach as a tool for clustering sequences of continuous data,

we need a gold standard alternative. We choose the Growth Mixture Model (GMM)

approach for that purpose, since it is the only true longitudinal clustering tool used in

the social sciences. A description of the GMM is provided in Section 2.3.6.

6.2.4 Statistical analyses

To start with, we used the HMTD model to identify the best clustering of the IAT

dataset without covariates, considering solutions from two to five groups. The best

solution was selected on the basis of the Bayesian Information Criterion (BIC) Raftery

[120]. We then added covariates to this first model and analyzed the two resulting
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models, with and without covariates, particularly focusing on the IAT trajectories that

did change group when covariates were added to the initial model. In order to isolate

the impact of the covariates from any other computational issue or local optimum, we

used the optimal solution obtained without covariates as a starting point for the full

model. Therefore, we observe how this new model escapes the previous optimum.

We then computed the GMM models using the same dataset, and we compared the

classifications obtained with the HMTD and GMM approaches. The usefulness of each

covariate for discriminating between groups was evaluated using either a chi-square test

for categorical covariates, or a single factor ANOVA for continuous ones. Notice that

since it is not easy to compare two solutions with di↵erent number of clusters, we chose

to compute a four-cluster GMM solution with all covariates instead of finding its own

optimal number of clusters.

Our results are presented as figures displaying the IAT trajectories, and as tables

describing the characteristics of subjects classified into groups and giving the HMTD

model parameters.

6.3 Results

We provide here the results of the various clustering performed using the HMTD and

GMM approaches, and we compare the resulting classifications. Notice however that

given the iterative nature of the optimization algorithms, it is never possible to be sure

that the final models are the best possible ones. Therefore, results should never be

overinterpreted.

6.3.1 HMTD clustering

Without covariates, the best model identified by the BIC is a four-component model

(model 1). Figure 6.1 shows the IAT trajectories in each group. We clearly di↵erenti-

ate a group with average volatility and IAT level (group 1), a group with relatively low

scores and variability (group 2), a group with very low variability and a low and con-

stantly diminishing IAT score (group 3), and a group with more complex trajectories

and hence variability (group 4).

The ICL criteria has also been explored for the choice of number of clusters (Table

6.1). For this example (without including any visible or latent-level covariates), the

ICL suggest the choice of three clusters, even though the di↵erence with the two cluster

solution is small. The likelihood increase from two to three clusters is then barely
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Table 6.1: Log-likelihood, entropy, and ICL approximation for each number of clusters

for the IAT dataset

number of clusters 2 3 4 5 6

logL -2610.211 -2597.25 -2587.52 -2571.48 -2565.91

Entropy -30.83412 -50.74 -95.89 -125.71 -149.29

ICL 5260.913 5259.75 5290.25 5292.81 5310.09

enough to overcome the penalty of the increasing entropy. Note that this solution

however, defines two clusters of only 7 and 18 observations.

In conclusion if the choice was based on the ICL criterion, probably a di↵erent and

more parsimonious clustering model would have been chosen in this chapter. However,

the solution suggested by ICL contains clusters of very unequal size: one with almost all

observation and two with very few, which was less interesting in terms of interpretation.

Therefore we stay with the four cluster solution.

When we include the covariates in model 1 (Figure 6.2) and relabel the four groups

of the solution in order to match the groups of model 1, we obtain a similar four-

group structure (model 2). As a comparison of the two figures might show, the most

important di↵erence is with the first two groups: group 2 of model 2 lost its higher-

valued trajectories and focused more on a low IAT-level and stable trajectories. This

change will be explored in more details later.

Table 6.2 provides the parameter estimation for both models. In addition to the

point estimates, we also provide the 95% bootstrap confidence intervals.
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Figure 6.1: IAT trajectories associated with each group in the four-group HMTD solu-

tion without covariates (model 1).
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Figure 6.2: IAT trajectories associated with each group in the four-group HMTD solu-

tion with five covariates (model 2).
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As regards the first model without covariates, the ✓0 parameters giving the variance

of each component of the model confirm the first impression given by Figure 6.1: Group

4 is characterized by a much higher variability than the three other groups, and group

3 has the lowest variance, indicating less variation among the successive observations

of a single individual. Parameters �0 corresponding to the constant in the modeling of

the mean of each component also take expected values, with higher values associated

with groups showing higher average IAT level. Finally, the autoregressive parameter �1

takes a value closer to one for the groups with trajectories showing smoother evolutions

from one wave to the next, that is groups 1 and 3. All parameters of this first model

are significant at the 95% level, as demonstrated by the confidence intervals.

As regards model 2, even if the first three parameters (✓0, �0, and �1) take values

di↵erent from those of model 1, ✓0 and �1 take values in the same range as of model

1. On the other hand, important di↵erences are found for the constant parameter �0,

and this parameter is no more significant in any group. Note that ✓0 and �1 tend to

take smaller values in model 2. This can be interpreted as the first proof of interest

of the covariates included in model 2: the groups are now more homogeneous (lower

intra-group variance) and the explanation of a specific trajectory relies less on the

immediately preceding observation. As regards the covariates, Age is never significant

and could be eventually removed from the model. This could be due to the lack of a real

age di↵erence between participants (from 13 to 15 years old at baseline). Actually this

non-significance is expected because generally in cohort data this di↵erence is chosen

to be small. However, the four other covariates remain significant for at least one of

the groups.

When we consider each component of model 2 separately, the changes occurring in

the trajectories associated with the first component are found related to the emotional

well-being of the concerned adolescents: a higher emotional well-being such as measured

by the WHO-5 index is significantly associated with a lower IAT-level. Males tend to

have a lower IAT level than females, and a higher BMI is associated with higher IAT

level. In group 3, a higher WHO-5 or BMI is associated with reduced IAT level, but

being in the extended requirement school track is associated with a higher IAT level.

Finally, in group 4, a higher WHO-5 or BMI is associated with reduced IAT level, and

males tend to show a much higher IAT level than females.

Table 6.3 provides the main characteristics of the subjects classified into each group.

For time-dependent variables, we considered the average value of each individual. A

comparison is performed for each variable separately to test whether the groups are

significantly di↵erent with regard to the variable. Considering only the two HMTD
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models, we observe that in addition to the expected di↵erences in IAT level, the only

other variable with significantly di↵erent values across groups is the WHO-5 measure

of emotional well-being. For both models, we observe two groups (2 and 3) with lower

average IAT scores. The same two groups also display higher emotional well-being, as

compared to the other groups, confirming previous results Suŕıs, Akre, Piguet, Am-

bresin, Zimmermann and Berchtold [150]. No di↵erences are observed for the other

covariates, even if Gender comes close to significance in model 1. Even if not significant

at the 95% level, probably because of the reduced sample size, we find a gender separa-

tion at the sample level; groups 2 and 4 contain a higher proportion of boys compared to

the other two groups. The education track also shows a di↵erence at the sample level:

the first two groups contain more individuals following the highest education track as

compared to groups 3 and 4. On the other hand, no notable di↵erence is observed

between the groups for Age and BMI, even if BMI, used as a covariate in model 2, is

statistically significant in the modeling of the mean of each component.

6.3.2 Usefulness of the covariates

From the results of the previous section, we find that the inclusion of covariates in

the first classification obtained with the HMTD model helped us better di↵erentiate

the four groups, but without entirely changing their interpretation. We would like

to better understand the changes in trajectory classification that occurred between

these two models. Table 6.4 indicates how many subjects changed groups between the

initial model without covariates and model 2 with covariates. As noted earlier, most

of these changes occurred between groups 1 and 2. In particular, 19 second-group

subjects of model 1 were transferred to the first group in model 2, and the steady

low Internet addiction profile of the second group became even more pronounced, with

the higher Internet addiction subjects joining the first group. However, since some

trajectories simultaneously left group 1 for the three other groups, the average IAT

level of group 1 also decreased. Overall, the inclusion of covariates appears beneficial

for the di↵erentiation of trajectory features among groups.

The 19 individuals who switched from group 2 to group 1 represent the main di↵er-

ence between the two models, with all the other changes concerning at the most seven

subjects. Thus, it is interesting to explore how these individuals di↵ered from those who

remained in the first or second group in both classifications. Table 6.5 summarizes our

findings using t-tests and �2-tests to compare the di↵erent variables. The average IAT

scores are quite di↵erent between the three considered sub-groups, and, as expected,
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Table 6.3: Characteristics of subjects classified into groups for di↵erent clustering. The

p-value gives the result of the test comparing the di↵erent groups for each variable. The

number of sequences classified into each group is provided in brackets after the group

number.

IAT WHO-5 BMI Gender Age at T0 Educ. at T0

mean (sd) mean (sd) mean (sd) % male mean (sd) % extended req.

HMTD model 1

group 1 (46) 30.94 (11.7) 63.43 (15.6) 19.97 (2.35) 24 14.13 (0.499) 80.5

group 2 (56) 20.29 (9.78) 71.01 (15.6) 20.02 (3.30) 45 14.05 (0.585) 67.9

group 3 (50) 13.31 (9.88) 72.28 (13.6) 20.45 (2.57) 24 14.14 (0.670) 64.0

group 4 (33) 34.69 (16.1) 63.49 (16.8) 20.06 (3.03) 39 14.27 (0.452) 60.6

p <0.001 <0.001 0.764 0.055 0.381 0.214

HMTD model 2

group 1 (52) 27.43 (11.32) 67.35 (16.57) 20.12 (2.40) 31 14.19 (0.60) 71.2

group 2 (45) 18.57 (8.41) 70.85 (15.19) 19.96 (3.53) 40 14.02 (0.45) 73.3

group 3 (48) 13.62 (9.97) 70.64 (14.00) 20.46 (2.54) 21 14.10 (0.69) 64.6

group 4 (40) 36.36 (15.62) 63.06 (16.37) 19.96 (2.86) 43 14.22 (0.48) 65.0

p <0.001 0.015 0.741 0.113 0.331 0.746

GMM 2

group 1 (169) 22.08 (13.2) 68.79 (15.84) 20.20 (2.90) 32 14.15 (0.57) 0.68

group 2 (16) 39.90 (14.8) 61.13 (13.93) 19.40 (2.12) 43 14.00 (0.52) 0.75

p <0.001 0.022 0.210 0.496 0.322 0.771

GMM 4

group 1 (76) 13.35 (8.97) 73.32 (14.15) 20.69 (2.75) 32 14.09 (0.61) 0.63

group 2 (31) 38.98 (11.2) 58.48 (16.18) 20.15 (2.40) 29 14.16 (0.52) 0.74

group 3 (75) 26.46 (10.2) 67.09 (15.38) 19.62 (2.98) 33 14.17 (0.55) 0.73

group 4 (3) 54.06 (18,3) 62.40 (9.657) 18.78 (3.30) 100 14 (0) 2/3

p <0.001 <0.001 0.043 0.094 0.802 0.593

GMM 4 cov

group 1 (98) 18.79 (10.6) 69.64 (14.6) 20.06 (2.90) 29 13.91 (0.320) 77.9

group 2 (44) 18.58 (10.5) 68.88 (17.8) 20.85 (2.95) 24 15.16 (0.554) 44.0

group 3 (28) 39.38 (12.9) 64.95 (18.2) 20.14 (2.73) 48 14.24 (0.435) 48.3

group 4 (15) 41.98 (14.8) 60.00 (13.7) 19.36 (2.05) 54 14.00 (0.408) 76.9

p <0.001 0.032 0.321 0.058 <0.001 <0.001
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Table 6.4: Number of IAT trajectories associated with each group in HMTD models 1

(without covariates, rows) and 2 (including covariates, columns).

Model 2

Model 1 group 1 group 2 group 3 group 4

group 1 31 6 2 7

group 2 19 34 1 2

group 3 2 3 45 0

group 4 0 2 0 31

the “moving” sub-group shows an Internet dependence level between the two “stable”

sub-groups. Thus, the moving individuals were among the most Internet-problematic

members of the full second group of model 1, and even if the average IAT score is not

the only indicator of group a�liation, a visualization of the trajectories would confirm

the ambiguous nature of these individuals. The moving subgroup is also significantly

di↵erent from the group of individual staying in group 1 as regards the WHO-5 index

of emotional well-being and the gender ratio, with a higher emotional well-being and

higher proportion of males among the moving subgroup. No other significant di↵erences

are observed.

Table 6.5: The characteristics of 19 subjects moving from group 2 to group 1 (group

2!1) as compared to subjects staying in the same group (either 1 or 2) in both HMTD

classifications. The means (numerical variables) or proportions (categorical variables)

are provided, and di↵erences with the subjects remaining in the same group (either 1 or

2) are assessed using t-tests and �2-tests with continuity correction. ns: non-significant,

* p <0.05, ** p < 0.01, *** p < 0.001.

IAT WHO-5 BMI

group 2!1 22.76 72.93 19.69

vs group 1 31.26 ** 62.77 ** 20.41 ns

vs group 2 18.72 ns 71.42 ns 20.30 ns

Sex (% male) Age Education

group 2!1 57.9 14.26 52.6

vs group 1 9.7 *** 14.16 ns 80.6 ns

vs group 2 38.2 ns 13.97 ns 73.5 ns
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6.3.3 GMM clustering

Without covariates, the best GMM solution in terms of BIC is a two-group solution

(Figure 6.3), but given the high di↵erence in number of trajectories associated to each

group (169 vs 16), this solution in not really interpretable and hence less useful than

the four-group solution given by the HMTD approach. Therefore, we also estimated a

four-group GMM (Figure 6.4).

In the two-group solution, a large majority of trajectories are associated with group

1, and only 16 sequences are associated with group 2. The average IAT level is higher

in group 2, but both groups exhibit an important variability, as indicated in Table

6.3. Moreover, in terms of interpretation, one can only say that IAT sequences with

a clear increasing trend are separated from the other sequences. In the four-group

solution, even if the number of groups is the same as in the HMTD models, there is

no a priori correspondence between the HMTD and GMM groups. In the four-group

GMM solution, the number of subjects per group shows much more variability than

that observed with the HMTD group, with the majority of individuals classified in

groups 1 or 3, and only three subjects in group 4.

Finally, as with the HMTD approach, we enhanced the four-group solution by adding

covariates. Four of the five covariates used in the HMTD approach appeared useful in

the GMM solution as well. Figure 6.5 displays the resulting groups obtained after

adding Gender and Education as predictors for group membership (multinomial re-

gression on c
i

), and WHO5 and BMI as fixed e↵ect. On the other hand, Age was

not included in the final model because the estimation process would then lead to a

one-group solution. Another important issue with the GMM approach is the results’

sensitivity to the order in which the covariates are included in the model. Various

covariate combinations were tested before we chose the above-mentioned combination

as the best one in terms of clustering results. For instance, classmb = gender + ed-

ucation track does not give the same results as classmb = education track + gender.

This surprising result may be due to a bug in the lcmm R package, but in our opinion

the reason could rather be the optimization procedure. It is well known that EM-type

algorithms converge to the nearest local optimum, and that this optimum is not always

the global one. Therefore, the solution depends on the initial values of the parameters,

especially when the solution space is complex, which is the case here.

As Figure 6.5 shows, the number of trajectories associated with each group is quite

variable, with the large majority assigned to group 1. The first two groups are charac-

terized by low variability and an overall low IAT level. The trajectories in these two



6.3. RESULTS 155

0 1 2 3 4

0
20

40
60

80
10
0

Group 1

Wave

IA
Ts
co
re

0 1 2 3 4

0
20

40
60

80
10
0

Group 2

Wave

IA
Ts
co
re

Figure 6.3: IAT sequences associated with each group in the two-group GMM solution

without covariates.
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Figure 6.4: IAT sequences associated with each group in the four-group GMM solution

without covariates.
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Figure 6.5: IAT sequences associated with each group in the four-group GMM solution

with four covariates.
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groups seem very similar, but since this four-group solution might be suboptimal and

is computed only for the purpose of comparison with HMTD models 1 and 2, a three-

group solution could merge these two groups into one group. The last two groups have

a higher average IAT level, both exhibiting a general linear trend over time, decreasing

in group 3 and increasing in group 4.

Table 6.3 gives the characteristics of individuals classified in each group of the GMM

models and compares the groups for each variable. Note that given the large di↵erences

in group size, the test results for the GMM models should be interpreted with caution.

As observed earlier in the HMTD case, significant di↵erences exist between groups for

both the IAT and WHO-5 variables. A significant di↵erence exists also for BMI in the

four-group GMM model without covariates. More interestingly, the Age and Education

track at baseline also show significantly di↵erent values across groups, with one of the

variables (Education track) being included in the model as covariable, but not the other.

This di↵erence between the HMTD and GMM clustering points to the fact that the

solutions provided by both approaches are not identical or interchangeable, and that

the two models used information in a di↵erent manner to provide usable data sequence

clusterings.

6.4 Comparison of HMTD and GMM

When used for clustering purposes, the HMTD and GMM models share some charac-

teristics: They both represent a kind of mixture model, they can include covariates of

any type at the visible level, and they can also include covariates at the latent level and

use them to estimate the initial probability of each cluster. However, HMTD and GMM

also have several di↵erences. First of all, since GMM is a mixture of mixed models, it

is able to accept both fixed and random e↵ects. Another di↵erence is the possibility of

HMTD to include an autoregressive specification for the variance and thus to allow for

the clustering of longitudinal sequences whose variance evolves in time. For instance,

sequences becoming more instable over time can more easily be grouped together. How-

ever, to exploit this feature, it is necessary to work with long data sequences, what was

not the case here with the IAT example.

Another feature of HMTD that is worth stressing is the possibility of using it to

perform di↵erent kind of clustering Bolano & Berchtold [24]. The transition between

components is driven by the hidden transition matrix A. In this paper, A was con-

strained to be a diagonal identity matrix, implying that each sequence was assigned to

one and only one group, and all sequences assigned to the same group were described
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by the same visible model. However, there are several alternatives. For instance, dif-

ferent latent states may be required to alternate over time in order to find the optimal

modeling of a given sequence. If A is constrained to have the following structure:

A =

0

BBB@

a1 1� a1 0 0

a2 1� a2 0 0

0 0 a3 1� a3
0 0 a4 1� a4

1

CCCA

where a1, a2, a3 and a4 are transition probabilities, then one performs at the same time

a modeling and a clustering of the data sequences. The first two states are used to

model the first cluster, and states 3 and 4 are used to model the second cluster. In

other words, data sequences are clustered into two groups, but inside each group there

are two di↵erent visible models allowing for a better representation of these sequences

when their behavior evolves over time.

Another specification of A would allow some sequences to remain always in the same

cluster, whereas other ones could transit at some point in time from the first to the

second cluster:

A =

0

BBB@

a1 1� a1 0 0

a21 a22 1� a21 � a22 0

0 0 a3 1� a3
0 0 a4 1� a4

1

CCCA

6.5 Conclusion

Hidden Markovian models are known to be valuable tools to analyze the dynamics in

longitudinal continuous data and in life course data (eg. Helske S, Helske J and Eerola

[63]). The present study demonstrates that the sequences of continuous longitudinal

data can also be classified into as many groups as required, and that the HMTD model

can be used as a valid alternative to GMM. The inclusion of covariates has beneficial

e↵ects on clustering, because the resulting groups have lower intra-variability compared

to the solution without covariates.

In a comparative study involving the use of GMM for clustering, our first finding

is that the HMTD approach is a good alternative to GMM, because in terms of inter-

pretability its results are at least as interesting as the results given by GMM. However,

on the basis of just one practical example, we obviously cannot conclude that one ap-

proach is better than the other; moreover, this is not the purpose of this study. What we
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can conclude is that the HMTD approach is not only theoretically, but also practically

useful to classify sequences of continuous data in mutually excluding groups.

In the literature, excessive Internet use has been found to be highly related to several

somatic conditions, sleep disturbance in particular. However, in this paper, our main

objective is not to explain IAT trajectories, but to find ways to classify such trajectories

into meaningful groups. Moreover, there is still an ongoing debate on the direction of

the relationship between Internet use and sleep disturbance, not to speak of causality.

Therefore, we chose not to consider sleep disturbance in this analysis, but to concentrate

on other covariates that are more neutral to IAT scores. Nevertheless, even with this

restriction, the results obtained with the HMTD model are highly significant and allow

for a sound interpretation. The four resulting groups di↵er in terms of average value

and variability. The relationship observed between IAT and the emotional well-being

of subjects suggests that both concepts are linked and that a higher risk of Internet

addiction is related to poorer emotional well-being. Gender is also a discriminating

factor between groups, with a lower proportion of males in the first and third groups,

but, given the small sample size, the di↵erences are not significant at the population

level.

The main strength of this study is the demonstration of the usefulness of the HMTD

approach as a valuable alternative to the GMM approach for clustering continuous

data sequences. Researchers would be advised to consider both approaches to take full

advantage of the information in their data. However, some weaknesses of this study are

to be mentioned. At the theoretical level, we include covariates in the HMTD model

only at the visible level, but it is also possible to include them at the latent level as well

in order to enhance the prior probabilities of each cluster. As regards the application

of the model to IAT trajectories, we used a rather small convenience sample; this is

not representative of the population of adolescents living in the canton of Vaud. More

analyses need to be conducted with larger databases to define a real typology of IAT

trajectories.

Measurement invariance of the IAT score One may be interested in the measure-

ment invariance as an important indicator of the quality of a construct. It represents

the possibility of a score to measure the same concepts trough di↵erent groups. Taking

an example with the IAT score, we may be interested in to what extent all items in

the score are equally relevant or have similar impact on the addiction to internet, when

comparing di↵erent groups or di↵erent measurement times and whether the obtained

scores are comparable among the periods.
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Invariance is present if the following equality is respected:

f(Y | s, z) = f(Y | s)

meaning that the group membership indicators z do not influence the observed IAT

scores Y given the scores s.

This concept is often tested using factor analysis. In a matrix form the factor

analysis equation at some measure time T is:

XT = ↵T + ⇤TF T + ✏T

where, in our case XT has dimensions [20⇥ 161] and denotes a matrix of the 20 items

composing the tested measure as columns, ↵ is the vector of intercepts for each item,

⇤T [20 ⇥ f ] and F T [f ⇥ 161] are matrices of factor loadings and factors, ✏T are the

error terms and f is the number of factors.

Note that E(F ) = 0 and Cov(F ) = I which indicates independence between the

factors.

The covariance structure is denoted:

⌃T = Cov(XT ) = Cov(↵T + ⇤TF T + ✏T ) = ⇤T I⇤T

0
+ cov(✏T ) = ⇤T⇤T

0
+⇥T

Putnick and Bornstein [115] (2016) summarize the measurement invariance in four

most important steps. The first one is testing the equivalence of the model form, which

tests if the factor loadings have the same structure across the compared groups. In this

example we are interested if each item ”loads” on the same factor (component) in every

group. If one of the items is related to another or to more than one factor, the construct

is not invariant. Testing the ”metric” invariance consist in assessing the di↵erence in

the factor loadings, i.e. test if the items influence the constructs similarly. The two final

steps consist in measuring the di↵erence of the item intercepts and those of the item’s

residuals or unique variances or means. At each step the model is estimated with

constrained parameters (factor loadings for instance) and compared to the previous

unconstrained model.

In the majority of the papers the measurement invariance is tested between di↵erent

groups or populations. The Internet Addiction Test has also been subject of various

measurement invariance studies. For instance Jelenchick, Becker and Moreno [70] found

two components reflecting dependent and excessive internet use for US college students.

Lai et al. [83] compared IAT invariance between Hong Kong, Japanese and Malaysian

adolescents and showed that the score is stable and reliable. However, in most papers
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IAT was observed at a single point in time, whereas in our case we have longitudinal

data and therefore one might be interested in whether IAT remains invariant trough

the repeated measurements.

Ideally we would also like to explore the measurement invariance between the dif-

ferent clusters in order to be able to compare them. However, the limited size of

our sample (161 individuals in total) does not allow us to obtain reliable results from

Principal Component or Confirmatory Factor Analysis. Instead we can perform two

analyses.

At first, in order to better understand the underlying structure of the IAT accros

time, we can estimate the true number of principal components within the data by

performing a bootstrap sampling. For each sample the number of components with

eigenvalues>1 is observed. Because we dispose with longitudinal data, we proceed in

two di↵erent ways: initially only the first wave is considered (161 observations) and

then all observations from each wave are included together (925 observations from 161

individuals). The problem with the latter approach is the lack of independence between

observations because every individual is represented 5 times, whereas in the former case

only t=1 is included.

Table 6.6: Results of PCA from 5000 bootstrap iterations: average eigenvalues for the

first 9 components and distribution of the number of components

Panel A: Average eigenvalues for the first components

Mean of first 9 eigenvalues 1 2 3 4 5 6 7 8 9

Only first wave (161 obs.) 6.47 2.00 1.44 1.23 1.09 0.97 0.88 0.80 0.72

All 5 waves (925 obs.) 7.12 1.98 1.19 1.03 0.90 0.83 0.77 0.72 0.67

Panel B: Distribution of the number of eigenvalues higher than 1

Number of eigenvalues >1 3 4 5 6 7 8 total average

Only first wave (161 obs.) 3 394 2912 1615 75 1 5000 5.27

All 5 waves (925 obs.) 1292 3615 93 5000 3.76

The results from 5000 bootstrap samples are presented in Table 6.6: the average

eigenvalues of the first PCA components are computed in Panel A and the distribution

of the number of eigenvalues >1 is displayed in Panel B. The latter was greater than one
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in all iterations. In the first wave (t1) samples, their average is significantly smaller than

in the complete-data samples (3.76 vs 5.27). These results hint at lack of invariance of

the IAT score over time for our data.

A second analysis was performed using a factor analysis procedure implemented in

the semTools package in R to test all relevant dimensions of measurement invariance

used in the literature (see the procedure described by Vandenberg and Lance [160]).

A longitudinal measurement invariance across the 5 waves was tested. In this test we

explore the invariance across time periods (instead of clusters). Each of the four tested

models includes an additional constraint and is compared to the less restrictive model.

If significant decrease of its quality (fit) is detected, the constraint is not respected and

therefore the corresponding type of invariance is not respected.

From the semTools package we have the following hypotheses:

Model 1: ”configural” invariance. The same factor structure is imposed on all

measurements.

Model 2: ”weak” (metric) invariance. The factor loadings are constrained to be

equal across measurements. (⇤
t1 = ⇤t2 = ⇤t3 = ⇤t4)

Model 3: ”strong” (scalar) invariance. The factor loadings and intercepts are con-

strained to be equal across measurements (↵
t1 = ↵

t2 = ↵
t3 = ↵

t4)

Model 4: The factor loadings, intercepts and factor means are constrained to be

equal across measurements.

From Table 6.7 2, we can conclude that fixing the factor loadings across units does

not seem to deteriorate the model fit considerably. However, the means and the inter-

cepts appear to be di↵erent and therefore not all dimensions of measurement invariance

are respected.

As expected the package does not allow us to test the measurement invariance also

between the clusters that we obtained previously and indicates an error message because

of the small group size.

One possible reason for the non-invariance is that the IAT questionnaire may be too

long especially for young adolescents. Another hypothesis is that the 20 IAT-composing

questions could be found rather complex and repetitive, which may sometimes lead to

random answers from the participants. At the end, the presence of multiple underlying

factors within the items of the IAT score, shown by the first analysis, adds complexity

to the clustering of the trajectories and a↵ects the obtained results.

Overall, in spite of some shortcomings, the HMTD model can be considered as a

2RMSEA - root mean squared error of approximation; CFI - comparative fit index
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Table 6.7: Results of longitudinal measurement invariance tests

Di↵erences between models

Df AIC BIC Chisq Chisq di↵ Df di↵ Pr(>Chisq)

configural 4820 50585 51648 10687

loadings 4896 50523 51341 10776 89.72 76 0.135

thresholds (intercepts) 4972 50581 51154 10986 210.02 76 1.7e-14 ***

means 4976 50618 51178 11032 45.22 4 3.5e-09 ***

Measures of fit for every model

Fit measures: cfi rmsea cfi.delta rmsea.delta

configural 0.574 0.081 NA NA

loadings 0.573 0.081 0.001 0.001

thresholds (intercepts) 0.563 0.081 0.010 0.000

means 0.560 0.081 0.003 0.000

complete framework for the analysis of continuous data sequences. It is an explanatory

tool as well as a clustering tool, and by adding covariates, constraints on the transition

matrix, and autoregressive modeling of the mean and variance of each component, the

model goes well beyond the traditional Markovian models such as homogeneous Markov

chains or hidden Markov models.





Chapter 7

Conclusion and further researches

The main contributions of this thesis are related to the estimation procedure for the

HMTD model, the inclusion of latent-level covariates of any type that reestimate di-

rectly the initial probabilities, the general procedure for clustering together with the

proposed bootstrap procedures for the parameter inference, and finally the applications

to the clustering of sequences.

Several points need to be mentioned to resume the utility of this thesis. A discus-

sion on the versatility of the model is also important to summarise its possible future

developments.

7.1 Latent and visible covariates

The inclusion of latent and visible covariates simultaneously appear to be a useful

extension that enhances the results of the model, as seen in the examples. Particularly

for clustering purposes with a diagonal matrix A, the influence of the latent covariates

on the initial probabilities ⇡ appears to provide interpretable results.

Covariates on both levels have already been included in the model (see Berchtold

[15]). In this thesis however, the latent covariates have a di↵erent impact on the hidden

level. Instead of influencing the latent transition matrix A, they rather help us to

estimate the initial probability matrix ⇡. Two main reasons argument this modification.

First, when clustering the transition matrix is fixed to its diagonal form and therefore it

makes no sense re-estimate it. This makes the latent level covariates inapplicable when

clustering. Secondly, this modification simplifies the model estimation. Furthermore, it

allows us to use a logistic regression which accepts all types of covariates: categorical,

discrete or continuous. The longitudinal covariates however can only be applied to the

165
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visible level.

7.2 Estimation

While the hidden mixture transition distribution (HMTD) model is a powerful frame-

work for the description, analysis, and classification of longitudinal sequences of contin-

uous data, it is notoriously di�cult to estimate. One of the reasons is the complexity of

its solution space, but the biggest issue is the di�culty to derive the Likelihood function

when the standard deviation of the components is not constant. Even though by fixing

the model variance, one could obtain exact solutions, our aim is to provide an estima-

tion procedure that is as general as possible, and adaptable to all specifications of the

model, no matter if we attempt to model sequences (free form of the transition matrix

A), cluster them (diagonal transition matrix indicating mixture model), or combine

both (constrained A).

In chapter 3 we briefly described and discussed the main tools that we used in the

estimation of HMTD, as well as some alternatives.

Then we explored how a new heuristic, specifically developed for the HMTD, per-

forms compared to di↵erent popular optimization algorithms within the M-step of a

GEM algorithm (Taushanov and Berchtold [152]). This specific heuristic can be classi-

fied as a hill-climbing method, and di↵erent variants are proposed, including a jittering

procedure to escape local maxima and measures to speed up the convergence.

Di↵erent popular approaches were used for comparison, including PSO, SA, GA,

NM, L-BFGS-B, and DE. The same HMTD model was optimized on di↵erent datasets

and the results were compared in terms of fit to the data and estimated parameters.

Even if the complexity of the problem implies that no one algorithm can be considered as

an overall best, our heuristic performed well in all situations, leading to useful solutions

in terms of both fit and interpretability.

The principles presented in this chapter can be easily applied to the optimization

of other statistical models with complex solution spaces.

The estimation procedure using a GEM algorithm is intended to be as general as

possible and to apply to all possible specifications of the HMTD model. The choice

of the fastest maximization algorithm in the M-step is a priority. However it is very

important to obtain only plausible solutions that respect some floating constraints.

The latter are not strict constraints, but rather artificial limits of the solution space

that could be broadened when a high likelihood region is found in proximity of those

constraints, that is when the optimization algorithm approaches the limits. The ad-
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vantages are the introduction of a smaller solution space that is easier to explore, but

also that this initial space does not exclude the favorable regions that are left ouside

of it. Such floating constraints may be especially useful when an expert has a rough

intuition about the solution space for a problem, but we do not want to exclude the

possibility taht it may prove wrong. Still this intuition may be a good starting point

for the initial solution in a very broad solution space.

7.3 Clustering and inference procedure

When a mixture model is used, either to explain a dataset or to perform a clustering of

the data, one often has to choose between Bayesian or frequentist model estimation. We

briefly reviewed the major issues related to both estimation approaches, and mention

some of the existing solutions. In the frequentist case, the first step consists generally

in finding an optimal solution using an EM-type algorithm as optimization procedure.

The typical approach is to evaluate di↵erent model solutions, and to keep the one that

provides the best fit in terms of BIC. Then, in order to assess the significance of the

parameters of this optimal solution, a standard bootstrap procedure is applied using

the full original sample and a confidence interval is computed. The optimal model

specification with multiple components (clusters) is computed at each iteration. That

leads to solutions with di↵erent degrees of similarity with the optimal solution and the

well-known label-switching problem may occur.

Two alternative procedures were proposed in this thesis. They rely (to a di↵erent

extend) on the initial best solution, and therefore we discuss that the BIC criterion

alone is not su�cient, and this solution must be also validated in several ways before it

is accepted. We discussed di↵erent criteria and methods to approve a solution before

relying on it for the two proposed procedures. The first procedure to estimate the

parameters’ confidence intervals consists in applying separate bootstraps on each sub-

sample defined by the partition of the solution that was approved as optimal beforehand.

In this case, a model with one single component is estimated on each bootstrap iteration

and for each cluster separately. This method also provides a confidence interval for

each parameter and most importantly, it avoids the label-switching problem. Another

alternative includes full-sample bootstrap, but with re-sampling proportional to each

class of the validated solution, i.e. stratified sampling where the strata are the clusters

of the accepted solution. Then the full model is applied to each sub-sample. The pros

and cons of each approach have been described with real-world data examples. The

importance of the initial solution in these procedures requires a discussion on clustering
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choice and validation.

As discussed, validation can have several di↵erent dimensions. One can look at

the optimality of the solutions in terms of model fitting, using information criteria for

instance (AIC, BIC). This indicates us the model parameters that adapt best the model

assumptions to the data. Another possibility is to question the stability of a candidate

solution and compare it to another concurrent solution. Di↵erent external or internal

indices and various methods have been listed to do this, and some remarks were made.

Internal indices are useful to check the coherence of the (mainly continuous) transversal

data to the clustering solution. However, in longitudinal data, internal indices are

di�cult to apply because of the time variation of the data. Even though one does

not dispose with a true clustering, we showed that one can compare modified solutions

obtained with bootstrap resampling with the original candidate solution to measure its

stability.

Despite all these validation possibilities, the most important property of an accept-

able solution is its interpretability. The solution must be interpretable by the researcher

using his knowledge of the data. However, it is important that this knowledge does not

introduce the bias of the researcher’s expectations on the results. Therefore the other

validation methods can be useful.

An illustration of the clustering and parameter inference is provided using the real-

life example of somatic troubles data. A final solution of five clusters was presented

and interpreted.

7.4 HMTD as a versatile clustering tool

In summary, the HMTD model is proven to be a very useful tool not only for modelling

continuous sequences, but also for clustering. As explained above, among the main

strengths of this model is the possibility of flexible clustering, that allows the subjects

to be assigned to clusters in a less strict way. They may transit between clusters or

be part of more than one cluster in several di↵erent manners. A transition may occur

or not depending on the specification of the model. Furthermore, more than one state

may be used inside the same cluster, allowing to perform simultaneously modelling and

clustering. The multitude of specifications of the latent transition matrix adds to the

flexibility of the HMTD and make this model more attractive for social sciences, but

also for diverse other domains.

Furthermore the addition of covariates on both hidden and visible levels have been

shown to additionally enhance the results of the model. In chapter 5, the use of this
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model in clustering problems and the importance of the inclusion of covariates, have

been illustrated in the example of internet addiction test sequences among adolescents.

Besides providing a solution for these data, we also explored how the inclusion of

covariates improved the previously obtained solution. In this chapter, we also provided a

small overview of the advantages of HMTD and we also compared it with its alternative,

the Growth Mixture Model. The strengths of both approaches have been summarised,

and we concluded that both of them can be useful in longitudinal data clustering.

7.5 Coding particularities and R package

The largest amount of time of my thesis was dedicated to the implementation of all

the estimation functions of the model in R. Therefore it is important to briefly discuss

some particularities of the current model implementation and developments.

The implementation of the GEM algorithm in its current form, including the de-

velopment of its new optimization function, was among the major challenges in the R

implementation. All other functions such as the Forward-Backward, Viterbi and other

algorithms have also been implemented in di↵erent R functions. Another major di�-

culty in the coding was the inclusion of the covariates on latent and visible level. For

both cases, the model had to be adapted to continuous, discrete and nominal type of

covariates in order to respond to the various needs in social sciences. For the visible

covariates, time varying covariates were also included, which is useful when dealing

with longitudinal data. A major concern was to adapt the model to all the di↵erent

specifications of the latent and visible level such as the number of lags for the mean and

variance, various dimensions of the inputs and the covariates and di↵erent treatment

depending on the type and level of covariates, the transition and the initial probability

matrix. The nature of the outputs is also considered, aiming to provide comprehensible

results of the model. They are released as an S4 class object with multiple slots. Several

likelihood optimization methods can still be chosen depending on the users’ preference.

It is also possible to apply the model on data with di↵erent sequence lengths, provided

that the possible covariates have the same length. Finally the computation time has

been an important issue especially considering the nature of the likelihood optimization

and the fact the R is a rather high-level programming language (which means that it

is considerably slower, in computational time, than other languages such as C or even

Matlab for instance).

It is important to mention the possibility to include initial values for the visible-level

parameters. These values are important if the user has an insight of what the possible
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clusters (or at least the features of the data) can be. For instance the presence and the

order of auto-regressive part of the data, the positive or negative influence of the visible

covariates on the di↵erent groups (mostly men or women in a given class for example)

or simply the number of groups. These initial values are important because they can

hint at the possible region of the solution space that needs more attention, which could

significantly reduce the computational time and result in more optimal final solution.

All the described features will be regrouped in an R package that will be as user

friendly as possible. This package will propose all the possible tuning that the user

requires, but also include default values for non-specialists in latent Markovian mod-

elling.

7.6 Further developments

The implementation of an universal R package able to treat and cluster all kind of

longitudinal data using any specification of the HMTDmodel (including HMM, DCMM,

MTD, Mixture models etc.) will be a very useful tool. As this thesis has shown, HMTD

may be a very good alternative to GMM and the other clustering methods. The package

for continuous data will be released soon.

On the basis of preliminary trials (that are not included in this thesis), the HMTD

model seems to copes well with discrete data too. However, it would be interesting

to compare more extensively the performance of the HMTD with DCMM (R package

MARCH) when clustering discrete data. Even though DCMM is a model that is specif-

ically designed for discrete data, chances are that HMTD could be as good as it for this

type of data, because many discrete distributions can be approximated by continuous

ones.

The estimation procedure remains demanding in terms of computational time. Ac-

celerating the convergence of the model in its full form could open new possibilities for

treating larger datasets with higher number of covariates.

Another interesting point is the further study of the di↵erent flexible clustering

possibilities, as well as their application using latent level covariates together with the

visible ones. The combination of simultaneous clustering and modelling may be very

attractive for many social studies involving di↵erent life course trajectories as discussed

before. The possibility to identify general groups of persons that evolve di↵erently

by simultaneously estimating and modelling di↵erently their latent trajectories, may

represent an innovative and useful tool in various domains.

Finally, it would be interesting to see how the HMTD model performs in various



7.6. FURTHER DEVELOPMENTS 171

other fields and for di↵erent purposes. An interesting application may be to identify

sequences whose distribution may not be appropriate according to the nature of the

phenomenon of interest. As a small illustration in social sciences, we can imagine a

longitudinal study that concerns a sensible subject to which the respondents may be

afraid to answer and prefer to conform to the norm. In this case, one cluster of the model

may capture the trajectories whose auto-dependence structure deviates from the others

(randomly or incorrectly answered questions). In other fields, one may similarly identify

errors due to the person in charge of collecting survey data, or a faulty measurement

tool for instance. Besides ordinary clustering, these are only a few of the many possible

applications of the HMTD model.
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AIC Akaike Information Criterion. 108

BIC Bayesian Information Criterion. 108

CI Confidence Interval. 97

DE Di↵erential Evolution. 61

EM Expectation-Maximization algorithm. 41

GA Genetic Algorithm. 60

GEM Generalized Expectation-Maximization algorithm. 46

GMM Gaussian Mixture Models. 9

GMM Growth Mixture Models. 34

HMM Hidden Markov Model. 13

HMTD Hidden Mixture Transition Distributions. 15

ICL Integrated Complete Likelihood. 109

MLE Maximum Likelihood Estimate. 97

MTD Mixture Transition Distributions. 9

NM Nelder-Mead optimisation. 61

PSO Particle Swarm Optimization. 60

SA Simulated Annealing. 59
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