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Environmental connectivity controls diversity in soil
microbial communities

Manupriyam Dubey 1 Noushin Hadadi® ', Serge Pelet 1 Nicolas Carraro® !, David R. Johnson® 2 &

Jan R. van der Meer® '™

Interspecific interactions are thought to govern the stability and functioning of microbial
communities, but the influence of the spatial environment and its structural connectivity on
the potential of such interactions to unfold remain largely unknown. Here we studied the
effects on community growth and microbial diversity as a function of environmental con-
nectivity, where we define environmental connectivity as the degree of habitat fragmentation
preventing microbial cells from living together. We quantitatively compared growth of a
naturally-derived high microbial diversity community from soil in a completely mixed liquid
suspension (high connectivity) to growth in a massively fragmented and poorly connected
environment (low connectivity). The low connectivity environment consisted of
homogenously-sized miniature agarose beads containing random single or paired founder
cells. We found that overall community growth was the same in both environments, but the
low connectivity environment dramatically reduced global community-level diversity com-
pared to the high connectivity environment. Experimental observations were supported by
community growth modeling. The model predicts a loss of diversity in the low connectivity
environment as a result of negative interspecific interactions becoming more dominant at
small founder species numbers. Counterintuitively for the low connectivity environment,
growth of isolated single genotypes was less productive than that of random founder gen-
otype cell pairs, suggesting that the community as a whole profited from emerging positive
interspecific interactions. Our work demonstrates the importance of environmental con-
nectivity for growth of natural soil microbial communities, which aids future efforts to
intervene in or restore community composition to achieve engineering and biotechnological
objectives.
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association with hosts are exemplified by complex and

high-density interspecific interactions, being composed of
dozens (e.g., certain insect hosts)! up to many thousands (e.g.,
soils?) of individual genotypes that live within short distances
from each other in suspension® or on surfaces (um to mm
scale)*®. Understanding the general principles governing the
formation, structure and functioning of microbial communities is
one of the major challenges in microbial ecology, yet our
understanding remains largely fragmentary®=°. It is generally
assumed that interspecific interactions shape the community’s
functioning and stability within the available nutrient
context!®!1 and physico-chemical boundary conditions of the
system or the host!?~14 However, one would expect that the
extent to which interspecific interactions can unfold is dependent
on the spatial structure of the microbial living environment!?, the
distance between cells!® and its degree of connectivity (Fig. 1a).
We postulate here that environmental connectivity is an impor-
tant yet poorly understood driver for microbial diversity.

To understand how environmental connectivity may influence
microbial growth and diversity, consider, for example, an isolated
environment that can physically hold only a few cells, such as a
water-filled capillary in the soil (Fig. la). Because of its physical
isolation, there is low or zero connectivity in terms of cell move-
ment or nutrient exchange!3, and the few occurring cells may
multiply depending on the local substrate availability (Fig. 1a). If the
cells belong to a single genotype, any growth will be solely deter-
mined by their inherent physiological capacities. However, as soon
as two different genotypes are present, interspecific interactions
begin to play a rolel®, potentially influencing the growth of each
partner (both positively or negatively). The more genotypes that are
contained, the higher the number of potential interspecific inter-
actions, but the less likely that any single interaction may dominate
the formation and functioning of the microcommunity of cells
(Fig. 1a). The reason for this may lie in non-transitiveness, such as
the rock-paper-scissors effect (ie., each genotype “dominates”, at
least to some extent, another genotype), as was shown recently in a
synthetic bacterial species mixture!”.

The connectivity of any environment is thus expected to
impose a range of challenges to, limitations on and selection
pressures on microbial growth. A community in an environment
disconnected into small isolated spaces, where each space can
only hold a few cells and genotypes, will be restricted to isolated
growth dominated by lower order interspecific interactions. The
same community in a connected spatial environment can develop
higher order interspecific interactions because more genotypes
are likely to be in contact, but their individual effects are subdued.
Consequently, environmental connectivity should affect micro-
biome structure and microbial diversity, but this has yet to be
systematically studied. Our main aim, therefore, was to under-
stand how and to what extent environmental connectivity influ-
ences the growth and diversity of soil microbial communities.
Our hypothesis, based on the reasoning above, was that low
connected environments would be unfavorable for community
growth and diversity. This would occur if, on average, the founder
genotypes are few and predominantly negatively affect each other.
In comparison, growth environments with high connectivity
would be favorable for the proliferation of many species simul-
taneously as a consequence of non-transitive dynamics.

In order to study the effect of environmental connectivity, we
designed an experimental system to follow and quantitatively
compare the growth of a highly diverse microbial community
derived from a natural soil in high and low connectivity envir-
onments. For the high connectivity environment, we incubated
the starting community in a completely mixed and suspended
environment. For the low connectivity environment, we separated

N atural “free-living” microbial communities and those in

individuals from the same community into different homo-
genously sized agarose microbeads, where each bead initially
contained 1-2 founder cells and beads were incubated en masse.
Embedding cells in agarose microbeads restricts cell movement
but not substrate diffusion. We further expected that interspecific
interactions mediated by e.g., diffusible molecules primarily affect
paired species at short distances, and thus occurs within but not
between individual beads!®. We measured global growth rates
and deduced diversity changes from 16S rRNA gene amplicon
sequencing. We quantified individual and paired cell growth in
beads from microcolony size estimations using time series
microscope imaging, which were further used to deduce the
magnitude (e.g., strong or weak) and global nature (e.g., positive
or negative) of interspecific interactions within the community.
To gain more insight into the role of environmental connectivity
on community productivity and diversity, we developed a com-
putational model that simulates the growth of individual geno-
types in communities for high and low connectivity environments
using Monod-type substrate kinetics, while accounting for the
initial amount of viable cells and globally attributed interspecific
interactions. Our results, supported by community growth
simulations, indicate that a pool of fragmented and homo-
genously sized low connectivity environments disfavors main-
tenance of microbial diversity compared to high connectivity
environments. Despite observing the expected increased dom-
inance of negative interspecific interactions, randomized part-
nerships of soil bacteria were beneficial for growth of the
community across all beads when compared to growth of single
founder cells inside individual beads. This suggests that soil
communities may have evolved to profit from random partner-
ships in fragmented and highly structured environments.

Results

Experimental design of low and high environmental con-
nectivity environments. To experimentally quantify the effects of
environmental connectivity on growth and diversity, we designed
a system to produce multitudes of individual low-connectivity
environments. Each individual environment contains 1-2 foun-
der cells, while the system as a whole (i.e., across all the individual
low connectivity environments) retains high microbial diversity.
We compared low connectivity environment to a high-
connectivity environment that contains the same overall high
microbial diversity and number of founder cells (Fig. 1). We used
soil to obtain a microbial community with high diversity, as soil
microbial communities contain among the highest levels of
microbial species richness on a per gram basis of all
microbiomes®!81°. To avoid culturing bias, we washed the cells
freshly from the same soil for each experiment, and used this
starter community directly for the various incubations (sand
community or SC, Fig. 1b). To produce a low connectivity
environment, we randomly encapsulated SC cells inside agarose
beads with 40-70 um diameter (Fig. 1c). This spatially isolates
1-2 individal founder cells into an individual agarose bead and
creates a local environment, and promotes the development of
interspecific interactions!® (Fig. 1c and Supplementary Table 1).
To produce a high connectivity environment, we propagated the
community in well mixed and suspended batch culture (Fig. 1d),
which eliminates long-term close spatial contact of genotypes and
represses the development of interspecific interactions. Both
liquid (high connectivity) and agarose beads (low connectivity)
contained the same nutrient medium and, at the system-level, the
same starting SC genotypes and cell numbers.

Environmental connectivity has no effect on aggregate com-
munity growth. Since we had no a priori knowledge on the
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Fig. 1 Environmental connectivity and its experimental design. a Soil microbial living environments are characterized by spatially fragmented and isolated
pockets, such as formed by soil particles and water filled pores. Different species numbers may assemble depending on the volume of disconnected space,
which is expected to directly influence the resulting growth properties and the extent of developing interspecific interactions of the (sub)communities. b A
highly diverse microbial community used as inoculant is freshly extracted and dispersed from sand (SC) and quantified. ¢ Growth under low connectivity,
consisting of millions of disconnected environments formed by randomly encapsulating 1-2 founding SC cells in small substrate-permeable agarose beads,
incubated in parallel. Cells under low connectivity are expected to face a strong isolation effect when being alone and strong interaction terms (red arrows,
inhibition; blue arrows, neutral) when starting off in random partnerships. d Growth under high connectivity in a mixed liquid suspension of the same

starting SC cell numbers and diversity as in €. High connectivity is expected to yield low isolation and low interspecific interaction effects, as a result of

random mixing.

growth properties of freshly prepared SC cells, we examined
various aspects of their growth in high (liquid culture) and low
(beads) connectivity environments. We compared SC growth to
that of a pure culture of the soil bacterium Pseudomonas veronii
strain 1YdBTEX22%:21 under the same conditions to account for
potential effects of the bead-production procedure. Between 76.4
and 84.4% of cells in the washed SC cell suspension before
encapsulation stained positively with propidium iodide as asses-
sed by flow cytometry. This suggests that most of them were
physiologically impaired. Despite this, however, SC cell numbers
increased in mixed liquid suspension at rates only slightly slower
than P. veronii in pure culture (Fig. 2a, b). SC growth in beads

was evident from increased SC microcolony sizes (t =6, 24, or
48 h, Fig. 2a), with some cell dispersion within the beads at later
time points (t=48 or 72h, Supplementary Table 1). Using the
smallest and weakest stained fluorescent pixel objects imaged
within beads as a threshold, we estimated that 20-30% of the
encapsulated SC cells and 6-15% of the P. veronii cells may not
have divided within the beads (Fig. 2c). This indicated that the
majority of SYTO-9 detectable SC cells in the initial preparation
were viable and capable of dividing. Propidium iodide-positive
cells in the washed starting SC suspension stain poorly with
SYTO-9 and, consequently, may not have been further detected.
Furthermore, this showed that the bead process itself is not
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Fig. 2 Aggregate community growth is unaffected by environmental connectivity. a Growth of SC cells under high (i.e., mixed liquid suspension, in

cells mI-") and low connectivity conditions (i.e., encapsulated in beads). Growth in beads is expressed as the mean per bead productivity (PBP). PBP is
defined as the product of imaged microcolony areas times their mean SYTO-9 fluorescence intensity summed per bead, averaged across all imaged beads
(n =100-500 beads) in a replicate series. Mix C, mixture of 16 different carbon substrates (equimolar, to 1TmM final carbon concentration); sand extract,
carbon and nutrient solution extracted from sand. Bars show mean community cell numbers of four (liquid) or three (beads) biological replicates,  one SD,
with individual data points. “u" derived maximum community growth rate. Image shows detail of microcolonies (in cyan) in beads after 48 h. b as a but for
a pure culture of the soil bactenum P. veronii. ¢ Estimated proportion of non-growing P. veronii (Pve) or SC cells in bead incubations below the defined PBP
thresholds. d SC community yield comparison across high and low connectivity conditions, taken as the ratio of SC yield to that of P. veronii under the same

conditions. p-values from t-test (two-sided, unequal variance) of individual ratios, n = 12 (liquid) or 9 (beads). Bars show mean ratios with symbols

presenting individual data points.

damaging or inhibiting to the division of the majority of cells. The
increase in the maximum observed SC microcolony size after
24-72h compared to t=0 translates to approximatetly 9-10
generations of cell division per bead under the imposed carbon
substrate regime (assuming a round packed colony of cells,
Supplementary Note 1).

The estimated aggregate community growth rates were
comparable for suspended and bead growth when using the
same defined mixed carbon substrate (Fig. 2a; two-sided t-test,
p=0.0952, n=23). SC growth in beads was faster with sand
extract than with mixed C substrate (Fig. 2a; two-sided ¢-test, p =
0.0281, n = 3), suggesting that the diversity of substrates extracted
from sand is favorable for community-level proliferation. Because
of the different methodologies to quantify biomass in the high

connectivity (cell counting) and low connectivity (microcolony
imaging) environments, we quantified SC yields for the different
environments relative to those for P. veronii under the same
conditions (Fig. 2d). We further quantified SC yields by
quantifying the mass of isolated DNA from sub-samples. The
ratios of SC to P. veronii yields were not significantly different
between liquid suspended and bead growth (Fig. 2d; two-sided t-
tests, p>0.1). Isolated DNA concentrations from SC in low or
high connectivity were also not significantly different (p = 0.10,
Supplementary Table 2), indicating that the aggregate community
yields of SC in high and low connectivity environments were
similar. These experiments thus indicated that the sand-derived
microbial community as a whole was capable of growing under
both experimental conditions, and suggested that its aggregate
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growth properties (rate and yield) were not affected by the degree
of connectivity of the growth environment.

High environmental connectivity favors maintenance of higher
species diversity. Although the aggregate growth properties of SC
cells were comparable for low and high connectivity environ-
ments, this did not take into account any relative changes in
genotype abundances. The starting composition of washed SC
cells deduced from 16S rRNA gene amplicon sequencing had a
taxonomic richness of approximately 1200 operational taxonomic
units (OTUs, summed from independent washed SC replicates;
mean richness per replicate = 543 +153, n=7), covering all
known soil bacterial groups (Fig. 3a). SC growth in low con-
nectivity environments dramatically reduced OTU richness by
more than ten-fold after 48 h, irrespective of the growth substrate
and with near extinction (ie., not detected by sequencing) of
several major phyla (Fig. 3a, range of mean richness = 34.5-57,
p-value = 0.00011, two-sided t-test). The diversity decrease was
not due to the encapsulation procedure, as higher diversity was
still apparent after 6h in the low connectivity environment
(Fig. 3a, Bead growth t=6h). Growth in the low connectivity
environment also skewed the distribution of OTU relative
abundances (Fig. 3b). After 48 h, one-third of the observed taxa
had increased their relative abundance by a factor of two, while
half had decreased relative abundance by a factor of two when
compared to the SC composition before encapsulation (Supple-
mentary Fig. 1). SC communities prepared on different occasions
were clearly different but converged over incubation time into
distinguishable high and low connectivity environment trajec-
tories (Fig. 3c). Community diversity remained significantly
higher in suspended culture (high connectivity) than in beads
(low connectivity) (Fig. 3d, four different diversity measures),
although diversity also significantly reduced after 72 h of growth
compared to the starting SC composition (Fig. 3a; mean richness
= 159 +43; two-sided t-test p = 0.000309, n=4). SC growth in
the high connectivity environment retained all major soil phyla
(Fig. 3a), with a more similar abundance distribution compared
to t=0 (Fig. 3b) and nearly equal proportions of species
increasing and decreasing their relative abundances (Supple-
mentary Fig. 1). Collectively, these experiments showed that
growth in the high connectivity environment (mixed suspended
culturing) is more favorable for maintaining OTU diversity than
in the low connectivity environment (cells in isolation in beads).

Isolated growth in the low connectivity environment is pena-
lized. In order to understand, why SC growth in the low con-
nectivity environment caused a drastic reduction in OTU
diversity despite the cells having access to the same carbon sub-
strates, we analyzed microcolony growth in beads more closely.
We first compared the growth of SC cells that were individually
enclosed within beads (i.e., single occupancy, or that may have
had a dead undetectable partner) to that of encapsulated pairs of
founder cells. Across six independently started encapsulation and
incubation experiments, and on two different substrate regimes
(i.e., mixed C substrates and sand extract), per bead productivity
(PBP) of pairs was significantly higher by more than 2-fold than
that for singly occupancy in beads. This was true even though all
beads were residing in the same growth medium and culture
conditions (Fig. 4a, b and Supplementary Fig. 2; Wilcoxon rank-
sum test of median and 75th percentile PBP comparisons at all
time points except t=0, p-value range 0.00195-0.01367). In
addition, only 19.7% (95% confidence interval 14.1-25.3) of beads
with single occupancy surpassed a 10-fold productivity increase
compared to the start, versus 47.4% (37.5-57.3, n = 12) for beads
with two or more microcolonies. This indicated that being

randomly partnered was on average beneficial for productivity
(i.e., normalized per bead, individual low connectivity environ-
ment), whereas being in isolation on average led to comparatively
poorer growth. The isolation in the low connectivity environment
may therefore have penalized growth of the majority of SC taxa,
leading to their near-extinction (below sequencing threshold)
after 9-10 generations at the benefit of some 20% opportunistic
growers and those in pairs.

To verify this tendency of partner benefit further, we artificially
mixed a non-auxotrophic pure P. veronii culture (constitutively
expressing an mCherry fluorescent protein for discrimination
from SC cells) with the SC cell suspension in a 1:1 ratio,
encapsulated the cells, and compared growth properties with
those of either SC or P. veronii alone (Supplementary Fig. 3). Also
here, PBP distributions of SC cells paired with P. veronii within
the same bead largely shifted to higher values compared to those
SC growing in single occupancy beads in the same flask
(Supplementary Fig. 3; Fisher’s test on PBP distributions, p-value
range 0.0005-0.002). This experiment thus indicated that random
SC cells also profited from being paired with an external arbitrary
partner pure culture, suggesting general benefits or maybe even
consistent needs for paired interactions.

Despite benefits at the community level, most paired interac-
tions result in imbalanced growth. Although beads with two or
more SC microcolonies showed higher productivities at the sys-
tem level (i.e., across all beads) than expected from combined
single occupancy growth, this per se did not reveal any interaction
signs (i.e., positive, neutral, or negative). To look closer at pre-
valent interspecific interactions, we selected those beads with
exactly two partners (Fig. 4c). Paired SC-interactions on sand
extract showed 100-fold larger microcolony sizes than on mixed
C substrates (e.g., Fig. 4c, 24 h), reflecting the faster and more
abundant growth on that substrate (Fig. 2a). When categorizing
productivities according to the above-defined imaging threshold
of “no-growth” (i.e., log;o PBP < 3.25, Fig. 2c), it became clear that
paired interactions were highly non-random (Wilcoxon rank test,
p=0.0235 for sand extract and p=7.46 x 10~* for mixed C,
Fig. 4d). More than half of the observed pairs showed highly
imbalanced growth (Fig. 4d, red and magenta zones), whereas
under this categorization definition an estimated 19-38% of pairs
showed balanced growth (Fig. 4d, blue, within tenfold PBP ratio
of partners). Collectively, these observations demonstrated that
cells from a highly taxa-rich microbial community from soil,
randomly placed in a multitude of parallel low connectivity
environments are on average growth disfavored when being alone
and favored when being partnered. The majority of paired growth
ratios is more than tenfold deviating from one (i.e., equal growth
in pairs), which might be the result of interspecific interactions or
of differences in inherent growth rates (see below).

A model to simulate community growth for different con-
nectivity environments and interspecific interactions. To fur-
ther substantiate the experimental observations and, in particular,
to better understand the potential effects of interspecific inter-
actions on paired growth, we developed a model to simulate
community growth and genotype diversity in high or low con-
nectivity environments. The simulation was initiated with a
randomly seeded community of 2 x 10° in silico cells with rich-
ness and relative OTU abundances equaling those in the mea-
sured SC samples, including or excluding a proportion of dead or
growth-compromised cells (e.g., Fig. 3a, see “Methods” section,
Supplementary Methods, Section 1). The starting community is
then grown in silico with the growth rates observed in our
experiments (e.g., Fig. 2a). The growth of each OTU population is
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classification (0-1500). Major bacterial phyla indicated in different background colors and Roman numbering. Rich, mean sample richness * one SD, with
n indicating the number of replicates. b Normalized distribution of log;o OTU summed read abundances, with n indicating the number of OTUs.

¢ Multidimensional scaling analysis based on Bray-Curtis distance of SC cell suspensions at start, low (i.e., beads) and high (i.e., suspended growth)
connectivity samples, as a function of incubation time and substrate. Percentages indicate explained variation among data sets and replicates. Colored
zones manually added to group related samples. d Alpha diversity measures for community diversity under high or low connectivity conditions compared
to SC at start. Bars show means £ 1 SD plus individual data points, calculated for the replicate sets of panel a. Values below are p-values from two-sided t-
test with unequal variance for the indicated comparisons. p-Values between both bead regimes are not reported and show no statistically significant

difference.

computed in discrete time steps as a function of substrate utili-
zation, interspecific interaction terms, or single-growth penalties
using Monod kinetics (see “Methods” section).

For simulations in the absence of empirical data on individual
OTU growth rates of SC cells, we hypothesized two growth rate
distributions and examined which of the two would be more likely
to result in the observed community distribution at stationary
phase. In the first distribution, maximum specific growth rates
(Mmax,sp) drawn randomly between 0.01 and 0.6 h-1 were assigned
to OTUs, whereas in the second they were attributed to OTUs

according to a probability function reflecting their measured
relative abundance at t = 0 h (Supplementary Methods, Section 2).
For these two simulations, we used liquid suspended growth (high
connectivity environment), such that growth rates are not affected
by interspecific interactions (Supplementary Methods, Section 2).
Growth simulations with both gy, distribution assumptions
resulted in distributions of steady-state taxa abundances similar to
the experimentally observed ones (Fig. 5a, p = 0.2649 two-sided
t-test, n = 5 simulations). However, the distribution where growth
rates were biased by the original OTU proportion generated better
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Fig. 4 Paired growth is favorable over single occupancy growth but globally dominated by negative interactions. Normalized log,o PBP distributions
over time of beads with single occupancy or with two and more microcolonies (mean range: 2.1-3.8) for SC incubated with sand extract (a) or with mixed
C substrates (b). p-values are the likelihood that the 75th percentile of all PBP distributions for single occupancy is equal to those of the PBP-values in
multiple occupancy, corrected by their mean number of per bead microcolonies at that sampling time point (Wilcoxon rank sum test). n = number of
beads. ¢ Paired PBPs of arbitrarily ranked SC microcolonies inside single beads, presented on a log;o scale (each dot corresponding to an individual bead,
n = number of paired beads). d Proportional interaction terms of paired SC microcolonies along four categories, as schematically indicated, for the three
sampling time points and for a random distribution of 1000 points in the same log;o area. Magenta, fraction of beads with non-growing or single cell pairs
(logio PBP < 3.25); red, fraction of beads with one SC partner not growing; blue, more or less equal productivity of either pair (PBP ratio between 0.125 and
8); grey, remaining pairs (moderate growth influence). Numbers within colored squares on each scatter diagram correspond to the calculated percentages
of inferred interaction types for the examples in (C), and p indicating the probability that the observed percentages of ‘no growth of one partner’ is equal to
a random distribution (h;, alternative hypothesis; n = 10,000 repeats, two-sided t-test with unequal variance).

predictions of relative abundances than did the random distribu-
tion of growth rates (57.8% vs. 47.8% correct to within four-fold
difference, Fig. 5a). This suggests that an OTU-abundance
proportional pi,.x-distribution better represents SC growth, and
we thus used this distribution for all further simulations. In
addition, these simulations suggested that inherent growth rate
differences are a predominant factor to explain the relative
abundances of the SC OTUs at stationary phase in high
connectivity environments, confirming our assumption of the
subdued role of interspecific interactions.

Next, we simulated SC growth in a low connectivity
environment, with an assumed 75% of cases of single occupancy
and 25% of paired cells (similar to the experimental observations
in beads). In silico cells were again randomly picked from the
mean observed SC t=0 OTU distribution, and we simulated
growth across 2 x 10° individual in silico beads that were grouped
at the system level to calculate growth per time step as a function
of substrate utilization (Supplementary Methods, Section 3). We
first tested the effect of having a large proportion of founder cells
incapable of dividing, as was suggested by propidium iodide
staining, and further assumed that such cell death may either
randomly occur across all taxa or have a higher probability to
affect fast-growing taxa (Supplementary Methods, Section 2.3).
Secondly, we simulated whether starting single occupancy in

beads disfavors growth for many taxa, which was suggested by the
experimental observations (Fig. 4a, b). We included for this a
single occupancy penalty on the assigned ppay sp» by imposing the
inherent piqax sp per OTU to be inversely proportional to its initial
abundance (Supplementary Methods, Section 3.1). The resulting
simulated microcolony size distributions at stationary phase
across all beads with single occupancy were skewed to smaller
sizes, when the growth penalty and a proportionally higher death
at the start was applied to fast-growers. In contrast, distributions
were shifter to larger sizes in absence of growth penalty or
proportional cell death (Fig. 5b), or with randomly attributed cell
death at start (Supplementary Methods, Section 2.3). Among
these, the distributions resulting from simulations taking
proportional death and single growth penalty into account were
the most similar to experimental observations of microcolony
PBPs (Fig. 5c). This supported the assumption that single
occupancy growth in low connectivity environments (i.e., single
founder SC cell per bead) is indeed penalized, and suggested
further that a significant fraction of SC cells from particularly the
fast-growing taxa do not divide after their removal from the soil.

Growth of random paired soil bacteria is best explained by a
mix of positive and negative interspecific interactions. We

COMMUNICATIONS BIOLOGY | (2021)4:492 | https://doi.org/10.1038/s42003-021-02023-2 | www.nature.com/commsbio 7


www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/542003-021-02023-2

a High connectivity, C Single occupancy
stationary phase p= model fit
020 020 OTU prob. 04 noDP
i L . random ry
n Sim: Sim: Experimental data S EXP
016 p=0TU probability 016 p=random i Liq,t=72h - § _ 02 XS 5 .:
5 % ® o
2 012 cor ! 012 corr: 5o 3 s noDnoP
] | 0.8857+0.0093 0.8660+0.0615 s X 2 o e
& oo8 | 0.08 23 ~ DP
| 1 £a £
004 || 004 [{[I 2 .02 3
| I o
\ : il DnoP
0.00 LECHEHTEL ot e, 0.00 LLEELIE
OLI ZOT-:’J ; Sd e oL1 imj: Z e 0L OTUzb d . 04 02 0 02
ogio abundance ogro abundance ogio abundance dim?1 (36.3%)
Low connectivity, single occupancy
Observed Simulation: Simulation: only Simulation: Simulation:
bead single occupancy prop death + penalty penalty on single growth no penalty, no death no penalty, prop death
3 02 03 03 03
EXP DP noDP noDnoP DnoP
202 = 0.2 0.2 ) 0.2
g 0.1 /
5 0.1 \\ 0.1 0.1 0.1
0 s 0 0 0 0 -
0 25 5 0 25 5 0 25 5 0 25 5 0 25 5
Logro microcolony size Logro microcolony size Logio microcolony size Logto microcolony size Logo microcolony size
d Low connectivity, double occupancy
Observed Simulation: Simulation: Simulation: Simulation:
bead paired growth bimodal interactions biased positive positive on slow random interactions
04 04 04 04
EXP bimodal rd +/- rd + rd

2
% 02 02 02 /L 02 02
(7
©
0 > 0 0 0 o N |

0
0 25 5 0 25 5 0 25 5 0 25 5 0 25 5
Logi microcolony size Logio microcolony size Logro microcolony size Logro microcolony size Logio microcolony size
Simulation: Simulation: Simulation: Simulation:
biased negative only prop death no death, no interactions only random death e Double occupancy
04 04 04 04 model fit
rd- prop t null rd o4
> X
2 02 02 02 02 =
[} X
3 M % 03 rd-
o
o .
0 0 0 0 ~ ~
0 25 5 0 25 5 0 25 5 0 25 5 _g 0.2 [ pimodal a4+ null
Logro microcolony size Logio microcolony size Logro microcolony size Logio microcolony size mf
f Low connectivity, paired growth
6
¢ bimodal 2 0 02
dim1 (32.1%)
4
g Paired growth
v
8, model fit
g ; 0.4 -
B _ EXP
s 0 £ 03 frd+/- e
S o 2 4 6 ) s
£ 2 .
IS S 02 I
g 6 1-E5 {nol/>
E v 0.1 ’ I
° Y- rd+ ¢ rd rd-
=) a
o ® o
B
. 0 02 04
0 9 dim1(56.1%)

o
N
IS

6 0 2 4 6 0 2

logo partner1 microcolony size

4 6 0 2 4 6

>95% & >log10=1.75
>95% & <log10=0.75
<5% & 0.75<log10<1.75

logro partner1 microcolony size

Low connectivity, interactions o 4
Simulation: Simulation: Observed: ]
no death, no interactions biased positive bead paired growth confidence intervals 2 2
04 0.4 04 04 <
null rd +/- EXP _‘Z‘g R p _ngt;lcl% § 0
2 ~—72h [}
2 02 02 02 —24h3 —5% S 20
3 = 73 n% & | R N R S TR T T
= ® L £ B o+ +
2gF® B & B
0 0 0 0 g T 2
01234586 01234586 01234586 01234586 3 2
logpo size ratio loguo size ratio logo size ratio logpo size ratio model

proceeded to test the hypothesis that paired growth in low con-
nectivity environments must lead to increased importance of
interspecific interactions. To this end, we simulated several
interaction scenarios for the growth of OTU pairs in a low con-
nectivity environment in comparison to a null model without any
assumed interspecific interactions, while maintaining the same

growth rate penalty on single occupancy and the proportionally
higher cell death at the start for fast-growing taxa (Supplementary
Methods, sections 3.1-3.3). In the first interaction simulation
scenario (Supplementary Methods, section 3.4.1, bimodal), we
assumed that a group of taxa exists with inherently strong
competitive and opportunistic character; which is suggested by
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Fig. 5 Simulations of community growth support mixed interactions prevailing low connectivity environments. a Two scenarios for growth rate
distribution among SC species, of which the one that follows the probability of OTU abundance predicts the better similarity of steady state OTU
abundance distribution to observed growth in high connectivity conditions (i.e., liquid suspended growth) than random growth rate attribution. corr., mean
correlation coefficient £ one SD (nh = 5 simulations). Proportion of correctly predicted OTU abundances to within a two-fold or four-fold range of observed
values (p-values from two-sided t-test, n = 5 simulations). b Observed (EXP, t = 72 h, n = 6) versus simulated steady state microcolony size abundances
for low connectivity with single occupancy (i.e., one founder cell per bead, n = 5 simulations, each with 2 x 105 cells, subsampled to 1000 beads). DP,
single occupancy growth rate penalty (proportional to the initial SC OTU abundance) plus 85% probability for fast-growing OTU to be dead at start; noDP,
growth rate penalty but no dead cells at start; noDnoP, no dead, no growth penalty; DnoP, dead cells but no growth penalty. ¢ Principal component analysis
(PCA) of single occupancy observations and simulations (from probability normalized binned histograms), percentages showing explained variation.

d Observed (EXP, t = 24, 48 and 72 h, n = 6) versus simulated steady state per bead normalized microcolony size abundances for low connectivity with
starting OTU pairs (each with 50,000 cells, n = 5 simulations, in all cases in presence of 75% single occupancy beads; subsampled to 5000 beads), for
seven different imposed global interaction types in comparison to null model (i.e., no death and no interactions among paired cells; Supplementary text).
e PCA of observed and simulated data sets of paired bead growth (as for ¢). f Simulated paired-growth at steady state as microcolony size differences
(subsampled to 5000 beads, pairs with non-growing cells removed), for the global interaction types of d. g PCA of observed and simulated paired growth
(normalized from extracted events in a 12 x 12 bin grid covering log;o = 0-6). h Interaction profiles (as normalized log;q size ratio of paired growths) for
steady state low connectivity paired growth in case of the null and biased positive simulations (n = 5, subsampled from 5000 beads) compared to observed
paired growth (EXP). i Percent deviation of observed paired growth (n = 6) to model simulations (deficit or excess compared to 5th and 95th simulated

confidence intervals). Model abbreviation as in d.

bead productivity measurements of paired founder SC cells (e.g.,
Fig. 4a, b). We then compared this scenario to one of completely
random interaction effects between OTU pairs (Supplementary
Methods, section 3.4.4, random). Finally, we simulated three
further global interspecific interaction scenarios; one that exerts
generally positive effects on slow-growing OTUs in pairs (Sup-
plementary Methods, section 3.4.3, positive on slow), one that
gives a 60% chance on each partnered OTU to be positively, and
40% to be negatively influenced (Supplementary Methods, section
3.4.2 biased positive), and finally, a scenario that imposes a
smaller chance on fast than on slow growers to be negatively
influenced by a partner (20% and 40%, respectively; Supple-
mentary Methods, section 3.4.5 biased negative). We let the
modeled interactions directly influence the attributed OTU
growth rates, thereby potentially improving the growth of a
species with an initially low piyay sp OF reducing that of an initially
high attributed Wmaxsp (Supplementary Methods, sections
3.1-3.3). All models, except the bimodal, predicted that paired
growth was more than two-fold more abundant than growth of
single founder cells (Supplementary Fig. 4).

Simulations without any included interspecific interactions
resulted in steady state microcolony size distributions skewed to
the high end, which were dissimilar to experimental observations
(Fig. 5d, propt, null and rdf vs. EXP). In contrast, models
assuming bimodal or biased negative interactions produced
microcolony size distributions skewed too strongly to the low
end (Fig. 5d). Overall, the outcomes of random and biased
positive scenario simulations were the most similar to experi-
mental observations (Fig. 5d), further attested by principal
component analysis (Fig. 5e). In terms of the pattern of paired
growth (Fig. 5f and Supplementary Methods, Section 3.3), the
biased positive model also best described the measured combined
experimental data of paired growth in beads (Fig. 5g, rd+/- vs.
EXP). However, the simulations also indicated that simple growth
rate differences without any interspecific interactions can result in
100-500-fold microcolony size differences among paired partners
in beads (Fig. 5g, null, propt and rdt simulations). Therefore, to
estimate the potential contribution and sign (e.g., positive and
negative) of interspecific interactions from observed paired
growth differences (Fig. 4c, d) beyond growth rate differences
themselves, we calculated and compared the distributions of
paired microcolony size ratios in simulations and in experimental
data (Fig. 5h and Supplementary Methods, section 3.3.5).
Compared to the 95% confidence interval from five simulations,
the models deviated from observations in three ranges:

underestimation of the proportion of the smallest and largest
size ratios and overestimation of the mid-size ratios (Fig. 5h). The
best performing simulation was taken as the one with minimal
deviations in these three ranges (Fig. 5i). For example, in
comparison to the null model (i.e., no interactions), the bimodal
model improved prediction of low-size and mid-size, but not the
large size ratios (Fig. 5i). In contrast, the biased positive model (rd
+/-) deviated the least in all three ranges (Fig. 5i). This suggested
that growth of random SC OTU pairs cannot be solely explained
by inherent growth rate differences, but is further subject to
interspecific interactions that are a non-random mixture of
positive (“beneficial”) and negative (“competitive”) interactions,
as in the biased positive model.

Low environmental connectivity reduces community diversity
almost irrespective of assumed interspecific interactions.
Finally, in order to determine the potential effects of simulated
interspecific interaction regimes on community diversity, we
compared simulated with observed diversity measures (e.g.,
Shannon index) at steady states. Measured diversities from 16S
OTU assignments showed significant decreases for low and high
connectivity environments compared to the beginning, and also
significant differences between low and high connectivities at
stationary phase (Fig. 6a). All models predicted a loss of diversity
in low and high connectivity environments compared to the SC at
t=0h (Fig. 6b). Importantly, the models that best explained
paired growth (biased positive and bimodal) also predicted a loss
of diversity in the low connectivity environment (i.e., beads)
compared to the high connectivity environment (ie., liquid
growth with prop +, Fig. 6b), effectively leading to reduced taxa
richness (Fig. 6c). The most realistic models predicted no
increased diversity for paired growth in the low connectivity
environment when compared to that across all the single occu-
pancies (Fig. 6d), but we cannot verify this by experimental
observations. Simulations explained on average 38.0% and 51.3%
of individual OTU abundances within a range of two-fold and
four-fold, respectively, of their observed relative abundances (SC
on SE at t =48 h, Fig. 6e), with Spearman rank coefficients higher
for low than for high connectivity predictions, but in all
cases higher than random associations (i.e, Spearman rank
coefficient = 0.2385). This showed that, although we cannot
predict the individual taxa behaviour very precisely, broad-scale
modeling of growth rate distributions and interspecies interac-
tions captured relevant trends of community behaviour.
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Fig. 6 Disfavored diversity in simulated low connectivity environments. a Log;y probabilities of five alpha diversity measures from 16S OTU attributions
being the same between comparison group and sample (bottom), expressed as p-value from two-sample t-test with unequal variance (n = 3-5 replicates).
High, low: connectivity condition. b as a, but for simulated OTU distributions (n = 5 simulations, subsampled to 50,000 cells). Black symbols, loss of
diversity; magenta, gain of diversity. Note how most models predict diversity loss for low compared to high connectivity environments and to starting SC
diversity. € Observed and simulated richness decrease in high and low connectivity. d as b But for simulated diversity in single versus paired founder cells in
low connectivity (five models predicting diversity gain for pairs). e Simulated vs. observed OTU distributions (as log;o normalized relative abundance, n =5
sets). Spearman, mean ranked coefficient of five simulations. (Spearman = 0.2385 for random normalized numbers to mixC, t = 48 h dataset).

Discussion

One of the major controversies in contemporary microbial ecol-
ogy is the nature of the major driving forces that determine
community structure and functioning®. Several studies have
argued that interspecific and metabolic interactions prevaill”722,
whereas others have emphasized the roles of nutrients and
nutrient complexity!02324, the potential to form foodwebs?, the
importance of microenvironmental changes induced by microbial
activity?9, initial abundance differences?’, or the role of host
factors?®. What has received little attention is the role of con-
nectivity of the living environment on the development of
community-driving forces. Environmental connectivity should
intuitively play an important role and many natural microbial
communities live in environments that are characterized by

10

microscale patchiness, which should lead to some form of tem-
porary disconnection from other local communities. For example,
communities growing on disconnected particles (like in marine
snow??, wastewater granules3?, or as food particles in the intest-
inal tract3), or in a physically isolated environment such as a soil
pore’! or distinct plant leaf micro-habitats®2, are expected to
experience degrees of disconnection. Consequently, these
microbial communities will live for some time in separation, and
this physical separation logically sets the boundary conditions for
“other” community-driving factors (e.g., interspecific interac-
tions) to develop.

Our results indicate that spatial separation of cells (but not of
diffusible molecules) in low volume, low connectivity growth
environments (agarose beads) led to a drastic decrease of
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microbial diversity compared to an “all-mixed” scenario (i.e., high
connectivity) of the same SC species. This is true even though
community yields and aggregate growth rates were comparable
for the available substrates in the system. Low environmental
connectivity thus seems unfavorable for the maintenance of
genotypic diversity under conditions of growth, a conclusion
rooted in both experimental as well as modeling results. In
contrast to many other studies, we did not bias the microbial
“tester” community by using an artifical selection of laboratory
strains, but recovered the starter community directly from its
natural environment. This, therefore, included potentially non-
viable or compromised cells or those from rare species that we
could not recover to grow. Irrespective of this, however, our
results clearly demonstrated that entrapment of random single or
founder cell pairs in a low connectivity environment of agarose
beads resulted in decreasing diversity compared to incubating the
same starter community in mixed suspended cultures. We tested
two different substrate regimes that both included a variety of
different carbon substrates, such that we avoided any obvious
nutrient selection on growth of recovered microbes. We further
showed that the microbial diversity decrease is not an effect of the
agarose encapsulation process itself, because samples taken after
the encapsulation procedure still contained a higher diversity that
gradually decreased over time.

We hypothesize that low connectivity leads to diversity loss
because low connectivity environments with few founder cells
amplify the role of potentially dominating interspecific interac-
tions at this distance range!®, in comparison to high connectivity
and higher starting species numbers. We could not specifically
test the boundary or threshold of founding species numbers at
which this effect dissipates, but the difference between 1-2 (low
connectivity of agarose beads) and >300 microbial taxa (high
connectivity) was clear and statistically significant. Why would
interspecific interactions decrease in magnitude at higher species
starting numbers? One explanation is non-transitive dynamics:
the paper-rock-scissor concept33, which stipulates that the
probability that one species dominates another decreases when
there is a third species that influences the first. Also, physically
speaking, the chance for two negatively-influencing cells to find
themselves close together for prolonged periods of time is smaller
in high than in low connectivity environments. On the other
hand, our results showed that microbial diversity reduced even in
the high connectivity environment compared to that at start,
which might be due to a low level of remaining interspecific
interactions. Model simulations indeed suggested that some 60%
of observed individual OTU abundances can be explained from
differences in growth rates, whereas the remainder variation
might be the result of interspecific interactions developing even
under high connectivity by largely abundant community
members.

Intriguingly, both experimental and modeling results further
indicated that—at least for the natural soil community we studied
here, cells on average still proliferated better being in pairs in a
low connectivity environment than being alone. This suggests
that many species in the starting SC community may have been
auxotrophic and unable to grow alone, which is supported by
other studies and hypotheses?”>3%. Their survival and growth is
then on average positively influenced by the presence of other
random species at short distance!®, which may produce different
necessary growth factors3°-38, Interalia we observed growth of
soil-abundant but notoriously difficult to isolate species from the
Acidobacteria groups®® under high connectivity conditions. The
Great Plate Count Anomaly of non-culturability*®*! of many
species detected in communities by sequencing may thus be in
part due to their dependencies on one or more other species from
the same community. Communities such as those in soil have

been selected for living in highly fractured environments!318 and
their high degree of species interdependencies may thus be a
consequence of co-evolution. This, again, may seem likely because
negatively dominating interactions would be disfavored in small
poorly connected environments. An interesting question remains,
however, why microbial communities in the soil are among the
most highly (species) diverse if low connectivity would tend to
reduce diversity. One explanation for this conundrum might be
that confined states in the soil are only temporary. Soil pores are
likely to become connected after rainfall events, leading to a
migration of microbial cells between previously disconnected
space*2, Mixing by earthworms and other soil invertebrates*3 and
transport by fungal hyphae** may also help to temporarily con-
nect small scale niches and mix new microbial constellations.
Alternatively, the physical and chemical heterogeneity of low
connectivity environments in soil!®#>4¢ may promote more
diversity, which we kept homogenous in our experiments.

What can we conclude about the potential nature of the pre-
vailing interspecific interactions in the soil community? It has
been theorized that social interactions in communities would be
prevailingly negative except among closely related genotypes’-48.
Although our experimental results indicated highly non-random
imbalanced growth in partnerships, this may still be the effect of
inherent growth rate differences among genotypes, and extracting
the magnitude and types of interspecific interactions from com-
plex community data is not straightforward. With an estimated
~300 different starting OTUs in the communities, there is
obviously a myriad of potential interactions that can be formed.
However, simulations of community growth under the assump-
tion of different regimes of global interactions in comparison to
null models clearly showed that growth rates alone are insufficient
to explain experimental observations. Of the assumed global
interspecific interactions, the biased positive model best explained
the low connectivity experimental observations in three different
test parameters (ie., microcolony size distributions, paired
growth, and OTU diversity). This suggests that interspecific
interactions in the SC community are on average slightly biased
to being positive, and aids the otherwise (on average) penalized
single growth in isolation. Simulations further suggest that fast-
growing and abundant genotypes have a higher probability to be
dead in natural (freshly extracted) sand communities than slow-
growing less abundant ones. What will be interesting, though, is
to understand whether the globally biased interspecific interac-
tions and penalised single growth in isolation would be something
specific for a soil community or different for communities living
in less fragmented environments®’. This understanding would aid
future efforts to intervene in or restore community composition
in beneficial ways®0.

Methods

Soil resident microbes. We chose sand as a realistic source of a mixed microbial
community (which is referred to as the sand community or SC). Because the sand
community cannot be preserved as a whole by freezing, we collected fresh material
for better consistency for each experiment from the same spot in St. Sulpice near
Lake Geneva (GPS coordinates: 46.508032N, 6.544050 E) as described in Moreno
et al.°!. Sampled sand at different seasons thus likely carried slightly different
starting communities and cell densities. The sand was sieved through 2 mm? pores
to remove large particles. The sieved sand was stored at room temperature and
used within 7 days for extraction of resident microbial cells.

Microbial cells were extracted from four aliquots of 200 g of sand. Each 200 g
aliquot was transferred into a 1-1 conical flask and submerged in 400 ml of 21 C
minimal media salts (MMS) (containing, per litre: 1 g NH,CI, 3.49 g
Na,HPO,-2H,0, 2.77 g KH,PO,, pH 6.8)2!. Flasks were incubated at 25 °C under
rotary shaking at 120 rpm for 1 h. The sand was allowed to settle and the
supernatant was decanted into a set of 50 ml Falcon tubes, which were centrifuged
at 800 rpm with an A-4-81 rotor and a 5810R centrifuge (Eppendorf AG.) for
10 min to precipitate heavy soil particles. Supernatants were decanted into clean
50 ml Falcon tubes and centrifuged at 4000 rpm for 30 min to pellet cells. The
supernatants were carefully discarded and the cell pellets were resuspended and
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pooled from the four aliquots (i.e., from the initial 800 g of sand) in one tube using
5ml of MMS. The pooled liquid suspension was further sieved through a 40 um
Falcon cell strainer (Corning Inc.) in order to remove any particles and large
eukaryotic cells that may obstruct flow cytometry analysis (see below). A small
proportion of the sieved liquid suspension was used to quantify the numbers of
recovered cells (see below); the remainder was used within 12 h for bead
encapsulation or for mixed liquid suspended growth (see below). With this gentle
method, we extracted approximately 3 x 10° cells g~! of sand.

Flow cytometry cell counting. Cell numbers in extracted soil communities and in
the mixed liquid suspended growth experiments were counted by flow cytometry.
SC-suspensions were diluted 100 times in MMS and stained in 200 pl aliquots with
2 pl of diluted SYBR Green I solution (1:100 in DMSO; Molecular Probes) in the
dark for 30 min at room temperature. In some experiments, cells were additionally
stained with 2 pl propidium iodide solution (10 pg ml~!, Molecular Probes). Ali-
quots of 20 pl were aspired at 14 pl min~! on a Novocyte flow cytometer with
absolute volumetric cell counting (ACEA Biosciences, USA). Cells were thre-
sholded above a forward scatter signal (FSC-H) of 20 and further gated for pro-
pidium iodide-staining (excited at 535 nm and its fluorescence was collected at 617
+30nm) and for SYBR Green I (excitation 488 nm, 530 + 30 nm band-pass filter;
channel voltage at 441 V) above values of 1000 (Supplementary Fig. 5).

Cell samples from the mixed liquid suspension growth experiments were
diluted to approximately 10°ml~! and subsampled to aliquots of 100 pl. The
subsamples were then mixed with 100 pl of 8 gl~! sodium azide in phosphate
buffered saline and incubated for 1h at 4 °C to arrest cell respiration and growth.
Samples were then stained with SYBR Green I as above and quantified by flow
cytometry using the same thresholds and gates as describe above.

Bacterial strains and pre-culturing procedures. P. veronii 1YdBTEX2 is a
toluene, benzene, m-xylene and p-xylene degrading bacterium isolated from con-
taminated soil20. The strain was tagged with a single-copy chromosomally inserted
mini-Tn7 transposon carrying a Py, .—mCherry cassette (Pve, strain 3433) as
described in the ref. >2. A single P. veronii colony from a selective plate with toluene
as the sole carbon substrate after 48 h incubation at 30 °C was inoculated into 10 ml
of liquid MMS containing 5mM sodium succinate as the sole carbon source and
grown for 24 h at 30 °C with rotary shaking at 180 rpm?2!. After 24 h, the cells were
harvested and washed for bead encapsulation or for comparative liquid mixed
suspension growth, as described below.

Agarose bead encapsulation. SC cell suspensions containing between 2 x 107 to
108 cells ml~! were encapsulated in agarose using rapid mixing with pluronic acid
in dimethylpolysiloxane and subsequent cooling, followed by sieving to achieve
beads with a diameter range of 40-70 um>3. The entire procedure was carried at
room temperature and near a gas flame to maintain antiseptic conditions. 1% (w/v)
low melting agarose (GEPAGA04-62, Eurobio ingen, France) was prepared in PBS
solution (PBS contains per L H,O: 8 g NaCl, 0.2 g KCI, 1.44 g Na,HPOy,, 0.24 g
KH,PO,, pH 7.4) and dissolved by heating in a microwave. The molten agarose
solution was cooled down and equilibrated in a 37 °C water bath. Separately, 15 ml
of dimethylpolysiloxane (Sigma-Aldrich, DMPS5X-500G) was poured in a 30 ml
glass test tube. 1 ml of the 37 °C-agarose solution was mixed with 30 pl of pluronic
acid (10% Pluronic® F-68, Gibco, Life Technologies) by vortexing at the highest
speed (Vortex-Genie 2, Scientific Industries, Inc.) for a minute. Into this mixture of
agarose and pluronic acid, 200 pl of prepared SC cell suspension at 0.2-1.0 x 108
cells ml~! was pipetted and vortexed again at the highest speed for another minute.
Five hundred microliter of this mixture was added drop-wise into the glass tube
with dimethylpolysiloxane that was being vortexed at maximum speed. Vortexing
was continued for 2 min. The tube was then immediately plunged into crushed ice
and allowed to stand for a minimum of 10 min. After this, the total content of the
tube was transferred into a 50 ml Falcon tube. The tube was centrifuged for 10 min
at 2000 rpm using an A-4-81 swinging-bucket rotor (Eppendorf). The oil was
carefully decanted while retaining the beads pellet. Fifteen milliliter of sterile PBS
was added to the pellet and the beads were resuspended by vortexing at a speed set
to 5. The tubes were again centrifuged at 2000 rpm for 10 min and any visible oil
phase on the top was removed using a pipette. The process was repeated once more
to remove any visible oil phase. Beads of diameter between 40 and 70 um were then
recovered by passing the PBS-resuspended bead content of the tube first over a
70-um cell strainer (Corning Inc.). A further 5ml of PBS was added to the cell
strainer to flush remaining beads (<70-um) into the filtrate. The collected bead
filtrate was subsequently passed over a 40-um cell strainer (Corning Inc.) to remove
beads smaller than 40 um. Recovered beads on the sieve were washed with an
additional 5 ml of PBS, and any smaller beads in the filtrate that stuck to the
bottom side of the cell strainer were gently removed by absorption with a What-
man 3M filter paper. After this, the sieve was inverted and placed on top of a clean
50 ml Falcon tube. 1.5 ml of incubation medium (MMS with the respective carbon
substrates, see below) was used to collect the beads from the sieve into the tube.
Two tubes were processed in parallel, which were pooled in the same final Falcon
tube to yield a total volume of 3 ml. This volume was then split in three aliquots of
1 ml to make triplicate incubations. The encapsulation procedure produced ~1.2 x
106 beads per ml, with an effective volume of 10% of the total volume of the liquid

phase in the incubations. For comparative growth experiments, the procedure was
repeated with the P. veronii pure culture. A visual guide to the procedure is pre-
sented in Supplementary Methods, Section 4.

Cell-in-bead growth incubations. Each of the incubation vials (with 1 ml bead
solution) was further complemented with 4 ml MMS containing either mixed
carbon substrates (“Mixed-C”, 0.1 mM C) or sand extract (see below) as growth
substrates. Mixed-C solution was prepared by dissolving 16 individual compounds
(Supplementary Table 2) in milliQ-water (Siemens Labostar) in equimolar con-
centration such that the total carbon concentration of the solution reached 10 mM
C. These compounds are also listed in EcoPlates™ (Biolog Hayward, CA, USA)
and have been previously used as a soil representative substrates>.

Sand extract was prepared by extraction with pre-warmed (70 °C) sterile milliQ-
water. A quantity of 100 g sand was mixed with 200 ml milliQ-water in a 250 ml
Erlenmeyer flask and swirled on a rotatory platform for 15 min, after which it was
subjected to 10 min sonication in an ultrasonic bath (Telesonic AG, Switzerland).
Sand particles were sedimented and the supernatant was decanted, and passed
through a 0.22-pum vacuum filter unit (Corning Inc.). This formed the “sand
extract”, of which 4 ml was added directly to the 1 ml bead suspension in the vials.

At the amended substrate concentrations, on average between 8 and 18% of
SYTO-9-stained cells were detected on images outside (automatically detected)
beads. As these proportions did not increase over time, we conclude that these were
not cells growing outside beads but cells escaped from beads squeezed and broken
between the microscope slide and coverslip during imaging. We therefore did not
further take them into consideration when judging intrabead cell growth.

Mixed liquid suspension growth. For growth of SC-cells or of P. veronii in regular
mixed liquid suspension, 2 ml of MMS with 0.1 mM mixed-C substrates were
inoculated in quadruplicate with 5 x 10° cells ml~! (prepared as described above for
bead encapsulation and growth). As a negative control for background growth,
MMS without added carbon substrate was inoculated. Assays were incubated at
25 °C with rotary shaking at 120 rpm, sampled daily (100 pl) for cell fixation,
staining and flow cytometry counting of SC-cell numbers.

Bead sampling and microscopy. For sampling, the vials were removed from the
incubator and beads were collected at 1200 rpm for 1 min using a swinging-bucket
A-4-81 rotor (Eppendorf). An aliquot of 10 pl of bead suspension was carefully
sampled from the bottom of the vials, mixed with 0.6 pl of 50 uM SYTO-9 solution
to stain cells, and incubated for 20 min at room temperature in the dark. Vials were
vortexed and placed back into the incubator. Five microliter of sterile milli-Q water
was added to the stained beads and the complete aliquot (15 pl) was spread on a
regular microscope glass slide to minimise aggregation of beads. A coverslip (24 x
50 mm) was gently placed to avoid air bubbles and excessive squeezing of the
beads. Ten random positions on the slide were imaged with the 20x objective (NA
0.35) using an inverted AF6000 LX epifluorescence microscope system (Leica AG,
Germany) equipped with a DFC350FXR2 camera. Every position was imaged in
four sequential channels (phase contrast, 25 ms; mCherry, Y3-cube, 750 ms; SYTO-
9, GFP-cube, 50 and 340 ms). The 50 ms-SYTO-9 channel exposure was used for
analysis while the 340-ms exposure was used for verification of weak signals, if
necessary. Images were recorded as 16-bit TIF-files and further processed using a
custom MATLAB routine (described below).

Microscopy image analysis. A custom MATLAB image processing and analysis
routine was developed to segment beads and microcolonies inside beads from the
image-series®”. For each time-point and experimental replicate, the phase contrast,
mCherry, and SYTO-9 images were read using the imread function built in
MATLAB (version 2016b, MathWorks inc., USA). To identify the beads on each
image, sharp changes in intensity were detected in the phase-contrast images using
the edge function. Individual beads within a specific radius range were then
identified using the imfindcircles function. In the next step, the microcolonies
inside each bead were identified by thresholding and segmenting the mCherry and
SYTO-9 images exclusively within the identified bead areas. mCherry and SYTO-9
images were further aligned to identify microcolonies in SYTO-9 having mCherry
signal, which corresponds to Pve. Overlapping signals were considered to originate
from a Pve colony if the area overlap between two channels was at least 30% or
larger. If this were not the case, the areas were considered to consist of both Pve
and SC microcolonies. Object areas smaller than 2 pixels were discarded. All
microcolonies were thus differentiated as corresponding to Pve (mCherry plus
SYTO-9 signal) or SC (SYTO-9 only), after which their area, fluorescence intensity
and geometric distance (within the bead) were calculated.

Results were summarized for each incubation and time point to comprise the
following information: (i) total number of beads containing microcolonies; (ii) the
mean per bead productivity (PBP) (the product of the identified areas times their
mean SYTO-9 fluorescence intensity, normalized over all analyzed beads); (iii) the
normalized PBP distribution and its bin sum; and (iv) the PBPs for beads with
single SC-cell occupancy or with SC-cell pairs.

Community diversity analysis. The diversity of the starting and growing SC
communities was analyzed by high-throughput sequencing of amplified V3-V4
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regions of the 16S rRNA gene. DNA was isolated from cell pellets from 1.5 ml
liquid SC suspensions or from beads (2 ml) kept at —-80 °C until analysis using a
FastDNA Spin kit for soil according to the manufacturer’s instructions (MPBio).
We targeted the V3-V4 hypervariable region of the 16S rRNA gene by amplifi-
cation with the 341f/785r primer set and appropriate Illumina adapters and bar-
codes, following recommendations of the reagent supplier (https://support.
illumina.com/documents/documentation/chemistry_documentation/16s/16s-
metagenomic-library-prep-guide-15044223-b.pdf). The 16S Amplicon PCR For-
ward Primer = 5/

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGG
CWGCAG. The 16S Amplicon PCR Reverse Primer = 5’

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGT
ATCTAATCC. Equal amounts of amplified DNA from each sample were pooled
and sequenced bidirectionally on the Illumina MiSeq platform at the University of
Lausanne Genome Technologies Facilities. Raw 16S rRNA gene amplicon
sequences were quality filtered, concatenated, verified for absence of potential
chimeras, dereplicated and mapped to known bacterial taxonomy (OTUs) using
QIIME2 at 99% similarity to the SILVA taxonomic reference gene database on a
UNIX platform>®. OTU-assigned reads were normalized to the sum of reads per
sample and plotted by multi-dimensional scaling based on calculated Bray-Curtis
distances as implemented in the R phyloseq package (v1.16.2).

Community growth modeling in high and low environmental connectivity. We
developed a custom model (MATLAB) to test the effects of environmental con-
nectivity and population growth on community diversity in presence or absence of
interspecific interactions. Simulations were used to derive OTU diversity at sta-
tionary phase (OTU distributions, paired-growth, and diversity measures). Detailed
description of the model is provided in Supplementary Methods, Sections 1-3.
Code examples are available”. Briefly, we modeled community growth from
200,000 in silico cells at the beginning (corresponding to the inoculated 2 x 10°
cellsml~! in the experiments), either in a high connectivity (as in our liquid
experiments) or low connectivity (as in the agarose bead-encapsulated cells)
evironment. In the latter case, we simulated both single (75% of all in silico beads)
or pairs of founder cells (25%). Single cells were simulated as a one-dimensional
vector with length of 200,000 and pairs as two one-dimensional vectors (2 x
200,000).

The initial OTU composition of the vector was derived from the experimentally
determined OTU distribution from 16S rRNA amplicon sequencing in the washed
soil suspensions before inoculation. The probability of occurrence of each OTU is
computed as:

oTU,
P(OTU,) = 100 (ZlO—TU> 1)

and was used in sampling the 200,000 initial cells at t = 0 h (Supplementary
Methods, Section 1). To simulate the dynamics of growth, we employed Monod
kinetics, described as:

S
.usp‘i = ‘umax.sp.i m 5 (2)
s

where g, ; and pimax,sp,i denote the (maximum) specific growth rate of species i, S is
the prevailing substrate concentration, and Ks is the concentration of the substrate
at the point, where the specific growth rate is half of the maximum growth rate. All
growth kinetic parameters except the growth rate were kept the same for all species.
For simplicity and in absence of empirical kinetic data on SC cells, we assumed a
general Kg = 0.3 x 10 g ml~!, constant yield = 0.3 carbon to biomass
conversion in g g-! and constant mass = 120 fg cell”! for all species. The yield
factor accounted for CO, losses from carbon metabolism. In contrast, we varied
Hmax Detween 0.01 and 0.6 h!, and conditionally included growth penalty factors
on single founder cells in the low connectivity environment (as explained below).
We further examined the effect of having genotype-independent (randomly
attributed) death at the beginning or death biased to fast growing genotypes
(Umax > 0.25). Finally, we tested further interaction terms that influenced attributed
growth rates. The initial carbon concentration was set to 50 mg ml-!, which
allowed similar community development in terms of size (i.e., cell numbers) as in
the experiments.

Growth was simulated for 120 time steps, corresponding to 60 h in the
experiments, at which point the substrate is depleted and cells stop dividing
(stationary phase). Based on the attributed growth rates to every OTU (i.e., every
cell and genotype of the vector or double vector), the model calculates per time step
how much substrate is converted into biomass (we allow continuous biomass
formation) and lost in form of CO,, which is subtracted to calculate the remaining
substrate concentration for the next time step. When the overall substrate
concentration is lower than S,;, = 3 x 107 g ml-1, growth stops. The production
of cell biomass is converted to cell numbers, which is then subsampled at the last
time step per OTU (to an equivalent of 50,000 sequence reads), per single or pair
(to an equivalent of 5000 beads) to calculate developed microcolony sizes, diversity
measures, and interaction effects (as in Figs. 5 and 6).

The following interaction scenarios were simulated. Although we allowed
growth penalties and interspecific interactions to influence attributed OTU growth

rates, a threshold of ~0.6 h~! was imposed as the maximum individual OTU
growth rate in all simulations.

High connectivity random vs. OTU-abundance growth rates. OTU-specific
growth rates (¢maysp) Were drawn randomly between 0.01 and 0.6 h-L.
Alternatively, growth rates were attributed to the vector of OTUs according to the
probability distribution function reflecting their measured log;, empiric abundance
at t = 0 h (Supplementary methods, Section 2).

Low connectivity single founder cell growth penalty. We contrasted simulations
with single founder cells growing according to their OTU-proportional attributed
growth rate and those in which that growth rate was multiplied by a penalty,
composed by a factor equal to the inverse proportion of the initially attributed g,
sp per OTU. The assumptiton is that the slower the inherent growth rate, the more
likely that OTU is penalized when it is alone (Supplementary methods, Sections 2
and 3). This was combined with testing the effect of random or biased death on the
starting community.

1.2

P 3
logl()(pmax‘sp) ( )

Pmax.sp =

Low connectivity paired interspecific interaction effects. We further tested different
assumptions on the nature of interspecific interactions and simulated how these
affected community growth rates and diversity outcomes. These effects directly
influenced the OTU attributed growth rates in the doubles (Supplementary
methods, Sections 3.1-3.3). In the bimodal scenario (Supplementary methods,
Section 3.4.1), we assumed that the community is composed of two underlying
distributions; rare and abundant members (the threshold being placed at log;,
measured OTU relative abundance = 2.8), with abundant members having a
higher probability to be positively influenced in pairs. The probability is drawn
from a bimodal interaction curve that attributes an interaction factor (between 0.01
and 2.2), which is multiplied with the assigned OTU growth rate at start.

In the biased positive model (Supplementary methods, Section 3.4.2) we allowed
a 40% chance for an interaction term imposed independently on each founder cell
in a pair to lower the attributed OTU growth rate (factor range 0.4-0.6), and 60%
chance for a factor in between 0.6 and 1.4 to modulate or increase the growth rate.

In the positive on slow model (Supplementary methods, Section 3.4.3), the
attributed OTU growth rates on each founder cell in a pair had a chance of 40% to
become improved inversely proportionally to its initial growth rate, thereby
favoring slow growers

Hmax.sp = _ln(pmax.sp) x Hmax sp (4)

In the biased negative model (Supplemtary methods, Section 3.4.4), we attributed
OTU-abundance proportional growth rates to each partner of the founder pair, but
penalized faster growers (4 > 0.15) at 20% chance and the others at 40% chance that
their growth rate would be multiplied by a negative interaction factor (range
0.01-0.1).

Finally, in a random model (Supplementary methods, Section 3.4.5), we allowed
OTU-abundance proportional growth rates in pairs to be multiplied with a factor
randomly drawn in the range of 0.01-1.25, independently for each partner in a
pair. The models were contrasted to those without any assumed interspecific
interactions, and without or with assumed random or fast-growing genotype biased
cell death at start (Supplementary methods, Section 2.3.1).

All simulations were run five times from the beginning, independently
producing five derived parameter values for alpha-diversity, OTU- and
microcolony size distributions in stationary phase and partner interactions.

Statistics and reproducibility. Liquid suspension growth experiments were car-
ried out in biological quadruplates and all bead experiments were carried out in
biological triplicates. Total numbers of analyzed bead and those of beads with
single or double occupancy are reported. Derived community growth rates and P.
veronii-normalized yields were compared using t-tests (n as reported, two-sided
test, unequal variance). Normalized PBP bin-size distributions were globally
compared using Fisher’s exact test implemented in R (2000 replicates). Median and
75th percentile aggregate PBPs across different experiments were compared using
the non-parametric Wilcoxon signed-rank test. Correlations between simulated
species abundance distributions and empirical OTU relative abundances were
calculated by bootstrapping (n = 1000) in MATLAB. Correlation coefficients from
five independent simulations were compared using t-tests. The proportion cor-
rectly predicted OTU abundances by simulation was calculated as the ratio to
observed values within a two-fold or four-fold range, and compared by two-sided ¢-
tests on five independent simulations. Simulated and observed microcolony size
distributions for single or paired founder cells among different models were
compared by principal component analysis in MATLAB (pca), and by Spearman
rank correlation (spear) from five independent simulations. Single and paired
productivity was then compared between each other using two-sided t-tests of the
75th percentiles of microcolony size distribution (n = 5). Simulated and observed
paired growth (excluding pairs with dead cells) was categorized and counted in a
grid of 12 x 12 (each bin covering 0.5 log;o-distance) using MATLAB’s hist3d
function, and then compared by pca from five independent simulations. Con-
fidence intervals on ratios of paired simulated microcolony sizes (excluding
those pairs with a non-growing or dead partner) were determined by subsampling
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(n = 1000) from mean ratio distributions, which were then used to calculate the
fractions deviating from experimentally observed paired size ratios.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The raw data for the 16S rRNA amplicon sequencing data can be accessed from the Short
Read Archives under BioProject ID PRINA661487. All source data are available as
Supplementary Data in Excel format. Please see Description of Additional
Supplementary Files for more information.

Code availability
MATLAB codes for modeling and image analysis (version 2016a) are available for
download without any restriction from Zenodo®>.
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