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Abstract

Here we present, for the first time, a frequentist progressive Multiple Sequence
Alignment (MSA) method based on a rigorous and explicit mathematical for-
mulation of insertions and deletions, namely the Poisson Indel Process (PIP).
Having designed our algorithm in the Maximum Likelihood (ML) framework
has enabled us to avoid the time-consuming Markov Chain Monte Carlo sam-
pling of alignments. Our proposed algorithm aligns two homology paths, rep-
resented by their corresponding MSAs in polynomial time by ML under the
PIP model (Maiolo et al. 2017). The procedure has been integrated into a pro-
gressive procedure that, traversing a given phylogenetic tree, produces at each
internal node the optimal pairwise MSA ending at the root with the alignment
of all the input sequences. The integration of PIP equations into a Dynamic
Programming (DP) approach is not straightforward since the marginal like-
lihood is non-monotonic in the alignment length. Therefore, to account for
the dependence on alignment length we have extended the DP matrices with
a third dimension.

In order to reduce the computational complexity, the algorithm predicts
candidate homologous segments for the purpose of filtering out non-promising
regions in the DP matrix prior to the effective alignment process. Although
our method has been strongly inspired by MAFFT, we have introduced a
number of improvements like for example the use of a multi-scale short-time
Fourier transform (STFT) for the automatic detection of candidate homolo-
gous patterns. Moreover, the use of the multiple-resolution STFT rather than
the Fourier transform improves the detection of homologous regions especially
in the presence of noise and in case of relative short patterns. We have also
defined a more sophisticated and general approach to generate logically sound
paths to connect homologous blocks and resolve overlaps between them.

To mitigate the intrinsic greediness brought by the progressive DP ap-
proach we have also implemented a Stochastic backtracking (Mueckstein et al.
2002) version of the algorithm under the PIP model. In this way, our pro-
gressive algorithm generates at each visited node a distribution of candidate



sub-optimal alignments. Aligning sub-optimal solutions increases the chances
to escape from local maxima and in our opinion provides a valid strategy to
reduce the progressive bias.

Finally, to account for the among-sites substitution rate variation (ASRV)
we have applied a Gamma distribution to all the rates, insertion and deletion
rates included. However, further analysis are still needed to investigate the
impact of ASRV on the inferred alignments. Our hope is that this feature
could mimic to some extent a long insertion, that is, an insertion of more than
a single character at a time.

The use of a sound mathematical model of indel, namely the Poisson Indel
Process model, is providing more realistic and accurate estimates of MSAs,
phylogenies and model parameters. As a consequence, our new algorithms will
allow not only more accurate phylogeny and alignment inference but it will
also facilitate the estimation of statistical supports of inferred tree partitions
and the ancestral reconstruction of insertions-deletions and substitution his-
tory. Our tool has been developed in a user-friendly software package and is
applicable to large genomic and metagenomic datasets.



Résumé

Nous présentons ici, pour la premiere fois, une méthode d’alignement progres-
sif de séquences multiples (MSA) basée sur une formulation mathématique
rigoureuse et explicite des insertions et des suppressions, a savoir le procédé
Poisson Indel (PIP). Le fait d’avoir conu notre algorithme dans le cadre du
maximum de vraisemblance (ML) nous a permis d’éviter I’échantillonnage fas-
tidieux des alignements par la chane de Markov Monte Carlo. L’algorithme
que nous proposons aligne deux trajectoires homologiques, représentées par
leurs MSA correspondantes en temps polynomial par ML sous le modele PIP
(Maiolo et al. 2017). La procédure a été intégrée dans une procédure progres-
sive qui, en traversant un arbre phylogénétique donné, produit a chaque noeud
interne le MSA optimal par paires se terminant a la racine avec ’alignement
de toutes les séquences d’entrée. L’intégration des équations PIP dans une ap-
proche de programmation dynamique (DP) n’est pas simple puisque la prob-
abilité marginale est non monotone dans la longueur de I’alignement. Par
conséquent, pour tenir compte de la dépendance a la longueur d’alignement,
nous avons étendu les matrices DP avec une troisieme dimension.

Afin de réduire la complexité des calculs, I’algorithme prédit les segments
homologues candidats afin de filtrer les régions non prometteuses dans la ma-
trice DP avant le processus d’alignement efficace. Bien que notre méthode
soit fortement inspirée du MAFFT, nous avons introduit un certain nom-
bre d’améliorations comme par exemple 'utilisation d’une transformée de
Fourier multi-échelle de courte durée (STFT) pour la détection automatique
des modeles homologues candidats. De plus, l'utilisation de la STFT mul-
tirésolution plutt que de la transformée de Fourier améliore la détection des
régions homologues, en particulier en présence de bruit et dans le cas de mo-
tifs relativement courts. Nous avons également défini une approche plus so-
phistiquée et plus générale pour générer des chemins logiquement sains pour
connecter des blocs homologues et résoudre les chevauchements entre eux.

Pour atténuer ’avidité intrinseque apportée par l'approche progressive de
la PD, nous avons également mis en uvre une version rétrospective stochas-



tique (Mueckstein et al. 2002) de 'algorithme selon le modele PIP. De cette
faon, notre algorithme progressif génere a chaque nud visité une distribution
des alignements sous-optimaux candidats. L’alignement de solutions sous-
optimales augmente les chances d’échapper aux maxima locaux et, a notre
avis, fournit une stratégie valable pour réduire le biais progressif.

Enfin, pour tenir compte de la variation du taux de substitution entre les
sites (ASRV), nous avons appliqué une distribution gamma a tous les taux,
taux d’insertion et de suppression inclus. Toutefois, une analyse plus appro-
fondie est encore nécessaire pour étudier I'impact de PASRV sur les tracés
déduits. Nous espérons que cette caractéristique pourrait imiter dans une cer-
taine mesure une insertion ” longue ”, c¢’est- a-dire une insertion de plus d’un
caractere a la fois.

L’utilisation d’'un modele mathématique solide de I'indel, a savoir le modele
du processus de Poisson Indel, fournit des estimations plus réalistes et plus
précises des ASM, des phylogénies et des parametres du modele. Par conséquent,
nos nouveaux algorithmes permettront non seulement une phylogénie et une
inférence d’alignement plus précises, mais ils faciliteront également ’estimation
des supports statistiques des partitions d’arbres inférées et la reconstruction
ancestrale des insertions-suppressions et de I’historique des substitutions. Notre
outil a été développé dans un progiciel convivial et est applicable aux grands
ensembles de données génomiques et métagénomiques.
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Introduction

“We are at the very beginning of time for the human race. It is not
unreasonable that we grapple with problems. But there are tens of
thousands of years in the future. Our responsibility is to do what we
can, learn what we can, improve the solutions, and pass them on.”

— Richard P. Feynman

VOLUTION is the genetic code alteration of a population over
time mainly driven by natural selection. The modern theory
of evolution is supported with evidences by many scientific do-
mains, not only from biological sciences but also, to mention
a few, from geology, anthropology, chemistry, physics, math-
ematics, astrophysics, psychology as well as behavioral and
social sciences. In 1859, Charles Darwin published the seminal book On the
Origin of Species where he elaborated the scientific theory of evolution by nat-
ural selection. Since then, many other discoveries in the life sciences endorsed
or extended his hypothesis, that is, all organisms are to some extent related,
species evolve as response to natural selection. To quote Theodosius Dobzhan-
sky, a prominent Ukrainian-American geneticist and evolutionary biologist,

“Nothing in biology makes sense except in the light of evolution”.

Nonetheless, natural selection is not the single evolutionary driving force for
the biodiversity, variations occur for example also via mutations, sexual se-
lection, genetic drift, and artificial selection. However, selection can occur
only if traits exhibits some genetic variability within a population. Although
evolution happens at the level of population rather than at the single individ-
ual level, heritable changes take place in individuals and those bringing any
phenotypic advantage are more likely to be passed at the next generations.
Therefore, the frequency of advantageous alleles increases with the time while
that of disadvantageous ones tends to diminish. These individual phenotypic
changes within a population are modifying the distribution of phenotypic val-
ues over time. When the phenotypic shift brings some benefit to the fitness,
than it is likely that this modification is conserved over generations.
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Figure 1: Tree of life reveals clock-like speciation and diversification. A timetree
of 50,632 species synthesized from times of divergence published in 2,27/ studies.
Evolutionary history is compressed into a narrow strip and then arranged in a spiral
with one end in the middle and the other on the outside. Therefore, time progresses
across the width of the strip at all places, rather than along the spiral. Time is shown
in billions of years on a log scale and indicated throughout by bands of gray. Major
taxonomic groups are labeled and the different color ranges correspond to the main
taxonomic divisions of our tree.

Image and caption reproduced with permission from Blair Hedges et al. [51].

Along with natural selection processes, also catastrophic events or environ-
mental changes may induce changes in the gene pools of a population. This
population gene diversity is actually crucial to survive within a dynamically
changing environment. A wide assortment of genes increases the probability
that some individuals possess the differentiated allele needed to better adapt
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to the environment. In small population sizes the genetic variability in general
decreases as the inbreeding or the mating between individuals having similar
genetic makeup is more likely to occur. Less biodiversity implies, in turn, less
chances of coping with environmental variability.

Genetic variation increases with the spontaneous generation of new alleles
but also because of gene flowing (horizontal/lateral gene transfer) from other
individuals which introduce in this way new traits from foreign populations.
These phenomena along with natural selection, establish part of the natural
process yielding towards evolution and speciation. Indeed, life continues to
evolve through speciations and extinctions, two key mechanisms controlling
biodiversity. These events are depicted graphically be means of phylogenetic
trees. An example is provided in Figure 1.

However, speciation and extinction are events happening at different rates.
Speciation and extinction rates establish the frequency at which new species
originate and are lost over evolutionary time. Typically, species that promote
speciation are also highly specialized to a particular environment, are often
isolated or have a low population size. The same characteristics are associated
also with extinction. Actually, specialized species are susceptible to environ-
mental change and therefore are predisposed to disappear rapidly. Speciation
can occur slowly and gradually often described by point mutations or appear
with silent periods interrupted by event “bursts”. As a result, when two pop-
ulations that have diverged from a common ancestor become reproductively
distincts, i.e. capable of interbreeding and exchanging genetic information to
produce fertile offspring, a new species arise.

The carriers of the genetic information are DNA and RNA, they constitute
the building elements of any genetic code and of different pathways. These
“building blocks” are conserved across all the species while the encoded infor-
mation may changes. Observing the conserved core processes and the essential
features shared among all organisms, both extinct or extant, suggests that all
organisms descent from a common ancestry (see Figure 1). In fact, some of
these mechanisms are so sophisticated that the probability that they emerged
independently several times is almost negligible. All living beings endowing
these features, and from which diversification occurred, led to the development
of the three domains: Archaea, Bacteria, and Eucarya. The universal common
ancestor had as its genetic material the DNA which, through transcription and
translation, expressed its genetic code. Phylogenetic trees show graphically the
evolutionary history of acquired and lost traits during the evolution.
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Figure 2: Genetic variations at the molecular level. The main processes leading to a
genetic variation are substitution (point mutations), insertions (of one or more char-
acters), deletions (of one or more existing characters), translocations (the change of
location of a chunk of characters), duplications (the copying of a block of characters
one or many times, notably tandem repeats when the copies are placed at the imme-
diate adjacent locations) and inversions (the rearrangement in which a segment of
is reversed end to end).

At the molecular level the main processes leading to a genetic variation are
substitution (point mutations), insertions (of one or more characters), deletions
(of one or more existing characters), translocations (the change of location of
a chunk of characters), duplications (the copying of a block of characters one
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or many times, notably tandem repeats when the copies are placed at the
immediate adjacent locations) and inversions (the rearrangement in which a
segment of is reversed end to end). See Figure 2 for a graphic representation.
While substitutions keep the sequences at a constant length, insertions and
deletions (indel) are breaking the collinear order. Another cause of sequence-
length modification has to be ascribed at tandem repeats (see for example
[56, 90, 128]) whose mathematical description, among other things, is still
very poor, yet. For the same reason small inversions are frequently treated by
the inference tools as multiple adjacent substitutions [47, 64, 65, 123].

Usually mutations are considered as random events. This is true when
we are considering whether they bring or not any advantage. However, not
all types of mutations happen with equal probability, some appear more fre-
quently than others. Such changes are modeled mathematically with the goal
of providing evidence for the evolution and bringing new insights about its
dynamics. Unfortunately, the mathematical modeling of the evolution is not
so precise and detailed as how it is achieved for example in theoretical physics.
Ultimately, one of the main goal of the evolutionary models are not meant to
predict future outcomes but rather to reconstruct past histories. Such mod-
els aim to to build a general framework for understanding various phenomena
at the molecular level and the analysis of genomics data [143]. Evolutionary-
based methods are thus key elements for gaining insights in many exciting area
of biological research spanning from developmental biology [133] tree of life
inference [28], studies of epidemiology and virulence [8], drug design [71], hu-
man genetics [130], cancer [169], biodiversity [29], secondary [114] and tertiary
structure analysis of RNAs and proteins [20], and protein function prediction
analysis [66], just to mention a few.

Multiple sequence alignments

New emerging technologies are quickly providing genomic sequence data at
an exponential rate producing Giga basepairs per machine per day [21, 79].
Among the most important projects in that area one can mention, for instance,
the Human Genome Project [55] and the Genome 10K Project [110]. The
collected data can be used for studying genome evolution and genetic diversity.
In this context genome alignment has become a key instrument for shedding
new light on the evolution dynamics, for instance for detecting the presence
of rearrangements, duplications, and large-scale sequence gain and loss. Then,
from the inferred alignment, one can build the phylogenies, which in turn can
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be used to determine orthology, or to find recently duplicated regions as well
as to identify species-specific DNA.

DNA molecule

DNA strand 3 T 5

(template)
transcription

mRNA 5 B ki

codon
translation
Protein amino acid

Figure 8: DNA, RNA and protein synthesis. The nucleotide triplet that encodes
an amino actd s names a codon. Fach nucleotide triplet encodes one amino acid.
There are 64 combinations of 4 nucleotides taken three at a time and only 20 amino
acids, this means that the translation code is degenerate (there are more codons per
amino acid). The transcription is process by which DNA is copied to RNA, while
the translation is the process by which RNA is used to produce proteins.

Source of the DNA image on top: Colourbox:ID# 5823998.

Indeed, the development of molecular phylogenetics and the increasing
availability of molecular data have enabled unprecedented understanding of
evolution at levels from genes to genomes offering a great potential to discover
new cellular mechanisms and previously unknown relationships. An integrated
study of evolutionary phenomena can unveil their underlying mechanisms that
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of course are results of the interplay of phylogeny, form, function and molecular
evolution. Evolutionary thinking provides a powerful framework for disentan-
gling underlying biological mechanisms, thus revealing and understanding the
patterns and processes of microevolution.

An integral part of contemporary phylogenetics is the development of math-
ematical models and effective algorithmic solutions to tackle high-complexity
computational problems of building evolutionary scenarios, inferring patterns
of coevolution of molecules, pathways, regulation systems, and species and
assembling of sequence and tree data. A robust phylogenetic hypothesis is
intricately linked to the quality of sequence alignments. Sequence alignment
in a phylogenetic analysis is about assessing homologies: the residues aligned
should be homologous in the evolutionary sense. Accurate alignments of mul-
tiple genomics sequences are of chief importance for many evolutionary analy-
ses. However, lacking an explicit evolutionary insertion/deletion model, these
methods are prone to cause biased gap placement and evolutionary rate infer-
ences, negatively affecting downstream analyses.

In a multiple sequence alignment, a set of related sequences are organized
into a matrix where “similar” (structurally or evolutionary) residues are placed
in the same column (see Figure 4 for an example of an evolutionary MSA). This
strings vector, whose components are characters representing the residues en-
coded from a one-to-one mapping alphabet (usually nucleotide, amino acids or
codons, see for example Figure 3), is obtained by using edit operations. In the
classic approach the edit operations consist of match, substitution, insertion
and deletion operations. A match operation consists in putting in the same
column equal residues while a substitution aligns different characters together.
Insertions and deletions on the other side change the length of the alignment
by shifting the columns and placing gaps so that “similar” residues stay in the
same column. The multiple sequence alignment problem translates therefore
in finding the set of insertions, deletions and point mutations that transform
one sequence to another (pairwise alignment) or to more than two sequences
(multiple sequence alignment).

From the postulated MSA, the sequences homology is derived and a phy-
logenetic tree can be inferred which is used to assess the sequences’ shared
evolutionary origins. The multiple sequence alignment is also exploited to
study related genes or proteins in order to envisage evolutionary relationships
between them identifying for example shared patterns among functionally or
structurally related genes. Multiple sequence alignments are also used to dis-
tinguish orthologs from paralogs, or to identify pattern of conservation and to
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determine the key functional domains as well as to develop a generic repre-
sentation (by means of a profile) of a protein family. The latter, for example,
applied to database searching to find new related sequences in order to charac-
terize for example a protein. In this context the multiple sequence alignment
(MSA) inference problem along with the phylogenetic inference and all the
consecutive downstream analysis are essential requisites for evolutionary-based
research [78, 85, 163].

Multiple sequence alignment inference

Despite the fact that humans are better pattern matching than computers [87],
modern sequencing datasets are becoming unaffordable to be manually aligned.
Indeed, humans eyes can easily detect mis-matched regions in an alignment,
nevertheless manual curated alignments are highly subject to personal judge-
ment which lack of standard rules and therefore not replicable [32]. Complex
alignments, showing sophisticated gappy patterns, are extremely difficult to
align and even experts would not be able to evaluate the entire alignment
space to select the most plausible one. Inexplicably, however, manual adjust-
ments are still currently performed by a considerable number of scientists [96].

Whilst new technologies generate an overwhelming amounts of data, the
performance of current algorithms needed to process it are falling dramatically
behind and are not able keep up the pace with modern high throughput se-
quencing systems. In fact, aligner packages are asked to align not only more
and more sequences together but also of increasingly length [30]. Moreover,
modern MSA software packages are required to be also biological accurate in
inferring homologies and of lowest possible computational complexity [21]. In
this context, the accuracy concerns the similarity or closenest between the true
alignment and the inferred one regarding the postulated evolutionary events.
The computational complexity is measured as the total amount of resources
that the inference tool needs to produce the solution, that are in general num-
ber of CPUs/GPUs, run time and RAM memory.

The phylogeny estimation as the alignment inference are biological chal-
lenging problems by nature since in general the true evolutionary history can-
not be directly observed. A pragmatic solution could be the in-silico evaluation
by means of evolution simulation studies. Therefore, to be of any practical use,
mathematical models describing the evolution must be sufficiently realistic to
mimic the essential dynamic. Whether the inferred tree/alignment is evalu-
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Figure 4: Multiple sequence alignment and corresponding homology paths. A mul-
tiple sequence alignment is a mapping from a set of sequences to a strings vector.
Sequences are placed in row and characters in column. In an evolutionary mul-
tiple sequence alignment, characters evolved from the same common ancestor are
disposed in the same column. Characters aligned in a column are emboding a set of
compatible homology paths. In this Figure we are showing only for three columns a
single homologous scenario compatible with the observations. Gaps are added in an
alignment in order to shift the characters in their “correct” (postulated) position.

ated against a simulated or a biological benchmark, both approaches enable to
quantify the performance error. Alternatively, one can evaluate the error based
on the effects on downstream analysis. For instance, by measuring the effects
on phylogenetic trees estimated on the basis of an alignment [58]. Nonethe-
less, it must be acknowledged, that despite the effort in developing new fast
and accurate aligners and considering the already great availability of different
MSA inference tool none of them is and won’t (probably) be able to produce
an evolutionary perfect alignment [32, 107].
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Nowadays, the supply of multiple sequence alignment tools is impressively
wide and the decision of which tool to use depends mostly on individual pref-
erences, the type of data to be processed and the size of the dataset. One can
identify four main strands of multiple sequence alignment purposes, that are
structure prediction; database searching; sequence comparison; and phyloge-
netic analysis requiring, underneath, different mathematical models [97, 98].
The multiple sequence alignment tools can be further classified by the im-
plied inference methods as local/global alignment, using iterative refinement
feature, based on sum-of-pairs (SP) optimality criterion or probabilistic (poste-
rior probability or maximum likelihood). These references provide a quick link
to further information: [4, 25, 32, 66, 86, 98, 107, 111, 116, 120, 144, 155, 161].

In this thesis we will focus only on evolutionary alignment that repre-
sent character homology between related sequences. They, for instance, are
fundamental prerequisite for phylogenetic inference [98]. Multiple sequence
alignment are conventionally represented in a table where taxa are placed in
succession in rows and the sequence characters are the columns of the table.
In this representation a character state is obtained by intersecting row and
columns [98]. Gaps are added for the correct positioning of the homologous
characters — sharing a common ancestor —together in the same column. It
is clear at this point that the fundamental units for an homology hypothesis
are the characters which translates in the a proper gaps disposal inside the
table [38]. It is worth mentioning the distinction between the information
represented in the phylogeny and the one in a multiple sequence alignment.
A phylogenentic tree reproduce the relationship among taxa defined by their
sequences, whereas an alignment depicts in columns the relationship among
characters [98]. When studying homologies we have to focus therefore on the
evolutionary events on characters [98], in this sense, homology exists only if
referred to phylogeny [6, 16].

An important aspect frequently underestimated is the difference between
the homology based on structural features and the homology established by
evolutionary histories. The former is called “structural homology” while the
second “evolutionary homology” or also “positional homology”. In case of con-
vergent evolution structural alignments are often relatively similar to evolutio-
nary alignments, albeit characters putted in the same column in a structural
alignment imply homology in an evolutionary alignment even if that specific
homology does not occur [58, 125].

There is a plethora of different computational algorithms that have been
proposed for the MSA inference problem. They come in different flavors and
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using different techniques and heuristics [21]. For pairwise sequence alignment
usually the score of a candidate solution is obtained by summing up a fixed
score for each match, and a penalty for each substitution and gap eventually
distinguishing between gap-opening/gap-extending penalty. When there are
more than only two sequences to be aligned, let say N, then the multiple
sequence alignment score is obtained by summing the N(N — 1)/2 pairwise
alignments obtained extracting all the pairs from the original MSA. The so ob-
tained score is called sum-of-pairs [101] (SP). The optimal pairwise alignment,
given a fixed scoring set, can be efficiently computed by means of dynamic pro-
gramming algorithms in linear space and quadratic (in the average sequence
length) time [45, 102, 103, 132]. This topic is discussed in the next section.

Progressive Dynamic Programming

The alignment of multiple sequences with an SP scoring model is known to
belong to the class of NP-complete problems [33, 61, 159]. Solving the problem
by means of a Dynamic Programming (DP) algorithm aligning at the same
time all the sequences together would result in an algorithm that need time and
space exponential in the number of taxa. A Dynamic programming algorithms
is a mathematical optimization method which exploits the Bellman equation
[10]. The basic idea behind that technique is the simplification of a complex
problem that, though, must satisfy an optimal substructure, by breaking it
into sub-problems. These last are recursively solved and the corresponding
optimal sub-solutions are then recombined yielding the global optimal of the
original problem.

Dynamic programming techniques are usually applied to global alignments
by using methods such as the Needleman-Wunsch algorithm [103] and local
alignments by employing the Smith-Waterman algorithm [132]. The com-
putational complexity of aligning by means of a classic DP algorithm of N
sequences of L characters in average scales as (’)(LN ) Therefore, even though
this method can be extended to more than two sequences, its adverse com-
plexity makes it inadvisable for practical problems [62]. A practical solution
to find an optimal alignment by means of DP methods is by combining it with
the idea developed by Feng and Doolittle [36] named “progressive alignment”
[36, 155].

Progressive approaches are employed to break intractable problems into a
series of tractable subproblems [25]. They work traversing a given topology
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Figure 5: Progressive Dynamic Programming. Left: The computational complezity
of aligning by means of a classic DP algorithm of N sequences of L characters in
average scales as O(LN). The progressive procedure runs at each internal node a
DP algorithm for the pairwise alignment. This procedure results therefore in an
algorithm that scales as O(m . L2) with m the number of internal nodes.

from the bottom (leaves) to the top (root) running an instance of pairwise DP
alignment at each visited node. Then, at each node the algorithm assigns an
optimal sub-MSA for the corresponding sub-tree. The most similar sequences
are aligned first and, according to the tree, then the more distant ones are
gradually added. At the root, the associated MSA corresponds to the solution
of the inference problem. This approach results therefore in an algorithm that
scales as (’)(m . LZ), with m the number of internal nodes. Figure 5 depicts on
the left panel the size of the corresponding DP matrix that aligns at the same
time all the sequuences at the leaves of the tree. In this example the sequences
are composed of 10 characters each, so the DP matrix requires 10® entries to
infer their alignment. On the right panel, the progressive approach needs to
compute at each internal node only 10? for a total of 200 entries.

Though, the progressive solution obtained by combining optimal pairwise
alignment is in general different from the optimal solution that one would ob-
tain by running a full DP with all the sequences at the same time. Indeed, the
progressive approach belongs to greedy heuristics and — as is often the case
— they make decisions based on local/partial information. At each internal
node the algorithm preserves the two sub-alignments associated at the corre-
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sponding children nodes and aligns a pair of sub-alignments rather than all the
sequences. Unfortunately, a column mistakenly aligned at an early stage can-
not be anymore recovered and hence this error is propagate upwards affecting
negatively the successive stages of the alignment algorithm. Several software
packages to align sequences are expoiting a progressive approach, among oth-
ers we can mention ClustalW [140], Clustal Omega [129], MAFFT [62], Kalign
[75], Probalign [83], MUSCLE [30], DIALIGN [94] , PRANK [85], FSA [14], T-
Coffee [108, 148], ProbCons [23], DFALIGN [36], MULTAL [138, 139], PCMA
[115], and MSAProbs [83].

To recover, to some extend, errors introduced at first run, iterative ap-
proaches repeatedly re-align the sequences, by means of dynamic program-
ming, searching for better solutions [99]. However because of the computa-
tional cost they are limited to few hundred sequences [129]. The most popular
iterative alignment algorithms include PRRP [46], MUSCLE [30], Dialign [94],
SAGA [105], and T-COFFEE [148]. Another proposed approach to improve
the alignment accuracy is the use of already existing protein structural infor-
mation. The reason behind that idea is that structures evolve slowly and they
bring a kind of stability in the alignment [77]. Familiar aligner structure based
are for instance 3D-COFFEE [112], EXPRESSO [5] and MICAlign [164]. An-
other class of MSA aligner are algorithm that search for motif, that are short
strech of amino acids, in the long sequences. PHI-Blast [170] and Gapped Lo-
cal Alignments of Motifs (GLAM2) [40] belong to this class. The last category
that we want to mention here is short sequence alignment algorithms that are
developed to align short read genome sequencing data, among them we can

find Maq [80], SOAP [81], and Bowtie [72].

Phylogenies and alignments

Typically, the phylogeny inference starts by first evaluating a multiple sequence
alignment, once there is an initial MSA then also the tree can be computed.
Progressive alignments depends on the quality of the input guide tree (see
for example [19, 82, 104, 119, 131, 149, 160]), the better the guide the more
accurate the obtained MSA. The opposite is also true, phylogenies are sensitive
to the quality of the starting alignment ([34]) and therefore by changing the
alignments one can expect a different inferred tree [11, 53, 95, 163].

Nevertheless, a perfect guide tree does not guarantee an error-free align-
ment, in fact errors may be introduced at each node of the pairwise alignment
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[25]. Consistency-based objective functions aim at improving the accuracy in
inferring the match by adding information from outgroup sequences [44, 152—
154]. The idea of using information from outgroup sequences is the following:
suppose we are aligning two sequences X and Y at position ¢ and j, respec-
tively. If the outgroup sequence Z at position k£ matches both characters X;
and Y; then by transitivity also X; and Y; must be aligned. Following this
principle the scoring functions update their parameters during the alignment
to incorporate in the alignment that information. Example of such tools are T-
Coffee [108, 148], DTALIGN [94], PROBCONS [23], PCMA [115], MUMMALS
[117], PROMALS [118], and Align-m[156, 158].

There are tools, like for instance CLUSTALW, MUSCLE, and MAFFT,
that are adjusting the gap penalty based on the specific position of the lat-
ter. The rational is to avoid an over-penalization of extending gaps once the
first one is has been added. When aligning globular protein sequences, the hy-
drophobic/hydrophilic property of a residue is used to adjust the gap penalties.
Software packages that make use of such heuristic are for example CLUSTALW
and MUSCLE. It has been shown that indeed the hydropathy-based gap scor-
ing improves the MSA accuracy for distant sequences [24] and by using profile
alignments also improves the detection of homology [84].

Progressive multiple sequence alignment with indel evo-
lution

All state of the art MSA programs nowadays use an evolutionary model to
describe changes between homologous characters, providing a more realistic
description of molecular data and thus more accurate inferences. However, a
mathematical formulation of the insertion-deletion (indel) process still remains
a critical issue. Describing the indel process in probabilistic terms is more chal-
lenging: unlike substitutions, indels often involve several sites, vary in length
and may overlap obscuring the underlying mechanisms. Instead, the popular
PRANK program adopts a pragmatic approach; it uses an outgroup to distin-
guish insertions from deletions during the progressive alignment procedure, so
that insertions are not overpenalized [85]. As a result, PRANK produces ex-
ceptionally accurate alignments, notably with densely sampled data and given
an accurate guide tree. Still the method lacks a mathematical model describ-
ing the evolution of indels. Indeed, the computation of the marginal likelihood
under the classical indel models TKF91 [145] and TKF92 [146] is exponential
in the number of taxa due to the absence of site independence assumption.
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A recent modification of TKF91 describes the evolution of indels on a
phylogenetic tree as a Poisson process, thus dubbed the Poisson indel process
or the PIP model [13]. The indels occur uniformly within a sequence. Standard
mathematical results, particularly the Poisson thinning, allow to achieve linear
time complexity for computing the joint marginal probability of a tree and
an MSA. This includes analytic marginalisation of unobservable homologous
paths which occur whenever an ancestral character is inserted and subsequently
deleted, and consequently cannot be detected in the extant sequences. For a
given MSA and a tree, a likelihood score under PIP can be computed in linear
time. This score can be used to find the maximum a posteriori tree-alignment
solution. Remarkably, this breakthrough allows for a necessary rigorous way
of combining models of substitutions and indels, and a tractable computation
of the marginal likelihood function. At the moment the algorithm has only
been applied in a Bayesian framework via tree-alignment space sampling.

With this project we have developed a new progressive Dynamic program-
ming algorithm under the PIP evolutionary model. Our tool for the inference
of multiple sequence alignment has been framed in the frequentist framework,
and is implemented in a user-friendly software package. We have re-framed the
original PIP equations into a dynamic programming (DP) approach. It aligns
two MSAs —represented by their homology paths on the two corresponding
subtrees— by maximum likelihood (ML) in polynomial time. The progressive
algorithm traverses a guide tree in postorder; at each internal node the DP
is applied to align the two sub-alignments at the child nodes. The procedure
terminates at the root of the guide tree, with the complete MSA and the cor-
responding likelihood, which by construction is the likelihood under the PIP
model. We have implemented the progressive MSA algorithm in a prototype
program and verified its correctness by simulation. The use of a sound math-
ematical model of indel, namely the Poisson Indel Process model, is providing
realistic and accurate estimates of MSAs and phylogenies. As a consequence,
our new algorithms will allow not only more accurate phylogeny and alignment
inference but it will also facilitate the estimation of statistical supports of in-
ferred tree partitions and the ancestral reconstruction of insertions-deletions
and substitution history.

Similarly to MAFFT, we detect homologous regions by means of a multi-
scale short-time Fourier transform, which greatly reduces the algorithm com-
plexity and allows further parallelizations. The resulting alignments display
phylogenetically meaningful gap patterns and are of similar length compared
to PRANK. To mitigate the intrinsic greediness brought by Dynamic program-
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ming approach we have implemented the Stochastic backtracking algorithm of
Mueckstein et al. [100] under the PIP model. In this way, our progressive al-
gorithm generates at each visited node a distribution of candidate sub-optimal
alignments, which may contains also the optimal one, rather than only the
single optimal. Aligning sub-optimal solutions increases the chances to escape
from local maxima and in our opinion provides a valid strategy to lessen the
progressive bias. The greediness niveau is tuned with the a parameter that
control our sake of sub-optimals. Finally, to account for substitution rate vari-
ation among sites (ASRV) we have implemented the Gamma distribution that
applies to all the rates, insertion and deletion included. Further analysis are
needed to investigate the impact of ASRV on the inferred alignments. Our
hope is that this feature could mimic to some extent a ‘long’ insertion, that is,
an insertion of more than a single character at a time.

To our knowledge, this is the first progressive MSA algorithm with poly-
nomial time complexity, using a mathematical formulation of an explicit indel
process. Note that an equivalent formulation under TKF91 or TKF92 —i.e.
using the full marginal likelihood along the subtrees in question— would have
exponential time complexity. Quadratic time complexity under the TKF mod-
els could be obtained [54] by representing sequences at internal nodes through
probability profiles, and aligning those. However, this approach does not con-
sider the evolutionary history in the subtrees.

The Poisson Indel Process

In this section we give a brief review of the basic definitions and results of PIP
model [13]. Let 7 = (V, £, b) represent a rooted binary phylogenetic tree with
N leaves. 7 is a directed, connected, labelled acyclic graph, with a finite set of
branching points V of cardinality [V| = 2N — 1 and a set of edges £ C V x V.
Leaves £ C V denotes N observed taxa, represented by strings of characters
from a finite alphabet ¥ (nucleotides, amino acids or codons). There are N —1
internal vertices v C V whereof the root € is the most recent common ancestor
of all leaves. Branch length b(v) associated with node v € V spans from v to
its parent node pa(v). The total tree length ||7]| is a sum of all the branch
lengths.

The PIP model describes a string-valued evolutionary process along the
branches of 7. We denote the distance from the root to a given point on the
tree, by the same symbol 7. Atomic insertions are Poisson events with rate
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measure v(dt) = A(7(dt)+p " 6q(dt)), where X is the insertion rate, y the dele-
tion rate, and dq(-) Dirac’s delta function. This formulation guarantees that
the expected sequence length remains constant during the whole evolutionary
process. Point substitutions and deletions are modelled by a continuous-time
Markov process on A, = AU {e}, where € is the deletion symbol. Accordingly,
the generator matrix Q. of the combined substitution and indel process ex-
tends the instantaneous substitution rate matrix Q by a row and a column to
include €, which is modelled as an absorbing state as there can be no substitu-
tions after a deletion event. The quasi-stationary distribution of Q. is denoted
by 7. . Root () has a virtual infinite length stem, reflecting the equilibrium
steady state distribution at the root.

For an internal node v, the single character prior insertion probability ¢(v)
associated to the branch pa(v) — v is proportional to its branch length b(v).
For v # Q it is given by ¢(v) = b(v)/(||7|| + #'); at the root atomic mass
point probability ¢() = =/ (||7]| +x7") so that Y, .y, ¢(v) = 1. The survival
probability 5(v) associated with an inserted character on branch pa(v) — v is
given by 5(2) =1 and S(v) = (1 —exp (— ub(v)))/(ub(v)) for v # Q.

The marginal likelihood p,(m) of MSA m of length |m| is computable in
O(N -|m|) and can be expressed as

p-(m) = ¢ (p(cy), Im|) [ p(o). (1)

where p(c) is the likelihood of a single column ¢, and p(cyp) is the likelihood of
an unobservable character history, represented by a column ¢y with a gap at
every leaf. The factor in (1)

e (pleo), Iml) = W™ exp (vl (plea) = 1)) /Iml! 2)
is the marginal likelihood over all unobservable character histories, where ||v/||
is the normalising measure of the Poisson process.

The column likelihood can be expressed as
ple) = uv)fo, (3)
veY

where f, denotes the probability of the homology path underlying column c,
given that the corresponding character was inserted at v. This probability can
be computed in O(N) using a variant of Felsenstein’s peeling recursion [35].
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Let S be the set of leaves that do not have a gap in column ¢, and Z the set
of nodes ancestral to §. Then

Lo € 7)8(0) Y ml0)fulo)  ifc#e

fo= " ' | (4)
1 —B(v) + B(v) Z (o) f,(0) otherwise,
ocA
where
1[c(v) = o] ifvel

folo) = H Z exp (b(w)Qe)mngw(U/) otherwise, (5)

wéechild(v) Lo’€A.

and 1 [-] is the indicator function. In equation 4, the term 1— 3(v) accounts for
the probability that the inserted character does not survive till the first node
below the insertion point. The recursive function f, computes the probability
of the substitution-deletion process of a single character.



Main result of the thesis

“To raise new questions, new possibilities, to regard old problems from
a new angle, requires creative imagination and marks real advance in
science.”

— Albert Einstein

In this thesis we present for the first time, a frequentist progressive
multiple sequence alignment method under an explicit evolutionary
model of substitutions, insertions and deletions. Modeling indel evolu-
tion using the Poisson Indel Process reduces the computational com-
plexity from exponential to linear (Bouchard-Cété € Jordan 2013).
Our new method, allows to infer progressive MSAs under an explicit
evolutionary model of indels. With respect to MSA inference, this is
the first major methodological advance since the development of the
phylogeny-aware PRANK.

At each internal node of the guide-tree we align the two chil-
dren MSAs by full maximum likelihood approach. This has not been
done before. Our method is highly competitive with phylogeny-aware
PRANK and outperforms other popular aligners by a good margin. In
addition to high quality our method allows to infer phylogenetically
meaningful gaps alternative to PRANK, while producing alignments
of similar length. QOur algorithm is of polynomial time complexity
and can be further parallelised, which makes it suitable for large-scale
analyses.

To date only the Bayesian methods implement evolutionary indel
models, but are limited to just a few sequences due to very costly
MCMC sampling algorithms. With this thesis, we open a number of
novel avenues in the analysis of genomics sequences. For example, more
realistic model features could be implemented allowing for variation
of indel rates along sequences and over time. Moreover, including the
alignment uncertainty estimation, it will be possible to extend our tool
to include the join estimation of MSAs and trees both in a frequentist
framework under a unique explicit and sound model of indel evolution.
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“Equipped with his five senses, man explores the universe around him
and calls the adventure Science.”

— Edwin Hubble

Part I. Progressive DP under the PIP model

In Section Progressive Dynamic Programming under P-
IP model we present a new formulation of the PIP equations
which have been integrated in our progressive Dynamic Pro-
gramming algorithm. The result is a new algorithm which re-
turns the maximum likelihood multiple sequence alignments
under the PIP model in a progressive fashion.

In Section 3D Dynamic Programming under PIP we show,
step-by-step, by means of a small example the equations in-
volved in our progressive aligner to compute the likelihood of
the different homologous scenarios implied by an MSA column.
We illustrate in particular how the different three-dimensional
dynamic programming matrices are structured and finally how
the traceback algorithm builds the optimal pairwise alignment.

Classic dynamic programming algorithms by construction pro-
duce only a single optimal solution. Unfortunately, since dy-
namic programming techniques are often framed in a progres-
sive approach, the obtained solution may be biased. Further-
more, for certain applications one is interested in more than a
unique solution, for example for testing different hypothesis. In
Section Stochastic backtracking DP algorithm we present
the Stochastic Backtracking algorithm of Mueckenstein et al.
[100] under the PIP evolutionary model. In this way, at each
internal node the algorithm generates a distribution of align-
ment. We illustrate also the effects of different values of the
‘temperature’ parameter on the achievable traceback paths.
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m To take into account for the among-site rate variations (ASRV)
we have extended the PIP equations with the classic Gamma
distribution. In Section Marginal Likelihood with Rate
Variation Across Sites we present the equations for the com-
putation of the marginal likelihood marginalized both over an-
cestral states and over the discrete Gamma rate categories.

m To save computational time we have implemented a short-time
Fourier transform based homologous blocks detector. The pur-
pose of predicting candidate homologous segments is the succes-
sive elimination of the non-promising regions in the DP matrix
prior to the effective alignment process. This new algorithm,
presented in Section Multi-scale STFT based homologous
blocks detection, has been inspired by MAFFT [62] but dif-
ferently from the original idea we have implemented a multi-
scale time-frequency transform for the automatic detection of
candidate homologous regions providing simultaneously the po-
sitional shift lag and the relative position of similar patterns
inside the two sequences. We have also extended the algorithm
which resolves the potential overlaps between different postu-
lated homologous regions.

m Progressive approaches considerably reduce the alignment com-
plexity by traversing a given binary phylogenetic tree from bot-
tom towards the root and aligning at each internal node only
two sub-alignments. Although progressive approaches strongly
accelerate the generation of the final solution they potentially
introduce biases at each iteration. The reason of this bias lies,
on one hand in the fact that the information available at each
internal node is deliberately not complete, on the other because
the alignment is constrained to the previously computed solu-
tions. In Section Progressive bias analysis we have quan-
tified, with a very small example, the bias introduced by the
progressive procedure using two different topologies.

Part II. Appendix

m In Appendix Detailed derivation of the marginal like-
lihood function ¢(v) we step-by-step retrace, also for non
mathematicians, the construction of a closed form expression
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of the marginal likelihood of empty columns, and in Appendix
Detailed derivation of the survival probability function
f(v) the derivation of the survival probability associated to a
given node v. Section Overview of PIP equations highlights
the main equations involved in the computation of the marginal
likelihood under PIP [13].

In Appendix Reversibility of TKF91 and PIP, we first give
a concise introduction to the TKF91 model and we highlight
the main equations involved in the definition time-reversible
evolutionary models. Then, by means of two examples, we
check whether TKF91 and PIP model are both time-reversible
models.

Appendix Characterization of Indel rates starts by recapit-
ulating the definition of the four different fates of a character
on a phylogeny [13]. Using these definitions we propose an ap-
proach to infer the indel rates from the input data. Finally, we
illustrate graphically the effects of the various model parame-
ters on the number of fully conserved and gappy columns in a
given multiple sequence alignment.

In Appendix Doob-Gillespie method and PIP description
we aim to illustrate the connection between the Doob-Gillespie
representation and the PIP model, and thus also TKF91. In
this section we clarify the equations involved in the generation
of homologous sequences under the PIP model. Afterwards,
we schematically represent the algorithm that synthesize the
evolution of a string of character under PIP.

In Appendix Grantham’s distance we propose a new formu-
lation which exploits a mathematically sound Grantham’s dis-
tance based metric defined on the space of the physicochemical
properties of amino acids. The Grantham’s distance is used as
a measure of the physicochemical similarity of two molecules,
which in turn is interpreted as a proxy for the likelihood that
the two molecules might undergo a substitution in an evolutio-
nary process.

In Appendix F we report the pseudocode of the algorithm that
resolve the overlaps between candidate homologous blocks and
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builds paths that connect them. Finally among the possible
overlap-free path the algorithm returns the one bearing the
largest homologous regions, that is, the largest total number of
columns.

In Appendix Multiple sequence alignment evaluation we
compare a BAIiBASE reference alignment with an evolutionary
alignment generated under PIP. Structural alignments are in
practice the standards against which alignments tools are of-
ten measured. We critically discuss this routine of assessing
evolutionary alignment software packages against BAIiBASE
benchmarks.
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Progressive Dynamic
Programming under PIP model

“The important thing is not to stop questioning. Curiosity has its own
reason for existence. One cannot help but be in awe when he contem-
plates the mysteries of eternity, of life, of the marvelous structure of
reality. It is enough if one tries merely to comprehend a little of this

mystery each day.”
— Albert Einstein, LIFE Magazine (2 May 1955)

1.1 Introduction

In this chapter we propose a new formulation of the PIP equations adapted for
the progressive Dynamic Programming approach. To simplify the exposure of
the new formulas we will refer, from now on, to the topology of Figure 1.1.
Moreover, we will assume that the algorithm is running at node v; to align
the sub-alignments associated to v and vg. To simplify the notation let define
p(v;,vg) as the set of nodes in the path v; to v;. In our simple example, shown
in Figure 1.1, the path p(vs, 2) is the set of nodes starting at node v3 and ending
at the root €2 following the topology, i.e. p(vs, ) = {vs, v7,v9, 2}. The length
of the path p(vj,vy), represented by the function L(p(vj,vy)), corresponds to
the sum of branch lengths of all the edges between the two end points. From
our example: L(p(vs,2)) = e(v3) + e(v7) + e(vg) = b(vs) + b(vr) + b(vy).

We introduce also the pure survival probability ((v) associated to the node v
C(v) = Zexp(b(v)Qe)]l(c(v) = 0) = exp(— pub(v)) (1.1)
ocA

as the probability that a character survives along the edge e = (v — pa(v))
of length b(e) = b(v) given that the character was inserted along the path



Figure 1.1: Rooted topology used to illustrate the new PIP formulation for the pro-
gressive Dynamic Programming approach.

pa(v) — Q. In equation 1.1, the function 1(-) represents the indicator function'
Note that the summation in equation 1.1 is going over all the characters in the
canonical alphabet, this means that the gap character is never envisaged.

Equation 1.1 can be interpreted as the marginal probability that the character
survives along the edge e of length b(v), marginalized over all states but the
gap. The ‘pure’ survival probability ((v) differs from the definition of (v) as
regards the insertion location. While in {(v) the character is already present
at pa(v), in Bv the character is inserted on a random location along the edge
associated to v. In both cases, however, the character is required to survive
till the node v.

The pure survival probability associated to a path p(v;, v;) is equal to

Cplogo)) =TI ¢l =exo(=uL(plvso0)) . (12)

v;€p(vj,0%)

For sake of compactness we introduce also the non-pure-survival probability

£(v), defined as
§(v) =1=C((v) (1.3)

and the non-pure-survival probability computed for a path it gets

&(p(vj,vr)) = 1= C(p(vj,vr)) - (1.4)

!The indicator function returns the value 1 if the function argument is true, 0 otherwise.
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1.2 Likelihood computation of a column p(c)

Our Dynamic Programming algorithm computes the likelihood of a single col-
umn ¢ by marginalizing over all possible insertion scenarios that may have
created that column. The marginalization goes over all the nodes along the
path that connects the root to the actual node. Let us suppose that we are
at node vz, then the marginal likelihood for matching the two columns (sub-
alignment columns) at the two children nodes v3 and vg is computed by means
of the following equation?®

Por(€) = «(Q)B(Q) - (e 0 £(Q)) + 1(v9)B(vg) - (e o £(vg))+

+ t(v7)B(vr) - (e 0 £(v7)) (1.5)
with
£(Q2) = f(vg) * f(v1g) f(v1) = 1(vq) f(vs) = 1(vs)
f(vg) = f(v7) * £(vg) f(vy) = 1(v9) flvg) =1[1,...,1]"
f(vr) = f(v3) * f(vg) f(vg) = f(vy) * £(v5) f(v) = [1,...,1]"
f(vs) = f(vy) * £(v) f(vg) = 1(vy) (1.6)

and where 1(v) takes value 1 only at the position corresponding to the observed
character at the leaf. For instance, using an extended nucleotide alphabet built
in this order A, = {A,C,G, T, —}, and assuming a character ‘T’ at the leaf
v then its indicator array becomes 1(v;) = [0,0,0, 1, O]T. For a gap it will be
1(vy) = [0,0,0,0,1]".

It is worth noting, however, that at node v; there is no information regard-
ing the states at the leaves of the respective sub-trees rooted at vg and vqg.
Hence, the two felsenstein’s arrays f(v) (of size |Ac| x 1) are set to [1,...,1]T.
In this way the algorithm accounts for all possible scenarios.

Let assume, for instance, that the leaves are associated with the following
characters: vy = {G}, vo = {A}, vy = {T}, and v; = {C}. At node v; the

felsenstein’s array gets

f(v7) = f(v3) * f(vg)

2Here for simplicity we have used an algebraic notation. The symbol o denotes the scalar
product between vector arrays and the symbol * represents the hadamard product. Variables
in bold express multi-dimensional arrays.
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- {éxp(Qe b(vg)) - | (exp(Qe-b(v1)) - (1)) * (exp(Qc - b(v2)):
£(02))] }+ {exp(Qc - b)) - | (exp(Qe - b)) - £(1)) +

 (exp(Qe-bl(vs) - £(v5)) |}

_ {exp@e b(wy) [(exp(cze b(on) ” ) : (exp(Qe b(w2)

. ” )] } % {exp(Q€~b(U6))~ [(exp(QE-b(m)) ” >*
(e[}

The likelihood function of equation 1.5 computed at node v; for a column ¢ in
state match rewrites

[=Nel HoNa]

[=NeNeRai
OoO=OOO

Dos(€) = L(Q)B(82) [71'6 ( vg) * f(v1o )} + (v [71'6 (f(w) *f(Ug))]"’
+ 1(v7) B(vr) [ o (£(vs) * £(vg))]

— (@B (pler, ) + (e0)B(0)C (p(v1, v9) + e(v7)B(wr)
'C(P(U%U?))} : (776 (f(v *f(UG))>
= [H@BOCr)C o) + 1(w9) Bu)C(v7) + u(vr)Blvr) - 1]

: (m o (£(vs) * f(uﬁ))) . (1.7)
The equation 1.7 can be simplified by considering that
_ 1w
[H@BRC0nC(wn) + () Bo0)C(wr) + 1(wr) B0 1] = o (18)
Therefore equations 1.7, applying the result of equation 1.8, becomes
Pun€) = awr) (e o (£(v3) * £(v5))) (1.9)
where
1
a(v) = /n forve V. (1.10)

Il +1/p
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The function a(v) does not depends on the particular node v and its value
corresponds to the total sum of prior insertion probabilities and survival prob-
abilities from the root to a particular node v on the path p(v,). The con-
sequence for our DP algorithm is that during the alignment procedure we are
allowed to re-root the tree at the current node v.

1.3 Likelihood computation of a column p(cy)

The tree re-rooting strategy just described above, is however allowed only for
the computation of the likelihood of columns ¢ # ¢y, namely columns contain-
ing at least one character different from the gap. In other words the finding
in equation 1.8 cannot be applied for a column ¢y full of gaps. The reason lies
in the fact that the function «(-) considers the history of a character present
at the root surviving till node v whereas for the computation of the likelihood
of an empty column we must consider also scenarios where a character does
not survive till that node. Thus, for the computation of the likelihood of an
empty column we have to consider the original root of the tree.

Referring to the topology in Figure 1.1, by re-rooting the tree at the node vy,
we would miss the likelihood of homologous paths where 7) a character inserted
at the root or i7) along the path p(v7, ) dies before hitting v;.

The probability ¢) that a character inserted at the root does not survive till
v7 is computed as

p= L(Q)ﬁ(m(l - C(W)C(Ug)) = Q(Q)f(P(Un Q)) . (1.11)

The prior probability of an single character insertion along the path p(v7,2)

® b(vr) b(vg) L(p(w, Q))

(el D) = e Y T+ e T+

and in general

(1.12)

) = L(ﬁ(vivvj))
et ) =G5

The corresponding survival probability — the probability that a character in-
serted on a random location along the path p(v;, Q) survives till v; — is

v;,v; € V. (1.13)

1

Blotor D) = oy

(1 . exp<— uL(p(vr, Q)))) (1.14)
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and for a generic path p(v;, v;)

B(p(vi,vy)) = m (1 - exp(— /LL(P(%"UJ')))) v, v; € V. (1.15)

From equations 1.11-1.14 we can compute the probability p(c) that a character
inserted either at the root or along the path v; —  does not reach v;. This
reads

p(c) = O‘(Q)f(ﬂ(wa Q)) + L(P(U% Q))(l - 5(/0(”7, Q)) : (1.16)

At this point it remains to compute the probability that a character, present
at v7, is deleted on both children sub-trees. This in general correspond to the
following calculus:

(i) probability of deletion on the direct left edge and probability of deletion
on the direct right edge or

(ii) probability of deletion on the direct left edge and probability of survival
on the right edge but deletion on the right sub-tree or

(iii) probability of survival on the left edge but deletion on the left sub-tree
and probability of deletion on the direct left edge or

(iv) probability of survival on the left edge but deletion on the left sub-tree
and probability of survival on the right edge but deletion on the right
sub-tree.

For node v7 this translates to the following probability

o, (o) = [E(v3)] - [€(ve)]+
+ [¢(vs) - &(v1) - E(v2)] - [€(v6)]+
+ [£(vs)] - [¢(ve) - E(va) - E(vs) ]+
+ [Cvs) - E(vr) - £(v2)] - [C(ve) - E(va) - €(v5)]

which can be written by means of the following general recursive formula

- 0 veLl s
nv) = { [uecnitag) [C(w)(n(w) —1)+ 1] otherwise. 4D
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Putting equation 1.16 and equation 1.17 together the likelihood of a single
column full of gaps at a node v can be computed as

pulen) = ()€ (p(0, D) + 1(p(0. D) (L~ B(p(v. ) + a(w)n(v) . (118)
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3D Dynamic Programming under
PIP

“The most beautiful experience we can have is the mysterious. It is
the fundamental emotion that stands at the cradle of true art and
true science.”

— Albert Einstein, The World as I See It

2.1 Introduction

In this Chapter, we are showing the computations involved in the Dynamic
Programming algorithm under the Poisson Indel model [13] using the results
of Chapter 1. To simplify the exposure we are considering here only the case
of constant rate variation among sites ASRV and the formulas are expressed
in the natural space rather than the log space.

Let 7 be the phylogenetic tree that relates the four sequences associated
at the leaves {v1,vq9,v4,v6} as depicted in Figure 2.1. In order to infer their
multiple sequence alignment, our progressive DP algorithm traverses the tree 7
in post-order, starting from the leaves upwards till it reaches the root. At each
internal node the algorithm produces the optimal pairwise alignment of the two
sub-alignments present at its children nodes. This approach, called progressive
alignment, explores at each node the space of pairwise alignments constraints
on the previously inferred alignments. From our example, the algorithm starts
at the first internal node v3 and aligns the sequences at the leaves v; and wvs,
then, at the node vs, aligns the optimal pairwise alignment obtained at v3 with



Figure 2.1: Phylogenetic—tree—r—that—relates—the—four—sequences—ut the leaves. The
tree is rooted at €, the most recent commo

3

ancestor of all the sequences at the tips.

the sequence present at v4 and finally at the root €2 the algorithm aligns the
optimal sub-alignment obtained at vs with the sequence associated at node vg.
The computations performed to align at node vz and v5 are shown in the next

sM SX SY ST

m m m m

Figure 2.2: Four three-dimensional sparse DP matrices SM (match), S* (gapX), SY
(gapY) and ST (traceback). Colored cells represent entries different from 0, i.e. the
ones accessed by the aligner algorithm. There is no permitted path in the DP that
connects an empty cell (colourless) at a given position (i, j,m) to the corner (0,0,0)
of length m.

As presented in the original paper [13] and outlined in Appendix A.1, under
PIP the likelihood of an alignment is composed of the product of the MSA
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10

log ¢(|m|)
&

-20 ‘ ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60

m|

Figure 2.3: An example of p(|m|) (equation 2.1), i.e. the marginal likelihood of all
non-observable histories, as a function of MSA length |m|). The parameters are:
|7]| =1, A=10, p =1, pe, = 0.5.

In Figure 2.2 one can see a small example of the four three-dimensional
sparse DP matrices SM (match), S* (gapX), SY (gapY) and ST (traceback)
needed by our aligner. The colored cells represent entries with a likelihood
different from 0, the others entries are never computed because they correspond
to meaningless alignment. Indeed, there is no permitted path that connects
an empty cell at a given position (i, 7, m) to the corner (0,0,0) of length m.
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2.2 Alignment at node v;

Let be X = AC the sequence associated at the leaf v; and Y = CT the se-
quence at the leaf vy, and let denote with |X| and Y| their respective length
(see Figure 2.1). Hence, for this simple example |X| = |Y| = 2. The progres-
sive DP algorithm requires four three-dimensional sparse matrices SM, S¥, SY
and ST each of size (|X| 4+ 1) x (|[Y]+ 1) x (|X] + [Y| + 1), dimensions indexed
by i, 7 and m, respectively. The third dimension in the DP matrices, indexed
by m, indicates the MSA length.

Then, one layer at a time along the third dimension m, the algorithm fills
with likelihood values the three DP matrices, by keeping track in the traceback
matrix for each non empty cell which matrix, among the three, contains the
highest value. In the following sections we are showing, by means of the simple
example of Figure 2.1, the computations required to align the input sequences

and tha hamalacnaiie cronarine imnliad hyr a aivvan MQA ~aliimn

sM sx SY

m m m

Figure 2.4: At layer m = 0 only one cell for each matrixz is computed. These entries
contain the marginal likelihood for empty columns go(pv3 (cp), O) for an alignment of
size |m| = 0.

Layer m =0

The algorithm starts filling at position (7,7, m) = (0,0,0) the three matrices
SM SX and SY (see Figure 2.4) with the likelihood value

o (ps(0):0) = il exp (Il (s o) = 1)) = exp (] (s o) ~ 1)) (2:1)



2.2. Alignment at node v3 15

where the likelihood of a single column containing only gaps, p,,(cp), in this
case [Z], is computed by means of

Pu(cr)= < (03, ) + (i
)(1 B(p(vs, 9 ))+ (ii

+a(v3) (v;;)—l— (iii
) (1= Blo) + Bn) (w0 f(0))+ (i

o+ 1(02) (1= B(w2) + Ble2) (e 0 £(12))) v).

The equation numbers, expressed in Roman numerals, refer to the homology
paths depicted graphically in Figure 2.5. The likelihood of a single column
full of gaps p,,(cg) requires the marginalizing over five possible homologous
scenarios all producing no extant characters at the leaves. The five homologous
paths resulting in an MSA column ¢y = [Z] at v are schematically depicted
in Figure 2.5 and correspond to

(i) an insertion of a character at the root 2 and the non-survival of this
character till the node vs (Figure 2.5(i));

(ii) an insertion of a character along the path p(vg, Q) and the non-survival
till v3 (Figure 2.5(ii));

(iii) an insertion on the node vz and a deletion along the branches e; and ey
(Figure 2.5(iii));

(iv) an insertion along the edge e; with non-survival till v; (Figure 2.5(iv));

(v) an insertion along the edge e with non-survival till vy (Figure 2.5(v)).

See Appendix 1 for more details.

At layer m = 0 the only value different from 0 is located at position (0,0, 0,)
and takes the value (p(po (C@),O) which corresponds to the likelihood of an
alignment of observable length 0 and an undefined and possibly infinite number
of empty columns.
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AC CT GC TT

Figure 2.5: Schematic representation of all the homology paths resulting in an align-
ment column full of gaps at vs. In blue are shown the possible insertion locations
and in green the edges where substitutions and deletions might occur.

Layer m =1

A cell, in the three-dimensional DP match matrix SM (i, j, m), depends only on
the values contained in SMXY(; — 1,5 —i,m — 1)t a cell in the gapX matrix
S*(i, j,m) depends only on the values contained in SM™*Y (i — 1,5, m —1) and
a cell in the gapY matrix SY (4, j,m) depends only on the values contained in
SMXY (i 5 —i,m —1). Thus, cells laying in the same layer are independent
among them which allows us to compute them in parallel.

At layer m = 1, the three matrices are extending the optimal alignment
obtained at the previous layer (m — 1). Since at m = 0, there is only a
single value at position (0,0,0), the algorithm computes at m = 1 only three
values, that are SM(1,1,1), S*(1,0,1) and SY(0,1,1). All the other values
are equal to 0 (see Figure 2.6 for a graphical representation). The likelihood
at SM(1,1,1) corresponds to the likelihood of matching X;= A with Y; =

C,ie. (X3 0Yy) = p( [é} ) The likelihood of the implied homology path,

Lwhere SM*XY stands for SM, S* and SY.
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sM SX SY

Figure 2.6: At layer m = 1, which corresponds to an alignment of size |m| = 1, the
algorithm computes at SM(1,1,1) the likelihood of matching X1 with Y1. SM(1,1,1)
extends an alignment whose likelihood is contained at SM*Y(0,0,0). S%(1,0,1)
contains the likelihood of the best alignment obtained at m = 0 at position (0,0,0)
and the likelihood of matching X1 with a gap on the right sub-tree. At SY(0,1,1) the
algorithm computes the likelihood of the optimal alignment at layer m = 0 located at
position (0,0,0) with the likelihood of matching a gap on the left sub-tree with Y.

represented in Figure 2.7, is computed as

M
M 1 A SX<O’O’ O)
S (17171):I“V||p C -max ¢ S (0707())
$¥(0,0,0)

where the match probability gets

o([o]) = et (motea).

and f(v3) is equal to

f(vs) = (exp(b(vl)Qe)f(mD * (exp(b(vg)Qe)f(vz)) .

(2.2)

(2.4)

At the leaves v, and v the felsenstein’s weights are f(vy) = [1, 0,0,0, O]T and

£(vs) = [0,1,0,0,0] "2, respectively.

2Here we are considering an extended nucleotide alphabet in this order A, =

{Av Ca Ga T? _}
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Figure 2.7: Homology path representing a match of two characters at the leaves vq
and vy. A match at the internal node vy consists of an insertion of a character along
the path p(vs, Q) and its survival till vs (whose likelihood is computed by the function
a(+)) and the independent evolution along the two edges ey and es through a Markov
process of substitution and deletion.

The function a(wvs) represents the total prior insertion probabilities and
survival probabilities of a character along the path p(vg, Q) which is equal
to (1/w)/(||7|| + 1/p). mc is an array of size | A x 1 containing the steady
state probabilities of all the characters in the extended alphabet A, = AU
e f(v1) and f(vy) are arrays of size | A x 1 full of zeros and a 1 at the
index corresponding to the position of the observed character at the leaf in the
alphabet. Hence, a character A is associated to the index 0, C — 1, G — 2,
T — 3 and - — 4. The factor - ||v|| in equation 2.2 stands for the marginal
likelihood

P(Pes (), 1) = %IIVH1 exp(||v]|(pes(co) — 1))

where the factor exp(||v||(ps,(cg) — 1)) is already contained at SM*Y(0,0,0).

The entry S*(1,0, 1) encloses the likelihood of the two homologous histories
compatible with the MSA column [#] and is computed as the sum of the
likelihood of the two scenarios depicted in Figure 2.8. The likelihood of aligning

X; with a gap on the right sub-tree, i.e. (X; ¢ ¢p) = p( [é}) is obtained as

SM(0,0, 0)
X _ 1 A X
$(,0.0) = 1+l p( | 2]) - mx (0,00 2.5

)

3More precisely the quasi-limiting distribution 7, = [7a, 7c, 7q, 71, O]T
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Figure 2.8: At the node vs, there are two possible homologous scenarios that are
compatible with the alignment column [A, —]T. The first one is an insertion along
the common path p(vs, Q) and then, successively deletion along the edge ey. The
second scenario is given by an insertion along the edge e1. The likelihood of both
possible histories is computed and summed together at SX(1,0,1).

where

o([2]) et (mo e+ ()

—l—/(qh\ﬁ))(fm\.(ﬁ,nf(vh\\ (i)

U3

U1

Vs

(%] 1
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U1
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Figure 2.9: At the node vs, there are two possible homologous scenarios that are
compatible with the alignment column [—, C]T. The first one is an insertion along
the common path p(vs, Q) and then, successively a deletion along the edge e1. The
second scenario is given by an insertion along the edge es. The likelihood of both
possible histories is computed and summed together at SY (0,1, 1).

The entry SY(0,1,1) is calculated by summing the likelihood of the ho-
mologous scenarios depicted in Figure 2.9. The likelihood of aligning Y; with

}) is calculated with the

a gap on the left sub-tree, i.e. (¢ ¢ Y;) = p({c



20 2. 3D Dynamic Programming under PIP

following equation

SM(0,0,0)
Y _ 1 - X
SY(0,1,1) = T 1Al p(Lﬂ) - max gyggzgz 8; (2.6)

where

o([o]) et (ot ()
) B(0a) - (0 £12) (i

and f(v3) is computed as in equation 2.4 with f(v;) = [0,0,0,0, 1]T
T

and by
setting at node vy the felsenstein’s array as f(vy) = [O, 1,0,0, O]

Layer m = 2, ...

At layer m = 2 and at all the following layers the likelihood is computed in
the same way as outlined above. The cells with a likelihood different from 0,
at m = 2, are represented graphically in Figure 2.10 and they are located at

(i) in the match matrix at positions (2,1,2), (1,2,2) and (2, 2,2);
(i) in the gapX matrix at positions (2,0,2), (2,1,2) and (1, 1,2) and
(iii) in the matrix gapY at positions (1, 1,2), (1,2,2) and (0, 2, 2).

2.3 Alignment at node v;

The DP algorithm generates at each internal node an optimal pairwise align-
ment under the PIP model. At node v5 the algorithm builds the new optimal
pairwise alignment starting from the optimal sub-alignment obtained at v3 and
the input sequence associated at v4. Let’s suppose that the optimal pairwise
alignment originated at node v3 is the following

X = {/j g ﬂ (2.7)

and that the input sequence associated at the leaf v, is Y= GC. The equations
involved in the alignment process at node vs for m = 0 and m = 1 are shown
in the next sections.
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sM sX SY

m m m

Figure 2.10: At layer m = 2 the DP algorithm computes the likelihood of all possible
alignments of size |m| = 2. The entries containing a value different from 0 are
colored, all the others positions corresponds to unattainable alignments.

Layer m =0

Like as at w3, the algorithm starts at m = 0 by computing the marginal
likelihood of empty columns ¢(py;(cp),0) for an alignment of no observable
columns, i.e. [m| = 0 (see equation 2.1) and puts this result at position (0,0, 0)
in all three matrices SM*Y. The likelihood of a single column full of gaps at
vy gets

)+ (i
1= B(p(vs, ) + (i)
+ a(vs)n(vs)+ (iii),(iv)
Bvn) (. £(o1))) + (vi)
B(vg) (e o f (02))) + (vii)
Blvs) (. 0 £(v)))+ (¥)(ix)
Bva) (v4))). (vii)

The equation numbers, expressed in Roman numerals, refer to the homology
paths depicted graphically in Figure 2.11.
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Figure 2.11: At node vs there are 9 homology paths (i) — (ix) that produce an MSA
column full of gaps at the leaves.

Layer m =1

At m = 1, the algorithm computes for example in S*(1,0, 1) the likelihood of
the homology path (X; ¢ ¢y) resulting in the MSA column [é} by means of

the following formula

p([A, _ —m = a(vs) - (w0 £(vs))+ (i)
+ 1(v3)B(v3) - (e 0 £(vs))+ (ii)
+ 1(v1)B(v1) - (we 0 £(v1)) (iii) (2.8)

where f(vs) is computed, as shown in equation 2.4, by

f(v1) = [1,0,0,0,0] " f(vs) = [0,0,0,0,1]"  £(vz) = [0,0,0,0,1] "
f(vs) = f(v3) * £(vy) f(vs) = f(v1) * f(v2)
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Figure 2.12: There are three scenarios at vs that are compatible with an MSA column
(A, —, —]T. The likelihood of all these scenarios are summed together at S*(1,0,1).

The corresponding homology paths are illustrated in Figure 2.12.

To save computational time — during the forward phase — the algorithm caches
in the current node the computed likelihood values that will be reused in
a successive phase of the alignment (at the parent node). For instance, in
equation 2.8, the second and third terms of the summation, i.e. ¢t(v3)5(vs3) -
(me o £(v3)) + v(v1)B(v1) - (me o £(v1)), have been already computed at node
v3 to obtain the likelihood of the alignment [2]. To be more precise, at node
v the algorithm computes a(vs) - (mc o f(v3)) + ... but for further reuse stores

t(v3)B(v3) - (71'6 o f(Ug)) + ...

A similar situation appears for example in the gapX matrix S* for the com-
putation of the column likelihood (Figure 2.13) [-.1,~]" which is

f(v) = [0,0,0,0,1] " f(vg) = [0,0,0,1,0] " £(vs) = [0,0,0,0,1]
f(v3) = f(vy) * f(vq) f(vs) = f(v3) * f(vy) .

Also in equation 2.9, the second and third terms have been already computed
during the forward phase at node vs. These values are stored, during the
backward phase, at node vz to be re-used from its parent node, namely vs.

At m = 2, the DP computes the column likelihood of the alignment [(—J by
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Figure 2.13: There are three scenarios at vs that are compatible with an MSA column
[—, T, —]T. The likelihood of all these scenarios are summed together in the matrix

SX.

means of the following equation

p([==.C]") = alus) - (w0 £(5))+ (). (i)
+ 1(v4) B(va) - (e 0 £(v4)) (iii) (2.10)

where the corresnondine homolooaons naths are renresented in Fioure 2.14

~
~

(3 T
AC CT GC TT

Figure 2.14: There are three scenarios at vs that are compatible with an MSA column

[—, —, G]T. The likelihood of all these scenarios are summed together in the matriz
SY.

2.4 Alignment at node ()

At the root the algorithm works in the same way as shown above. The likeli-
hood of an empty column at the root node marginalizes over the homologous
scenarios represented graphically in Figure2.15.
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Figure 2.15: At the root Q) the DP algorithm computes the likelihood of all these
scenarios which are all producing a column full of gaps in the alignment. The column
likelihood is then used in the function ¢(-) to compute the marginal likelihood for an
infinite and unobservable number of empty columns.

2.5 Tracebacking

An optimal alignment is determined by backtracking along a trace-back matrix
ST of size (|X]+1) x ([Y]+1) x (|X|+[Y]|+1). In the forward phase, ST
records at position (i, j, m) the name* of the DP matrix with highest likelihood

4we have assigned the following integer names : SM =1, SX =2 and SY = 3.
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at the same position,

i.e. (i,7,m). If the maximum is not unique then a

uniform random choice is made. The backtracking algorithm starts at position
ST(|X], [Y], ko), where

ko = arg max (SM’X’Y(]XL Y], k:)> , (2.11)
k

and k = max(|X|, [Y]), ..., (|X|+]Y]). In equation 2.11 ko corresponds to the
length of the best scoring (ML) alignment. Figure 2.16 highlights the column

containing al

Figure 2.16: Possible s
gorithm starts the trace

ST

J

tarting points of the traceback phase. The backtracking al-
hack-puth—at-thepositioncontatming the-mazimumtiketirood

value (one of those highlighted in the column). The level, ko, where the mazimum
has been identified, corresponds to the MSA length while the value corresponds to the
corresponding MSA likelihood.

If kg is not unique
from (|X],|Y], ko) to

a random uniform choice is made. ST is then traversed
(0,0,0). Suppose the algorithm is at position (i, j, k).

If ST(i,j, k) = 1 (which corresponds to match) then the columns X; and Y

are matched and all t

he indices are decremented, i.e. 1 < ¢t — 1, 7 < 7 — 1,

m < m — 1. If ST(i, j,m) is set to 2 (gapX) then the column X; is matched
with a column of only gaps and the indices ¢ and m are decremented, and, if
ST (i, j,m) contains the value 3 (gapY’) then the column Y is matched with a
column of gaps and the indices j and m are decremented. Figure 2.17 shows
the entries filled in the traceback matrix ST at m =0, 1, 2.
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ST ST ST

Figure 2.17: Colored cells show the entries different from 0 in the traceback matriz
ST at layer m = 0 (left), m = 1 (middle) and m = 2 (right). They correspond to
all the entries different from 0 in any of the matrices SM, SX or SY. A ‘1’ at a
given position indicates that at the same position the matriz containing the highest
likelihood value is the match matric SM. The same applies for S* with code ‘2’ and
SY with code ‘3.

2.6 Early stop condition

We have observed, empirically, that the likelihood values in the three dynamic
programming matrices at SM*Y(|X],[Y],m) with m = max(|X],|Y]),...,
(IX] + [Y]) exhibits only a single global optima. In Figure 2.18 we have
plotted the highest likelihood values of the “last column” (among SM*Y)
for a symmetric 16-taxon topology with uniform branch lengths. The three
plots refer to the results obtained with dataset close, intermediate and distant
(see reference [85] for more details). Each curve in Figure 2.18 represents an
instance of the pairwise DP alignment. Therefore, for a 16-taxon topology, the
progressive approach visits 15 internal nodes and for each of them runs a DP
instance. The values plotted in Figure 2.18correspond to

Ik, [i] = max(SM’X’Y(|X|, |Y|,m)> (2.12)

for i = max (|X[,[Y]),..., (|IX] +[X]) and v € V' \ L.

It is interesting to note that the curves lk, are smooth and present only a
single maximum value. This empirical observation suggests a practical termi-
nation condition — called early stop condition — that may interrupt the compu-
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tation in advance and consequently saving CPU time. The algorithm stores,
for each layer m, the highest likelihood value 1k, at SM™*Y (|X|, |Y|,m). When
the highest likelihood decreases k times consecutively (k set by the user), the
algorithm stops returning the optimal pairwise MSA. By terminating the al-
gorithm few steps after the maximum likelihood value has been found can,
in the best case, halve the computational complexity, that is from (’)(%LS) to
O(£L?) (L is the average sequence length). We did not demonstrate that the
functions [k, present a single optima but there are indications that support
this empirical observation, in particular the trend () and the fact that p(c)
— a generic MSA column likelihood — is always positive.
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Figure 2.18: Highest log likelihood values as function of the MSA length (depth m in
the dynamic programming matrices) as defined in equation 2.12. The curves refer
to the 15 internal nodes of a symmetric, balanced 16-taxon tree.



Stochastic backtracking DP
algorithm

“If I have seen further it is by standing on the shoulders of Giants.”

— Isaac Newton , The Correspondence Of Isaac Newton

3.1 Introduction

A classic DP algorithm returns by construction only a single optimal solution.
In our context, the DP method produces the maximum likelihood pairwise
alignment at each internal node of a given phylogenetic tree. The optimal
pairwise alignment, thought, conditioned on the two sub-alignments present
at the children node. To reduce the overall complexity, our DP alignment pro-
cedure has been framed into a progressive approach. Whilst, from one side the
progressive procedure considerably reduces the search space where to find the
optimal alignment, and thus the computational complexity, on the other side
it might introduce a bias (see also Appendix 6: Progressive bias analysis). In-
deed, this greedy heuristics works by picking, at each instance, the best partial
solution and step-by-step builds the final multiple sequence alignment of all the
sequences. Unfortunately, as is often the case, the progressive approach gets
stuck into sub-optimal MSAs. The reason lies in the fact that the algorithm
has to make decisions at early stages based on partial information and being
constrained onto a sub-space of the entire multiple sequence alignments space.
Thus, to mitigate the algorithm greediness we have implemented a stochas-
tic backtracking dynamic programming algorithm [100] which generates, at
each internal node, not a single optimal pairwise alignment but rather an en-



30 3. Stochastic backtracking DP algorithm

semble of sub-optimal candidate solutions, the latter distributed according to
their probability. Then, at the parent node, instead of computing the pairwise
alignment based on only two sub-MSAs, the aligner generates an ensemble of
MSA combining samples from the distributions at the children nodes. This
approach decreases the chances to be trapped in local optima engendered by
the greedy nature of the ‘pure’ progressive DP procedure.

Our stochastic backtracking (SB) DP approach has been inspired on the
method proposed in 2002 by Mueckstein et al. [100]. However, of course, our
proposed algorithm computes the pairwise alignment under PIP based on the
three-dimensional DP matrices.

3.2 Partition functions

At the core of the idea proposed by Mueckstein et al. [100], there is the calcu-
lation of three partition functions which represent a particular statistical en-
semble of alignments. In the alignment context, the partition function Z(T),
at a given ‘temperature’ T (explained later), is defined as:

Zexp( ) Zexp BS(M (3.1)

with 8 = (kT)~!. The summation in equation 3.1 goes over all possible align-
ments M and S(M) represents an alignment scoring function'. The parameter
k is the analogous of the Boltzmann constant (a model dependent parameter)
and the temperature 1" — in this context — tunes the “stochastic deviation” from
the optimal alignment (see also Section 3.6 for more details and examples). In
practice, in our algorithm we are considering k7" as a single parameter, called
T, since in the alignment problem there is no connection to the real tempera-
ture value.

The probability of a given alignment M at the ‘temperature’ T' becomes there-
fore

P(M,T) = % exp(BS(M)) . (3.2)

The partition function Z(T'), in equation 3.2, plays the role of normalizing
constant. In fact

Z Z eXp (BS(M)) =1. (3.3)

Lthe analogous of the negative energy in a thermodynamic context
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To efficiently compute the summation in equation 3.1, the SB algorithm has
been framed into a dynamic programming procedure [100].

In Section 3.4 and 3.5 we will explain the forward and backward recursion,
respectively, for the computation of the partition functions under PIP.

3.3 The partition functions ZM, Z* and Z"

Let A and B be two sequences or sub-alignments at the children nodes of v
and |Al, |B| their length. Moreover, let denote A[l,...,i] and B[L, ..., j] the
sub-sequence or sub-alignment from column 1 to 7 and j, respectively. We can
at this point define three different partition functions, namely ZM, Z* and ZY
([100]), which will be used in the forward phase, that are

(1)

(iii)

ZM(i, j,m) indicates the partition function of all the alignments of sub-
sequences / sub-alignments A[l, ..., ] and B[1, ..., j| ending — at position
(7,7,m) — in state match . That means that column A(i) o B(j): A(7)
is homologue to B(j). The probability of matching A(i) with B(j) is
denoted P4 B(j);

ZX(i,j, m) indicates the partition function of all the alighment of sub-se-
quences / sub-alignments A[l, ..., 7] and BJ[1, ..., j] ending in state gapX
at position (7,7, m). Column A(7) is aligned with a column full of gaps
on the right sub-tree. The gapX probability of matching A(:) with a
column of gaps is denoted Pa ;) ;

ZY (i, j,m) indicates the partition function of all the alignment of sub-se-
quences / sub-alignments A[l, ..., i] and BJ[1, ..., j] ending in state gapY
at position (i, 7, m). Column B(i) is aligned with a column full of gaps
on the left side. The gapY probability of matching B(j) with a column
of gaps is denoted P ;).

Similarly we define three partition functions, namely ZM, ZX and ZY, that will
be used in the backward phase:

(i)

zM(i, J,m) indicates the partition function of all the alignments of sub-se-
quences / sub-alignments Ali, ..., |A|] and B[y, ..., |B|] starting in match
state — at position (7, j,m) — and containing all the characters / columns
from i to |A| and from j to |B;
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(ii) ZX('L’, j,m) indicates the partition function of all the alignments of sub--
sequences / sub-alignments A[i, ..., |Al|] and B[y, ..., |B|] starting in gapX
state — at position (7, j,m) — and containing all the characters / columns
from 7 to |A| and from j to |B|;

(iii) ZY(i,7,m) indicates the partition function of all the alignments of sub--
sequences / sub-alignments A[i, ..., |Al] and BJj, ..., |B|] starting in gap Y’
state — at position (4, 7, m) — and containing all the characters / columns
from i to |A| and from j to |B].

The six partition functions defined above are graphically represented in Figure
3.1 by means of a simple example. Accordingly to the stated above definitions
we can write the match probability at position (i, j,m), notably PM(4, j, m),
which thus implies that A(i) ¢ B(j), as

IEDM(’i,j, m) — (Zajam) (Z?]>m) i : (34)
Z LINOR:10)
the gapX probability, at position (i, j,m), as
7ZX(i,j,m) - Z%(i,j,m) 1
PX(i, j,m) = KA LA : 3.5
(o) . o~ 35
and gapY probability, at position (i, j,m), as
P (i,jm) = 22 (3.5

Z Peg)

In equations 3.4 - 3.6, Z indicates the total partition function, that is Z =
ZM + ZX + ZY. Pa@)p() is the probability of matching column A (i) with
column B(j), Pa()e represents the probability of aligning the column A(%)
with a column full of gaps on the right side and P g(;) is the probability of
aligning a the column full of gaps on the left sub-tree with the column B(j)
(more details in Section 1: Progressive Dynamic Programming under PIP
model). It is worth noting, that in equations 3.4 - 3.6 the factors (Pa)B(j)) "
(Pag).e) . (Pep(s)) ', have been added to remove the respective probabilities
match, gapX and gapY which otherwise appear twice, both in ZM*Y (4 5 m)
and in /Z\M’X’Y(z',j, m).

For illustrative purposes, Figure 3.2 graphically portrays the different paths
connected to the cell PM(3,3,4) (colored cell). The sum over all paths start-
ing at (0,0,0) and ending at position (3,3,4) is computed by the function
ZM(3,3,4). The sum over all paths starting at position (3,3, 4) and ending at
(|A|,|B|,m) is computed by the function ZM(3,3,4).
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ZM 7X VA
(0,0,0) (0,0,0) (0,0,0)
ZM(3,3,4) 7%(3,3,4) 7Y (3,3,4)
ZM zx 7Y
2M(3,3,4) Z%(3,3,4) 2Y(3,3.4)

Figure 3.1: Ezample of the siz partition functions, defined in the text, evaluated at
the position (3,3,4), i.e. ZMXY(3,3,4) and ZMXY(3,3,4).

3.4 Forward recursion

During the forward phase the algorithm incrementally computes the three par-
tition functions ZM*Y . Differently from a classic DP approach, the stochastic
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J

Figure 3.2: Paths connectdd to PM(3,3,4). The sum over all paths starting at (0,0,0)

and ending at position (3,3,4) is computed by the function Z"(3,3,4). Such paths
are upwards of the cell (3,3,4). The sum over all paths starting at position (3,3,4)
and ending at (|Al, |B|, m) (at any layer m when all the characters have been aligned)
is computed by the function ZM(3,3,4). These paths are downstream of the cell
(3,3,4).

backtracking (SB) algorithm does not keep track of the matrix containing the
highest likelihood. The reason lies in the fact that the backtracking phase

builds paths stochastically rather than deterministically, based on the parti-
tinn functiana

match gapX gapY

Figure 2.3 Tpff' A cell in 7.M(1' 19 'm) (fppp'nf]e m’ﬂy on_the three entries 7M7X7Y(i —

TJT

1,7 — 1,m — 1) represented here with three colors. Middle: A cell in Z(i,§,m)X
depends only on the entriesVZN*X (i =1, j, mi= )W Right: Z(i, 7,m)Y depends on
ZMXY (G 5 —1,m — 1).

ZMX,Y

The three partition functions at position (7, j, m) of the sub-alignments



3.4. Forward recursion 35

All, ... i and B[, ..., j] can be computed by means of the recursive formulas:
ZM(i, jm) = (ZM(i—-1,j—1m—-1)+2Z"(i—1,j—1,m— 1)+
+Z%(i—1,5—1,m—1)) - Pag s (3.7)
Z*(i,j,m) = (ZM(i — 1,5,m — 1)—|—ZY('—1,j,m— 1)+
+Z%(i—1,j,m—1))-P (3.8)
ZY(i,j,m) = (ZM(Z, —1,m-1)+ ZY(Z j—1m—1)+
+Z%(i,j —1,m — 1)) - Py (3.9)

fori=1,...,]A,j=1,...,|Bland m =1, ..., |A| + |B].
At position (0,0,0) the matrices are initialized with
ZM(0,0,00=1,  Z*(0,0,0)=0,  ZY(0,0,0)=0. (3.10)

The total partition function Z at position (7, j, m) comprehends the total prob-
ability over all alignments ending in either of the three states M,X,Y at that
position. Hence, Z is obtained by summing the three partitions functions as
follow

Z(i, j,m) = ZM (i, j,m) + Z*(i, j,m) + Z"(i,j,m) . (3.11)

At m = 0, only the position (0, 0,0) needs to be computed. After the initializa-
tion, shown in formulas 3.10, the algorithm iterates through m = 1, ..., |A|+|B|
and computes the likelihood values as described below.

At layer m = 1, the algorithm calculates
ZM(1,1,1) = (ZM(O, 0,0) 4+ Z*(0,0,0) + Z¥(0,0, 0)) ‘Pamy,Ba) = Paq)B)
Z*(1,0,1) = (Z(0,0,0) + Z*(0,0,0) + Z*(0,0,0)) - Paq1).e = Pa(i).e
Z7(0,1,1) = (Z(0,0,0) + Z*(0,0,0) + Z¥(0,0,0)) - P 1) = Pen() -

At m = 2, the partition function ZM for all the alignments ending in state
match results in

2%(2,2,2) = (2"(1,1,1) + Z*(1,1,1) + Z¥(1,1,1)) - Pa@) Be2)
=Z"(1,1,1) - Pa@ e = Pa)so)  Pae,se)

ZM(2,1,2) = (ZM(1,0,1) + Z¥(1,0,1) + Z¥(1,0,1)) - Pag) )
=Z"(1,0,1) - Pa@) ) = Paq.e - Pae B0

ZM(1,2,2) = (2"(0,1,1) + Z*(0,1,1) + Z¥(0,1,1)) - Paq)B2)
=Z27(0,1,1)  PagyB@) = Py - Paq)p)
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the partition function Z* for all the alignments ending in state gapX gets
Z*(2,1,2) = (Z"(1,1,1) + Z*(1,1,1) + Z(1,1,1)) - Paa).e
=Z"(1,1,1) - Pag)e =Pa@B) - Pae).e
Z*(2,0,2) = (Z"(1,0,1) + Z*(1,0,1) + Z7(1,0,1)) - Pa(a).e
=7%(1,0,1) - Pa)e = Pagi)e - Pa@)e
Z*(1,1,2) = (Z™(0,1,1) + Z*(0,1,1) + Z¥(0,1,1)) - Paq1).c
=7Z7(0,1,1) - Paq)e = Pen(1) - Paq)e
and finally ZY for all the alignments ending in state gapY is
Z7(1,2,2) = (Z"(1,1,1) + Z*(1,1,1) + Z¥(1,1,1)) - Py
=ZM(1,1,1) - Peppo) = Pagy () * Per2)
Z¥(1,1,2) = (zM(1,0,1) + ZX(l,O, 1)+ Z7(1,0,1)) - Pegq)
=7%(1,0,1) - Pep() = Pag)e - Pen)
Z(0,2,2) = (2"(0,1,1) + Z*(0,1,1) + Z¥(0,1,1)) - Pep(o)
=727(0,1,1) - Pep) = Pen() - Pepo) -

All the successive layers are filled in with likelihood values in the same manner
as explained above.

Example

To make an example, let’s have a look at the calculations implied at coordinates
(3,3,4) in the three matrices ZM*Y.

Likelihood computation at Z (3, 3,4)

At ZM(3,3,4) the SB algorithm sums up the likelihood values of all the align-
ments of length |m| = 4 with Az ¢ Bs, which corresponds to

ZM(3,3,4) = Pa)Ba) - Pa@)c - Pe2) - Pa@) B3)+
+ IEDA(1),B(1) ‘PeB2) - Pa@)e Pa
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Figure 3.4: Possible homologous paths at ZM(3,3,4). Left: The 6 possible paths
are illustrated by means of a decision tree where at each coordinate (node) there are
three directions where to move next: for match by adding the vector (1,1,1) at the
actual position; for gapX by adding the vector (1,0,1) and for gapY by adding the
vector (0,1,1) to the current position coordinates. Right: The 6 possible paths are
portrayed inside the dynamic programming matriz ZM.

Likelihood computation at Z*(3,3,4)

At ZX(3,3,4) the SB algorithm sums up the likelihood values of all the align-
ments of length |m| = 4 with Aj aligned with a column full of gaps on the
right side, hence

Z%(3,3,4) = Pa)B) - Pa@ @) P - Pa@)ct
+Paq)Ba) - PeBr2) - Pa2)B@3) - Pa@),et+
+PeB) Paq)B2) - Pae),BE)  Pas).

Figure 3.5 depicts the 3 possible paths.

Likelihood computation at ZY(3,3,4)

At ZY(3,3,4) the SB algorithm sums up the likelihood values of all the align-
ments of length |m| = 4 with Bs aligned with a column full of gaps on the left




Figure 3.5: Possible homologous paths at ZX(3,3,4). Left: The 38 possible paths
are illustrated by means of a decision tree where at each coordinate (node) there are
three directions where to move next: for match by adding the vector (1,1,1) at the
actual position; for gapX by adding the vector (1,0,1) and for gapY by adding the
vector (0,1,1) to the current position coordinates. Right: The 8 possible paths are
portrayed inside the dynamic programming matric ZX.

side, hence

ZY(3,3,4) = Pa)B0) - Pa@ B2) - Pa@)c  Pena)+
+Paq)B) - Pa@)e  Pa@)Be) * Pepi)+
+Paq)e Pae),B)  Pa)Be) Pep)

The 3 possible paths are illustrated in Figure 3.6.

3.5 Backward recursion

The backtracking recursion scheme has been modified to return a stochastic
path, and hence a stochastic alignment, according to the total partition func-
tion computed in Section 3.4 : Forward recursion. In the forward phase the
SB algorithm builds in a very efficient way three distributions of likelihood.
These distributions are used, in the backward phase, to generate stochastic
paths where high probable paths are more likely to be generated then the oth-
ers. The three partition function ZM*Y are weighting, at each step of the
backtracking phase, the probability to move on the three possible directions




Figure 3.6: Possible homologous paths at ZY(3,3,4). Left: The 8 possible paths
are illustrated by means of a decision tree where at each coordinate (node) there are
three directions where to move next: for match by adding the vector (1,1,1) at the
actual position; for gapX by adding the vector (1,0,1) and for gapY by adding the
vector (0,1,1) to the current position coordinates. Right: The 3 possible paths are
portrayed inside the dynamic programming matriz ZY .

corresponding to match, gapX and gapY. According to these probabilities a
random choice is made.

An entry in ZMXY(JA],|B|,m) for m = max(|A[,|B|), ..., (JA|+B]) con-
tains the sum of all possible alignments of length |m| between the sequences
(or sub-alignments) A and B ending respectively in state match, gapX and
gapY. In this computation we have expressly left out the marginal likelihood
for all the non-observable empty columns. This likelihood component is added
only at this stage in the following manner

2V (AL [B].m) = Z"(|A],[B[.m) - ¢ (pe ). m)

for m = max(|A|, B|), ..., (|A| + |B|). The same applies for ZX(|A|,|B|,m)
and ZY(|AJ, |B|,m). At this point, the SB algorithm has to select firstly, from
which matrix to start the tracebacking and secondly, the layer m where to
start.

I) Selection of the starting state. To decide in which state (i.e. from
which matrix) to start, the algorithm computes the total probability from the
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sM SX SY

J J J

Figure 3.7: Darker cells represents entries containing likelihood of candidate solu-

tions. At each layer corresponds an MSA with different length.

three distributions by summing the values contained in the “last column”?.

These columns, containing the likelihood of candidate solutions, are depicted
as darker cells in Figure 3.7 and . For ZM the summation gets

B
s= > ZV(ALBLm).
m:max(|A\,|B|)

The same applies for ZX and ZY, thus getting zx and zy, respectively. In
the columns highlighted in Figure 3.7 one can find the likelihood values of
alignments ending in the corresponding states ‘M’, ‘X’ “Y” and having a total
length indicated by the depth m. To select in which state to start, a random
number uniformly distributed r = U(0,1) is drawn. If r < z\/ (zM + 2x + Zy)
than the first state is match, if r < (ZM + zx)/(zM + zx + ZY) then the first
state is gapX otherwise the algorithm starts in gapY state.

IT) Selection of the starting level. A similar procedure is applied to
choose at which layer m the tracebacking will start. Let us suppose that
the algorithm starts in state gapX, then the starting position is selected by
drawing a second random number uniformly distributed r = #/(0,1) and the
algorithm iterates through the column z,, = ZX(|A|,|B|, mg)/2x for mg =

2that is, the matrix column at the positions Z(|A|,|B,m)M*Y with m =
max(|A[,|B]),..., (JA] +|BJ).
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max(|Al,|B]), ..., |A| + |B| until the statement z,,, >  is no more true. The
selected mg corresponds to the layer where the traceback starts and dictates
the final MSA length.

IIT) Selection of stochastic path. The stochastic backtracking algorithm
begins in the matrix selected in (I), at the layer chosen in (II), and then run
through the three matrices until it reaches the upper-left corner at coordinates

(o,c — 7
one
at t

ZM,X,Y

m
1

J
Figure 3.8: Backtyracking phase. Graphical representation of the procedure of select-
ing the preceding |state based on the partition functions ZMXY . The set of paths

linked to the current state at coordinates (i,j,m) (green box) are represented with
different colors (in pink ZM(i — 1,5 —1,m — 1), in green ZX(i — 1,5, m — 1) and in
blue ZY (i,5 — 1,m —1)). The algorithm select which is the previous state based on
the total likelihood of the mentioned paths

The probability of being in state match at coordinates (i, 7, m) coming from
‘M’,X” and ‘Y, denoted PM(i — 1,5 — 1,m — 1), PX(i — 1,5 — 1,m — 1),
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PY(i — 1,5 —1,m — 1), respectively, is given by
ZM(Z — 1,j — 1, m — 1) 'IPA(i),B(j)

PMi—1,j—1,m—1)= ZG ) (3.12)
. . ZX(i—1,7—1,m—1)-Pau By
_ . ZY(i—1,7—1,m—1) Pau By

with
Z(i,jm) = (ZM(i—-1,j—1,m—-1)+Z*(i—1,j —1,m— 1)+
+ZY(i—1,j—1,m—1)) -Pagn( -
The probability of being in state gapX at coordinates (i,7,m) coming from

‘M, X and *Y’, denoted PM(i—1, 5, m—1), PX(i—1,j,m—1), PY(i—1, j,m—1),
respectively, is given by

ZM(i—1,5,m —1) - Pag.e

PY(i—1,j,m—1) = 207 (3.15)
, , ZX(i—1,5,m — 1) - Pagi).e
ZY(i—l j m—l)-]P’A(-)

PY(i—1.4m—1)= L 3.17

x(z 7]7m ) Z(Z,j’m) ( )

with
+ ZY<Z —1,5,m— 1)) ’ ]P)A(i),e .
The probability of being in state gapY at coordinates (7, j,m) coming from

‘M’,X” and ‘Y’, denoted IP’i\,A(i,j—l, m—1), P;((i,j—l, m—1), P;((z',j—l, m—1),
respectively, is given by

ZM(Z,j — ]., m — 1) . ]P)e,B(j)

M/: - . _
Pr(i,j—1,m—1) Z(ij.m) (3.18)
ZX(i,j —1,m—1)-Pcp
X/: . _ ) ) €,B(j)
P>(i,j —1,m —1) Z0ij.m) (3.19)
ZY(i,j—1,m—1)-P.py
Y/ - - ) ) €B(j)
Pr(i,j—1,m—1)= (3.20)

Z(i,j,m)
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with

Z(i,j,m) = (ZM(i,j — L,m — 1) + Z*(i,j — 1,m — 1)+
+ZY(i,5 —1,m — 1)) - Pepgj) -

Therefore, if the current state is match, the algorithm selects the preceding
state using equations 3.12, if the current state is gapX one uses equations 3.15
otherwise equations 3.18. The preceding state is selected by drawing a random
number uniformly distributed » = U(0,1). Let us suppose that we are at
coordinates (7, j,m) and the current state is ‘M’ than if

PMXY

r <

where PMXY — (P%(z’—1,j—1,m—1)+]P’ff1(i—1,j—l,m—l)—i—IP’Xl(i—l,j—
1,m— 1)), then, preceding state is set to ‘M’, then i <~ 72— 1, 7 < 7 — 1 and
m<+—m—1;

a preceding state is set to ‘X’ if

(PG —1,j—1m—-1)+PX(i—1,j—1,m—1))
PMXY

r<

then?+i—1and m+ m — 1,
otherwise the preceding state is set to ‘Y’ and j <— j — 1 and m < m — 1.

Figure 3.8 depicts graphically the procedure of selecting the preceding state
based on the partition functions ZM*Y . The set of paths linked to the current
state are represented with different colors. The algorithm select which is the
previous state based on the total likelihood of the mentioned paths.

3.6 The temperature parameter

As we have mentioned, in Section 3.1 : Introduction, the parameter ‘Tempera-
ture’ tunes, to some degree, the deviation from the optimal alignment. In our
context, by setting T" — oo, each alignment becomes equiprobable, the solution
is therefore purely random. On the contrary, by setting T = 0 the stochastic
backtracking returns the optimal alignment. In the range 0 < T' < oo the
parameter temperature controls the deviation from the optimal alignment al-
lowing, gradually, the generation of sub-optimal alignments. Such behavior
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Figure 8.9: Probability distortion as function of the temperature. We have set py, =
0.80, px = 0.15 and py = 0.05 and we let the temperature varies from 0.01 to 10. At
low temperature the algorithm assigns a probability close to 1 at py and close to 0
at either px and py. At T = 10 the three states have almost the same chance to be
selected with probability approaching 1/3.

is obtained in this manner. Let’s assume the algorithm is in state ‘M’, and
let denote py,, = PM(i — 1,5 —1,m — 1), p, = PX(i — 1,57 — 1,m — 1) and
py =PY(i— 1,5 —1,m — 1), then the distorted probabilities become

~ Pm ~ DPx ~ b
Pm = exp(?> Dx = exp<T> Py = exp(%) : (3.21)

To guarantee that one of the three possible states is always selected we nor-
malize them so that their sum gets always 1, that is
m x Y

Pm + Px + Dy Pm + Px + Py Pm + Px + Py
The probabilities in equations 3.12 - 3.20 are then re-weighted with the tem-

perature 1" using equation 3.21 and 3.22.

Figure 3.9 shows the distortion of the probabilities as function of the tem-
perature 7. We have set p,, = 0.60, px = 0.35 and p, = 0.05 and we let the
temperature varies from 0.01 to 10. One can note that at low temperature
the algorithm assigns a probability close to 1 at p,, and close to 0 at either
px and py. Therefore at low temperature the SB becomes greedy reducing
the chances of low probable alignments. As the temperature raises as more
probable becomes that also one of the other two states is selected. Indeed, at
T = 10 the three states have almost the same chance to be selected. Hence,
at high temperature the algorithm is less greedy allowing the generation of
sub-optimal alignments.
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Temperaure T = 0.10. In Figure 3.10 we are showing, for a fixed temper-
ature, how the starting probabilities (on the left side) are re-weighted (on the
right side) according to equations 3.21 and 3.22. For this plots we have set
T = 0.1, pm, px and py are linearly increased or decreased as depicted in the
left plot. From the right plot it can be noted that at low temperature the
algorithm promotes the highest value among the three and penalize the other
two. Therefore at low temperature the SB behaves as a greedy algorithm.

1.0 1.0
pm

0.8 0.8 Px
Py

0.6 0.6

[a Ay

0.4 0.4

0.2 0.2

0.0 0.0

20 40 60 80 100 0 50 100
index index

Figure 3.10: py = 0.40, ...,0.80, px = 0.20,...,0.15 and py = 1 — pmy — px.

Temperaure T = 0.30. Figure 3.11 depicts, at fixed temperature 7' = 0.3,
how the starting probabilities (on the left side) are re-weighted (on the right
side) according to equations 3.21 and 3.22. The match, gapX and gapY prob-
abilities, pm, px and py, respectively, are linearly increased or decreased as
depicted in the left plot. From the right plot it can be noted that by increas-
ing the temperature the algorithm becomes less greedy. In this example the
probabilities are almost kept unchanged.

1.0 1.0
pl}]

0.8 0.8 Px
Py

0.6 0.6
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index index

Figure 3.11: py, = 0.40, ...,0.80, py = 0.20,...,0.15 and py = 1 — pyy — px.

Temperaure T = 10.0. In Figure 3.12 we are representing, at temperature
T = 10, how the starting probabilities (on the left side) are re-weighted (on
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the right side) according to equations 3.21 and 3.22. The probabilities py,, px
and py are linearly increased or decreased as depicted in the left plot. From
the right plot it can be noted that at high temperature the algorithm squeezes
all the probabilities around the value 1/3. This means that each alignment has
the same probability to be generated therefore the result is purely random.
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Figure 3.12: py = 0.40, ...,0.80, px = 0.20,...,0.15 and py = 1 — pmy — px.

Applying the temperature distortion we have run the SB algorithm at three
different temperatures. We have recorded the taken path through the ma-
trices. Figure 3.13 shows the paths undertaken at 7' = 0.01, 7" = 0.1 and
T = 1 by the SB algorithm, aligning a synthesized dataset. The DP matrix
in 3.13 represents an hypothetical traceback sparse matrix (note that in SB
there isn’t any traceback matrix differently from the classic DP under PIP).
It is interesting to see that at low temperature the traceback paths are less
scattered that at high temperature. In fact, as the temperature increases as
more the paths are dispersed in the traceback matrix. The alignments are
always generated according to their likelihood but their likelihood is distorted
so that very different likelihood values are transformed to look very similar.



T =0.01 T =0.1 T=1.0

Figure 3.13: Stochastic backtracking paths at three different temperatures, T = 0.01, T = 0.1 and T = 1.0. It can be
noticed that as the temperature growth, the paths diverge from the optimal path. In principle, at T — oo any paths can be
generated disregarding their likelihood.
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Marginal Likelihood with Rate
Variation Across Sites

“Nothing in life is to be feared, it is only to be understood. Now is
the time to understand more, so that we may fear less.”

— Marie Curie

4.1 Introduction

Evolutionary studies have shown that sites are substituted at different rates.
Hence, it is meaningful to account for the Rate Variation Across Sites (ASRV)
during the sequence alignment and the phylogeny inference [43, 49, 50, 137,
150, 166, 168]. To model the substitution with ASRV different continuous
distributions have been suggested. The mean-one discrete gamma distribution
is definitely the most-frequently used. In practice, each site evolves at any of
the rates among the discrete rate classes. Since the specific rate / class of each
site is unknown, one marginalizes over all the classes.

The discrete gamma distribution is applied in the following manner. Let
us suppose that the substitution rate r associated to a character, inside our
input sequence, is an i.i.d. random number according to a given distribution
g(r). Let also denote with k the site total number of substitutions during an
evolutionary interval of time ¢. Assuming that substitutions are following a
Poisson process (Markov process of substitutions) at a given rate r, implies
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that k follows the distribution ([167])

F0 = [0 g wyar (@)

From equation 4.1 we can compute the expected value of k, E(k), as the first
moment of the distribution f(k) in equation 4.1, that is

E(k) =) (k- (k)

=E(r)-t (4.2)

= Var(r) - > + (F-t)2 +7 -t — (7 - t)°
= Var(r) - t* +7 - t (4.3)
where 7 = E(r). From equation 4.2 and 4.3 we get

F=E(r)=——= and Var(r)= Var(k)t; E(k) : (4.4)
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A classic choice for the distribution g(r) is the gamma function, with proba-
bility density function (PDF) equal to

=AYl
(r) = (ig)) cpeh e/t (4.5)
where as already mentioned above, 7 = E(r) and « is the shape parameter
of the function which is a measure of the level of among-site rate variation.
Figure 4.1 displays some gamma distributions characterized by different shape
parameters a. When « is relative small there will be a high among sites rate
variation, when « is relative high then there will be a low degree of variation.

15
L a=05 a=5.0 |
=
0
0.5 J
0 | | | | i =
0 0.5 1 1.5 2 2.5 3

Figure 4.1: Gamma probability distribution function with different shape parameters
for a fixed mean rate equal to 1.

4.2 PIP equations under ASRV

The marginal likelihood under the PIP model applying the gamma distribution
to account for the among-site rate variation, denoted here with the subscript
', is computed with the following equation

pr-(m) = er(p(co), Im|) [ [ pr(e) (4.6)
= Z P(T)SO(I?(C@; r),|m|, r) H Z P(r)p(e,r) (4.7)
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where P(r) is the gamma density of the rate category r.

The likelihood of an MSA column ¢, with associated gamma rate r, becomes

ple,r) = Z {]l[v €] v(v,r)- Bv,r) - (mweof(v,7))]. (4.8)

vey
with
1[(v) = o] ifvel
f(v,r) = H exp(b(w) - - Qc)f(w,r) otherwise (4.9)
wechild(v)

and Z, in equation 4.6, refers to the set of vertices with non zero felsenstein’s
weight which corresponds to the set of vertices where an insertion could have
happened.

The normalizing measure of the Poisson process, applying the gamma distri-
bution, becomes

<

1
=\-r- — . 4.10
It =A-r- (el + ) (410)
The insertion probability, in equation 4.8, on a given node v \ 2 is

A1 b(v) b(v)

t(v,r) = = (4.11)
A I
while at the root node gets
A 1
u(Q,r) = Al a (4.12)

pum— 1 .
(el + ) Il

The survival probability under the gamma distribution can be derived by set-
ting w = p - r. Therefore, by computing the tail cumulative distribution
P(Z >t) (see A.29 in Appendix A.2 for more details), we get

PW+U>t)=P(Z >t)
_ /°° exp(—wz) (exp(wt) — 1)dz

t
1 — exp(—wt)

wt
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Substituting back w with p - r we obtain the survival probability on a given
node v \ Q

Blo,r) = POW + U > blv)) = LR b()) (4.13)

por-b(v)

and at the root €2 is
B(Q,r)=1. (4.14)

The marginal likelihood for all empty columns (without ASRV) is computed
by means of the following equation

ool ) = 30 PUXI =)+ (" ) epte ™™ (a1s)

n=|m|

where
P(|X| =n) = wef\w
n!

is the Poisson probability of observing an MSA of length n and p(cy) is the
likelihood of a single column full of gaps. With gamma the marginal in equation
4.15 becomes

er(p(eo), Iml) =D P(r) - @ (p(co,r), 7, [m)

“STRG)- | S ROXI = n)- (,:ﬂ) pleg, )
: n=lm|
(4.16)
where
B(X] = n, r) = PO o (4.17)

n!

and p(cg,r) is the likelihood of a column full of gaps under the gamma rate
distribution (see equation 4.19). Using equation 4.16 and 4.17, the marginal
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likelihood under PIP for all empty columns with gamma gets

er(plaa)lm) = 3 (Z’”PWW)”)Hexp(_gwr)"”(?")”)'(|:~L|)’

n!
n=m|
- (Z P(r)p(c@,m)n'm'
-3 Sew(-0)- (1) (;P<r>p(c@,r>)nlml (118)

n=|m|

[e.9]

where © in 4.18 is calculated as © = Y P(r)|lv(r)||. And finally, the likelihood

of a single empty column ¢y with gamma rate r is computed by means of the
following equation

p(cp,r) = t(v,7r)B(v, 7“)(71'6 o f(v, 7“)) + Z t(v,r) (1 — Bv,r)+
vEV\Q

+ B(v,r) (7'&'E o f(v, r))) )
(4.19)



Multi-scale STFT based
homologous blocks detection

“I would rather have questions that can’t be answered than answers
that can’t be questioned.”

— Richard Feynman

5.1 Introduction

Today’s large genomics datasets provide a rich source of information and enable
increasingly realistic models to be applied to study the underlying mechanisms
shaping biological sequences. Such models however tend to be mathematically
more sophisticated, and as a consequence, are computationally more demand-
ing. In this context, one of the oldest and most fundamental problems is the
alignment of related genomic sequences.

Due to the inherent computational complexity of the MSA inference, heuris-
tic algorithms have been developed to enable this task as a part of routine
sequence analyses. The progressive MSA heuristics simplify the problem by
splitting it into a series of pairwise alignments guided by a tree structure rep-
resenting the evolutionary relationship of the sequences. Each pairwise align-
ment is typically constructed by dynamic programming, which usually scales
quadratically with the sequence length. Moreover, the computational com-
plexity of a pairwise alignment with non-overlapping inversions becomes cubic
with the sequence length [76].

A sound mathematical description of the evolutionary process of insertions
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and deletions requires complex models such as the classical TKF91 [145] or the
more recent Poisson Indel Process PIP [13]. The actual power of both models
consists in describing the evolution of indels on a tree, and their computational
complexity is largely determined by the evaluation of the marginal likelihood
of an MSA. However, while TKF91 yields a exponential complexity in the
number of taxa, PIP allows to reduce this computation to linear time.

In this thesis, we have presented our new progressive DP algorithm [8§]
which aligns two MSAs under the PIP model by maximum likelihood (ML).
This algorithm runs through a given guide tree and computes at each internal
node a column-wise likelihood for all the homology paths implied by the two
sub-alignments observed at the children nodes (see Sections 1-2). The DP
algorithm then returns the optimal ML pairwise alignment conditioned on the
input. However, this approach requires sparse 3-dimensional DP matrices to
account for the non-monotonicity of the marginal likelihood for non-observable
scenarios. As a consequence, the computational complexity becomes cubic in
the sequence length.

A possible approach to reduce the computational complexity in a DP frame-
work is to predict candidate homologous segments for the purpose of filtering
out non-promising regions in the DP matrix prior to the effective alignment
process [62, 136]. This allows to constrain the possible candidate alignments
for the overall problem thus reducing the problem complexity. One of the
fastest and most accurate aligners, MAFFT [62, 62, 63], relies on a fast Fourier
transform (FFT) for the segments detection. However, the usage of FFT for
alignment can be traced back to Felsenstein 1982 [35] who applied it to obtain
ungapped pairwise alignments of entire sequences in O(Llog L), where L is
the average sequence length. Nonetheless, the method was defined of “limi-
ted value” because of the impossibility of accommodating indels. In MAFFT
ungapped homologous segments are used to constrain possible DP paths and,
thus, exclude areas from the DP calculation. Gappy regions then link consec-
utive homologous regions thus yielding the final MSA. The resulting speed up
increases with an increasing number of detected homologous segments. Figure
5.1 illustrates the theoretical speed-up factor that can be achieved by splitting
the original 3D problem into a series of sub-problems. The speed-up factor
refers to the number of entries in the original problem (total number of cells
in the three 3D DP matrices) divided by the total number of cells of the sub-
matrices considering the latter all of equal size.

In this chapter, we present a novel STFT-based approach to identify ho-
mologous segments and apply it in a progressive DP-PIP framework. Although



5.1. Introduction 57

90 T o= I

3

80
70 - B - 0 -
60 - -
50 - -
40 - .

- ;7 |

10 - l |

speed-up factor

num. blocks

Figure 5.1: Theoretical speed-up as function of the number of blocks. A possible
approach to reduce the computational complexity in a DP framework is to predict
candidate homologous segments for the purpose of filtering out non-promising regions
in the DP matriz prior to the effective alignment process. This allows to constrain
the possible candidate alignments for the overall problem thus reducing the problem
complezxity.

our method is strongly inspired by MAFFT, we have introduced a number of
improvements that are briefly summarized here.

(i) The use of a multiple-resolution short-time Fourier transform (STFT)
improves the detection of homologous regions especially in the presence
of noise (see Section 5.5.1).

(ii) The STFT is more effective in detecting relative short patterns than the
classical FFT (see Section 5.5.2).

(iii) The determination of the positional lag and the relative positions of the
patterns inside the two signals are computed simultaneously and in a
unique framework.

(iv) We define a more sophisticated and general approach to generate logically
sound paths to connect homologous blocks and resolve overlaps between
them.
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(v) We compute several critical tuning parameters directly from the data at
hand, instead of relying on arbitrary standard hard-coded values.

(vi) The cardinality of the set of candidate positional lags for homologous
regions is not fixed a priori but rather depends on the input data at
hands. This set is constructed using a data-dependent and statistically
robust noise threshold.

In order to understand the idea behind the use of the short-time Fourier trans-
form to detect the homologous blocks, we start by first giving an overview of
key concepts concerning the Fourier transform (Section 5.2) and the short-time
Fourier transform (Section 5.3).

5.2 Fourier transform

Let us start considering a periodic function with period 7' > 0, i.e. f(t+7T) =
f(t) and let restrict our analysis only on the space of square integrable peri-
odic functions of period T', denoted LZ(RR), and thus satisfying the following
condition
to+T
/ | fr(t)]2dt < <. (5.1)
to

The periodic function fr can be easily decomposed in a sum of complex basis
functions, namely its Fourier series decomposition, which gets

—+00

fr(t) =Y ae®m! aj € R, (5.2)
j=—o00
where w; = £ is kept constant. The set of basis functions {e®™i*, j € Z}
builds a complete and orthonormal set spanning the space L%(R).

In equation 5.2, the different basis functions coefficients a; are measuring
the amplitude of the corresponding frequency component w; — of their asso-
ciated basis functions — contained in the function fr. The coefficients a; are
computed as the orthogonal projection of fr onto the vector space spanned
by the basis functions, the coefficients being the projection on the associated
basis function. The projection is obtained by computing the inner product

aj = /OT fr(u)e®™ " du . (5.3)
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This implies that if the coefficient a; = 0, the orthogonal projection of fr onto
its associated basis function is also 0 and therefore the corresponding frequency
is not contained in the signal fr. Thence, equation 5.2 completely describes
the signal fr by its frequency content.

The Fourier series can be extended to non-periodic functions, or alterna-
tively said functions with infinite period T'. The so obtained transform, named
Fourier transform, is defined for arbitrary square integrable functions in L*(R).
The Fourier transform is an operator F = f : L2(R) — L2(R), defined as

~ +OO .
F(H)(s) = f(s) = : fu)e 2™ du, (5.4)

where s = w; and s € R can assume any value. The coefficients, computed in
the Fourier series by means of equation 5.3, now get

a(s) = h (u)e® ™ du . (5.5)

—0o0

In equation 5.5 each value s has its associated periodic basis function e??™* of

given frequency s. Like in the periodic case of the Fourier series, the coefficients
a(s) (equation 5.5) are different from 0 if the frequency s is present in the signal
f. The inverse Fourier transform is defined as

“+o00

FHf)w = Jls)errias (5.6)

where f(t) = F~! ( f) (#).

5.3 Short-time Fourier transform

For the purpose of getting an impression regarding the concept of time-fre-
quency space, let us suppose that we are listening a piece of music and that
the audio signal is represented as a real function f of the time. The auditory
information we perceive takes place on time and frequency simultaneously. Our
auditory system transforms the sound f onto a signal f (t,w) that depends on
both time and frequency. It is worth to mention, that the sound we have heard
some time ago is no more influencing what we are hearing now. Therefore, it
must exist a real number ¢, > 0 such that f (t,w) — virtually computed in our
auditory system — depends only on a finite interval of time [t — tg, ¢].
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Mathematically this means that the modulating function used to analyze

the frequency content of f(¢,w) is localized in time and hence, the analysis
10 nannnntratad Anlsr in o naichhavrhand Af 4+ Mania (ahar nranacnd fAar +ha
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Figure 5.2: Windowing function. Left: original signal. Right: Function localized
with a finite support Gaussian windowing function. When another function is mul-

tiplied by a window function the result is a zero-valued function outside the support
of the windowing function, thereof its name.

One possible approach to analyze the function f on a finite interval is by
using an auxiliary localized modulating function w(u) which, in turn, localizes
the otherwise infinite support basis function e=?™% of the Fourier transform.
This reads as

Wy, (u) = w(u — t)e 2 (5.7)
and is depicted graphically with an example in Figure 5.2. If the windowing
function w is time localized than the basis functions wy,(u) result localized
too. Let’s first requiring that the window function w(u) has norm 1, that is

/ T w)du = 1 (5.8)

—00

and clearly also the shifted function w(u — t) has norm 1, i.e.,

+o0o
/ w(u —t)du =1 Vit . (5.9)

o0

Given a signal z(t) € L*(R) and using equation 5.9 we can express z(t)

x(t) = x(t) /_+OO w(u — t)du = /_+OO z(t)w(u — t)du. (5.10)

o0
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Starting from the Fourier transform definition

F(x)=X(w) = /_ Ooa:(t)e_i‘”tdt (5.11)

[ee]

the short-time Fourier transform can be obtained substituting z(¢) from equa-
tion 5.9 into 5.11, which reads

X@Q:i[if{/fwx@ﬁMt—uﬁﬁ}eﬂwdu: (5.12)
-/

By changing the order of integration

/+OO r(t)w(t — u)e “dtdu. (5.13)

X(w) = /_ :o /_ :O 2Bt — w)e “dtdu (5.14)
_ /_ :o [ /_ :ox(t)w(t—u)du} dt (5.15)
_ _:OX(t,w)dt. (5.16)

The Fourier transform using the above mentioned windowing functions gets

ft,w) = /_:ow(u —t)f(u)e 2™ dy = . fu)we,(u)du = <u3t,w, f> ) |
5.17

The transform f — f (t,w) in equation 5.17 is named short-time Fourier trans-
form. It is worth to note that if f € L?(R), than f(t,w) € L?*(R?). The
short-time Fourier transform is therefore called time-frequency transform on
the domain (f,w). If the windowing function w, in equation 5.17, has good
localization properties, than also the transformed function f is well localized,
ie.,

Flt,w) = (wy, t) = <wt,w, f> . (5.18)

This property translates in a transform which returns information both local-
ized in the time and in the frequency domain.
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5.3.1 The Heisenberg Uncertainty Principle

Unfortunately, one cannot analyze the function f € L2(R) at infinite finer
resolution both in time and frequency domain (¢,w) simultaneously. There is
a limit in the precision that one can achieve in localizing time and frequency
jointly. This law is basically the same as the Heisenberg Uncertainty Principle
that applies in physics for the simultaneous determination of positions and
momenta of particles. Intuitively this principle translates in the following
pragmatic property: the more precise we want to know the frequency content
the longer we must observe the process.

Assuming that the norm L?(R) of the window function w is 1, i.e. ||w|[* =1
than, using the Plancherel theorem® it follows that also ||w||?* = 1. Considering
both w and w (its corresponding Fourier transformed function) as probability
distribution functions, than we can compute their first moment respectively as

400 +oo
f:/ t-|w(t)|dt and w:/ w - |w(w)|dw . (5.20)

oo oo

Their standard deviations is obtained as

+00 400
6 = / (t—f)z SJw(®)|*dt  and 52 = / (w—w)2 |B(w)|*dw. (5.21)
—o0 —0o0

The standard deviations of equations 5.21 then are used as the two dimen-
sions of the so called Heisenberg boxes, which represent a measure of the
time-frequency localization of the transform. Indeed, geometrically the time-
frequency domain localization (¢,w) of a given transform is often represented
by rectangles of dimensions d; x d,,, which characterize its associated tiling of
the time-frequency plane (see Figure 5.3). The Heisenberg principle defines a
limit in the simultaneous precision achievable by a transform, which is

1

6262 > —.

P = Ag

Equation 5.22 is the classic blanket that is too short: when 4, is small, i.e.
well localized in frequency, than J; must increase which translates in a loss in
time localization and vice-versa. In other words there is a constraint in the

simultaneous precision.

(5.22)

IPlancherel equation states that

12 = 117112 (5.19)
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Iawgure 5.3: 1iling of the time-frequency plane for different transforms. 1) 1ime-
domain sampled signal representation. i) Tiling of the time-frequency plane by the
Fourier transform. It can be noted that the time information is completely missing.
i11) The STET returns a uniform rectangular tiling of the time-frequency plane, with
Gaussian windows function it returns a squared tiling. i) The wavelet transform
produces a time-varying tiling of the time-frequency plane. At low frequency a better
frequency resolution at high frequency a better time-domain resolution. The smallest

possible Heisenberg box area is 1/4m.

5.4 Algorithm overview

In order to reduce the computational complexity of aligning pairwise sequences
by means of DP algorithms, candidate homologous segments are predicted for
the purpose of filtering out non-promising regions from the computation, as
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shown in Figure 5.1. The homologous segments detection is achieved by means
of the cross-correlation of the sequences physicochemical properties. The com-
putation of the cross-correlations is accelerated exploiting the convolution the-
orem of the Fourier transform which has been implemented in a fast Fourier
transform (FFT) based algorithm. The cross-correlation computed by the FFT
returns a discrete signal fj that can then be represented as a function of the
positional lag k between two input signals. Figure 5.4 shows the signal f;, com-
puted with the original approach suggested by Katoh et al. [62] (top panel)
and our proposed approach based on the Grantham’s distance (bottom panel),
see Appendix E for more details. The signal f; identifies lags k for which the
columns of the two mutually shifted sequences present a high degree of simi-
larity. For example, in Figure 5.4 both approaches return f; = {300,310} as
positional shifts yielding candidate homologous segments. For a given posi-
tional shift one can find more than one homologous segment, the bigger the
total homologous region the more pronounced is a peak.

Henceforth, we will consider such similarity (computed by means of the
signal cross-correlation) as a proxy of a putative homology. However, since the
Fourier transform analysis localizes the signal only in the frequency domain, as
represented by the corresponding tiling of the time-frequency plane in Figure
5.3 (ii), the function f; defines only the shifts & where homologies can be
found, without providing information on the location of the actual homologous
regions within the sequences. Katoh et al. proposed in their approach to score
— column by column — the shifted sequences considering candidate segments
regions having a score > 0.7. We tried a similar approach computing the
column marginal likelihood under PIP but unfortunately without success. The
first problem was the definition of a suitable (data dependent) threshold that
segregates the candidate segments from the rest. The second problem was that
the column gap content depends on the model parameters like for example on
the indel rates and the branch length. Therefore, it is not true that a high
column likelihood value is directly related to a lower content of gaps. If the
primary objective of the segment detection is to identify highly conserved
blocks inside the sequences, than the marginal likelihood under PIP is not
the appropriate tool to choose. A more naif instrument, although being more
suitable for our purpose, could be the direct evaluation of the number of gaps
contained in the shifted columns. This has been depicted graphically with a
small example in Figure 5.5.

For addressing this problem, we propose a multi-resolution short-time Fou-
rier transform (STFT) which provides information on both lag k£ and location
of the detected homologous blocks. Indeed, as displayed in Figure 5.3, the



5.4. Algorithm overview 65

250 - 7
200 .
150 - T

100 7

Ji

50 - N

0 50 100 150 200 250 300

Jr
w
o

0 50 100 150 200 250 300
k

Figure 5.4: FT coefficients fi,. Top: Coefficients computed with the cross-correlation
approach proposed by Katoh et al. [62]. Bottom: Coefficients computed with our
proposed approach which exploits the Grantham’s distance. For more details see
also Appendiz E. The dotted line represents the noise threshold t;,. The threshold
is calculated by recomputing the cross-correlation matriz f,[m, k] after randomly
permuting the residues of one of the two sequences. This statistically destroys any
potential homologous patterns in the sequences and allows us to define an intrinsic
‘noise’ level as the maximum, respectively minimum, of the cross-correlation coeffi-
cients fy|m,k]. In the cross-correlation (top) approach the coefficients bigger than
the noise threshold are denoting similar patterns in the signals, in the Grantham’s
approach (bottom) are instead the coefficient smaller than ty,.

STFT differently form the FT is localized both in time and frequency. The
size of this window characterizes the space-frequency resolution at which the
analysis of the signal is performed. By progressively reducing the size of the
window, the frequency resolution reduces while the space resolution increases,
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Figure 5.5: Column-gap content. Bottom: MSA portion of dataset RV912/Box49
(papillomavirus protein) taken from BALiBASE benchmarks. Top: Column-gap con-
tent computed from the alignment shown in the bottom panel. The gap content is then
filtered with a median filtering in order to remowve isolated spikes. The gap content
threshold is set to t, = 0.7 depicted with a dashed line. Middle: Regions having a
gap content < 30%, named “conserved columns”, are assigned to value 1 (highlighted
in light green), regions exceeding 30% of gaps are assigned to value 0 (highlighted in
dark green). Regions in light green constitute the candidate homologous blocks and
are aligned first.

as expressed in equation 5.22 discussed in Section 5.3.1. This yields a more
precise localization of the detected ‘similar’ patterns within the sequences,
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Figure 5.6: Non-overlapping (left) and overlapping (right) blocks. Overlapping blocks
need to be resolved prior to be aligned. A more detailed explanation regarding our
proposed algorithm to resolve overlaps is provided in Section 5.4.5 and Appendix F.

albeit at the cost of a more expensive computational effort. Although, there
are strategies to reduce the computational effort required (briefly discussed
below).

The candidate homologous regions thus detected by the STFT allow us
to define a set B of blocks in a MSA homology matrix analogous to the one
introduced in Katoh et al. [62]. An example is shown in Figure 5.6, which
represents a simplified configuration with non-overlapping blocks (left panel)
and overlapping homologous blocks (right panel). The homologous blocks need
to be selected, arranged and connected in a consistent way for designing a
meaningful final alignment. To that purpose, within the set B we first identify
the set P of all possible paths connecting the candidate homologous blocks
and potentially yielding a final alignment. Each paths p; € P is then analyzed
independently. As anticipated above, we first observe that along a given path
pi, two generic blocks b;, b, € B might exhibit overlapping regions. Such over-
laps must be removed so that b; and b, can be aligned as independent sub-
matrices. In the presence of long sequences, which might exhibit a complex
pattern of possibly overlapping homologous blocks, a consistent alignment can
become a highly non-trivial task. This task is discussed in more details in 5.4.5
and Appendix F.

Finally, among the overlap-free paths P we select the optimal path p*, in-
cluding a set of homologous blocks ) derived from the original set BB, according
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to some criteria that need to be specified. At this point, the homologous blocks
€ $ can be independently aligned following a DP approach (see also Sections
1 and 2). An additional set of intermediate linking blocks £ is then introduced,
when needed, to connect consecutive homologous blocks. The linking blocks
€ £ are also independently aligned in a DP manner. The resulting tracebacks,
from both $ and £, are joined together yielding the final alignment.

It should be noted that in the homology matrix only the areas correspond-
ing to the homologous and linking blocks of the previously selected optimal
path p* are retained, while the rest of the matrix is excluded from the cal-
culations. This leads to a sparse matrix layout with important effects on the
efficiency of the method especially in the framework of a 3-dimensional ap-
proach such as the one described in Maiolo et al.[88]. This aspect has been
depicted graphically in Figure 5.1 where we have also have estimated the the-

oretical speed-up as function of the number of total blocks (homologous plus
linking blocks).

The various steps of the algorithm, briefly outlined above, are considered
sequentially in more detail in the next sections.

5.4.1 Sequence residues to signal conversion

In the MAFFT approach described by Katoh et al. [62], homologies between
sequences are detected using a cross-correlation-based analysis of the physico-
chemical properties, i.e., volumes v and polarities p, of the sequence residues.
The degree of cross-correlation between two sequences is used as a measure of
the physicochemical similarity of the two molecules, which in turn is used as a
proxy for the likelihood that the two molecules might undergo a substitution
in an evolutionary process. Substitutions between physico-chemically similar
amino acids tend indeed to preserve the structure of proteins, and they are
therefore more likely to occur during evolution. The computational complex-
ity of the cross-correlation is then reduced from L? to L - log(L), where L is
the average sequence length, by means of a FFT algorithm.

In our approach, the space of physicochemical properties has been extended
to include also the chemical composition ¢ as suggested in Grantham 1974 [48],
besides the volume and polarity features already used in MAFFT. In Table
5.1 we have reported the physicochemical properties used in our algorithm.
Subsequently, we have defined a signal s as a 3 x L multidimensional vector
of the dimensionless physicochemical property values obtained from the in-
put sequence, translating the residues with the values from Table 5.1, in the
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AA symbol volume polarity chem. comp.

ALA A 31.00 8.10 0.00
ARG R 124.00 10.50 0.65
ASN N 56.00 11.60 1.33
ASP D 54.00 13.00 1.38
CYS C 55.00 5.50 2.75
GLN Q 85.00 10.50 0.89
GLU E 83.00 12.30 0.92
GLY G 3.00 9.00 0.74
HIS H 96.00 10.40 0.58
ILE I 111.00 5.20 0.00
LEU L 111.00 4.90 0.00
LYS K 119.00 11.30 0.33
MET M 105.00 5.70 0.00
PHE F 132.00 5.20 0.00
PRO P 32.50 8.00 0.39
SER S 32.00 9.20 1.42
THR T 61.00 8.60 0.71
TRP W 170.00 5.40 0.13
TYR Y 136.00 6.20 0.20
VAL \Y 84.00 2.90 0.00

- - 0.00 0.00 0.00

Table 5.1: Amino-acids physiochemical properties used in our algorithm. The symbol
“’ refers to a gap character.

following way

(%1 (% (%7

S = [V7 p7 C]T = pl 9 p 9ttty pL . (523)
& Cy Cr,

[V

In general, when the input is a sub-MSA rather than a sequence, the signal s is
obtained by averaging over the columns of the sub-MSA. Since the properties
volume, polarity and chemical composition differ significantly in magnitude,
we will use a standardized signal S defined in terms of its standardized compo-
nents, i.e. v, p and €. Unlike MAFFT [62], however, we define a standardized
physicochemical property as v = (v — v) /o,, where U and o, are respectively
the average and standard deviation computed over the input data rather than
the 20 amino-acids in Table 5.1. Analogous definitions hold for p and €. This
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improved definition ensures that the standardized signals will fluctuate around
zero even with non-homogeneous amino-acids distributions in the input data.

5.4.2 Signal padding

As mentioned above, when two sequences S; and S, have different lengths,
a first static padding is required for having both signals of equal length L =
max(Lq, Ly). Moreover, extra dynamic padding, dependent on the resolution
level of the analysis (dictated by the window function support size), is necessary
for avoiding boundary effects introduced by the sliding window w. The effects
of the non-application of the dynamic padding have been quantified and are
shown in Figure 5.10.

The dynamic padding can be achieved through different padding patterns,
which allow us to tune the structure of the cross-correlation matrix f,,[m, k|
(see definition below). In order to center the cross-correlation coefficients in
the spectrogram f,[m, k] we found convenient to use the following scheme.
Given a window function w with a support of length S,,, signal 8; is padded
on the left side with an array of S, column vectors of zeros, whereas S, is
padded on both left and right sides with two arrays of S,,/2 column vectors
of zeros. Padding in this case is dependent on the variable size of the window
w and therefore it is referred to as dynamic. This is shown graphically below,
where we have assumed L = L; > Lo,

0| [v4 Uay
sy 0 ; 1/7\1,1 s ﬁz,l ) e e e e e
0 61,1 Can

0] o 0] [0..] [0ns u,2] [0 0] [o] [o 0
/S\2* 0 ) 0 3ot 0 ) ]/)\1,2 ) 132,2 y et ﬁLz,z ) 0 PR 0 ) 0 ) 0 (AR 0
0 0 0 Cia Cas Cryo 0 0 0 0 0

Sw/2 Ly L—Lo Sw/2

Padding in this case is dependent on the variable size of the window w and
therefore it is referred to as dynamic.
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Figure 5.7: Padding scheme with S,, = 64. Assuming the analysis starts at level Iy
with a window function of size 64, the signal S1 is padded on the left side with an
array of Sy, = 64 column vectors of zeros, whereas Sy is padded on both left and right
sides with two arrays of Sy /2 = 32 column vectors of zeros. The figure also shows
So shifted on the left side (considering periodic boundary conditions) of 332 and 342
positions in order to match the respective patterns on Si.

@ “ - o o o 0
16 10 40 | 80 60 30 80 20 16

o =326

Figure 5.8: Padding scheme with Sy, = 32. At level lo, using a window function of
size 32, the signal S1 is padded on the left side with an array of Sy, = 32 column
vectors of zeros, whereas Sy is padded on both left and right sides with two arrays
of Sw/2 = 16 column vectors of zeros. The figure also shows Sy shifted on the left
side (considering periodic boundary conditions) of 316 and 326 positions in order to
match the respective patterns on 8y.

5.4.3 Fourier transform based homology detection

We use the cross-correlation between the physicochemical properties of two
sequences as a measure of their similarity, which in turn is considered as a
fast proxy for putative homologies [62]. Given two sequences S; and Sy of
equal length L, with associated signals 8; and 8, given by equation 5.23, the
cross-correlation

fr = f[k] = Z /S\i,l O§i+k,2 ) (524)

1<4,i+k<L

is computed as a function of the lag k between the sequences, where the sub-
scripts 1 and 2 refer to the sequences, ¢ and ¢ + k are column indexes in the
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signals 87 and Sy, respectively, and the symbol o denotes a standard dot prod-
uct. Note that in general the two sequences S; and S5 have two different
lengths, say L; and L, respectively. In that case L = max(Lj, L) and the
shorter of the two sequences is padded with column vectors of zeros.

The convolution theorem allows us to compute the cross-correlation of
equation 5.24 by means of the F'T [62]. Indeed, the convolution theorem states
that under suitable conditions, not discussed here, point-wise multiplication in
one domain (e.g., the time domain) equals the convolution in the other domain
(e.g., the frequency domain). So, the Fourier transform of a convolution of two
signals is equivalent to the pointwise product of their Fourier transforms. De-
noting the Fourier transform of a generic input signal x as F(x) = X|w], the
volume component of the cross-correlation, for instance, can be written as,

FOLK] = FHF () - Flva))
= F 1 (Viw] - Valw]) , (5.25)

where F~! represents the inverse Fourier transform, and the asterisk denotes
the complex conjugate. Note that the latter in our case has no effect since all
physicochemical properties are real values. Analogous definitions hold for the
polarity and chemical composition components, f® [k] and f()[k], respectively.
The cross-correlation is then given by the sum

k] = FOK] + fP[R] + fOR] (5.26)

The use of the FFT in equation 5.25 reduces the computational complexity
from O(L?) to O(Llog L). The cross-correlation signal f[k] is thus a discrete
function of the positional lag k, whose peaks identify mutual shifts yielding
highly-correlated regions (see Figure 5.4). As clearly shown in equation 5.25,
the cross-correlation can be expressed in terms of Fourier transforms.

One major drawback of the Fourier transform is that its basis functions
are complex exponentials, which are perfectly localized in frequency domain
since they have a well-defined frequency (see for instance the tiling of the time-
frequency plane in Figure 5.3). However, because of their infinite length, they
have no time localization at all. In other words, time information is spread
out over an infinite domain. As a consequence of the lack of time resolution of
the Fourier transform, the cross-correlation of equation 5.26 can return only
an indication of the shifts k£ where homologous regions can be found, without
providing any information on the actual position of such regions within the
sequences. The localization of the homologous regions has been addressed by
Katoh et al. [62] by computing a column-wise scoring of the shifted sequences.
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We have instead solved this issue with the computation of a time-frequency
transform which provides simultaneously the information about the positional
lag k& and the relative position of the pattern in the sequences. In the next
Section (5.4.4: Multi-scale STFT based homology detection) we are showing
our proposed homologous block detection based on the multi-scale STFT.

5.4.4 Multi-scale STFT based homology detection

Here we propose an alternative solution that allows us to detect candidate
shifts k£ and localize the corresponding homologous segments simultaneously
within a unique conceptual framework, that is, the short-time Fourier Trans-
form (STFEFT). The STFT of a generic discrete signal x is defined as follows,

For(x) =X[m,w] = > @ wj_pm-e ™, (5.27)

j=—o0

where w represents a compact-support sliding window function, m is its dis-
placement, and ¢ is the imaginary unit. Typical choices for the window func-
tion are for instance Hamming, Hanning, Bartlett or Kaiser. Figure 5.9 depicts
some example of window functions. For the purpose of detecting homologous
blocks, we compute a windowed cross-correlation as,

£k = ALt FrHX W] - Xalm, w]) (5.28)

where Xy[m,w] is the STFT defined in equation 5.27 and the signal x can be
the volume v, polarity p or chemical composition c¢. The full cross-correlation
fwlm, k| is given analogously to equation 5.26 by the sum of the three com-
ponents. The term A,' is a normalization factor that we will define below.
The index m defines the shift of the window function w with respect to the
sequence to which the window is applied. For preventing boundary effects,
the window w must slide over the entire length of the sequence. Therefore,
m=1,...,L+S,, where S, is the window support length. To qualitatively
assess the effects on the boundaries induced by a missing padding we have
computed equation 5.28 for a single component, let say the volume, of con-
stant value for all the column (for our example we chose 0.25). To quantify
the boundary effects as function of the window size, i.e. the resolution of the
analysis, we have repeated the same experiment at three different resolution
levels. We have set the window functions at size equal to 64, 32 and 16. The
resulting spectrograms f,[m, k| are shown in Figure 5.10. One can note that
the lower the resolution the “larger” (in magnitude and involved region) the
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Figure 5.9: Different window functions. Window functions are mathematical func-
tions that have a zero-value outside their support. Their are normally symmetric
around the middle of the support and usually the mazrimum is in the middle of
the interval. Usually the window function is used to detect transient event in non-
periodic functions and for the time-averaging of frequency spectra. The size of the
support determines the time-frequency resolution. Window functions are also al-
tering the original frequency content of the input signal by an effect called spectral
leakage. FEach type of window function acts differently on the spectral content, the
choice of this function is made according to the particular needs.

edge effects. This observation is in accordance with what is know as the Cone
Of Influence in Multiresolution analysis.

The STF'T replaces the pure complex exponential functions of the classical
Fourier transform with windowed basis functions. The latter yield a compact
support which leads to a localization of the time information. The STFT
thus returns information in both time and frequency domains. Indeed, the
correlation fl(f) [m, k] is now a 2-dimensional matrix, function of both the lag
k and the moving window shift m. An example of spectrogram fé,x) [m, k] is
shown in Figure 5.11. On that Figure one can note three regions, marked M,
M, and M3 at positional shifts &k and k3 (more details below), corresponding
to candidate homologous blocks.

We have exploited the time-frequency property of the STFT by a multi-
scale analysis based on a progressive reduction of the window size S,. At a
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Figure 5.10: Boundaries effects at different resolution scales. We have computed
the spectrogram fy,[m, k| using equation 5.28 for the volume component. To focus
our attention only on the effects on the boundaries we set a constant value for all
the column, in this case equal to 0.25. To quantify the boundary effects as function
of the window size, i.e. the resolution of the analysis, we have repeated the same
experiment at three different resolution levels, i.e. using a window function of size
64, 32 and 16. Left: Fxperiment without padding the sequences. One can note
that the lower the resolution the “larger” (in magnitude and involved region) the
edge effects. Right: Padding the sequences as discussed in Section 5.4.2. It can be
remarked that an appropriate padding remove or mitigate the effects on the edges.

large scale, i.e., a broad window support, the STFT provides low-resolution
information on the localization of the homologous regions at a modest com-
putational cost. Starting the analysis at large scale is also much less prone to
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Figure 5.11: Graphical representation of the full cross-correlation matriz fy,[m, k].
One can identify two distinct shifts kT o where the cross-correlation exceeds the noise
threshold ty, as explained in the text. The condition of equation 5.29 is fulfilled by
the sets of window displacements My and Ma, when k = kT, and by the set M3 when
k = k3. The spectrogram refers to the signals depicted in Figure 5.7.

the artifacts that might arise at an excessively high resolution, that is, with an
excessively short window (depicted in Figure 5.12). In the extreme limit of a
window of length 1, for example, the correlation of equation 5.28 would return
a misleadingly large number of false positives. Figure 5.13 shows shapes and
positions of the window functions (in this case using Flat top weighted win-
dow functions?) used for the full STFT analysis at three increasingly resolution

2The Flat top weighted window is described by the following equation

(n) = a — 2mn n ] 47n _ ] 6mn n . 8mn
w(n) = ag — aj cos N1 ag COoS N1 as cos N1 a4 CoS N1
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Figure 5.12: First analysis at two different window size. Left: Analysis with a
window function of size equal to 64. The figure shows the slice f,|m,k}]. Right.
Analysis with o window size equal to 8. At a large scale, the STFT provides low-
resolution information on the localization of the homologous regions at a modest
computational cost. Starting the analysis at large scale is also much less prone
to the artifacts that might arise at an excessively high resolution, that is, with an
excessively short window. Indeed, that slice should results in only two peaks, like in
the left panel and not as in the right panel. Starting at too high resolution could
detect false positive homologous blocks.

levels.

This first step thus translates into coarse but reliable and fast information.
The window support size is then shrunk, typically by a factor 2, and the spatial
resolution is thus increased (as shown in Figure 5.13). This leads to a more
precise identification of the boundaries of the homologous regions (as shown in
Figures 5.18 and 5.17). In principle, the process above can be iterated until a
support size of one. However, practically, 2-3 iterations are normally sufficient
to obtain a satisfactory resolution. Figure 5.13 shows 3 different resolution
levels of a typical window function.

The approach described above provides simultaneously information on both
the lags k and the positions of the homologous regions. However, this ad-

where ag = 0.2156, a; = 0.4166, ag = 0.2773, a3 = 0.0836, as = 0.0070.
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Figure 5.13: Window functions at different resolution level. From left to right: Flat
top weighted window functions of size 128, 64 and 32 with a shift of respectively 32,
16 and 8 units.

vantage comes at a computational cost, which can be quantified for a naive
implementation of the STFT by a complexity of O (L?logL). Nevertheless,
various algorithms have been proposed to reduce the intrinsic complexity of the
STFET. For instance, for a sliding rectangular window, one can recycle most of
the previously computed correlation coefficients. In addition, the sliding win-
dow can be moved in discrete steps larger than 1 while retaining most of the
information carried by the signal. In Figure 5.13 window functions of length
Se = 128, S, = 64 and S, = 32, from left to right, respectively, have been
shifted by a quantity equal to S,,/4. Figure 5.14 depicts the spectrogram slice
at shift k7, from the same example of Figure 5.11, i.e. f,[m, k}] obtained with
a window size of 64, at decreasing sliding length (from 1 to 16, doubling the
length every time). Superimposing the curves at different step lengths, it can
be noted that already at the coarsest sliding step the curve catches the most
important features inside the signal. Indeed, the analysis using a sliding step
of 1 contains redundant information and requires much more computational
times than the coarsest one. Moreover, for further reducing the computational
effort, each step of the analysis can be performed only on the regions emerged
at the previous coarser iteration (as explained in detail below and depicted in
Figure 5.17).

The workflow

Practically, the complete work-flow for the signal analysis and homologous
blocks detection can be summarized as follows.

1. Starting at the lowest resolution (i.e., largest window support size S,,),
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Figure 5.14: Spectrogram slice at different sliding length. From Top to bottom:
spectrogram slice at shift kT, i.e. f,|m, k]| obtained with a window size of 64, at
decreasing sliding length (from 1 to 16, doubling the length every time). In the
bottom-most panel the different curves are superposed. It can be noted that already
at the coarsest sliding step the curve catches the most important features inside the
signal. Clearly, using a sliding length of 16 requires 16 times less computations than
with 1.

we construct the full cross-correlation matrix f,[m, k], as described in
equation 5.28. A cross-correlation is shown for example in Figure 5.11.
We call this first resolution level [;.

2. At the current level [; we compute a noise threshold t,, represented
in Figure 5.17 by a dashed line. This threshold allows us to distin-
guish ‘noise’ from shifts £ where true correlations, i.e., homologies, oc-
cur. The threshold is calculated by recomputing the cross-correlation
matrix f,,[m, k| after randomly permuting the residues of one of the two
sequences. This statistically destroys any potential homologous patterns
in the sequences and allows us to define an intrinsic ‘noise’ level as the
maximum of the cross-correlation coefficients f,,[m, k]. This procedure is
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eventually repeated until the noise level reaches a stationary value. Typi-
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Figure 5.15: Noise threshold convergence. The threshold is cal-
culated by recomputing the cross-correlation matriz fy,[m, k| after
randomly permuting the residues of one of the two sequences. This
statistically destroys any potential homologous patterns in the se-
quences and allows us to define an intrinsic ‘noise’ level as the
mazimum of the cross-correlation coefficients fy,[m,k]. The plot
represents the noise threshold estimated after several iterations.
Typically, only a few iterations are sufficient for a good estima-
tion of the noise threshold ty,.

at the first coarse resolution level [; and assumed constant through the
different scales of the analysis outlined below.

3. We scan the matrix f,[m, k] to identify the set of shifts k* where

fuwlm, k] >ty . (5.29)

4. For each shift k*, the condition at point 3 is fulfilled by one or more sets
M; of window displacements m, with ¢ > 1. Each set M; corresponds to
a specific pattern in the sequences characterized by a high correlation co-
efficient, i.e., a candidate homologous block. In Figure 5.11, for example,
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one can identify three sets M 5 3 of window displacements corresponding
to two shifts £} ,. Figure 5.16 represents the spectrogram f,,[m, k| as sur-
face and the noise threshold ¢, as plane (semi-transparent grey plane).

fulm, k]
Swlm, k]

S [mvk]
fu [m k]

Figure 5.16: Multi-scale STFT surfaces. Top-left: Spectrogram
surface obtained with a rectangular window function of size equal
to 64 and sliding step of length 1. Top-right: Spectrogram surface
with window size equal to 64 and sliding step of length 16. Bottom-
left: Spectrogram surface using a rectangular window function of
size 32 and sliding step of length 8. Bottom-right: Spectrogram
surface with window size equal to 16 and sliding step of length 4.

5. We increase the resolution level from [; to [y, by halving the window size
Sw-

6. For each £*, and for each set of displacements M;, we calculate the corre-
sponding correlation coefficient using a slightly modified form of Eq. 5.24,

1 ~ o~
fk* [m] = A_ Z Sj,l @) Sj+k*,2 . (530)

W g gkreM;
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In this way, we restrict our analysis only to the regions of interest, that
is, My, My, M3 in the example of Fig. 5.11, while most part of the
cross-correlation matrix is neglected. In order to guarantee a scale-
invariant analysis through the sequential process described here, the
cross-correlation function is normalized by the window area A,. In the
discrete case this yields,
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Figure 5.17: The boundaries of the blocks are analyzed at different
scales. At the next level, higher resolution, the analysis is performed
only in the neighbourhood of the boundary. Top: Slice of the spectro-
gram fy,[m, k] at kT analyzed with a window of size 64 (Z264), 32 (Z32)
and 16 (Z16). The region highlighted in the box represent the boundary
of the homologous block.
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7. The one-dimensional cross-correlation of equation 5.30 allows us to refine
the boundaries of the candidate homologous regions, as shown in Figure
5.17. We thus redefine the regions M; of point 4 so that they now fulfill
the condition fi«[m] > t.

8. The algorithm iterates the procedure from point 5 to 7, thus changing
resolution level to 3, l4, .... Typically, a resolution /3 is enough to achieve
a good accuracy in the estimation of the homologous blocks.

5.4.5 Homology matrix and optimal path

The short-time Fourier Transform (see Section 5.4.4: Multi-scale STFT based
homology detection) detects candidate homologous blocks which corresponds
to regions in the two sub-alignments or sequences with high phisicochemical
similarity (high cross-correlations). These candidate homologous regions allow
us to define a set B of blocks in a MSA homology matrix analogous to the one
introduced in MAFFT [62]. An example is shown in Figure 5.19, which rep-
resents a simplified configuration with five candidate homologous blocks. The
homologous blocks need to be selected, arranged and connected in a consistent
way for designing a meaningful final alignment. Prior to independently align
the single blocks an algorithm has to connect them logically in a path that re-
spect the order of the columns and avoid any duplication. This is achieved by
first identifying within the set B the set P of all possible paths that connect
the candidate blocks potentially yielding a final meaningful alignment. For
illustrative purpose, Figures 5.25(i)-(iv) depicts four possible resolved paths
leading to candidate alignments.

Firstly, one needs to identify the set P of all possible consistent pathways
through those blocks. A generic block b; € B is characterized by the coordi-
nates of its upper-left (u) and bottom-right (v) vertexes, {[u;1,u;2|,[vj1,v;2]}.
The two subscripts 1, 2 refer to sequences S; and S,. Consider for example an-
other block by, adjacent to the first one with coordinates {[ug 1, ug 2] , [Vk.1, Vk.2]}-
The condition to connect the two blocks b; and by, to form a meaningful path is
(uka > ujq) A (uk2 > wj,2). This procedure is iterated for all adjacent blocks
finally yielding the sought pattern of possible paths P. To simplify the man-
agement of plausible paths that connect the detected blocks the algorithm
build an nth tree T (see Figure 5.20). The tree nodes represent the blocks and
the fulfillment of the aforementioned condition is described by edges connect-
ing nodes. The root of T has in total |B| children which is equal to the number
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Figure 5.18: Multi-resolution boundary detection. Top right: Spectrogram f,[m, k]
showing 3 candidate patterns, My and My at the positional shift kT and M3 shifting
Sa by k3 positions (on the left direction applying the periodic boundary conditions).
Bottom right: Three dimensional view of the spectrogram fy|m,k]. The plane at
the z level t;, represents the noise threshold estimated by randomly permuting the
characters in So and taking the highest coefficient in the so obtained spectrogram.
This procedure is eventually repeated to improve the noise level estimation. Top-
bottom left: slice of the spectrogram at position ki and k5. The dashed line represents
the noise level ty, and the regions f,,[m, k] > t}, are the candidate homologous pattern
in the two signals. The analysis has been performed at three different level: using a
window function of size 64 (264), 32 (Z32) and 16 (Z16) to improve the boundaries
detection.

of blocks detected. This means that each block can be the starting block of a
path p and also that a path may be composed by only one block. The total
number of paths is given by the number of leaves. In Figure 5.20 for example
one can observe 10 consistent connecting paths. Each of the selected paths
p; € P will be analyzed independently. It can happen that two distinct blocks
belonging to a given path p; encompass one or more elements (columns) in
common. We will refer to this condition as an overlap. For example, in Figure
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Figure 5.19: Ezxample of overlapping homologous blocks. Blocks are represented in
a bi-dimensional dynamic programming matriz where on one axis is placed sequence
S1 and on the other axis sequence Ss.

5.19, sequence, (4) ¢ sequence,(2) but also sequence, (4) ¢ sequence,(12) (where
o refers to ‘putatively homologue to’). Since each block will be treated as an
independent instance of a DP alignment procedure, then this overlap condition
must be removed prior to the alignment phase to avoid to consider sequence, (4)
twice in the final alignment. As described below, each block will be treated as
an independent instance of a DP alignment procedure. For that reason pos-
sible overlaps between blocks must be removed prior to their alignment. The
removal of the overlaps should alter in the least possible way the structure of
homologous regions that was previously identified. Therefore, the overlaps are
removed by replacing the overlapping blocks by two re-sized blocks that retain
the largest possible part of the diagonal elements of the original ones without
exhibiting any more overlaps. The diagonal corresponds to matches in the DP
alignment and represents therefore the expected traceback path that we want
to preserve as much as possible.

Our procedure allows us to remove overlaps only between two consecutive
blocks. In Figures 5.21-5.24 we show some examples of how different types
of overlaps can be resolved. More details are provided in Appendix F: Ho-
mologous blocks overlap resolution. The reason is that in this way it is much



Figure 5.20: Tree of blocks representing possible the paths of the blocks shown
in Figure 5.19. If the coordinates of two blocks b; and by fulfill the condition
(uk,1 > uj1) A (up2 > uj,2), then they are connected together to form a path. In
the tree this is translated in an edge that connects the nodes representing the blocks.
The procedure is iterated for all adjacent blocks finally yielding the sought pattern of
possible paths P, which is represented by a nth tree where the total number of paths
is given by the number of leaves. In this example, one can observe 10 consistent
connecting paths. Fach of the selected paths p; € P will be analyzed independently.

simplier to generalize the procedure into an algorithm that works for any pos-
sible configuration at hand. An algorithm that solve simultaneously all the
overlaps in a given path would be much more complicated to design, to debug
and to test. To resolve the different types of overlaps they have to be first
categorized. For this purpose, the algorithm checks the relative position of
the corner coordinates u; 2 and v; 9 and with the aid of the table depicted in
Figure F.1 assigns a type of overlap and its removal strategy.

Therefore given the set P the algorithm iterates in each path p; and for
for all pairs of consecutive blocks in this path check and if needed resolve the
overlaps, until all overlaps are removed. It should be noted that, as clearly
shown in the tree of Figure 5.20, a given block can appear in multiple paths
and in each of them it can present different overlaps with other blocks. Our
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algorithm therefore modifies its structure in different ways in each of the paths
where the block appears, depending on the type of overlap that needs to be
removed. The algorithm generates in this way the set P of overlap-free paths
(see Figure 5.25) in which we choose the optimal path p* that maximizes a
given target condition. From Figure 5.25: the path represented in ) connects
blocks {by, by, b5} for a total of 6 columns; the path in i) connects {b1, b3, b5}
for a total of 9 columns; the path shown in i) connects {bs, by, b5} for a total
of 12 columns and finally the path in ) {bs, b5} for a total of 9 columns. In
the our implementation of the algorithm the target is the path with the largest
homologous regions (total sum of columns in a given path), therefore the path
in 74) results optimal. We denote the final set of homologous blocks defining
the optimal path p* with H. Finally, among the overlap-free paths P we select
the optimal path p* bearing the largest homologous regions, that is, the largest
total nuhor ~F cnlimanas
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Figure 5.21: i) Example of overlapping blocks (left) and their resolution (right).
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Figure 5.22: ii) Example of overlapping blocks (left) and their resolution (right).
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Figure 5.23: iii) Example of overlapping blocks (left) and their resolution (right).
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Figure 5.24: i) Example of overlapping blocks (left) and their resolution (right).

Homologous blocks belonging to the optimal path p* are connected by
appropriate intermediate linking blocks. In Figure 5.28 homologous blocks are
represented in light blue while linking blocks in dark blue. Homologous and
linking blocks are then all aligned independently following a DP approach,
and the resulting tracebacks are joined together to yield the final alignment.
It should be noted that in the homology matrix only the areas corresponding
to the homologous and linking blocks of the previously selected optimal path
p* are retained, while the rest of the matrix is excluded from the calculations.
This leads to a sparse matrix layout with important effects on the efficiency
of the method especially in the framework of a 3-dimensional approach such
as the one described in Maiolo et al. 2018 [88].

The next step consists in aligning the homologous blocks in p* as indepen-
dent DP sub-matrices. The alignment of the homologous blocks, carried out
under the PIP scoring system, leads to a traceback path for each block. The
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Figure 5.25: Overlap-free paths. The four panels show overlap-free paths, both on
the tree (in red) and the relative resolved blocks. The path represented in i) connects
blocks {b1,bys,bs} for a total of 6 columns; the path in i) connects {by,bs, bs} for
a total of 9 columns; the path shown in i) connects {ba, by, bs} for a total of 12
columns and finally the path in w) {bs,bs} for a total of 9 columns. In the our
implementation of the algorithm the target is the path with the largest homologous
regions (total sum of columns in a given path), therefore the path in iii) results

optimal.
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Figure 5.28: Homologous and linking blocks and magnification of connecting corner.
All blocks are aligned independently, first all the homologous block and afterwards
all the linking ones. Once both homologous and linking blocks are aligned, all the
independent tracebacks are merged to give the final alignment.

blocks are then resized so that the first and the last matches (going from left
to right) of the previously computed tracebacks correspond to the top left and
right bottom corners, respectively. Obviously, if the corners of a block are
both matches, the block maintains its original size. Homologous blocks can
then be connected by appropriate linking blocks, which will in turn be aligned
as independent DP sub-matrices. This step leads again to a traceback path
for each of the linking blocks. Resizing the homologous blocks so that they
begin and end with matches has the advantage that the transitions between
homologous and linking blocks then occur in a natural way along the diagonal,
without the need for forcing any particular state in the final alignment. Since
both homologous and linking blocks are treated as independent DP matrices,
their alignments can be easily parallelized. Once both homologous and linking
blocks are aligned, all the independent tracebacks are merged to give the final
alignment.



5.4.6 Final alignment

The next step consists in aligning the homologous blocks in H as indepen-
dent DP sub-matrices. The alignment is carried out under the PIP scoring
system and leads to a traceback path for each block. The blocks are then
re-sized so that the first and the last matches (going from left to right) of the
previously computed tracebacks correspond to the top left and bottom right
corners, respectively. Obviously, if the corners of a block are both matches,
the block maintains its original size. Consecutive disjoint homologous blocks,
e.g., hj, hy € H, are then connected by appropriate linking blocks, for instance,
l; € £ with vertexes {[vj1 + 1,vj2 + 1], [ug1 — 1, up2 — 1]} (see Figure 5.28).

The linking blocks in £ will in turn be aligned as independent DP sub-
matrices. This step leads again to a traceback path for each of the linking
blocks. Re-sizing the homologous blocks so that they begin and end with
matches has the advantage that the transitions between homologous and link-
ing blocks then occur in a natural way along the diagonal, without the need
for forcing any particular state in the final alignment.

Since both homologous and linking blocks are treated as independent DP
matrices, their alignments can be easily parallelized. Homologous blocks in ‘H
are first aligned in parallel and re-sized following the recipe outlined above.
Afterwards, the alignment of the linking blocks £ can also be run in paral-
lel. Once both homologous and linking blocks are aligned, all the indepen-
dent tracebacks are merged to give the final alignment. Figure 5.29 shows an
alignment under PIP obtained with and without the STF'T based homologous
detection. The two alignments agree with each other in the inferred homology
of the conserved regions and to a large extent they agree also in the gappy
regions. The MSA obtained with the STFT algorithm is two columns longer
than the one obtained using the classic DP-PIP approach.
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DP PIP without STFT

DP PIP with STFT

Figure 5.29: Multiple sequence alignment under PIP with and without the block
detection based on the short-time Fourier transform. The two alignments agree with
each other in the inferred homology of the conserved regions and to a large extent
they agree also in the gappy regions. The MSA obtained with the STFT algorithm
s two columns longer than the one obtained using the classic DP-PIP approach.
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5.5 STFT vs. FT approach for block detection

We performed two tests to assess which from the two approaches, namely the
Fourier transform and the short-time Fourier transform, is more effective in
detecting a similar pattern within two signals. In the first test, in Section
5.5.1:Noise sensitivity, we have measured the performance in presence of a
noisy pattern while in the second test, in Section 5.5.2:Pattern length sensi-
tivity, we have quantified the ability of detecting a relative short pattern. In
both tests we have evaluated the two approaches with respect to the signal
to noise ratio, calculated as the cross-correlation value of the peak, at the
known positional shift divided by the inferred noise threshold. The signal to
noise ratio gives an indication about the ability to distinguish peaks raised by
high correlated regions from the noise coefficients. In both tests the STFT per-
formed better than the FT which is supporting our novel homologous detection
approach.

5.5.1 Noise sensitivity

In this experiment we have synthesized two amino acid signals both of length
160 residues. The first signal contains a pattern of length 100 residues which
has been corrupted with noise by changing at random positions and with ran-
dom residues its content. After the noise addition, we have measured the
number of equal residues in the two patterns which has been indicated in the
plot in Figure 5.31 as noise percent. We have repeated this experiment with
an increasing level of noise. For each new synthesized pair of signals we have
computed the cross-correlation coefficients both with the FT and the STFT
approach. In Figure 5.31 we are showing the signal to noise ratios obtained
with the two methods as function of noise content. It can be noted that the
STFT is more effective in finding noisy patterns than the FT. This is partic-

S1 50 100 10

50

Figure 5.30: Noisy pattern experiment. In Sy the pattern is corrupted with increasing
level of noise.
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Figure 5.31: Noise sensitivity. Signal to noise ratio measurement of the two ap-
proaches in presence of noisy patterns which is mimicking the substitution process.

5.5.2 Pattern length sensitivity

In this experiment we have synthesized two amino acid signals of increasing
length. The structure of the signals is depicted in Figure 5.32. The pattern has
been incrementally extended from a length of 1 to a final length of 100 residues.
For each pattern length we have computed the cross-correlation coefficients
both with the FT and the STFT approach. In Figure 5.33 we are showing
the signal to noise ratio obtained with the two methods as function of pattern
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Figure 5.32: Pattern length. In the signal S1 and So we have inserted
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Figure 5.33: Pattern length sensitivity. Signal to noise ratio measurement of the
two approaches for a variable pattern size.
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Progressive bias analysis

“We are trying to prove ourselves wrong as quickly as possible, because
only in that way can we find progress.”

— Richard P. Feynman

6.1 Introduction

Progressive approaches reduce the exponential complexity of aligning N se-
quences (N > 2) into polynomial-time algorithms by traversing a given binary
phylogenetic tree from bottom towards the root and aligning at each internal
node only two sub-alignments. Hence, the progressive aligner explores at each
visited node only the space spanned by the two children’s sub-alignments. In
this way the alignment space where to search for the optimal alignment is
considerably reduced together with time complexity. At the tree root the al-
gorithm returns the optimal alignment gradually built — an constraints on —
the optimal pairwise alignments produced at each intermediate step of the pro-
cedure. Although progressive approaches strongly accelerate the generation of
the final solution they potentially introduce biases at each iteration. The rea-
son of this bias lies, on one hand in the fact that the information available at
each internal node is deliberately not complete (smaller search space), and on
the other hand because the current alignment is constrained on the previously
computed partial solutions. Unfortunately though, an error introduced at an
early stage of the tree traversal is propagated upwards into the next stages (at
higher levels of the tree) deviating irreparably from the true optimal solution
and providing potentially distorted homologous scenarios.
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Figure 6.1: Topologies used to quantify the progressive bias. A) balanced tree B) un-
balanced tree. In both trees the branch lengths are parameterized by l. The sequences
at the leaves contain only a single character represented by a generic symbol ‘a’.

To quantify the bias introduced by the progressive procedure, called pro-
gressive bias, we have used two different topologies, namely balanced and un-
balanced tree, both with branch lengths parameterized by [ (see Figure 6.1).
The progressive bias has been evaluated for both topologies by computing the
marginal likelihood at the root for all possible alignments potentially be gen-
erated compared against the solution selected at each step by the progressive
procedure. To facilitate the problem, but not the general conclusions we can
draw from it, the sequences at the leaves contain only a single character rep-
resented by a generic symbol ‘a’. Simplifying the problem in this manner,
allows us to compare the true optimal alignment, as function of the parameter
[, with the partial solutions built at each stage of the progressive procedure.
Indeed, one can check whether the greedy sub-alignment is actually part of
the optimal MSA. From the results shown below, it can be noted that for cer-
tain values of the parameter [ the solutions generated by the two approaches
are different. Therefore, combining progressively optimal pairwise alignments
is different from the optimal MSA that one would obtain by aligning all the
sequences at the same time.

Test parameters and MSAs. For our test we have used a parameterized
branch lengths with [ = 0.16, ...,0.4 (expressed in expected number of substi-
tutions per site). The substitution model used is JC69 [60] for a nucleotide
alphabet. We have set A = 10v/2 and p = v/2 which corresponds to expected
sequence length E = A/ = 10 and intensity I = Ap = 20. In Section 6.2 we
have compared the solutions using the unbalanced tree of Figure 6.1B and in
Section 6.3 using the balanced tree of Figure 6.1A. In Table 6.1 we have listed
all the MSAs potentially be generated at node v; starting from two sequences
containing only a single character, represented here with a symbol ‘a’. In Table
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6.2 we have included all the alignments generated with 3 sequences at vy and
in Table 6.3 the alignments potentially obtained at the root node.

iR

a a — a — a — a - —

a a — — a — a - a —

a — a a — — a - — a
44 6

Table 6.2: MSAs potentially be generated at node vs.

6.2 Alignment with unbalanced tree

In this section we have analyzed the bias introduced during the progressive
alignment using the unbalanced tree of Figure 6.1B. We first have computed in
Section 6.2.1 the true optimal solution by considering all potential alignments
be generated with four sequences comprehending only a single character. Then,
in Section 6.2.2, we have generated the alignments from 2 and successively
from 3 sequences as performed by the progressive aligner. At each step we
have compared the solution that the DP algorithm would have selected, which
consists in the maximum likelihood pairwise MSA, as function of the branch
length, and finally we have checked whether the progressive optimal solution
is actually contained in the true global optimal.

6.2.1 Global alignment

To analyse the bias introduced by the progressive approach we have computed
the marginal likelihood of all the alignments listed in Table 6.3, which illus-
trates all the alignments potentially be produced with 4 sequences containing
only a single character each. In this computation there is no approxima-
tion or bias introduced by the progressive approach. We refer this approach
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a a — a — a — a —
a a — a — — a a
a a — — a — a a —
a — a — a — a a —
#8 #9 #10 #11 412
a — a - - a - - a - - a - —
— a — a — — a — — a — — a —
a — - — a - a — - — Qa a — —
— a - — Qa - — a - a — - — a
#13 414 #15 #16 #17
a — a - - a — a - - a - -
a — — a — — a a - — - - a
— a - — Qa — a a — - — a
a — a — — a — - — Qa - a —
#18 419 #20 421 #22
. . - — _
_ . 4 -
_ . 4 -
a — — - - — a
423 424

Table 6.3: MSAs potentially be generated at the root €.

as the global alignment method since it explore the entire alignment space.
For each alignment in the table we have computed the marginal likelihood
under PIP as function of the parameter [, the results are plotted in Figure
6.2. From this figure one can notice that for [ < 0.125 the multiple sequence
alignment having highest marginal likelihood is MSA4s = [aaaal'. With

0.125 < [ < 0.19 the global optimal alignment is MSA 43 = [22 72 ], With

—a —
aa— —

L
0.19 < I < 0.325 the best alignment is MSA 4o = [— —a—} and finally for

[ > 0.325 MSA o4 = [ RN :1 is the global optimal alignment.

—-———a

From the global optimal alignments' at the root node it is possible to assess

'Here the alignments are function of the parameterized branch length I. Since the
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whether an alignment being generated at a lower level in the tree is part of
the final solution and for which value of the parameter [ a given choice is
made. The partial alignments potentially be produced at node v; and vy are
representad in Tahla & 1 and Tahla R 9 vacnactivaly Tha diffarancac comnaring
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Figure 6.2: Marginal likelihood curves computed at the root node 2 of the alignments
depicted in Table 6.3 as function of l. The curves refer to the ‘global’ approach, no
‘progressive’ approximation is introduced and at the root the information is entire
available. The alignments having highest likelihood in the different regions are rep-
resented on top of the figure. For | < 0.125 the optimal alignment is MSA4g, for
0.125 <1 < 0.19 MSA 413, for 0.19 <1 < 0.325 MSAyo1 and for 1 > 0.325 MSA4o4.

6.2.2 Progressive alignment

At each internal node, namely v; and v9, we have computed the likelihood of
all possible alignments potentially be generated at the respective nodes where
at the leaves are associated sequences of only a single character. The possible
pairwise MSAs potentially be generated at node v; are shown in Table 6.1

marginal likelihood depends on [, the optimal MSA changes correspondingly.
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and their corresponding likelihood, as function of [, are plotted in Figure 6.4.
The alignments attainable at node vy are represented in Table 6.2 and their
likelihood as function of the parameter [ is plotted in Figure 6.3.

6.2.3 Progressive bias with unbalanced tree
Bias at node v,

At node vy the optimal alignments are: for [ < 0.17 MSA,s = [aaa]', for

a

0.17 < 1 < 0.29 MSA 4y = [**-]" and for [ > 0.20 MSA 4; = [721}. The
boundaries at which a change of optimal MSA appear are shown in Figure
6.3 with a dotted line ’. In order to generate at the root node the MSA
column ¢(Q) = [aaaa]' it is necessary at node vy to obtain an MSA column
¢(vy) = [aaa]’. This is the case, at vy, for [ < 0.17 but considering the global
alignment this boundary should be instead at [ < 0.125 (boundary represented
in Figure 6.3 with a dashed line *----7). This means that for 0.125 <1 < 0.17
the algorithm produces an MSA column that, at the next layer, will constraint
the algorithm to a sub-optimal alignment. In the region 0.17 < [ < 0.29 the
algorithm generates at node vy the alignment MSA= [fa,_a]T which is the

correct basis to obtain at the root both the alignments MSA= [2? aL]T and

——a
aa

1T A
MSA= [— - a;] . To generate at the root the alignment MSA= [_ a;_}

is mandatory to generate at node vy the alignment MSA= [i;:]_ This

alignment is generated at node vy starting from [ > 0.29 rather th;n for [ >
0.325 as demanded by the global optimum alignment. Therefore for 0.29 < | <
0.325 the algorithm produce at v, an alignment that will force the algorithm
to a sub-optimal MSA at the root. To summarize: at short [ the algorithm
tends to “over-align” whereas for long branch length [ the algorithm loses some
homologies.

Bias at node v,

At node v; the DP produces the alignment MSA,; = [4] for [ < 0.255 and
MSA s = [27] for [ > 0.255. Clearly, under an i.i.d.model the likelihood of
an alignment is not affected by the permutation of the column order, hence an
alignment like MSA= [, *] has the same marginal likelihood of MSA= [*7].

a7
In order to produce at the root node either [aaaal’, [**5*]" or [—a— a —}

—_a—
———a
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Figure 6.4: Marginal likelihood curves computed at the root node vi of the align-
ments depicted in Table 6.1 as function of . The curves refer to the ‘progressive’
approximation. The alignments having highest likelihood in the different regions are
represented on top of the figure. Forl < 0.255 the optimal alignment is MSAy,, and

for 1 > 0.255 MSA#Q
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the algorithm, for [ < 0.325, shall generate at v; an alignment MSA= [%]. The
progressive procedure already for [ > 0.255 produces [4] and therefore in the

region 0.255 < [ < 0.325 is biased. The MSA [*7] is the basis to produce at

vy the MSA [ B

produced at vy for [ > 0.325 instead then for [ < 0.255 and at vy in the range
0.17 < 1 < 0.29 instead than in the range 0.125 < [ < 0.325.

a— — —

] and at the root the MSA | Z%7 = |. This alignment is

a — —
—a—

——a

6.3 Alignment with balanced tree

6.3.1 Global alignment

For [ < 0.24 the maximum likelihood alignment is MSA4g = [aaaa] . For
0.24 <1 < 0.285 the maximum likelihood alignments are MSA 49 = [** _]T

— —aa

and MSA 5 = [ 22,7 |7, For 0.285 < I < 0.325 the alignments with highest

a —
a aa— —

4T T
likelihood are MSA44 = [faf f} and MSAyy = [::a,} and for [ >

— —aa

0.325 the alignment with highest likelihood is MSA gy = | 2232 At l =

a
———a

0.24, [ = 0.285 and [ = 0.325 a random choice is made to select between the
MSAs with exact same likelihood.

6.3.2 Progressive alignment

The DP generates the maximum likelihood pairwise alignment conditioned on
the sub-MSAs at the children nodes. That means that the algorithm selects
the highest pairwise MSA that can be generated on the base of the available
input. At node v; (and in the same way at its sister node on the right sub-tree)
the progressive DP algorithm generates either on both sides MSA4; = [a al

when [ < 0.26 and MSA, = [*7]" when [ > 0.26.

At the root €2, in the range 0.24 < [ < 0.26, the progressive algorithm is
able to generate only MSA4;o but not MSA 5. Only for [ = 0.26 the two
MSAs, namely MSA 4, and MSA 4., have the same probability to be produced
and therefore MSA ;g could be eventually be produced. When [ > 0.26 the
progressive DP generates on both children nodes of the root the alignment
MSA_,. That translates on the fact that at the root MSA 414 and MSA 49
cannot be generated starting from two alignments of type #2.
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Figure 6.5: Marginal likelihood of the alignments depicted in Table 6.1 as function
of | computed at node vi. The alignment having highest likelihood is represented on
top of the figure. At 1l = 0.26 there is a crossover of the two marginal likelihood
functions. Before that point the DP produces always MSAy, as solution, after that
point it generates alignment MSAuo.

At the root, the curve with the highest likelihood, after having discarded
all the alignments that cannot be produces at that node, is the MSA relative
to the curve #24. In Figure 6.7 the region highlighted in yellow represents
the region where instead of taking the curve corresponding to the highest
likelihood the algorithm select the highest achievable being conditioned on the
two sub-alignments present at the children nodes.

The solution generated at vy is the same as the one generated at the right
sub-tree rooted at the root since the branch lengths are all equal.
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Figure 6.7: Top left: Marginal likelihood curves obtained at node vy in a progres-
sive framework. Bottom left: Marginal likelihood curves of all possible alignments.
Bottom right: The progressive approach is conditioning on the sub-MSAs at the chil-
dren nodes and sometimes it produces sub-optimal solutions. Since our algorithm is
a progressive approach, at the root mode it aligns by ML the pairwise alignments
present at the children nodes. There are potential alignments that have better like-
lihood than the ome that the algorithm can produce but are mot achievable. The
region highlighted in yellow depicts the region where the algorithm is constrained on
sub-optimal solutions.



Discussion & Conclusions

“We are just an advanced breed of monkeys on a minor planet of a
very average star. But we can understand the Universe. That makes
us something very special.”

— Stephen Hawking

Discussion

The fast improvement of modern sequencing platforms has contributed in the
population of several protein families databases. Though, the abundance of
sequenced genomes made available by these modern sequencing technologies
constitute an incredible challenge for multiple sequence alignment algorithms.
The inferred multiple sequence alignments are thereafter widely employed for
an extensive range of purposes including, to name a few, the estimation of
divergence patterns, for selection studies, for the analysis of the evolutionary
changes, to identify key functional residues, to detect conserved regions and
for building phylogenies. The reconstruction of evolutionary multiple sequence
alignments is an essential, and therefore required, step for most — though not
all — homology-based sequence analyses. Even though homology is an unob-
servable property shared by related sequences, it can be inferred by means of
statistical tools exploiting the similarities between them under suitable con-
ditions [52]. The homology inference started in 1981 with the contribution of
Smith-Waterman [132] which allowed to efficiently calculate the minimal num-
ber of modifications to convert an input ancestral sequence to its descendant.
Starting from this contribution many other probabilistic inference tools have
been proposed. However, the evolutionary aligners are becoming overwhelmed
by the computational effort as the data produced by the new technologies in-
creases. Moreover, the evolutionary alignment inference, which is actually the
topic of this thesis, concerns the hypothesis of site homology which clearly
becomes increasingly complex to deduce as the distance among the input se-
quences grows [2, 15, 122, 126, 143].
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It is also worth mentioning that aligner tools very often disagree with
each other with regards to the inferred results ending in pervasive incongru-
ences hampering in this way any achievement in evolutionary research [22, 59].
In particular, the generalized incidence of incongruencies among evolutionary
multiple sequence aligners obstruct the phylogenetic analysis and therefore in-
hibit an effective revealing of evolutionary relationships [134]. The main source
of error is primarily accounted for by an inappropriate mathematical modeling
of the homology which inexorably affects the quality of multiple sequence align-
ments and hence the derived hypotheses of homologies. Although, however,

the consequences of inaccurate inferred homologies on downstream analysis are
still not fully explored and comprehended [17, 39, 57, 68, 69, 89, 95, 147, 165].

A second source of error can be imputed to the approximations and in gen-
eral the heuristics applied to infer alignments of several sequences in reasonable
timeframe. It has been shown that using for instance a sum-of-pairs scoring
method the problem of finding the optimal multiple sequence alignment is NP-
complete [159]. Presently, there is a great effort undertaken to speed-up the
algorithms decomposing the different tasks to achieve parallelism. Often, al-
though, a complete re-design of the algorithms is needed to avoid dependencies
and to properly recycle the computations as much as possible. Very frequently
this task is under-evaluated for the competencies required to achieve a satisfac-
tory result, and approaches taken by neophytes in this domain are commonly
ineffective. The most used technique to speed-up the computations, that we
actually also pursued, is to employ progressive heuristics which are breaking
the original problem into a series of pairwise alignments guided by a phylogeny.
Whilst, without this greedy heuristic approach would not be possible to align
more than few sequences together, on the other side it may introduces biases.
These biases are very difficult to measure and typically are hereby accepted
as inevitable price to pay for accelerating the alignment procedure. In Section
Progressive bias analysis we are showing, albeit using a very small, that the
progressive procedure, indeed, sometime introduces biases. In our test case,
the bias depends on the choice of the system parameters, namely the branch
lengths and the topology. In Section Stochastic backtracking DP algorithm
we have proposed a possible route to deal with this issue. We have modified
the Stochastic Backtracking algorithm (Muekenstein et al. 2002 [100]) includ-
ing the PIP evolutionary model. The main idea is to generate intermediate
sub-optimal solutions which later may produce better alignments. Indeed,
the results of the progressive bias (Section 6) has shown that the combina-
tion of greedy solutions is not necessarily always the best strategy. Although,
the efficacy of this approach has not been quantified to date. In order to
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save computational time we have implemented a short-time Fourier transform
based homologous blocks detector (Section Multi-scale STFT based homol-
ogous blocks detection). The purpose of predicting candidate homologous
segments is the successive elimination of the non-promising regions in the DP
matrix prior to the effective alignment process. This new algorithm has been
inspired by MAFFT [62] but differently from the original idea we have im-
plemented a multi-scale time-frequency transform for the automatic detection
of candidate homologous regions providing simultaneously the positional shift
lag and the relative position of similar patterns inside the two sequences. Our
proposed algorithm offers three different parallelisation levels: i) at the level of
tree nodes, ii) at the level of homologous/linking blocks and iii) at the level of
entries in one single layer of the DP matrix. This feature allows to adapt the
parallelisation strategy at the particular problem at hand and to dynamically
change strategy during the execution.

While changes between homologous characters are typically modeled by
a Markov substitution process, the dynamics of indels, with a few notable
exceptions, is never modeled explicitly. The reason lies in the fact that the
computation of the marginal likelihood under such models has exponential
time complexity in the number of taxa. Unfortunately though, the failure
to adequately model indel evolution may lead to misleading inferred homolo-
gies artificially and hence typically short alignments. In turn, due to biased
indel placement one might obtain inconsistent phylogenetic relationship. Re-
cently, the classical indel model TKF91 has been modified describing indel
evolution on a phylogeny by means of a Poisson process rather than with a
birth-death process. This model, named PIP, allows to compute the joint
marginal probability of an MSA and a tree in linear time. Based on PIP
evolutionary model, we have developed and implemented — for the first time
in the frequentist framework — a progressive MSA algorithm with an explicit
evolutionary model of substitutions, insertions and deletions. The formulation
of the algorithm is presented in Section Progressive Dynamic Programming
under PIP model and to make it more clear we are showing a detailed ex-
ample of an alignment inference in Section 3D Dynamic Programming under
PIP. At the core of our method we have designed a new DP algorithm for the
alignment of two homology paths represented by their corresponding MSAs.
Our DP algorithm returns the maximum likelihood pairwise alignment under
the PIP model exploiting its linear time complexity for the computation of
marginal likelihood. Further details on our proposed approach can be found
in the published manuscript attached. In our opinion, this represents a major
achievement. With the same evolutionary model we are able to infer either
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tree and multiple sequence alignment laying the groundwork for a sound joint
inference of tree and alignment (Progressive multiple sequence alignment with
indel evolution, Gatti, Maiolo, Gil, Anisimova, paper in preparation). Our
MSA method is the first polynomial time progressive aligner with a rigorous
mathematical formulation of indel evolution. The new method has shown
to infer phylogenetically meaningful gap patterns alternative to the popular
PRANK, while producing alignments of similar length. Moreover, the inferred
gap patterns agree with what was predicted qualitatively by previous studies.

The explicit model of indel evolution comes at a price, in fact instead of
requiring a bidimensional DP approach our method requires a third dimension
to take into account for the MSA length. Therefore, the overall complexity of
our progressive algorithm becomes O(N - L?), where N is number of taxa and
L is the maximum sequence length. The cubic factor stems from the fact that
the likelihood is not monotonically increasing in the MSA length, so that the
length has to be incorporated as an extra dimension in the DP. The O(L?)
entries in a specific matrix layer along that dimension (i.e. corresponding to
one particular alignment length) depend only on the layer above (and not on
each other). Therefore, assuming O(L?) processors, the computation can be
parallelized taking down theoretically the running time to O(N-L). Moreover,
our empirical findings show that the likelihood has exactly one maximum, sug-
gesting an early stop condition to the DP, this has been discussed in Section
Early stop condition. In addition, significant speed up is achieved by filtering
out non-promising regions in the 3D-DP prior to align (see Section Multi-scale
STFT based homologous blocks detection). In the manner of MAFFT, amino
acids sequences are converted to sequences of their physicochemical proper-
ties and homologous regions are identified by short-time Fourier transform.
Three 3D dynamic programming matrices are then created under PIP with
homologous blocks defining sparse structures in which most part of the DP
matrices is excluded from the calculations. A logically sound path to connect
the homologous blocks through intermediate “linking blocks” is identified (see
Section Homology matrix and optimal path and Appendix Homologous blocks
overlap resolution). Homologous and linking blocks are aligned under PIP as
independent DP sub-matrices and tracebacks merged to yield the final align-
ment. The new algorithm can therefore largely profit from parallel computing.
We estimate a theoretical speed up proportional to the cubic power of the
number of blocks (DP sub-matrices) and to the square of the average sequence
length (proportional to the mean number of cells per layer). Furthermore, in
Section 5.5: STFT vs. FT approach for block detection, we have compared the
efficacy of the STFT against the F'T approach regarding the ability of detect-
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ing patterns (i.e., homologous regions) within the signals even when their are
relative short and in presence of noise. Here, the noise is mimicking the sub-
stitution process which perturbs similar region and makes their identification
more difficult to assess.

A know limitation of PIP and therefore also of our progressive aligner de-
rives from the single character indel process. The reconciliation of modeling
long indels and at the same time to obtain a polynomial algorithm that is able
to exactly marginalize a continuous time stochastic process has unfortunately
not been resolved, yet. At the moment have been proposed only complex ap-
proximations to the marginalization [70, 91] or models that allow for either
only long insertions or only long deletions [92] or methods constraint to only a
pair of sequences [146]. Regardless of this constraint, our method appears to
perform surprisingly well compared to other state-of-the-art popular alignment
tools such as PRANK and MAFFT (Progressive multiple sequence alignment
with indel evolution, Gatti, Maiolo, Gil, Anisimova, paper in preparation). In
contrast to traditional aligners that do not utilise phylogenetic information to
distinguish insertions and deletions, our method produces longer alignments,
avoiding the artificial compression of MSAs and inferring more indels, again
similar to PRANK. According to the underlying indel model, our method ap-
pears to infer more shorter indels (e.g., compared to PRANK and MAFFT),
while longer indels are described by several subsequent indel events. Including
longer indels is considered desirable, however it has not been studied whether
modeling one residue indels at a time may also work well. For example, for
simplicity models of codon substitution typically allow only one-nucleotide
mutations. Despite this gross simplification codon models have been demon-
strated to perform extremely well for practical analyses of protein-coding genes.
As can be seen in our example of an HIV protein gp120, it is unclear what
inferred indel pattern is more realistic (given that alignments inferred by our
methods and by PRANK have very similar length). Considering the nature
of HIV mutations, it is quite plausible that indel evolution of gp120 is domi-
nated by short indel events [1]. Arguably, in our example, indel penalisation of
PRANK and MAFFT (affine penalty schemes allowing for long indels) might
make these tools too restrictive to single-residue indels, leading to aesthetically
more pleasing alignments. PIP might be more restrictive to long indels but
also more realistic for sequence data dominated by short indel events. Both
alignment benchmarking and the parameter optimisation of gap penalties are
extremely difficult due to the absence of sufficiently challenging datasets where
true alignments are known.
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Conclusions

Presently, many existing molecular evolution models and methods have been
proposed for the inference of multiple sequence alignments (MSAs) and phylo-
genies however, typically as independent steps and even worse based on differ-
ent mathematical descriptions. Yet, this model inconsistency has an impact on
the accuracy of estimations especially when the result of one inference is used
as input for the second. Therefore, ideally MSAs and trees should be inferred
jointly under the same mathematical framework. Some joint MSA-tree esti-
mation algorithms have been implemented in the Bayesian framework, relying
on the classic evolutionary birth-death model TKF91 that describes both sub-
stitutions and indels. However, such implementations are not suitable for large
datasets, because of their intrinsic computational complexity. With this work,
together with the development of the tree inference under PIP described in
the manuscript Phylogenetic inference under indel-aware evolutionary models
increases tree reliability and robustness, we have laid the foundations for a
sound joint inference of tree and alignment in the frequentist framework.
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Some technicalities

“Somewhere, something incredible is waiting to be known.”

— Carl Sagan

A.1 Detailed derivation of the marginal likeli-
hood function ¢(v)

In this section we are showing the mathematical steps to obtain a closed form
expression for the marginal likelihood for all empty columns as defined in the
original paper [13].

The marginal likelihood function under PIP is defined as:
pr(m) = E[P(M =m) | [X]] (A.1)

where the phylogeny 7 is given and m represents the realization of the random
variable M — the alignment function — obtained from a set of input sequences
X. The likelihood equation (A.1) is composed of two parts, the product of
columns likelihood p(c) — of the observed columns ¢ — and the marginal likeli-
hood of all non-observable empty columns computed by means of the function
©(+). Equation (A.1) rewrites therefore as follow

p-(m) = ¢(p(co), [ml) ] p(e) (A.2)

where p(cp) is the likelihood of a single column full of gaps and |m/| indicates
the MSA length. If not otherwise specified p(cy) = p,(cyp) where v = Q.
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The marginal likelihood for the empty columns ¢ (p(cy), |m|) is computed
starting from the likelihood of a single column full of gaps ¢y and is calculated
by means of the following equation

elplen)ml) = 3 B(XI=n)- (1) gl (A3

n=|m|

where P(|X| = n) is the Poisson probability of observing an alignment of
length n given a topology of total length!||7|| and p(cy) is the likelihood of a
single empty column. The function () marginalizes over an unknown and
infinite number of empty columns.

Let be ||v|| the normalizing measure of the Poisson intensity (see the original
paper for its derivation), which is equal to

ot = (11 + 3 (A4)

and where A is the insertion (birth) rate and p is the deletion (death) rate of a
single character. The rates A and p are kept constant during the entire evolu-

tion process and do not depend on the type of character inserted respectively
deleted.

The Poisson probability of observing an alignment of a fixed length given
the model parameters can be written as

P(|X| =n) = Hl;#e_””” (A.5)

where ||v|| corresponds to the expected MSA length generated by the Poisson
process. The total number of different alignments of total length n considering
a number m of indistinguishable and unobservable empty columns is calculated
by the binomial coefficient

<\ZL|> - Wlfm\)' (A.6)

where n — |m| represents the number of columns containing at least a char-
acter per column. Putting together all the elements (equations A.3-A.6) and
marginalizing over all possible MSA lengths (considering observable and non-
observable columns) we obtain

o(plco), ml) = Z HVII ”V”'Wimn!'p(c@)nlml' (A7)
——y

'The total tree length is computed as ||7]| = >, ;.1 b(v).
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At this point we may write p(cy)”~ ™ as

i 2l
"= e (A8

and by replacing equation A.8 into equation A.3 and pulling the constants out
of the summation we get

p(cp)”

ol llPp(e
o (p(ca), Iml) = Z lv"pleo)” (A.9)

[ml! p(co) ! (n—|ml)!

At this point it is convenient to define
a = [vilp(co), (A.10)

so that the infinite summation in equation A.9, using equation A.10, can be
rewritten in the following way

n

2w

n=~k
k+1 ak+2

|+1| ol
a+a+a+)a (a+a+a+)“
0!

a + al + a? a® + al + a2 1!

0
B (a + ak)+1 _|_ ak?+2 > (CL + ak"r]. + ak+2 + > al
0!

a’ +al +a?+ a4+ al +a?+ ..

a —|—ak+1+ak+2—|— a?
a0+a1+a2 )( —|———|———|—...>

o0 n

_ o—ok Za_l (A.11)
n=0

Now, using the result of equation A.11 into equation A.9 and substituting back
the variable a, defined in equation A.10, we obtain

Sp(p(cw) |m‘) —\|u|| ."=Z|:m| (HVHP(CQ))) i ||I/||kp(0(2))k' (A'12)
i)™ S (pen))” = H

n=0
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At this point we may recall some remarkable results from the sum of powers,

that are
> 1
"= — if 1
Za T, ! la| <
n=0
and i
m S k+1
Z a=2""%  fora # 1
— 1—a
as well as

k—1
o 1—a
Therefore, the second factor in equation A.12, that is

S ([vlp(ca)”

n=|m|

S (I llp(co))”

n=0

can be simplified in the following way. First note that equation

n=0

00 00 k—1
ot YooY
o0 o0

> an > ar

n=0 n=0

can be rewritten using the result of equations A.13-A.15 as

1 1—gl™
1—a  1-a
1
1—a

_ gl

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

and hence applying the result of equation A.18 and equation A.10 into equation

A.12 we obtain .
> (Ivllp(es))”

- = (IWllp(ca))™

> (Il llp(c))”

n=0

Since
k

> X
ex:ZE
k=0

(A.19)

(A.20)
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we can simplify equation A.12 using equation A.19 and equation A.20 as follow

=~

p(p(cp), Iml) = m )| p(cg)lm - el lpten) (A.21)
- % . HVH|m| . ellvllp(co) (A.22)
and finaly
o(plco), Im]) = |mL|| ] - e lelivlipteo) (A.23)
_ L' il el (1) (A.24)

|m|
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A.2 Detailed derivation of the survival proba-
bility function §(v)

In this section we are showing in detail the mathematical derivation of the
survival probability £(v) associated to a node v. For the original introduction
please refer to the original paper [13].

Let U be a random variable drawn from a uniform distribution U ~ U(0,t) and
W be a random variable drawn from an exponential distribution W ~ W(u)
and let U, W be independent among them, For fixed ¢, 4 > 0 then

P+ W > ) = L) (A.25)

tp

MhAa ctanhactin sraviahla TT vanvacanta an inanvtian ~Af o chavrantnr in a vandanm

U+W >t

Figure A.1: The stochastic variable U expresses the random insertion location of
a character drawn from a continuous uniform distribution U(0,t) on the edge v —
pa(v) of length b(v) = t. The stochastic variable W denotes the waiting time between
consecutive events in a Poisson process, in this case until the next deletion event.
W is drawn from an exponential distribution W(u) of intensity p (deletion rate) and
describes the survival probability of the inserted character until the first node below
the insertion point (node v).

of equation A.25, let be X and Y two independent random variables and let
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denote by fi,(U) and fyy (W) their probability distribution functions (PDF’s):

L ifo<u<t
_ _ t
JulU =) = { 0 otherwise (A.26)
and
_ oy - Jorexp(—py) ifw >0
(W =w) = { 0 otherwise . (A.27)

We denote with Z the sum of the two stochastic variables, i.e. Z = U + W
and with fz(Z) the probability distribution function of Z. The probability
distribution of the sum of two stochastic variables can be obtained by con-
volving their probability distribution functions. Therefore, fz(Z), the pdf of
Z =U + W reads

w
N
||

&
||

=

‘=

N
|

<

N~—

S~—

Julz —y) - fw(y)dy

2

Ju(z —y) - pexp(—py)dy

[e.e]
1

= / T pexp(—py)dy where 0 <z —y <t
o 1

= / T pexp(—py)dy where —t<y—2<0
<1

= / T pwexp(—py)dy where z —t <y <z
=1

= 7 pexp(—py)dy

|
o~

y=z _ _eXp(_NZ) (etxp(/ﬂf) _ 1) . (A.28)

__exp(=my)
t

y=z—t

Once the character has been inserted on the edge e, the character must also
survive until the node v. This condition is obtained by requiring that the
stochastic variable Z is at least b(v) = ¢. Hence, to obtain the probability
that Z > t we must compute the tail of the cumulative distribution P(Z > t),
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which gets

PW+U>t)=P(Z >t)

_ /°° exp(—puz) (exp(ut) — 1) "
; :
 (explit) — 1) exp(—piz) [
lut z=t
_ Lo explopt) (A.29)

ut

Equation A.29 is therefore the survival probability 5(v) associated to a node
v of a character inserted along the edge v — pa(v) as defined in the original
PIP paper [13].



A.3 Overview of PIP equations

The likelihood of a single column ¢ containing at least a character, that is ¢ # ¢y can be computed by means of
the following equation (see original PIP paper [13] for more details):

plo)=P(C=c)=> P(V=0)xP(C=c|V=0)
N——

veY 1
fv ifv=10
c# oy { z .
_ Z e\ {Q}) ifv#£Q y ﬂT[U €71 8(v) fu other\)mse
N = v({Q}) otherwise o fo ifv=0Q
P(V = v) T 1+ B(v) (—1 + fb> otherwise
fo
> ml0)fu(o) if v =0
og€A
fo
C 74 Ccp 1 .
1v e T] (o) (1- o”‘b“’)) Z 7 (o) f,(0) otherwise
L/_/UEA
b(w) B(v) i
W 20 ) o
Uy AR S m0)fi(o) ifv=0
= \IrlH/ii otherwise =y
Jo
c=¢
1+ ! (1- e’“h“")) 14 Z (o) fo(0) | otherwise
/,Lb(’l)) ogEA
| —
o) Jo

where 7 = v/ || v ||, 1(-) is the Indicator function, f, = P(C = ¢ |V = v, H(v) # €),and

s [ 1c(v) =0) ) ifvel
f’lﬂ(o-) a H?A)Gchild(v) ZU‘/EA( Cxp(b(u})Qé)Uﬂ'fw(oj) otherwise

suonenba d|d JO0 MaIMBAQ ‘€'Y
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Reversibility of TKF91 and PIP

“An expert is a person who has made all the mistakes that can be
made in a very narrow field.”

— Niels Bohr

B.1 Introduction to TKF91

TKF91 [145] is a string-value stochastic process defined on the branches of
a phylogenetic tree mathematically modeled by means of a continuous-time
Markov chain (CTMC). In the seminal paper of Thorne, Kishino and Felsen-
stein [145] a infinite state-space birth-death process let evolve a string of char-
acters via insertion and deletion events. This insertion-deletion process is
described in terms of links between consecutive sequence residues rather then
directly on the characters themselves. Hence, a sequence of N bases is trans-
formed into a sequence of links where the first is an immortal link followed
by N mortal links. The immortal link — as the name indicates — cannot be
deleted. This construction prevents the sequences from vanishing over time
and — under some constraints' — produces a realistic equilibrium distribution
of sequence lengths.

The birth-death process applies to each link independently and, conse-
quently, an event that happen to a link does not affect the birth-death proba-
bility of neighbors links. Mortal and immortal links are both associated with

Let be X the insertion rate and p the deletion rate, than by setting A < u the sequence
lengths are geometrical distributed with parameter %
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births with rate per link equal to A. Links can give births only to mortal links
which are placed immediately to the right of its parent link. The birth of a
new link implies the insertion of a new character associated to it which is then
arranged immediately to the left of the newborn link.

Mortal links are subject to death at a rate per link equal to p producing
the deletion of the character associated (to the left). The chance of more than
a single event on a link at same instant is negligible hence a sequence increases
or decreases in length by a single unit during a given instant.

Considering the birth of new links at a rate A per link and the death at rate
1 per mortal link, a sequence of NV basis increases in length to N +1 characters
at rate (N + 1)\ and decrease in length to N — 1 bases (assuming N > 0) at
rate Nu. Denoting vy the equilibrium probability of a sequences consisting
of N characters, then the distribution of y5 obtained under that birth-death
model is the geometric distribution v = (1 — M/ p)(A/u)Y, subject to the
condition 0 < \ < p.

The birth-death model — just summarized — allows to compute the proba-
bility, given two related sequences A and B, that after an interval on time ¢
sequence A evolves into B. The calculation of this transition probability can be
separated into its two components representing two superimposed stochastic
processes acting on the sequence: the substitution process and the insertion-
deletion process. Chosen a reversible substitution models, the substitution
probability f; ;(t) that a character of type ¢ is replaced by one of type j in a
period of time ¢ gets

| exp(—si t) + (1 —exp(—s; t)) 1=
fii(t) = { 71— oxp(—sist)) oy (B.1)

where s; ; represents the rate for such substitution and ; is the steady state
probability that the new character is of type .

By considering sequence A as the ancestor of sequence B and putting them
into an alignment o the transition probability that describe the evolution from
A to B is obtained by computing

P(o[6) =P(o, 0" | 0) =P(e| o, 0)P(c" | 0) (B.2)

where 6 represents the collection of model parameters. ¢’ denotes the informa-
tion on the presence or absence of bases in the given alignment ¢ and P(¢’ | 9)
denotes this probability. ¢ is therefore the alignment obtained from o by
substituting each character with a gap/non-gap symbol. The substitutions
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probability is computed by P(o | ¢/,6). Therefore, the probability P(o | 6)
of a specific homology path represented by alignment ¢ is obtained from the
insertion-deletion transition probability P(¢’ | 8) together with the substitution
probability P(o | ¢/, 0).

With an ancestral sequence consisting of N bases, the probability P(¢’ | 0)
is obtained as the product of N + 2 terms that are:

(i) yn: the geometric equilibrium probability of an ancestral sequence of
length N;

(ii) pix(t): the transition probability for the immortal link;

ii1) py(t) or p'y(t): the N terms for the transition probabilities for normal
p Pn p
links.

These probabilities refer to

(i) pn(t): the probability after a timespan ¢ that N links are descended from
a normal link (including itself);

(ii) p/y(t): the probability that N links are descended from a normal link
and the original dies and

(iii) p’(t): the probability that the immortal link has N descendants (includ-
ing itself).

The corresponding birth-death differential equations are:

Opn (t
—pgf L AN = Dpw1(6) = O\ 10 Npw(6) + 1iNp s 8 (B.3)
op'\ (t , .
pgt( ) = AN = Dpy_1(t) + u(N + 1)pyq (1) + oy (t) (B.4)
oph(t ,
pgt( ) - ppy () + ppi (1) (B.5)
W) _ \(N = 1) (1) — (AN + (N — D)L () + NPl (8) (B
7— — 1)PNn_1 _( +N< - ))pN()+N pN—H() ( )
with N > 0 and initial conditions
pi(0) =1 p(0)=0 N=0,1,..
pn(0) =0 P0)=0 N=23,..
pi(0) =1,



128 B. Reversibility of TKF91 and PIP

and by definition:
po(t)=0 and p;(t) =0. (B.7)

The solutions of the differential equations (egs. B.3-B.6) are

piv(t) = exp(—pt) (1 = A (t)) (M (8)) N>0 (B8

P (t) = (1= exp(—put) — () (1 =)o) (@) N>0  (BY)

po(t) = e (t) (B.10)

Pho(t) = (1 =20 () (w(0)" N>0 (B11)
with

(1) = 1 —exp((A — p)t)
p—Aexp((A = p)t)
In Section B.3 we will show, by means of some examples, how to compute the
probability under TKF91 of an alignment along a generic branch of a tree. We
are also testing in Section B.3 and Section B.4 whether TKF91, respectively
PIP, are both reversible evolutionary processes. They, however, should not be
intended as rigorous mathematical demonstrations. But before showing the
likelihood formulation under TKF91, it will be useful to recall (Section B.2)

the main aspects regarding the time reversibility of an evolutionary process
that will be useful later in Sections B.3 and B.4.

(B.12)

B.2 Time-reversible evolutionary process

In this section we recall briefly the equations implied by a time-reversible
Markov chains that are the basis for the model reversibility analysis performed
respectively for TKF91 (in Section B.3) and PIP (in Section B.4).

The likelihood of a pair of related sequences A and B descendant from a
common ancestral sequence C by a evolutionary time ¢ is

Py(A,B) =) Po(C)Py(A | C)P(B | C)
C

graphically depicted in Figure B.1(i).
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With a reversible (evolutionary) process one can write
P (C)PL(A | C) = P (A)P(C | A) for every A, C and ¢t > 0 (B.13)

where P (C') = P;(C) when t — oo and refers to the probability of ending in
state C after an indefinite long interval of time ¢. Equation B.13 leads to

b(v1) + b(v2) b(v1) + b(v2)

(%) V1

A B B A

Figure B.1: (i) Pair of modern sequences, A and B, separated from a common
ancestral sequence C. (ii) Degenerate topology with sequence A ancestor of sequence
B separated by an evolutionary distance equal to the sum of the two branches b(vy)
and b(ve). (iii) Degenerate topology with sequence B ancestor of sequence A separated
by an evolutionary distance equal to the sum of the two branches b(vy) and b(ve).

B.3 Reversibility of TKF91

In this section we are testing whether TKF91 is a reversible model through
two examples. To test the reversibility we have computed the likelihood of
aligning two sequences A and B in four different configurations: (i) by taking
A as ancestor of B; (ii) by taking B as ancestor of A; (iii) as in i) but reverting
the columns order of the two sequences; (iv) as in ii) also reverting the columns
order of the two sequences.
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For the purpose of testing the reversibility of TKF91 model it is sufficient
to compute the probability term P(¢" | ) because this model is built on a
reversible substitution process and the probability term P(o | ¢, 6) is therefore
reversible by definition.

Case 1

Using the pairwise alignments shown in Figure B.2a and assuming that the
sequences are evolving on the topology show in Figure B.1(ii) the likelihood of
the implied alignments reads

P = Kl - 2) (3)] (= a-wm) (- v0)] - -]

[exp(=ut)(1=r-v) - (A-v0)'] (B.14)
: (1 —exp(—pt) — - w(t)) <1 - A ¢(t)> <)\ : ¢<t)>0} '
Jexo(=ut) - (1=2-00) (A v0)]. (B.15)

The likelihood P(¢' | €) obtained for the alignment in Figure B.2c — obtained
by reverting the columns order of both sequences — is equal to the likelihood
computed in equation B.14 for the original alignment of Figure B.2a.

In order to check whether the model is time-reversible, we have computed
the likelihood of the alignment obtained by setting B as the ancestor of se-
quence A. The probability P(¢ | 0) of the resulting alignments, shown in
Figure B.2c, gets

[0 T 0 o) )

o w@] - [espm (1-2-0) - (r-0) |

(1 ety — - w®) (1= 3-00) (A w) |
Jesp(pt) - (1=x-0®) (- e®)] - [w-vm] . (B16)

The probability P(¢’ | 0) of the alignment in Figure B.2d (equation B.16),
obtained by reversing the evolutionary time and the column order, is equal to
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(a) Pair of aligned sequences. Se-
quence A is the ancestor of sequence
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(b) Same pair of aligned sequences of
(a). Sequence B is now the ancestor
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(¢) Same pair of aligned sequences of
(a). Sequence A is the ancestor of se-
quence B like in Figure B.1(ii). Se-
quence A and B have been flipped left
to right.

(d) Same pair of aligned sequences of
(a). Sequence B is the ancestor of se-
quence A like in Figure B.1(iii). Se-
quence A and B have been flipped left
to right.

Figure B.2: Four pairwise alignments of the same two sequences A and B involving
four different homologous histories. (a): original alignment; (b) alignment of (a)
inverted top-down; (c) alignment of (a) where the sequences have been flipped left to
right; (d) alignment of (a) inverted top-down and flipped left to right. Dots on the
left side of the sequences represent the immortal links.

the probability of the original alignment (equations B.14 and B.16). Indeed,
by computing the ratio between p, . (equation B.14, where p, = p.) and pyq
(equation B.16, where p, = py) we get

Duv.d
Pa,c

=1. (B.17)

Moreover, since TKF91 is using a reversible substitution model the probability
P(o| ¢',0) of evolving from A to B or evolving from B to A (see Figures B.1(ii)
and (iii)) is by construction exactly the same. Therefore, in this example,
TKF91 is a time-reversible model.
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Case 2

Let us analyze a second alignment (depicted in Fig. B.3). The probability

A e B e
B e A e

—_—— —— e

P (t) (1) py(t)  po(t) po(t) molt)

(a) Pair of aligned sequences. Se- (b) Same pair of aligned sequences of
quence A is the ancestor of sequence (a). Sequence B is now the ancestor
B like in Figure B.1(ii). of sequence A like in Figure B.1(iii).

Figure B.3: Two pairwise alignments of the same two sequences A and B involving
different homologous histories. (a): original alignment; (b) alignment of (a) inverted
top-down. Dots on the left side of the sequences represent the immortal links.

P(¢ | 0) of the pairwise alignments shown in Figure B.3a is obtained by
computing

= |(1-2)(3) ]| (1= 2w0) (o) |- | (1= exvtn - )

(1= 2w (AW))Q} (B.18)

whereas the probability P(¢' | 0) of the alignment of Figure B.3b is

oy = [(1 - g) (2) ] (= xwm) ()] [(m/}(t)ﬂ (B.19)

Already at this point is evident that by reverting the time evolution the like-
lihood of the two implied alignments differs. In fact, when we compute the
ratio between p, (equation B.18) and p, (equation B.19) we get

P _ A (t) !
Pa 1 —exp(—pt) — p(t)

(B.20)

The second example shows that TKF91 model in principle is NOT a time-
reversible model. By reverting the time, the likelihood of the two corresponding



Figure B.4: The branches change their length from 0 to b(vy) + b(ve) by setting
§ = —b(va),...,b(v1).

homologous paths is different which is confirmed by the fact that their ratio
# 1. The reason lies in the link construction, by reverting the evolutionary
direction (or by reading from right to left the sequences) the interpretation of
the events might change.

B.4 Reversibility of PIP

In Section B.3, we have seen that TKF91 is in general not a time-reversible
model. Let us now analyze the model reversibility under PIP. To simplify
this analysis we have used the topology shown in Figure B.4 and we have
computed the likelihood of an MSA column by moving the root €2 from v; to
vy setting 0 = —b(vy), ..., b(vy). Like for the TKF91 analysis, let us compute
the likelihood P(a/ | 0) of an MSA column ¢ = [i}, where the symbol # stays
for any characters in the alphabet but the gap.

The likelihood of the column c¢ is

ple) = t(v0)B(vo) - {m. o [exp((b(er) — ) Q) E(v1)
* exp((b(vg) + 5)Q€)f(vz>} } . (B21)

The prior insertion probability and survival probability associated at the root
node remains unchanged by moving the root node position along the phylogeny
as long as the total tree length ||7|| = b(v1) + b(v2) is kept constant. Therefore
the likelihood of matching the left character with the right one will not be
affected by moving the root.

The Chapmann-Kolmogorov therorem, briefly outlined in Section B.2, as-
sures that in match case — when there is a character ¢ € A on both ends of
the edge connecting them — the substitution probability moving the root on
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one of the two sides remains constant. Thence, the PIP model in match case
is always reversible.

To check the reversibility also when an insertion or deletion event happens,
we have computed the likelihood of a general column ¢ = [ﬂ . This likelihood
can be written as

p1(c) = t(vo)B(vo) - (ﬂ'e o f(vo)) (B.22)
pa(c) = v(v1)B(v1) - (e o £(v1)) (B.23)
p(c) = pi(c) + pa(c) (B.24)

where

f(vg) = {71'6 o [exp ((b(vl) —9) Q€>f(v1) * ((b(vg) +0) Q5>f(1)2)]} (B.25)

with
fo) =[1.1,1,1,0]" (B.26)

(any characters but the gap) and
f(v2) = [0,0,0,0,1] " . (B.27)
Equation B.25 can be decomposed in this way
f(vo) = fu- fr (B.28)
From equations B.24, B.26 and B.28 we get
fo=mo0 [exp ((b(vl) - 6)Q6)f(v1)} = exp(— p(b(vr) — 5)) (B.29)
and from equations B.24, B.27 and B.28
fr = exp <(b(U2) +0) Q5>f(U2) =1—exp (— p(b(v2) + 5)) : (B.30)

Hence, equation B.24 becomes

p(e) = 1(w0)(n) - exp( — (b(vr) ~ 9)) - (1 — exp(~ p(b(ea) + 5)>> n
+ ¢(vy)B(vy) - 1
1/p .exp<— p(b(vr) — 5)) : <1 — exp (— p(b(ve) + 5)))-1—

~ il + 1/
b(vr) — 8 11— exp(— p(b(vr) — 5))

Il +1/p 1 (b(vr) — 0) (B.31)
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Figure B.5: Likelihood of an MSA column ¢ = [#,—]T as function of the root
location. The position of the root ) changes position by varying ¢ in the domain
[—b(v1),...,b(v2)]. lki represents the likelihood of equation B.22, lko represents the
likelthood of equation B.23 and lks represents the likelihood of equation B.24.

In eq. B.31 we have used the property
meof(v) =m o [l,..,1,0] =1. (B.32)
Equation B.31 can be simplified as

1 1
Il + 1/

+1-— exp(— p(b(vr) — 5))]

1/p (
=_—(1— exp( — 1(b(v1) + b(ve) )) (B.33)
GESZ ( )
From equation B.33 we can notice that the location of the root €2 — which is
moving from v; to v, — does not affect the value of the likelihood as long as
the sum of the two branches b(v;) and b(vy) remains constant. Therefore, PIP

is a time-reversible model also in case of insertions and deletions.

p(c) ~ [exp( = p(b(vr) = 6) ) = exp (= p(b(er) + b(ws)) )+

Figure B.5 depicts the likelihood components f(vp), fi, and fr as function of
. As shown analytically, the likelihood f(vg) remains constant while changing
the root location.
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Characterization of Indel rates

“Student: Dr. FEinstein, Aren’t these the same questions as last year’s
[physics] final exam?
Dr. FEinstein: Yes; But this year the answers are different.”

— Albert Einstein

In this Appendix we have re-elaborated some equations from the original PIP
paper [13] in order to characterize the influence of the model parameters on
the alignment.

C.1 Introduction

Under the PIP model, characters evolve along the branches of an evolutionary
tree. Considering the insertion locations and their lifespan, one can classify
the different fates to belong to one of the four classes, namely Ny — Ny, which
are graphically represented in Figure C.1. The four sets, N; — N,, characterize
the history of the characters depending on whether they were already present
at the root of the tree and according to whether they survive till a fixed time
point on the phylogeny, noted as v, after an evolutionary interval of time ¢. For
instance, characters belonging to the set Ny and N, are not observable at the
instant v, while the ones included in the set N7 and N3 are. As demonstrated
in the original paper ([13]), the total number of characters in the four sets
at the root and at any point v is distributed according to Poi(A/u). In other
words, under the PIP model the number of characters remains constant during
the evolution, what is changing is rather the relative number in each set. The
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Figure C.1: Figure adapted from [13]-Supporting Information. The two horizontal
lines denote the sequences at the root Q and at a given node v, separated by an
evolutionary time t. The horizontal lines denote the times where each character is
present in the sequence. N1 is the set of characters present both at the root and the
node v, Ny is the set of characters present only at the root. Set N3 contains the
characters inserted along the phylogeny not not present at the root. N4 is the set of
character inserted below the root and died before reaching the time point v.

number of characters belonging to the different sets are distributed according
to the following distributions [13]

A
Ny ~ Poi(— (1 - exp(—u)))
1
A
Ny ~ P01<— exp(—u))
1
A
N3 ~ P01<— (1 - exp(—u)))
1
where, as already stated above, A corresponds to the insertion rate, y represents

the deletion rate. Therefore, given a topology 7 of total length [|7| we can
expect statistically

Mu(jlr) = 3(1 — exp(— 7)) (1)
No(lIr]) =~ gexp<—|mm> (C2)

Na(lrl) = 5 (1 = expl=irlo) (©3)
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A A
Na(l[rll) =~ pexp(—llTllu)wLAllTll T (C.4)

number of events.

Clearly, the following property holds

A A
(Mo Voo N N (el = 22 (1= exp(= il - ) ) + 20 (=] o)+

A A
Al = 2 = Al +
1 1

1
=7 —|——>: v .
(II I+ il

At the root we can expect to find in total
A A A
Nl + Nalirl) = (1= exp(=lirl - ) + 5 expl=lirl ) =

number of characters and the same number can be expected at a given point
v on the topology, after an interval of time ¢

NMhm+Mmmnz2mm4mwm+§@—wm4mwm)=3

Let us analyze the behavior of the four functions C.1-C.4 by taking the limits
for an infinitely short and infinitely long interval of evolutionary time, that is

lim Ni(||7[)) = lim Ny([|7[)) = lim No(f[r]]) = lim Na(fir][) =0 (C.5)

I7l—0 I7[[—0 Imll— Irll—

tim (Ny+ ) () = T Vi) = 1mzwwm=5 ()
Ir[|—0 Irll— 7|l =00 u
nm(m+MMWM—mnmwm=5 (©7)
l|7]|—oc0 [[7]|—0 H

Tim Nalirl) = Y (N No 4 Ny + Ny ) (r]l) = o0 (C8)

which are also represented graphically in Figure C.2.

C.2 Inferring indel rates from a given MSA

Suppose that we have an alignment m and that we want to infer the indel
rates under PIP that could have generated it. Let be m the expected sequence
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Figure C.2: Graphic representation of equations C.5-C.8 with A = 100, u = 1/2 and
7|l =0,...,4.9.

length computed as the average number of characters per sequence, and |m)|
the length of the MSA m comprehending therefore the stretches introduced by
the gaps.

Given that
n=Ap

. N (C.9)
Im| = ||T||+; = [l

we can estimate the indel rates of the PIP model solving equations C.9 with
respect to A and p obtaining

A= Wﬂ' ﬂﬁ
T
e (C.10)
p=Tr
7

In a PIP based MSA, we can expect to find a number of columns without

gaps, denoted ny, distributed according to ny ~ Poi(ﬁ exp(— ,u)) which, given



C.2. Inferring indel rates from a given MSA 141

a topology 7 with total length ||7|| gives
A
= 2 expl—lrl) (c.11)

The expected number of columns containing gaps, denoted ng (although not
completely filled in with gaps), is given by

A
ng =~ \||7]| + ; 1 —exp(—||7||lx) |- (C.12)

The behavior of the variables ny, ng and their sum (total number of columns)
as function of different model parameters is depicted graphically in Figure C.3
for the intensity parameter I = A - p, in Figure C.4 for the total tree length 7,
in Figure C.5 for the insertion rate A and in Figure C.6 for the deletion rate
L.

Alternatively, we can infer the indel rate parameters by considering the struc-
ture of the given MSA m which translates in counting the number of columns
of the sets ny and ng. This gives the system of equations

A
ng = — exp(—||7||©
n = exp(=|7llp)

N (C.13)
ng = Ap+ ;(1 - eXP(—HTHM))
that can be solved with respect of A and pu, as follow
\— Ny - eXP(W(nG,nH)) - W(ng, nu)
B I~
C.14
= W(ng,nn) ( )
I~
The function W in equation C.14 is defined as
W(a, B) = Wy (exp(l) : % + 1) -1 (C.15)

where WY denotes the 0th branch of the Lambert-W function®. The Lambert-
W function is a set of functions (called branches) of the function f(z) =
zexp(z) where z is a complex number. Hence

z= fHzexp(z)) = Wh(zexp(2)). (C.16)

For all real = > 0, the equation has exactly one real solution y = W¥(x) = WyL(z).
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For any complex number zy = z exp(z) we get
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Figure C.4: Left: Graphical representation of nyg, ng and their sum num.col =
nyg + ng as function of 7. Right: Graphical representation of Any, Ang and
Anum. col obtained, for instance, as Anyli] = nuli] — nu(0] for i = 1,...,19. The
other parameters are: X = 100, p =2 and ||7]| = 0.1.
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Figure C.5: Left: Graphical representation of ny, ng and their sum num.col =
ng + ng as function of 7. Right: Graphical representation of Any, Ang and

Anum. col obtained, for instance, as Angli] = nuli] — nu[0] fori = 1,...,19. The
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Figure C.6: Left: Graphical representation of ny, ng and their sum num.col =
nyg + ng as function of 7. Right: Graphical representation of Anyg, Ang and
Anum. col obtained, for instance, as Anyli] = npli] — ng[0] for i = 1,...,19. The
other parameters are: A =100, =2 and ||7|| = 0.1.
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Doob-Gillespie method and PIP
description

“If we knew what it was we were doing, it would not be called research,
would it?”

— Albert Einstein

In this Appendix we aim to illustrate the connection between PIP and the
Doob-Gillespie method (as mentioned in the original paper [13]) by showing
how homologous sequences are created under the PIP model.

D.1 Doob-Gillespie method

The method proposed by David Kendall, in 1950, for the simulation of birth-
death processes [67] has been extended to non pure-jump processes by Joseph
Leo Doob (1942, 1945) and made popular by Daniel Gillespie (1976) for sim-
ulating chemical reactions. The Doob-Gillespie algorithm [9, 26, 27, 41, 42] —
called also Gillespie’s Stochastic Simulation Algorithm — is a fast method to
generate statistically correct trajectories of stochastic equations [37, 151]. This
method, which mathematically is a variant of dynamic Monte Carlo method,
avoid any rejection during the sampling phase and consequently it is very fast.

In the PIP article [13], the authors defined the PIP model using two
different descriptions, namely the local and the global description. More-
over, the authors established the condition for which the two model descrip-
tions coincide, that is by defining the Poisson insertion intensity as v(dt) =
A (7(dt) + % - 6o(dt)). In the following, we have looked at local description
which can be useful to synthesize data under the PIP model, and with minor
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changes also under TKF91.

To generate trajectory samples according to the underlying dynamical
model and construct the correct statistical distribution of events, let us con-
sider n,. event types labeled r, with their respective activity a,. = 7, - n,., where
~ denotes the respective rate at which the event of type r occurs and n, the
number of “particles” (reads characters) subject to that event. Under the PIP
model, the event types r are restricted to only three:

(i) insertions with activity ai,s = A - 1. PIP, differently from TKF91, uses
only a single stochastic variable for the entire system;

(i) deletions with activity agel = -1, where n is the number of characters,
and

(iil) substitutions with agus according to the substitution rate matrix O, let
say Qiups = 0 - n.

In order to stochastically simulate the evolution of a given sequence of N
residues we need to be able to answer two questions:

1. when the next event event happens (Sec. D.1.1) and
2. what kind of event it is (Sec. D.1.2).

Knowing at which time point (when) occurs an event of a given type (what)
we will be able to simulate a statistically correct evolutionary trajectory under
the PIP model.

D.1.1 When does the next event happen?

Suppose that the events occur in time according to a Poisson process with
parameter «, (where r = insertion, deletion, substitution) and let ¢ denote the
interval of time until the first event. Then T is a continuous random variable
with cumulative distribution as follow

P(T'<t)=1—P(T >t)=1— P(no events untill time ¢). (D.1)

The probability in equation D.1 that the first event happens after time ¢ cor-
responds to the probability that there are no events until time ¢. From the
Poisson distribution we can compute the probability distribution (CDF) of no
events in a time interval ¢ for an event type r which gets

(Oé,,-t)oeiat

Pi(t) = 1 - =

=1—e ", (D.2)
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The probability distribution function (PDF) computed deriving D.2 with re-
spect to t is

p(t,) =ae " r=1.,n,. (D.3)

In equation D.3, p(t,) is the distribution of times till the first event. Assuming
that event r occurred at time t, = t, what is the probability that this event
occurred before all others, given that it occurred at ¢? The probability that t
precedes to, ts, t4,..., indicated as P(r is first | ¢, =) is
P(ris first | t, =t) = p(t <t1)-p(t <to) ... -p(t <tp_1)-p(t <toi1)- ...
op(t < ty,)

=TIt <t =T1pt; >0 (D.4)

J#T i#r
From the result in equation D.3, equation D.4 can be re-written as

P(r is first | ¢, = t) = Hp(tj > 1) = H/ aje” b dt;

j#r j#r ot

— | |e—O¢jt

J#T
_ eart H e—ozjt
J
eozrtef Zj ot

= e™rlte 9" (D.5)
where
Ny
6=> q (D.6)
j=1
represents the sum rates over the event types.

What is the probability that event r is the first event and that it occurs at
time ¢, = t?7 This joint probability can be computed from eq. D.5

P(r is first A t, =t) = P(r is first | t, = t)P(t, = t)
— eartefdnfoérefart

= a,e . (D.7)
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Since there are n, competing events each of which could be the first one to
occur, we have to sum together all their probabilities. The probability distri-
bution p(t) that the first event event occurs at time ¢, given n, possible events
r, then becomes

p(t) = P(first event occurs at t)

= ZIP’(T is first A t, =t)

= ge 9. (D.8)

The result obtained in D.8 for n, competing events is similar to the result
obtained in D.3 considering only one type of event. The combination of par-
allel memoryless processes leads to an exponential probability density with

parameter ¢ = ). a;.

D.1.2 What kind of event happens next?

To simulate events under the PIP model we need to compute what is the
probability p, that the next event is r. This probability is obtained from the
joint probability in equation D.7. In equation D.8 p(t) has been obtained by
marginalizing over all events r (D.7), now we have to integrate over all times,
in this way

pr = P(the first event is r)
= / P(r is first A t, = t)dt = / e tdt
0 0

- %. (D.9)

Equation D.8 and D.9 yield the basis for an algorithm that simulate different
events competing among them.

D.2 Local PIP description

Under the PIP model substitutions and deletions are modeled by means of
a continuous-time Markov chain with state space A = A U e¢. Insertions
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of new characters are Poisson events defined on the topology. Considering
that continuous-time Markov chains (CTMC’s) can be seen as discrete-time
Markov chains where the transition times occur according to a Poisson process
and Poisson processes are themselves CTMC, we are allowed to treat inser-
tion, deletions and substitutions in the same manner. Indeed, the waiting
times between consecutive events (of any kind) are distributed according to an
exponential distribution and each event occurs with a probability proportional
to its rate. This property allows us to adapt Doob-Gillespie method also to
the PIP model.

Pseudo-code

The algorithm shown below (Algorithm 1) along with Figures D.1-D.4 describe
with pesudo-code and pictures how homologous sequences are generated ac-
cording the PIP model using the Doob-Gillespie method briefly outlined above.

Algorithm 1 Doob-Gillespie-PIP procedure

1: procedure DooB_GILLESPIE_PIP

2: inat:

3 for r + 1,n, do

4: Qp < Yp oM

5: end for

6 o=

7 T=0 > reset the time
8: loop:

9 for 1 < 1, N do
10: draw t according to:
11: p(t) = P(first event occurs at t) = ge~%
12: advance the simulated time: T < T +1
13: draw the next event r according to:
14: pr = P(the first event is r) = %
15: update a, > according to the ev. new number of characters
16: update ¢

17: end for
18: end procedure
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Figure D.1: Step 1) The process starts
at the root. The Poisson process in-
tensity at any point on the topology is
given by v(dt) = X- (7(dt) + i -0q(dt))
which at the root (at time 0) gives
v(0) = )\-(T(O)—I—i-cSQ(O)) = % Hence,
at the root, we can expect a number of
character N distributed according to a
Poisson distribution N ~ Poi(%). At

time

Figure D.3: Step 8) At step 2 the
algorithm selects the smaller random
variable, in this case the “winner” is
the insertion random variable. To se-
lect the location of the insertion a uni-
formly distributed random wvariable is
drawn and another multinomial ran-
dom wvariable (distributed according to
7 ) is drawn to select the state of the
new inserted character.

time

insertion (with rate \)
—> deletion (with rate p)
—» substitution (with total rate ©)

l

time

Figure D.2: Step 2) Each character
draws an exponentially distributed ran-
dom variable (waiting time of an expo-
nential Poisson process) for the dele-
tion (with rate p), a second exponen-
tially distributed random wvariable for
the substitution (with total rate ©, ac-
cording to the subtitution matriz), and
then if selected a multinomial random

Figure D.4: Step 4) The “winner”
random variable does mot only select
the next event but also the time point
when the event happens. The Doob-
Gillespie algorithm then continues by
drawing for each character present at
this time point 2 random variables for
the substitution/deletion process and 1
variable for the entire system for the
insertion.

b

2N+1 random variabl
(exponential distribute

insertion (with birth rate.
deletion (with death rate

substitution (total rate ©
then multinomial with rat
substitution matrix 6)



Grantham’s distance

“There are in fact two things, science and opinion; the former begets
knowledge, the latter ignorance.”

— Hippocrates

E.1 Introduction

The formulation described here exploits a mathematically sound Grantham’s
distance based metric defined on the space of the physicochemical properties
of amino acids [48, 62]. The Grantham’s distance is used as a measure of
the physicochemical similarity of two molecules, which is used as “surrogate”
for the likelihood that the two molecules might undergo a substitution in an
evolutionary process. Substitutions between physico-chemically similar amino
acids tend indeed to preserve the structure of proteins, and they are therefore
more likely to occur during evolution. In the approach described by Katoh et
al. [62], homologies between sequences are detected using a cross-correlation-
based analysis of the physicochemical properties of the sequences residues.
The computational complexity of the cross-correlation is reduced from N2 to
Nlog N, where N is the average sequence length, by means of a Fast Fourier
Transform (FFT) based algorithm.

However, the Grantham’s distance implemented in our algorithm provides
a more sound metric to identify homologous regions in the sequences to be
aligned. Indeed, the cross-correlation can significantly underestimate the sim-
ilarity of two amino acids when their physicochemical properties have small
absolute values, yielding a small correlation coefficient, with respect to two
dissimilar amino acids with properties characterized instead by large absolute
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values, yielding therefore a large correlation.

Moreover, in our proposed approach, the space of physicochemical prop-
erties was extended to include also the chemical composition as suggested
by Grantham in 1974 [48], besides the volume and polarity features already
used in MAFFT. Because of the way the Grantham’s distance is defined, our
method can rely on a F'T based approach for the identification of homologous
sequences exactly as the MAFFT method, thus leading to the same computa-
tional complexity.

E.2 Grantham’s distance computation

The Grantham’s distance Dj can then be represented as a function of the
positional lag k between two input sequences. Peaks in the distribution Dy
identify lags k for which the columns of the two mutually shifted sequences
present a high degree of physicochemical similarity. Since Fourier analysis
cannot localize signals simultaneously in both time and frequency domain (see
Section 5), the function Dy defines the shifts & where homologies can be found,
without providing information on the location of the actual homologous regions
within the sequences. In Section 5 we have addressed this issue by applying
the short-time Fourier Transform (STFT). The use of the STFT, which is a
time-frequency transform, localize simultaneously the shift and the position of
putative homologous blocks.

An efficient way to quantify the similarity between amino acids consists
in calculating a distance based on their physicochemical properties. Substi-
tution processes between amino acids with similar physicochemical properties
are more likely to occur during evolution since they tend to preserve the struc-
tural and functional properties of the proteins that they form. Therefore, the
physicochemical distance between two amino acids can be interpreted as a sur-
rogate measure of the likelihood of a substitution event during an evolutionary
process.

The Grantham’s distance [48] depends on three fundamental properties,
that is, chemical composition ¢, polarity p and molecular volume v. In Sec-
tion 5.4.4, Table 5.1, we listed the physicochmical properties, as defined by
Grantham [48], and which have been used in our algorithm.

The Grantham’s distance between a pair of amino acids ¢ and 7, is defined as,

Dy = Jaleli) = cG)F + BIp(i) — pG)P + 7o) —v ()P, (B)



150 -

1 W, *
i L

standardized volume
o
volume

'
[y

50

il

RNDCQEGHILKMFPSTWYYV

3 S S e S S S Y S S
ARNDCQEGHILKMFPSTWYV

Figure E.1: Standardized and non standardized volumes. Left: standardized volumes
as used in MAFFT for the cross correlation computation. Right: original volumes as
described by Grantham [48] and used in our approach based on Grantham’s distance.
From the left plot we can notice that two amino acids with similar volume (for
instance Glutamine (Q) and Glutamic acid (E)) but at the same time a volume
close to the average volume of the amino acids table will have a smaller correlation
compared to two not so similar amino acids, for the point of view of the volumes,
like Tryptophan (W) and Tyrosine (Y) but with a volume much different from the
average volume. By taking the absolute volume difference, on the right side, two
similar amino acids, like for instance Isoleucine (I) and Leucine (L) will have a
lower distance (which would correspond to high correlation) than Tryptophan (W)
and Tyrosine (Y) even if the latter have bigger volumes.

where «, § and ~ are weights defined in such a way that the average value
over the entire table is 100 (see [48] for more details). The larger the distance,
the less similar the amino acids are, and therefore the less exchangeable they
become during evolution.

The Grantham’s distance provides a more reliable measure of the similarity
between amino acids than the cross-correlations ¢, and ¢, used by the authors
of MAFFT [62]. The reason lies in the fact that the cross-correlations can
underestimate the similarity of two amino acids when the absolute values of
their physicochemical properties are small and, in the same way, overestimate
it when the absolute values are large (see Figure E.1). So, for example, for
both Isoleucine and Leucine one has v = 0.63, where volumes are measured in
A? and the symbol ‘" represents a standardized volume!. The cross-correlation

LA standardized signal § is defined in terms of its standardized components, i.e. v and p.
A standardized component is computed as v = (v — U) /o, where T and o, are respectively
the average and standard deviation computed over the input data rather than the 20 amino-
acids in Table 5.1. Analogous definitions hold for p and €.
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Figure E.2: Cross-correlation approach vs. Grantham’s distance approach. Left:
cross correlation table of the 20 amino acids volumes. Right: Grantham’s distance
calculation table for the volume component. The highest values should be placed in
the table diagonal where the amino acids are the same and therefore there is no
difference in the physicochemical component. In the right table this observation is
respected whereas on the left table not. Apart the diagonal the next two couples with
highest similarity of volumes are Isoleucine (I) with Leucine (L) and Proline (P)
with Serine (S), as one would expect. This pattern is not respected under the cross-
correlation approach proposed by the authors of MAFFT. In the latter approach the
highest values are biased towards the biggest amino acids and not the most similar.

thus yields ¢, = Uy Urgy = 0.39. On the other hand, for the amino acids Tryp-
tophan and Tyrosine one has Uzp = 2.00 and 0rvg = 1.21, and thus ¢, = 2.42.
As clearly shown graphically in Figure E.1 amino acids Isoleucine and Leucine
are physico-chemically more similar than Tryptophan and Tyrosine, whereas
the cross-correlation ¢, calculated as outlined in MAFFT [62] leads to the op-
posite inconsistent result. This simple calculation is presented here only for
volumes for the sake of simplicity. However, the same argument holds for all
other physicochemical properties. The Grantham’s distance instead, consid-
ering only the volume property, yields Dy py = 0.01 and Dygp ryr = 0.68,
leading as expected to a smaller distance, and therefore a greater similarity,
between Isoleucine and Leucine than between Tryptophan and Tyrosine.

Moreover, Figure E.2 clearly shows that the Grantham’s distance (on the
right panel) yields the largest physicochemical similarities along the diagonal,
that is, between identical amino acids, as one would expect, unlike the cross-
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correlations of MAFFT [62] (on the left panel) which depicts a different and
misleading pattern. It should also be noticed that we use all three physico-
chemical properties ¢, p and v, whereas Katoh et al. [62] calculate only the
cross-correlations ¢, and ¢, for the polarity and volume components, with a
consequent loss of information.

For the Grantham’s distance calculation, an amino acid ¢ is replaced by a
3-dimensional vector of its physicochemical properties, [c¢(i),p(i),v(i)], and a
sequence of amino acids is thus transformed into a sequence of such vectors.
By relating the lag 5 with respect to the position i, that is j = i + k, equation
E.1 can be rewritten as

Diin = \/04 [e1(6) = eali+ B)* + B p1(8) = pa(i + R + 7 [01.(1) — va(i + k)]

(E.2)
with the subscripts 1 and 2 referring to sequences S; and Sy, respectively. The
squared Grantham’s distance between the two sequences S; and S,, computed
for site ¢ from S; and applying a positional lag of k sites, at ¢ + k from S,,
reads

D7y = ale(i) = ca(i + ) + Bpi(i) — pa(i + k) + 7 [or() — va(i + k)] .
(E.3)
The squared Grantham’s distance computed by means of equation E.3 over
the entire length of the sequences, as function of the lags k, gives

D2 _ZDH—I—k
_Z{a e1(i) = eali+ k) + Bpi (i) — pali + ) +

+ [0 (i) = va(i + F))} (E4)

where Dy is an array of length equal to the number of the applied lags. The
coefficients «, 8 and ~ are constants, hence equation E.4 can be rewritten as

_az c1(i) — ca(i + k)] —l—ﬁZpl p2<i+k>]2+
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Expanding the square product in equation E.5 we get

Di—az c1(i)? + co(i + k)? — 2¢, (i )cz(z—i—k:)}
+BZ p1(i)% 4 pali + k)2 — 21 (i)pa(i + k)] +

+’yz v1(1)* + va (i + k)* — 201 (i)va(i + k)]
:a-Ci+5~Pk+7-Vi. (E.6)

In equation E.6, CZ, P% and V? refer to the chemical, polarity and volume
component, respectively. Since Cy, P, Vy, in equation E.6, have the same
structure let us proceed the analysis, for a moment, only with V. Splitting
the summation, equation E.6, we can rewrite the volume component as

Vk—WZ vi (@) +v3(i + k) — 201 ()va(i + k)]

= [va(z) + Zv%(z +k)— QZvl(i)UZ(i + k)

The last term of equation E.7 scales as O(N?), where N is the average sequence
length. However, using the well-known convolution theorem, in the same man-
ner as Katoh et al. [62], the FFT based procedure reduces the complexity of
that calculation to O(N log N). Hence, the cross correlation in equation E.7
using the Fourier Transform, becomes

(E.7)

Vi=y [Z v (i) + ng(i +k) =2 F Y F{vi}  F{va}} (E.8)

i

where F denotes the Fourier transform and F~! its inverse. Applying the
same procedure also to Cy and Py, equation E.6 turns to

D? =a [Z (i) + Z A(i+k)—2-FHF{a} Fleo}} (E.9)

i

F8 32000 + 3o+ k) 2 FF () Flpa}} |+ (B0)

+ Zv$(¢)+zvg(z+k)—2-f-1{f{v1}-f{v2}}] . (B.11)
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Figure E.3: Grantham’s distance coefficients for a small pairs of sequences. Top:
Grantham’s distance coefficients for the two sequences S1 and Sz, shown below in
sub-figure ii). Sequence Sy shows the same pattern present in S1 when shifted on the
left direction by 20 positions, as depicted in sub-figure i) and ). Indeed, the peak,
minimum value, in sub-figure i) is relative to the positional lag to be applied in order
to align the two patterns. The ‘noise’ threshold that segregates the Grantham’s coef-
ficients related to the presence of similar pattern in the two signals is computed by
destroying statistically all the pattern contained. This is achieved by permuting ran-
domly the order of the columns in Sy and recomputing the Grantham’s coefficients.
In this way any patterns eventually present is destroyed and the coefficients refer
to two random sequences. Our proposed approach has the advantage of reusing the
same property values, only in another order, and therefore the so obtained threshold
depends on the data at hand.
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It should be noted that S; and Sy can represent alignments rather than
simple sequences. In that case the properties ¢; (i) and co(i+k) of equation E.2
represents the column-wise average of the corresponding property at positions
1 and 7 + k, respectively. Moreover, for a gap in a column at a given position
J we assume ¢(j) = p(j) = v(j) = 0.

Furthermore, we observe that the distance D, = \/D_,% between two se-
quences or alignments can be interpreted as the L?-norm defined on the space
of the physicochemical properties of the amino acids. For two identical signals,
i.e., sequences or alignments, one has Dy = 0.

Finally, it should be mentioned that a similar distance-based approach can
be extended to nucleotides. In that case, the alphabet includes 4 nucleotides
and a gap character, that is, {A,C,G, T, —}. Each residue in a nucleic acid
sequence is then converted into a 5-dimensional vector with 1 at the position
corresponding to that character, and 0 elsewhere. So, for example, a Cytosine
would be represented as [0, 1,0, 0, 0] [35].



Homologous blocks overlap
resolution

“Mathematics reveals its secrets only to those who approach it with
pure love, for its own beauty.”

— Archimedes

The short-time Fourier Transform detects candidate homologous blocks
which corresponds to regions in the two sub-alignments or sequences with
high phisicochemical similarity. These candidate homologous regions define
a set B of blocks in a MSA homology matrix. The homologous blocks need
to be selected, arranged and connected in a consistent way for designing a
meaningful final alignment.

Prior to independently align the single blocks an algorithm has to connect
them logically in a path that respect the order of the columns and avoid any
duplication. This is achieved by first identifying within the set B the set P
of all possible paths that connect the candidate blocks potentially yielding
a final meaningful alignment. Firstly, one needs to identify the set P of all
possible consistent pathways through those blocks. A generic block b, € B
is characterized by the coordinates of its upper-left (u) and bottom-right (v)
vertexes, {[u;1,u;2],[v;j1,v;2]}. The two subscripts 1,2 refer to sequences Sy
and Sy. Consider for example another block b, adjacent to the first one with
coordinates {[ug 1, Uk 2], [Vk1, Vk2]}. The condition to connect the two blocks b,
and by, to form a meaningful path is (ug1 > w;1)A(ug2 > uj,2). This procedure
is iterated for all adjacent blocks finally yielding the sought pattern of possible
paths P.

The removal of the overlaps should alter in the least possible way the
structure of homologous regions that was previously identified. Therefore, the



160 F. Homologous blocks overlap resolution

overlaps are removed by replacing the overlapping blocks by two re-sized blocks
that retain the largest possible part of the diagonal elements of the original ones
without exhibiting any more overlaps. The diagonal corresponds to matches in
the DP alignment and represents therefore the expected traceback path that
we want to preserve as much as possible.

Our procedure allows us to remove overlaps only between two consecutive
blocks. Therefore given the set P the algorithm iterates in each path p; and for
for all pairs of consecutive blocks in this path check and if needed resolve the
overlaps, until all overlaps are removed. The algorithm generates in this way
the set P of overlap-free paths in which we choose the optimal path p* that
maximizes a given target condition. Finally, among the overlap-free paths P
we select the optimal path p* bearing the largest homologous regions, that is,
the largest total number of columns.

The pseudocode and the structure of the algorithm that first resolve the
potential overlaps, successively builds candidate paths and finally select the
optimal one is sketched here below.

Algorithm 2 Overlap resolution procedure

1. procedure OVERLAPRESOLUTION(blocks)

2 block Ssortea <— SORTBLOCKS(blocks) 1 sort blocks by first coordinate
3: treepiocks < CREATEBLOCKTREE(block Ssorted )

4: PathSoveraprree <— RESOLVEOVERLAPS(t7€€pocks, DlOCK Ssorted )

5 p* <= GETBESTPATH(pathsSoyerlapFree) > p* is the best path
6 return p*
7: end procedure

Algorithm 3 Create block tree procedure

1: procedure CREATEBLOCKTREE
2 T00tptree <— createNode()
3 n < |B]

4 for doi < n

5: node; < createN ode()
6

7

8

9:

insertChildN ode(root, node;)
EXPANDNODE(node;)
end for
end procedure
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Algorithm 4 Expand node procedure

1: procedure EXPANDNODE(node;)

2 n < |B|

3 for i<+ 1,n—1do

4 (a1, ay) < coord(B;)

5: for j <7+ 1,n do

6 (b1, by) < coord(B;)

7 if blzal/\bQZ(zg then
8

9

addNewN ode(node)
: end if
10: end for
11: end for
12: for i < 1,n do CREATEBLOCKTREE(node)

13: end for
14: end procedure

Algorithm 5 Resolve all overlaps procedure

1: procedure RESOLVEOVERLAPS(t7e€pocks, blOCk Ssorted)

2 P < get Paths(treepiocks, blockssorted)

3 repeat

4 numPaths + |P|

5: for ¢ < 1,numPaths do

6 pi < RESOLVESINGLEPATH(p;)

7 end for

8 until not all overlaps are resolved

9: return p > overlap-free paths
10: end procedure

Algorithm 6 Resolve single path procedure

1: procedure RESOLVESINGLEPATH(p;)

2: pairs < get Block Pairs(p;) > split path into block pairs

3: PALT Spesolved $— RESOLVEPAIRS(pairs)

4: Pathyesolved <— connect Pairs(pair s esolved ) > connect pairs to rebuild
path

5: return path,esolved > overlap-free path

6: end procedure
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Algorithm 7 Resolve pairs procedure

procedure RESOLVEPAIRS(pairs)
for i « 1, size(pairs) — 1 do
(Pi, Pit1) + RESOLVEOVERLAPPAIR(p;, Pit1)

1:

2

3

4: Pir1 < Pist

5 end for

6 return p > overlap-free pairs
7

end procedure

Algorithm 8 Resolve overlap pairs procedure

1. procedure RESOLVEOVERLAPPAIR(p;, Piy1)

20 Ypeovertap < getOverlapType(p;, pit1)

3: (Ps, Pit1) < resolveOQverlapType(pairs;, pairs;+1, tYPeoveriap)
4: return (Ei>5i+l)

5: end procedure

Algorithm 9 Search the best path procedure

1: procedure GETBESTPATH(p)
2 SCOTCpax < —O0

3 p* <0

4: numPaths < sizeof(p)

5: for i + 1, numPaths do

6 540

7 numBlocksInPath < sizeof (p;)
8 for j < 1, numBlocksInPath do
9: blocksize < pi ;

10: § <= s + blockgise

11: end for

12: if s > scorey.x then
13: SCOTEmax < S

14: P* < p;

15: end if

16: end for

17: return (p*, s)

18: end procedure
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Figure F.1: Overlaps table. A generic block b; € B is characterized by the coordinates
of its upper-left (u) and bottom-right (v) vertezes, {[uj1,u;j2],[vj1,vj2]}. The two
subscripts 1,2 refer to sequences S1 and So. This Table shows the different type of
overlap dictated by the relative position of two blocks bj, by,. The blue color refers
to S1 while pink color to Sy. On the vertical axis are depicted the relative position
of the boz edge [uj1,v;.1] in blue and the box edge [uy 1,vi1]. On the horizontal axis
are depicted the relative position of the box edge [uj2,vj2] in blue and the box edge
[uk,2, Vg 2]. From each type of overlap in the Table, for instance G2, or DS, ..., we
have defined a general strategy for its resolution.
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Multiple sequence alignment
evaluation

“But in my opinion, all things in nature occur mathematically.”

— René Descartes

G.1 Overview

The major goals of evaluating multiple sequence alignment software packages
are typically:

(i) to demonstrate the accuracy of a new heuristic strategy in achieving
better sum-of-pairs(SP) scores;

(ii) to exhibit the results obtained with a tools regarding the accuracy against
benchmarks [103], real or simulated proteins [132]

(iii) or to quantify the alignment accuracy vis-a-vis real data in a reference-
independent manner [25, 45, 106].

The most frequently adopted method to assess the accuracy of multiple se-
quence alignment algorithms is by using reference alignments from benchmark
test sets. Example of such benchmark datasets include HomFam [12, 129], BAI-
iBASE [142], 10AA collection [121], Prefab [30] and The Comparative Riboso-
mal Website (for RNA alignments) [18]. The BAIiBASE benchmark database,
for instance, contains multiple sequence alignments organized in different refer-
ence datasets [143] comprehending specific problems such as (i) small numbers
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of sequences; (ii) unequal phylogenetic distributions; (iii) large N/C-termi-
nal extensions; (iv) internal insertions; (v) repeats; (vi) inverted domains and
(vii) transmembrane regions.

It is worth to note, however, that structural alignments of real protein
sequences are in general very different from evolutionary alignments where at-
tempts are made to infer the most plausible homology paths. Regrettably,
structural alignments of well known proteins are readily accessible and there-
fore are in practice the standards against which alignment tools are often
measured. However, benchmarking an evolutionary based alignment against
BAIiIBASE can be criticized on the following grounds [58] (i) inconsistencies
with known annotations from external sources; (ii) debatable choices of pa-
rameters in automatic structural alignment procedures; (iii) Use of primary
sequence-alignment procedures like BLAST, employing substitution matrices
and gap penalty scores, and, thus, making modelling assumptions (iv) sub-
jective biases through manual curation of primary sequence and structural
alignments.

Moreover, BAIIBASE (v2.0) [7, 141] and HOMSTRAD [93] are — among
others — two well-know benchmark databases of hand-curated structural align-
ments. Since hand curation is not easily reproducible, is highly subjective
and lacks standard protocols other databases have been created relying on
automated structural alignment rules. Among them we can list, for instance,
SABmark [157] along with PREFAB [30], OxBench [124] and partially also
BAIiBASE (v3.0) [142]. To cope with ambiguous alignment regions, in several
databases the portions annotated as reliable are retained while the remaining
are “filtered out” so that only the selected regions are then measured with
respect to the accuracy. Nonetheless, none of these databases is actually ap-
propriate for benchmarking evolutionary based alignments.

For alignments based on the evolution, there are programs that simulate
substitutions, as well as insertions and deletions events at the molecular level
providing synthetic datasets useful for detailed performance studies of aligners.
Among others SIMPROT [109, 113] or Rose [135]. Even though in simulated
datasets the true homology histories as well as the relationships between the
input sequences are known, therefore the obtained performances in term of
accuracy in reconstructing the synthetic dataset are not generalizable for true
data. Another important consideration must be borne in mind when evaluating
alignments accuracy, i.e. often commonly used reference alignments are derived
from biased samples of proteins and RNA[31, 66, 98, 118, 162]. Therefore
multiple sequence alignment tools calibrated according to them might be be
also biased [3, 58, 98, 107]. Unfortunately, apart from small empirical datasets,
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there are no gold-standard benchmarks specific to homology alignments [98].
An alternative approach to the comparison against standard benchmarks are
synthesized data coming from simulations [127], however, such datasets often
contradict those based on the gold standards [66, 73, 74, 85] suggesting that
such approach may be inadequate [58]. Furthermore, it should not be forgotten
that the more the model implemented in the software package is similar to the
model coded in the simulator the better would be the results, but both might
be inconsistent with real biological phenomena.

Finally, functional and structural concordance does not imply evolutionary
homology, as it may have arisen independently by evolutionary convergence.
Therefore, structural benchmarks are particularly inappropriate to evaluate a
phylogenetic aligner, whose objective is evolutionary homology.

G.2 Benchmarks

Even though recent literature shows that phylogenetic aligners are outper-
formed in structural benchmarks, but perform well in phylogenetic tests (an
indeed our tool as well), a comparison against BAliBASE benchmarks is often
expected or required. In Table G.1 we have thence, summarized the results of
our benchmarks.

In Figures G.2-G.8 we are also showing an example of alignment under PIP
compared with the reference alignment of BAIIBASE. The phylogenetic tree
in Figure G.1 and the alignments refering both to RV911/Box115 dataset .
This datasets contains 7 amino acids sequences from

1. Xenopus tropicalis (Western clawed frog): A1A5F0;

2. Danio rerio (Zebrafish): Q52KB5;

3. Homo sapiens (Human): O15060;

4. Drosophila melanogaster (Fruit fly): P17789;

5. Drosophila melanogaster: Q24174;

6. Drosophila melanogaster (LOLA3_DROME): Q7KQZ4,;

7. Drosophila pseudoobscura pseudoobscura (Fruit fly): Q6IDVO.
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Figure G.2: Ewolutionary vs Structural alignment. Columns (1-200). BALiBASE
benchmark datasets RV911-115 containing 7 amino acids sequences from Xeno-
pus tropicalis (Western clawed frog): A1A5F0, Danio rerio (Zebrafish): Q52KBJ,
Homo sapiens (Human): 015060, Drosophila melanogaster (Fruit fly): P17789,
Drosophila melanogaster: Q24174, Drosophila melanogaster (LOLAS_DROME):
QT7KQZ4, Drosophila pseudoobscura pseudoobscura (Fruit fly): Q6IDVO.
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Figure G.3: Evolutionary vs Structural alignment. Columns (201-400). BALiBASE
benchmark datasets RV911-115 containing 7 amino acids sequences from Xeno-
pus tropicalis (Western clawed frog): A1A5F0, Danio rerio (Zebrafish): Q52KB5,
Homo sapiens (Human): 015060, Drosophila melanogaster (Fruit fly): P17789,
Drosophila melanogaster: Q24174, Drosophila melanogaster (LOLA3_-DROME):
QI - o A B _ S

PIP

Figure G.4: Evolutionary vs Structural alignment. Columns (401-600). BALiBASE
benchmark datasets RV911-115 containing 7 amino acids sequences from Xeno-
pus tropicalis (Western clawed frog): A1A5F0, Danio rerio (Zebrafish): Q52KBJ,
Homo sapiens (Human): 015060, Drosophila melanogaster (Fruit fly): P17789,
Drosophila melanogaster: Q24174, Drosophila melanogaster (LOLA3_-DROME):
Q7KQZ4, Drosophila pseudoobscura pseudoobscura (Fruit fly): Q6IDVO.
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Figure G.5: Evolutionary vs Structural alignment. Columns (601-800). BALiBASE
benchmark datasets RV911-115 containing 7 amino acids sequences from Xeno-
pus tropicalis (Western clawed frog): A1A5F0, Danio rerio (Zebrafish): Q52KBJ5,
Homo sapiens (Human): 015060, Drosophila melanogaster (Fruit fly): P17789,
Drosophila melanogaster: Q24174, Drosophila melanogaster (LOLAS-DROME):
QI - L R - T T

PIP

Figure G.6: FEvolutionary vs Structural alignment. Columns (801-1000). BAL-
iBASE benchmark datasets RV911-115 containing 7 amino acids sequences
from Xenopus tropicalis (Western clawed frog): A1A5F0, Danio rerio (Ze-
brafish): Q52KB5, Homo sapiens (Human): 015060, Drosophila melanogaster
(Fruit fly): P17789, Drosophila melanogaster: Q24174, Drosophila melanogaster

(LOLA3_-DROME): Q7TKQZ4, Drosophila pseudoobscura pseudoobscura (Fruit fly):
QOIDV0.
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Figure G.7: FEvolutionary wvs Structural alignment. Columns (1001-1200).
BALiBASE benchmark datasets RV911-115 containing 7 amino acids sequences
from Xenopus tropicalis (Western clawed frog): A1A5F0, Danio rerio (Ze-
brafish): Q52KB5, Homo sapiens (Human): 015060, Drosophila melanogaster
(Fruit fly): P17789, Drosophila melanogaster: Q24174, Drosophila melanogaster
(LOLA3_DROME): Q7TKQZ4, Drosophila pseudoobscura pseudoobscura (Fruit fly):
Q6IDVO.

PIP

Figure G.8: Evolutionary vs Structural alignment. Columns (1190-...). BALiBASE
benchmark datasets RV911-115 containing 7 amino acids sequences from Xeno-
pus tropicalis (Western clawed frog): A1A5F0, Danio rerio (Zebrafish): Q52KBJ,
Homo sapiens (Human): 015060, Drosophila melanogaster (Fruit fly): P17789,
Drosophila melanogaster: Q24174, Drosophila melanogaster (LOLA3_-DROME):
QT7KQZ4, Drosophila pseudoobscura pseudoobscura (Fruit fly): Q6IDVO.



RV911

RV912

RV913

#10
422
#32
#34
#35
446
#60
463
476
496
#115
#121
#122
4123
4142
#172
#175
H#177
#180
4181
4192
#212
4240
4246
#9258
4284

0.0868
0.2160
0.3560
0.2060
0.1700
0.0272
0.1390
0.4730
0.1520
0.0748
0.1650
0.2590
0.5660
0.2440
0.0790
0.1370
0.2380
0.2540
0.3260
0.3050
0.2400
0.1520
0.1240
0.0518
0.4340
0.2090

0.0000
0.0090
0.1270
0.0105
0.0007
0.0000
0.0301
0.2600
0.0037
0.0133
0.0699
0.0127
0.2380
0.1130
0.0036
0.0092
0.1090
0.0549
0.0290
0.1970
0.0566
0.0202
0.0000
0.0000
0.1800
0.0191

0.0000
0.1650
0.4070
0.1400
0.1010
0.0000
0.1360
0.4940
0.0915
0.0000
0.0880
0.2220
0.5990
0.2480
0.0147
0.0869
0.1370
0.2420
0.3220
0.3100
0.2690
0.1160
0.0000
0.0000
0.4510
0.2150

0.0881
0.2390
0.3800
0.2030
0.1560
0.0236
0.1980
0.4610
0.1610
0.0708
0.1560
0.2470
0.5530
0.2510
0.0796
0.1380
0.2140
0.2430
0.3230
0.3150
0.3240
0.1470
0.1290
0.0489
0.4330
0.2150

#11
#32
#45
447
449
#50
#54
460
#75
#76
#96
#121
#122
#142
4149
#154
#175
H#177
#187
4192
4202
#214
4240
#246
#9258
4259
#281
#290

0.6090
0.7640
0.4700
0.7260
0.7660
0.6000
0.5220
0.5820
0.6650
0.7990
0.7260
0.6940
0.7680
0.7110
0.6770
0.4800
0.4720
0.6880
0.6350
0.3130
0.4580
0.6390
0.5500
0.5570
0.5470
0.7680
0.5170
0.7410

0.4020
0.4960
0.2010
0.4620
0.3950
0.2710
0.3370
0.2080
0.2390
0.5410
0.5180
0.3940
0.4850
0.4900
0.3160
0.2600
0.3030
0.4560
0.4990
0.1640
0.1790
0.2490
0.3480
0.2670
0.1610
0.5490
0.2610
0.5820

0.6170
0.7850
0.4680
0.7270
0.8160
0.6330
0.5030
0.6360
0.7100
0.8360
0.7460
0.7120
0.8020
0.7730
0.7090
0.4200
0.4590
0.7190
0.6500
0.3170
0.4430
0.6970
0.5430
0.5620
0.5410
0.7900
0.5290
0.7630

0.5840
0.7550
0.4760
0.7210
0.7870
0.6100
0.5140
0.6520
0.6840
0.8050
0.7280
0.6880
0.7730
0.7110
0.6880
0.4510
0.4520
0.6970
0.6240
0.3410
0.4800
0.6670
0.5510
0.5690
0.5520
0.7730
0.5310
0.7400

#12
#17
#32
#34
#36
443
449
#63
#75
#76
#79
#82
#121
#122
4126
4132
#133
#142
#146
4158
4180
4183
#214
#222
4246
49258
4290

0.8490
0.6820
0.9020
0.9000
0.9100
0.9430
0.9240
0.8770
0.9690
0.9370
0.9260
0.9590
0.8300
0.9390
0.9430
0.8630
0.8650
0.9680
0.8940
0.9490
0.8760
0.8560
1.0000
0.8320
0.7500
0.7670
0.9660

0.6800
0.5140
0.7920
0.7690
0.7870
0.8440
0.7940
0.7130
0.9150
0.8640
0.8220
0.9030
0.6190
0.8650
0.8700
0.6500
0.7270
0.9270
0.7510
0.6650
0.7710
0.6570
1.0000
0.6580
0.5390
0.5360
0.9200

0.8670
0.7070
0.9080
0.9130
0.9200
0.9530
0.9430
0.8960
0.9710
0.9510
0.9300
0.9670
0.8570
0.9520
0.9580
0.8770
0.8830
0.9750
0.8890
0.9560
0.9050
0.8770
1.0000
0.8370
0.7360
0.7660
0.9750

0.8450
0.6850
0.9020
0.9050
0.9170
0.9450
0.9330
0.8720
0.9680
0.9380
0.9260
0.9600
0.8400
0.9400
0.9450
0.8730
0.8680
0.9690
0.8750
0.9510
0.8810
0.8590
1.0000
0.8300
0.7600
0.7620
0.9660

mean
std

0.2186
0.1315

0.0602
0.0790

0.1867
0.1655

0.2230
0.1316

0.6230
0.1217

0.3583
0.1312

0.6395
0.1396

0.6287
0.1217

0.8917
0.0737

0.7612
0.1293

0.9026
0.0731

0.8931
0.0732

Table G.1:

PIP based MSA from three BAIiBASE datasets,

namely RV911, RV912 and RVI13.
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Abstract

Background: Sequence alignment is crucial in genomics studies. However, optimal multiple sequence alignment
(MSA) is NP-hard. Thus, modern MSA methods employ progressive heuristics, breaking the problem into a series of
pairwise alignments guided by a phylogeny. Changes between homologous characters are typically modelled by a
Markov substitution model. In contrast, the dynamics of indels are not modelled explicitly, because the computation
of the marginal likelihood under such models has exponential time complexity in the number of taxa. But the failure

phylogenetic relationship.

illustrative real dataset.

to model indel evolution may lead to artificially short alignments due to biased indel placement, inconsistent with

Results: Recently, the classical indel model TKF91 was modified to describe indel evolution on a phylogeny via a
Poisson process, termed PIP. PIP allows to compute the joint marginal probability of an MSA and a tree in linear time.
We present a new dynamic programming algorithm to align two MSAs —represented by the underlying homology
paths— by full maximum likelihood under PIP in polynomial time, and apply it progressively along a guide tree. We
have corroborated the correctness of our method by simulation, and compared it with competitive methods on an

Conclusions: Our MSA method is the first polynomial time progressive aligner with a rigorous mathematical
formulation of indel evolution. The new method infers phylogenetically meaningful gap patterns alternative to the
popular PRANK, while producing alignments of similar length. Moreover, the inferred gap patterns agree with what
was predicted qualitatively by previous studies. The algorithm is implemented in a standalone C++ program: https://
github.com/acg-team/ProPIP. Supplementary data are available at BMC Bioinformatics online.

Keywords: Sequence alignment, Indel, Phylogeny, Dynamic programming, Poisson process

Background

Multiple sequence alignments (MSAs) are routinely
required in the early stages of comparative and evolu-
tionary genomics studies. Not surprisingly, accuracy of
MSA inference affects subsequent analyses that rely on
MSA estimates [1]. MSA estimation is among the old-
est bioinformatics problems, yet remains intensely studied
due to its complexity (NP-hard [2—4]). The progressive
alignment approach has allowed to reduce the overall
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computational complexity to polynomial time by break-
ing the MSA problem into a series of pairwise alignments
guided by a tree representing the evolutionary relation-
ship of sequences. Today most popular alignment pro-
grams employ the progressive approach (e.g., ClustalW
[5], MAFET [6], MUSCLE [7], PRANK [8, 9] and T-Coffee
[10] among others).

All state-of-the-art MSA programs nowadays use an
evolutionary model to describe changes between homolo-
gous characters, providing a more realistic description of
molecular data and thus more accurate inferences. How-
ever, a mathematical formulation of the insertion-deletion
(indel) process still remains a critical issue. Describing the
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K BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
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indel process in probabilistic terms is more challenging:
unlike substitutions, indels often involve several sites, vary
in length and may overlap obscuring the underlying mech-
anisms. Instead, the popular PRANK program adopts a
pragmatic approach; it uses an outgroup to distinguish
insertions from deletions during the progressive align-
ment procedure, so that insertions are not over-penalized
[9]. As a result, PRANK produces exceptionally accurate
alignments, notably with densely sampled data and given
an accurate guide tree. Still, the method lacks a mathe-
matical model describing the evolution of indels. Indeed,
the computation of the marginal likelihood under the
classical indel models TKF91 [11] and TKF92 [12] is expo-
nential in the number of taxa due to the absence of site
independence assumption.

A recent modification of TKF91 describes the evolution
of indels on a phylogenetic tree as a Poisson process, thus
dubbed the Poisson indel process or the PIP model [13].
The indels occur uniformly within a sequence. Standard
mathematical results, particularly the Poisson thinning,
allow achieving linear time complexity for computing the
joint marginal probability of a tree and an MSA. This
includes analytic marginalisation of unobservable homol-
ogous paths which occur whenever an ancestral character
is inserted and subsequently deleted, and consequently
cannot be detected in the extant sequences. For a given
MSA and a tree, a likelihood score under PIP can be com-
puted in linear time. This score can be used to find the
maximum a posteriori tree-alignment solution. Remark-
ably, this breakthrough allows for a necessary rigorous way
of combining models of substitutions and indels, and a
tractable computation of the marginal likelihood function.
At the moment the algorithm has only been applied in a
Bayesian framework via tree-alignment space sampling.

Here we propose a new progressive algorithm to esti-
mate an MSA under the explicit model of substitutions
and indels. We have re-framed the original PIP equations
into a dynamic programming (DP) approach. It aligns two
MSAs —represented by their homology paths on the two
corresponding subtrees— by maximum likelihood (ML) in
polynomial time. The progressive algorithm traverses a
guide tree in postorder; at each internal node the DP is
applied to align the two sub-alignments at the child nodes.
The procedure terminates at the root of the guide tree,
with the complete MSA and the corresponding likelihood,
which by construction is the likelihood under the PIP
model. We have implemented the progressive MSA algo-
rithm in a prototype program and verified its correctness
by simulation. To our knowledge, this is the first pro-
gressive MSA algorithm with polynomial time complexity,
using a mathematical formulation of an explicit indel pro-
cess. Note that an equivalent formulation under TKF91
or TKF92 —i.e. using the full marginal likelihood along
the subtrees in question— would have exponential time
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complexity. Quadratic time complexity under the TKF
models could be obtained [14] by representing sequences
at internal nodes through probability profiles, and align-
ing those. However, this approach does not consider the
evolutionary history in the subtrees.

The remainder of this manuscript is organized as fol-
lows. We first introduce notation and the PIP model.
Then, we describe our DP algorithm and provide the sim-
ulation results. We conclude the paper with an illustrative
real dataset, where we contrast our method with PRANK,
as well as with MAFFT, representing a state of the art
similarity based progressive method.

Methods

Preliminaries: the PIP model

Let T = (V,&,b) represent a rooted binary phylogenetic
tree with N leaves. T is a directed, connected, labelled
acyclic graph, with a finite set of branching points V' of
cardinality |V| = 2N — 1 and a set of edges £ C V x V.
Leaves £ C V denotes N observed taxa, represented by
strings of characters from a finite alphabet ¥ (nucleotides,
amino acids or codons). There are N — 1 internal ver-
tices v C V whereof the root Q is the most recent
common ancestor of all leaves. Branch length b(v) asso-
ciated with node v € V spans from v to its parent node
pa(v). The total tree length || 7| is a sum of all the branch
lengths.

The PIP model describes a string-valued evolutionary
process along the branches of . We denote the distance
from the root to a given point on the tree, by the same
symbol 7. Atomic insertions are Poisson events with rate
measure v(df) = A(r(dt) + u 18q(de)), where A is the
insertion rate, u the deletion rate, and 8q(-) Dirac’s delta
function. This formulation guarantees that the expected
sequence length remains constant during the whole evo-
lutionary process. Point substitutions and deletions are
modelled by a continuous-time Markov process on ¥, =
¥ U {€}, where € is the deletion symbol. Accordingly, the
generator matrix Q¢ of the combined substitution and
indel process extends the instantaneous substitution rate
matrix Q by a row and a column to include ¢, which
is modelled as an absorbing state as there can be no
substitutions after a deletion event. The quasi-stationary
distribution of Qc is denoted by m . Root 2 has a virtual
infinite length stem, reflecting the equilibrium steady state
distribution at the root.

For an internal node v, the probability ¢(v) of inserting
a single character on branch pa(v) — v, is proportional
to branch length b(v). For v # Q it is given by «(v) =
bw)/(||It]l + p~b); at the root atomic mass point proba-
bility «(2) = w1/(Itll + w™1) so that )",y t(v) = L.
The survival probability g(v) associated with an inserted
character on branch pa(v) — vis given by 8(2) = 1 and

B) = (1 — exp (—ub(v))) /(ub(v)).
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The marginal likelihood p (m) of MSA m of length |m|
is computable in O(N - |m|) and can be expressed as

p=(m) = p(p(cy), Im)) [ | p(0), 6)
cem
where p(c) is the likelihood of a single column ¢, and p(cyp)
is the likelihood of an unobservable character history, rep-
resented by a column ¢y with a gap at every leaf. The factor
in (1)

@ (p(cp), Im)) = v exp (vl (peq) — 1) /Imlt (2)

is the marginal likelihood over all unobservable character
histories, where ||v| is the normalising Poisson intensity.
The column likelihood can be expressed as

p©) =Y 1), 3)
veVy

where f, denotes the probability of the homology path
underlying column ¢, given that the corresponding char-
acter was inserted at v. This probability can be computed
in O(N) using a variant of Felsenstein’s peeling recursion
[15]. Let S be the set of leaves that do not have a gap in
column ¢, and A the set of nodes ancestral to S. Then

L= |1 e AIBO Yoex T (0)fy(o) ife o

! 1-BW)+BW) Y sex Te(0)fo(0) o.w.,,
(4)

where
1[c(v) = o] ifvel
o) = Hwechild(v) |: > exp(b(W)Qe)o,a’]?w(U/)j| o.w.,
o'eX,

(5)

and 1[ -] is the indicator function. In Eq. 4, the term 1 —
B (v) accounts for the probability that the inserted charac-
ter does not survive till the first node below the insertion
point. The recursive function fv computes the probability
of the substitution-deletion process of a single character.

Dynamic programming algorithm under PIP
Given an internal node v, our DP algorithm proceeds to
align the two sub-alignments obtained in the left and right
sub-trees maximizing the likelihood (Eq. 1) of the tree
rooted at v. Let X and Y denote these sub-alignments,
respectively with Nx and Ny sequences and alignment
lengths |X| and |Y|. If a sub-tree is a leaf then the sub-
alignment, say X, is reduced to an input sequence, i.e.
Nx = 1 and |X]| corresponds to the sequence length.
Note that the marginal likelihood function p, (m) (Eq. 1)
is not monotonically increasing in the alignment length
|m|. While the product of column likelihoods is monoton-
ically increasing, the marginal likelihood of unobserved
histories ¢ (p(cp), |m|) is non-monotonic (Fig. 1). This
means that p;(m) cannot be maximised by means of
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a standard two-dimensional DP approach (in particular,
because the alignment length is not known a priori).
Similarly to TKF91 [11], we need three DP matrices, one
for each state (i.e. match, gapX and gapY), however to
account for the dependence on alignment length we have
extended the matrices with a third dimension.

The algorithm works with three three-dimensional
sparse matrices SM, $X and SY each of size (|X|+ 1) x
(JY| + 1) x (|X] + |Y| + 1) with entries defined as follows
(Fig. 2b):

1. match cell S%[ « contains the likelihood of the partial
optimal MSA of length k between X ...X; and
Y ... Y; with the columns X; and Y; aligned.
Consequently, all characters in the two columns are
inferred to be homologous.

2. gapX cell ng « contains the likelihood of the partial
optimal MSA of length k between X ... X; and
Y; ...Y; with the column X; aligned with a column
of size Ny containing gaps only. The characters in
the two columns do not share a common history,
either because the ancestor character had been
deleted on the right subtree, or because it had been
inserted on the left subtree, below the node v.

3. similarly, gapY cell Szj,k matches column Y; with a
column of size Nx containing gaps only.

Forward phase

Each matrix SM, $X and SY is initialized with ¢ (p(cy)), 0)
at position (0, 0,0) and a zero in every other position. The
DP equations are:

M vl X; M
Si,j,k =K P Y; 'max{sifl,jfl,kfl’

X
S 1j—1k—-1

o] ©

2000

o(mi)

1000

0 20 40 60

Fig. 1 An example of ¢(|m|) (Eq. 2), i.e. the marginal likelihood of all
non-observable histories, as a function of MSA length |m|. The

parametersare:t = 1,A =10, u = 1, p(cy) = 0.5
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b= <[§w D max{S},

S?(—l,j,k—l’

S )
=t e ([ ]) mlsitan

sz?,(j—l,k—l’

S ®)

fori=1,...,|X[,j=1,...,|Yandk = 1,..., |X|+][Y].
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The symbol ¢y in Eqgs. 7 and 8 represents a column
with gaps, respectively of length Ny and Nx. The factor
lvll/k successively constructs ¢(p(cgp), k) along the third
dimension as columns are added into partial alignments.

As pointed out above, a column likelihood under PIP
(Eq. 1) can be computed recursively in linear time in the
number of input sequences. The recursion corresponds
to a postorder tree traversal (Eq. 5), which coincides with
the tree traversal of our progressive algorithm. As a conse-
quence, during the progressive alignment a column likeli-
hood for the DP (p(-) in Egs. 6-8) at a particular node v
can be computed in constant time by re-using appropriate
summands (defined by Eq. 4) from the column likelihoods

. o

TR

N

homology paths

>

sequence 1

sequence 2

0e >
O >
0o >

<]
=]
BBBB/

sequence 3

Fig. 2 Overview of the progressive algorithm. The algorithm traverses a guide tree (indicated by the shadow in Panel a) in postorder. At each internal
node, the evolutionary paths from the two children down to the leaves (doted lines in Panel a) are aligned by full maximum likelihood under the PIP
model, using a dynamic programming approach (DP). Since the likelihood function does not increase monotonically in the MSA length (see Fig. 1),
the DP accommodates the MSA length along a third dimension (indicated by k in Panels a, b); thus, it works with cubic matrices (in contrast to the
traditional quadratic DP alignment). The forward phase of the DP stores likelihood values in three sparse matrices (Panel b: SM for matching columns;
$Xand S" to introduce new indel events). Further, matrix TR (Panel a) at position (i, j, k) records the name of the DP matrix (either “SM”, “§%”, or “§Y")
with highest likelihood at (i, j, k). An optimal alignment is determined by backtracking along TR (indicated in Panel a by the arrows in the projection
of TR onto the plane). Note that the likelihood function marginalises over all indel scenarios compatible with putative homology (Panel ¢)
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at the two children of v. In particular, the set .4 can be con-
structed from the corresponding sets at the two children
Aleft and -Aright:

{v} for match state
Ajere U {v} for gapX state 9)
Aright U {v} for gapY state

A=

Consequently, the total asymptotic running time of the
forward phase is O(NI?), where [ is bounded by the length
of the longest input sequence. The independence struc-
ture of the DP along the dimension of the MSA length
(i.e. index k) readily allows parallelisation; all the entries in
the DP matrices for a fixed k can be computed in parallel
from the entries at the layer k — 1, taking down the time
to O(NI).

Backtracking

An optimal alignment is determined by backtracking
along a trace-back matrix TR of size (|X| + 1) x (|Y| + 1) x
(IX| + Y| + 1). In the forward phase, TR records at posi-
tion (i, j, k) the name of the DP matrix (either “SM”, “SX”,
or “SY”) with highest likelihood at the same position
(i,], k). If the maximum is not unique then a uniform ran-
dom choice is made. The backtracking algorithm starts at
TR(|X], [Y], ko), where

ko = arg maxi—max(X|,Y))...(X|-+1YDS(K)
with

(0 = {SMXI, Y1, 0, 85X, 1Y, ), SY (X, Y] ) |

is the length of the best scoring alignment. If kq is not
unique a random uniform choice is made. TR is then
traversed from (|X|, [Y], ko) to (0,0, 0). Suppose the algo-
rithm is at position (i, j, k). If TR(,j, k) = “SM” then the
columns X; and Y; are matched and all the indices are
decremented, ie. i < i —1,j < j— 1,k <« k—1.1If
TR(, j, k) is set to “S*” then the column X; is matched
with a column of gaps of size Ny and the indices i and k
are decremented, and, if TR(, j, k) contains the value “SY”
then the column Y; is matched with a column of gaps of
size Nx and the indices j and k are decremented.

Results

Since the main goal of the article is to describe a new
method, it is desirable to evaluate the correctness of the
implementation (i.e., likelihood values and optimisation)
and the accuracy of the estimator. Correctness can be
evaluated by simulations under the true model or by com-
parison with existing implementations. The evaluation of
alignment accuracy is more problematic ([16]), because
the historical evolutionary events are not observable, so
that we have no access to true alignments. Benchmarks
like BAIiBASE have attempted to provide sets of reference
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alignments. Those, however, represent structural similar-
ity, not necessarily reflecting homology, but also could
be due to structural convergence. Moreover, benchmarks
tend to represent alignments with highly compact and
conserved cores offering little information about indel
placement ([16]). Alternatively, synthetic data can be gen-
erated, where the true alignments are known. However,
simulations rely on a generative model, which never per-
fectly correspond to the real process. The closer the gener-
ative model is to the assumed by the estimator, the better
the estimator should perform.

Recently, it has been shown that the results obtained
from structural benchmarks and from phylogenetic sim-
ulations have produced inconsistent results ([17-20]).
Phylogeny-aware aligners like PRANK tend to perform
well in simulations, while poorly on structural bench-
marks. This can be explained by the fact that the objective
of phylogenetic aligners is to infer evolutionary homology,
rather than conserved structural features.

Below we provide results from some basic evaluations
of our proposed method.

Empirical verification of correctness

To test the correctness of the algorithm and implemen-
tation, we generated data under PIP using a simulator
provided by the authors of PIP. We chose relatively small
trees and short sequences to be able to perform analyti-
cal tests during algorithm design and program debugging.
Specifically, we simulated 120 datasets in total, on trees
with 4, 5, 6 and 7 leaves, and using the following parameter
combinations (A, u) € {(0.1,0.1),(0.1,1),(1,0.1), (1, 1)}.
The resulting sequence lengths varied between 5 and 8
nucleotides.

First, we confirmed the correctness of the likelihoods
obtained with the DP algorithm, by scoring the resulting
MSAs with an independent implementation provided by
the authors of PIP. In all cases the likelihoods matched.
In a second test, we verified that the DP generates opti-
mal pairwise MSA alignments. To this end, all the possible
pairwise alignments were generated at each internal node
of the guide-trees and scored with the independent imple-
mentation. The DP algorithm always reconstructed an
optimal MSA.

Aligning simulated data

To assess the quality of inferred alignments we have
applied our method to simulated data that was previously
used to evaluate PRANK [8]). These data sets were each
1000 nucleotides long and were generated under real-
istic evolutionary parameters on 16- 32- and 64-taxon
trees and with different degrees of divergence. Note that
indel lengths were drawn from a Poisson distribution
with a mean of 1.7 bases. Inferred MSA lengths and
four standard quality scores obtained with our method
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were compared to those inferred with MAFFT v7.402
(with option —auto) and PRANK v.140603 (with options -
protein -termgap -nomissing -once, with and without the
+F option). The results of this comparison are shown in
Additional file 1: Table S1 and Figure S1. No matter what
evaluation score was considered, progressive alignment
under PIP produced alignment quality similar to both
PRANK and MAFFT. In terms of approaching the true
MSA length, our method infers alignments of a similar
length to PRANK but consistently outperform MAFFT. In
many cases, our method also infers MSA lengths closer to
the true compared to PRANK, albeit by a small margin.
These results are encouraging, especially considering that
the simulation scenario with long indels explicitly favours
MAFFT and PRANK, both of which allow for long indels
in their scoring schemes, although they are not explicitly
modelled.

Aligning sequences from HIV/SIV envelope glycoprotein
gp120

Using our new algorithm we inferred an MSA for
a challenging dataset, 23 envelope glycoprotein gp120
sequences from HIV/SIV, previous analysed by Loytynoja
and Goldman [8]. We compared the results of our algo-
rithm with the MSAs inferred by MAFFT and PRANK.
The resulting MSAs (Fig. 3) showed good agreement
in the conserved regions. Indeed, the use of structural
benchmarks [16], which are mainly restricted to such
regions, has illustrated that it is difficult to distinguish
state-of-the-art aligners. In contrast, variable regions dis-
play distinctly different indel patterns, which was reflected
in the MSA lengths. Consistent with previous reports
[8, 21] MAFFT over-aligns the sequences resulting in a
short alignment (579 columns). The alignment inferred
with our method had similar length (661 columns) to the
one inferred by PRANK (669 columns).

The indel patterns reflected the underlying indel
model or scoring function of the methods. Our algo-
rithm favoured shorter indels, compared to PRANK and
MAFFT, which reconstructed visually tidier gap regions.
A phylogenetic interpretation of MAFFT’s indel place-
ment implies few insertions, followed by several subse-
quent deletions, leading to a short MSA. PRANK infers
a longer alignment, with phylogenetically meaningful and
balanced number of insertions and deletions. Note that
similar to MAFFT, PRANK also tends to block long indels.
Our method infers a phylogenetically meaningful MSA,
with multiple single amino-acid insertions, which some-
times fuse to mimic long indels (e.g., 4 amino-acids from
#501 to #504). Our method infers short indels, which
allows for gap regions with higher conservation in terms
of the substitution rates; we observe more conserved
columns. To quantify this, we estimated tree-lengths (in
expected substitutions per site), by fitting the branch-
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lengths of the guide-tree topology based on the inferred
MSAs using PhyML [22]. Consistent with the visual obser-
vation, our algorithm leads to the shortest tree (4.35),
compared to PRANK (4.60) and MAFFT (4.90).

Discussion
Here for the first time in the frequentist framework,
we have developed and implemented a progressive MSA
algorithm with an explicit evolutionary model of substitu-
tions, insertions and deletions. The evolution of indels was
described as a Poisson process as part of a continuous-
time Markov model known as PIP. At the core of our
method we have designed a new DP algorithm for the
alignment of two MSAs by ML, which exploits PIP’s linear
time complexity for the computation of marginal likeli-
hoods. The overall complexity of the progressive algo-
rithm is O(N?3), where N is number of taxa and [ is the
maximum sequence length. The cubic factor stems from
the fact that the likelihood is not monotonically increasing
in the MSA length, so that the length has to be incorpo-
rated as an extra dimension in the DP. The O(?) entries
in a specific matrix layer along that dimension (i.e. corre-
sponding to one particular alignment length) depend only
on the layer above (and not on each other). Therefore,
their computation can be parallelized, taking down the
running time to O(NI), assuming O(/%) processors. Fur-
ther, our empirical findings show that the likelihood has
exactly one maximum, suggesting an early stop condition
to the DP. We are currently optimising our implementa-
tion with respect to this and other time-critical aspects. To
date inference of MSAs under an evolutionary indel model
(TKF91 or TKF92) has only been implement using a
Bayesian framework. Such approaches are however com-
putationally expensive with large datasets. Our method
for MSA inference under PIP is the first step towards
equivalent developments in the frequentist framework.
Despite only allowing single residue indels our method
appears to fare surprisingly well compared to other
state-of-the-art popular alignment tools such as PRANK
and MAFFT. Indeed, our example above (as well as
other preliminary data analyses, not shown) demon-
strate that our new method allows inferring alignments
with phylogenetically sensible gap patterns, similar to
the phylogenetically-aware PRANK. In contrast to tradi-
tional aligners that do not utilise phylogenetic informa-
tion to distinguish insertions and deletions, our method
produces longer alignments, avoiding the artificial com-
pression of MSAs and inferring more indels, again similar
to PRANK. According to the underlying indel model,
our method appears to infer more shorter indels (e.g.,
compared to PRANK and MAFFT), while longer indels
are described by several subsequent indel events. Includ-
ing longer indels is considered desirable, however it has
not been studied whether modeling one residue indels
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Fig. 3 MSAs inferred with PRANK+F (top), our algorithm (middle, denoted by P-PIP) and MAFFT (bottom) from 23 strains of gp120 human and
simian immunodeficiency virus (always using the same guide-tree). a. The total MSA lengths are 669, 661 and 579 columns respectively. The three
methods show good agreement in the conserved regions. Substantial differences are observed in regions 1-4, highlighted by colors. b. Magnification
of Region 4. MAFFT over-aligns the sequences. Depicted on the left: The tree in black is the original guide-tree. The trees depicted in colour are the
same guide tree but with re-estimated branch lengths. A detailed view of regions 1-3 is given in Additional file 1: Figures S1-S3
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at a time may also work well. For example, for sim-
plicity models of codon substitution typically allow only
one-nucleotide mutations. Despite this gross simplifica-
tion codon models have been demonstrated to perform
extremely well for practical analyses of protein-coding
genes. As can be seen in our example of an HIV pro-
tein gp120, it is unclear what inferred indel pattern is
more realistic (given that alignments inferred by our
methods and by PRANK have very similar length). Con-
sidering the nature of HIV mutations, it is quite plausi-
ble that indel evolution of gp120 is dominated by short

indel events [23]. Arguably, in our example, indel penal-
isation of PRANK and MAFFT (affine penalty schemes
allowing for long indels) might make these tools too
restrictive to single-residue indels, leading to aesthetically
more pleasing alignments. PIP might be more restric-
tive to long indels but also more realistic for sequence
data dominated by short indel events. Both alignment
benchmarking and the parameter optimisation of gap
penalties are extremely difficult due to the absence of
sufficiently challenging datasets where true alignments
are known.
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Conclusion
Our new methods provides not only a first step towards
the explicit modeling of indels in the frequentist frame-

work but also enables to test a different hypothesis of

indel evolution. In our follow up studies we intend to fur-
ther scrutinise the various properties of our new method,
its further development including less greedy algorithm
versions, variation of indel rates across sites and the
approximations to include longer indels.

Additional file

Additional file 1: Supplemental Materials. Qscores, MSA length and MSA
magnifications. (PDF 3392 kb)
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2X 4X close intermediate distant
Q 0.9932 (0.0020) 0.9926 (0.0020) 0.9928 (0.0024)  0.9754 (0.0058) 0.9354 (0.0128)
PRNK TC 0.9547 (0.0092) 0.9271 (0.0120) 0.9696 (0.0086)  0.9080 (0.0177)  0.7931 (0.0317)
Cline 0.9944 (0.0016) 0.9940 (0.0015) 0.9941 (0.0019)  0.9802 (0.0046) 0.9488 (0.0102)
Modeler  0.9933 (0.0020) 0.9928 (0.0018) 0.9928 (0.0024)  0.9756 (0.0057)  0.9366 (0.0124)
Q 0.9931 (0.0019) 0.9926 (0.0019) 0.9928 (0.0024)  0.9755 (0.0059)  0.9354 (0.0129)
PRNK-AF TC 0.9546 (0.0095) 0.9271 (0.0115) 0.9693 (0.0087)  0.9081 (0.0178)  0.7929 (0.0320)
Cline 0.9944 (0.0016) 0.9940 (0.0015) 0.9941 (0.0019)  0.9803 (0.0046) 0.9488 (0.0102)
Modeler ~ 0.9932 (0.0019) 0.9928 (0.0018) 0.9928 (0.0024)  0.9756 (0.0058)  0.9366 (0.0124)
Q 0.9896 (0.0037) 0.9895 (0.0028) 0.9889 (0.0043)  0.9606 (0.0099) 0.9010 (0.0181)
MEFT TC 0.9355 (0.0154) 0.8975 (0.0182) 0.9551 (0.0144)  0.8623 (0.0270) 0.7033 (0.0398)
Cline 0.9915 (0.0030) 0.9914 (0.0023) 0.9910 (0.0034)  0.9682 (0.0078) 0.9212 (0.0145)
Modeler ~ 0.9890 (0.0040) 0.9889 (0.0031) 0.9884 (0.0046)  0.9581 (0.0105) 0.8957 (0.0188)
Q 0.9891 (0.0028) 0.9892520 (0.0024)  0.9888 (0.0034)  0.9654 (0.0069) 0.9207 (0.0141)
b_pIP TC 0.9276 (0.0139)  0.88886800 (0.0153)  0.9525 (0.0124)  0.8686 (0.0215) 0.7386 (0.0329)
Cline 0.9913 (0.00231)  0.99146400 (0.0019) 0.9911 (0.0027)  0.9728 (0.0055) 0.9380 (0.0113)
Modeler ~ 0.9891 (0.0029) 0.9891600 (0.0024)  0.9887 (0.0035) 0.9648 (0.0071) 0.9189 (0.0144)

Table S1 Quality scores. The alignments obtained with PRANK, PRANK+F, MAFFT and our

Progressive-PIP have been compared using 5 different score metrics computed with Qscore [25].
The table reports the mean Q scores (SPS), TC (CS), Shift scores (Cline) and Modeler scores for
the different evolutionary scenarios (‘2X’, ‘4X’, ‘close’, ‘intermediate’, ‘distant’), standard
deviation in parentheses. The analyses were performed on the five scenarios simulated in [8]. The
following type of MSAs were simulated: " close”, "intermediate”, "distant”, "2X” and "4X",
reflecting divergence levels. Each dataset contained 250 MSAs generated along a symmetric 16-
(close, intermediate, distant), 32- (2X) and 64-taxon tree (4X). The branch lengths were 0.025
(close), 0.050 (intermediate), 0.075 (distant), 0.020 (2X) and 0.0167 (4X) expected substitutions
per site. The sequences were simulated according to the JC69 substitution model, with root
sequences of length 1000 nucleotides, and a rate of 1 indel per 25 substitutions. The indel length

was drawn from the Poisson distribution with mean 1.7 nucleotide bases.
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Figure S1 MSA length. The labels REF, PRNK, PRNK+F and P-PIP refer to REFERENCE
alignments, PRANK, PRANK using the 'F' option and our Progressive-PIP algorithm,
respectively. The values reported correspond to the mean MSA length over 250 simulations for

each different evolutionary scenario, standard deviation in parentheses.
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Figure S2 Magnification of Region 1 from the alignment of Figure 3.
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Figure S3 Magnification of Region 2 from the alignment of Figure 3.
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Figure S4 Magnification of Region 3 from the alignment of Figure 3.
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