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SUMMARY 

Although they constitute an inert stage of the insect's life, eggs trigger plant defences 

that lead to egg mortality or attraction of egg parasitoids. We recently found that SA 

accumulates in response to oviposition by the Large White butterfly Pieris brassicae, 

both in local and systemic leaves, and that plants activate a response that is similar to 

the recognition of pathogen-associated molecular patterns (PAMPs), which are involved 

in PAMP-triggered immunity (PTI). Here we discovered that natural oviposition by P. 

brassicae or treatment with egg extract inhibit growth of different Pseudomonas 

syringae strains in Arabidopsis through the activation of a systemic acquired resistance 

(SAR). This egg-induced SAR involves the metabolic SAR signal pipecolic acid, 

depends on ALD1 and FMO1, and is accompanied by a stronger induction of defence 

genes upon secondary infection. Although P. brassicae larvae showed a reduced 

performance when feeding on P. syringae-infected plants, this effect was less 

pronounced when infected plants had been previously oviposited. Altogether, our 

results indicate that egg-induced SAR might have evolved as a strategy to prevent the 

detrimental effect of bacterial pathogens on feeding larvae. 
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INTRODUCTION 

Upon recognition of herbivory, plants deploy a variety of defences, including the 

production of poisonous metabolites, antinutritive proteins, and the emission of volatiles 

that attract predators (Howe and Jander, 2008). These responses are the result of 

massive transcriptional changes that are predominantly controlled by the jasmonic acid 

(JA) pathway (Reymond et al., 2004; de Vos et al., 2005; Kempema et al., 2007). 

Consequently, Arabidopsis thaliana mutants impaired in JA biosynthesis or signalling 

are more susceptible to insect feeding (McConn et al., 1997; Reymond et al., 2004; 

Bodenhausen and Reymond, 2007). 

Even though insect eggs do not constitute a direct threat for plants they trigger 

host defences that lead to egg desiccation, drop-off, and mortality, or attraction of egg 

parasitoids (Hilker and Meiners, 2011; Reymond, 2013). However, the expression 

profile of Arabidopsis leaves after oviposition by the Large White butterfly Pieris 

brassicae is drastically distinct from the profile obtained after larval feeding (Little et 

al., 2007). Surprisingly, genes induced by oviposition include known targets of the 

salicylic acid (SA) signalling pathway (Little et al., 2007). Indeed, SA accumulates in 

Arabidopsis in response to oviposition by P. brassicae, both in local and systemic 

leaves (Bruessow et al., 2010), and major components of the SA pathway are required 

for egg extract-induced defence gene expression (Gouhier-Darimont et al., 2013). Also, 

egg-derived elicitors activate SA-dependent gene expression, a process that is similar to 

the recognition of pathogen-associated molecular patterns (PAMPs) during PAMP-

triggered immunity (PTI) (Gouhier-Darimont et al., 2013). Unexpectedly, treatment 

with P. brassicae and Spodoptera littoralis egg extracts suppresses the induction of JA-

dependent genes in a SA-dependent manner and leads to enhanced larval performance 
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of the generalist S. littoralis (Bruessow et al., 2010). Since SA- and JA-pathways are 

known to negatively impact each other (Pieterse et al., 2009), this finding suggests that 

insect eggs may highjack the SA pathway to down regulate defence against feeding 

larvae. 

In addition to its negative impact on JA signalling, egg-triggered SA 

accumulation might prevent secondary infections, similarly to systemic acquired 

resistance (SAR). SAR is an inducible defence response that follows a primary infection 

by a pathogen and results in a systemic protection in the entire plant against a broad-

spectrum range of pathogens (Sticher et al., 1997; Vlot et al., 2008; Shah and Zeier, 

2013). SAR requires the activation of the SA pathway, involves the translocation of a 

mobile signal and primes systemic leaves for a stronger and prolonged expression of 

defences genes (Jung et al., 2009; Vlot et al., 2009; Conrath, 2011; Návarová et al., 

2012; Shah and Zeier, 2013). SAR was initially associated with the perception of 

pathogen-derived effectors by plant-encoded resistance genes, a process called effector-

triggered immunity (ETI) that is derived evolutionary from PTI, and with the 

development of a hypersensitive reaction (HR). However, it is now accepted that both 

PTI and ETI induce SAR (Mishina and Zeier, 2007; Dempsey and Klessig, 2012). 

Several metabolites have been identified that might play a role as SAR mobile signals. 

These include methyl salicylate, azelaic acid (AzA), glycerol-3-phosphate (G3P) and 

dihydroabietinal (DA) (for review, see Shah and Zeier, 2013; Fu and Dong, 2013). 

Genetic studies indicate that the transport of AzA, G3P and DA requires the putative 

lipid-transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1) (Shah and 

Zeier, 2013; Fu and Dong, 2013). The recently discovered lysine catabolite pipecolic 

acid (Pip) plays also a crucial role in SAR. Upon pathogen infection, Pip accumulates in 
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local and systemic leaves as well as in petiole exudate (Návarová et al., 2012). Elevated 

Pip is sufficient to enhance resistance to bacterial pathogens and prime plants for 

effective defence activation including SA accumulation, phytoalexin production, and 

defence gene expression (Návarová et al., 2012). Pip synthesis depends on the activity 

of the aminotransferase ALD1 (AGD2-LIKE DEFENCE RESPONSE PROTEIN1). 

Consequently, ald1 mutant fails to accumulate SA in distal leaves and are compromised 

in SAR (Návarová et al., 2012). In addition to ALD1 (Song et al., 2004), FMO1 

(FLAVIN-DEPENDENT MONOOXYGENASE1) is required for systemic 

accumulation of SA, systemic defence gene expression, and SAR (Mishina and Zeier, 

2006). FMO1 is also necessary for Pip-induced resistance and has therefore been 

proposed as a downstream component of Pip signalling (Mishina and Zeier, 2006; 

Zeier, 2013). 

In this study, we show that natural oviposition or treatment with egg extract 

inhibit bacterial infection in Arabidopsis through the activation of SAR. This response 

is lost in ald1 and fmo1 mutants, implicating Pip as a systemic signal responsible for 

egg-induced SAR. Our results unravel a unique strategy potentially evolved by eggs to 

prevent the detrimental effect of bacterial pathogens on feeding larvae. 
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RESULTS 

Oviposition and treatment with egg extract inhibit bacterial infection 

We previously found that the SA pathway is activated in response to oviposition by P. 

brassicae (Bruessow et al., 2010; Gouhier-Darimont et al., 2013) and reasoned that this 

might enhance plant resistance against bacterial infection. P. brassicae butterflies were 

allowed to deposit egg batches on Arabidopsis plants and 4 to 5 days later eggs were 

gently removed from the plants, just before hatching of larvae. Local or distal leaves 

were then infected by dip inoculation with virulent Pseudomonas syringae pv. tomato 

DC3000 DB29 (Pst COR
-
) for 2 days. To avoid the antagonistic effect of the JA-mimic

coronatine (COR) on the SA pathway, we initially tested a mutant strain of Pst that is 

unable to synthesize this virulence factor. Compared to control plants, oviposited plants 

showed a significantly reduced bacterial growth, both in local and distal leaves (Figure 

1a). In a follow-up experiment, plants were pre-treated with P. brassicae egg extract for 

five days and further challenged with Pst COR
-
. The amount of egg extract applied to

each leaf was equivalent to approximately one egg batch. A similar inhibition of 

bacterial growth was observed after treatment with by P. brassicae egg extract (Figure 

1b), confirming earlier observations that application of egg extract mimics responses 

triggered by natural egg deposition (Little et al., 2007; Bruessow et al., 2010). Growth 

of wild-type Pst DC3000 was also inhibited by both oviposition or egg extract pre-

treatment, suggesting that COR has no impact on this response (Figure 1c,d). Since 

oviposition by P. brassicae butterflies is more difficult to standardize, we thus carried-

out all subsequent experiments with egg extract. Egg extract-induced resistance was 

observed with the avirulent strain Pst DC3000/AvrRPM1 (Figure 1e) and with the 

related pathogen Pseudomonas syringae pv. maculicola (Figure 1f). A resistance was 
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also observed when leaves were infiltrated with Pst COR
-
, indicating that this response

is robust and does not depend on the method of infection (Figure S1). Finally, a 3-days 

egg extract treatment already induced a significant inhibition of bacterial growth (Figure 

S2). Thus, leaves are resistant to infection even before hatching of the eggs. 

Egg-induced inhibition of bacterial growth is similar to SAR 

The observation that insect eggs enhanced resistance against bacterial infection in 

systemic leaves suggested that eggs might trigger SAR. To test this hypothesis, we first 

carried-out an experiment where the effect of primary infection or egg-extract treatment 

on secondary infection were compared simultaneously. Lower leaves were either treated 

with egg extract for five days or infiltrated with Pst COR
-
 for two days. After this initial

treatment, upper leaves were challenged with Pst COR
-
 and bacterial growth was scored

two days later. Both pre-treatments triggered a significant and similar reduction of 

bacterial growth in systemic leaves compared to control plants, consistent with the 

hypothesis that eggs induce a true SAR (Figure 2a). 

Several chemical signals have been postulated to be mobile and mediate SAR in 

systemic leaves (Shah and Zeier, 2013; Fu and Dong, 2013). Among them, the recently 

discovered Pip is a Lys catabolite whose biosynthesis depends on ALD1 (Návarová et 

al., 2012). Having noticed that ALD1 expression is induced by oviposition (Little et al., 

2007) we thus tested the involvement of Pip in egg extract-induced SAR and analysed 

free amino acids in plants treated for five days with P. brassicae egg extract. A 

significant increase of several amino acids was observed, predominantly in treated 

leaves. Interestingly, Pip and alpha-aminoadipic acid (Aad), another Lys catabolite, 

showed a strong accumulation in both local and distal leaves (Figure 2b and Table S1). 
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Pip levels in distal leaves of egg extract-treated plants were in the same range as those 

reported for distal leaves of plants infected with Psm (Návarová et al., 2012). Consistent 

with our hypothesis, egg extract-induced SAR was lost in ald1 and fmo1 mutants 

(Figure 2c). Furthermore, egg extract-induced accumulation of Pip and SA in systemic 

leaves was abolished in ald1 and fmo1, confirming that establishment of egg extract-

induced SAR requires Pip and the regulator FMO1 (Figure 3a,b). 

We further tested whether egg extract-induced inhibition of bacterial infection 

was dependent on SA signalling. We selected the double mutant pad4 (phytoalexin-

deficient4) x enhanced disease susceptibility1 (eds1) and npr1, since PAD4 and EDS1 

are central upstream regulators of the SA pathway (Wiermer et al., 2005; Wang et al., 

2008; Fu and Dong, 2013) and NPR1 is a crucial component downstream of SA 

accumulation (Fu and Dong, 2013). Inhibition of Pst COR
-
 growth by egg extract pre-

treatment was abolished in eds1-2 pad4-1 and npr1 (Figure 2c), in accordance with the 

requirement of a fully functional SA pathway for egg extract-induced SAR. 

Priming of defence gene expression 

Establishment of SAR is accompanied by a stronger activation of defence upon 

secondary infection, a process called priming (Prime-A-Plant Group et al., 2006). In 

Arabidopsis, priming of defence metabolite accumulation and defence gene expression 

was observed after a secondary infection with Psm (Návarová et al., 2012). To 

investigate if egg extract-induced SAR was also conferring a primed state in distal 

leaves, we monitored the expression of PR-1, a known SA-associated marker gene. 

Plants were either treated with egg extract for five days or left untreated and, 

subsequently, distal leaves were infiltrated with Pst COR
-
 for 24 h. Pre-treatment with
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egg extract led to a significantly higher PR-1 expression upon secondary infection 

(Figure 4a), suggesting that egg extract-induced SAR primes the plant for a more 

vigorous defence response and might explain reduced bacterial growth in egg-treated 

plants. A similar priming was observed for NHL10 and FRK1 (Figure 4b,c), which are 

two early PAMP-responsive genes (Boudsocq et al., 2010). 

Reduced performance of P. brassicae larvae on infected plants 

Since primary infection of plants with pathogens can either negatively or positively 

impact herbivore performance (reviewed Felton and Korth, 2000; Stout et al., 2006), we 

decided to test whether egg-induced inhibition of bacterial growth might benefit P. 

brassicae in Arabidopsis. First, leaves were inoculated with Pst and further challenged 

with first-instar P. brassicae larvae. After 6, 8, and 10 days of feeding, larvae were 

significantly smaller when fed with infected plants compared to mock inoculated plants, 

indicating that, in these conditions, infection of Arabidopsis leaves was detrimental to 

this lepidopteran species (Figure 5a). Then, to assess whether the presence of insect 

eggs may allow a better performance of P. brassicae on infected plants, we compared 

the weight of larvae after feeding on Pst-inoculated plants that were either exposed to 

prior oviposition or not. Strikingly, larvae gained significantly more weight on 

oviposited and infected plants than on plants that were only infected (Figure 5b). Thus, 

the bacterial growth inhibition that is observed after oviposition or egg treatment (Fig. 

1) is strong enough to have a significant impact on larval development.

Page 9 of 36

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10 

DISCUSSION 

In nature, plants are generally exposed to simultaneous or sequential attacks by different 

enemies that compete for the same resources. Depending on the type of attacker, distinct 

signalling pathways are activated that lead to specific defence gene expression. In recent 

years, a growing body of literature showed that these pathways are intricately connected 

and their complex regulation is thought to allow the plant to optimize defences against 

various attackers (Pieterse et al., 2012). As a result of an on-going arms race, insects or 

pathogens have also evolved strategies to suppress or manipulate plant defences (Zhu-

Salzman et al., 2005; Boller and He, 2009;). However, there is little information on 

direct interactions between enemies on the leaf surface and whether the plant 

contributes to these interactions. Here we demonstrate that both natural oviposition or 

egg extract treatment protect plants against bacterial infection for the benefit of larvae 

by activating SAR and unravels an unexpected aspect of the plant's response to 

oviposition. We also provide genetic and chemical evidence that egg extract-induced 

SAR is highly similar to a bacterial-induced SAR and that it requires the mobile signal 

Pip. 

MeSA is another signal potentially involved in SAR. Experiments in tobacco 

showed that SA that accumulates in locally-infected leaves is converted to MeSA, 

which is mobile and can be converted back to SA in systemic tissues (Park et al., 2007). 

However, an Arabidopsis SA methyltransferase knockout mutant is still competent for 

bacterial-induced SAR (Attaran et al., 2009) and the corresponding BSMT1 gene is not 

induced by oviposition (Little et al., 2007), nor SA treatment (Chen et al., 2003). 

Furthermore, MeSA emission could not be detected after oviposition by P. brassicae in 

Arabidopsis and Brassica nigra (Fatouros et al., 2012; Groux et al., 2014). Collectively, 

Page 10 of 36

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11 

these data do not support a role for MeSA in egg-induced SAR but future studies with 

mutants should investigate the contribution of this metabolite. It will also be interesting 

to test the role of DIR1-dependent mobile signals. However, our finding that egg extract 

treatment failed to inhibit bacterial growth in the Pip biosynthesis mutant ald1 clearly 

indicates that this metabolite is critical for establishing a fully resistant state in both 

local and distal leaves. 

Strikingly, natural oviposition or egg extract treatment protected both local and 

distal leaves against secondary infection. In bacteria-induced SAR, the development of 

disease in local leaves after a primary infection prevents accurate measurement of a 

secondary infection in the same leaf. Thus, the concept of SAR has always been 

envisaged for distal leaves while it could already take place in the vicinity of a primary 

infection. Indeed, in the case of a more localized stimulus triggered by egg deposition, a 

protective effect could be observed in the treated leaf. This implies that a mobile signal 

spread within the oviposited leaf where it triggered a local acquired resistance. Such 

biological system could be helpful in the future to track the generation and early 

movement of SAR signals. 

Apparently, egg-induced SA accumulation may benefit larvae in two ways. 

First, SA-dependent inhibition of the JA-pathway was shown to reduce the expression 

of defence genes and to enhance larval performance of a generalist herbivore, although 

this was not effective against the specialist P. brassicae (Bruessow et al., 2010). 

Recently, two studies reported reduced larval performance of P. brassicae on plants that 

were previously oviposited (Pashalidou et al., 2012; Geiselhardt et al., 2013). Thus, the 

importance and specificity of SA-JA antagonism in response to oviposition might 

depend on the species considered or on the feeding pressure. Second, we report here 
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that eggs induce SAR and that feeding on infected plants is detrimental to larvae. This 

SAR might protect larvae against a direct toxic effect of leaf pathogens and/or favour 

their development by inhibiting phytopathogens that compete for the same resources. 

Recently, root colonizing pseudomonads were shown to exhibit insecticidal activity 

(Ruffner et al., 2013). Pseudomonas fluorescens CHA0 contains a gene cluster 

encoding a Fit toxin that is conserved in other entomopathogenic bacteria and that kills 

several lepidopteran larvae via oral infection (Péchy-Tarr et al., 2008; Ruffner et al., 

2013; Kupferschmied et al., 2014). The bean phytopathogen Pseudomonas syringae pv. 

syringae B728a was found to be toxic to the pea aphid, Acyrthosiphon pisum 

(Stavrinides et al., 2009). However, whether leaf bacterial pathogens are toxic to 

lepidopteran larvae is unknown and future studies should address this point. Assays that 

were developed to test the toxicity of fungal metabolites on Spodoptera frugiperda cell 

lines could be useful (Fornelli et al., 2004). 

It is quite remarkable that Arabidopsis triggers an egg-induced SAR that is 

potentially beneficial to the attacker. One can envisage that during evolution P. 

brassicae eggs have hijacked the SA pathway for the success of their progeny. 

However, in response to oviposition the SA pathway controls the expression of 

hundreds of genes, some of which might be crucial for a direct defence against insect 

eggs (Little et al., 2007). For instance, an HR-like necrosis is observed underneath eggs 

in several plant species and has been associated with egg drop-off from the leaf 

(Reymond, 2013). Indeed, genes involved in programmed cell death are induced by P. 

brassicae oviposition (Little et al., 2007). Therefore, activation of the SA pathway may 

underlie a trade-off between a positive effect consisting of direct defences against insect 

eggs and a negative effect associated with enhanced larval survival and performance. 
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Obviously, the extent of this trade-off depends on the occurrence of insect eggs and leaf 

pathogens simultaneously. The discovery of egg-induced SAR is intriguing and its 

relevance will have to be further studied in natural environments. In addition, since 

oviposition has been shown to elicit the JA pathway in some plant/egg interactions 

(Meiners and Hilker, 2000; Büchel et al., 2012; Kim et al., 2012), whether SA-mediated 

responses to eggs are widespread will have to be studied. 

An alternative explanation for the existence of egg-induced SAR is that larval 

feeding creates entries for pathogenic bacteria. In a recent field experiment with 

Cardamine cordifolia Humphrey et al. (Humphrey et al., 2014) found that plants 

damaged by chewing herbivores displayed a higher level of bacteria load. Infection 

might be more detrimental to plant development and reproductive success than 

herbivory. Detection of egg-associated elicitors provides an early "warning" signal that 

allows deployment of defences in anticipation of the attack (Beyaert et al., 2012; 

Geiselhardt et al., 2013; Lucas-Barbosa et al., 2013; Pashalidou et al., 2013). It will be 

interesting to compare the impact of herbivory and infection on plant fitness. 

The observation that P. brassicae eggs induce SA accumulation in Arabidopsis 

(Bruessow et al., 2010), which in turn may lead to a better performance of feeding 

larvae by either reducing leaf pathogen growth (this study) or by inhibiting the JA 

pathway (Bruessow et al., 2010), raises the question whether strategies to control 

bacterial or fungal pathogens by spraying SA-analogues are optimal. For instance, 

application of the SAR activator benzothiadiazole (BTH) provides protection against a 

variety of leaf pathogens (Lawton et al., 1996; Görlach et al., 1996). It would be 

interesting to test whether BTH treatment in crop fields has an effect on the abundance 

and performance of insect herbivores. 
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Evidence that mutual interactions between plants, insects and bacteria are taking 

place during multiple attacks is accumulating. Local leaf infection by P. syringae was 

found to cause a systemic induced susceptibility (SIS) to larvae of the moth 

Trichoplusia ni in Arabidopsis (Cui et al., 2005). Induction of SIS is modulated by a 

combined action of PAMP-triggered SA signalling that inhibits JA-dependent defences 

and effector-induced ethylene signalling that blocks antiherbivore defence in a JA-

independent way. In addition, SIS is counteracted by COR (Groen et al., 2013). Here, 

we showed that P. brassicae larval performance was reduced on infected plants. It this 

case larvae were feeding on leaves containing bacteria and this might have overridden a 

SIS effect. In another study, larvae of the Colorado potato beetle were found to suppress 

JA-dependent defences in tomato through the presence of bacteria in oral secretions 

(Chung et al., 2013). Recently, mutualistic ants associated with the acacia tree Acacia 

hindsii were found to protect their host against leaf pathogens, although this effect was 

attributed to the presence of competing bacteria on ant legs (González-Teuber et al., 

2014). These fascinating examples and our discovery that insect eggs inhibit bacterial 

growth open the way for more studies on how plants respond to a combination of 

different attackers, how they affect each other, and what mechanism shape these 

complex interactions. 
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EXPERIMENTAL PROCEDURES 

Plant material and insect growth conditions 

Arabidopsis thaliana plants were sown in moist potting compost and vernalized for 2 

days at 4°C. The ald1 (ald1_T2; Song et al., 2004) mutant corresponds to the SALK T-

DNA insertion line SALK_007673. Other lines used in this study are fmo1 (Mishina 

and Zeier, 2006), npr1-1 (Nottingham Arabidopsis Stock Centre) and eds1-2 pad4-1 

double mutant (eds1pad4; obtained from Jane Parker, MPI, Köln, Germany). All 

mutants are in the Col-0 background. Plants were grown in growth chambers as 

reported previously (Reymond et al., 2000) and were four-week-old at the time of 

treatment. 

Pieris brassicae (large white butterfly) were reared on Brassica oleracea var. 

gemmifera as described previously (Schlaeppi et al., 2008). 

Oviposition and treatment with egg extract 

For experiments with natural oviposition, 15 plants were placed in a 60x60x60 cm tent 

containing ca. 30 P. brassicae butterflies. After 24 h, 4 plants containing one egg batch 

on two leaves were placed in a growth chamber for 4.5 days. Just before hatching, eggs 

were gently removed with a forceps and leaves were further infected with bacteria. 

Control plants were kept in the same conditions without butterflies. 

For egg extract preparation, Pieris brassicae eggs collected from cabbage leaves 

were crushed with a pestle in Eppendorf tubes. After centrifugation (15'000 g for 3 

min), the supernatant (egg extract) was stored at -20°C. For egg extract application, 2 x 

2 µl of egg extract were spotted under the surface of each of two leaves of each treated 
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plant. Four plants were treated with egg extract 5 days before bacterial infection. 

Untreated plants were used as controls. 

Cultivation of bacteria and plant infection 

Bacterial strains P. syringae pv. tomato DC3000 (Pst), P. syringae pv. tomato DC3000 

DB29 (Pst COR
-
), P. syringae pv. tomato DC3000/avrRpm1 (Pst AvrRpm1) and P.

syringae pv. maculicola ES4326 (Psm) were streaked from a -80°C glycerol stock onto 

a low salt Luria Bertani (LB) medium (10 g/l BactoTryptone, 5 g/l Yeast Extract, 5 g/l 

NaCl and 14 g/l Bactoagar, pH=7.0). Antibiotics used for P. syringae strains was (in 

µg/ml): Pst: rif 50; Pst COR
-
: rif 50, kan 50 and spec 50; Pst avrRpm1: rif 50 and kan

50; Psm: strep 50. Bacteria were transferred into 6 ml of liquid culture in LB with 

antibiotic(s) and grown at 28°C O/N. 1 ml of the culture was then diluted in 5 ml of 

fresh LB for 4 hours to produce a bacterial culture in an exponential growth phase. 

For infection by dipping, bacterial cultures were centrifuged at 7000 rpm for 2 

min. The supernatant was discarded and the pellet diluted in 10 mM MgCl2 and 0.02% 

(v/v) Silwet L-77 (Agridyne) to an OD600 of 0.05 for Pst COR
-
 and Pst avrRpm1, 0.02

for Pst and 0.1 for Psm in order to obtain an initial in planta titer of 50 to 500 cfu per 

0.5 cm
2 

leaf disc. Two leaves per plant were dipped into bacterial solution for 8 sec.

Plants were watered and kept under high humidity under a cover for 24 h before 

infection. For infection by infiltration, bacterial solutions were prepared the same way 

except that Silwet L-77 was omitted and leaves were infiltrated using a 1 ml needleless 

syringe with a bacterial solution at an OD600 of 0.0005 to obtain a similar cfu/leaf disc 

than with dipping. For each treatment and for each time point, 8 leaves from 4 plants 
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were used for bacterial titer determination. The experiment was replicated at least three 

times for each bacterial strain. 

For priming experiments, local leaves were treated with egg extract for 5 days 

and then distal leaves were infiltrated with Pst COR
-
 for 24 h. Control plants were

infiltrated with 10 mM MgCl2. Distal leaves were collected for RNA extraction and 

gene expression analyses. 

Bacterial growth determination 

Leaves were collected 0 h and 48 h after infection and dipped in a bath of 70% ethanol 

to sterilize the leaf surface and then washed twice with water. For each leaf, a leaf disc 

of 0.5 cm
2
 was excised and placed in a 2 ml Eppendorf tube with four glass beads. Leaf

discs were grinded using a TissueLyser II (Qiagen) at 30’000 rpm for 1 min. 500 µl of 

10 mM MgCl2 was added in each tube and tubes were placed in the TissueLyser for 30 

sec at 10’000 rpm to suspend bacteria. Each sample was then diluted in series of 1:10. 5 

µl of each dilution were then spotted on LB plates with appropriate antibiotic(s). For t = 

0 h, 100 µl of the non-diluted bacterial solution were directly spotted on LB plates with 

appropriate antibiotic(s). Plates were incubated at 28°C for 48 h and cfus were counted. 

Free amino acid and SA analysis 

Two leaves from three plants were pre-treated with 2 x 2 µl of Pieris brassicae egg 

extract. After 5 days, local and distal leaves were harvested, weighted, and frozen in 

liquid nitrogen in 2 ml Eppendorf tubes. Untreated plants were used as controls. 

Quantification of pipecolic acid, free amino acids, and salicylic acid was done as 

described previously (Návarová et al., 2012). 

Page 17 of 36

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18 

Quantitative real-time PCR (qRT-PCR) 

Total RNA was extracted using an RNeasy® plant mini kit (Qiagen). DNase treatment 

was added to the protocol. For cDNA synthesis, 1 µg of total RNA was reverse-

transcribed using M-MLV reverse transcriptase (Invitrogen) in a final volume of 25 µl. 

Each cDNA sample was generated in triplicate and diluted eightfold with water. Gene-

specific primers were designed to produce amplicons of 70 to 200 bp from the 3’ end of 

the cDNA strand. At2g14610 (PR-1) forward: 5′-GTGGGTTAGCGAGAAGGCTA-3′, 

reverse: 5′-ACTTTGGCACATCCGAGTCT-3′; At2g19190 (FRK1) forward: 5'-

TACGGCTCTTGTTGAACACT-3', reverse: 5'-TCACTATACGCGGTGTCCAT-3'; 

At2g35980 (NHL10) forward: 5'-GGATCGGACTCTACTACGAT-3', reverse: 5'-

TAAAGTCCTAGACTGTCCGG-3'. Quantitative real-time PCR analysis was 

performed in a final volume of 20 µl containing 2 µl of cDNA, 0.2 µM of each primer, 

0.03 µM of reference dye, and 10 µl of Brilliant III Ultra Fast SYBR® Green QPCR 

Master Mix (Agilent). Reactions were performed using an Mx3000P® real-time PCR 

machine (Agilent) with the following program: 95°C for 3 min, then 40 cycles of 10 sec 

at 95°C and 20 sec at 60°C. Relative mRNA abundance was normalized to the 

housekeeping gene At2g28390 (SAND), forward: 5’- 

AACTCTATGCAGCATTTGATCCACT -3’, reverse: 5’- 

TGATTGCATATCTTTATCGCCATC -3’. 

Insect performance assays 

All leaves of four-week-old Col-0 plants were infiltrated using a needleless syringe with 

Pst diluted to an OD600 of 0.005. Control plants were infiltrated with a 10 mM MgCl2 
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mock solution. Plants were incubated for two days in a growth chamber in order to let 

bacteria proliferate. After incubation, five freshly hatched P. brassicae larvae were 

placed on each of 4 infected plants. Plants were placed in a transparent plastic box and 

kept in a growth room during the whole experiment. After six days of feeding, larvae 

were weighed on a precision balance (Mettler-Toledo, Switzerland) and placed back on 

a new set of infected plants as described above. Larvae were allowed to feed another 

two or four days before their final weight was measured. 

To test the effect of oviposition, four-week-old Col-0 plants were placed in 

insect tents in presence of approximately 30 P. brassicae adults for 2-3 days allowing 

females to lay eggs. Control plants were placed in empty tents. Four days later, eggs 

were gently removed and all leaves from oviposited or control plants were infiltrated 

using a needleless syringe with Pst diluted to an OD600 of 0.0005 or with a 10 mM 

MgCl2 solution. Plants were incubated for 24 hours in a growth chamber in order to let 

bacteria proliferate. After incubation, five freshly hatched P. brassicae larvae were 

placed on each of 8 plants from each treatment. Plants were placed in a transparent 

plastic box and kept in a growth room. After six days of feeding, larvae were weighed 

on a precision balance (Mettler-Toledo, Switzerland). This experiment was repeated 

twice. 

Statistical analyses 

For experiments on bacterial growth, values were log-transformed to meet the normality 

assumption and analysed with a linear mixed model fit by REML (package "lme4" in R, 

http://www.R-project.org). Insect performance assays were analysed with a linear 

mixed model fit by REML or by two-way ANOVA. Analyses on gene expression data 
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were performed using one-way ANOVA and Tukey’s test for post hoc comparisons. 

Data from metabolite quantifications were analysed by Student’s t test. 
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Figure S1. Egg extract-induced inhibition of bacterial growth after PstCOR
-
 infiltration.

Figure S2. Inhibition of bacterial growth in plants treated for 3 days with P. brassicae 

egg extract. 

Table S1. Free amino acid levels in plants treated for 5 days with P. brassicae egg 

extract. 
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FIGURE LEGENDS 

Figure 1. Oviposition or treatment with egg extract protects Arabidopsis against 

bacterial infection. 

Growth of Pseudomonas syringae strains (see Materials and Methods) was monitored in 

local (grey bars) or distal (white bars) leaves after oviposition (ovi) by P. brassicae (a,c) 

or application of P. brassicae egg extract (b, d-f) on local leaves for 5 days. Infection 

was done by dipping. Control plants (black bars) were only infected with bacteria. 

Means ± SE (n = 8) of three biological replicates are shown, except (d) with two 

replicates. Significant differences between control and treated plants are indicated 

(Linear mixed model, *P <0.05, **P <0.01, ***P <0.001). 

Figure 2. Egg extract-induced inhibition of bacterial growth is similar to SAR.  

(a) Growth of Pst COR
-
 in distal leaves (2°) after treatment of local leaves (1°) by either

P. brassicae egg extract (EE) for 5 days or infiltration with Pst COR
-
 for 48 h (white

bars), or no treatment (black bars). Secondary infection was done by infiltration. Means 

± SE (n = 8) of three biological replicates are shown. Significant differences between 

control and treated plants are indicated (Linear mixed model, ***P <0.001). (b) 

Pipecolic acid levels in plants treated with egg extract for 5 days. Untreated plants were 

used as controls (CTL). Means ± SE (n = 6) of three biological replicates are shown. 

Significant differences between control and treated plants are indicated (Student's t test, 

**P <0.01). (c) Growth of Pst COR
-
 was monitored in local (grey bars) and distal

(white bars) leaves of Col-0 and mutant plants 48 h after infection with Pst COR
-
 by

dipping. Local leaves were pre-treated for 5 days with egg extract. Control plants (black 
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bars) were only infected with bacteria. Means ± SE (n = 8) of at least three biological 

replicates are shown. Significant differences between control and treated plants are 

indicated (Linear mixed model, **P <0.01, ***P <0.001). 

Figure 3. Egg extract-induced Pip and SA accumulation is abolished in ald1 and fmo1 

mutants. 

Pipecolic acid (a) and salicylic acid (b) levels in distal leaves of plants treated with egg 

extract for 5 days (white bars). Untreated plants were used as controls (black bars). 

Means ± SE (n = 6) of four (a) and six (b) biological replicates are shown. Significant 

differences between control and treated plants are indicated (Student's t test *P <0.05, 

***P <0.001). 

Figure 4. Egg extract-induced priming of defence genes in distal leaves. 

Local (1°) leaves were either treated with P. brassicae egg extract (EE) for 5 days or 

not treated (-). Distal (2°) leaves were then infiltrated with Pst COR
-
 or MgCl2 (mock)

for 24 h. Expression of defence genes PR-1 (a), NHL10 (b), and FRK1 (c) was 

monitored in distal leaves. Means ± SE of three technical replicates are shown. 

Different letters indicate significant differences at P <0.05 (ANOVA followed by 

Tukey's honest significant difference test, (a) F(3,7) = 78.7, P <0.001; (b) F(3,8) = 42.6, P 

<0.001; (c) F(3.8) = 1720, P <0.001). This experiment was repeated twice with similar 

results. 
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Figure 5. P. brassicae larval development on Pst-infected plants. 

(a) Plants were infiltrated with Pst (white bars) or MgCl2 (black bars) for 2 days. Then, 

neonate P. brassicae larvae were placed on infected plants for 6 days, weighed and 

further placed on newly infected plants, after which the final weight was recorded at 8 

or 10 days. Means ± SE (n ≥ 10) from six (day 6), two (day 8) and four (day 10) 

biological replicates are shown. Asterisks indicate significant differences (Linear mixed 

model, ***P <0.001). (b) P. brassicae butterflies were allowed to lay eggs on 4-week-

old plants (E). Control (C) plants were kept in empty tents. Four days later plants were 

infiltrated with Pst or MgCl2 for 24 hours. Then, neonate P. brassicae larvae were 

placed on treated plants for 6 days and weighed. Means ± SE (n ≥ 25) of three 

biological replicates are shown. Different letters indicate significant differences at P 

<0.05 (two-way ANOVA followed by Tukey's honest significant difference test, 

treatment: F(3,388) = 109.81, P <0.001). 

Figure S1.  Egg extract-induced inhibition of bacterial growth is independent on the 

mode of infection. 

Growth of Pseudomonas syringae COR
-
 was monitored in local (grey bars) or distal

(white bars) leaves after application of P. brassicae egg extract on local leaves for 5 

days. Leaf infection was done by dipping in a bacterial solution at an OD600 of 0.05 (a) 

or by infiltration using a 1 ml needleless syringe with a bacterial solution at an OD600 

of 0.0005 (b). Control plants (black bars) were only infected with bacteria. Means ± SE 

(n = 8) of three biological replicates are shown. Significant differences between control 

and treated plants are indicated (Linear mixed model, **P <0.01, ***P <0.001). 
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Figure S2.  Egg extract-induced inhibition of bacterial growth after 3 days of treatment. 

Growth of Pseudomonas syringae COR
-
 was monitored in local (grey bars) or distal

(white bars) leaves after application of P. brassicae egg extract on local leaves for 3 

days. Leaf infection was done by dipping. Control plants (black bars) were only infected 

with bacteria. Means ± SE (n = 8) of three biological replicates are shown. Significant 

differences between control and treated plants are indicated (Linear mixed model, **P 

<0.01, ***P <0.001). 
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Table S1. Free amino acid levels in plants treated for 5 days with P. brassicae egg extract. 

Amino acid Control Local Distal 
Gly 6.69 ± 1.01 23.03 ± 4.47 7.91 ± 0.59 
Ala 18.42 ± 3.7 95.53 ± 12.17 27.20 ± 5.06 
Val 5.58 ± 0.88 21.19 ± 2.04 6.52 ± 1.14 
β-Ala 0.48 ± 0.13 1.66 ± 0.23 0.61 ± 0.19 

β-Aib 0.03 ± 0.01 0.94 ± 0.23 0.04 ± 0.00 
Leu 2.28 ± 0.52 14.42 ± 1.44 2.63 ± 0.69 
Ile 2.19 ± 0.41 9.23 ± 0.94 2.50 ± 0.53 
GABA 4.32 ± 1.91 45.60 ± 10.88 4.89 ± 1.48 
Thr 59.04 ± 4.51 77.14 ± 0.53 82.82 ± 17.26 
Ser 98.58 ± 28.32 179.29 ± 11.58 106.35 ± 20.28 
Pro 25.91 ± 3.57 133.27 ± 21.96 24.00 ± 2.46 
4HYP 0.30 ± 0.03 1.27 ± 0.07 0.32 ± 0.03 
Met 0.22 ± 0.04 2.11 ± 0.40 0.27 ± 0.05 
Cys 0.20 ± 0.01 0.28 ± 0.03 0.30 ± 0.04 
Asp 560.07 ± 48.48 641.17 ± 49.27 682.44 ± 29.75 
Asn 16.02 ± 1.43 23.65 ± 1.69 20.35 ± 2.96 
Glu 335.14 ± 16.78 440.35 ± 8.51 387.19 ± 32.53 
Gln 46.04 ± 5.36 72.92 ± 11.98 83.46 ± 17.62 
Orn 0.34 ± 0.06 0.99 ± 0.14 0.30 ± 0.05 
Lys 4.16 ± 0.26 26.91 ± 3.48 4.34 ± 0.40 
Pip 0.11 ± 0.00 5.28 ± 0.67 6.21 ± 0.93 
Aad 0.12 ± 0.02 0.84 ± 0.11 0.99 ± 0.23 
Phe 2.91 ± 0.15 12.24 ± 1.27 3.92 ± 0.15 
Tyr 0.86 ± 0.20 5.90 ± 0.49 0.95 ± 0.18 
Trp 0.14 ± 0.03 0.55 ± 0.06 0.14 ± 0.01 
CTH 0.01 ± 0.00 0.38 ± 0.06 0.02 ± 0.00 
DOPA 0.00 ± 0.00 0.56 ± 0.04 0.00 ± 0.00 
Mean values (±SE) of three independent replicates are given in µg/g fresh weight. Untreated 
plants were used as controls. β-Aib: beta-aminoisobutyric acid; GABA: gamma-aminobutyric 
acid; 4HYP: 4-hydroxyproline; Orn: ornithine; Pip: pipecolic acid; Aad: alpha-
aminoaminoadipic acid; CTH: cystathionine; DOPA: 3,4-dihydroxyphenylalanine. 
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