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SUMMARY 

The innate immune system provides the first line of defense against microbial infections. Innate immune 
responses have to be tightly regulated to eradicate or contain invasive pathogens without causing collateral 
damages to the host. In mammals, histone deacetylases (HDACs) are split into 2 main subfamilies: Zn-
dependent HDACs (HDAC1-11) and NAD+-dependent sirtuins (SIRT1-7). HDACs regulate gene expression 
by deacetylating histone and non-histone proteins and impact on numerous biological processes. 
Dysregulated expression or activity of HDACs has been associated with oncologic, cardiovascular, 
neurodegenerative, metabolic and autoimmune diseases. Several compounds inhibiting HDACs have been 
clinically approved for oncologic diseases. 

In the first part of this thesis, we review our knowledge about the impact of inhibitors of HDAC1-11 (HDACi) 
on innate immune responses with a focus on sepsis, a particularly deletary complication of infection. HDACi 
inhibit innate immune responses and improve the outcome of lethal sepsis, but sensitize to non-severe 
infections. Thus, HDACi represent attractive drugs for treating inflammatory diseases. We also propose a 
close survey of the immunological and infectious status in order to prevent opportunistic infections in 
immunocompromised patients treated with HDACi. 

Short chain fatty acids (SCFAs) are metabolites produced by gut commensals, with propionate one of the 
most abundantly produced SCFA. SCFAs act as inhibitors of HDAC1-11. Therefore, we questioned whether 
propionate impacts on innate immune responses. In the second part of this work, we report that propionate 
inhibits cytokine production and proliferation by mouse and/or human monocytes/macrophages, splenocytes 
and, less efficiently, dendritic cells. Surprisingly, and in contrast with other HDACi, propionate neither 
sensitizes nor protects from infection and sepsis. These data support the development of therapies using 
propionate or directed at the microbiota for treating non-infectious inflammatory diseases. 

The expression and the impact on innate immune responses of sirtuins are barely characterized. In the third 
section of this thesis, we describe the expression pattern of SIRT1-7 in macrophages exposed to 
immunomodulatory and microbial triggers and in liver, spleen and kidney of normal and endotoxemic mice. 
In the fourth part, we report that cambinol, a newly developed inhibitor of SIRT1 and SIRT2 with anti-tumor 
activity, powerfully inhibits antimicrobial responses by innate immune cells and protects mice from sepsis 
and septic shock. In the fifth part, we provide a straightforward approach based on our routinely used 
protocols to study the impact of drugs directed at sirtuins on innate immune responses in vitro and in vivo. 
Finally, in the last part of this work, we characterize the immunological status of SIRT2 knockout mice. 
SIRT2 deficiency does not impact on cytokine production but enhances bacterial phagocytosis by 
macrophages and reduces morbidity and mortality in a model of chronic infection by Staphylococcus aureus. 

Overall, our data support the development of pharmacological inhibitors of HDACs as promising drugs to 
treat non-infectious inflammatory diseases and possibly as adjunctive therapies for chronic bacterial 
infections and sepsis. 
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RÉSUMÉ 

Le système immunitaire inné représente la première ligne de défense contre les infections. La réponse 
immunitaire innée doit être finement régulée afin d’éradiquer les agents pathogènes sans causer de 
dommages à l'hôte. Chez les mammifères, la famille des déacétylases d’histones (HDACs) est subdivisée 
en 2 sous-groupes: les HDAC dépendantes du Zn (HDAC1-11) et les sirtuines dépendantes du NAD+ 
(SIRT1-7). Les HDACs régulent l'expression génique en déacétylant les histones et d’autres protéines. Ainsi, 
les HDACs impactent sur de nombreux processus biologiques. Une expression ou une activité dérégulée 
des HDACs est associée aux maladies oncologiques, cardiovasculaires, neuro-dégénératives, métaboliques 
et auto-immunes. Plusieurs inhibiteurs d’HDACs ont été cliniquement approuvés pour combattre certains 
cancers. 

Dans la première partie de cette thèse, nous résumons nos connaissances sur l'impact des inhibiteurs des 
HDAC1-11 (HDACi) sur la réponse immunitaire innée avec un intérêt particulier pour le sepsis, une 
complication particulièrement délétère d’infections. Les HDACi inhibent la réponse immunitaire innée et 
protègent de sepsis mortel. Par contre, les HDACi sensibilisent aux infections non létales. Les HDACi 
pourraient donc être utilisés pour traiter les maladies inflammatoires. Nous proposons également un suivi 
étroit de l'état immunologique et infectieux des patients immunodéprimés traités avec des HDACi afin de 
prévenir la survenue d’infections opportunistes. 

Les acides gras à chaîne courte (SCFAs), parmi lesquels le propionate, sont produits par les bactéries de 
l’intestin. Certains SCFAs se comportant comme des HDACi, nous avons testé si le propionate influence la 
réponse immunitaire innée. Dans la deuxième partie de ce travail, nous montrons que le propionate inhibe la 
production de cytokines et la prolifération de monocytes/macrophages, splénocytes et, dans une moindre 
mesure, cellules dendritiques chez la souris et/ou l’homme. De manière surprenante, le propionate ne 
sensibilise pas aux infections et ne protège pas du sepsis. Ces données supportent le développement de 
thérapies utilisant le propionate ou dirigées envers le microbiote pour traiter des maladies inflammatoires 
non-infectieuses. 

Dans la troisième partie de cette thèse, nous présentons l’analyse de l'expression des SIRT1-7 dans les 
macrophages et les organes de souris. Dans la quatrième partie, nous rapportons que le cambinol, un 
inhibiteur de SIRT1 et SIRT2 à activité anti-tumorale, inhibe la réponse antimicrobienne par les cellules 
immunitaires innées et protège d’infections mortelles dans des modèles animaux. Dans la cinquième partie, 
nous décrivons une approche simple pour tester in vitro et in vivo l'impact sur la réponse immunitaire innée 
de drogues dirigées contre les sirtuines. Enfin, dans la dernière partie de ce travail, nous caractérisons le 
statut immunologique de souris déficientes en SIRT2. Cette déficience n'a pas d'effet sur la production des 
cytokines, mais augmente la phagocytose par les macrophages et réduit la morbidité et la mortalité dans un 
modèle d'infection chronique à Staphylococcus aureus. 

Globalement, nos données étayent le développement d'inhibiteurs pharmacologiques des HDACs pour 
traiter des maladies inflammatoires stériles et éventuellement comme thérapie d'appoint des infections 
bactériennes chroniques et du sepsis.  
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RÉSUMÉ DESTINÉ À UN LARGE PUBLIC 

Le système immunitaire inné représente la première ligne de défense contre les infections. Il regroupe les 
barrières physiques (peau, muqueuses), des composants solubles du sang (notamment le système du 
complément) et des cellules spécialisées telles que les macrophages et les cellules dendritiques. La réponse 
de ces différents acteurs doit être coordonnée et finement régulée afin d’éradiquer les agents pathogènes 
sans causer de dommages à l'hôte. 

Les enzymes appelées déacétylases d’histones (ou HDACs) jouent un rôle important dans la régulation de 
l’expression des gènes et, en conséquence, influencent de nombreux processus biologiques. Par ailleurs, 
une production ou une activité dérégulée des HDACs est associée au développement de maladies 
oncologiques, cardiovasculaires, neuro-dégénératives, métaboliques et auto-immunes. Chez les 
mammifères, la famille des HDACs est subdivisée en 2 sous-groupes: les HDAC classiques dépendantes du 
Zn (HDAC1-11) et les sirtuines dépendantes du NAD+ (SIRT1-7). 

Dans cette thèse, nous avons étudié l’impact des HDAC1-11 et des sirtuines sur le développement de la 
réponse immunitaire innée et des infections, avec un intérêt tout particulier pour le sepsis. Le sepsis est un 
syndrome clinique extrêmement sévère résultant d’une réponse immunitaire inappropriée de l’hôte à 
l’infection. L’approche scientifique utilisée consistait dans un premier temps à étudier l’effet de drogues 
inhibant l’activité des HDAC1-11 ou des sirtuines, et dans un second temps à étudier la réponse de cellules 
et de souris n’exprimant pas la sirtuine 2 (i.e. déficientes en SIRT2). 

Les résultats obtenus démontrent que le propionate, un inhibiteur des HDAC1-11 qui est produit par les 
bactéries de l’intestin, inhibe la réponse inflammatoire des cellules immunitaires innées de la souris et de 
l’homme. De plus, une drogue anticancéreuse appelée cambinol inhibe les sirtuines 1 et 2 et protège de la 
mortalité induite par le sepsis chez la souris. Enfin, la déficience en SIRT2 favorise l’ingestion des bactéries 
par les macrophages, une fonction biologique dénommée phagocytose et qui joue un rôle important dans 
l’élimination des microbes et l’amplification de la réponse immunitaire. En accord avec ces données, les 
souris déficiente en SIRT2 sont plus résistantes que les souris normales lors d’une infection chronique à une 
bactérie appelée Staphylococcus aureus. 

Globalement, ces observations démontrent les propriétés immuno-régulatrices des inhibiteurs des HDAC1-
11 et des sirtuines. Elles suggèrent par ailleurs que des drogues inhibant les HDACs pourraient être utilisées 
pour traiter des maladies inflammatoires et éventuellement comme thérapie d'appoint des infections 
bactériennes chroniques et du sepsis. 
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MAIN ABBREVIATIONS 
 
ADP Adenosine diphosphate 

ASC Apoptosis-associated speck-like protein containing a CARD 

ATP Adenosine triphosphate 

BMDC Bone marrow-derived dendritic cell 

BMDM Bone marrow-derived macrophage 

CARD Caspase-recruiting domain 

CD Cluster of differentiation 

CDS 

 

Cytosolic DNA sensor 

CLR C-type lectin receptor 

CpG Cytosine-phosphate-guanosine 

CR Calorie restriction 

DAMP Danger associated molecular pattern 

DC Dendritic cell 

DNA Deoxyribonucleic acid 

dsDNA Double-stranded DNA 

dsRNA Double-stranded RNA 

ELISA Enzyme-linked imunosorbent assay 

ERK Extracelluar signal regulated kinase 

ETs Extracellular traps 

HAT Histone acetyltransferase 

HDAC Histone deacetylase 

HDACi/HDI Inhibitor of histone deacetylase 

IC50 Half maximal inhibitory concentration 

IFN Interferon 

IL Interleukin 

IL-1R Interleukin-1 receptor 

ILC Innate lymphoid cell 

iNOS Inducible NO synthase 

IRF Interferon regulatory factor 

JNK c-Jun N-terminal Kinase 

LPS Lipopolysaccharide 

LRR Leucine-rich repeat 

MAMP Microbial-associated molecular pattern 

MAPK Mitogen activated protein kinase 

MHC-II Major histocompatibility complex class II molecule 

MIF Macrophage migration inhibitory factor 

mRNA Messenger ribonucleic acid 

MyD88 Myeloid differentiation factor 88 
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NAD Nicotinamide adenine dinucleotide 

NADPH Nicotinamide adenine dinucleotide phosphate 

NALP NACHT domain-, leucine-rich repeat-, and PYD-containing protein 

NAM Nicotinamide 

NAMPT Nicotinamide phosphoribosyltransferase 

NETs Neutrophil ETs 

NF-κB Nuclear factor-κB 

NK Natural killer 

NLR NOD-like receptor 

NO Nitric oxide 

p38 p38 mitogen-activated protein kinase 

Pam3CSK4 N-Palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-[R]-cysteinyl-[S]-
seryl-[S]-lysyl-[S]-lysyl-[S]-lysyl-[S]-lysine 

PBMC Peripheral blood mononuclear cell 

PRR Pattern recognition receptor 

RIG-I Retinoic acid-inducible gene-I 

RLR RIG-like receptor 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

RT-PCR Real-time polymerase chain reaction 

SCFA Short chain fatty acid 

SIRT sirtuin 

ssRNA Single-stranded RNA 

Th Helper T cell 

TIR Toll/Interleukin-1 receptor 

TIRAP Toll/Interleukin-1 receptor domain containing adaptor  

TLR Toll-like receptor 

TNF Tumor necrosis factor 

TRAF Tumor necrosis factor receptor-associated factor 

Tregs Regulatory T cells 

TRIF TIR-domain-containing adaptor inducing interferon β 
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1 INTRODUCTION 

1.1 Innate immunity 
We are constantly exposed to a multiplicity of potentially pathogenic microorganisms. The innate immune 

system provides the very first line of defense against microbial infections through skin and mucosal physical 

barriers. Once these barriers are crossed, microorganisms are sensed by the coordinated actions of soluble 

molecules, comprising components of the complement system and acute phase proteins (collectins and 

complement molecules, pentraxins, ficolins, lipopolysaccharide (LPS) binding protein (LBP), 

bactericidal/permeability-increasing protein (BPI)), and innate immune cells. Innate immune cells 

(monocytes/macrophages, dendritic cells (DCs), granulocytes, natural killer (NK) cells, innate lymphoid cells 

(ILCs)), localized in tissues or patrolling into the body, sense the presence of microorganisms through 

pattern recognition receptors (PRRs). PRRs recognize conserved microbial motifs, common to groups of 

microbes and not present in mammals, collectively called microbial-associated molecular patterns (MAMPs). 

PRRs also bind to endogenous molecules like nucleic acids, histones, uric acid crystals, ATP, cytochrome c, 

S100 molecules and high-mobility group protein 1 (HMGB1), released by injured or stressed cells, called 

danger-associated molecular patterns (DAMPs) (1). 

The best-characterized families of PRRs are Toll-like receptors (TLRs), C-type lectin receptors (CLRs), 

NOD-like receptors (NLRs), retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs) and cytosolic dsDNA 

sensors (CDSs) (2). TLRs and CLRs are membrane-bound PRRs, whereas NLRs, RLRs and CDSs are 

cytoplasmic PRRs (Figure 1). TLR4 is the archetypal PRR that has driven the most attention, the 

identification and characterization of which representing cornerstone discoveries for all subsequent 

progresses in the field of innate immune sensing (3).  
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Figure 1: Schematic representation of the five main families of pattern recognition receptors. 
Members of the Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), 
retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs) and cytosolic dsDNA sensors (CDSs) are 
grouped according to structural similarity, subcellular localization and microbial specificity. The main 
adaptor molecules and signaling pathways activated by each of the families are depicted. Adapted from 
(2). 

 

1.1.1 Toll-like receptors (TLRs) 

Ten functional TLRs (TLR1-10) are expressed in humans, and 12 functional TLRs (TLR1-9, TLR11-13) are 

expressed in mice. TLRs are type I transmembrane glycoproteins composed of an extracellular leucine-rich 

repeat (LRR) domain ensuring ligand recognition, a transmembrane domain, and an intracellular 

toll/interleukin-1 receptor (IL-1R) (TIR) signaling domain. TLRs are located at the cell surface, except TLR3 

and TLR7-9 that reside in endosomes. 

TLRs recognize a broad range of bacterial, fungal and viral MAMPs, but also some DAMPs (4-6). TLR4 was 

the first TLR for which a microbial ligand was definitely identified (7). In collaboration with CD14 and MD-2 

(Ly96), TLR4 detects LPS, the main proinflammatory compound of the outer-membrane of gram-negative 
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bacteria. Upon LPS sensing, TLR4 shuttles to late endosome. TLR2 forms heterodimers with either TLR1 or 

TLR6, and possibly homodimers, to detect a wide range of microbial products among which glycoproteins, 

glycosylphosphatidylinositol (GPI) anchors, lipopeptides, lipoproteins, peptidoglycan (PGN), porins and β-

glucan from gram-positive and gram-negative bacteria, mycoplasma, mycobacteria, fungi, parasites and 

viruses. TLR5 recognizes flagellin of motile flagellated bacteria. The endosomal TLRs, TLR3 and TLR7-9, 

recognize nucleic acids: double-stranded RNA (dsRNA) by TLR3, single-stranded RNA (ssRNA) by TLR7 

and TLR8 and unmethylated CpG motif containing DNA by TLR9. TLR10, upon dimerization with TLR2, 

inhibits TLR2-mediated inflammatory response (8). 

Going well along with these patterns of ligand specificity, membrane bound TLRs are primarily involved in 

host responses to bacteria, fungi and parasites, whereas endosomal TLRs are involved in host responses 

against viral infections. A non-exhaustive list of the main natural or synthetic MAMPs recognized by TLRs is 

presented in Table 1. 

Upon ligand binding, TLRs engage intracellular adaptor molecules recruited through TIR-TIR homotypic 

interactions to initiate intracellular signaling and gene expression. Five adaptor molecules have been 

identified: myeloid differentiation primary response gene (MyD88), TIR domain-containing adaptor inducing 

interferon (IFN) β (TRIF), TIR domain-containing adaptor protein (TIRAP/MAL), TRIF related adaptor 

molecule (TRAM) and sterile α-, and armadillo-motif containing protein (SARM). All TLRs except TLR3 use 

MyD88 to initiate early activation of the nuclear factor-κB (NF-κB) and mitogen-activated protein kinases 

(MAPKs) pathways involved in the production of inflammatory cytokines and chemokines. TIRAP/MAL is 

recruited with MyD88 to TLR2 and TLR4. TLR3 and TLR4 that have shuttled to endosomes use TRIF to 

initiate IFN regulatory factor 3 (IRF3) and late NF-κB activation that control the production of type I IFNs and 

IFN-inducible genes. TRAM bridges TRIF to TLR4 in endosomes, whereas SARM negatively regulates TLR3 

and TLR4 TRIF-dependent signaling (9). 
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Table 1. TLR subcellular localization, adaptor proteins and important microbial ligands/mimics. 

 
TLR Cellular 

localisation 
Adaptor 
molecule 

MAMPs Origin of MAMPs 

TLR1/2 Cell surface MyD88/TIRAP Lipoproteins/peptides 
(Pam3CSK4) 

Bacteria 
Synthetic 

TLR2 Cell surface MyD88/TIRAP Peptidoglycan, Lipoteichoic acid Gram-pos bacteria 
   Lipomannan Mycobacterium 
   Zymosan/β-glucan Fungi 
   LPS P. gingivalis 
TLR2/6 Cell surface MyD88/TIRAP Lipoproteins/peptides 

Pam2CSK4 
Bacteria 
Synthetic 

TLR3 Endosome TRIF ssRNA Virus 
   dsRNA Virus 
   poly(I:C), poly(A:U) Synthetic 
TLR4 Cell surface 

(endosome) 
MyD88/TIRAP 
(TRIF/TRAM) 

LPS Gram-neg bacteria 

   Mannans Fungi 
   Glycoinositol phospholipids  Trypanosoma 
   F-protein Virus 
   Monophosphoryl lipid A Synthetic 
TLR5 Cell surface MyD88 Flagellin Bacteria 
TLR7 Endosome MyD88 ssRNA Virus 
TLR8 Endosome MyD88 ssRNA Virus 
TLR9 Endosome MyD88 DNA containing unmeth. CpG Bacteria, virus, fungi 
Poly(I:C): polyinosine-polycytidylic acid; poly(A:U): polyadenylic-polyuridylic acid. 
 

1.1.2 C-type lectin receptors (CLRs) 

The CLR family comprises more than 1’000 members organized into 17 subgroups based on phylogenetic 

and structural hallmarks. CLRs are characterized by one or more extracellular carbohydrate recognition 

domains (CRDs) (10). Unfortunately, only few CLRs have been studied in the context of innate immunity. 

Among the best known CLRs are the myeloid CLRs dectin-1, dectin-2, mincle, DC-SIGN, mannose receptor 

(MR, CD206), DEC-205 (CD205) and galectin-3. CLRs are transmembrane proteins specialized in the 

sensing of fungal carbohydrates: β-glucans and chitin, the major and second-most abundant polysaccharide 

of the fungal cell wall, mannose and fucose (11). CLRs also mediate the recognition of bacteria, virus and 

parasit carbohydrates (mannose, mannans, N-acetyl-glucosamine) (12-14). Myeloid CLRs induce signalling 

through 3 main pathways based on the presence of specific intracellular domains: 1) CLRs with an 

immunoreceptor tyrosine-based activation motif (ITAM) domain that activates the Syk tyrosine kinase 

pathway (dectin-1, dectin-2, mincle), 2) CLRs with an immunoreceptor tyrosine-based inhibition motif (ITIM) 

domain (DCIR, Ly49Q) that modulates signaling pathways induced by co-receptor engagement, and 3) 

CLRs without evident ITAM or ITIM domains (MR, DEC-205, DC-SIGN) (10). Syk mediates the activation of 

the NF-κB, MAPK and nuclear factor of activated T cell (NFAT) signaling pathways. 
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1.1.3 NOD-like receptors (NLRs) 

NLRs form a family of 22 members in humans: NLRA (class II, major histocompatibility complex, 

transactivator, CIITA), NLRB (NLR family, apoptosis inhibitory protein, NAIP), NLRC1-5 (NLR family, CARD 

domain containing 1-5), NLRP1-14 (NLR family, pyrin domain-containing 1-14) and NLRX1 (NLR family 

member X1). NLRs are classified according to their structural domains. All NLRs contain NACHT (or NAIP, 

neuronal apoptosis inhibitor protein) and LRR domains, and specific CARD (Caspase activation and 

recruitment domain; in all NLRs except NLRP1-14), PYD (pyrin domain; in NLRP1-14) or BIR (Baculovirus 

Inhibitor of apoptosis protein Repeat; in NLRB) domains. NLRs are cytoplasmic receptors able to recognize 

MAMPs and DAMPs from exogenous and endogenous origin (15, 16).  

The founding members of the NLR family are NOD1 (NLRC1) and NOD2 (NLRC2). NODs drove much 

attention following the early discovery that polymorphisms in NOD genes are the strongest genetic risk 

factors associated with Crohn's disease development. Both NOD1 and NOD2 were initially characterized by 

their ability to sense cytosolic peptidoglycan fragments and to activate the NF-κB pathway (17). Nowadays, 

the most well-known and studied NLR is NLRP3 (also known as NALP3). Activation of NLRP3, for example 

by uric acid crystals, ATP, cytochrome c, muramyl dipeptide (MDP, a subcomponent of peptidoglycan) 

cholera toxin B, pneumolysin and streptolysin O, leads to the assembly and activation of the NLRP3 

inflammasome, a cytosolic multiprotein complex that also comprises the adaptor protein ASC (Apoptosis-

associated speck-like protein containing a CARD) and procaspase-1. NLRP3 inflammasome activation leads 

to the generation of active caspase-1 that cleaves pro-IL-1β and pro-IL-18 into mature, secreted, IL-1β and 

IL-18. Inflammasome activation also drives pyroptosis, an inflammatory cell death program (18, 19). Other 

NLRs form inflammasome. For instance, NLRC4 forms an inflammasome that senses flagellin and PrgJ-like 

proteins delivered through bacterial type III and type IV secretion systems (T3SS and T4SS) by gram-

negative bacteria including Legionella pneumophila, Pseudomonas aeruginosa and Salmonella enterica. 

This sensing involves the actions of Naip2, Naip5 or Naip6 (20, 21). 

1.1.4 Retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs)  

RLRs are RNA helicases. The RLR family comprises two functional members, RIG-I (encoded by DDX58) 

and MDA5 (Melanoma differentiation-associated antigen 5, encoded by IFIH1) that sense ssRNA and 

dsRNA of viral origin. A third member called LGP2 (Laboratory of genetics and physiology 2, encoded by 
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DHX58) is commonly believed non-functional. RLRs are composed of three domains: an N-terminal CARD 

domain, involved in signal transduction and absent in LGP2, a central DExD/H box RNA helicase domain, 

and a C-terminal RNA binding domain (CTD). Recognition of viral RNA by RLRs leads to their interaction, 

through CARD/CARD homotypic interactions, with MAVS (mitochondrial antiviral-signaling protein also 

known as IPS-1/IFNB-promoter stimulator and VISA (virus-induced signaling adapter)) anchored to 

mitochondria, and subsequent activation of the IRF and NF-κB pathways involved in the production of type I 

and type III IFNs (22). The function of LGP2 is not fully understood, but could be to dampen RIG-I and 

MDA5-mediated responses. Yet, some recent works suggest that LGP2 can also, in certain circumstances, 

assist RIG-I and MDA5-mediated response to viral RNA (23). 

1.1.5 Cytosolic dsDNA sensors (CDSs) 

The family of CDSs has been characterized more recently, with a growing number of members identified 

such as DNA-dependent activator of IRFs (DAI), AIM2 (absent in melanoma 2), cGAS (cyclic GMP–AMP 

synthase), DDX41, DHX9, DNA-PK, DHX36, IFI16, Ku70, LRRFIP1, LRRFIP2, MRE11, STING and Rad50 

(24, 25). CDSs sense the presence of DNA in the cytoplasm of cells. Upon viral DNA sensing, CDSs usually 

initiate signaling through the adaptor protein STING (also called MITA, MPYS and ERIS) that is localized to 

the endoplasmic reticulum, and that relays IRF and NF-κB pathway activation. As such, CDSs play an 

essential role in antiviral immunity to DNA viruses (12, 25, 26). Of note, CDSs can also form inflammasomes. 

A well known example is AIM2 that forms an AIM2 inflammasome once activated by the presence of 

cytosolic dsDNA in cells infected by cytomegalovirus and vaccinia virus, but also by bacteria such as 

Francisella tularensis and Listeria monocytogenes (L. monocytogenes) (20). 

As mentioned above, the recognition of MAMPs/DAMPs through PRRs initiates multiple intracellular 

signaling pathways in innate immune cells. This leads to the activation and nuclear translocation of 

transcription factors like NF-κB, AP-1 and IRFs, modulation of gene transcription and production or 

upregulation of receptors, adhesion molecules, cytokines and soluble factors important for cell activation, cell 

recruitment, phagocytosis and killing of pathogens and initiation of the adaptive immune response. These 

processes have to be perfectly orchestrated to mount an appropriate inflammatory response able to clear or 

contain the infectious agents and rescue homeostasis without causing collateral damages to the host. 
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1.2 Importance and mechanisms of macrophage defense against 
infections 

Macrophages are innate immune cells of central importance to fight infections (13, 27, 28). Tissue resident 

macrophages derive from the yolk sac and fetal liver during embryogenesis and have a certain level of self-

renewal capacity (14, 29, 30). Later in the adult life, monocytes generated in the bone marrow egress into 

the blood and can be recruited to sites of infection/inflammation where they differentiate into macrophages 

(31, 32).  

Macrophages form a complex population of cells that dynamically respond to environmental signals. Two 

extreme phenotypes have been described: the classically activated M1 macrophage with proinflammatory 

and microbicidal properties through the production of high levels of IL-12, IL-23, tumor necrosis factor (TNF), 

reactive oxygen species (ROS) and nitric oxide (NO), and the alternatively activated M2 macrophages which 

have regulatory and tissue repair functions through the production of high levels of IL-10 and transforming 

growth factor-β (TGF-β), IL-1R antagonist (IL-1Ra). It is now admitted that macrophages are a continuum 

between the two extremes, rather than existing as either M1 or M2 polarized cells (33, 34). 

Macrophages express a broad range of PRRs that allow them to sense all kind of invading pathogens. When 

a microbe is recognized by macrophages, they produce a number of mediators including cytokines, 

chemokines and lipids. These molecules act on neighboring cells and attract to the site of infection additional 

immune cells, mainly monocytes, polymorphonuclear cells and lymphocytes. Macrophages, together with 

DCs and neutrophils are professional phagocytes equipped with a broad range of antimicrobial effectors to 

engulf and kill pathogens. Phagocytosis happens as a consequence of the recognition of a pathogen through 

phagocytic and opsonic phagocytic PRRs including macrophage scavenger receptor 1 (Msr1/SR-AI/CD204), 

mannose receptor, CD14, CD36, C-type lectins (dectin-1) and members of the integrin superfamily (integrin 

α5/Itga5/CD49e, integrin αM/Itgam/CD11b, integrin αX/Itgax/CD11c, integrin β2/Itgb2/CD18) forming 

complement receptor 3 (CR3; i.e. CD11b/CD18) and CR4 (CD11c/CD18). The process of phagocytosis is 

enhanced when microbes are opsonized by soluble PRRs or molecules among which collectins, ficollins, 

pentraxins and complement component C3b, iC3b and C4b. Moreover, in case of previous exposure of the 

host to a specific pathogen, opsonization is efficiently performed by anti-microbial antibodies produced 

during the initial infection and during the recall response by memory B cells. In this case, Fc receptors (FcR) 

on macrophages and other specialized phagocytic cells will be engaged to facilitate the phagocytosis of 
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opsonized pathogens. Mechanistically, the binding of complement receptor or FcR to their ligands provokes 

their clusterization and initiate intracellular signaling leading to local actin polymerization to form 

pseudopodia that envelop the target. While actin is polymerizing around the target, it depolymerizes 

underneath allowing the formation of a phagocytic cup from the plasma membrane (35). The subsequent 

closure of the cup leads to the formation of the phagosome that has no microbicidal properties at this stage. 

The phagosome then undergoes to an articulated and complex maturation process carried on by fission and 

fusion with trans-Golgi, endosome and lysosome vesicles. The final result is a compartment called 

phagolysosome that allows pathogen killing and degradation through acidification and delivery of 

antimicrobial enzymes (acid hydrolases, lysozyme) and peptides and of toxic ROS generated by the 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NO generated by the inducible NO 

synthase (iNOS) (35). Phagocytosis by macrophages has two functions: on the one hand it allows 

eliminating the engulfed pathogens, and on the other hand it generates microbial-derived antigenic peptides 

that will be presented at the cell surface by major histocompatibility complex (MHC) molecules. 

Macrophages and DCs may then migrate to secondary lymphoid organs to present antigens to T-cells and 

initiate the development of the adaptive immune response (36). 

Another mechanism by which macrophages can fight extracellular pathogens is through the formation of 

extracellular traps (ETs), although this has been studied in much more detail for neutrophils than for 

macrophages (37). ETs were described in 2004 for neutrophils and called NETs (neutrophil ETs) by the 

group of Zychlinsky (38). NETs are produced during NETosis that may represent, although not everybody 

agrees on that, a distinct form of cell death from apoptosis and necrosis. Indeed, it has been suggested that 

neutrophils may retain their viability and several essential functions such as phagocytosis and chemotaxis, 

while undergoing NETosis (39). NETosis is stimulated when neutrophils encounter pathogens (bacteria, 

fungi), microbial products (LPS) or are exposed to activated platelets, cytokines (IL-8) or stimulatory agents 

such as phorbol 12-myristate 13-acetate (PMA). NETosis is dependent on ROS production and 

decondensation of nuclear DNA. NETs consist of DNA and histones (likely in the form of chain of 

nucleosomes from stretched chromatin), antimicrobial peptides, enzymes and other proteins and serve to 

“capture” and immobilize microbes, directly kill them and/or promote their phagocytosis and killing in the 

phagolysosome. 
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1.3 Infection and sepsis 

During infection a multiplicity of processes are put in place with the aim to eliminate the invading pathogen. 

Host response must be tightly regulated to mount an appropriate inflammatory response able to clear the 

infection and rescue homeostasis without causing collateral damages to the host. 

Sepsis is a clinical syndrome characterizing severe complications of infections. The annual incidence of 

sepsis is around 300 cases per 100’000 people in USA, and sepsis is the second most common cause of 

death in non-coronary intensive care units. The Third International Consensus Definitions for Sepsis and 

Septic Shock (Sepsis-3) have just been released with accompanying reports (40-43). It states that “sepsis is 

defined as life-threatening organ dysfunction caused by a dysregulated host response to infection”. Sepsis 

may result from infection by virulent pathogens or from infection under genetic or non-genetic conditions 

(neutropenic cancer patients under chemotherapy, immunosuppressed transplanted patients…) impairing 

the mounting of appropriate immune responses. Advances in supportive care and antimicrobial therapy have 

improved the outcome of sepsis patients. Yet, mortality rate of sepsis remains high, ranging from 20% to 

80%. In addition, more than 30% of survivors develop long-term functional disabilities and cognitive 

impairments. Whereas gram-negative infections were prevailing in the 60s and 70s, gram-positive infections 

now account for around half of cases of sepsis. Markedly, the proportion of fungal infection has strongly 

increased over the last 30 years.  

Our understanding of the pathogenesis of sepsis has progressed significantly over the last decades. 

Experimental studies have demonstrated that deficiency or neutralization of cytokines and their receptors 

and PRRs impair host defenses, and human association studies have linked polymorphisms in innate 

immune genes with an increased susceptibility to infections (44, 45). An initial assumption was that sepsis 

results from an overwhelming inflammatory response, commonly known as the “cytokine storm”, responsible 

for tissue injury, vascular collapse and organ dysfunction. It was then proposed that this “systemic 

inflammatory response syndrome” (SIRS) was followed by a state of immunosuppression called the 

“compensatory anti-inflammatory response syndrome” (CARS) that favors the reactivation of latent viral 

infections and the development of secondary and nosocomial infections that impact on long term-survival of 

sepsis patients. Indeed, septic patients show a state of immunosuppression characterized by increased 

apoptosis of DCs and T lymphocytes, impaired MHC-II expression by DCs and defective innate and adaptive 

immune responses. Yet, it is now clear that there is no sharp temporal segregation between the pro- and 
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anti-inflammatory responses occurring in sepsis (46-49). The transcriptome of circulating leucocytes after 

severe trauma, burn injury and low-dose endotoxin challenge revealed a “genomic storm” which affected 

more than 80% of the cellular functions and pathways, simultaneously increasing the expression of 

proinflammatory and anti-inflammatory genes, as well as suppressing adaptive immunity-related genes (50), 

and it is now commonly accepted that pro- and anti-inflammatory responses are temporally overlapping.  

Studies published in recent weeks confirmed and extended this assumption. Results from the Molecular 

Diagnosis and Risk Stratification of Sepsis (MARS) program confronting clinical data and blood whole-

genome transcriptome from patients in 2 ICUs in the Netherlands indicate that gene expression profile at 

baseline is not predictive of the risk of secondary infection, but that the genomic response at the onset of 

secondary infection is consitent with immunosuppression (51). Yet, the UK Genomic Advances in Sepsis 

(GAinS) study reports that on admission in 29 participating ICUs, the transcriptome of leukocytes from 

patients with sepsis could be stratified into two signatures: sepsis response signature 1 (SRS1) and SRS2. 

SRS1 identifies those individuals with features of immunosuppression and metabolic dysregulation 

associated with higher 14-days mortality than SRS2 bearing patients (52). Finally, the groups of van der Poll 

(AMC, Amsterdam) and Netea (Radboud University, Nijmegen) have shown that broad leukocyte 

immunometabolic defects are associated with immunoparalysis in sepsis (53). 

For many years, clinical trials have tested single immunomodulating therapies, mainly anti-

inflammatory/immunosuppressive ones such as glucocorticoids and non-steroidal anti-inflammatory drugs 

(NSAIDs), inhibitors of TNF, IL-1, PAF (platelet-activating factor), bradykinin, NO or anti-LPS agents, all 

resulting in no consistent benefit for severely ill patients (54). The context become even grimmer when, in 

2011, a phase III clinical study of the efficacy of the TLR4 antagonist Eritoran (Eisai) was stopped because it 

failed to meet the primary endpoint in the ACCES trial (55). The next year, a phase II-III trial testing 

recombinant lactoferrin (Talactoferrin alfa, Agennix), a molecule with antimicrobial and DC 

immunostimulatory activities, was also stopped because lactoferrin failed to improve 28 and 90-days 

mortality (56).  

Unfortunately, there is nowadays no treatment targeting the underlying mechanisms of sepsis. Indeed, 

recombinant human activated protein C (rhAPC, Xigris®, Eli Lilly), an anti-thrombotic, pro-fibrinolytic and 

anti-inflammatory drug registered for sepsis in 2002, was withdrawn from the market in 2011 following the 

negative results from the PROWESS-SHOCK study that did not show reduction in mortality at 28 or 90 days 
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in patients with septic shock (57). Many reasons may account for the lack of efficacy of anti-sepsis 

startegies, among others the heterogeneity of the patients recruited and the design of clinical trials with 

poorly predefined genetic and non-genetic appropriate selection parameters and real-time follow-up using 

biomarkers to weigh treatment efficacy and allow treatment adjustment (58, 59). Also, targeting one single 

molecule may not suffice to interfere with the complex series of events that drive sepsis pathogeneis. New 

directions in the field consider supporting or modulating rather than inhibiting immune responses and 

preventing apoptosis in sepsis patients, for example using or IL-7, IL-15, anti- programmed cell death 1 

(PD1) and PD1-ligand, IFNγ, and drugs improving epithelial barriers functions such as granulocyte 

macrophage-colony stimulating factor, IL-11, IL-22, hepatocyte growth factor and insulin-like growth factor-1. 

New avenues are also emerging such as those impacting on epigenetic modifications and the microbiome 

(60). Therefore, although many advances have been achieved in recent past, great efforts are required in 

order to better understand the causes and the molecular mechanisms involved in the pathogenesis of sepsis 

and develop innovative therapeutical strategies. 

1.4 Histones and histone deacetylases (HDACs) 

Chromatin structure is a key element regulating gene expression. Histones form the basic unit of chromatin: 

the nucleosome. A nucleosome is an octamer of 2 copies of histones H2A, H2B, H3 and H4 around which 

DNA is wrapped. When chromatin is tightly compacted, DNA is not accessible to the transcription machinery. 

Conversely, open chromatin allows transcription regulators and polymerase to reach gene promoters and 

initiate transcription. The N-terminal tails of histones are subjected to posttranscriptional modification among 

which acetylation, ubiquitination, sumoylation and ADP-ribosylation of lysine, methylation of arginine and 

lysine and phosphorylation of serine and threonine. Each modification on histones is thought to affect the 

structure and the function of the chromatin, thereby modulating gene expression (Figure 2). For example, 

the transcriptionally inactive heterochromatin is characterized by hypoacetylated and highly methylated 

H3K9, H3K27 and H4K20 histones whereas the transcriptionally active euchromatin is enriched in acetylated 

and trimethylated H3K4, H3K36, and H3K79 histones. Beside histones, DNA is subjected to intense 

modifications, with the most studied epigenetic modification being methylation. The reversible covalent 

modification of DNA occurs at 5’-methyl cytosine residues mainly in the context of CpG dinucleotides. 

Methylation of DNA is usually associated with histone deacetylation and repressed gene expression. 
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Figure 2. Heterochromatin-euchromatin equilibrium by histone acetyltransferases (HAT) and 
histone deacetylases (HDACs). Octamers of histones composed of 2 x H2A, H2B, H3 and H4 are 
wrapped by stretches of 147 DNA base pairs. Protruding histone tails are subjected to covalent 
modifications. Ac: acetylation; me2: dimethylation, me3: trimethylation. K: lysine (with amino acid 
position).  
 

The acetylation status of histone tails is determined by the opposite actions of histone acetyltransferases 

(HATs, such as CREB-binding protein and p300) and histone deacetylases (HDACs) (Figure 2). Histone 

acetylation neutralizes positive charges of lysines and opens the chromatin structure. Moreover, acetylation 

acts as a tag that attracts additional transcription regulators, hence promoting gene expression (61). 

Mammals express 18 HDACs, organized in four classes based on their homology with yeast HDACs, 

subcellular localization and enzymatic activity (Figure 3). Class I HDACs (HDACs 1, 2, 3 and 8) are 

homologues of yeast RPD3. They share a compact structure and are found exclusively in the nucleus of 

most cell lines and tissues. Class II HDACs (HDACs 4, 5, 6, 7, 9 and 10) are homologues of yeast Hda 1 and 

found in both the nucleus and the cytoplasm of a limited number of cell types. Class III HDACs (SIRT1-

SIRT7) are homologues of yeast Sir2 and form a structurally distinct class that has an absolute requirement 

for nicotinamide adenine dinucleotide (NAD+) for its enzymatic activity. Finally, class IV HDAC11 has 

conserved residues in the catalytic core region that are shared by both class I and class II enzymes.  
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Figure 3. The HDAC superfamily. Schematic organization and classification of mammalian HDAC1-11 and 
SIRT1-7. The number of amino acids (aa) of full length proteins is given on the right. 
 

HDACs received their name from the original observation that they deacetylate histones. Yet, HDACs control 

the acetylation of numerous non-histone proteins that regulate gene expression (transcription factors and 

regulators) and are involved in cell structure (tubulin) and in the control of cell cycle, cell death, circadian 

rhythm and metabolism (62). In fact, mass spectrometry identified thousands of acetylated proteins (63). As 

such, HDACs impact on many cellular functions. Moreover, reversible acetylation affects mRNA and protein 

stability, protein localization, protein-protein interactions and protein enzymatic activity. Although it has been 

proposed to rename HDACs by lysine deacetylase (KDACs), no consensus arose and the great majority of 

the scientific community still uses the term HDACs. 
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1.5 Histone deacetylases inhibitors (HDACi) and the control of immune 
responses 

We have published a review about HDACs inhibitors (HDACi) and their impact on innate immune responses 

and sepsis (section 3.1). Therefore, I will not develop this topic in great details herein. 

In the mid-seventies, sodium butyrate (NaB), a short-chain fatty acid (SCFA) that is produced by anaerobical 

bacterial fermentation of dietary fibers, was reported to stop DNA synthesis and cell proliferation, induce 

erythroleukemic cell differentiation and to increase the level of acetylated histones (64). These pioneer 

studies provided a strong impulsion into the development of research programs aimed at identifying new 

HDACi, deciphering their mode of action, and testing their potential usage as anti-cancer drugs. Overall, 

HDACi can be classified into four main structural classes: hydroximates, cyclic peptides, aliphatic acids and 

benzamides (65, 66). Interestingly, HDACi are commonly used to study the role of HDACs in physiological 

and pathophysiological processes, including those related to immunity. To avoid confusion, the term HDACi 

will refer here exclusively to drugs targeting HDAC1-11. 

Numerous HDACi are tested in clinical trials and some have been approved for cancer therapy. Valproate, 

used over the last decades as a mood stabilizer and anti-epileptic, suberoylanilide hydroxamic acid (SAHA, 

vorinostat) and romidepsin (FK228/FR901228) have been registered for the treatment of patients with 

cutaneous T-cell lymphoma, and panobinostat (LBH-589) for the treatment of patients with multiple myeloma 

who experienced two prior therapies (67-69). 

As epigenetic modifications of chromatin structure accompany every major cell function, it has been 

proposed that HDACi could also be used to modulate other patho-physiological processes. Moreover, since 

carcinogenesis is intricately linked to inflammatory processes, the impact of HDACi has been tested in 

several experimental models of inflammatory and autoimmune diseases (69-72). The first study reporting 

that HDACi provide immuno-therapeutic benefits in vivo concerns the MRL lpr/lpr mouse model that 

spontaneously develop an autoimmune syndrome closely resembling human systemic lupus erythematosus 

(SLE). Trichostatin A (TSA, a pan-HDACi) and SAHA down-regulate TNF, IL-6, IL-10, IL-12, IFNγ and NO 

production by splenocytes and mesangial cells from MRL-lpr/lpr mice and significantly improve mouse health 

status (73, 74). Since then, and in line with their powerful anti-inflammatory and immunosuppressive 

activities, HDACi have been reported to improve outcome in a multitude of experimental models of 

inflammatory and autoimmune diseases: multiple sclerosis (75, 76), rheumatoid arthritis (77-83), systemic 
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lupus erythematosus (73, 74, 84), graft-versus host disease (85-89), colitis (87, 90, 91) and asthma (92-94). 

Among other mechanisms of action, HDACi impair the function of DCs and increase the generation and 

function of Foxp3+ regulatory T-cells (Treg cells) that are important to establish self-tolerance and to prevent 

occurrence of autoimmune diseases (83, 89, 91, 95-97). Clinical trials are ongoing to test HDACi as novel 

therapies for autoimmune diseases (http://www.clinicaltrials.gov). 

In a pivotal paper published in 2002, Leoni et al. reported that SAHA, at concentrations much lower than 

those used to inhibit tumor cell proliferation, inhibits cytokine production by PBMCs and decreases cytokine 

levels in the blood of LPS-treated mice (98), suggesting that HDACi may impact on innate immunity. Indeed, 

numerous subsequent studies have shown that HDACi inhibit cytokine, chemokine, nitric oxide (NO) and co-

stimulatory molecule expression by PBMCs, monocytes, macrophages and DCs. Interestingly, HDACi impair 

the generation of Th1 and Th17 immune responses, protective against intracellular and extracellular 

pathogens (72, 99-106). 

Our laboratory has participated to characterize the impact of HDACi in innate immune responses. In initial 

studies, it was shown that HDACi inhibit the production of macrophage migration inhibitory factor (MIF), a 

cytokine controlling inflammatory and innate immune responses (107), through a local chromatin 

deacetylation, thus impairing the recruitment of the transcriptional machinery to the MIF proximal promoter 

(108). Subsequently, the laboratory performed the first comprehensive study of the impact of HDACi on 

innate immune responses (96). Genome wide expression studies revealed that HDACi act as negative 

regulators of immune receptors and antimicrobial products in mouse and human immune cells, a 

phenomenon resulting at least in part from an increased activity of the Mi-2/NuRD complex that acts as a 

transcriptional repressor of cytokine production by macrophages. TSA and valproate also impair the 

phagocytosis and the killing of bacteria by macrophages (109). Finally, in preclinical mouse models, 

valproate protects from rapidly lethal Pam3CSK4 lipopeptide-induced toxic shock and cecal ligation and 

puncture, but increases mortality to nonsevere Klebsiella pneumonia (K. pneumonia) pneumonia and chronic 

Candida infection (96). All these observations fit well with the concept that interfering with inflammatory and 

innate immune responses may, on the one hand, provide benefits in acute models of infection, but on the 

other hand increase the risk of infections. As an example, anti-TNF therapies are associated with 

reactivation of latent tuberculosis and viral infections and increase of opportunistic infections (110). From 

these studies, it was proposed to have a close monitoring of the infection and immune status of patients 

http://www.clinicaltrials.gov/
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treated with HDACi (72, 96, 109). Supporting this claim, NK cells and DCs from patients treated with 

romidepsin have impaired function and reduced response to TLR-stimulation (111, 112), and episodes of 

severe infection have been reported in patients treated with HDACi (113-117). 

1.6 Sirtuins, the class III HDACs 
Sirtuins are evolutionary conserved from bacteria to humans (118) and are unique because they require 

NAD+ for their deacetylase activity. Sirtuins evolved in prokaryotes and subsequently underwent great 

functional diversification and numerical increase during evolution and growing organism complexity. In 

particular, while the catalytic domain is well conserved, the N-terminus and C-terminus of sirtuins vary 

among species and among different sirtuins of a given organism. This diversification is believed to be the 

basis of functional implications during evolution (119). In mammals there are seven functional SIRT genes, 

all localized on different chromosomes, with different length and complexity ranging from 4 to 16 exons 

(Table 2). SIRT genes encode for proteins with different cellular localizations, targets and functions. 

 
Table 2: Characteristics of human sirtuin genes. 
 
Sirtuin gene Chromosome Start End Length (bp) Nbr of exons 
SIRT1 10q21.3 69,644,427 69,678,147 33721 9 
SIRT2 19q13.2 39,369,195 39,390,502 21308 16 
SIRT3 11p15.5 215,030 236,931 21902 7 
SIRT4 12q24.31 120,740,119 120,751,052 10934 4 
SIRT5 6p23 13,574,792 13,614,790 39999 10 
SIRT6 19p13.3 4,174,106 4,182,596 8491 8 
SIRT7 17q25.3 79,869,815 79,879,199 9385 10 
 

1.6.1 Cellular localization of sirtuins 

Sirtuins are found in three main compartments: cytosol, nucleus and mitochondria (Table 3). SIRT1 carries a 

nuclear export sequence and can shuttle between the nucleus and the cytoplasm. Its subcellular distribution 

is tissue dependent (120-122). SIRT2 is mainly cytoplasmic, but translocates to the nucleus during the cell 

cycle transition from G2 to M phases (123-126). SIRT3, SIRT4 and SIRT5 are mitochondrial sirtuins 

localized mainly in the matrix thanks to mitochondrial targeting sequences (127, 128). SIRT3 localization into 

the nucleus is still under debate and contrasting results have been obtained in human and mouse (129-133). 

SIRT5 exists in two isoforms with slightly different C-terminus. Both possess mitochondrial targeting signals, 

but one of the two isoforms localizes in both the mitochondria and the cytoplasm (134). SIRT5 is additionally 
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found in the nuclear compartment (135). SIRT6 is essentially nuclear (136, 137). Yet, a study has linked 

SIRT6 activity to secretory organelles of the endoplasmic reticulum (138) and another one has localized 

SIRT6 in the nucleolus (139). Finally, SIRT7 is basically a nucleolar protein (140), but a recent work 

suggests its redistribution from the nucleolus to the nucleoplasm under stress conditions (141). 

 

Table 3: Enzymatic activity and sub-cellular localization of mammalian sirtuins. 

Sirtuin Enzymatic activity Sub-cellular localization 
SIRT1  Deacetylase, deformylase Nuclear, cytoplasmic 
SIRT2 Deacetylase, demyristoylation Cytoplasmic, nuclear 
SIRT3 Deacetylase Mitochondrial (nuclear) 
SIRT4 ADP-ribosyltransferase (deacetylase) Mitochondrial 
SIRT5 Deacetylase, demalonylase, desuccinylase, deglutarylase Mitochondrial (cytoplasmic, nuclear) 
SIRT6 ADP-ribosyltransferase, deacylase (deacetylase) Nuclear (cytoplasmic) 
SIRT7 Deacetylase Nucleolar 
Weak enzymatic activities and ambiguous sub-cellular localizations are presented in parenthesis. 

 

1.6.2 Deacetylation activity of sirtuins 

The deacetylase activity of sirtuins was first described in 2000 (142-144). The catalytic core is formed by 250 

amino acids (aa) and two domains: a large conserved Rossman fold-domain that contains the NAD+-binding 

site and a smaller and more variable Zn2+-binding domain (Figure 4). Multiple interactions between the two 

domains create a tunnel that can have different levels of hydrophobicity according to the variability of the 

Zn2+-binding domain. Substrates and NAD+ are placed at the interface of the two domains during the 

catalytic reactions (118, 145, 146). Contrary to classical HDACs, sirtuins do not require zinc for their catalytic 

activity, but to maintain the structure of catalytic core.  
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Figure 4. Crystallographic structure of human SIRT2 in complex with the myristoylated peptide 
H3K9myr. The structure was built from the Protein Data Bank (PDB, # 4Y6L) of the RCSB (Research 
Collaboratory for Structural Bioinformatics; www.rcsb.org/pdb/). Zinc ion is shown as an orange ball. 
 

The deacetylation reaction of sirtuins occurs in subsequent steps. First, sirtuin binds a substrate, then NAD+ 

is cleaved and nicotinamide (NAM) is released. This leads to the formation of the intermediate molecule 1-α-

O-ADP-ribose-peptidylimidate (or O-alkylamidate). Second, the 2′-OH group of the ribose interacts with 

substrate’s imidate, yielding a deacetylated protein and 2’-O-acetyl-ADP-ribose (OAADPr) (147). The 

stoichiometry of the reaction is represented in Figure 5. 

 

Figure 5. Protein deacetylation by sirtuins (SIRTs). Products formed by the reaction are one 
deacetylated protein, one nicotinamide (NAM) and one 2’-O-acetyl-ADP-ribose. 
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1.6.3 Other enzymatic activities of sirtuins 

SIRT4, 6 and 7 are weak deacetylases, and sirtuins catalyze reactions other than deacetylation (Table 3). 

SIRT4 and SIRT6 work as ADP-ribosyltransferases (148, 149). In that case, they catalyse the transfer of an 

ADP-ribose to the target protein instead of transferring an acetyl group from a substrate to an ADP-ribose. 

SIRT6 is probably a stronger deacylase than deacetylase (138). Finally, SIRT1 displays deformylase activity 

(150), SIRT2 demyristoylase activity (151) and SIRT5 demalonylase, desuccinylase and deglutarylase 

activities (152, 153). 

1.6.4 Targets of sirtuins 

The first identified sirtuin, silent information regulator 2 (SIR2), was described as mating-type regulator 1 

(MAR1) in yeast and found necessary for silencing at mating-type loci and telomeres (154, 155). This 

silencing ability was linked to particular lysine residues in the amino-terminal tail of histones H3 and H4 (156-

158). These lysines were acetylated in active chromatin and deacetylated in silenced chromatin (156, 159). 

As overexpression of SIR2 was associated with global deacetylation of yeast histones (159), SIR2 was 

suggested to be an histone deacetylase. Sirtuins were then established as histone deacetylases in multiple 

studies. Yet, similar to what happened for HDAC1-11, many non-histone protein substrates of sirtuins have 

been identified. The first of them was described in 1997 as the tumor suppressor p53 (160). Considering that 

sirtuin deacetylase activity is not linked to a target consensus sequence, high-throughput and/or unbiased 

studies of acetylome in human, mouse and lower organisms have contributed considerably to the discovery 

of sirtuin targets. Some studies are based on the usage of lysine acetylation inhibitors/modulators (161), 

others use sirtuin mutant/knockout (162-166) and others are based on the analysis of the literature (167). 

Among known targets, there are chromatin elements and chromatin modifiers, metabolic enzymes, 

transcription machinery elements, structural cell components and signal transduction actors, and new ones 

are continuously being discovered. The top 12 substrates of human SIRT1-7 are listed In Table 4. 
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Table 4. Top 12 substrates of SIRT1-7 (extracted from (167)). 
Sirtuin Sequence Protein name (Lysine position) Localization 
Sirt1 AEEILEKGLKVRE Ribosomal protein L11 (RPL11) (83;85) Nucleus 
  Cell growth-inhibiting protein 34 (84)  
 DVGRMFKQFNKLT Tripartite motif-containing 28 (TRIM28) (770) Nucleus 
 GGSVLVKRMFRPM Grainyhead-like protein 2 homolog (512) Nucleus 
 GPCKMIKPFFHSL Thioredoxin (39) Nucleus 
 IEIHYAKTAKKMD Condensin complex subunit 2 (78;501;613;626;637) Nucleus 
 ITKAQKKDGKKRK Histone H2B type 1-B (25) Nucleus 
 KKHKKEKKKVKDK Mediator of RNA polymerase II transcription subunit 1 (445) Nucleus 
   cDNA, FLJ94908, similar to Homo sapiens PPAR binding protein (PPARBP) (1489)   
 KRKRSRKESYSVY Histone H2B type 1-C/D/E/F/G/H/K/I/M/N/F-S (35) Nucleus 
   HIST1H2BC protein (35)   
 PKKPRGKMSSYAF Putative high mobility group protein B1-like 1 (12) Nucleus 
   High-mobility group box 1 variant (14)   
 PVGGGQKLLTRKA Nucleolar and coiled-body phosphoprotein 1(NOLC1) (134;415) Nucleus 
 RKARAKKNKAMKS Chromodomain-helicase-DNA-binding protein 1 (1338) Nucleus 
 TEKKAKKAKIKVK Nucleolar protein 58 (461) Nucleus 
Sirt2 ENYRRNKSYSFIA Calcium homeostasis endoplasmic reticulum protein (CHERP), (366;386;912) Cytoplasm 
 FAKNVQKRLNRAQ Amphiphysin (AMPH) (15) Cytoplasmic vesicle 
 GMIFYRKGVKSVD Serine hydroxymethyltransferase (133;271) Cytoplasm 
 IKQRAAKYANSNP Histone acetyltransferase p300 (912) Cytoplasm  
 KISAYMKSSRFLP GSTM1 glutathione S-transferase mu 1 (130;199;218), mu 2 (199;160), mu 4 (199) Cytoplasm 
 KWTNYIKGYQRRW Oxysterol-binding protein 1 (103) Cytoplasm 
 NMKAVLKTSSPSV FH1/FH2 domain-containing protein 3 (FHOD3) (516;531;1199;340) Cytoplasm 
 PACRYRKCLQAGM NR3C1 nuclear receptor subfamily 3, group C, member 1(480;481;83) Cytoplasm 
 RKARAKKNKAMKS SMAD2 SMAD family member 2 (20) Cytoplasm 
 RNALYIKSSKISR Usp14 ubiquitin specific peptidase 14  (313) Cytoplasm 
  Ubiquitin carboxyl-terminal hydrolase (267;278;287;302;313)  
 RTVPQYKYAAGVR PABPC1 poly(A) binding protein, cytoplasmic 1 (21;59;45;165;467;512) Cytoplasm 
  cDNA, highly similar to PABPC1 (467;512;1480)  
 SYVASTKYQKVYG CTNNA2 catenin (cadherin-associated protein), alpha 2  (623;889) Cytoplasm 
   Catenin alpha 2 isoform CTNNA2b (473)   
Sirt3 AFKDKYKQLFLGG SLC25A4 solute carrier family 25 member 4 (96;129) Mitochondrion inner membrane 
 ALNFAFKDKYKQI SLC25A6 solute carrier family 25 member 6 (92) Mitochondrion inner membrane 
   ADP/ATP translocase (44)   
 ANVVHVKSLPGYM Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial (146) Mitochondrion 
 ARDEGGKAFFKGA ADP/ATP translocase 2 (268) Mitochondrion inner membrane 
  SLC25A5 protein (293); cDNA FLJ96310, similar to Homo sapiens SLC25A5 (268)  
 FRDEGGKAFFKGA ADP/ATP translocase 3 (268) Mitochondrion inner membrane 
  ADP,ATP carrier protein, liver isoform T2 variant (293)  
 GAKAFFKGAWSNV ADP/ATP translocase 1 (272) Mitochondrion inner membrane 
 HYDLLEKNINIVR ACO2, aconitase 2, mitochondrial (50) Mitochondrion 
 RLLGWKKSAGGSG cDNA FLJ51705, similar to Aconitate hydratase, mitochondrial (EC 4.2.1.3) (50)  
 IENAYKKTFLPEM NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 10, 42kDa (8;14;243) Mitochondrion matrix 
  NDA1 internal alternative NAD(P)H-ubiquinone oxidoreductase A1 (242)  
 KLAQQIKQEVRQE Methylenetetrahydrofolate dehydrogenase 2, methenyltetrahydrofolate cyclohydrolase (50) Mitochondrion 
 KNPGYIKLRKIRA Prohibitin-2 (250); PNAS-141 (PHB2 prohibitin 2), partial (20) Mitochondrion inner membrane 
 KQKEITKAIKRAQ 28S ribosomal protein S18c, mitochondrial (109;81;80 ) Mitochondrion 
 QTSPNPKYRGFFH Tricarboxylate transport protein, mitochondrial (160) Mitochondrion inner membrane 
Sirt4 AAWEAGKFGNEVI AACAT1 acetyl-CoA acetyltransferase 1 (230) Mitochondrion 
 APVLFNKEMIESM NAD(P) transhydrogenase, mitochondrial (331;200) Mitochondrion inner membrane 
 DDPEVQKDIKNVP Stress-70 protein, mitochondrial (135;66) Mitochondrion 
   HSPA9, partial [synthetic construct] (137)   
 EKHFFHKVSERLS Mitofusin-2 (243) Mitochondrion outer membrane 
   cDNA FLJ57997, similar to Transmembrane GTPase MFN2 (EC 3.6.5.-) (107)   
 ELNTKVKEKFQQL Vesicle transport protein SEC20  (48) Mitochondrion 
 GCRHFSKTNELLQ Uracil-DNA glycosylase (295;286); cDNA FLJ54140, highly similar to UNG (252) Mitochondrion 
 IHDTETKMEEFKD Stress-70 protein, mitochondrial (595);HSPA9 protein (121;321;597) Mitochondrion 
 QAEMDLKRLRDPL Calcium uniporter protein, mitochondrial (332) Mitochondrion inner membrane 
 RSKHMPKSTIETA Translational activator of mitochondrially encoded cytochrome c oxidase I (119) Mitochondrion 
 RSTMNFKIGGVTE Fumarate hydratase, mitochondrial (80) Mitochondrion 
 TYQHPPKDSSGQH Aconitate hydratase mitochondrial (ACO2) precursor (549); ACO2 (574) Mitochondrion 
  YSNNITKLLKAIS NAD(P) transhydrogenase, mitochondrial (394;263) Mitochondrion inner membrane 
Sirt5 GCRHFSKTNELLQ Uracil-DNA glycosylase (295;286) Mitochondrion 
 KQSGFGKDLGEEA ALDH1L2 aldehyde dehydrogenase 1 family, member L2  (903) Mitochondrion 
 LAYGLDKSEDKVI Stress-70 protein, mitochondrial (234), HSPA9 protein (236) Mitochondrion 
  Nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) (102)  
 NDVGIQKDGAPKA ETFDH electron-transferring-flavoprotein dehydrogenase (58;176;223) Mitochondrion inner membrane 
  ACADM acyl-CoA dehydrogenase, C-4 to C-12 straight chain (223)  
 PANEDQKIGIEII HSPD1 heat shock 60kDa protein 1 (chaperonin) (462); Mitochondrion matrix 
 PGSPLDKLVSSTS HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2 (84;437) Mitochondrion 
 EKHFFHKVSERLS cDNA, similar to HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2 (203; 213)  
 QEGVDPKKLDSLT HADHA, alpha subunit (55;569) Mitochondrion 
  Epididymis tissue sperm binding protein Li 14m (569)  
 RAIQSLKKIVNSA ATP5L ATP synthase, H+ transporting, mitochondrial Fo complex, subunit G  (54) Mitochondrion 
 RSDPDPKAPANKA Medium-chain specific acyl-CoA dehydrogenase, mitochondrial (23;176;212) Mitochondrion matrix 
  ACADM acyl-CoA dehydrogenase, C-4 to C-12 straight chain (245)  
 TIRADGKISEQSD ATP synthase, H+ transporting, mitochondrial F1 complex, a-subunit 1 (7;51;509) Mitochondrion inner membrane 
 TYCDLGKAAKDVF Voltage-dependent anion-selective channel protein 3 (12) Mitochondrion outer membrane 
Sirt6 AATAAEKYKHRGE MECP2 methyl CpG binding protein 2 (33;449) Nucleus 
 AKVFIDKQTNLSK CUGBP (CUG triplet repeat, RNA binding protein), Elav-like family member 1 (436) Nucleus 
   CELF2 CUGBP, Elav-like family member 2 (353;448;458;471)   
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 GPSFPLKGITEQQ X-ray repair cross-complementing protein 5 precursor (195) Nucleus 
  Putative uncharacterized protein XRCC5 (31)  
 IIIHSLKKCDISL X-ray repair cross-complementing protein 5 (155) Nucleus 
 KLIQILKGQSLLQ Flap endonuclease GEN homolog 1 (230) Nucleus 
 LKALQEKVEIKQL X-ray repair cross-complementing protein 5 (665) Nucleus 
 MKEEYDKIQIADL Pyrin and HIN domain-containing protein 1 (45) Nucleus 
 QKNSNSKNDRRNR Chromatin modification-related protein MEAF6 (74;52) Nucleus 
 RLEHKLKEEEESL Nesprin-1 (75;550;573;791;1340;3342;3499) Nucleus outer membrane 
  SYNE1 spectrin repeat containing, nuclear envelope 1 (243;933;1918;2603)  
  Similar to spectrin-like protein of the nuclear envelope and Golgi; Syne-1 (232)  
 RRGRRRKYNPTRN Methyl-CpG-binding domain protein 6 (956;572) Nucleus 
 SAEGAAKEEPKRR HMGN1 high mobility group nucleosome binding domain 1 (14;30) Nucleus 
  YVAVMLKVADHSG COMMD6 COMM domain containing 6 (48;63) Nucleus 
Sirt7 APPSTRKDYPAAK Myc proto-oncogene protein (317;331) Nucleus 
 EWAYGKKGQPDAK Peptidyl-prolyl cis-trans isomerase FKBP3(201) Nucleus 
 IVKMLEKYLKGED AKAP8 A kinase (PRKA) anchor protein 8 (538) Nucleus matrix 
 KRKRSRKESYSVY Histone H2B type 1-C/D/E/F/G/H/I/K/L/M/N (35), Histone H2B type 2-F/S (35) Nucleus 
 LGMNSRKPDLRVV MEF2A myocyte enhancer factor 2A (270;200;268;189) Nucleus 
 MMENGIKPVYVFD FEN1 flap structure-specific endonuclease 1 (80;44) Nucleus 
 MPKPRLKATVTPS NUCKS1 nuclear casein kinase and cyclin-dependent kinase substrate 1 (175) Nucleus 
 MSSRHFKPEIRVT PWP2 periodic tryptophan protein homolog (700) Nucleus 
 NKNMQAKSPPPMN MADS box transcription enhancer factor 2, polypeptide C (191;239;237;257) Nucleus 
 ZMPDPAKSAPAPK HIST1H2BH histone cluster 1, H2bh (6), HIST1H2BO histone cluster 1, H2bo (6) Nucleus 
   HIST2H2BF histone cluster 2, H2bf  (6)   
 ZMPEPAKSAPAPK Histone H2B type 1-C/E/F/G/I (6), Histone H2B type F-S-like (6) Nucleus 
   HIST1H2BJ histone cluster 1, H2bj (6), HIST1H2BK histone cluster 1, H2bk (6)   
  HIST2H2BE histone cluster 2, H2be (6), HIST1H2BC protein (6)  
  ZMPEPVKSAPVPK HIST1H2BM histone cluster 1, H2bm (6) Nucleus 

 

Interestingly, several sirtuins have common targets that might constitute a sign of functional cooperation. 

Moreover, sirtuins sharing the same subcellular localization have specific, even isoform-specific, targets. 

Considering the number and diversity of proteins targeted by sirtuins, it is not surprising that these enzymes 

are involved in multiple physiological and pathophysiological processes. 

1.6.5 Sirtuin modulators 

Numerous studies in the field of sirtuins use pharmacological modulators of sirtuin activity, with the great 

majority of them directed at SIRT1. Therefore, before addressing the role of sirtuins in physiology and 

pathophysiology, we will first discuss the discovery and development of sirtuin activators and inhibitors. 

Because of a link made between sirtuins, lifespan and age-related diseases (detailed in sections 1.6.6-

1.6.8), there was a huge interest in developing sirtuin modulators (168, 169). That field of R&D was strongly 

boosted by the hypothesis that calorie restriction (CR), the only non-genetic condition known to improve 

lifespan, increases lifespan through sirtuins (96, 109, 170, 171). 

The best known molecule able to activate SIRT1 is the polyphenol resveratrol (172-174). A number of other 

SIRT1 activators (also called STACs for SIRT1-activating compounds) structurally non-related to resveratrol 

have been described (175). Although the real impact of sirtuins on lifespan is source of controversy (see 

section 1.6.6) and the specificity of resveratrol for SIRT1 is questionable, STACs have been shown to mimic 

some of the effects of CR and to improve age related pathologies. Many studies are currently assessing the 
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therapeutical potential of STACs in pathological conditions. Resveratrol is currently under clinical trial for 

conditions such as aging, memory, type 2 diabetes, Huntington disease, chronic obstructive disease, and 

coronary artery disease in patients with metabolic disease (https://clinicaltrials.gov).  

Sirtris Pharmaceuticals Inc. is a biotechnology company founded in 2004 by David Sinclair from Harvard 

University (Cambridge, MA). David Sinclair, at that time in the laboratory of Leonard Guarente, published 

seminal discoveries suggesting that the yeast Sir2 gene increases lifespan (168). Sirtris was created with the 

aim to develop STACs for treating type 2 diabetes, cancer, and other diseases. Sirtris has been purchased in 

2008 by GlaxoSmithKline that pursues the development of STACs, with lead candidates SRT2104, SRT1720 

and SRT2379. SRT1720 and SRT2104 were recently reported to extend the lifespan of mice (176). 

Interestingly, the group of van der Poll (AMC, Amsterdam) recently reported that oral administration of 

SIRT2104 reduced LPS-induced blood levels of IL-6, IL-8 and C-reactive protein, and attenuated coagulation 

activation in healthy volunteers. TNF production and activation of neutrophils, vascular endothelium and 

fibrinolytic system, as well as total leukocyte counts and leukocyte transcriptome (177) were not affected by 

SIRT2104. 

Table 5. Selection of commercially available sirtuin inhibitors. 

Inhibitor IC50 (µM) or inhibition (%) 
 SIRT1 SIRT2 SIRT3 SIRT5 SIRT6 
AGK2 >30 3.5 >50   

AK-7 >50 15.05.2024 >50   

Cambinol 56 59  42% at 300 µM 0% up to 250 µM 
CHIC-35 0.06-0.12 2.8 0%   

EX-527 0.098-1 20-33 49 0% 56% at 200 µM 
Ginkgolic acids 119-126 80-141    

Inauhzin 0.7-2 0% 0%   

Nicotinamide 50-100 1.2-100 30-43 1600 2200 
Salermide 76 25-45 >50   

Sirtinol 37.6-131 38-58 >50  0% 
Splitomicin HR73 5 0% 0%   

Suramin 0.297 1.15 0% 22 0% 
Tenovin-1 70-90% at 25 µM 10    

Tenovin 6 21 10 67   
Urushiols 52-118 55-143    

 

Since sirtuins have a detrimental role in several pathologies (see sections 1.6.7-1.6.9), sirtuin inhibitors 

have been developed as promising drugs for cancer and neurodegenerative diseases (178). The most well 

described inhibitors are listed in Table 5. They mainly target SIRT1 and SIRT2, although it should be noted 

that their specificity towards the entire panel of sirtuins is rarely tested. Since we have been working with 

https://clinicaltrials.gov/
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sirtuin inhibitors (see sections 3.4-3.5), the chemical structure of the most-relevant ones for our studies is 

displayed in Figure 6. These include cambinol and sirtinol that are SIRT1/SIRT2 inhibitors with IC50 of 

around 50-60 µM and 30-130 µM, respectively. EX-527 and CHIC-35 are SIRT1 inhibitors at concentration 

lower than 2 µM, while AGK2 and AK-7 are SIRT2 inhibitors with IC50 of 3.5 µM and 15-24 µM, respectively. 

Cambinol is a chemically stable and cell permeable β-naphtol related to splitomicin. It works through 

substrate competition, it has no activity on classical Zn-dependent HDACs and it displays low cell toxicity 

(179). Sirtinol was identified through a high-throughput yeast cell-based phenotypic screening. Similarly to 

cambinol, sirtinol is a cell permeable molecule and it works through substrate competition (180). EX-527 is a 

cell permeable and stable indole. It was identified through high-throughput screening using human SIRT1 

produced in bacteria. It binds SIRT1 after the release of nicotinamide and prevents the release of 

deacetylated products (181, 182). CHIC-35 is an EX-527 analog. CHIC-35 binds the catalytic cleft of SIRT1, 

displacing NAD+ and modifying SIRT1 into a conformational state that sterically prevents the binding of 

substrates. (183) AGK2 was identified thanks to screening through an in vitro fluorimetric assay of structural 

analogs of known SIRT2 inhibitors. AGK2 acts by binding to the NAD+ pocket of SIRT2 (184). Finally, AK-7 

was the first identified brain-permeable SIRT2 inhibitor. It was discovered by in silico screening of compound 

libraries and deacetylation assays (185).  

 

Figure 6. Chemical structure of selected SIRT1 and SIRT2 inhibitors. 
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1.6.6 Sirtuins and lifespan 

The origin of the interest in sirtuins lies in the hypothesis that they might control lifespan. In 1999, the group 

of Guarente reported that the introduction of an extra copy of the yeast Sir2 gene in the genome of 

Saccharomyces cerevisiae (S. cerevisiae) increases lifespan, whereas an opposite phenotype was observed 

upon deletion of the Sir2 gene (168).  

In yeast, lifespan is generally defined based on the maximal number of cells that can bud from a parental cell 

before its death (186). Indeed, cell division happens in an unequal mode, and one of the factors limiting 

replicative lifespan is the accumulation of ribosomal DNA (rDNA) circles in budding cells (187). This 

accumulation results from both asymmetric cell division and from the ability of rDNA to self replicate (187). 

Since deletion of Sir2 increases rDNA recombination and extrachromosomal rDNA circles and reduces 

lifespan (168, 188, 189), one of the mechanisms underlying the increased lifespan in yeast with a duplicate 

Sir2 gene was proposed to be a more efficient suppression of the formation of the rDNA circles in the 

genome. Subsequently, an extra copy of Sir2 was shown to improve lifespan in worms and in fruit flies (189, 

190). Therefore, the accumulation of rDNA could not be an exhaustive explanation of the lifespan extension.  

Calorie restriction (CR) has been long known to improve lifespan in several species, including yeast, worms, 

flies, fish and rodents. The first published study, “The Effect of Retarded Growth upon the Length of Life 

Span and upon the Ultimate Body Size”, is from 1935 by McCay et al. and reports that CR extends mean 

and maximal lifespan of male rats when compared with ad libitum fed animals (191) (Figure 7). 

 

 

 
Figure 7. Impact of calorie restriction (CR) on rat 
lifespan. Survival of male rats fed ad libitum 
(circles) or under CR without malnutrition starting at 
weaning (squares) or 2-weeks post-weaning 
(triangles). The graph is from McDonald and 
Ramsey (in “Honoring Clive McCay and 75 years of 
calorie restriction research”; (192)) that reanalyzed 
the original data from McCay, Crowell and Maynard 
(191). Of note, the ability of CR to extend lifespan 
was not observed using female rats. 
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The mechanism by which CR mediates its beneficial effects remains unclear, but seems linked to reduced 

oxidative stress and metabolism. Indeed, reducing glucose concentration in yeast growth media increases 

replicative lifespan (193). Upon Sir2 gene deletion, CR fails to increase lifespan (193, 194). Following these 

observations, SIR2 was believed to mediate the increased longevity conferred by CR. 

Two models on how CR increases SIR2 activity in yeast have been proposed. In the first model, CR induces 

a metabolic shift from fermentation to respiration provoking an increase of NAD+ levels required for sirtuin 

activity (194). In the second model, CR up-regulates the expression of PNC1, which encodes for a 

nicotinamidase, resulting in a decreased concentration of nicotinamide (NAM) that, as a product of 

deacetylase reaction, acts as a sirtuin inhibitor (195). Wether the effect of CR on longevity in yeast is 

mediated by sirtuins is still debated (196-198). A more recent study failed to reproduce the beneficial effects 

of Sir2 overexpression on the lifespan in Caenorhabditis elegans (C. elegans) and Drosophila melanogaster 

(D. melanogaster) (199), and additional debate arises from two contradicting studies assessing the impact of 

CR on the lifespan of rhesus monkeys (200, 201). The reasons of these discrepant observations are not 

clear, but may at least in part result from differences in genetic background and housing conditions of the 

model organisms.  

The findings that sirtuins might promote longevity generated a considerable interest in the development of 

sirtuin modulators, leading to the identification by high-throughput screening of the SIRT1 activator 

resveratrol, a plant polyphenol (202). Resveratrol was known to exert anticancer, cardioprotective, anti-

inflammatory, antidiabetic and neuroprotective effects (172). Yet, the connection between the 

pharmacological effects of resveratrol and SIRT1 activation is unclear. Whether resveratrol works exclusively 

or even predominantly through regulation of sirtuin activity remains questionable. Additional screenings 

identified small molecule activators of SIRT1 (STACs) that improved insulin sensitivity, lowered plasma 

glucose and increased mitochondrial biogenesis in genetically and diet-induced obese rodents (203). Some 

of these molecules are currently being evaluated in clinical trials in patients with metabolic diseases.  

In mammals the contribution of the sirtuins to lifespan is unclear (204). Most studies concentrate on SIRT1 

and to a lesser extent on SIRT3, SIRT5 and SIRT6. Mice overexpressing SIRT1 have lower DNA damage 

and improved general health status, with reduced incidence of spontaneous carcinomas and sarcoma (205). 

SIRT1 transgenic mice also display a CR-like phenotype characterized by reduced body weight, fat mass 

and blood cholesterol levels (206). Conversely, SIRT1 knockdown causes perinatal lethality (207-209). In 

http://www.sciencedirect.com/science/article/pii/S1568163707000190#200003714
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inbred 129/Sv mice, embryo development is delayed, newborns are smaller and the majority dies during the 

early postnatal period (209). In an outbred background, SIRT1 knockdown mice survive to adulthood, but are 

sterile and have heart and eye abnormalities (208, 209). There is no evidence for a contribution of SIRT3 in 

mouse lifespan. Although genetic studies identified single nucleotide polymorphisms (SNPs) in SIRT3 

associated with increased survival, this has not been reproduced in other studies (210-214). Male, but not 

female, transgenic mice overexpressing SIRT6 have a modest but significantly longer lifespan than wild-type 

mice (215). Reversely, germline deletion of SIRT6 in inbred 129/Sv mice provokes progressive 

hypoglycemia, genomic instability and degenerative phenotype from the third week of life, all of which 

contributing to an early death (136). Finally, associations between lifespan and SIRT6 and SIRT5 SNPs 

were reported in a cohort of elderlies from Iowa (214).  

Although the concept that sirtuins are sufficient and necessary regulators of longevity continues to generate 

controversy (204), it is commonly accepted that sirtuins play a role in pathways critical in aging (216). 

Indeed, sirtuins have been linked to several age related diseases among which neurodegenerative 

(Alzheimer, Huntington’s and Parkison’s diseases), metabolic, autoimmune and oncologic diseases (217).  

1.6.7 Sirtuins and neurodegenerative diseases  

Considering that sirtuins are connected to lifespan and that neurodegenerative diseases primarily affect the 

elderly population with massively increasing health costs, the role and potential target value of sirtuins has 

sparked lots of interest (218). 

Alzheimer’s disease  

SIRT1 is expressed in different areas of the central nervous system in humans and mice. SIRT1 expression 

decreases along with disease progression in hippocampal samples of Alzheimer’s patients (219). 

Overexpression and knockdown of SIRT1 and usage of drugs directed at SIRT1 support a protective role for 

SIRT1 from Alzheimer’s disease by reducing two classical hallmarks: the amyloid plaques and the 

neurofibrillary tangles of TAU protein (220-229). 

The direct delivery of a SIRT2 inhibitor (AK-1) to the hippocampus of Alzheimer’s disease mice (rTg4510 

mice which express a mutant form of the TAU protein) reduces neuronal loss (230). Whereas independent 

cohort studies using patient of different ethnicities led to inconsistent associations of SIRT2 SNPs and risk of 
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Alzheimer’s disease (231-233), a recent meta-analysis revealed an association between a SIRT2 SNP 

(rs10410544) and disease development (171). 

Alteration of SIRT3 expression in the cerebral cortex has been observed in two mouse models of 

Alzheimer’s disease, although with discordant outcome (234, 235). Additionally, one study reported that 

SIRT3 is up-regulated in the temporal neocortex of Alzheimer’s patients (235) while another one reported 

that SIRT3 expression in the gray matter (GM) inversely correlates with disease progression (219). Finally, 

SIRT5 expression was reported to increase during Alzheimer’s disease (219). 

Huntington's disease 

In two mouse models of Huntington's disease, SIRT1 overexpression promotes the production of 

neurotrophic factors, protects from neurotoxicity, limits brain atrophy, reduces metabolic abnormalities, and 

improves motor functions and survival (236, 237). Conversely, RNA silencing of SIRT1 exacerbates neural 

toxicity (236) and brain-specific SIRT1 knockdown aggravates pathology (237). 

In sharp contrast with the above studies, inhibition of SIRT1 with selisistat (6-chloro-2,3,4,9-tetrahydro-1H-

carbazole-1-carboxamide), a novel SIRT1 inhibitor, improves Huntington's disease pathology caused by 

expression of the mutant form of human huntingtin in D. melanogaster, mammalian cells and mice (238). In 

primary neurons and in D. melanogaster and C. elegans models of Huntington's disease, genetic ablation of 

SIRT2 and pharmacological inhibition of SIRT2 with AGK2 and AK-1 reduce sterol biosynthesis and confer 

neuroprotection (239). In line with these results, in acute and chronic mouse models of Huntington's disease, 

treatment with the SIRT2 inhibitor AK-7 reduces aggregation of mutant huntingtin and brain atrophy, 

improves motor function and extends survival (240). Finally, immortalized striatal precursor cells expressing 

a mutated form of protein Huntingtin display reduced expression of SIRT3 (241).  

Parkinson’s disease 

SIRT1 activation by resveratrol has been suggested to protect from Parkinson’s disease (242). 

Mechanistically, SIRT1 deacetylates heat shock factor 1 (HSF-1), that increases the transcription of 

molecular chaperones and peroxisome proliferator-activated receptor (PPAR)γ coactivator-1α (PGC-1α) that 

protect dopaminergic neurons from cell degeneration (243). A genetic study, analyzing the promoter region 

of the SIRT1 gene in 97 sporadic Parkinson’s disease patients and 127 matched controls, identified three 

heterozygous variants (g.69644133C>G, g.69644213G>A and g.69644351G>A) in Parkinson’s disease 

patients. It was proposed that these variants alter SIRT1 expression and impact on disease development 
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(244). No follow-up or confirmation study has been published. SIRT2 inhibition provides neuroprotection in 

vitro and in vivo in mouse and D. melanogaster models of Parkinson's disease (184, 245, 246). Finally, 

SIRT5 knockdown exacerbates motor deficits in a Parkinson’s disease mouse model (247). 

1.6.8 Sirtuins and cancer 

Expression of sirtuins is altered in many types of cancer suggesting that these enzymes could play a role in 

tumorigenesis (248). Yet, a complex picture has arisen from studies in the field showing that SIRT2 functions 

as a tumor suppressor, SIRT5 and SIRT7 as tumor promoters, and SIRT1, SIRT3, SIRT4 and SIRT6 as 

either tumor suppressors or oncogenic factors depending on the cellular context and study conditions (249). 

We will here briefly review some of the main observations linking sirtuins with cancer.  

SIRT1 

As extensively reviewed by Chalkiadaki and Guarente (249), SIRT1 displays both tumor suppressor and 

oncogenic activities. SIRT1 deacetylates and downregulates the activity of the tumor suppressors p53 and 

E2F1. SIRT1 expression is increased in mouse lymphoma, sarcoma and lung and prostate cancers and in 

human leukemia and liver, colon and thyroid cancers. Tumor suppressors down-regulate SIRT1 expression 

and activity while oncogenes increase SIRT1 expression. In contradiction with these findings, SIRT1 

expression is down-regulated in a number of human cancers (colon, prostate, bladder, breast, oral and brain 

cancer). SIRT1 overexpression protects from spontaneous tumor development (liver cancer, carcinoma and 

sarcoma) in mice. Treatment of mice with the SIRT1 activator SRT1720 inhibits growth and promotes death 

of transplanted human MCF-7 breast cancer cells. These conflicting observations may, at least partially, 

result from the different cancer types studied and depend on the experimental approaches used 

(inhibitors/activators vs transgenic/knockout cells and mice), and could also highlight different behaviors of 

SIRT1 depending on the overall context (stress, metabolic and inflammatory status). 

SIRT2 

SIRT2 acts as a tumor suppressor gene and has an essential role in maintaining the integrity of mitosis 

through multiple mechanisms (249-251). First, during mitosis SIRT2 shuttles from the cytoplasm to the 

nucleus where it directly deacetylates H4K16 (252) and indirectly promotes the monomethylation of H4K20 

(253) contributing to chromatin condensation and reorganization. Second, SIRT2 regulates the activity of 

anaphase-promoting complex/cyclosome (necessary for mitotic exit) (254). Third, SIRT2 promotes genomic 
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fidelity by stabilizing the multidomain protein kinase BUBR1 of the spindle assembly checkpoint and by 

preventing premature separation of sister chromatids during the G2-M transition (255). Accordingly, SIRT2 

levels are decreased in human breast, prostate and renal cancer, and liver and glioma tumors (248, 254). 

Moreover, SIRT2 knockout mice display genomic instability (253) and develop tumors in the mammary 

glands, liver, lung, pancreas, stomach, duodenum and prostate (254). Finally, in a model of chemically 

induced skin cancer, SIRT2 knockout mice develop more and larger aggressive tumors responsible for 

increased mortality rate (254). 

SIRT3-7 

SIRT3 knockout cells and mice are more prone to tumorigenesis (254) and human tumors are characterized 

by deletion or reduction of SIRT3 expression (254, 256). Nevertheless, there is also evidence for an 

oncologic role of SIRT3 in brain and oral tumors (257-259), and pharmacological inhibition of SIRT3 has anti-

tumorigenic properties in vitro (260). SIRT4 knockout mice develop spontaneously lung tumors and 

lymphoma (261, 262). In line with that, SIRT4 expression is decreased in human lung, stomach and bladder 

tumors and in leukemia (249). Nonetheless, it has recently been suggested that SIRT4 promotes 

tumorigenesis in vitro (263). Little is known about the impact of SIRT5 on cancer although there is evidence 

for an oncogene function for SIRT5 (264). SIRT6 expression is reduced or absent in 20% of all cancers, but 

high expression is also associated with resistance to therapy and increased angiogenesis and metastasis 

(249). SIRT7 deacetylates H3K18 provoking cellular growth and loss of contact inhibition and shRNA-

mediated SIRT7 depletion reverses cancer cell phenotypes and inhibits tumor cell growth in vivo (265). 

Moreover, SIRT7 is overexpressed in many human cancer types (249). 

1.6.9 Sirtuins and immune functions 

The impact of sirtuins on immune function is fragmentary. Most of the studies in the field concern SIRT1 and 

SIRT6 with recent evidence about SIRT2. As for data obtained in the fields of neurodegenerative disease 

and cancer (see sections 1.6.7.-1.6.8), contradictory findings have been reported, with both proinflammatory 

and anti-inflammatory activities ascribed to SIRT1, SIRT6 and SIRT2. The reasons why proinflammatory and 

anti-inflammatory properties have been observed are not clear. Whereas different sirtuins may have 

opposing properties, additional differences in cell types, human versus murine system, stimuli, usage of 

inhibitory drugs or si/shRNA and knockouts can partially explain controversial results. Moreover, sirtuins 

modulate circadian clock and are subjected themselves to circadian oscillation (266). Therefore, also 
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experimental settings, including in vivo, might determine the variability of results. As we will discuss later 

(see section 1.6.10), sirtuins are linked to the energetic status of the cell and, as a consequence, it is 

possible that qualitative and quantitative differences in caloric input might lead to different observations. 

Finally, it is now clearly established that the microbiota generates numerous metabolites that impact directly 

on immune responses (see also section 3.2), and therefore differences in microbiota composition might 

affect outcome in in vivo models. Despite all these incertitude, I will summarize in the next sections the 

principal observations linking sirtuins and immune responses. 

SIRT1 

Evidences for anti-inflammatory activities of SIRT1. Numerous studies have shown that SIRT1 down-

regulates the activitiy of NF-κB and AP-1 that are central transcription factors regulating immune gene 

expression and inflammation (Galli, Van Gool et al. 2011, Kong, McBurney et al. 2012). Knockdown of 

SIRT1 in mouse macrophages increases I-κB degradation, NF-κB activation and TNF production in response 

to LPS stimulation (267). Accordingly, bone marrow-derived macrophages (BMDMs) from myeloid-specific 

SIRT1 knockout mice display increased NF-κB acetylation and NF-κB-mediated proinflammatory gene 

expression (268). Of note, myeloid deletion of SIRT1 increases proinflammatory gene expression in M1, but 

not in M2 macrophages (269). In line with these results, SIRT1 knockdown is associated with severe renal 

morphological and functional damages linked to an increased infiltration of neutrophils and production of 

proinflammatory cytokines in a model of endotoxemia (270). Moreover, in a mouse model of sepsis following 

cecal ligation and puncture, SIRT1 knockdown increases Iκ-B phosphorylation and degradation, NF-κB 

activation, inflammation and injury in lungs (271). SIRT1 expression and activity in the lung are decreased 

after exposure to cigarette smoke in rats and in patients with chronic obstructive pulmonary disease (COPD) 

(272, 273). Those are associated with increased acetylation and activity of NF-κB and release of 

proinflammatory mediators. Moreover, exposure of SIRT1 deficient mice to cigarette smoke induces higher 

oxidative stress and reduces antioxidant enzymes, whereas oxidative stress is attenuated in SIRT1 

transgenic mice (274). SIRT1 has also been investigated in the context of self-tolerance and autoimmunity. 

Deletion of SIRT1 in DCs increases their ability to induce Th1 and to down-regulate Foxp3+ Treg cell 

responses (275). SIRT1 deacetylates and promotes the function of the transcription regulator Aire that allows 

medullary thymic epithelial cells to express self-antigens during negative selection in the thymus (276). 

Moreover, SIRT1 favors the peripheral anergy of autoreactive T cells that escape negative thymic selection 

(276). Thus, SIRT1 could promote self-tolerance and prevent autoimmunity. In fact, SIRT1 myeloid deletion 
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exacerbates arthritis symptoms, at least partly because of the hyperacetylation and activation of NF-κB in 

macrophages (170). Furthermore, SIRT1 knockout mice are more susceptible to EAE (277).  

Evidences for proinflammatory activities of SIRT1. In sharp contrast with the above-mentioned studies, 

SIRT1 has been associated with proinflammatory conditions. SIRT1 has been linked to the pathogenesis of 

lupus (278), allograft rejection (deletion of SIRT1 enhances Treg suppressive activity) (279), EAE (SIRT1 

deacetylates RAR-related orphan receptor gamma/RORγ and promotes Th17 differentiation and SIRT1 

knockout mice are protected from EAE) (280), arthritis (SIRT1 is highly expressed in rheumatoid arthritis 

synovial tissues where it positively affects the production of proinflammatory mediators) (281), allergic airway 

inflammation (SIRT1 deletion in DCs increases PPAR-γ activity, decreases DCs migratory activity in the lung 

and down-regulates Th2 pathogenic responses) (282) and colitis (SIRT1 knockout mice have reduced 

proinflammatory gene expression and develop milder colitis) (283). SIRT1 is also important for antiviral 

immune response (284). Finally, SIRT1 promotes HIF-2α activation during hypoxia (285) and authophagy 

(286). 

Overall, on the one hand, SIRT1 has been shown to regulate innate immune responses and to shape self-

tolerance and adaptive immunity. On the other hand, SIRT1 was reported to promote inflammatory and 

autoimmune conditions. 

SIRT6 

Evidences for anti-inflammatory activities of SIRT6. SIRT6 shapes the development of DCs.  SIRT6 

knockout bone marrow-derived DCs (BMDCs) produce increased TNF levels upon TLR stimulation when 

compared with wild-type BMDCs (293). In line with this finding, overexpression of SIRT6 suppresses the 

expression of NF-κB dependent genes, reduces inflammation and protects mice from chondrocyte 

degeneration in models of osteoarthritis (294) and arthritis (295). Similarly, SIRT6-overexpressing 

cardiomyocytes display reduced NF-κB activation and ROS production and increased survival during 

hypoxia (296), while SIRT6 knockout mice are more sensitive to ischemia/reperfusion injury (297). SIRT6 

down-regulation favors the formation of atherosclerotic plaques in diabetic patients (298). Finally, SIRT6 

promotes autophagy in human bronchial epithelial cells and probably protects from COPD (299). 

Evidences for proinflammatory activities of SIRT6. SIRT6 has an important role in mounting proinflammatory 

responses. In a seminal paper, Van Gool et al. reported that nicotinamide posphoribosiltransferase (NAMPT) 

inhibitors impair TNF synthesis by macrophages and DCs and identified SIRT6 as the sirtuin that controls 
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TNF production by acting at a post-transcriptional level (287). Moreover, SIRT6 regulates TNF secretion 

through its deacetylation that probably occurs in the endoplasmic reticulum during the secretion process 

(138). Additionally, SIRT6 increases nuclear levels of NFAT (288), and, reducing the bioavailability of NAD+ 

through inhibition or deletion of the NAMPT, impairs the production of TNF and IFNγ by phytohemagglutinin-

stimulated peripheral blood lymphocytes, and of TNF in mice challenged with LPS (289, 290). 

Overexpression of SIRT6 sensitizes neurons to oxidative stress-induced mortality (291) and promotes insulin 

sensitivity during high caloric diet (292). 

SIRT2 

Evidences for anti-inflammatory activities of SIRT2. A first evidence of the involvement of SIRT2 in immune 

responses date back to 2010, when Rothgiesser et al. reported that SIRT2 decreases NF-κB activity in 

mouse embryonic fibroblasts (MEFs). Mechanistically, SIRT2 binds and deacetylates NF-κB p65 subunit at 

lysine 310 (K310). Upon TNF stimulation, p65/SIRT2 complex formation is enhanced, preventing NF-κB from 

promoting the transcription of a subset of target genes (300). SIRT2 was then shown to have anti-

inflammatory properties and to be protective in models of: 

 Collagen-induced arthritis (CIA). SIRT2 knockout mice develop more severe swelling, erythema, 

articular destruction, joint rigidity and displacement in the hind paws ankles and have higher levels of 

proinflammatory cytokines in both serum and joint tissue due to higher levels of acetylated p65 

(301). 

 Chemically induced colitis. SIRT2 knockout mice have more severe intestinal inflammation and 

weight loss (302). 

 LPS-induced renal injury. SIRT2 knockdown increases the acetylation of MAPK phosphatase-1 

(MKP-1) suppressing MAPK activation and inhibits p65 binding to the promoters of chemokine 

receptors CXCL2 (targeting neutrophils) and CCL2 (targeting monocytes and macrophages). As a 

consequence, SIRT2 knockout mice express reduced levels of CXCL2 and CCL2 in mouse proximal 

tubular epithelia and display less neutrophil and macrophage infiltration, and decreased TNF, IL1β 

and IL-6 expression in the kidney (303).  

 LPS-induced inflammation in the central nervous system. SIRT2 is expressed by murine microglia 

cells and is downregulated upon intracortical injection of LPS. In SIRT2 knockout mice, cortical 

microglia cells express increased mRNA levels of proinflammatory cytokines (304). 
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 Brain injury. In a model of traumatic brain injury, administration of AK-7 increases p65 K310 

acetylation, NF-κB nuclear translocation, microglial activation and production of proinflammatory 

mediators and worsens edema (305). 

Evidences for proinflammatory activities or weak/no immunomodulatory activity, of SIRT2. SIRT2 knockout 

BMDMs stimulated with LPS display lower NF-κB nuclear translocation, express less iNOS and produce 

lower levels of NO and ROS than wild-type BMDMs (306). Much interestingly, SIRT2 was reported to favor 

the pathogenesis of L. monocytogenes infection. L. monocytogenes exploits host SIRT2 to dampen the 

immune response of infected cells. The listerial virulence factor InlB induces the nuclear translocation of 

SIRT2 that deacetylates H3K18, thus repressing the expression of DNA binding proteins, transcription 

factors and immune response elements (307). Finally, myeloid conditional SIRT2 knockout mice challenged 

with Mycobacterium tuberculosis (M. tuberculosis), delivered through aerosol, have slightly higher bacterial 

counts at the early stage of the disease, but no alteration of immune cell proportion and cytokine production 

in lungs. The initial mycobacterial burden in lungs is lost at later stages of the disease suggesting that SIRT2 

ablation does not really affect M. tuberculosis infection process (308).  

1.6.10 Sirtuins, metabolism and immunometabolism 

Sirtuin activity is intrinsically linked to the metabolic status of the cell through the dependency on NAD+. NAD 

exists in two forms, oxidized NAD+ and a reduced NADH. NAD+ is an oxidizing agent that accepts electrons 

from other molecules to generate NADH which can in turn be used as a reducing agent to donate electrons. 

Briefly, NADH is formed during glycolysis, fatty acid oxidation, citric cycle and tricarboxylic acid (TCA or 

Krebs) cycle. It is converted to NAD+ by the electron transport chain (ETC). Once used by sirtuins, NAD+ is 

recycled inside the cell thanks to the combined action of NAMPT (that converts nicotinamide into 

nicotinamide mononucleotide) and nicotinamide mononucleotide adenylyltrasferase (NMNAT1, that converts 

nicotinamide mononucleotide to NAD+) (309, 310). 

Sirtuins modulate the activity of transcriptional regulators and enzymes directly involved in the control of 

metabolic pathways. To give just a few examples, SIRT1 sustains gluconeogenesis, inhibits glycolysis and 

increases fatty acid catabolism. SIRT2 inhibits adipogenesis and promotes lipolysis. SIRT3 supports TCA 

cycle and oxidative burst. SIRT4 inhibits glutamine metabolism and promotes fatty acid synthesis. SIRT5 

reduces glucose metabolism. SIRT6 inhibits glycolysis and promotes fatty acid oxidation. SIRT7 promotes 

https://en.wikipedia.org/wiki/Oxidizing_agent
https://en.wikipedia.org/wiki/Reducing_agent
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oxidative phosphorylation and triglyceride synthesis (311-313). A summary of our current knowledge is 

presented in Table 6 which describes, for each sirtuin, the metabolic pathway analyzed, the effect of SIRT1-

7 (↑ = increased, ↓ = decreased activity) and the target through which sirtuins mediate their effects. 

A growing body of evidence indicates the existence of a tight relationship between metabolism and immune 

functions. Metabolic reprogramming routinely happens in cells to adapt to energy conditions, and in immune 

cells sensing pathogens through PRRs or cytokines through cytokine receptors. Indeed, important metabolic 

changes occur during immune cell activation and the switch between metabolic pathways determines 

immunological phenotypes. For instance, while resting cells usually rely on oxidative phosphorylation as a 

source of energy, activated immune cells such as macrophages, DCs and Th17 cells switch towards 

glycolysis (359-361).  

In agreement, classically activated M1 macrophages and alternatively activated M2 macrophages have 

distinct functions that are amazingly mirrored by metabolic polarization (Figure 8). M1 macrophages switch 

from oxidative phosphorylation to glycolysis and pentose phosphate pathway during activation, favoring ROS 

production, glucose uptake and conversion of pyruvate into lactate. In M1 macrophages, iNOS is 

upregulated promoting the catabolism of arginine to citrulline and production of NO. The TCA cycle is broken 

leading to the accumulation of succinate and citrate. Citrate is exported from the mitochondria to the cytosol 

where it sustains ROS and NO production and promotes phospholipid synthesis, leading to arachidonic acid 

and prostaglandin production (359, 362). Succinate activates HIF-1α, which reaches HIF-1α binding site of 

the IL1b promoter and promotes IL-1β mRNA expression (363). All these metabolic changes are necessary 

to rapidly produce energy to support secretory and bactericidal functions (359, 364).  

  



49 

 

Table 6. Effect of mammalian sirtuins on metabolic pathways, with intermediate targets. 

Sirtuin Metabolic pathway Effect Target Ref. 
SIRT1 Fatty acid oxidation ↑ PGC1α, PPARα (314-318) 
 Lipid synthesis ↓ SREBP-1c (314, 319, 320) 
 Gluconeogenesis ↑ PGC1α (321, 322) 
 Gluconeogenesis(late fasting) ↓  CRTC2, G6Pase and PEPCK (323) 
 Glycolysis ↓ PGAM1, GK (321, 324) 
 Reverse cholesterol transport ↑ LXRs (325) 
 Biosynthesis of bile /cholesterol 

catabolism 
↑ FXR (326) 

SIRT2 Adipogenesis ↓ PPARγ, FOXO1, ACLY (327, 328) 
 Fatty acid oxidation ↑ PGC1α (329) 
 Gluconeogenesis ↑ PEPCK1 (330) 
 Insulin sensitivity ↑ Akt, TUG (331, 332) 
   ↓ Akt, GSK3β (333) 
SIRT3 Fatty acid oxidation ↑ LCAD (334, 335) 
 Urea cycle ↑ OTC (335) 
 Ketogenesis ↑ HMGCS2 (336) 
 Oxidative metabolism ↑ PHD (337) 
 TCA cycle ↑ IDH2 (338, 339) 
SIRT4 Fatty acid oxidation ↓ PPARα (262) 
 Lipid synthesis ↑ MCD (340) 
 Glutamine catabolism ↑ GDH (341) 
 Oxidative metabolism ↓ PDH (342) 
SIRT5 TCA cycle ↓ SDH (343) 
 Oxidative metabolism ↓ PDC (344) 
 Oxidative phosphorylation ↑ IDH1 (345) 
 Urea cycle ↑ CPS1 (346, 347) 
 Glutamine catabolism ↓ GLS (348) 
 Ketogenesis ↓ HMGCS2 (349) 
SIRT6 Glycolysis ↓ HIF-1α, H3K9, glycogenic genes (350, 351) 
 Triglyceride synthesis ↓ H3K9, lipogenic genes (351) 
 Gluconeogenesis ↓ PGC-1α (352) 
 Cholesterol uptake ↓/↑ SREBP-2, FOXO3, H3K9, 

H3K56 
(353) 

  Cholesterol uptake ↓ PCSK9, SREBP1/SREBP2 (354, 355) 
 Fatty acid oxidation ↑ MiR-122 (356) 
SIRT7 Oxidative phosphorylation ↑ Complex I, II, IV, V (357) 
 Triglyceride synthesis ↑ NR2C2 (358) 
ACLY: ATP citrate lyase; AKT: Protein kinase B; CPS1: Carbamoyl phosphate synthetase; CRTC2: CREB regulated transcription 
coactivator 2; FOXO: Forkhead box protein O; FXR: Farnesoid X receptor; GLS: Glutaminase; G6Pase: Glucose-6-phosphatase; GDC: 
Glycine Decarboxylase Complex; GK: Glucokinase; GSK3β: Glycogen synthase kinase 3 beta; HIF-1α: Hypoxia-inducible factor 1-
alpha; HMGCS2: 3-hydroxy-3-methylglutaryl CoA synthase 2; IDH1: Isocitrate dehydrogenase 1; IDH2: Isocitrate dehydrogenase 2; 
LCAD: Long-chain-specific acyl coenzyme A dehydrogenase; LXRs: Liver X receptor (LXR) proteins; MCD: Malonyl CoA 
decarboxylase; NR2C2: nuclear receptor subfamily 2 group C member 2; OTC: Ornithine transcarbamoylase; PCSK9: Proprotein 
convertase subtilisin/kexin type 9; PDC: Pyruvate Dehydrogenase Complex; PDH: pyruvate dehydrogenase complex; PEPCK: 
Phosphoenolpyruvate carboxykinase; PGAM1: Phosphoglycerate mutase-1; PGC1α: Peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha; PHD: Pyruvate dehydrogenase; PPAR: Peroxisome proliferator-activated receptorSDH: Succinate dehydrogenase; 
SREBP: Sterol-regulatory element binding protein. 
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M2 macrophages keep an oxidative metabolism sustained by normal levels of fatty acid oxidation that 

provides energy for a long period as requested for a healing process (364, 365) (Figure 8). To support fatty 

acid oxidation, M2 macrophages take up triglycerides through scavenger receptors (such as CD36) and 

hydrolyze them with lysosomal acid lipases (366). M2 macrophages also up-regulate arginase-1 (Arg1) to 

produce urea, polyamines and ornithine that are important metabolites involved in healing. Interestingly, 

inhibition of oxidative metabolism in M2 macrophages triggers a M1-like phenotype. Conversely, forcing 

oxidative metabolism in M1 macrophages provokes a shift to a M2-like phenotype.(364, 365, 367) 

The metabolic switches operated by the host in response to infections lead to the production of metabolites 

that directly target pathogens, for example ROS and NO as mentioned above. Moreover, the accumulation of 

citrate in M1 macrophages results in the synthesis of itaconic acid that negatively impacts on S. 

thyphimurium and M. turberculosis metabolism and limits their viability (368). Another example is given by 

type I IFN signals which inhibit lipid synthesis and increase lipid uptake by host cells. This reduces lipid 

bioavailability for microorganisms (369). 

An additional level of complexity is given by the observation that pathogens can hijack host metabolic 

pathways. Trypanasoma for example produces indolepyruvate that inhibits the metabolic switch towards 

glycolysis and HIF-1α and IL-1β production, hence favoring immune evasion. Overall, the balance between 

host and pathogens will impact on the outcome of the infection (Metabolic reprogramming in innate 

immunity: electron flow in mitochondria as an arbiter of cytokine production; by Luke O’Neill from Trinity 

College, Dublin; talk given at TOLL 2015 – Targeting innate immunity, Marbella, Spain, 3 Oct 2015). 

Obviously there is more and more interest in identifying metabolic dysfunctions in sepsis as this may 

represent new opportunities to identify therapeutic targets (52, 53). 
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Figure 8. Distinct metabolic profiles of M1 and M2 macrophages. M1 macrophages are characterized 
by high glucose uptake and active glycolysis and pentose phosphate pathway activity, while M2 
macrophages are characterized by high triglyceride uptake and active fatty acid oxidation and oxidative 
phosphorylation. AcCoA: acetyl-coenzyme A; Arg1: arginase -1; F6P: fructose-6-phosphate; G6P: 
glucose-6-phosphate; OAA: oxaloacetic acid; R5P: ribose-5-phosphate; TCA: tricarboxylic acid. 
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2 AIM AND OBJECTIVES 

The overall aim of this work was to contribute to decipher the impact of HDACs and inhibitors of HDACs on 

innate immune responses to microbial infection. The first part of the result section (section 5.1) is presented 

in the form of a review that summarizes the knowledge, available at the start of this work, about HDACi and 

innate immune responses, with a focus on sepsis. Four specific objectives were then defined according to 

past results from the lab and current developments in the field: 

1. Considering that a) diet determines microbiome composition, b) dysbiosis is associated with several 

immunopathologies, and c) commensal bacteria produce short chain fatty acids (SCFAs) that may 

have immunomodulatory properties, the first objective was to study the impact of propionate, one 

of the most abundantly expressed SCFA, on innate immune responses in vitro and in vivo (section 

3.2). 

2. The second objective was to analyze the expression pattern of SIRT1-7 in immune cells 

(particularly macrophages) and main organs, as well as the impact of MAMPs, DAMPs and 

cytokines on SIRT1-7 expression levels (section 3.3).  

3. Considering that a) classical HDACs and SIRT1 and SIRT2 share several targets, among which the 

master transcription factor NF-κB, and b) HDACi have strong immunosuppressive properties, the 

third objective was to characterize the innate immunomodulatory properties of cambinol, a newly 

developed SIRT1/SIRT2 inhibitor with anti-cancer activity (section 3.4 and 3.5). 

4. The fourth objective was to investigate in vitro and in vivo the impact of SIRT2 on immune system 

development and host defense mechanisms by making use of SIRT2 knockout mice (section 3.6). 
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3 RESULTS 

 

This part is divided into the six following sections: 

3.1 Epigenetics in sepsis: targeting histone deacetylases 

3.2  Characterization of the impact of propionate, a short chain fatty acid, on antimicrobial host 

defenses in vitro and in vivo 

3.3  Expression pattern of sirtuins in immune cells and organs 

3.4  The sirtuin inhibitor cambinol impairs MAPK signaling, inhibits inflammatory and innate immune 

responses and protects from septic shock 

3.5  Screening the impact of sirtuin inhibitors on inflammatory and innate immune responses of 

macrophages and in a mouse model of endotoxic shock 

3.6  Sirtuin 2 deficiency increases bacterial phagocytosis by macrophages and protects from chronic 

staphylococcal infection 
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Summary 

This review summarizes our knowledge about the biological effects of inhibitors of HDACs (HDACi) on innate 

immune responses specifically in the context of infection and sepsis. HDACi were identified in the late 70’s 

and rapidly shown to have potent antitumor activity, motivating the development of HDACi as anti-cancer 

drugs. This field has been very successful with several molecules entering into clinical use in the 2000’s 

(romidepsin/FK228 in 2004, SAHA/vorinostat in 2006, and panobinostat/LBH-589 in 2015). Already in 2002 

Leoni et al. (Proc Natl Acad Sci USA 99:2995) reported the anti-inflammatory activity of SAHA, suggesting 

that HDACi could be used for treating inflammatory or autoimmune diseases, but also that they could 

interfere with innate immune responses. Here, we summarize the results of studies showing how HDACi 

negatively impact on innate immune responses in vitro and in vivo, how HDACi might be used to improve 

lethal sepsis, and how HDACi might sensitize to non-severe infections. Importantly, we highlight the need for 

a close survey of the immunological and infection status of patients treated with HDACi, especially oncologic 

immuno-deficient patients. 
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Abstract 

Short chain fatty acids (SCFAs) produced by intestinal microbes mediate antioxidative, anticarcinogenic and 

anti-inflammatory effects through direct inhibition of histone deacetylases or signaling via metabolite sensing 

G-protein coupled receptors. Propionate is one of the most abundantly produced SCFAs. Yet, whether 

propionate impacts on host defense responses remains largely unknown. Here we show that propionate 

dampened the response of innate immune cells to microbial stimulation, inhibiting cytokine and NO 

production by mouse or human monocytes/macrophages, splenocytes, whole blood and, less efficiently, by 

dendritic cells (DCs). Propionate given per os or intraperitoneally neither sensitized nor conferred protection 

in models of endotoxemia, infection and lethal sepsis due to gram-negative bacteria (Escherichia coli, 

Klebsiella pneumoniae), gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae) and 

Candida albicans, even when mice were beforehand depleted of gut microbiota. Yet, propionate reduced 

anti-Klebsiella and anti-Streptococcus IgG titers in mice surviving pneumoniae, indicating that propionate 

interfered to some extend with anti-microbial host response. Altogether, these data suggest that, despite 

evident anti-inflammatory properties, propionate treatment has no significant impact on host susceptibility to 

primary infection and support the development of therapies using propionate or directed at the diet or the 

microbiota for treating non-infectious inflammation-related disorders. 

 

Keywords (3-10):  

Propionate, Short chain fatty acid, Histone deacetylase inhibitor, Epigenetics, Innate immunity, Cytokine, 

Macrophage, Endotoxemia, Sepsis, Microbiota. 
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Introduction 

Host defenses against infection rely on innate immune cells that sense microbial derived products through 

pattern recognition receptors (PRRs) such as toll-like receptors (TLRs), c-type lectins, NOD-like receptors, 

RIG-I-like receptors and intra-cytosolic DNA sensors. The interaction of microbial ligands with PRRs 

activates immune cells to produce immunomodulatory molecules like cytokines and co-stimulatory molecules 

[1-3]. Pro-inflammatory cytokines play an essential role in coordinating the development of the innate and 

adaptive immune responses aimed at the eradication or containment of invading pathogens. Yet, 

inflammation has to be timely and tightly regulated since it may become life-threatening both by default of by 

excess [3-6]. 

Short chain fatty acids (SCFAs) are end products of the fermentation of resistant starches and 

dietary fiber by intestinal bacteria, with the most abundant metabolites produced being acetate, propionate 

and butyrate [7]. SCFAs reach elevated concentrations in the gut lumen (50-100 mM) and are absorbed into 

the portal circulation, acting as the primary source of SCFAs in the bloodstream (0.1-1 mM) [8-11]. SCFAs, 

primarily butyrate, not only serve as a source of energy, but also stimulate neural and hormonal signals 

regulating energy homeostasis [12]. Beside their trophic effects, SCFAs possess antioxidative, 

anticarcinogenic and anti-inflammatory properties and play an essential role in maintaining gastrointestinal 

and immune homeostasis [7, 10, 11]. Butyrate has been reported to affect activation, proliferation, apoptosis, 

migration of, and cytokine production by immune cells [13].  

Both extracellular and intracellular SCFAs exert immunosuppressive effects. Extracellular SCFAs act 

through metabolite sensing G-protein coupled receptors (GPCRs) such as GPR41, GPR43 and GPR109A 

[7, 14]. Although the expression patterns and the signaling effects of GPCRs are poorly defined, GPCRs 

were recently shown to mediate the anti-inflammatory effects of SCFAs and protect form colitis, rheumatoid 

arthritis and airway hyper-responsiveness [15-17]. GPCRs propagate anti-inflammatory effects at least 

through a β2-arrestin-dependent stabilization of IκBα and inhibition of NF-κB-dependent transcription, and by 

promoting the generation of T regulatory (Treg) cells [7, 10]. 

Intracellular SCFAs inhibit zinc-dependent histone deacetylases (HDACs) [18]. Mammalian HDACs 

are classified into four subfamilies based on their sequence homology to yeast HDACs and domain 

organization: class I (HDAC1-3, 8), class IIa/IIb (HDAC4, 5, 7, 9/HDAC6, 10) and class IV (HDAC11) zinc-

dependent HDACs and class III NAD-dependent sirtuins (SIRT1-7) [19]. HDACs are major epigenetic 

erasers catalyzing the deacetylation of histones, which leads to chromatin compaction and transcriptional 

repression [20]. HDACs also target numerous signaling molecules and transcription factors. Inhibitors of 

HDAC (HDIs) impair directly or indirectly NF-κB activity and mediate powerful anticancer, anti-

neurodegenerative and anti-inflammatory activities. Considering the broad therapeutic potential of HDIs, 

numerous compounds are tested in clinical trials [20-22]. Valproate, a SCFA used since decades as a mood 

stabilizer and anti-epileptic, suberanilohydroxamic acid (SAHA, vorinostat) and romidepsin 

(FK228/FR901228) have been approved for the treatment of patients with cutaneous T-cell lymphoma and 

panobinostat (LBH-589) for the treatment of patients with multiple myeloma who experienced two prior 

therapies [22]. In agreement with their anti-inflammatory properties, HDIs interfere with the development of 

innate immune responses, protect against lethal sepsis, and increase susceptibility to infection [23-28]. 
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The impact of propionate on innate immune responses is poorly characterized. To fill in that gap, we 

analyzed the response of macrophages, dendritic cells (DCs), splenocytes and whole blood to bacterial and 

fungal compounds and used a panel of preclinical mouse models of endotoxemia, gram-positive and gram-

negative bacterial and fungal infection of diverse severity. Our results show that propionate inhibits innate 

immune responses in vitro but neither increases susceptibility to infection nor protects from lethal sepsis in 

vivo. 

 

Results 

Impact of propionate on the response of immune cells to microbial stimulation. 

To address the effects of propionate on the response of immune cells to microbial stimulation, bone marrow-

derived macrophages (BMDMs) were exposed for 8 h to LPS (a TLR4 agonist), Pam3CSK4 (a lipopeptide 

triggering cells through TLR1/TLR2) and E. coli and S. aureus, used as representative gram-negative and 

gram-positive bacteria. The levels of TNF, IL-6 and IL-12p40 produced by BMDMs were quantified by ELISA 

(Figure 1A). Propionate (0.5-4 mM) dose-dependently inhibited TNF production induced by Pam3CSK4 and 

S. aureus, and IL-6 and IL-12p40 production induced by LPS, Pam3CSK4, E. coli and S. aureus. Similar to 

other HDIs [27, 29, 30], propionate did not inhibit TNF production induced by LPS and E. coli, and in fact 

amplified TNF response to E. coli. In agreement with these results, propionate powerfully inhibited LPS and 

Pam3CSK4-induced Il6 and Il12b mRNA, to a lesser extent Pam3CSK4-induced Tnf mRNA, but not LPS-

induced Tnf mRNA expression (Figure 1B). 

 The anti-inflammatory activity of propionate was compared to that of butyrate and valproate by 

defining the IC50 of each of the SCFAs for LPS-induced IL-6 and IL-12p40 production. Similar IC50s were 

obtained for IL-6 and IL-12p40: 0.01-0.05 mM for butyrate, 0.2-0.4 mM for valproate and 0.2-0.3 mM for 

propionate. Thus, propionate is as potent as valproate at inhibiting IL-6 and IL-12p40 production by BMDMs, 

but 8-20 folds less efficient than butyrate. The concentrations of G-CSF, IL-10, IL-18, IP10/CXCL10, 

MCP1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4 and RANTES/CCL5 released by BMDMs exposed to LPS, E. 

coli, Pam3CSK4 and S. aureus were measured by Luminex (Figure 1C). Whereas LPS and E. coli induced 

the secretion of all mediators, Pam3CSK4 and S. aureus did not induce appreciable levels of G-CSF, IL-10 

and IL-18. Propionate inhibited G-CSF, IL-10 and IL-18 induced by LPS and E. coli, and CCL5 and CXCL10 

induced by LPS. Propionate also inhibited CCL3, CCL4, CCL5 and CXCL10 induced by Pam3CSK4 and 

CCL4 and CXCL10 induced by S. aureus. Overall, propionate impaired more powerfully cytokine/chemokine 

secretion induced by Pam3CSK4 than LPS, and more efficiently secretion induced by pure microbial ligands 

than whole bacteria triggering similar PRRs (i.e. LPS versus E. coli, and Pam3CSK4 versus S. aureus). 

Propionate also inhibited the production of nitric oxide (NO) induced by E. coli or IFNγ/LPS in BMDMs (50% 

inhibition using 0.6 mM and 4 mM propionate, respectively (Figure 1D)). 

 Bone marrow-derived dendritic cells (BMDCs) were less sensitive than BMDMs to the anti-

inflammatory effects of propionate. Indeed, when looking at TNF, IL-6 and IL-12p40 production induced by 

LPS, Pam3CSK4, E. coli and S. aureus, propionate significantly inhibited Pam3CSK4-induced TNF and LPS, 

Pam3CSK4 and S. aureus-induced IL-12p40 only (Figure 2A). Of note, propionate slightly increased E. coli-



74 

 

induced IL-6 and IL-12p40 production by BMDCs. The viability of BMDMs and BMDCs incubated for 18 h 

with up to 8 mM propionate was greater than 98%, suggesting that propionate’s effects were not related to 

cytotoxicity. Along with a good tolerability of immune cells to propionate, propionate barely effected the 

proliferation of splenocytes exposed to E. coli whereas it efficiently inhibited IFNγ production (Figure 2B).  

 We then tested the impact of propionate on human cells (Figure 3). Propionate dose-dependently 

inhibited TNF and IL-6 production by whole blood exposed to LPS, albeit less efficiently than butyrate (TNF: 

61±6% vs 96±4% and IL-6: 41±7% vs 70±10% inhibition using propionate vs butyrate at 2 mM, n = 3 donors; 

P < 0.05; Figure 3A). A Luminex analysis extended to IL-1β, IL-10, IL-12p40, CCL2 and CXCL10 the 

spectrum of cytokines and chemokines whose expression was significantly inhibited by at least 50% in the 

majority (i.e. 2 or 3 out of 3) of the donors (Figure 3B). In parallel experiments, butyrate inhibited more 

powerfully than propionate the secretion of IL-10 (in 3/3 vs 2/3 donors), CCL2 (3/3 vs 2/3) and CCL4 (2/3 vs 

1/3). Butyrate also impaired the release of IL-1RA (3/3 donors) and CXCL8 (1/3). Flow cytometry analyses of 

intracellular cytokine expression in human monocytes exposed to LPS and Pam3CSK4 revealed that 

propionate reduced the percentage (11-24% reduction) and more strikingly the mean fluorescent intensity 

(1.7-3.4 fold reduction) of TNF and IL-6 positive cells (Figure 3C and D). 

 Overall, propionate inhibited in a cell-specific manner the response of mouse and human immune 

cells to microbial stimulation in vitro; opening the possibility that propionate might impact on innate immune 

responses in vivo. 

 

Propionate does not confer protection to lethal endotoxemia and severe lethal sepsis. 
In agreement with the concept that overwhelming inflammatory responses are deleterious for the host, 

inhibition of the release of pro-inflammatory mediators confers protection in preclinical models of sepsis [3-5]. 

Moreover, HDIs were shown to protect from toxic shock [31]. Thus, we tested propionate in a mouse model 

of acute endotoxemia. Propionate at 200 mM was administrated through the drinking water, a treatment 

commonly used to study the impact of SCFAs in vivo (370-375). One month of propionate treatment had no 

impact on animal weight (Figure 4A). In mice challenged with LPS, severity scores and survival rates were 

similar whether or not animals were treated with propionate (P > 0.5 and P = 0.3; Figure 4B and C).  

 The class of innate immune responses challenged by propionate was extended using models of 

severe lethal sepsis induced by gram-negative (Klebsiella pneumoniae), gram-positive (S. aureus) and 

fungal (Candida albicans) pathogens administrated either intranasally (i.n., K. pneumoniae) or intravenously 

(i.v., S. aureus and C. albicans). In mice challenged i.n. with 200 CFU K. pneumoniae, bacterial loads in 

lungs (P = 0.4) and mortality (70% vs 90% in control vs propionate groups; P = 0.8) were not significantly 

affected by propionate treatment (Figure 5A and B). Using a 10-fold lower inoculum (20 CFU) of K. 

pneumoniae, mortality (50% vs 60% in control vs propionate group; P = 0.7; Figure 5C) was similarly 

reduced in control and propionate-treated mice. In the severe model of systemic infection with S. aureus, 

severity scores, weight lost, bacterial counts in blood (P = 0.9) and mortality (100% vs 93% in control vs 

propionate groups; P = 0.6) were comparable with or without propionate treatment (Figure 5D and E). 

Finally, in the acute model of candidiasis, all mice died within 4 days, irrespective of the treatment applied (P 

= 0.1; Figure 5F). 
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Propionate does not sensitize to infection with Escherichia coli, Streptococcus pneumoniae and 
Candida albicans. 

Compromising innate immune responses may increase susceptibility to infection. To analyze the impact of 

propionate on infection, propionate was given either per os or intraperitoneally (p.o.: 200 mM in water; i.p.: 1 

g/kg i.p. every other day) to mice subsequently challenged with E. coli titrated to cause a mild infection. 

Bacterial counts (P = 0.9; Figure 6A) and survival rates (77% vs 70 % and 60% vs 70% in control vs 

propionate groups upon p.o. and i.p. treatments; P = 0.7 and P = 0.6; Figure 6B and C) were similar with or 

without oral or intraperitoneal propionate administration. Confirming that propionate does not sensitize mice 

to infection, 90% (9/10) of control mice and 100% (9/9) of propionate-treated mice infected i.n. with 104 CFU 

Streptococcus pneumoniae (S. pneumoniae) survived infection. 

The inoculum of C. albicans was adjusted to produce a mild form of candidiasis during which 

mortality occurs 5 to 10 days after infection. Weight lost, monitored during the first 5 days, and survival 

(14.3% and 12.5%) were comparable in untreated and propionate-treated mice (P > 0.1 and P = 0.8; Figure 
6D and E). Taking all together, these data suggested that propionate did not increase susceptibility to E. coli 

peritonitis and S. pneumoniae pneumonia or accelerate candidiasis. 

 In order to test whether propionate treatment had any impact in vivo, we measured anti-K. 

pneumoniae and anti-S. pneumoniae IgGs in the blood of mice surviving infection with 20 CFU K. 

pneumoniae (4 controls and 5 propionate-treated mice) and 104 CFU S. pneumoniae (9 controls and 10 

propionate-treated mice). Anti-bacteria IgG titers were reduced in mice treated with propionate (Figure 7A 
and B). Results reached statistical significance for anti-S. pneumoniae IgGs (P = 0.01), but not for anti-K. 

pneumoniae IgGs (P = 0.1) because of the low number of experimental points. Therefore, although 

propionate did not interfere with morbidity and mortality in models of infection, it impacted to some extent on 

anti-microbial host responses. 

 

Propionate does not protect mice depleted of gut microbiota from candidiasis. 

Although propionate was shown to impact on immune parameters of mice with a normal microbiota [16, 17, 

30, 32, 35], propionate produced by the gut microbiota may attenuate the impact of propionate 

supplementation in the models of infection described above. To address that issue, mice were treated with a 

combination of ciprofloxacin and metronidazole (CM) in order to deplete the gut flora and decrease the levels 

of endogenous SCFAs [32, 36]. CM-treated mice lost 17 % weight during the first week of treatment and 

recovered their initial weight after 3 weeks. CM-treated mice were more sensitive to candidiasis than 

untreated mice run in parallel (median survival time: 9.5 days for CM vs 11.5 days for controls; n = 10 

mice/group; P = 0.05). Co-treatment with CM plus propionate slightly increased weight loss and impaired 

weight rebound of uninfected mice (Figure 8A). CM-treated mice died in between days 6 and 15 after 

Candida challenge, and propionate supplementation did not protect CM-treated mice from candidiasis (P = 

0.4; Figure 8B). 
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Discussion 
 
The gut microbiota and its metabolites deeply impact on human health. Among bacterial metabolites, SCFAs 

have attracted much attention since the demonstration of their beneficial impact onto the development of 

inflammation-related pathologies, and because their production can be influenced by the diet [7, 10, 37, 38]. 

Here we show that propionate has powerful, yet selective, anti-inflammatory activity in vitro, but neither 

sensitizes to infection nor protects from lethal sepsis. This observation is particularly relevant in light of the 

development of diet or microbiota targeting strategies as promising approaches for several diseases. 

Propionate impaired cytokine production by innate immune cells, albeit differentially according to the 

cell type, the microbial trigger and the cytokine analyzed. Similar disparities have been observed with other 

SCFAs [27, 30, 39, 40]. BMDCs were more resistant to propionate than BMDMs, human monocytes and 

whole blood. In both human monocyte-derived DCs (moDCs) and BMDCs exposed to LPS, propionate 

affected modestly IL-6 but efficiently IL-12p40 production (Figure 2 and [40]). Additionally, propionate did not 

inhibit MHC-II and CD86 expression but impaired CD83 expression by moDCs [40]. Disparate cell responses 

to propionate may reflect, at least in part, differential expression of GPCRs. Although GPCR expression has 

been occasionally reported in immune cells (monocytes/macrophages, DCs, mast cells, neutrophils, Treg 

cells), in depth analyses of the pattern and the expression levels of cell-surface GPCRs is still missing. How 

redundant behave GPCRs in vitro and in vivo is another unresolved important issue, as well as their 

specificity for one or another SCFAs. For example, mice deficient in either GPR43 or GPR109A were 

susceptible to gut inflammation and developed exacerbated colitis, and mice deficient in either GPR41 or 

GPR43 were similarly susceptible to allergic airway inflammation [16, 17, 35, 41]. 

Besides proceeding through GPCRs, SCFAs act as inhibitors of class I and II HDACs (HDIs). HDIs 

impair innate and adaptive immune responses at multiple levels, among others TLR and IFN signaling and 

cytokine production, bacterial phagocytosis and killing, leukocyte adhesion and migration, antigen 

presentation by DCs, cell proliferation and apoptosis, and Treg development and function [20, 31, 42]. In T 

cells, acetate, propionate and butyrate suppressed HDAC activity independent of GPR41 and GPR43 [33]. 

Whether SCFAs mediate HDAC inhibition also through GPCRs is questionable, but it is worth mention that 

GPCR signaling modulates kinase, redox and acetylation pathways that impact on the cellular distribution 

and the activity of histone acetyl transferases and HDACs [43].  

Butyrate is a more potent HDI than propionate, and acetate the least potent. This ranking parallels 

the effectiveness of the anti-inflammatory activity of SCFAs. Butyrate and propionate like trichostatin A 

(TSA), SAHA and other HDIs unrelated to SCFAs, but unlike acetate, potentiated the generation of 

peripheral Treg cells, a phenomenon associated with increased acetylation of the FOXP3 transcription factor 

[32, 44]. Acetate could however promote Treg cells in the colon, suggesting discrete and site specific effects 

of SCFAs (374). Of note, SCFAs were recently reported to promote the generation of Th1 and Th17 cells 

during Citrobacter rodentium infection, implying a complex, context-dependent impact of SCFAs on immune 

responses [33]. 

Propionate was less efficient than butyrate at inhibiting cytokine production by immune cells, 

whereas acetate showed poor anti-inflammatory activity [32, 45, 46]. Additionally, propionate failed to inhibit 

TNF but not IL-6 and IL-12p40 induced by LPS in BMDMs, which mirrored previous observations obtained 
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with TSA and SAHA [27, 29, 47-49]. It is therefore tempting to speculate that, rather that acting through 

GPRs, butyrate and propionate diffuse into BMDMs to inhibit HDACs and impact on cell response. 

Supporting this assumption, mRNA expression levels of free fatty acid receptor 2 (Ffar2) and Ffar3 encoding 

for GPR43 and GPR41 were very low, or below the detection level, in resting BMDMs and BMDMs 

stimulated with LPS or Pam3CSK4 (Ciarlo et al. unpublished gene array and real-time PCR analyses). 

Similarly, Ffra2 and Ffra3 were not detected in immature and LPS-matured BMDCs [33].  

Acetate, propionate and butyrate are found at molar ratios of 60/20/20 in the intestinal tract and 90-

55/35-5/10-4 in blood depending on portal, hepatic and peripheral origins, where they altogether reach 

concentrations of around 50-150 mM and 0.1-1 mM, respectively [8, 35]. The high plasma concentrations of 

propionate compared to butyrate may counterbalance its weaker anti-inflammatory activity. Further work will 

be required to analyze the effects of combinational treatments with SCFAs on innate immune cells. 

Propionate is produced primarily by Bacteroidetes, via the succinate pathway, and some Firmicutes, 

through the lactate and succinate pathways, acetate by many enteric bacteria and butyrate by Firmicutes 

[10]. SCFAs themselves modify the composition of the gut microbiota. Propionate stimulates the growth of 

Bifidobacterium [50]. Furthermore, Bacteroidaceae and Bifidobacteriaceae proportions increased in the gut 

of mice fed with a high fiber diet, elevating acetate and propionate but decreasing butyrate concentrations in 

cecal content and blood [35]. Therefore, changing microbiome composition affects SCFA levels locally and 

systemically. In the perspective of targeting the diet or the microbiota for treating inflammatory conditions [7, 

10, 37, 38], it was of primary interest to analyze the impact of propionate in preclinical models of infection.  

The main observation of this study is that propionate had no obvious impact on the outcome to 

infections in terms of morbidity and mortality. In rapidly lethal models of endotoxemia and sepsis in which 

acute inflammation mediated mortality, propionate treatment had no clinical benefit, unlike butyrate and 

valproate that conferred protection in models of toxic shock and lethal sepsis [25, 27, 51, 52]. This suggested 

that, albeit anti-inflammatory per se, propionate was not efficient enough to revert the dramatic outcome of 

these severe conditions, which contrasts with the effectiveness of SCFAs at ameliorating the clinical 

outcome in chronic inflammatory diseases like rheumatoid arthritis, colitis and airway allergy [16, 17, 30, 32, 

35, 53]. Propionate regimen was unlikely responsible of the failure to protect septic animals since identical or 

even shorter treatments were demonstrated to have an immune impact [32, 35]. Moreover, propionate-

treated animals had lower anti-Streptoccocus and anti-Klebsiella IgG titers, indicating that propionate 

impacted on immune responses during the course of infections. In agreement with this finding, propionate 

was recently reported to impair the production of house dust mite-specific IgGs in a mouse model of allergic 

airway disease, supporting the contention that SCFAs impair innate immune defenses of the airways through 

an intestinal-bone marrow-lung axis [35]. At least in the endotoxemia model, a likely explanation is that 

propionate was poorly efficient at inhibiting the swift production of TNF, a critical and central mediator of 

endotoxemia. 

Albeit surprising at first glance, propionate did not increase the mortality of mice subjected to mild 

infection with E. coli, K. pneumoniae, S. pneumoniae and C. albicans, even when mice were beforehand 

depleted of gut microbiota. Indeed, one of the possible collateral damages of administrating 

immunomodulatory compounds is the increased risk of infections. A well-known example is anti-TNF 

therapies associated with reactivation of latent tuberculosis and viral infections and increased opportunistic 
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infections [54]. Moreover, episodes of severe infection have been reported in patients treated with HDIs [55-

59]. In the present study, we tested models of both systemic and local (peritonitis and pneumoniae) 

infections, which may warranty the safety of propionate supplementation. Future studies should extent to 

other anatomical compartments the spectrum of preclinical models of infections and address to which extend 

propionate-mediated reduction of the humoral response to bacteria affect host defenses to re-infection. 

The production of propionate by intestinal bacteria has been proposed to represent a mechanism 

through which host response to commensals is kept under control by bacteria-derived SCFAs to avoid local 

inflammation and tissue damage. Using several preclinical mouse models, we report that administration of 

propionate neither protects from lethal sepsis nor increases susceptibility to mild infections. These results 

are encouraging in the perspective of developing therapies using propionate or directed at the diet or the 

microbiota for treating inflammation-related disorders such as obesity, atherosclerosis, inflammatory bowel 

diseases, allergy and cancer.  

 

Materials and methods 

Ethics statement. Animal experimentations were approved by the Office Vétérinaire du Canton de Vaud 

(authorizations n° 876.7, 876.8, 877.7 and 877.8) and performed according to our institutional and ARRIVE 

guidelines (http://www.nc3rs.org.uk/arrive-guidelines). 

 

Mice, cells and reagents. Female BALB/cByJ mice (8-10 week-old; Charles River Laboratories, Saint-

Germain-sur-l’Arbresle, France) were housed under specific pathogen-free (SPF) conditions. Bone marrow 

cells were collected from femurs and tibias and cultured for 7 days in IMDM containing 50 M 2-ME and M-

CSF to generate bone marrow-derived macrophages (BMDMs), or GM-CSF to generate bone marrow-

derived dendritic cells (BMDCs) [60]. Splenocytes were cultured in RPMI 1640 medium containing 2 mM 

glutamine and 50 μM 2-ME [27, 61]. Culture media (Invitrogen, San Diego, CA) were supplemented with 

10% heat-inactivated FCS (Sigma-Aldrich St. Louis, MO), 100 IU/ml penicillin and 100 μg/ml streptomycin 

(Invitrogen).  

 Propionate and butyrate were purchased from Sigma-Adldrich, valproate from Desitin (Hamburg, 

Germany), Salmonella minnesota ultra pure lipopolysaccharide (LPS) from List Biologicals Laboratories 

(Campbell, CA) and Pam3CSK4 from EMC microcollections (Tübingen, Germany). Bacterial and fungal 

strains were isolated from septic patients: Escherichia coli O18:K1:H7 (E. coli), Klebsiella pneumonia caroli 

(K. pneumonia), Staphylococcus aureus AW7 (S. aureus), Streptococcus pneumonia 6303 (S. pneumoniae), 

and Candida albicans (C. albicans). E. coli, K. pneumoniae, S. aureus and S. pneumoniae were grown in 

brain heart infusion broth, C. albicans in yeast extract-peptone-dextrose (BD Biosciences, Erembodegem, 

Belgium). For in vitro experiments, microorganisms were heat-inactivated for 2 h at 56°C before usage. 

 

Cell viability assay. Cell viability was assessed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide (MTT) Cell Proliferation and Viability Assay and a Synergy H1 microplate reader 

(BioTek, Winooski, VT) [62]. On each 96-well cell culture plate, serial quantities of cells (0.3 x 104 - 5 x 105) 

were seeded to establish a standard curve. 

http://www.nc3rs.org.uk/arrive-guidelines
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Whole blood assay. Heparinized whole blood (50 µl) collected from healthy subjects was diluted 5-fold in 

RPMI 1640 medium and incubated with or without propionate and microbial products in 96-wells plates. 

Reaction mixtures were incubated for 24 h at 37°C in the presence of 5% CO2. Cell-free supernatants were 

stored at -80°C until cytokine measurement. 

 

Cytokine and NO measurements. Cell culture supernatants and plasma were used to quantify the 

concentrations of TNF, IL-6, IL-12p40 and IFN-γ by DuoSet ELISA kits (R&D Systems, Abingdon, UK), 

cytokines/chemokines using mouse (G-CSF, IL-1β, IL-10, IL-12p70, IL-18, CXCL10/IP10, CCL2/MCP1, 

CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES) and human (TNF, IL-1β, IL-1ra, IL-10, IL-12p40, CCL2, 

CCL3, CCL4, CXCL8/IL-8, CXCL10) Luminex assays (Affimetrix eBioscience, Vienna, Austria) [63], and NO 

using the Griess reagent [64]. Intracellular cytokine staining was performed essentially as described 

previously [65]. Briefly, 0.5 x 106 peripheral blood mononuclear cells (PBMCs) were incubated for 1 h with 

propionate and then for 4 h with 1 μg/ml brefeldin A (BioLegend, San Diego, CA) with or without LPS (100 

ng/ml) or Pam3CSK4 (1 µg/ml). PBMCs were stained with the LIVE/DEAD Fixable Aqua Dead Cell Stain Kit 

(Molecular Probes, ThermoFisher Scientific, Baarrerstrasse, Switzerland), washed with Cell Stain Medium 

(CSM: PBS, 0.5% bovine serum albumin, 0.02% NaN3 and 2 mM EDTA), incubated with Human TruStain 

FcX™ (BioLegend) to block Fc receptors and stained with anti-CD3-PerCP/Cy5.5 (clone UCHT1) and anti-

CD14-Pacific Blue (clone M5E2). Cells were washed with CSM, fixed using 2.4% formaldehyde in PBS, 

washed with CSM containing 0.3% saponin (Sigma-Aldrich) and stained with anti-IL-6-allophycocyanin and 

anti-TNF-phycoerythrin/Dazzle™ 594 antibodies (clones MQ2-13A5 and MAB11). Staining steps were 

performed at 20°C for 20 min. All antibodies were from BioLegend. Acquisition was performed on a LSR II 

flow cytometer (BD Biosciences). Unstained and single stained samples were used to calculate 

compensation in FlowJo vX (FlowJo LCC, Ashland, OR).  

 

RNA analyses by real-time PCR. Total RNA was isolated, reverse transcribed and used for real-time PCR 

analyses using a QuantStudio™ 12K Flex system (Life Technologies, Carlsbad, CA) [66]. Reactions 

consisted of 1.25 µl cDNA, 1.25 µl H2O, 0.62 µl primers and 3.12 µl Fast SYBR® Green Master Mix (Life 

Technologies). Primer pairs for amplifying Tnf, Il6, Il12b and Hprt (hypoxanthine guanine phosphoribosyl 

transferase) cDNA were as published [60]. Samples were tested in triplicates. Gene specific expression was 

normalized to Hprt expression and expressed in arbitrary units relative to the expression in untreated cells. 

 

Proliferation assay. The proliferation of splenocytes (1.5 x 105 cells) cultured for 48 h in 96-well plates was 

assessed by measuring 3H-thymidine incorporation over 18 h using a β-counter (Packard Instrument Inc, 

Meriden, CT) [27]. 

 

In vivo models. Mice (n = 8-16/group) treated or not with propionate (200 mM in drinking water or 1 g/kg i.p. 

every other day) were challenged with LPS (250 μg i.p.), E. coli (4 x 104 CFU i.p.), K. pneumoniae (20 or 200 

CFU i.n.), S. pneumoniae (104  CFU i.n.), S. aureus (2 x 107 CFU i.v.) or C. albicans (2 or 5 x 105 conidia 

i.v.). Propionate treatment was continued after microbial challenge. In selected experiments, mice were 
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treated with ampicillin (Roche Life Sciences, Basel, Switzerland), kanamycin (Panreac AppliChem, 

Darmstadt, Germany), metronidazole (Sintetica S.A., Couver, Switzerland) and vancomycin (TEVA, North 

Wales, PA) (AKMV, all at 1 mg/ml) or ciprofloxacin (0.2 mg/ml; Fresenius, Brézins, France) and 

metronidazole (1 mg/ml) in drinking water to deplete the gut microbiota [16, 17, 32, 35, 67]. Unfortunately, 

AKMV plus propionate treatment killed mice within 1 week, precluding further investigations. Blood was 

collected 24 h post-infection to quantify cytokines and circulating bacteria [60]. Body weight, severity scores 

and survival were registered at least once daily as described previously [64].  

 

Detection of anti-bacteria IgG by ELISA. Briefly, 96-well plates (Maxisorp, Affimetrix eBioscience) were 

coated with 5 x 106 heat-killed K. pneumoniae or S. pneumoniae in bicarbonate/carbonate buffer (100 mM, 

pH 9.6), blocked with PBS containing 3% (w/v) bovine serum albumin (PBS-BSA) and incubated with mouse 

serum diluted 1/200 in PBS-BSA. Mouse IgGs were detected by incubation with peroxidase-goat anti-mouse 

IgG (H+L) and then 3,3′,5,5′-tetramethylbenzidine (TMB) Substrate Solution (ThermoFisher Scientific). 

Reactions were stopped using 0.16 M sulfuric acid and absorbance measured at 450 nm using a VersaMax 

ELISA microplate reader (Molecular devices, Sunnyvale, CA). All washing steps were performed using PBS 

containing 0.05% (v/v) Tween-20.  

 
Statistical analyses. Comparisons between the different groups were performed by analysis of variance 

followed by two-tailed unpaired Student’s t-test. The Kaplan-Meier method was used for building survival 

curves and differences were analyzed by the log-rank sum test. All analyses were performed using PRISM 

(GraphPad Software). P values are two-sided, and values < 0.05 were considered to indicate statistical 

significance. 
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Figure 1. Impact of propionate on the response of macrophages to microbial stimulation. BMDMs were pre-

incubated for 1 h with increasing concentrations (0, 0.06, 0.12, 0.25, 0.5, 1, 2 and 4 mM) of propionate 

before exposure for 4, 8 or 24 h to LPS (10 ng/ml), Pam3CSK4 (10 ng/ml), E. coli (106 CFU/ml), S. aureus 

(107 CFU/ml) or a combination of IFN-γ (100 U/ml) plus LPS (10 ng/ml). (A, B) TNF, IL-6 and IL-12p40 

concentrations in cell culture supernatants and Tnf, Il6, Il12b mRNA levels were quantified by ELISA (A, t = 8 

h) and real time-PCR (B, t = 4 h). No cytokine was detected in the supernatants of unstimulated cells. Tnf, Il6 

and Il12b mRNA levels were normalized to Hprt mRNA levels. Data are means ± SD of triplicate samples 

from one experiment performed with 4 mice and representative of 2 experiments. *; P < 0.05 versus stimulus 
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without propionate. A.U.: arbitrary units. (C) The production of G-CSF, IL-10, IL-18, CCL2, CCL3, CCL4, 

CCL5 and CXCL10 was assessed by the Luminex technology (t = 8 h). Data summarize the impact of 2 mM 

propionate on mediators produced in response to LPS, E. coli, Pam3CSK4 and S. aureus: -, no inhibition; +, 

1.5-2-fold inhibition; ++, > 2-fold inhibition. Quantification is from one experiment performed with 4 mice. (D) 

Nitrites/nitrates were quantified using the Griess reagent (t = 24 h). Data are means ± SD of quadruplicate 

samples from one experiment performed with 4 mice. P < 0.05 when comparing propionate at all 

concentrations versus no propionate. 
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Figure 2. Impact of propionate on the response of dendritic cells and splenocytes. (A) BMDCs were pre-

incubated for 1 h with increasing concentrations (0, 0.5, 1, 2 and 4 mM) of propionate before exposure for 8 

h to LPS (10 ng/ml), Pam3CSK4 (10 ng/ml), E. coli (106 CFU/ml) and S. aureus (107 CFU/ml). TNF, IL-6 and 

IL-12p40 concentrations in cell culture supernatants were quantified by ELISA. Data are means ± SD of 

triplicate samples from one experiment performed with 4 mice and representative of 2 experiments. No 

cytokine was detected in the supernatants of unstimulated cells. (B) Mouse splenocytes were incubated for 

48 h with or without propionate and E. coli (106 CFU/ml). Proliferation was measured by 3H-thymidine 

incorporation. IFN-γ concentrations in cell culture supernatants were quantified by ELISA. Data are means ± 

SD of triplicate samples from one experiment performed with 4 mice. *; P < 0.05 versus stimulus without 

propionate. 
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Figure 3. Impact of propionate on the response of human whole blood and monocytes. Whole blood from 3 

healthy subjects was incubated for 18 h with propionate and LPS (100 ng/ml), E. coli (106 CFU/ml) and S. 

aureus (107 CFU/ml). (A) TNF concentrations were quantified by ELISA. Data are means ± SD of triplicate 

determinations. P < 0.005 when comparing 0.2 and 2 mM propionate with 0 mM propionate. (B) TNF, IL-1β, 

IL-1RA, IL-10, IL-12p40, CCL2, CCL3, CCL4, CXCL8 and CXCL10 were quantified by Luminex. Results 

summarize the number of donors in whom propionate inhibited significantly (P < 0.05) and by at least 50% 

cytokine release. (C, D) PBMCs were incubated for 1 h with 2 mM propionate and stimulated for 4 h with 

LPS (100 ng/ml) and Pam3CSK4 (1 μg/ml). TNF and IL-6 expression in CD14+ monocytes was analyzed by 

flow cytometry (C) to calculate the percentage of positive cells and mean fluorescence intensity (MFI). Data 

are means ± SD (D).  
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Figure 4. Propionate does not protect from endotoxemia. BALB/c mice (n = 16 per group) were treated with 

200 mM propionate in drinking water for 1 month. (A) Weight of animals under propionate treatment. (B, C) 

Severity scores and survival (P = 0.3) of mice challenged with LPS (250 μg i.p.). 
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Figure 5. Propionate does not protect from lethal sepsis. BALB/c mice were treated with 200 mM propionate 

in drinking water for 3 weeks. (A-C) Bacterial counts in lungs 48 h post-infection and survival of mice (n = 10 

per group) challenged i.n. with 200 CFU (A, B) or 20 CFU (C) of K. pneumoniae. P = 0.4, 0.8 and 0.7, 

respectively. (D, E) Bacterial counts in blood 24 h post-infection and survival of mice (n = 15 per group) 

challenged with S. aureus (2 x 107 CFU i.v.). P = 0.9 and P = 0.6. (F) Survival of mice (n = 8 per group) 

challenged with C. albicans (5 x 105 CFU i.v.). P = 0.1. 
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Figure 6. Propionate does not impair host defenses against E. coli and C. albicans infection. BALB/c mice (n 

= 10 and 8 per group in A-C and D-E, respectively) were treated with 200 mM propionate in drinking water 

(A, B, D, E) or 1 g/kg propionate given i.p. every other day (C) for 3 weeks and challenged with E. coli (4 x 

104 CFU i.p.; A-C) or C. albicans (2 x 105 CFU i.v.; D, E). (A) Bacterial counts in blood 24 h post-infection. P 

= 0.9. (B, C) Survival of mice. P = 0.7 and 0.6. (D) Body weight. (E) Survival of mice. P = 0.8. 
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Figure 7. Propionate impairs anti-bacterial IgG response. (A) Blood was collected 17 days post-infection 

from BALB/c mice surviving i.n. infection with 20 CFU K. pneumoniae (Figure 5C; n = 4 control and 5 

propionate-treated mice) and (B) from BALB/c mice (n = 9 control and 10 propionate-treated mice) treated 

with 200 mM propionate in drinking water for 3 weeks and infected i.n. with a sublethal dose of S. 

pneumoniae (104 CFU). Box and min-to-max wisker plots represent the OD450 nm of anti-bacterial IgG titers 

using plasma diluted 1/200. P = 0.1 and = 0.01.  
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Figure 8. Propionate does not protect from candidiasis mice depleted of gut microbiota. BALB/c mice (n = 10 

per group) were treated with ciprofloxacin and metronidazole with or without propionate (200 mM) in drinking 

water for 3 weeks and challenged with C. albicans (2 x 105 CFU i.v.). (A) Body weight. (B) Survival of mice. P 

= 0.4.  

  



94 

 

  



95 

 

3.3 Expression pattern of sirtuins in immune cells and organs 

No comprehensive study of the expression pattern of sirtuins in immune cells has been reported. 

Considering our interest in innate immune responses, we analyzed the expression of sirtuins at baseline and 

after stimulation with MAMPs/DAMPs, whole bacteria and cytokines in vitro and in vivo, with a particular 

focus on immune cells and organs. 

3.3.1 Sirtuin expression is modulated by microbial stimulation in vitro 

As described thoroughly in section 3.6 (Figure 1), an extensive analysis of SIRT1-7 expression using data 

extracted from the BioGPS resource (http://biogps.org) and performed by real time-PCR (RT-PCR) in 

BMDMs, BMDCs, FMS-like tyrosine kinase 3 ligand (Flt3l)-derived DCs and RAW 264.7 and J774.1 

macrophage cell lines (Figure 9A) revealed that SIRT2 was the most expressed sirtuin in myeloid-derived 

immune cell populations.  

 
 

 
 
Figure 9. Expression of 
SIRT1-7 in macrophage cell 
lines, spleen liver and 
kidney. RNA was extracted 
from RAW 264.7 and J774.1 
macrophages (A) and 
spleen, liver and kidney of 
BALB/c mice (B). SIRT1-7 
expression was quantified by 
RT-PCR and normalized to 
Hprt mRNA levels. Data are 
means ± SD of triplicate 
samples from one 
experiment representative of 
two experiments. A.U.: 
arbitrary units. 

Western blot analyses confirmed higher SIRT2 than SIRT1 signals in BMDMs (section 3.4, Figure 7C), 

suggesting that differences at the mRNA level translate to the protein expression level. RT-PCR analyses 

using spleen, liver and kidney showed high SIRT2 mRNA expression levels in these organs and also high 

SIRT3 mRNA expression in the liver and kidney (Figure 9B).  

http://biogps.org/
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We then analyzed SIRT1-SIRT7 mRNA abundance in BMDMs exposed for 4 and 18 hours to a broad panel 

of microbial products proinflammatory and anti-inflammatory cytokines and ATP. Sirtuin expression was 

overall modestly, either positively or negatively, modulated by these treatments, especially cytokines. SIRT1, 

SIRT2, SIRT6 and SIRT7 were upregulated upon stimulation with pure microbial products and, to a lesser 

extent, by microorganisms and ATP (Table 7). Conversely, mitochondrial sirtuins, especially SIRT3, showed 

a trend towards down-regulation upon microbial stimulation. 

 
Table 7. Impact of microbial products, cytokines and ATP on sirtuin mRNA expression in BMDMs. 

 

  
SIRT1 SIRT2 SIRT3 SIRT4 SIRT5 SIRT6 SIRT7 

  
4h 18h 4h 18h 4h 18h 4h 18h 4h 18h 4h 18h 4h 18h 

Microbial 
products 

LPS ++ 0 + 0 -- 0 0 + - 0 +++ ++ + 0 
Pam3CSK4  0 - + 0 - 0 0 0 0 0 ++ 0 + 0 
CpG ODN 1826  + - ++ 0 - - 0 0 0 0 ++ 0 ++ 0 
LTA  + 0 + + -- 0 - + -- + ++ ++ + 0 
Poly (I:C)  +++ + + + 0 0 0 0 0 -- + ++ 0 0 
Peptidoglycan  ++ 0 + 0 - 0 0 0 - 0 ++ + + 0 
Curdlan  + 0 + + -- 0 - + 0 + ++ ++ 0 0 
Zymosan  ++ 0 ++ + -- 0 - + 0 + ++ ++ + 0 

Microorganisms E. coli 018 + 0 ++ 0 -- 0 - + -- 0 ++ + + 0 
S. typhi C5  + 0 + 0 -- 0 - 0 -- + ++ + 0 0 
C. albicans 5102 

hyphae 0 0 0 + 0 0 0 0 0 0 0 0 0 0 
C. albicans 5102 yeast 0 0 0 + - 0 0 + 0 + 0 + 0 + 

Pro-
inflammatory 
cytokines 

TNF  0 0 + 0 0 0 0 0 0 0 + ++ + 0 
IL-1ß  0 0 + 0 0 0 0 0 0 0 0 0 + 0 
IL-2 0 0 0 0 0 0 0 0 0 0 0 0 + 0 
M-CSF 0 + 0 + 0 0 0 0 0 0 0 0 -- 0 
GM-CSF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anti-
inflammatory 
cytokines 

TGF-ß 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
IL-10 0 0 0 0 0 0 0 0 0 0 0 0 + 0 
IL-4 0 0 0 0 0 0 0 0 0 0 0 0 + 0 

DAMPs ATP ++ 0 ++ + + 0 + 0 0 0 + 0 ++ 0 
BMDMs were stimulated for 4 or 18 hours with 10 ng/ml LPS and Pam3CSK4, 2 µg/ml CpG ODN 1826, 10 µg/ml lipoteichoic acid (LTA), 
poly (I:C) and zymosan, 20 µg/ml peptidoglycan, 100 µg/ml curdlan, 106 CFU/ml E. coli O18 and Salmonella enterica serovar 
Typhimurium C5 (S. typhi C5), 100 µg/ml C. albicans 5102 hyphae and yeast, 10 ng/ml TNF, IL-1ß, IL-2, M-CSF, GM-CSF, TGF-ß, 1 IL-
10 and IL-4 and 3 mM ATP. SIRT1-7 mRNA levels were quantified by RT-PCR and normalized to Hprt mRNA levels. Data are means of 
four independent experiments and results show fold increase compared to unstimulated cells expressed as follows: +++ > 3;  3 ≥ ++ > 2;  
2 ≥ + > 1.5;  1.5 ≥ 0 > 0.67;  0.67 ≥ - > 0.5;  05 ≥ -- > 0.33;  --- ≤ 0.33. 
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3.3.2 Sirtuin expression is modulated during endotoxemia 

We quantified sirtuin expression in organs of endotoxemic mice. In a first experiment, C57BL/6J mice were 

injected intraperitoneally (i.p.) with 350 µg of LPS, corresponding to a LD90. Animals were sacrificed 0, 4 and 

24 hours after challenge to quantify SIRT1-7 mRNA expression levels by RT-PCR in spleen, liver and kidney 

(Table 8). 

Table 8. Sirtuin mRNA expression in spleen, liver and kidney of mice injected with a high dose LPS.  

 

Sirtuin Spleen 
(hours LPS) 

 Liver 
(hours LPS) 

 Kidney 
(hours LPS) 

 0 4 24  0 4 24  0 4 24 
SIRT1 0 0 0  0 0 -  0 0 - 
SIRT2 0 - 0  0 --- --  0 0 - 
SIRT3 0 -- 0  0 --- ---  0 -- -- 
SIRT4 0 --- 0  0 --- ---  0 -- - 
SIRT5 0 --- 0  0 --- 0  0 -- 0 
SIRT6 0 - 0  0 0 0  0 - 0 
SIRT7 0 -- -  0 --- 0  0 - - 

 
Mice were injected intraperitoneally (i.p.) with 350 µg of LPS. SIRT1-7 mRNA levels were quantified by RT-PCR in organs collected 0, 
4 and 24 hours after challenge and normalized to Hprt mRNA levels. Data are means of two independent experiments and results 
show fold increase compared to untreated animals (0 hour) expressed as follows: +++ > 3;   3 ≥ ++ > 2;   2 ≥ + > 1.5;   1.5 ≥ 0 > 0.67;   
0.67 ≥ - > 0.5;   05 ≥ -- > 0.33;   --- ≤ 0.33. 
 

Four hours after challenge, the expression of sirtuins decreased in all organs, except SIRT1 in spleen, liver 

and kidney, SIRT2 in kidney and SIRT6 in liver. After 24 hours, SIRT1-6 levels rescued to baseline levels in 

spleen, SIRT5-7 in liver and SIRT5-6 in kidney. To define whether sirtuin expression could be restored at a 

later time point or upon less stringent conditions, we performed a second experiment in which mice were 

injected with 100 µg LPS equivalent to a LD10, and collected liver and kidney after 4, 24 and 48 hours. We 

confirmed the general down-regulation of sirtuins at 4 and 24 hours in both organs. SIRT1-7 levels returned 

to baseline levels after 48 hours in the kidney but not in the liver, except for SIRT1 (Table 9).  
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Table 9. Sirtuin mRNA expression in liver and kidney of mice injected with a low dose of LPS. 

 

Sirtuin Liver 
(hours LPS) 

 Kidney 
(hours LPS) 

 0 4 24 48  0 4 24 48 
SIRT1 0 - 0 0  0 -- 0 0 
SIRT2 0 -- -- --  0 - -- 0 
SIRT3 0 --- - -  0 - 0 0 
SIRT4 0 -- - -  0 -- - 0 
SIRT5 0 -- -- --  0 -- -- 0 
SIRT6 0 0 0 -  0 0 0 0 
SIRT7 0 --- -- --  0 -- - 0 

 
Mice were injected i.p. with 100 µg of LPS. SIRT1-7 mRNA levels were quantified by RT-PCR in organs collected 0, 4, 24 and 48 
hours after challenge and normalized to Hprt mRNA levels. Data are means of two independent experiments and results show fold 
increase compared to untreated animals (0 hour) expressed as follows: +++ > 3;   3 ≥ ++ > 2;   2 ≥ + > 1.5;   1.5 ≥ 0 > 0.67;   0.67 ≥ - > 
0.5;   05 ≥ -- > 0.33;   --- ≤ 0.33. 
 

3.3.3 Conclusions 

In this section, we have shown that sirtuins are constitutively expressed in innate immune cells and organs. 

Observations made at the mRNA level should be validated by protein expression studies, but those are 

limited by the availability of good anti-sirtuin antibodies and the fact that large quantities of cells are required 

to trace SIRT3-5 expression using purified mitochondria. 

Strikingly, at baseline, SIRT2 was the most expressed sirtuin in all samples analyzed apart from the liver in 

which SIRT2 closely followed SIRT3 expression levels. This suggests that SIRT2 might have an important 

physiological role in innate immune cells. As reported in section 3.6, we addressed that specific question by 

using SIRT2 knockout mice. 

Sirtuin mRNA expression was modulated by microbial stimulation in vitro. In primary macrophages, 

cytoplasmic and nuclear sirtuins were overall upregulated by microbial stimulation, a trend that contrasted 

with mitochondrial sirtuins, especially SIRT3, that was downregulated after stimulation. The otherwise quasi-

absence of modulation of sirtuin expression by proinflammatory and anti-inflammatory cytokines strongly 

advocate that microbial stimulation did not modulate sirtuin expression through an indirect autocrine or 

paracrine action of cytokines.  

The constitutive expression of sirtuins in immune cells and organs together with their modulation in 

macrophages exposed to microbial products suggests an important physiological role of these enzymes in 

the control of metabolic adaptation and inflammatory and immune responses. Unfortunately, our knowledge 
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about the impact of sirtuins on innate immune responses is still fragmentary. Whether the modulation of 

sirtuin expression triggered immune responses or had a feedback regulatory impact on inflammatory 

responses cannot be concluded from our data and will require further investigations. Importantly, the fact that 

LPS upregulated most sirtuins in macrophages while basically all sirtuins were down-regulated in organs of 

mice challenged with LPS warns that expression studies at a population level have to be interpreted with 

caution in the context of a full organism. Moreover, it would be interesting to test whether TLR ligands other 

than LPS or microorganisms/infections impact on sirtuin expression in vivo. 

SIRT6 was the strongest upregulated sirtuin in BMDMs exposed to microbial products and was much less 

affected than other sirtuins in the organs of endotoxemic mice. SIRT6 and NAD+ intracellular levels are 

crucial for TNF production and secretion (138, 287). Further investigation will be needed to define whether 

overexpression of SIRT6, induced upon microbial stimulation, participates to promote TNF secretion. 

In organs of endotoxemic mice, we observed a reduction of sirtuin expression that was rescued in kidney 

and spleen but not in liver. We can envisage that the inability to restore baseline levels of sirtuins in some 

organs might contribute to unfavorable outcome. A greater reduction was noticed for the mitochondrial 

SIRT3 and SIRT4 in the liver of endotoxemic mice. It is known that endotoxemia induces liver injury, and one 

of the mechanisms underlying liver damage is an excessive production of ROS. This could be linked to 

SIRT3 downregulation, since SIRT3 decreases cellular ROS through deacetylation and activation of the 

antioxidant enzyme superoxide dismutase 2 (SOD2) (376). Moreover, we observed a smaller effect on 

SIRT3 expression in liver of mice injected with a low -less damaging- dose of LPS compared to a high dose 

of LPS.  



100 

 

  



101 

 

 

3.4 The sirtuin inhibitor cambinol impairs MAPK signaling, inhibits 
inflammatory and innate immune responses and protects from 
septic shock 

 

 

Jérôme Lugrin1, Eleonora Ciarlo1, Alba Santos, Gaël Grandmaison, Isis Dos Santos, Didier Le Roy and 

Thierry Roger 

 

Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and 

University of Lausanne, rue du Bugnon 46, Lausanne, Switzerland 

 

1Equal contribution. 

 

 

Biochemica et Biophysica Acta-Molecular Cell Research. 2013. Jun;1833(6):1498-510 

 



102 

 

  



103 

 

Summary 

Since SIRT2 is the most expressed sirtuin in macrophages, we hypothesized that it could play a role in 

innate immune responses. To test our hypothesis, we took advantage of pharmacological inhibitors of 

sirtuins recently developed for their therapeutic potential in oncologic diseases. We selected cambinol, a cell 

permeable β-naphthol compound, because it was reported to be selective and non toxic. Cambinol inhibits 

SIRT1 and SIRT2 with similar IC50. 

Cambinol dose-dependently inhibited cytokine secretion by BMDMs, BMDCs, PBMCs and whole blood 

exposed to LPS, Pam3CSK4, CpG, E. coli and S. aureus, Nos2 induction and NO production by BMDMs, 

CD40 upregulation by BMDCs, and proliferation and IFNγ production by splenocytes. At the molecular level, 

cambinol impaired MAPK signaling and AP-1-mediated transcriptional activity, without affecting NF-κB p65 

nuclear translocation. In agreement with these findings, cambinol protected mice from endotoxemia and K. 

pneumonia sepsis. 

Unexpectedly, selective inhibitors of SIRT1 (EX-527 and CHIC-35) or SIRT2 (AGK2 and AK-7) used either 

alone or in combination did not reproduce the anti-inflammatory effects of cambinol on cytokine mRNA and 

protein expression. It is known that cambinol does not inhibit SIRT3 activity, and we demonstrate that it does 

not inhibit SIRT6 activity. Altogether, our data indicate that cambinol has powerful anti-inflammatory 

properties by targeting more than just SIRT1 and SIRT2, and that it may protect from lethal sepsis. 
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3.5 Screening the impact of sirtuin inhibitors on inflammatory and 
innate immune responses of macrophages and in a mouse model 
of endotoxic shock 

 

 

Eleonora Ciarlo and Thierry Roger 

 

Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and 

University of Lausanne, rue du Bugnon 46, Lausanne, Switzerland 

 

 

Methods in Molecular Biology. 2016. In press 
 

 

This review provides a general and straightforward approach to study the impact of sirtuin inhibitors on 

innate immune responses in vitro and in vivo. Procedures are described as laboratory protocols and several 

Notes gives tips and tricks, troubleshooting or possible substitutions.  

This manuscript is based on our experience and on our developed and routinely used protocols. It 

incorporates some representative unpublished data showing that cambinol but not SIRT1 or SIRT2-specific 

inhibitors reduces cytokine release by RAW 264.7 macrophages and protects from lethal endotoxemia.  
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Abstract 

Sirtuin 2 (SIRT2) is one of the seven sirtuins that constitute the family of NAD+-dependent histone 

deacetylases. Through epigenetic and non-epigenetic mechanisms mediated by protein deacetylation, 

sirtuins impact on many biological processes and are involved in the pathogenesis of age related pathologies 

such as metabolic, cardiovascular, neurodegenerative and oncologic diseases. Studies of the impact of 

sirtuins during sterile inflammation have led to controversial observations. Moreover, whether SIRT2 

modulates antimicrobial host defenses remains mostly unknown. SIRT2 was the most expressed sirtuin in 

myeloid cells with strong expression in macrophages and dendritic cells (DCs). Using SIRT2 deficient mice, 

we showed that SIRT2 deficiency did not impair intracellular signaling and cytokine production by 

splenocytes, macrophages and DCs exposed to a broad panel of immunological and microbial stimuli and in 

mice challenged with toxic shock syndrome toxin-1 and lipopolysaccharide. Yet, SIRT2 deficiency enhanced 

bacterial phagocytosis by macrophages. In agreement with these data, SIRT2 deficiency neither sensitized 

nor protected mice from endotoxemia, TNF-induced shock, fulminant lethal Escherichia coli peritonitis and 

non-lethal Klebsiella pneumonia pneumonia, but powerfully reduced morbidity parameters and increased 

survival in a model of chronic infection by Staphylococcus aureus. Altogether, these data suggest that SIRT2 

modulates antimicrobial host defense mechanisms and support the development of sirtuin inhibitors as 

possible adjunctive therapies to treat chronic bacterial infections. 

Keywords (3-10): Sirtuin, Histone deacetylase, Epigenetics, Innate immunity, Cytokine, Macrophage, 

Endotoxemia, Sepsis  
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Introduction 

Innate immune cells are at the vanguard of host defenses against microbial infections. 

Monocytes/macrophages and dendritic cells (DCs) sense microbial or danger-associated molecular patterns 

(MAMPs and DAMPs released by injured or stressed cells) through pattern recognition receptors (PRRs) 

such as toll-like receptors (TLRs), NOD-like receptors, c-type lectins, scavenger receptors, RIG-I-like 

receptors and intra-cytosolic DNA sensors (1-3). The interaction between MAMPs or DAMPs with PRRs 

activates mitogen-activated protein kinases (MAPKs), nuclear factor-B (NF-B) and interferon (IFN) 

response factor (IRF) signaling pathways that coordinate the expression of cytokines and adhesion, major 

histocompatibilty complex (MHC) and co-stimulatory molecules. The cellular and soluble mediators mobilized 

upon infection tightly regulate the development of the inflammatory response, the establishment of 

antimicrobial cellular and humoral responses and the restoration of homeostasis once the pathogen have 

been contained or eradicated. 

Sirtuins (SIRTs) belong to the superfamily of histone deacetylases (HDACs) that comprises eleven 

Zn-dependent HDACs (HDAC1-11) and seven NAD+-dependent sirtuins (SIRT1-7). HDACs are epigenetic 

erasers catalyzing histone deacetylation, leading to chromatin compaction and transcriptional repression. 

HDACs deacetylate numerous proteins other than histones, among which transcription regulators. In 

agreement, HDACs impact on diverse biological processes with well recognized effects on metabolism, 

circadian rhythm and cell cycle (4-8). Sirtuins have been proposed to promote longevity and to represent 

therapeutic targets for age related pathologies such as type 2 diabetes and cardiovascular, 

neurodegenerative and oncologic diseases (9-11). Our knowledge about the impact of sirtuins on innate 

immune responses is fragmentary with the majority of studies focusing on SIRT1 and SIRT6, and with an 

overall complex picture attributing mainly anti-inflammatory, but also proinflammatory properties to these 

enzymes (12). 

 SIRT2 is mainly cytoplasmic but can translocate to the nucleus (7). SIRT2 was recently reported to 

possess proficient demyristoylation activity, the physiological relevance of which remaining to be established 

(13). SIRT2 deacetylates many proteins such as histones, α-tubulin and transcription regulators, and is 

involved in the regulation of cell cycle, metabolic pathways, neurodegeneration and tumorigenesis (14-16). 

With relevance to inflammation, SIRT2 decaetylates at lysine 310 NF-κB p65, resulting in the expression of a 

subset of p65-dependent genes in response to TNF stimulation in mouse embryonic fibroblasts (17). In 

agreement with this initial observation, SIRT2 deficiency sustains brain inflammation in models of intra-

cortical LPS administration and traumatic brain injury, and increases severity of collagen-induced arthritis 

and colitis (18-20). Yet, SIRT2 deficiency decreases LPS-induced, NF-κB p65-mediated, inflammatory 

responses by macrophages and renal tubular inflammation (21, 22). Supporting of a possible anti-

inflammatory role, SIRT2 promotes the degradation of HIF-1α, a critical regulator of metabolism and 

inflammation (23, 24). Finally, in a model of experimental stroke, SIRT2 deficiency preserves neurological 

functions without affecting inflammatory parameters (25). Overall, SIRT2 seems to impact on inflammation in 

a context-dependent manner, but whether it influences innate immune responses to infection is mostly 

unknown.  
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 To fill in that gap, we analyzed the response of macrophages, dendritic cells (DCs) and splenocytes 

to immunoregulatory compounds and bacteria and used a panel of preclinical mouse models of toxic shock, 

endotoxemia and gram-negative and gram-positive bacteria infection. Our results indicate that SIRT2 

deficiency does not modulate cytokine production by innate immune cells but enhances bacterial 

phagocytosis by macrophages. In agreement with these data, SIRT2 deficiency neither sensitizes nor 

protects mice from TNF and LPS-induced shock, fulminant peritonitis and non-lethal pneumonia, but 

powerfully reduces morbidity and mortality parameters of chronic staphylococcal infection. Therefore, SIRT2 

inhibitors might represent adjunctive therapies to treat chronic bacterial infections. 

 

Results 

SIRT2 is the main sirtuin expressed by myeloid cells. 

SIRT1-7 expression was quantified by RT-PCR in bone marrow (BM) and bone marrow-derived 

macrophages (BMDMs), conventional dendritic cells (BMDCs) and Flt3L-derived DCs (Fig. 1 A). SIRT2 was 

the most expressed sirtuin in all populations. SIRT2 was also the predominant sirtuin expressed in RAW 

264.7 and J774.1 macrophage cell lines and in spleen, liver and kidney from BALB/c mice (data not shown). 

Western blot analyses confirmed higher expression levels of SIRT2 over SIRT1 in BMDMs (34). To define 

whether macrophages express particularly high levels of SIRT2 when compared to other immune or myeloid-

derived cells, we extracted expression data from the BioGPS resource (Fig. 1 B). Osteoblasts, osteoclasts, 

macrophages and mast cells expressed SIRT2 mRNA at higher levels (830-2’000 A.U.) than granulocytes, 

NK cells, thymocytes, T cells and B cells (280-320 A.U.). Overall, the expression pattern of SIRT2 suggested 

it could play a role in the control of immune responses mediated by macrophages and DCs. To address that 

question, SIRT2 deficient mice were generated (Fig. 1 C and (302)). 

SIRT2 deficiency has no major impact on the development of immune cells and host response to 
TSST-1. 

SIRT2-/- mice born at the expected Mendelian ratio and developed without any obvious abnormality. The 

proportions and absolute numbers of immune cell subpopulations in the thymus (Table 1) and spleen (Table 
2) were similar in SIRT2+/+ and SIRT2-/- mice, including CD4/CD8 double negative (DN), double positive (DP) 

and single positive (SP) thymocytes and splenic T cells (DN and SP, naïve and memory), B cells (immature 

and mature), CD11c+ DCs (B220- cDCs and B220+ pDCs), and Foxp3+ T regulatory cells. Therefore, SIRT2 

had no major impact on immune cell development. 

As a first step to address whether SIRT2 affects immune responses, SIRT2+/+ and SIRT2-/- splenocytes were 

exposed to a range of microbial and immunological stimuli (LPS, CpG, concanavalin A, anti-CD3/CD28, 

PHA, TSST-1 and SEB). The proliferation and production of IL-2 and IFNγ by splenocytes were not affected 

by SIRT2 deficiency (Fig. 2 A-B). Moreover, blood concentrations of IFNγ were similar in SIRT2+/+ and 

SIRT2-/- mice injected with TSST-1 (Fig. 2 C). 
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SIRT2 deficiency does not affect cytokine response of BMDMs and BMDCs exposed to microbial 
ligands and sensitivity to endotoxemia. 

Sensing of microbial ligands through TLRs initiate intracellular MAPK signaling leading to the production of 

cytokines by innate immune cells. Western blot analyses revealed no differences in the rate of LPS-induced 

phosphorylation of p38 and JNK between SIRT2+/+ and SIRT2-/- BMDMs, and only a slight and late reduction 

of ERK1/2 phosphorylation in SIRT2-/- BMDMs (30% reduction at 1 hour) (Fig. 3 A). TNF and IL-6 mRNA 

levels were up-regulated to a similar extend in SIRT2+/+ and SIRT2-/- BMDMs exposed for 1 hour to LPS, 

Pam3CSK4 and CpG (i.e. TLR4, TLR1/2 and TLR9 ligands) (Fig. 3 B). Tlr1, Tlr2, Tlr4 and Tlr9 mRNA were 

modulated likewise in SIRT2+/+ and SIRT2-/- BMDMs (Fig. 3 B). In line with these results, SIRT2+/+ and 

SIRT2-/- BMDMs secreted comparable levels of TNF and IL-6 in response to stimulation with LPS, 

Pam3CSK4, CpG, E. coli and S. aureus (Fig. 3 C). Finally SIRT2+/+ and SIRT2-/- BMDCs showed a similar 

cytokine expression profile upon exposure to LPS, Pam3CSK4, CpG, E. coli and GBS (Fig. 3 D). These 

results argued against an important role of SIRT2 in controlling cytokine response by innate immune cells 

exposed to TLR ligands. 

To confirm these observations in vivo, we developed models of endotoxemia titrated to cause either 

mild or severe shock (Fig. 4 A-D). In the mild model, TNF and IL-12p40 concentrations in blood and survival 

(83% vs 100%, P = 0.3) of SIRT2+/+ and SIRT2-/- mice were comparable (Fig. 4 A-B). In the severe model, 

TNF, IL-6 and IL-12p40 concentrations in blood and mortality rates (88% in both groups, P = 0.69) were 

strongly increased, but remained similar in SIRT2+/+ and SIRT2-/- mice (Fig. 4 C-D). In line with these 

observations and the concept that TNF is one of the main mediators of the lethal effect of endotoxin (37), 

SIRT2+/+ and SIRT2-/- mice were equally sensitive to fulminant TNF-induced shock (P = 0.6; Fig. 4 E). 

Overall, SIRT2 neither impaired nor protected from endotoxemia. 

SIRT2 deficiency increases phagocytosis by macrophages. 

Phagocytosis is a major mechanism of anti-microbial host defenses mediated primarily by professional 

phagocytes, i.e. macrophages, DCs and neutrophils. Therefore, we tested whether SIRT2 deficiency affects 

phagocytosis. SIRT2+/+ and SIRT2-/- BMDMs, BMDCs and neutrophils were incubated with fluorescent beads 

and analyzed by flow cytometry (Fig. 5 A-C). Interestingly, SIRT2-/- BMDMs phagocytized beads better than 

SIRT2+/+ BMDMs (32.4±1.9 vs 24.5±1.2 percent positive cells, P = 0.002), whereas no differences were 

observed using BMDCs (13.5±1.2 vs 15.1±0.7) and neutrophils (4.6±0.6 vs 4.7±0.2) (Fig. 5 A-B). The 

increased phagocytosis by SIRT2-/- BMDMs was evident whether (Fig. 5 C) or not (Fig. 5 A) fluorescent 

beads were opsonized before usage. Furthermore, SIRT2-/- BMDMs phagocytized better than SIRT2+/+ 

BMDMs a panel of fluorescently labeled heat-killed bacteria (percent of SIRT2-/- vs SIRT2+/+ BMDMs 

ingesting bacteria: E. coli J5: 53.6% vs 43.6%, E. coli O111: 31.6% vs 23.0%, Salmonella Typhimurium: 

24.1% vs 17.6%, Neisseria meningitis: 46.1% vs 37.2%, S. pneumonia: 49.6% vs 34.7%). To extend these 

observations in a more realistic situation, BMDMs were exposed to live E. coli, S. aureus and GBS for 1 hour 

before measuring the number of bacteria taken up by plating cell lysates and enumerating colonies. 

Confirming the observations obtained using inert beads and bacteria, for all the bacterial strains tested, the 
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numbers of bacteria phagocytized were 1.3-1.6-fold higher using SIRT2-/- when compared to SIRT2+/+ 

BMDMs (Fig. 5 D). 

SIRT2 deficiency does not impact on the expression of phagocytic receptors. 

Professional phagocytes express a panel of phagocytic and opsonic phagocytic receptors including 

macrophage scavenger receptor 1 (Msr1/SR-AI/CD204), CD14, CD36, C-type lectins such as dectin-1 

(encoded by Clec7a) and members of the integrin superfamily (such as integrin α5/Itga5/CD49e, integrin 

αM/Itgam/CD11b, integrin αX/Itgax/CD11c, integrin β2/Itgb2/CD18). SIRT2-/- and SIRT2+/+ BMDMs 

expressed similar mRNA levels of a large panel of phagocytic receptors (i.e. Itga5, Itga6, Itgal, Itgam, Itgax, 

Itgb1, Itgb2, Cd14, Cd36, Msr1 and Clec7a) at baseline (Fig. 5 E) and upon stimulation with LPS for 4 hours 

(data not shown). Moreover, flow cytometry analyses confirmed similar membrane-bound expression of 

CD11b (Itgam), CD11c (Itgax), CD14 and Msr1 by resting SIRT2-/- and SIRT2+/+ BMDMs (Fig. 5 F). 

Therefore, SIRT2 deficiency improved phagocytosis by BMDMs, presumably without affecting phagocytic 

receptor expression. 

SIRT2 deficiency protects from chronic staphylococcal infection. 

E. coli, S. aureus and K. pneumonia are three of the most frequent causes of bacterial sepsis in humans 

(38). Considering that SIRT2 deficiency had no impact in models of fulminant septic shock during which 

overwhelming cytokine response has a deleterious role (Fig. 4), we elected to test the impact of SIRT2 in 

rapidly lethal, sub-lethal and chronic models of bacterial infections; hypothesizing that increased 

phagocytosis in SIRT2-deficient mice might provide some benefit during non-stringent, chronic, infection. 

Supporting our assumptions, in a model of fulminant, rapidly lethal peritonitis induced by E. coli (Fig. 
6 A), body weight losses, bacterial dissemination into the blood, and survival rates (12.5% in both groups, P 

= 0.7) were comparable in SIRT2+/+ and SIRT2-/- mice. Moreover, in a less fulminant model of sepsis induced 

by systemic infection with S. aureus in which mortality occurred 3 to 16 days after infection (Fig. 6 B), 

severity scores, body weight loss and survival (SIRT2+/+ vs SIRT2-/-: 33.3 vs 69.2%; P = 0.04) were all 

markedly improved in SIRT2-/- mice. Finally, in a non-severe model of K. pneumoniae pneumonia (Fig. 6 C), 

body weight loss and survival (85.7% in both groups, P = 0.9) were not affected by SIRT2 deficiency. 

 
Discussion 

In the present study, we identified a novel role of SIRT2 in host-pathogen interaction. SIRT2 deficiency 

promotes bacterial phagocytosis by macrophages, without impacting on cytokine secretion. These 

observations were corroborated in a panel of preclinical mouse models demonstrating that SIRT2 deficiency 

protects from chronic staphylococcal infection while not influencing the course of endotoxemia, TNF-induced 

shock, fulminant peritonitis and non-severe pneumonia. These observations are particularly relevant in light 

of the development of pharmacological modulators of sirtuins for clinical applications (17-19, 39). 

SIRT2 was the most expressed sirtuin in bone marrow, BMDMs, BMDCs and Flt3L-DCs, with 

highest mRNA levels observed in BMDMs. In agreement, SIRT2 was detected in microglial cells in vivo (19, 
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20), and expression studies in primary cells confirmed stronger SIRT2 expression in macrophages than in 

CD8+ and CD8- conventional DCs and B220+ plasmacytoid DCs (Fig. 1B). Greatest SIRT2 expression was 

disclosed in mast cells, suggesting that SIRT2 may play a particular role in this cell type. 

SIRT2 deficiency had no major impact on LPS-induced MAPK activation in macrophages. 

Considering that SIRT2-deficient macrophages, DCs and splenocytes produced cytokines like their wild-type 

counterparts, and that cytokine blood levels were similar in SIRT2+/+ and SIRT2-/- endotoxemic mice, it is 

most likely that activation of the NF-κB pathway was not or negligibly affected by SIRT2. These observations 

are in line with studies showing that inflammatory parameters were comparable in SIRT2+/+ and SIRT2-/- 

mice with experimental stroke and Mycobacterium tuberculosis infection (25, 40). Yet, contradictory findings 

have been reported about the impact of SIRT2 on inflammatory responses. While SIRT2 deficiency favored 

NF-κB p65 acetylation and activity, increasing p65-depedent gene expression (17-19, 39); SIRT2 deficiency 

also reduced NF-κB and p38 and JNK activation through IκB phosphorylation and acetylation-dependent 

increased activity of MAPK phosphatase-1, respectively (21, 39). Moreover, SIRT2 deficiency sustained 

brain inflammation, colitis and collagen-induced arthritis but protected from renal inflammation (18, 19, 21, 

39). 

The discrepant outcomes of SIRT2 on inflammatory responses mirror conflicting results observed for 

other sirtuins. For example, SIRT1 protects from experimental autoimmune encephalomyelitis, arthritis, lung 

inflammation, hepatic steatosis and insulin resistance, but plays a role in the pathogenesis of lupus, arthritis, 

allergic airway disease and allograft rejection (41-49). Similarly, SIRT6 protects from liver fibrosis, 

atherosclerosis, osteoarthritis and arthritis, but promotes TNF production and the development of 

autoimmune encephalomyelitis and cerebral ischemia (50-57). This overall complex picture may arise from 

different experimental conditions used to decipher the role of sirtuins, with a possible impact of qualitative 

and quantitative differences in caloric input or subtle variations of NAD+ availability impacting on sirtuin 

activity. Another important parameter to take into account is that SIRT1 and SIRT6 modulate circadian 

function and are themselves affected by circadian oscillation in the abundance of NAD+ (58). 

Two studies examined SIRT2 in the context of infection by intracellular bacteria. In a first model, 

Listeria monocytogenes was shown to promote SIRT2-dependent histone H3 deacetylation and redirect host 

gene expression to promote infection (59). Whether other microorganisms subvert SIRT2 or other sirtuins at 

their own benefit is presently unknown. In a second model, SIRT2 deletion in the myeloid compartment had 

no noticeable impact on host defenses against Mycobacterium tuberculosis infection as revealed by cellular 

infiltrates, cytokine expression and long term bacterial burden in lungs (40). 

 We analyzed host responses to extracellular bacteria most frequently isolated from septic patients 

(38). Strikingly, SIRT2 deficiency enhanced the engulfment of gram-positive and gram-negative bacteria by 

macrophages without affecting the expression of phagocytic receptors. These observations could be 

reconciled by the fact that SIRT2 deacetylates α-tubulin at lysine 40, thereby destabilizing the microtubule 

network (60, 61). Indeed, during the process of phagocytosis, cells undergo a massive rearrangement of the 

cytoskeleton involving microtubule dynamics and requiring microtubule stabilization (62, 63). Paclitaxel, that 

enhances tubulin polymerization and stabilizes microtubules, promotes phagocytosis; while microtubule 
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depolymerizating agents such as colchicine and nocodazole reduce phagocytosis by macrophages (64-66). 

The reason why SIRT2 deficiency impacted on phagocytosis by macrophages but not DCs and neutrophils 

remains unclear, and may reflect cell-specific differences regarding SIRT2 functions. 

 Besides being a central mechanism controlling nutrient homeostasis, autophagy plays a role in host 

defenses by facilitating the clearance of bacteria from the cytoplasm (67). Interestingly, hyperacetylation of 

tubulin stimulated autophagy by nutrient deprivation and SIRT2 deficiency increased autophagy in a 

colorectal cancer cell line (68, 69). By regulating tubulin acetylation, SIRT2 may contribute to modulate 

phagocytosis and autophagy defense mechanisms, although the latter has not been formally demonstrated. 

 From a translational standpoint, it was important to define the impact of SIRT2 in preclinical models 

of infection. A main observation of this study is that SIRT2 deficiency confers protection from chronic 

staphylococcal infection, but neither protects nor sensitizes to toxic shock, mild and severe endotoxemia, 

rapidly lethal E. coli peritonitis and non-severe K. pneumoniae pneumoniae. So far, these results comfort the 

clinical development of SIRT2 inhibitors with a safety profile in terms of susceptibility to infections, which 

contrasts with inhibitors of HDAC1-11 that increased susceptibility to infection in preclinical mouse models 

and the administration of which was reported to be associated with episodes of severe infection in patients 

(30, 36, 70-72). Nonetheless, the panel of sepsis conditions should be enlarged to warranty definite 

conclusions. 

 Overall, SIRT2 has a subtle impact on host defense response to bacterial infections. Our results are 

encouraging in the perspective of developing therapies directed at SIRT2 for treating metabolic and 

neurodegenerative diseases. As an example, SIRT2 inhibitors mediated neuroprotective effects in models of 

Parkinson's disease and Huntington's disease (73, 74). Additionally, SIRT2 inhibitors might be viewed as an 

adjunctive therapy for treating chronic bacterial infection.  

 

Materials and methods 

Ethics statement 

Animal experimentations were approved by the Office Vétérinaire du Canton de Vaud (authorizations n° 

876.8 and 877.8) and performed according to Swiss guidelines and ARRIVE guidelines 

(http://www.nc3rs.org.uk/arrive-guidelines). 

Mice, cells and reagents 

Eight to 12-week-old female BALB/cByJ and C57BL/6J mice (Charles River Laboratories, Saint-Germain-

sur-l’Arbresle, France) were housed under specific pathogen-free conditions. SIRT2 knockout mice (18) 

were backcrossed 12 times on a C57BL/6J background. Splenocytes were cultured in RPMI 1640 medium 

containing 2 mM glutamine, 50 μM 2-ME, 100 IU/ml penicillin, 100 μg/ml streptomycin (Invitrogen, San 

Diego, CA) and 10% heat-inactivated fetal calf serum (FCS; Sigma-Aldrich St. Louis, MO) (26). Bone marrow 

(BM) cells were cultured in IMDM (Invitrogen) containing 50 M 2-ME, penicillin, streptomycin and 10% FCS. 

Medium was supplemented with 20 ng/ml M-CSF or 20 ng/ml GM-CSF plus 20 ng/ml IL-4 (ProSpec, East 

http://www.nc3rs.org.uk/arrive-guidelines
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Brunswick, NJ) or 200 ng/ml FMS-like tyrosine kinase 3 ligand (Flt3l, Shenandoah biotechnology, Warwick, 

PA) to generate BM-derived macrophages (BMDMs), or BM-derived dendritic cells (BMDCs) or Flt3L-DCs, 

respectively. BMDCs were collected after 6 days. BMDMs and Flt3L-DCs were collected after 7 days of 

culture. Cells were seeded in 96-well (1 x 105 cells), 24-well (5 x 105 cells) or 6-well (2 x 106 cells) plates in 

medium without growth factor and antibiotics unless specified. Bone marrow neutrophils were isolated using 

the Neutrophil Isolation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany) and short-term cultured in PBS 

containing 2% FCS. 

 Salmonella minnesota ultra pure LPS was from List Biologicals Laboratories (Campbell, CA), 

Pam3CSK4 from EMC microcollections (Tübingen, Germany), CpG ODN 1826 (CpG) from InvivoGen (San 

Diego, CA), toxic shock syndrome toxin-1 (TSST-1) and staphylococcal enterotoxin B (SEB) from Toxin 

Technology (Sarasota, FL), concanavalin A and phytohemagglutinin (PHA) from Sigma-Aldrich, and anti-

CD3ε and anti-CD28 antibodies (clones 145-2C11 and 37.51) from eBioscience (San Diego, CA). Clinical 

strains of Escherichia coli (E. coli) O18, E. coli J5, E. coli O111, Salmonella enterica serovar Typhimurium 

C5 (Salmonella Typhimurium) Klebsiella pneumonia caroli (K. pneumonia), Neisseria meningitis, 

Streptococcus pneumonia, Staphylococcus aureus AW7 (S. aureus) and Group B Streptococcus (GBS) 

were grown in brain heart infusion broth (BD Biosciences, Erembodegem, Belgium) (27, 28). Microorganisms 

were washed in PBS and adjusted to 1010 CFU/ml. For in vitro stimulation experiments, bacteria were heat-

inactivated for 2 h at 56°C. 

RNA analyses 

Total RNA was isolated RNeasy kit and reverse transcribed using the QuantiTect reverse transcription kit 

(Qiagen, Hilden, Germany). Real-time PCR were conducted with a QuantStudio™ 12K Flex system (Life 

Technologies, Carlsbad, CA). Reactions, tested in triplicates, consisted of 1.25 µl cDNA, 1.25 µl H2O, 0.62 µl 

primers and 3.12 µl Fast SYBR® Green Master Mix (Life Technologies). Primer pairs for amplifying Tnf, Il6, 

Tlr1, Tlr2, Tlr4, Tlr9 and hypoxanthine guanine phosphoribosyl transferase (Hprt) cDNA were as published 

(29, 30). Gene specific expression was normalized to Hprt expression. Sirt1-7 expression levels were 

extracted from the BioGPS resource (http://biogps.org). For microarray analyses, RNA concentration and 

quality were assessed using a NanoDrop®ND-1000 spectrophotometer, RNA 6000 NanoChips and the 

Agilent 2100 Bioanalyzer (Agilent, Palo Alto, USA). One hundred ng RNA were amplified using the Ambion® 

WT Expression Kit (Life Technologies). cDNA was fragmented and labelled with GeneChip® WT Terminal 

Labeling kit (Affymetrix, Santa Clara, CA). Affymetrix mouse gene 2.0ST arrays were hybridized for 16 

hours at 45°C with 3.7 g of fragmented targets, washed and stained according to the protocol of the 

Affymetrix GeneChip® Expression Analysis Manual (Fluidics protocol FS450_0002). Arrays were scanned 

with the GeneChip® Scanner 3000 7G (Affymetrix). Normalized expression signals were calculated from 

Affymetrix CEL files by the Robust Multi-array Average algorithm (RMA), using the Affymetrix Expression 

Console Software, version 1.3.1.187. Hybridization quality was assessed using Expression Console 

Software as well. Statistical analyses were performed using the free high-level interpreted statistical 

language R, version 3.0.1. Differential hybridized features were identified using the R Bioconductor package 

“limma” that implements linear models for microarray data (31). P values were adjusted for multiple testing 

http://biogps.org/
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using the Benjamini and Hochberg’s method to control the false discovery rate (FDR). Probe sets with a FDR 

< 0.05 were considered significant. Microarray data were generated and analyzed by the Genomic 

Technologies Facility at the University of Lausanne (Lausanne). 

Western blot analyses 

Protein extracts were submitted to PAGE and transferred onto nitrocellulose membranes as decribed (32). 

Membranes were incubated with primary antibodies specific of SIRT2 (Abcam, Cambridge, UK), tubulin 

(Sigma-Aldrich) and total and phosphorylated ERK1/2, p38 and JNK (Cell Signaling Technology), and then 

with a secondary horseradish peroxidase-conjugated antibody (Sigma-Aldrich) (33). Blots were revealed with 

the enhanced chemiluminescence Western blotting system (GE Healthcare, Little Chalfont, Royaume-Uni). 

Images were recorded using a Fusion Fx system (Viber Lourmat, Collégien, France). 

Flow cytometry 

Single cell suspensions from thymus and spleen or BMDMs were enumerated and incubated with 2.4G2 

monoclonal antibody (mAb). Immune cell subpopulations were tracked by staining performed using mAbs 

described in supplementary Table 1. Splenic CD4+ CD25+ Foxp3+ cells were detected using The Mouse 

Regulatory T Cell Staining Kit (eBioscience). Data were acquired using a LSR II flow cytometer (BD 

Biosciences) and analyzed using FlowJo Version 8.5.3 software (FlowJo LLC, Ashland OR). 

Proliferation assay 

The proliferation of 1.5 x 105 splenocytes cultured for 48 hours in 96-well plates was quantified by measuring 
3H-thymidine incorporation over 18 hours (34). 

Cytokine measurements 

Cytokine concentrations were quantified using DuoSet ELISA kits (R&D Systems, Abingdon, UK) or Luminex 

assays (Affimetrix eBioscience, Vienna, Austria) (35). 

In vivo models 

Eight to 12-week-old female SIRT2+/+ and SIRT2-/- mice matched for age were used. To analyze the 

response to TSST-1, mice were challenged intraperitoneally (i.p.) with 10 μg of the toxin. Sub-lethal and 

lethal models of endotoxic shock were performed by challenging mice i.p. with 200 μg and 500 μg LPS, 

respectively. To induce TNF shock, mice were sensitized with an i.p. injection of D-galactosamine (30 mg/kg, 

Sigma-Aldrich) followed immediately after with an i.p. challenge with TNF (25 mg/kg, Preprotech, Rocky Hill, 

NJ). Bacterial sepsis was induced by challenging mice i.p. with 105 CFU E. coli O18, intravenously (i.v.) with 

107 CFU S. aureus, or intranasally (i.n.) with 30 CFU K. pneumoniae. Blood was collected 0, 1, 6, 8 or 24 

hours post-challenge to quantify cytokines and bacteria (29). Body weight losses, severity scores and 

survival were registered at least once daily. The severity score was graded from 1 to 5 (28). Animals were 

euthanized when they met a severity score of 4. 
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Phagocytosis assays 

Fluoresbrite® Yellow Green Microspheres (Polysciences Inc, Warrington, PA) or FITC-labeled bacteria were 

added to cells at a ratio of 10 beads or bacteria/cell. After 1 hour, cells were collected, washed, incubated for 

1 minute with trypan blue (0.25 mg/ml), washed and analyzed by flow cytometry. In some experiments, 

beads were opsonized with serum for 30 min at 37°C. Phagocytosis of live E. coli O18, S. aureus and GBS 

was performed essentially as described (36). Briefly, BMDMs were incubated for 1 hour with bacteria at a 

multiplicity of infection of 5 bacteria/cell. Non-adherent bacteria were removed by washing and extracellular 

bacteria killed by a 30-minute exposure to 100 μg/ml gentamicin (Essex Chemie, Luzern, Switzerland; for E. 

coli and GBS) or 10 μg/ml ciprofloxacin (Fresenius Kabi, Oberdorf, Switzerland; for S. aureus). Serial 

dilutions of cell lysates were distributed on agar plates. Colonies were enumerated to calculate the number 

of phagocytosed bacteria. 

Statistical analyses 

Comparisons between the different groups were performed by analysis of variance followed by two-tailed 

unpaired Student’s t-test. The Kaplan-Meier method was used for building survival curves and differences 

were analyzed by the log-rank sum test. All analyses were performed using PRISM (GraphPad Software). P 

values were two-sided, and values < 0.05 were considered to indicate statistical significance. 
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Table 1. Thymic populations in SIRT2+/+ and SIRT2-/- mice 
 
 SIRT2+/+ SIRT2-/- 

CD4+ CD8+ 82.3±3.1 82.9±0.4 

CD4- CD8- 2.0±0.6 1.8±0.2 

CD25+ CD44+ 1.8±0.6 1.6±0.5 

CD25- CD44+ 0.2±0.01 0.2±0.01 

CD25+ CD44- 1.4±0.6 1.3±0.4 

CD25- CD44- 96.6±1.2 96.9±1.0 

CD4+ CD8- 12.0±2.3 12.1± 0.7 

CD4- CD8+ 3.6±0.3 3.3±0.8 

Data are means ± SD of 4 animals per group and expressed as the percentage of total cells (CD4+ CD8+, 
CD4- CD8-, CD4+ CD8- and CD4- CD8+) or percentage of CD4- CD8- parental cells (CD25+ CD44+, CD25- 

CD44+, CD25+ CD44- and CD25- CD44-). Total cell numbers were 49.2±15.4 and 55.2±5.7 millions in the 
thymus of SIRT2+/+ and SIRT2-/- mice, respectively. 
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Table 2. Splenic populations in SIRT2+/+ and SIRT2-/- mice 
 
 SIRT2+/+ SIRT2-/- 

Cell number (x10-6) 74.2± 5.6 67.4±8.7 

   

CD3+ T cells (%) 27.3±4.6 36.3±4.8 

CD4+ 62.3±2.7 61.5±4.3 

CD4+ CD44low CD62Lhigh (naive) 46.0±2.9 43.7±6.8 

CD4+ CD44high CD62Llow (memory) 16.3±2.9 17.8±6.9 

CD8+ 31.5±2.0 32.0±2.9 

CD8+ CD44low CD62Lhigh (naive) 23.1±0.5 23.5±0.3 

CD8+ CD44high CD62Llow (memory) 8.4±0.5 8.5±0.3 

CD4- CD8- 1.3±0.2 1.6±0.2 

B220+ B cells (%) 52.2±7.4 51.3±3.1 

B220+ IgD+ CD23+ (mature) 45.6±1.2 44.1±0.9 

B220+, non-IgD+/CD23+ (immature) 6.6±1.2 7.2±0.9 

CD11c+ DCs (%) 6.6±0.2 6.4±0.6 

B220- 62.8±2.5 62.8±4.7 

B220+ 37.2±2.5 37.2±4.7 

CD4+ CD25+ Foxp3+ Tregs (%) 4.5±0.4 4.7±0.2 

Data are means ± SD of 4 animals per group and expressed as total cell number (x10-6) per spleen, 
percentage of splenic cells (CD3+, B220+, CD11c+ and CD4+ Foxp3+) or percentage of CD3+, B220+ or 
CD11c+ parental populations. Total cell numbers were 74.2± 5.6 and 67.4±8.7 millions in the spleen of 
SIRT2+/+ and SIRT2-/- mice, respectively. 
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Supplementary Table 1. Antibodies used for flow cytometry analyses 
 
Target Clone name Coupling 

B220 RA3-6B2 eFluor® 450 
CD3 145-2C11 PE, eFluor® 450 
CD4 RM4-5 PE, FITC 
CD8 53-6.7 APC-eFluor® 780, APC-Cy7 
CD11b M1/710 PE, APC 
CD11c HL3 APC 
CD14 Sa2-8 PE-Cy7 
CD23 B3B4 PE 
CD25 PC61.5 APC 
CD36 72-1 PE 
CD44 IM7 APC, eFluor® 450 
CD62L MEL-14 FITC 
CD93 AA4.1 APC 
IgD AMS 9.1 FITC 
MHC-II 114.15.2 FITC 
PE: phycoerythrin; FITC: fluorescein isothiocyanate; APC: allophycocyanin. All antibodies were from 
eBioscience, except the anti-IgD-FITC that was from BD Biosciences (Pharmingen). 
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Figure 1. Sirt2 is the main sirtuin expressed in myeloid cells. (A) SIRT1-7 mRNA levels were quantified 

in bone marrow (BM), BM-derived macrophages (BMDMs) and dendritic cells (BMDCs) and Flt3L-derived 

DCs by RT-PCR. SIRT1-7 mRNA levels were normalized to Hprt mRNA levels. Data are means ± SD of 

triplicate samples from one experiment performed with 4 BALB/c mice and are representative of 2 

experiments. (B) SIRT2 mRNA expression levels in a panel of myeloid-derived cells (http://biogps.org). (C) 

SIRT2 mRNA and SIRT2 protein expression levels in SIRT2+/+ and SIRT2-/- BMDMs assessed by RT-PCR 

and Western blotting, respectively. A.U.: arbitrary units.  

 
  

http://biogps.org/
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Figure 2. SIRT2 deficiency does not affect proliferation and cytokine response of splenocytes nor the 
production of IFNγ in mice challenged with TSST-1. (A-B) SIRT2+/+ and SIRT2-/- splenocytes were 

incubated for 48 hours with LPS (5 µg/ml), CpG (2 µg/ml), concanavalin A (5 µg/ml), anti-CD3/CD28 

antibodies (1µg/ml), TSST-1 (2 µg/ml) and SEB (5 µg/ml). (A) Proliferation was measured by 3H-thymidine 

incorporation. (B) IL-2 and IFNγ concentrations in cell culture supernatants were quantified by ELISA. Data 

are means ± SD of triplicate samples from one experiment performed with 4 mice and are representative of 2 

experiments. (C) SIRT2+/+ and SIRT2-/- mice (n = 8 per group) were injected with TSST-1 (10 µg i.p.). Blood 

was collected after 0, 8 and 24 hours to quantify IFNγ concentrations by Luminex. Data are means ± SD. P > 

0.5 for all conditions. 
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Figure 3. SIRT2 deficiency does not affect the response of macrophages and DCs to microbial 
stimulation. SIRT2+/+ and SIRT2-/- BMDMs (A-C) and BMDCs (D) were exposed to LPS (10 ng/ml), 

Pam3CSK4 (10 ng/ml) and CpG (2 µg/ml), E. coli (106 CFU/ml), S. aureus and GBS (2.5 x 106 CFU/ml). (A) 

Expression levels of phosphorylated (p) and total ERK1/2, p38 and JNK were analyzed by Western blotting 

and quantified by imaging. Data are means ± SD obtained with three mice. (B) Tnf, Il6, Tlr1, Tlr2, Tlr4 and 

Tlr9 mRNA levels were analyzed by RT-PCR. mRNA levels were normalized to Hprt mRNA levels. Data are 

means ± SD of triplicate samples from one experiment performed with 3 mice. A.U.: arbitrary units. (C, D) 

TNF and IL-6 concentrations in cell culture supernatants collected 8 hours after stimulation. Data are means 

± SD of triplicates samples from one experiment performed with 6 mice (C) or 3 mice (D). *, P = 0.02. 



167 

 

 
 
Figure 4. SIRT2 deficiency does not affect endotoxemia or TNF-induced shock. SIRT2+/+ and SIRT2-/- 

mice were injected i.p. with 200 μg LPS (A-B, n = 6 per group) and 500 μg LPS (C-D, n = 8 per group). (A 
and C) TNF, IL-6 and IL-12p40 concentrations in blood collected 1hour (TNF) and 6 hours (IL-6 and IL-

12p40) after LPS challenge. (B-D) Survival of mice. P = 0.3 and 0.6. (E) Survival of SIRT2+/+ and SIRT2-/- 

mice (n = 11 per group) sensitized with 30 mg/kg D-galactosamine and challenged i.p. with 25 mg/kg TNF. P 

= 0.6. 
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Figure 5. SIRT2 deficiency increases bacterial phagocytosis by macrophages. SIRT2+/+ and SIRT2-/- 

BMDMs (A-F), BMDCs (A-B) and neutrophils (B) were incubated with Fluoresbrite® Yellow Green 

Microspheres (10 beads/cell, not opsonized in A and B, opsonized in C) or live E. coli, S. aureus and GBS 

(10 bacteria/cell, D). (A-C) After 1 hour of incubation, cells were analyzed by flow cytometry and results 

expressed as percent fluorescent cells. Data are means ± SD from one experiment performed with 4 mice. *, 

P = 0.002 (B). (D) BMDMs were collected 1 hour after infection to assess phagocytosis. Data are means ± 

SD from one experiment performed with 4 (E. coli and GBS) or 8 (S. aureus) mice. *, P = 0.03, 0.006 and 

0.03 for E. coli, S. aureus and GBS. (E) Itga5, Itga6, Itgal, Itgam, Itgax, Itgb1, Itgb2, Cd14, Cd36, Msr1 and 

Clec7a mRNA expression levels were determined by DNA array analyses. Data are means ± SD of one 

experiment performed with 3 mice. (F) CD11b, CD11c, CD14, Msr1 expression levels were analyzed by flow 

cytometry. 
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Figure 6. SIRT2 deficiency protects from S. aureus infection. (A) Body weight losses, bacteria in blood 

24 hours post-infection (P = 0.9) and survival (P = 0.7) of SIRT2+/+ and SIRT2-/- mice challenged i.p. with 105 

CFU E. coli (n = 16 per group). (B) Severity scores, body weight losses and survival (P = 0.04) of SIRT2+/+ 

and SIRT2-/- mice challenged i.v. with 107 CFU S. aureus (n = 13 and 9). Severity scores: *, P < 0.01. Body 

weight losses: *, P = 0.03 and 0.04. (C) Body weight losses and survival (P = 0.9) of SIRT2+/+ and SIRT2-/- 

mice challenged i.n. with 30 CFU K. pneumoniae (n = 7 per group). 
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Additional data 
 
Evidences for a genetic drift of SIRT2-/- mice 

When we first screened SIRT2+/+ and SIRT2-/- splenocytes for their proliferation and production of IL-2 and 

IFNγ, we noticed a reduced response of SIRT2-/- when compared with SIRT2+/+ splenocytes in response to 

TSST-1 stimulation, whereas SIRT2+/+ and SIRT2-/- splenocytes behave similarly in response to LPS, CpG 

ODN 1826, PMA and ionomycin, concanavalin A and anti-CD3/CD28 (Additional Figure 1 and data not 

shown).  

TSST-1 is a staphylococcal exotoxin that acts as an exogenous superantigen (SAg) by bridging MHC-II 

molecules on the surface of antigen presenting cells (APCs) with conserved regions of T cell receptor (TCR) 

Vβ3, Vβ15 and Vβ17 chains expressed by T cells (377, 378). Thus, impaired response to TSST-1 by SIRT2-/- 

splenocytes could result from an impaired expression (possibly SIRT2-dependent) of MHC-II, Vβ3, Vβ15, 

Vβ17 or co-stimulatory molecules (i.e. CD28) necessary for optimal response to TSST-1. We also envisaged 

possible genetic background differences between SIRT2+/+ and SIRT2-/- mouse lines that would determine 

the phenotype observed. For example, endogenous mouse mammary tumor viruses (MMTVs) express 

endogenous SAg that in the context of I-E molecules, and for some of them I-A molecules, induces the 

deletion of SAg-reactive T cells through negative selection in the thymus.  

To test this last possibility, we performed an F2 study in which we compared proliferation and IL-2 and IFNγ 

production by SIRT2+/+, SIRT2+/- and SIRT2-/- splenocytes. Cells were stimulated with TSST-1, PMA and 

ionomycin, concanavalin A, anti-CD3/CD28, PHA and SEB, another staphylococcal toxin acting as a SAg. 

Unfortunately, the phenotype previously observed in response to TSST-1 was lost in the F2 progeny 

(Additional Figure 1 and data not shown). Moreover, flow cytometry analyses of TCR-Vβ repertoire 

expressed by thymocytes and splenocytes, and of I-Ab expression by DCs, B cells and 

monocytes/macrophages did not reveal significant differences between SIRT2+/+ and SIRT2-/- mice (data not 

shown). 
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Additional Figure 1. Comparison of the response of SIRT2+/+, SIRT2+/- and SIRT2-/- splenocytes in an 
F2 study. Splenocytes from SIRT2+/+ and SIRT2-/- parental mice (left) and from SIRT2+/+, SIRT2+/- and 
SIRT2-/- mice of F2 study (right) were incubated for 48 hours with 5 µg/ml LPS, 2 µg/ml CpG ODN 1826, 2 
µg/ml TSST-1, 50 ng/ml PMA and ionomycin, 5 µg/ml concanavalin A (ConA), 1 µg/ml anti-CD3/CD28, 5 
µg/ml phytohemagglutinin (PHA) and 5 µg/ml SEB. IL-2 production was quantified by ELISA. Data are 
means ± SD of triplicates determinations with 4-6 mice per group. Comparisons between the different groups 
were performed by unpaired t test using PRISM (GraphPad Software). 

 

We conclude from these experiments that the observed impaired response to TSST-1 by SIRT2-/- 

splenocytes was due to some genetic drift rather than to a SIRT2-dependent specific effect. Therefore, new 

SIRT2+/+ and SIRT2-/- breeders were obtained from our collaborators (Prof J. Auwerx, EPFL, Lausanne, 

Switzerland) to start new colonies. Additionally, animals were backcrossed twice before using them in all the 

experimental settings reported in this manuscript.  

 

Impact of SIRT2 on Leishmania Mexicana Phagocytosis by BMDMs 

Given the observation that SIRT2-/- BMDMs phagocytose bacteria better than SIRT2+/+ BMDMs, we 

questioned whether a similar phenotype exists for other kinds of pathogens. To investigate this area, we 

collaborated with the laboratory of Prof Fabienne Tacchini-Cottier (Department of Biochemistry, University of 

Lausanne, Switzerland) that is specialized in studying the pathogenesis of leishmaniasis. 

SIRT2+/+ and SIRT2-/- BMDMs were incubated for 4 hours with constitutive red fluorescent protein (mCherry)-

expressing Leishmania mexicana at a multiplicity of infection (MOI) of 5, 10 and 20 before determining by 

flow cytometry the percentage of BMDMs that phagocytosed Leishmania. Cells were also seeded onto poly-

lysine coated coverslip and stained with Diff Quick to quantify by microscopy the number of parasites 

ingested per BMDMs. As summarized in additional Figure 2, no significant differences were observed 

between SIRT2+/+ and SIRT2-/- BMDMs. The reason why SIRT2-/- BMDMs do not phagocyte more parasites 

than SIRT2-/- BMDMs while they phagocyte better bacteria might be due to differences in size of the 
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microorganisms and processes involved in their uptake. Of note, the above experiments were performed 

with parasites collected in the stationary phase. In the late stationary phase, Leishmania differentiates into a 

more rare and difficult to obtain metacyclic form, considered to be the infectious form. Additional tests could 

use metacyclic parasites. 

 

Additional Figure 2. SIRT2 knockout does not affect phagocytosis of Leishmania mexicana by 
BMDMs. SIRT2 +/+ and SIRT2-/- BMDMs were exposed for 4 hours to L. Mexicana, expressing the mCherry 
red-fluorescent protein, at MOI 5, 10 and 20. A, The percentage of positive cells was determined by flow 
cytometry. Data are mean ± SD of quadruplicate measures from one experiment. B, BMDMs were seeded 
onto poly-lysine coated coverslip, fixed and stained with Diff Quick. The number of parasite/cell was counted 
in randomly selected 100 cells. Data are mean ± SD of quadruplicate measures from one experiment.  
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4 CONCLUSIONS AND PERSPECTIVES 

4.1 Propionate, short chain fatty acids, microbiome, and innate immune 
defenses 

Symbiosis between the microbiota and the host is a complex phenomenon, whose relevance in human 

health and diseases just starts being appreciated. Multiple studies have been conducted to unravel the 

mechanisms underlying the benefits of host-flora interactions and the relationship between dysbiosis and 

pathological conditions such as cancer, inflammatory bowel diseases, asthma, obesity and malnutrition 

related complications (379-386). It has been proposed to target the microbiota either directly or through the 

diet to ameliorate disease conditions. Indeed, diet contributes to determine the composition of the gut flora 

(387-389). Additionally, commensal species produce in different proportions metabolites that in turn promote 

or inhibit the expansion of some microbial species (390). 

The human gut flora is composed of bacteria from three main phyla: Bacteriodetes, Firmicutes and 

Actinobacteria (391, 392). SCFAs are produced in the large bowel through fermentation of non-digestible 

fibers and from unabsorbed carbohydrates and proteins. Propionate is one of the most abundantly produced 

SCFA, together with butyrate and acetate. Propionate is produced via at least three biochemical pathways: 

1) the succinate pathway performed by Bacteriodetes and Firmicutes that represents the main source of 

propionate, 2) the acrylate pathway carried out by few strains of Firmicutes (Veillonellaceae and 

Lachnospiraceae families) and 3) the propanediol pathway that is more widespread and achieved by several 

strains of Firmicutes (393). SCFAs have trophic, antioxidant and anticarcinogenic activities, but also anti-

inflammatory properties, an aspect especially well characterized mainly for butyrate (96, 394-399). 

Two studies reported the inhibition by propionate of the LPS response of human THP-1 and murine RAW 

264.7 macrophage cell lines (400, 401). More recently evidence arose in BMDMs and BMDCs (402). We 

show that propionate inhibits cytokine and chemokine production in a stimulus and cell type specific manner 

in innate immune cells. Previous studies reported similar cell-dependent differences for the effects of SCFAs 

(96, 395). Additionally, the impact of propionate on LPS-induced chemokine and cytokine production is 

stronger on mature than on immature human moDCs (403). The reasons why similar SCFAs mediate 

different effects using identical stimulatory conditions are unknown. Discrepancy may result from the fact that 

SCFAs proceed through distinct mechanisms. SCFAs act via the metabolite sensing receptors (GPCRs) 
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GPR41, GPR43 and GPR109A and diffuse into cells to inhibit class I and II HDACs. GPCRs are unequally 

expressed by immune cells, and a comprehensive analysis of SCFA sensing by GPCRs is missing. For 

instance, GPR109A is expressed at higher level than GPR41 and GPR43 by human moDCs (403), while 

GPR43 is more expressed than GPR41 in THP-1 cells and primary human neutrophils and monocytes (400). 

One may speculate that the expression patterns of GPCRs underlie differential effects of SCFAs. 

Additionally, different GPCRs may lead to differential intracellular signaling due to the coupling to different G 

proteins. Trimeric G proteins are composed of α, β and γ subunits and are classified into four subtypes 

based on the structure and function of α subunits: Gs, Gi/o, Gq/11 and G12/13 (404). GPR43 is coupled to Gq and 

Gi/o, while GPR41 and GPR109A are coupled only to Gi/o (405). Although signaling downstream of G proteins 

depends on several factors, like associated receptors and ligands, Gi/o is commonly believed to inhibit the 

activity of adenylate cyclase, the enzyme that forms cyclic AMP (cAMP) from ATP. Gq interacts with the 

phospholipase Cβ (PLCβ) that, once activated, hydrolyzes the cytosolic phosphatidylinositol 4,5-

bisphosphate (PIP2). This leads to the production of inositol-1,4,5-trisphosphate (IP3) that promotes Ca2+ 

flux, and of 1,2-diacylglycerol (DAG) that activates the protein kinase C (406, 407). A further level to be 

considered is the affinity of different SCFAs for GPCRs. In vitro cell-based analyses have demonstrated that 

propionate similarly binds to GPR41 and GPR43 and more potently than acetate (408). 

Modulation of innate cell response by propionate could be partially or fully mediated by inhibition of HDACs. 

Propionate nicely inhibits the production of IL-6 and IL-12p40, but not TNF, by murine macrophages. A 

similar differential impact on TNF versus other cytokines has been observed with other HDACi (96, 105, 409, 

410). Moreover, despite the evidence that propionate activates signaling (cAMP and Ca2+ flux) downstream 

GPR41 and GPR43 stronger than any other SCFAs (408), propionate is less effective than butyrate at 

reducing cytokine production by macrophages, DCs and whole blood, as shown here and by others (402, 

403, 411). Further supporting the idea that propionate acts primarily as a HDACi is the observation that 

propionate induces Ca2+ influx (as consequence of GPR43 activation) in neutrophils but not in monocytes, 

while strongly inhibiting MCP-1 and IL-10 production (412). Running experiments using GPR41, GPR43, 

GPR109A knockout mice or cells would definitely answer whether or not these receptors participate in 

mediating the anti-inflammatory activity of propionate reported in our models. Of note, bone marrow chimera 

experiments between wild type mice and GPR41 and GPR43-/- mice revealed that the role of these receptors 

in immune responses against Citrobacter rodentium is more relevant in non-bone marrow derived cells that 

in bone marrow derived cells (413). 
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While butyrate and valproate protect mice from lethal sepsis and septic shock (96, 100, 414, 415), 

propionate has no impact on morbidity parameters and mortality in a panel of preclinical lethal models 

including endotoxemia and K. pneumoniae, S. aureus and C. albicans sepsis. Moreover, propionate has no 

impact on models of mild infection with E. coli and C. albicans. These data are reassuring in the perspective 

of developing therapies based on propionate or diet. Still, propionate should be tested in additional, non-

stringent models of infections taking place at other anatomical sites (gut, kidney, skin..). Indeed, propionate 

dampens inflammation during airway allergy, and other SCFAs such as acetate and butyrate protect from 

colitis (371, 372, 395, 416). 

The discrepancy between the clear anti-inflammatory activity of propionate in vitro and the absence of effect 

in vivo might be due to opposite effects on different cell types. Indeed, in vitro studies cannot recapitulate the 

complex response of a whole organism. We mainly focus on macrophages and DCs. Yet, propionate 

promotes neutrophil rolling, adherence, chemotaxis, migration, superoxide production and cell death (408, 

417-419).Therefore, the impact of propionate on neutrophils should be addressed in our models of infection. 

Another important aspect that should be considered is the influence of propionate on the adaptive immune 

system. Mice that survived K. pneumonie and S. pneumonia infection had lower anti-bacteria IgG titers. To 

address the relevance of this observation, a model of re-infection, in which mice with or without propionate 

treatment are re-exposed to a sublethal dose of pathogen, is planned. Another approach could be to collect 

serum or T-cells from propionate treated and untreated mice infected with a non-lethal dose of bacteria (or 

with inactivated bacteria), and test whether transferring serum or T-cells from propionate treated mice is less 

efficient at protecting naïve mice from a lethal infection with the same bacteria. 

The reduced production of anti-bacteria antibodies by propionate treated mice reises questions about the 

impact of propionate on adaptive immune parameters. Many experiments can be envisaged such as 

addressing the migratory and antigen presentation abilities of APCs, the skewing of the T helper response 

and the interaction between APCs and T cells or T cells and B cells. It is known that intestinal microbiota and 

their metabolites influence T cell subset development in the gut and systemically. For example, propionate 

and butyrate, but not acetate, promote the generation of extrathymic Tregs and butyrate induces Tregs in the 

colon and confers protection from colitis (370, 374, 416). High levels of propionate in the gut are also 

associated with hematopoietic generation of macrophage and DC precursors that colonize lungs, hamper the 

generation of a Th2 response and protect from airway allergies (375). Yet, propionate, butyrate and acetate 
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can trigger the differentiation of naïve T cells into either Th1, Th17 or Treg cells according to the 

inflammatory environment (373, 413). Thereby, it would be interesting to test whether in our models of 

infection propionate treatment skews a particular T cell program. This could be achieved by tracking, through 

intracellular flow cytometry, cytokine expression by spleen and lymph node CD4+ and CD8+ T cells in order 

to calculate the proportions and absolute numbers of Th1, Th2, Th17 and Treg cells. 

Finally, we analyzed the effect of propionate exclusively from the host point of view. We do not know whether 

propionate favors or disadvantages in any way the pathogens used in our experiments. For example, it is 

known that enterohemorrhagic E. coli upregulates virulence factors and adherence in the presence of 

SCFAs (420) and that Nesseria meningitidis expresses a gene cluster that allows the uptake and usage of 

propionate, thus conferring Nesseria meningitidis a selective growth advantage in the mouth which is rich in 

propionate (421). Propionate also positively (up to 3 mM) or negatively (3-50 mM) affects biofilm formation 

by Actinomyces naeslundi (422). 

4.2 Cambinol and innate immune responses 
Cambinol is a powerful anti-inflammatory drug in vitro and in vivo that protects from lethal sepsis in 

preclinical models. The anti-inflammatory properties of cambinol have been confirmed in independent 

studies. Cambinol reduces NF-κB activation and TNF, IL-6 and RANTES production by LPS-stimulated 

J77.4 mouse macrophages (423). Of interest, no effect on p38 phosphorylation at 30 min was observed in 

J77.4 macrophages, while we observed that cambinol inhibits p38, ERK1/2 and JNK activation in RAW 

264.7 macrophages. Cambinol and its analog sirtinol reduce airway allergic inflammation by impairing DC 

migration to the bronchial lymph nodes and Th2 response. Additionally, cambinol reduces platelet 

aggregation and granule release (424).  

In our study, the immunomodulatory properties of cambinol were not recapitulated using SIRT1-specific 

(CHIC-35 and EX-527) and SIRT2-specific (AGK-2 and AK-7) inhibitors used alone or in combination. We 

therefore speculate that cambinol acts by targeting more than just SIRT1 and SIRT2. The broader than 

supposed specificity of cambinol, and of inhibitors in general, may be due to the fact that drug discovery 

uses R&D approaches far from physiological conditions. In the case of cambinol, sirtuin genes were cloned 

into expression plasmids, expressed and purified in bacteria. The deacetylation assays were performed in a 

cell free system, incubating a chemically acetylated peptide with purified sirtuins in the presence of NAD+ 

(179). Interestingly, a target of cambinol in primary neurons has been recently identified as neutral 
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sphingomyelinase 2 (nSMase2). The inhibitory activity of cambinol for nSMase2 in neurons is 10-fold 

stronger than that for SIRT1 and SIRT2. (425). While cambinol remains a promising drug for treating 

oncologic and inflammatory diseases, the analysis of the impact of sirtuins on immune responses requires 

more specific systems. Therefore, we used SIRT2 full knockout mice to analyze the impact of this sirtuin on 

innate immune responses. 

4.3 Impact of sirtuin 2 deficiency on innate immune responses 
We demonstrate that SIRT2 deficiency increases the phagocytosis of inert polystyrene beads, heat-

inactivated bacteria and live bacteria by macrophages. SIRT2 targets microtubules and more specifically 

deacetylates α-tubulin on lysine 40 (123). Although there is evidence that acetylation of α-tubulin is 

associated with microtubule stability, a proof of concept is missing. Moreover acetylation status of α-tubulin 

impacts on the recruitment of motor proteins (kinesins/dyneins) and severing enzymes (katanin and 

members of the closely related enzyme subfamilies spastin and fidgetin), and on the conformation of the α-

tubulin–β-tubulin dimers (426). 

Structure and function of cytoskeleton play a key role in phagocytosis. Many studies aimed at deciphering 

the role of cytoskeleton in phagocytosis use cytoskeleton inhibitors. One of the first observations was that 

PMNs treated with colchicine or vinblastine, that prevent microtubule polymerization, phagocytize less 

polystyrene beads (427). During the phagocytosis of polystyrene particles of 14 µm of diameter, both 

microtubules, formed by tubulin, and microfilaments, composed of actin, are associated to the membrane. 

Microtubules extend from the membrane to the interior area of the cell after challenge (428). Yet, 

microtubules are highly dynamic and display a rapid turnover rate (429). Interestingly, activation of human 

monocytes and macrophages with LPS augments microtubule stability by increasing the levels of tubulin and 

microtubules associated proteins (MAPs) (430). 

The fact that SIRT2 deacetylates α-tubulin goes well with the observed decreased phagocytosis by SIRT2-

deficient BMDMs. To further characterize the impact of SIRT2 during phagocytosis, it would be interesting to 

compare microtubule stability, acetylation status and subcellular localization dynamics in SIRT2+/+ and 

SIRT2-/- macrophages undergoing phagocytosis. This could be performed using confocal and time-lapse 

microscopy, and by measuring phagocytosis in the presence of cytoskeleton and/or SIRT2 inhibitors. Yet, 

one may envisage that microtubules are not directly involved in the phagocytic process. There is evidence 

that microtubules are present throughout the cytoplasm except in those regions where pseudopodia rich in 
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actin microfilaments are engulfing particles. This is because microfilament distribution is regulated by 

microtubules (431). Furthermore as actin is also involved in phagocytosis (432, 433), we might test whether 

SIRT2 is capable of deacetylating actin and whether this impacts on phagocytosis. Other interesting avenues 

of research can be proposed. Since the endolysosome maturation requires complex interactions with 

microtubules (431, 434), killing efficiency of bacteria should be analyzed. Microtubules are important for the 

formation of lipid rafts (435), and an additional hypothesis would be that destabilization of microtubules in 

SIRT2-deficient cells reduces lipid raft formation, clustering of phagocytic receptors and phagocytosis, 

regardless of the equal expression of phagocytic receptors observed in SIRT2+/+ and SIRT2-/- macrophages. 

Increased phagocytosis was observed in SIRT2-deficient BMDMs but not in BMDCs or neutrophils, 

suggesting that SIRT2 has cell specific functions. The fact that HDAC6 deacetylates α-tubulin and co-

immunoprecipitates with SIRT2 puts forward that these 2 enzymes cooperate to deacetylate tubulin (436). 

Hence, differences in HDAC6 expression or activity in different cell types might influence the impact of 

SIRT2 deficiency. Therefore, we will make a comparative expression study of HDAC6 and SIRT2 in 

phagocytic cells. 

Interestingly, we demonstrate that impaired phagocytosis has consequences in vivo, since SIRT2-deficiency 

protects mice from chronic infection by S. aureus. Similar results in other models of chronic infection, such 

as pneumonia or candidiasis, would strengthen our finding. “In vivo” phagocytosis could be performed by 

delivery of fluorescent beads in the airways of mice and subsequent measurement of their uptake by 

macrophages recovered from bronchial alveolar lavages. A system allowing the real time follow-up of 

bacterial dissemination in vivo might give more insights into the impact of SIRT2 deficiency. In that context, 

we just installed in our P2 animal facility an In-Vivo Xtreme II Optical/X-ray small animal imaging system 

(Bruker). We are currently setting-up conditions for noninvasively imaging in mice infected with a 

luminescent strain of S. pneumoniae engendered with lux transposon cassette, Tn4001 luxABCDE Kmr 

(437).  
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4.4 SIRT2 deficiency and formation of neutrophils extracellular traps 
(NETs)  

Neutrophils are specialized in microbial phagocytosis and killing (438). In 2004 neutrophils were shown to 

produce NETs that bind, neutralize and kill extracellular pathogens (38). NETs are formed by neutrophil 

granular and nuclear components (elastase, myeloperoxidase, DNA and histones). NETs interact with a 

variety of gram-positive and gram-negative pathogens and prevent the dissemination of microorganisms 

(439). The production of NETs has been associated with cell death (NETosis). Nevertheless, whether NET 

production provokes NETosis or is compatible with viability is not completely clear as both phenomena have 

been described (440). 

Considering that the extrusion of NETs might require important cytoskeleton dynamics, we hypothesized that 

SIRT2 deficiency could affect this process. To test our hypothesis, we purified neutrophils from SIRT2+/+ and 

SIRT2-/- bone marrow and analyzed LPS-induced NETs. As shown in Figure 1, SIRT2-/- neutrophils produce 

less NETs when compared with SIRT2+/+ neutrophils. 

 
Figure 1. SIRT2 deficiency impairs the formation of extracellular trap by neutrophils. SIRT2+/+ and 
SIRT2-/- neutrophils were purified using the Neutrophil Isolation Kit from Miltenyi Biotech, seeded onto poly-
lysine coated coverslips and stimulated for 4 hours with 10 ng/ml LPS. Cells were fixed with 4% PFA. 
NETs were stained with SYTOX® and pictures acquired with a Zeiss Axio Imager Z1 Microscope. Original 
magnification 63 ×. Scale bar indicates 100 μm. Data are from one representative of three neutrophil 
preparations. 
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To confirm our data, we then detected the production of NETs by SIRT2+/+ and SIRT2-/- live neutrophils by 

differential staining of dead cells and NETs with SYTOX® Orange (Figure 2A) and live neutrophils with 

SYTO® green (Figure 2B). This experiment confirmed that, upon LPS stimulation, SIRT2-/- neutrophils 

produce less NETs when compare with SIRT2+/+ neutrophils. Further investigations are required to confirm 

these promising preliminary data, to identify the underlying mechanisms and to address the in vivo relevance 

of this observation.  

  



 
Figure 2. SIRT2 deficiency reduces extracellular trap formation by neutrophils. SIRT2+/+ and SIRT2-/- neutrophils were purified using the 
Neutrophil Isolation Kit from Miltenyi Biotech, seeded onto poly-lysine coated coverslip and stimulated for 4 hours with 10 ng/ml LPS. A, Dead cells 
and NETs were stained with SYTOX® Orange. B, Live neutrophils were stained with SYTO® green. C, Overlay of A and B. Pictures were acquired 
with a Zeiss Axio Imager Z1 Microscope. Original magnification 63 ×. Scale bar indicates 100 μm. Data are from one experiment. 
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4.5 SIRT3 knockouts and the development of SIRT2/SIRT3 double 
knockout mice 

Oxidative stress and immune responses are interconnected through ROS and reactive nitrogen species 

(RNS) generated by immune cells. ROS and RNS are not only toxic for pathogens, but also activate MAPK 

and NF-κB pathways that direct the expression of immune genes, a role more specifically attributed to 

mitochondrial ROS (mtROS) (441, 442). Moreover ROS are involved in the activation of the NLRP3 

inflammasome that controls IL-1β and IL-18 processing (442-444). 

SIRT3 is the main mitochondrial deacetylase. SIRT3 has been shown to be involved in the maintenance of 

mitochondrial homeostasis and to play an important role in dampening oxidative stress and ROS 

production (445). SIRT3 reduces cellular ROS levels dependent on superoxide dismutase 2 (SOD2), a 

major mitochondrial antioxidant enzyme that is acetylated at two critical lysines: K53 and K89 (376). 

Moreover, inducers of the NLRP3 inflammasome break mitochondrial homeostasis and diminish the 

concentration of NAD+. This leads to the activation of SIRT2 and to the accumulation of acetylated α-

tubulin. Acetylated α-tubulin mediates the recruitment of the adaptor protein ASC and NLRP3 

inflammasome complex formation (446). Thus, we hypothesized that SIRT3 controls ROS production 

influencing inflammasome activation and IL-1β secretion, possibly in collaboration with SIRT2. 

We studied the impact of SIRT3 deficiency on oxidative stress, generation of mtROS and inflammatory and 

immune responses of macrophages. Although extensive studies have not be performed yet, we obtained 

some encouraging results showing increased production of active IL-1β, yet normal expression of CASP-1, 

by SIRT3-/- BMDMs exposed to nigericin and ATP. Should our observations be confirmed, additional 

experiments will be designed to investigate whether non-canonical NLRP3 inflammasome-associated or 

inflammasome-independent caspases, such as CASP-8 and CASP-11, are involved (447). Furthermore, 

we plan to quantify mtROS and total ROS, inflammasome assembly and cytokine production (with a focus 

on IL-1β and IL-18) by SIRT3+/+ SIRT3-/- BMDMs, BMDCs and granulocytes. An in vivo approach would be 

to compare IL-1β levels in the peritoneal cavity of SIRT3+/+ and SIRT3-/- mice injected with uric acid.  

As mentioned above SIRT3 is the main mitochondrial sirtuin. Moreover, SIRT2 is the most expressed 

sirtuin in myeloid cells (see section 5.6). Considering that sirtuins might have compensatory effects and 

that both SIRT3 and SIRT2 are involved in inflammasome activation, we decided to generate a double 
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SIRT2-/- and SIRT3-/- knockout mouse line. To that end, we crossed SIRT2-/- and SIRT3-/- mice. F1 animals 

were crossed to obtain SIRT2-/-/SIRT3-/- mice in the F2 population. The expected Medelian ratio of double 

knockout in F2 is 1/16 (Figure 3) and 1/32 for a specific sex.  We genotyped 312 F2 mice and identified 7 

female and 3 male double knockouts. We used these mice to establish a new mouse line that we are 

currently breading in SPF conditions in our animal facility. These animals will be used to test the impact of 

SIRT2/SIRT3 deficiency on innate immune responses and inflammasome activity. 

 

Figure 3. Punnett square of F1 gametes and expected frequencies of F2 genotypes. Any SIRT2-/- 
SIRT3-/- should appear with 1/16 of frequency. For a chosen sex the frequency is 1/32. 
 

4.6 Impact of SIRT2 on immune responses under metabolic stress 
and model of high fat diet 

Sirtuins require NAD+ for their enzymatic activity and therefore are intrinsically coupled to the metabolic 

status of the cell. Sirtuins are involved in the control of energy homeostasis and glucose and lipid 

metabolic pathways (Table 6, section 1.6.10). Considering that metabolism plays a central role in 

controlling immune responses and that metabolic changes occur during immune cell activation, we 

hypothesized that sirtuins represent a bridge between metabolism and immune response. Therefore, we 

started to study the role of SIRT2 knockout under metabolic stress conditions. 

Weaned mice were fed ad libitum with normal diet (ND; 10% of Kcal provided by fat mass) or high fat diet 

(HFD; 60% of Kcal provided by fat mass) for 20 weeks and weight was monitored regularly. HFD induced a 

significant increase of weight of SIRT2+/+ and SIRT2-/- mice compared with ND (Figure 4A). SIRT2+/+ and 

SIRT2-/- mice gain weight at a similar extent as shown by similar HFD/ND ratios (Figure 4B). Not 
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surprisingly, mice under HFD had increased blood levels of cholesterol and triglycerides (Figure 4C, left 

panels). Interestingly, hepatic transaminases were significantly more elevated in HFD compared with ND in 

SIRT2+/+ mice but not in SIRT2-/- mice (Figure 4C, right panels). When we analyzed the spleens from 

SIRT2+/+ and SIRT2-/- mice, we did not observe any significant differences in the proportions and absolute 

numbers of T cells and B cells (Figure 5A and 5B), except for Foxp3+ Tregs. Indeed, the percentage of 

Tregs was decreased by HFD in SIRT2+/+ mice but not in SIRT2-/- mice (Figure 5C). 

 

 
Figure 4. High fat diet regimen increases body weight and alters blood parameters. A, Weight of 
SIRT2+/+ and SIRT2-/- mice fed under normal diet (ND) or high fat diet (HFD) for 20 weeks (n = 4 per 
group). Data are mean ± SEM. B, The HFD/ND ratio was calculated. Statistical significance was assessed 
by unpaired two-way ANOVA using PRISM. C, Mice were sacrificed after 20 weeks of diet. Blood levels of 
cholesterol, triglycerides, ASAT and ALAT were measured. Data are single values from one experiment. 
Comparisons between the different groups were performed by unpaired t test using PRISM. 
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The study of the impact of SIRT2 on immune responses under metabolic stress condition is particularly 

relevant considering the close and complex relationships between sirtuins, metabolism and immunity. 

Moreover, it may reveal immune phenotypes otherwise hidden under normal diet conditions. In the first 

experiment presented here, splenic Tregs were reduced in HFD SIRT2+/+ mice, but not in their SIRT2-/- 

counterparts. Inhibition of Treg accumulation in the spleen of HFD-fed mice was previously reported (448). 

Moreover, HFD induces the depletion of hepatic Tregs, promoting nonalcoholic, endotoxin-induced 

steatohepatitis (449). Whether SIRT2 deficiency prevents liver injury and steatosis to steatohepatitis 

transition by maintaining Treg cells and dampening liver inflammation would certainly be an interesting 

subject of research. We have conserved samples of liver and other organs of the different experimental 

groups that will allow us to quantify proinflammatory and anti-inflammatory parameters in ND and HFD 

SIRT2+/+ and SIRT2-/- mice. Of note, SIRT2 promotes adipolysis, by deacetylating FOXO1 in adipocytes, 

(327) and microtubule remodeling during adipocyte maturation (450), both mechanisms that may also 

participate to steatosis. To further investigate the role of SIRT2 in immune responses under metabolic 

stress conditions, we will concentrate on in vivo models of infection post-diet. Considering that sirtuins 

were pointed by several studies as mediators of the beneficial effect of  calorie restriction and that SIRT2 

expression increases in the liver and adipose tissue of mice under calorie restriction (451), it would be 

particularly relevant to assess the impact of SIRT2 knockout in sepsis models in mice under calorie 

restriction. Finally, considering that SIRT3 expression in several tissues is increased during calorie 

restriction and decreased in models of HFD (334, 452), we would also like to study the role of SIRT3 in 

immune responses and inflammasome activation under metabolic stress conditions (calorie restriction and 

HFD models). 
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Figure 5. Foxp3+ regulatory 
T cells (Tregs) are increased 
in the spleen of SIRT2-/- 
mice under HFD but not 
under ND conditions. 
Spleens of SIRT2+/+ and 
SIRT2-/- mice fed under ND or 
HFD were collected, 
splenocytes isolated and the 
proportions of CD3+, B220+ 
(A), CD8+, CD4+ (B) and 
Foxp3+ (C) cells were 
determined by flow cytometry. 
Data are mean ± SD (n = 4). 
Comparison between the 
different groups was 
performed by unpaired t test 
using PRISM. 
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6 APPENDIX 

 

I participated to the appendixed article by performing stimulation of BMDCs and analyzing cytokine 

production by Luminex (Figure 4). 
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