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De ces prémisses incontroversables il déduisit que la Bibliothéque est totale, et que ses
étageres consignent toutes les combinaisons possibles des vingt et quelques symboles
orthographiques (nombre, quoique tres vaste, non infini), c’est-a-dire tout ce qu'il est

possible d’exprimer, dans toutes les langues. Tout: I'histoire minutieuse de 'avenir, les

autobiographies des archanges, le catalogue fidele de la Bibliothéque, des milliers et des
milliers de catalogues mensongers, la démonstration de la fausseté de ces catalogues, la
démonstration de la fausseté du catalogue véritable, I'évangile gnostique de Basilide, le
commentaire de cet évangile, le commentaire du commentaire de cet évangile, le récit
véridique de ta mort, la traduction de chaque livre en toutes les langues, les
interpolations de chaque livre dans tous les livres; le traité que Beda ne put écrire (et

n’écrivit pas) sur la mythologie des Saxons, ainsi que les livres perdus de Tacite.
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Abstract

Parkinson’s disease (PD) is a debilitating neurodegenerative disorder due to loss of
dopamine producing cells in the substantia nigra. Given the fact that clinical symptoms
emerge after a long preclinical period with gradual decline in dopamine production, there
is pressing need to advance our understanding about the progression of motor and non-
motor symptoms in symptomatic phase of PD. Recent theoretical work and animal models
suggest a link between dopamine-dependent loss of neuronal specificity (LOS) in the basal
ganglia (BG) and a broad range of symptoms in movement disorders. The overall goal of my
thesis project was to test and validate this hypothesis in vivo using non-invasive magnetic
resonance imaging (MRI). In a preparatory study for my main experiment, [ evaluate how
the spatial resolution of different MRI protocols impacts BGs motor somatotopy mapping.
The second study tests the LOS hypothesis in PD patients and how functional segregation of
motor somatotopy is affected by dopamine substitution. In a following study [ expand the
LOS hypothesis on the insular cortex, which shares major connections with the BG. My last
experiment extends these findings to structural connectivity patterns of projections
between thalamus, BG and cortex. I am truly convinced that my thesis project will
contribute to advance our understanding of PD pathophysiology that helps monitoring and
predicting clinical outcome.

MARQUIS, Renaud - PhD thesis 5
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Résumé

La maladie de Parkinson (MP) est une maladie neurodégénérative débilitante résultant de
la perte des cellules dopaminergiques dans la substance noire. Etant donné I'’émergence de
symptomes cliniques apres une longue période préclinique caractérisée par un déclin
progressif de la production de dopamine, il est urgent de faire avancer notre
compréhension de la progression des symptomes moteurs et non-moteurs dans la phase
symptomatique de la MP. De récents travaux théoriques et modeles animaux suggerent un
lien entre une perte de la spécificité neuronale (PDS) dans les ganglions de la base (GB)
dépendant de la dopamine et un large éventail de symptomes dans les troubles du
mouvements. L’objectif général de mon projet de thése était de tester et valider cette
hypothése in vivo en utilisant I'imagerie par résonance magnétique (IRM) non-invasive.
Dans une étude préliminaire, j’ai évalué I'impact de la résolution spatiale de différents
protocoles IRM sur la cartographie de la somatotopie motrice dans les GB. La deuxiéme
étude teste I'hypothese de la PDS chez des patients atteints de la MP et comment la
ségrégation fonctionnelle de la somatotopie motrice est affectée par la substitution de
dopamine. Dans I'étude suivante j'étends ’hypothese de la PDS au cortex insulaire, qui
partage d’'importantes connections avec les GB. Ma derniere expérience étend ces
découvertes aux patterns de connectivité structurelle entre le thalamus, les GB et le cortex.
Je suis sincérement convaincu que mon projet de these contribuera a 'avancée de notre
compréhension de la pathophysiologie de la MP qui aide au suivi et a la prédiction de
I'issue clinique.

MARQUIS, Renaud -PhD thesis 6
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1. Theoretical framework

In this introductory section, I define the core features of Parkinson’s disease (PD) from a
clinical and pathophysiological perspective by providing the current view on its
pathogenesis from the perspective of structural and functional characteristics of cortico-
subcortical loops. I also review the existing models explaining basal ganglia (BG)
dysfunction in PD and other brain disorders. Finally, I emphasize on several different in
vivo imaging approaches aiming to characterize its complex manifestations, monitoring its
progression, providing clues into its pathophysiology and highlighting potential new
venues for therapeutic strategies. Given the fact that I used functional MRI throughout the
entire project, I focus on its methodological description. Research questions and general
hypotheses are formulated for the experimental work section. Specific hypotheses and
methodological procedures regarding data acquisition and analysis are demonstrated
separately for each study in section 2.

1.1. Parkinson’s disease

In the following section I review current knowledge of PD accumulated over the last
decades. After a very brief history of research on PD, the latter is defined from the clinical
point of view, in terms of symptoms and in regard to other neurological diseases. Following
subsections provide an overview of PD epidemiology, risk and protective factors, as well as
insights into its pathophysiology and etiology. The last subsection attempts to summarize
treatment options available for patients, from conventional medical practices to
experimental treatments undergoing pre-clinical studies.

1.1.1. A brief history

200 years after the publication of James Parkinson’s essay (1817), there is still no cure for
PD, the second most common neurodegenerative disorder after Alzheimer’s disease (AD)
(Dauer and Przedborski, 2003; De Virgilio et al.,, 2016), despite considerable progress
achieved in the past decades. In the late 1950’s, the main neurotransmitter lost in PD was
localized in the brain and the first pharmacological model of PD was developed (Goetz,
2011). Later, Langston and colleagues (1983) observed that a self-administered narcotic
derivative, 1-méthyl-4-phényl-1,2,3,6-tétrahydropyridine (MPTP), induced symptoms
strikingly similar to that of PD. One of the most influential animal models of PD was born
(Dauer and Przedborski, 2003). The discovery of this neurotoxin triggered an exponential
increase of studies on PD (Figure 1). Nevertheless, the causes of PD remain unknown. The
discrepancy between research investments and the puzzle of PD pathogenesis has recently
led some researchers to question the existence of the disease entity itself and propose the
usage of the term “syndrome” rather than “disease” (Titova et al., 2017).

MARQUIS, Renaud - PhD thesis 11
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Figure 1: Number of publications referenced in the U.S. National Library of Medicine MEDLINE. A query was
performed at http://dan.corlan.net/medline-trend.html using the keywords “Parkinson’s disease”.

1.1.2. Definition and symptoms

PD is a debilitating progressive neurodegenerative disease characterized by the following
cardinal symptoms: generalized slowing of movements in the absence of weakness
(bradykinesia), increased muscle tone (rigidity), postural instability and rest tremor,
whose typical frequency lies between 4 and 6 Hz (Jankovic, 2008; Mazzoni et al., 2012). The
terms “akinesia” and “hypokinesia” refer to specific aspects of motor symptoms, though
their usage may vary: the former denotes the delayed initiation and the poverty or paucity
of movements, whereas the latter designates the reduction of movement amplitude, force,
or both (Dauer and Przedborski, 2003; Mazzoni et al., 2012). Other clinical signs resulting
from the cardinal features include hypomimia, dysarthria, hypophonia, sialorrhoea,
dysphagia, decreased arm swing, shuffling gait, festination, difficulty arising from a chair or
turning in a bed, micrographia, striatal position of fingers and toes, glabellar tap reflex,
blepharospasm, dystonia, scoliosis and camptocormia (Dauer and Przedborski, 2003;
Jankovic, 2008; Moustafa et al.,, 2016).

According to the UK Parkinson’s Disease Society Brain Bank’s clinical criteria, a diagnosis of
probable PD can be made when bradykinesia and at least one of the other three cardinal
symptoms are present (Hughes et al., 1992). While the National Institute of Neurological
Disorders and Stroke proposes slightly different diagnosis criteria (Gelb et al., 1999), a
unilateral disease onset with later persistent asymmetry, a progressive disorder course

MARQUIS, Renaud -PhD thesis 12
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lasting 10 years or more, and an excellent response to dopamine (DA) replacement therapy
leading to severe dyskinesias are all supportive criteria (Jankovic, 2008). It has to be noted
however that tremor is a peculiar symptom: it does not progress at the same rate as other
cardinal symptoms, responds less well to DAergic treatment, can occur on the body side
contralateral to the one most affected by other symptoms, is absent in up to one out of four
patients, and its severity does not correlate with other symptoms (Helmich et al.,, 2012;
Lang and Lozano, 1998a).

In addition, non-motor symptoms (NMS) are frequent in PD and gained recently more
attention because they may precede classical motor abnormalities and the hallmark of the
neurodegenerative process (De Virgilio et al,, 2016; Miller and O’Callaghan, 2015). NMS
comprise bradyphrenia, cognitive impairment, depression, apathy, anhedonia, fatigue,
hyposmia, ageusia, deafness, pain, paraesthesias, weight loss, hallucinations, delusion,
psychiatric symptoms such as psychosis and paranoia, disturbance of sleep and
wakefulness such as excessive daytime sleepiness or rapid eye movement sleep behaviour
disorder (RBD), and disorders of the autonomic nervous system such as constipation,
hypotension, urinary frequency, impotence and sweating (Bosboom et al., 2004; Burn,
2002a, 2002b; Chaudhuri et al., 2006; Davie, 2008; De Virgilio et al., 2016; Jankovic, 2008;
Kaji and Hirata, 2011; Kalia and Lang, 2015; Kirsch-Darrow et al., 2011; Lang and Lozano,
1998a; Mizuno et al.,, 2008; Postuma and Berg, 2016; Robbins and Cools, 2014; Sharma et
al,, 2013). NMS in PD are not negligible: cognitive impairment leads to dementia in 83% of
patients with a disease duration of 20 year, depression affects 25% to 50% of patients and
psychosis can occur in up to 30% of patients. Although neuro-behavioural measures may
be confounded, interesting analogies between NMS and motor symptoms can be made, for
example between apathy and akinesia, bradyphrenia and bradykinesia, difficulties in
movement sequences and shifting set in learning situations (Mandir and Vaughan, 2000).

Objective tests can measure various symptomatic aspects of PD. For example, tremor can
be quantified using muscle action potentials, hyposmia can be measured with the
University of Pennsylvania’s Smell Identification Test (UPSIT) and polysomnography can
detect RBD (De Virgilio et al., 2016; Kalia and Lang, 2015; Sharma et al.,, 2013). Most
importantly, PD diagnosis mostly relies on the clinical picture. Disease severity is typically
assessed by the Unified Parkinson’s Disease Rating Scale (UPDRS; Fahn et al,, 1987). The
latter has been recently revised by the Movement Disorder Society (Goetz et al., 2008) and
comprises different subscales that aim at capturing cognitive, behavioural, motivational
and psychiatric symptoms (UPDRS 1), the impairment during activities of daily living
(UPDRS 1I), motor symptoms (UPDRS III) and complications (UPDRS IV). Other scales of
disease progression or disability, such as the Hoehn and Yahr staging (Hoehn and Yahr,
1967) or the Schwab and England activities of daily living scale (Schwab and England,
1969), are sometimes referred to as UPDRS V and VI respectively. While the premotor
phase can last 12 to 14 years, NMS, motor complications due to DAergic therapy and

MARQUIS, Renaud - PhD thesis 13
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treatment-resistant motor symptoms such as choking, freezing of gait (FOG) and falls
prevail in late-stage PD (Baas, 2000; Bargiotas and Konitsiotis, 2013; De Virgilio et al,,
2016; Tinazzi, 2006). Besides a decreased quality of life, mortality increases considerably
with PD, reported as being 1.5 to 2.7 times as high as age-matched healthy individuals, up
to a hazard ratio of 5 (Lang and Lozano, 1998a; de Lau and Breteler, 2006). However PD is
marked by heterogeneity (Obeso et al, 2010), in terms of age of onset, rate of disease
progression and clinical symptoms (Kempster et al., 2010; Lotharius and Brundin, 2002).
These factors will vary noticeably as a function of the precise form of parkinsonian
syndrome (Williams and Litvan, 2013).

Indeed, the diagnosis of PD is a clinical one that besides resembling essential tremor (ET)
due to the presence of tremor (Deuschl and Bergman, 2002; Jankovic, 2008), is sometimes
difficult to differentiate from other disorders with distinct pathophysiology - multiple
system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal
degeneration (CBD). Additionally, there are a number of other differential diagnoses
including vascular parkinsonism, dystonia, frontotemporal dementia (FTD), Niemann-Pick
disease type C, and prion disease (Williams and Litvan, 2013). Another terminology
frequently used to avoid misdiagnosis refers to “atypical” or “secondary” parkinsonism
(Marti and Tolosa, 2013).

Most PD cases are sporadic - i.e. not linked to a known genetic factor, hence called also
“idiopathic” PD. The genetic forms of PD account for only 5-10% of the cases (Cali et al,,
2011; Dauer and Przedborski, 2003; Lill, 2016; Pan and Yue, 2013; Spatola and Wider,
2013; Thenganatt and Jankovic, 2014; Winklhofer and Haass, 2010; Wood-Kaczmar et al,,
2006). Additionally, recent studies suggested that several subtypes can be identified in PD
patients (Marras and Chaudhuri, 2016; Moustafa and Poletti, 2013; Thenganatt and
Jankovic, 2014). This heterogeneity poses important issues for the diagnosis of PD:
underdiagnosis is not rare, and misdiagnosis has been reported in 24% of the cases (Lang
and Lozano, 1998a). As a consequence, an in vivo biomarker of PD onset, progression and
prognosis is urgently needed, as its definitive diagnosis still relies on neuropathological
examination at autopsy (Lang and Lozano, 1998a; Miller and O’Callaghan, 2015).
Supportive diagnostic criteria do not suffice: asymmetric onset may be seen in CBD and
hemiparkinsonism-hemiatrophy, and the response to DAergic therapy can be initially
encouraging in patients with MSA (Lang and Lozano, 1998a).

1.1.3. Epidemiology

With an incidence of 8 to 18 per 100’000 person-years, PD affects 0.3% of the entire
population (de Lau and Breteler, 2006; Sveinbjornsdottir, 2016), in all ethnic groups, with
only a little predominance among males (Lang and Lozano, 1998a; de Lau and Breteler,
2006). Other surveys consider gender as an established factor and report a male-to-female
ratio of 3:2 (De Virgilio et al.,, 2016). This general prevalence increases exponentially with
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age, with 1-2% of the population over 65 years old and 3-5% after 85 years old (Alves et al.,
2008; Lang and Lozano, 1998a; de Lau and Breteler, 2006). Although estimates might vary
depending on the methodology (de Lau and Breteler, 2006), it is believed that the number
of people with PD will increase by more than 50% by 2030 (De Virgilio et al.,, 2016) and
that PD could surpass cancer by becoming the second most common cause of death in
elderly by the year 2040 (Lilienfeld and Perl, 1994).

1.1.4. Risk- and protective factors

Age represents the biggest risk factor for PD (De Virgilio et al.,, 2016; Reeve et al., 2014).
The links between age and PD is so strong that Rodriguez et al. (2015) suggested that there
might be a common aetiology for ageing and PD, and that PD can be interpreted in the
context of accelerated ageing triggered by insufficient mitochondrial homeostasis and
compensatory mechanisms. Several environmental risk factors, such as the use of beta-
blocker and prior head injury, have been proposed (De Virgilio et al., 2016; Kalia and Lang,
2015). Although subject to controversy and despite the lack of data implicating a specific
toxin in PD, living in a rural environment, agricultural occupation, drinking from a water
well and exposure to pesticides, herbicides, plant-derived toxins, organic solvents, carbon
monoxide, carbon disulfide, bacterial and viral infection have been generally considered to
increase the risk of developing PD (Dauer and Przedborski, 2003; De Virgilio et al., 2016;
Kalia and Lang, 2015; Lang and Lozano, 1998a; Schapira and Jenner, 2011). Nevertheless,
the fact that the proportion of patients with PD exposed to pesticides has been estimated to
only 10% spreads doubts on the importance of rural environment as a risk factor, and even
if an important causative role of exogenous toxins might be inferred from the fact that the
first formal description of the disease occurred during the Industrial Revolution,
descriptions of akinetic and tremulous symptoms strikingly similar to PD were found
between 4500 and 1000 B.C. (Lang and Lozano, 1998a). Other factors such as alcohol
consumption, cancer and dietary habits - including fat, fatty acids, iron and nutriments
influencing homocysteine concentration - led to inconclusive results but drinking coffee
had protective effects, and smoking has been shown to drastically reduce the risk of PD by
half (Lang and Lozano, 1998a; de Lau and Breteler, 2006).

More recently, vagotomy, the use of anti-inflammatory drugs, antihypertensives,
antilipidaemics and physical activity were associated with a decreased risk of developing
PD, whereas olfactory disturbances, risk-avoiding personality type, depression and anxiety
were linked to a higher risk of future PD (De Virgilio et al., 2016; de Lau and Breteler, 2006;
Petzinger et al., 2013; Schapira and Jenner, 2011; Svensson et al., 2015). Although the
significance of antioxidants has been the matter of controversy (Filograna et al., 2016; de
Lau and Breteler, 2006), latest studies also suggest that these may have protective effects
in relation to the possible role of reactive oxygen species in PD pathogenesis (Ataie et al,,
2016; Magalingam et al, 2015). Coenzyme Q10, mitochondrial ubiquinone-NADH
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oxidoreductase, melatonin, metallothioneins, N-acetyl-aspartate, and superoxide dismutase
may also have neuroprotective effects (Sharma et al., 2013).

Gene OMIM! entry Function

PTEN-induced putative kinase 1 (PINK1; 608309

PARK6)

DJ-1 (PARK?) 602533

Coiled-coil-helix-coiled-coil-helix domain- 616244 Mitochondrial function and

containing protein 2 (CHCHD2) mitophagy

POLG1 174763

Sterol rfng.llatory element-binding 184756

transcription factor 1 (SREBF1)

Parkin (PRKN, PARKZ) 602544 Mi.tochondrial function and
mitophagy, UPS

F-box only protein 7 (FBX07; PARK15) 605648 o

- Ubiquitin-proteasome system (UPS)

Ataxin 3 (ATXN3 607047

RAB39B 300774 _ _

Cyclin G-associated kinase (GAK) 602052 Regulatlc.)n (_)f protein membrane
and trafficking

RAB7L1 603949

Vacuolar protein sorting-associated protein 601501 Regulation of protein membrane

35 (VPS35; PARK17) and trafficking, lysosome autophagy

DNAJC13 614334 pathway
Regulation of protein membrane

Leucine-rich repeat kinase 2 (LRRKZ; 609007 and trafficking, lysosome autophagy

PARK8) pathway, neurite structure, synaptic
function and DA neurotransmission
Protein aggregation, synaptic vesicle

Synuclein a (SNCA; PARK1; PARK4) 163890 formation, prion-like transmission,
synaptic function and DA
neurotransmission

Microtubule-associated protein tau (MAPT) | 157140 Proteln. aggregajclon, synaptic vesicle
formation, neurite structure

ATP13A2 (PARK9 610513

Glucosylceramidase beta (GBA) 606463 Lysosome autophagy pathway

SCARB2 602257

Synaptojanin-1 (SYN]1; PARK20) 604297

Syntaxin-1B (STX1B) 601485 Synaptic function and DA

guanosine triphosphate (GTP) 600225 neurotransmission

cyclohydrolase 1 (GCH1)

Table 1: Genes involved in PD.

1 Online Mendelian Inheritance in Man (OMIM®); www.omim.org
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Alternatively, neurodegeneration in PD might be triggered by a combination of inherited
and environmental factors (Dauer and Przedborski, 2003; De Virgilio et al., 2016; Kalia and
Lang, 2015; Lill, 2016; Schapira, 2006; Thomas and Beal, 2007). Genetic factors provided
an important contribution to the understanding of PD, though as mentioned above
inheritance accounts for only 5-10% of PD cases, at utmost 15% (Mochizuki, 2009; Wider
et al,, 2010). More specifically, genetic influence seems determinant in 2-3% of the late-
onset forms and ~50% of early-onset cases (Obeso et al.,, 2010). Genes identified as playing
a role in PD (Table 1) influence various molecular pathways (Abou-Sleiman et al., 2006;
Feany, 2004; Haelterman et al., 2014; Kalia and Lang, 2015; de Lau and Breteler, 2006;
Moore et al., 2005; Pan and Yue, 2013; Thenganatt and Jankovic, 2014; Valadas et al., 2014),
which will be discussed in detail in section 1.1.6.

Mutations in ATP13A2, FBX07, POLG1, ATXN3 and SYNJ1 are usually found in atypical forms
of parkinsonism with juvenile onset and presenting pyramidal signs, gait disturbance,
ophthalmologic abnormalities and cognitive impairments (Kalia and Lang, 2015). While
SNCA, LRRK2, VPS35, EIF4G1, DNAJC13 and CHCHDZ are associated with autosomal
dominant forms of PD, PRKN, PINK1 and DJ-1 seem to mediate autosomal recessive forms
with early age of onset and slow disease course (Abou-Sleiman et al., 2006; Bonifati, 2013;
Gandhi, 2005; Kalia and Lang, 2015; Mizuno et al., 2008; Schapira, 2006; Steece-Collier et
al., 2002; Surmeier et al., 2011a; Winklhofer and Haass, 2010; Wood-Kaczmar et al., 2006).
Other genes possibly involved in PD include eukaryotic translation initiation factor 4
gamma 1 (EIF4G1; PARK18; OMIM 600495), chromosome 9 open reading frame 72
(C9ORF72; OMIM 614260), phospholipase A2 group VI (PLA2G6; PARK14; OMIM 603604),
ubiquitin carboxy-terminal hydrolase L1 (UCH-L1; PARK5; OMIM 191342), fibroblast growth
factor 20 (FGF20; OMIM 605558), HtrA serine peptidase 2 (HTRAZ; OMI; PARK13; OMIM
606441), nuclear receptor subfamily 4 group A member 2 (NURR1; NR4AZ2; OMIM 601828),
GRB10 interacting GYF protein 2 (GIGYFZ2; PARK11; OMIM 612003), granulin precursor
(GRN; OMIM 138945), dynactin 1 (DCTN1; OMIM 601143), FBX02 (OMIM 607112), DNAJC6
(OMIM 608375), ataxin 2 (ATXNZ2; OMIM 601517), spatacsin (SPG11; OMIM 610844) and
RAB39B (OMIM 300774) (Bose and Beal, 2016; Hardy, 2010; Kalia and Lang, 2015; Lill,
2016; Moore et al, 2005; Obeso et al., 2010; Schapira, 2006; Thenganatt and Jankovic,
2014; Wider et al.,, 2010). Several genes linked to PD are also involved in other disease
phenotypes. Variants of SNCA have been associated to MSA (Stefanis, 2012). Mutations to
ATXNZ and ATXN3 cause spinocerebellar ataxia (SCA). GBA is notably known for its role in
Gaucher’s disease (Obeso et al., 2010). FTD and CBD are linked to mutations in GRN and
MAPT. While UCH-L1, HTRAZ and GIGYFZ2 would be involved in autosomal dominant PD,
ATP13A2, PLA2G6, DNAJC6 and FBX07 would be implicated in autosomal recessive forms
(Spatola and Wider, 2013; Thenganatt and Jankovic, 2014). Common genetic models used
in mammals manipulate SNCA, LRRK2, PRKN, DJ-1, PINK1 (Dawson et al., 2010; Jagmag et
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al, 2016). Unfortunately, none of the animal models provide insights into selective SNc
cells vulnerability (Dawson et al., 2010).

1.1.5. Pathophysiology

Between 5 and 15 years before the onset of clinical symptoms, neuromelanin containing
DAergic neurons in the substantia nigra pars compacta (SNc) begin to die and a-synuclein,
a small and flexible monomeric 140 amino acid protein characterized by a lack of
secondary structure, starts to abnormally accumulate (Braak et al., 2004; Fearnley and
Lees, 1991; Forno, 1996; Golbe, 1999; Miller and O’Callaghan, 2015; Postuma and Berg,
2016; Ross and Pickart, 2004; Stefanis, 2012). When the first motor symptoms appear,
60% of DAergic cells have been lost and about 80% of DA in the putamen is depleted
(Dauer and Przedborski, 2003; Miller and O’Callaghan, 2015).

Together with the severe loss of DA in the striatum, the presence of eosinophillic
intracytoplasmatic proteinaceous inclusions termed Lewy bodies (LB), and dystrophic
Lewy neurites in surviving neurons has been reported primarily in the SNc, but also in
regions thought to be involved in NMS, including the locus cceruleus, pedunculo-pontine
nucleus, raphe nucleus, dorsal motor nucleus of the vagal nerve, hypothalamus, olfactory
bulb, substantia innominata, parasympathetic and sympathetic post-ganglionic neurons,
Meynert nucleus, amygdala and cerebral cortex - particularly the cingulate and entorhinal
cortex (Dauer and Przedborski, 2003; Lang and Lozano, 1998a; Mizuno et al., 2008;
Thomas and Beal, 2007). However LB are especially abundant in late-onset disease forms
and their role in cell death remains unclear (Obeso et al., 2010). Furthermore, LB are not
only found in PD but also in AD and in elderly people, in which they are even found at a
greater frequency (Dauer and Przedborski, 2003).

Other neuronal systems comprising catecholaminergic - notably norepineprehine - and
serotoninergic nuclei, as well as mesolimbic DAergic neurons in the ventral tegmental area
(VTA), are considered less affected (Dauer and Przedborski, 2003; Lang and Lozano, 1998a;
Lotharius and Brundin, 2002). This might explains the lesser DA depletion in the caudate,
site of VTA neurons projection, as well as the greater dependence of synaptic DA clearance
in the striatum on DA active transporter as compared to the prefrontal cortex (PFC),
another critical projection site of VTA neurons where DA is modulated by other
monoaminergic transporters and the synaptic enzyme catechol-O-methyltransferase
(Dauer and Przedborski, 2003). It has to be noted that VTA neurons also project to the
hippocampus and amygdala (Broussard et al., 2013; Shohamy and Adcock, 2010), the latter
projecting further to the ventromedial striatum (Fudge et al., 2002), thereby increasing the
complexity of DA circuitry. Therefore, patients with PD exhibit progressive, nonlinear loss
of serotonergic function, which starts in the caudate, thalamus, hypothalamus and anterior
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cingulate cortex and expands into other areas in the basal ganglia, limbic system and cortex
with disease progression.

The levels of decline between the serotonergic and DAergic systems are similar in the
caudate (reduction of 30-40%), but there is attenuated serotonergic loss (20-30%)
compared with profound DAergic dysfunction (70-80%) in the putamen (Politis, 2014).
Some evidence suggest that tremor might be related to serotoninergic rather than DAergic
dysfunction (Politis, 2014). Serotonergic function is mainly affected in the raphe nuclei and
several other brain regions involved in the regulation of sleep, arousal, satiety and emotion
(Politis, 2014).

Falls in PD are related to decreased cholinergic innervation in the thalamus (Politis, 2014).
FOG is associated with cortical grey matter loss and with decreased activity signal in
striatal and extra-striatal regions (Politis, 2014). Limbic noradrenergic and DAergic
function are reduced in patients with PD experiencing depression compared with those
without depression. These decreases correlate with the severity of anxiety and apathy.
Studies also showed a reduced striatal and thalamic serotonergic function and reduced DA
capacity in the caudate of patients with PD who experience fatigue compared with those
who do not (Politis, 2014). Patients with hallucinations show increased serotonin
availability in the ventral visual pathway and other cortical regions, as well as increased
glucose metabolism in the frontal cortex in those with psychosis (Politis, 2014). Patients
with ICDs exhibit an abnormal increase in DA release in the ventral release (Stoessl et al.,
2014). Similarly, increased activity in brain networks controlling reward and decreased
activity in areas associated with behavioural inhibition is seen in patients with
hypersexuality (Politis, 2014).

Cognitive dysfunctions are induced by a greater medial nigral cell loss, involving
projections to the caudate (Lang and Lozano, 1998a). Dementia, gait dysfunction and falls
in late-stage PD are thought to reflect the degeneration of hippocampal structures and
cholinergic cortical inputs (Dauer and Przedborski, 2003; Kalia and Lang, 2015). However,
degeneration in the Meynert nucleus, locus cceruleus, and cerebral cortex might also
contribute to cognitive symptoms (Lang and Lozano, 1998a), although serotonergic and
noradrenergic systems are not as well documented as those related to DA system (Dauer
and Przedborski, 2003). Similarly, hyposmia, depression and dysautonomia are frequently
linked to neurodegeneration in the olfactory bulb, brainstem serotoninergic and
noradrenergic nuclei, and intermediolateral nucleus of the spinal cord as well as
sympathetic and parasympathetic ganglia respectively (Lang and Lozano, 1998a). The
amygdala might be involved in both behavioural and autonomic nervous system
dysfunctions (Lang and Lozano, 1998a). More generally, dysfunctions in DAergic,
cholinergic, glutamatergic, noradrenergic and serotoninergic systems are thought to
contribute to symptoms in PD, and recent accounts suggest that the different motor and
non-motor manifestations of the PD, which typically have a poor response to DAergic
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medication in late-stage PD, might be linked to different patterns of neurodegeneration
(Kalia and Lang, 2015; Lima et al,, 2012; Tremblay et al., 2015).

Most importantly, the DA depletion follows a specific topology, different from the one
observed in normal ageing: whereas the cell loss affects the ventrolateral tier and caudal
aspects of the SNc in PD, it concentrates on the dorsomedial portion in healthy ageing
(Dauer and Przedborski, 2003; Lang and Lozano, 1998a). The process underlying the death
of DA neurons in PD is therefore different from the ones observed in striato-nigral
degeneration, PSP and ageing, despite age being the most important risk factor for
developing PD (Dauer and Przedborski, 2003; Lang and Lozano, 1998a). It results in a
regionally specific pattern of striatal DA loss, starting in the dorsal putamen and considered
to be responsible of akinesia and rigidity (Cools, 2006; Lang and Lozano, 1998a;
Vaillancourt et al., 2013). Surprisingly, the majority of DAergic cells in the substantia nigra
(SN) resides in the neuropil, a calbindin-rich area, while neurons most susceptible to PD
seem to be found in calbindin-poor regions of the SNc (Dauer and Przedborski, 2003).
Interestingly, the loss of striatal synaptic terminals seems more remarkable than SNc DA
cell death. The protection of terminals in MPTP-treated mice prevents cell death in the SN,
indicating that abnormal neurite function and integrity in the striatum possibly precede
somatic cell death in the SNc - i.e. a “dying back” process (Dauer and Przedborski, 2003),
which as been considered as possibly resulting from alterations in structural functions of
neurofilaments in axonal connections from the SNc to the striatum by LB (Lang and Lozano,
1998a).

Neurotoxin based models of PD attempt to mimic the pathophysiology and symptoms of PD
using chemical compounds such as MPTP, a precursor of 1-methyl-4-phenylpyridinium
(MPP+), 6-hydroxydopamine (6-OHDA), rotenone, N,N'dimethyl-4,4'-bipyridinium
dichloride (Paraquat) and methamphetamine (Beal, 2001; Jagmag et al., 2016). While these
models greatly improved our understanding of PD, most of them do not reproduce all
features of PD or lack a detailed understanding of the causal chains of chemical events. The
exception might be rotenone, which imitates successfully almost all features of PD, but has
a low reproducibility due to high mortality in rats (Jagmag et al., 2016). Similarly, studies
using actacystin, epoxomicin, or PSI (Z-lle-Glu(OtBu)-Ala-Leu-al) raised hope for realistic
models of PD. However, not only the neurotoxic effects are not as remarkable as initially
reported, but also the reproducibility of these models is low (Schapira and Jenner, 2011).

1.1.6. Etiology

The common view on PD is that it results from a multi-factorial pathogenic process that
explains the heterogeneity of PD clinical manifestations (Vila et al., 2008) and underlines
the need for multiple biomarkers (De Virgilio et al., 2016; Kalia and Lang, 2015; Miller and
O’Callaghan, 2015). The causes underlying PD pathophysiology are debated though several
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