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4D Single-particle tracking with
asynchronous read-out single-photon
avalanche diode array detector

Andrea Bucci 1,2, Giorgio Tortarolo1,5, Marcus Oliver Held 1, Luca Bega1,
Eleonora Perego 1,6, Francesco Castagnetti 3, Irene Bozzoni3,4,
Eli Slenders 1 & Giuseppe Vicidomini 1

Single-particle tracking techniques enable investigation of the complex func-
tions and interactions of individual particles in biological environments. Many
such techniques exist, each demonstrating trade-offs between spatiotemporal
resolution, spatial and temporal range, technical complexity, and information
content. To mitigate these trade-offs, we enhanced a confocal laser scanning
microscope with an asynchronous read-out single-photon avalanche diode
array detector. This detector provides an image of the particle’s emission,
precisely reflecting its position within the excitation volume. This localization
is utilized in a real-time feedback system to drive the microscope scanning
mechanism and ensure the particle remains centered inside the excitation
volume. As each pixel is an independent single-photon detector, single-
particle tracking is combined with fluorescence lifetime measurement. Our
system achieves 40 nm lateral and 60 nm axial localization precision with 100
photons and sub-millisecond temporal sampling for real-time tracking. Offline
tracking can refine this precision to the microsecond scale. We validated the
system’s spatiotemporal resolution by tracking fluorescent beads with diffu-
sion coefficients up to 10 μm2/s. Additionally, we investigated the movement
of lysosomes in living SK-N-BE cells andmeasured the fluorescence lifetime of
the marker expressed on a membrane protein. We expect that this imple-
mentation will open other correlative imaging and tracking studies.

Fluorescence single-particle tracking (SPT) is a fundamental tool for
investigating the functions of individual particles in biological
environments1. As an example, it has been successfully applied to
study virus infection mechanisms2–4, surface protein trafficking5–8,
molecular motors dynamics9,10, and anomalous diffusion and
transport11,12.

The diversity among the biological phenomena whose study
requires SPT techniques has driven method development in multiple

directions. Although many approaches have been proposed, no one
has emerged as the gold standard. Offline image-based SPT is the first
andmost straightforwardmethod: the sample is illuminated in a wide-
field configuration, and the fluorescence emission is recorded with a
megapixel matrix detector such as a complementary metal-oxide
semiconductor (CMOS) or charge-coupled device (CCD) camera.
Repeated exposures over time produce a set of images that are ana-
lyzed offline to extract the positions of the single particles, while the

Received: 13 September 2023

Accepted: 14 July 2024

Check for updates

1Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy. 2Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei
Sistemi, University of Genoa, Genoa, Italy. 3Non coding RNAs in Physiology and Pathology, Istituto Italiano di Tecnologia, Genoa, Italy. 4Department of Biology
and Biotechnology Charles Darwin, Sapienza University, Rome, Italy. 5Present address: Laboratory of Experimental Biophysics, EPFL, Lausanne, Switzerland.
6Present address: Centre for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland. e-mail: giuseppe.vicidomini@iit.it

Nature Communications |         (2024) 15:6188 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-3292-0613
http://orcid.org/0000-0003-3292-0613
http://orcid.org/0000-0003-3292-0613
http://orcid.org/0000-0003-3292-0613
http://orcid.org/0000-0003-3292-0613
http://orcid.org/0009-0004-9143-154X
http://orcid.org/0009-0004-9143-154X
http://orcid.org/0009-0004-9143-154X
http://orcid.org/0009-0004-9143-154X
http://orcid.org/0009-0004-9143-154X
http://orcid.org/0000-0002-1700-584X
http://orcid.org/0000-0002-1700-584X
http://orcid.org/0000-0002-1700-584X
http://orcid.org/0000-0002-1700-584X
http://orcid.org/0000-0002-1700-584X
http://orcid.org/0000-0001-8681-634X
http://orcid.org/0000-0001-8681-634X
http://orcid.org/0000-0001-8681-634X
http://orcid.org/0000-0001-8681-634X
http://orcid.org/0000-0001-8681-634X
http://orcid.org/0000-0002-6757-1372
http://orcid.org/0000-0002-6757-1372
http://orcid.org/0000-0002-6757-1372
http://orcid.org/0000-0002-6757-1372
http://orcid.org/0000-0002-6757-1372
http://orcid.org/0000-0002-3085-730X
http://orcid.org/0000-0002-3085-730X
http://orcid.org/0000-0002-3085-730X
http://orcid.org/0000-0002-3085-730X
http://orcid.org/0000-0002-3085-730X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50512-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50512-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50512-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50512-9&domain=pdf
mailto:giuseppe.vicidomini@iit.it


trajectories are reconstructed by linking the localizations frame by
frame8,13–15. This approach is capable of following many particles in
parallel with a spatial resolution (or localization precision) between
20nm and 40nm given a budget of 103 − 104 photons8,16,17 but is
severely limited to ≈ 10ms in time resolution by the imaging rate of the
detector and to 2μm in axial range due to the fixed illumination
plane17.

An alternative class of techniques is real-time single-particle
tracking (RT-SPT). This approach aims to overcome the temporal
resolution and spatial range limitations of offline SPT. Real-time SPT
retrieves the position of only a single particle inside a small observa-
tion volume and follows its movement over time by shifting the
observation volume via a closed feedback loop. Common RT-SPT
techniques are implemented on customized laser scanning micro-
scopes featuring one or more single-pixel detectors, such as single-
photon avalanche diodes (SPADs) or photo-multiplier tubes (PMTs).
Therefore, experimental raw data consists of one (or more) intensity
time traces in which the particle position is encoded using structured
detection or structured illumination. In the first approach, the emis-
sion is split among multiple detectors, whose spatial arrangement is
engineered to allow the inverse calculationof the 3Dparticle’s position
from the intensity traces18–20. Structured illumination, on the contrary,
investigates the particle’s location by sequentially moving the focused
excitation beam at a certain number of points along a specified tra-
jectory around the particle. The ideas proposed across the years are
diverse and include theuseof aGaussian beam swiping a circle, suchas
in orbital tracking21–23, or illuminating points arranged in a
tetrahedron24, or moved along a knight’s tour25,26. Implementations
withmultiple Gaussian beams have also been proposed to increase the
spatiotemporal resolution27. More recently, in MINFLUX a doughnut-
shaped beam is displaced in a triangular pattern, showing a more
efficient localization precision for a given number of photons28–31.
Indeed, given a certain photon budget, the localization uncertainty of
any RT-SPT technique can be theoretically calculated depending on
the combination of the illumination shape and the spatial arrangement
of the sampling points32. Regardless of the actual implementations, all
RT-SPT techniques are affected by one ormore of the following issues:
high photon fluxes requirement, poor axial range, and technical
complexity. Furthermore, the information about the photon emission
time is often not exploited, despite being available inmany cases. This
prevents, for example, access to the fluorescence lifetime measure-
ment, which is a powerful tool for investigating the particle’s interac-
tions and chemical nano-environment33,34. A more detailed discussion
about the state of the art of RT-SPT can be found in the comprehensive
review by van Heerden et al.35.

In recent years, companies, as well as research groups, have
directed growing attention toward the realization of better detectors.
The development of new cameras (such as Hamamatsu qCMOS, Pho-
tonscore LINcam, and event-based sensors36,37) aims to improve the
temporal resolution and information content of wide-field micro-
scopy, including offline SPT. In the same way, advances in SPAD
technology, and in particular the development of asynchronous read-
out SPAD arrays, are beneficial for laser scanning microscopy
techniques38,39. An asynchronous read-out SPAD array detector is
constituted by a set of independent SPADs placed on the same chip
with a predetermined spatial arrangement. Each pixel works as a
standalone detector with single-photon sensing and time-tagging
capabilities. It is directly wired to its output channel, which fires a
digital signal with high (a few hundred picoseconds) temporal preci-
sion for each detected photon. In such a fashion, the detector can be
combined with a multichannel time-resolved data-acquisition system
(e.g., a photon time-tagging module) to provide spatial information
like a small camerawhile overcoming the frame rate limitation. Indeed,
the camera’s frame rate is theoretically infinite by having a completely
pixel-based asynchronous read-out. Only the so-called pixel dead time

practically limits the frame rate: after detecting a photon, the pixel is
blind for a few tens of nanoseconds. In addition, every photon can be
taggedwith its emission timewith respect to the excitation laser pulse,
thus giving access to the fluorescence lifetime information. SPAD array
detectors have already been employed to increase the resolution and
contrast of confocal images through image scanning microscopy40–45

and to enhance the information content and flexibility of fluorescence
correlation spectroscopy46,47. Both imaging and spectroscopy
approaches have been synergistically combined with fluorescence
lifetime analysis48.

Here, we present a novel feedback-based RT-SPT implementation
based on a common laser scanning microscope equipped with a 5 × 5
asynchronous read-out SPAD array detector and an astigmatic detec-
tion. The detection scheme enables direct and almost instantaneous
3D localization of particles within a relatively small volume, in the
order of the size of the sub-micrometer focal excitation volume, in all
directions (x, y, z). This information enables dynamic repositioning of
the beam scanning system to keep the particle centered in the exci-
tation volume. As a result, the effective tracking range of real-time
single-particle tracking is primarily constrained by the lateral and axial
scanning capabilities of the microscope. Furthermore, the SPAD array
detector simultaneously measures the particle’s fluorescence life-
time τ.

As such, our RT-SPT implementation effectively produces a 4D
trajectory in time and space [x(t), y(t), z(t), τ(t)], thus improving the
information content while reducing the architectural complexity in
comparison to any approach mentioned above. We call this imple-
mentation real-time 4D single-particle tracking (RT-4D-SPT). Here,
there is no need to perform orbital scanning or other fast excitation
beam shifting to encode the single particle’s position. Notably, the
localization of the particle – for the re-centering of the excitation
volume – is calculated in real time by the data-acquisition (DAQ) sys-
tem without introducing a sensitive delay in the feedback closed loop
system. The spatiotemporal resolution of the proposed RT-4D-SPT
approach is practically limited only by the flux of the detected photons
and by the lag-time of the laser beam scanning system, for re-centering
onto the particle before it escapes from the excitation volume. In
addition, the full SPAD array signal is transferred to the computer to
refine the particle trajectory with offline algorithms.

We validate our technique by comparing the localization uncer-
tainty obtained from the Cramér-Rao bound calculations with the
experimental localizations of fixed fluorescent particles. We then track
fluorescent particles in two configurations: moved along a pre-
determined path and freely diffusing in water or a viscous glycerol
solution. To prove the versatility of our technique, we apply it in a
biological context to investigate the movement of lysosomes in living
cells along microtubule filaments while assessing the lifetime of the
green fluorescent protein (GFP) marker expressed on a protein on
their membrane.

Results
Principle of real-time 4D single-particle tracking
To perform RT-4D-SPT, we use a 3D laser scanning microscope with
minimal modifications (Fig. 1a). The fluorescence emission generated
from thediffraction-limited excitation volumeat the scanning position
rs = (xs, ys, zs) is made astigmatic by a cylindrical lens and focused onto
the SPAD array detector located into a conjugate plane, which replaces
the traditional confocal pinhole and the single-pixel detector. In this
context, it’s crucial to emphasize that the SPAD array detector records
thefluorescent signal in de-scannedmode, ensuring that the excitation
volumeand the static field-of-view (sFoV) (i.e., the regionof the sample
filling the sensor area) are consistently co-aligned. Our SPAD array
detector is a specialized device that combines the temporal perfor-
mance of a SPAD with the structured detection of a 5 × 5 camera,
imaging a small sFoV (695 nm about ≈ 1.4 A U). When a photon is
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detected by a sensitive element of the array at coordinates (i, j), it
produces a short electric pulse in the corresponding output channel,
with a time jitter below 200 ps. The signal is fed into a multi-channel
time-resolved DAQ system, which allows for measuring the photon
detection time td. Thus, each detection event corresponds to an
independent 6-dimensional data point (xs, ys, zs, i, j, td).

This dataset is used to estimate the emitter position within the
sFoV re = (xe, ye, ze). To obtain re, we can utilize position estimators
designed for wide-field microscopy, such as the centroid estimator.
This estimator entails low computational costs, hence can be easily
implemented on the DAQ board, leveraging the field-programmable
gate array (FPGA). As a result, a rapid feedback loop is employed for re-
centering the excitation volume, and, consequently, the sFoV (Fig. 1b).
The centroid estimator analyzes the 5 × 5 images I(i, j), referred to as
microimages, obtained by accumulating the detected photon stream
within a specific and tunable temporalwindow.Anyparticlemovement
produces a distinguishable change in the intensity distribution in the
microimage. Specifically, a lateral displacement leads to a shift in the
distribution’s center while, by making the detection astigmatic, its
shape is uniquely linked to the axial position49–51 (Fig. 1d). The same
FPGA-basedDAQboard acts as a control unit for thewholemicroscope
and its beam scanning apparatus: a pair of galvanometer mirrors for
the lateral displacement and a piezo objective for the axial shift. The
control unit delivers the input signals to the beam scanning devices to
displace the sFoV in the new position.

In short, our RT-SPT method leverages the spatial information
provided by the SPAD array to continuously re-center the sFoV onto
the particle. Like any RT-SPT method, our approach can effectively
track a particle only if the localization of its position is precise and the
re-centering of the sFoV is fast enough to prevent the particle from
escaping the sensitive region. Indeed, the localization uncertainty
scales with the number of photons detected, whose emission, in turn,
requires a certain period of time depending on the particle’s bright-
ness. Because the SPAD array detector has practically sub-
microsecond temporal resolution and, for a given microimage, the
FPGA can calculate the particle’s position in less than 100ns, the spa-
tiotemporal resolution — i.e., distinguishing two positions of the same
particle both in time and space52 — depends mostly on the lag time of
the actuators responsible for re-centering the sFoV and the brightness
of the particle.

Importantly, the SPAD array detector transfers microimages to
the PC at a rate significantly higher than the real-time re-centering rate.
If brightness is not the limiting factor, the spatiotemporal resolution
can, therefore, be enhanced with offline analysis. We can apply more
robust and precise estimators, such as maximum likelihood, to
enhance the localization uncertainty (spatial resolution) or integrate
the microimages to a higher localization rate (temporal resolution).
However, it is crucial to consider that a higher localization rate comes
at the expense of lower photon counts, generally resulting in lower
localization precision.
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Fig. 1 | Real-time 4D single-particle tracking on a laser scanning microscope
equipped with a SPAD array detector. a The optical setup is based on a 3D laser
scanning microscope, where the confocalized detection unit is substituted with a
SPAD array detector, and a cylindrical lens is inserted. The detector sFoV (≈ 1.4 A U)
is composedof 5 × 5 elements leading to 25 independent single-photonpulse trains.
The FPGA receives the signals, calculates the emitter position re, and updates the
3D scanning position rs in real time. b A 2D movement of the single particle with
respect to the center of the sFoV results in a shift of the detected emission pattern
and a reduction in its intensity Im, as shown in the simulated microimages. The
detector also allows the concurrent measurement of the fluorescence lifetime τ.

When the re-centering condition is triggered, a new position (xs, ys) is estimated,
and the sFoV is re-centered onto the particle with the beam positioners. c The
temporal performance of each SPAD element of the array detector is similar to the
single element counterpart (time jitter < 200 ps). Thus, the fluorescence lifetime of
the emitter can be extracted by analyzing the emission time histogram Δtem
obtainedas thedelay betweeneachpulsed excitation at time texc and the associated
photon detection events at time td. d The quantitative estimation of the axial
position of the particle leverages the astigmatism caused by the cylindrical lens. In
fact, the symmetry and shape of the emission pattern registered in themicroimage
changes throughout the depth-of-field (DoF).
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Regarding the spatial range of our RT-4D-SPT method, while the
sFoV is confined to a few hundred nanometers, the effective tracking
range can vary significantly, spanning orders of magnitude depending
on the effective scanning capabilities of the microscope. In the case of
high numerical objective lenses such as our implementation, these
ranges can extend over a few hundred micrometers laterally and
around a hundred micrometers axially. However, it’s crucial to
acknowledge that optical aberrations, encompassing field curvature
and spherical aberration along the lateral and axial directions,
respectively, may substantially reduce these practical tracking values.

Not less important than deciphering the particle’s position is
studying the particle’s fluorescence lifetime as a function of time. By
using a pulsed excitation laser and implementing a series of fast time-
to-digital converters (TDCs) directly in the DAQ system, we can obtain
the delay between the excitation event and the photon detection, the
so-called photon emission time, Δtem= td − texc. This information
enables us to calculate the fluorescence lifetime of the particle τ –

potentially in real-time (Fig. 1c). In this work, we implemented within
the FPGA-based DAQ system 25 TDCs by using a digital frequency
domain (DFD) architecture. With respect to a more precise imple-
mentation based on tapped-delay lines, the DFD architecture requires
less FPGA resources and sustains the maximum photon flux achieved
by the SPAD array detector. Specifically, our DFD implementation
provides a sampling step of 397 ps, a value lower than the tens of
picoseconds obtained by using TDC based on tapped-delay lines, but
still optimal for fluorescence lifetime applications. Furthermore, the
DFD implementation is optimal when working at high photon flux
rates53. The low requirements in terms of FPGA resources allow for
synergistic integration of the multiple TDCs in the same DAQmodule,
which controls the tracking microscope, providing a compact and
comprehensive architecture.

Localization within the static field-of-view
As described above, in RT-SPT, the ability to track a single moving
particle depends on the precise, accurate, and timely localization of its
position. This enables the re-centering of the excitation volume – and
thus the sFoV – on the particle before the particle leaves the sensitive
region. Consequently, the characterization of the localization perfor-
mance stands as a critical first step to thoroughly assess our RT-SPT
performance. In particular, it is crucial to define the region in which –

for a given signal-to-background ratio – the particle can be reliably
localized, which we named the optimal localization volume (OLV).
Evidently, the OLV does not necessarily coincide with the sFoV as it is
also influenced by the dimension and shape of the excitation volume:
the photon flux from the particle decreases moving away from the
center of the Gaussian excitation volume, leading to a decrease in
localization precision. Here, we quantitatively determine the OLV by
measuring the localization precision for our RT-4D-SPT approach.

According to estimation theory, one way to quantify the theore-
tical lower limit of the localization uncertainty is to calculate the so-
called Cramér-Rao bound (CRB)54. The CRB is a statisticalmeasure that
provides a theoretical lower bound on the variance of any unbiased
estimator of an unknown parameter. In our case, the unknown para-
meter is the 3D position of the particle being tracked. To calculate the
CRB,we adapt themathematical frameworkdeveloped byBalzarotti et
al. for MINFLUX28 and Masullo et al. for sequential structured illumi-
nation single-molecule localization microscopy32. Specifically, we
introduce some minor modifications to account for our structured
detection scheme (Supplementary Information Note 1). Our calcula-
tion relies on three crucial assumptions: (1) both the signal and back-
ground photon counts follow a Poisson distribution, (2) the signal
exhibits linear dependenceon the excitation light intensity, and (3) the
background is independent of the particle’s position. The first
assumption is applicable to SPAD detectors, the second necessitates
low excitation to avoid fluorescence saturation, and the third

condition is typically met when the background includes a combina-
tion of detector dark counts and unwanted signals from the sample,
such as scattering, autofluorescence, and out-of-focus fluorescence.
Considering a fixed acquisition time, the total number of photons
detected by the sensor N(re), and consequently the signal-to-noise
ratio SBR(re), are dependent on the position re of the emitter relative
to the center of the excitation volume – equivalently the sFoV. How-
ever, by applying (2) and having measured the point spread functions
(PSFs) for each detector element, we can fully characterize any
experimental condition simply with the scalar parameters Np =N(0)
and SBRp = SBR(0). Henceforth, these parameters will be extensively
employed as benchmarks.

We perform the CRB calculations using the experimental PSFs
measured with 20nm fluorescent beads (Supplementary Fig. 1).
Assuming Np = 100 photons and SBRp = 5, we obtain the maps of the
CRB in the lateral (σ2

xy = σ
2
x + σ

2
y) and axial (σ2

xz = σ
2
x + σ

2
z) planes (Fig. 2a,

d). From the isoline curves, we can identify a volume of approximately
300nm×300 nm× 500nm in which we expect an approximately flat
localization uncertainty with a maximum value between 40 nm and
60nm. Amongst all the localization estimators proposed by different
techniques through the years, the maximum likelihood estimator
(MLE) has emerged for its reliability and solid mathematical
background49,55,56. Remarkably, it provides an unbiased and linear
estimation (Supplementary Information Note 2), and it is demon-
strated to be fully efficient, which means it asymptotically reaches
the CRB.

The high computational complexity necessary to perform the
estimation with the MLE makes it the ideal choice for offline analysis
but hinders its implementation in the real-time loop. We consequently
need a new set of faster estimators, which allows us to gain compu-
tational speed at the expense of precision. We, therefore, introduce
the centroid and normalized difference estimators for the lateral and
axial localization, respectively. Compared to the MLE estimator, both
the centroid and the normalized difference are computationally faster
to evaluate but less resistant to noise, and their linearity is affected by
the SBR. Furthermore, the normalized difference estimator for the
axial localization is not independent of the lateral position of the
emitter (Supplementary Information Note 2).

To compare the planar localization uncertainty of each estimator
with the theoretical lower limit, we localize a single 20 nm fluorescent
bead replicating the emitting conditions of the CRBcalculations. Using
the 3D piezo stage, the particle is shifted across the entire sFoV and
localized offline multiple times with both the MLE and the faster esti-
mators at each position. We then take the standard deviation as a
measure of the localization uncertainty to plot the lateral (Fig. 2b, c)
and axial (Fig. 2e, f) planar uncertainties for the MLE (Fig. 2b, e), the
centroid (Fig. 2c), and the normalized difference (Fig. 2f) estimators.

The comparison of theMLE results with the theoretical lower limit
shows a slightly worse performance in the global minimum value,
especially in the lateral plane. This effect can be justified by con-
sidering the additional noise sources that may occur during the
experiment but are not included in the CRBmodel, such as sample and
microscope drifts and vibrations (Supplementary Fig. 12) and other
sources of background which further degrade the SBR. As expected,
the approximated nature of the faster estimators causes a further
deterioration of their performance, in our causeby approximately 15%.
By looking at the line profiles (Supplementary Fig. 13), we observe the
overall shape of both the lateral and axial uncertainty maps
are nevertheless consistent with the CRB. We define the OLV as the
region in which the uncertainty increases at most 50% above the
global minimum. Hence, we identify a volume of at least 300nm×
300nm×600nm inside which the performance of the localization is
considered optimal with all the estimators. In particular, the faster
estimators provide a lateral planar uncertainty between 32 nm and
53 nm and an axial planar uncertainty between 50nm and 80 nm.
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Considering the rise time of the positioners (≈ 200μs laterally and
≈ 4ms axially) together with the dimension of the OLV, we predict a
maximum measurable diffusion coefficient for Brownian motion of
≈ 10μm2/s (Supplementary Information Note 3) – assuming that par-
ticle brightness is not a limitation. This upper limit matches with the
diffusion coefficients of relatively small proteins (above 30 − 40 kDa)
moving in the cytoplasm and the membrane of cells57–59, while it may
be unsuitable for diffusion of the same protein in pure water60.

Real-time 3D and 4D tracking
The tracking procedure leverages the localization information to keep
the single particle always in focus by updating in real-time the beam
scanning position (xs, ys, zs). To test its performance in a controlled
setting, we first track a fixed 20nm fluorescent bead moved along an
imposed 3D Lissajous pattern at an average speed of 5.5 μm/s (Fig. 2g
and Supplementary Fig. 14). As already anticipated, due to timing
constraints, we rely on the centroid and normalized difference esti-
mators to retrieve the particle position re. These are less precise than
theMLE andpotentially non-linear. To assesswhether thesedrawbacks
affect the performance of the feedback loop, we calculate the differ-
ence between the imposed and tracked trajectories (Fig. 2h). By fitting
the distributions with Gaussian functions, we obtain the lateral and
axial planar tracking uncertainties relative to the detection of 100
photons:σxy = 46.03 ±0.04 nmand σxz = 52.23 ± 0.06 nm.These values
are comparable to the planar localization uncertainties of the fast
estimators and consistent with localizing a particle within the central

regionof theOLV. Remarkably, despite potential noise frompositioner
jitter and inertia, the tracking uncertainty does not significantly wor-
sen. This suggests that the estimation process remains the dominant
source of uncertainty in the feedback loop. In addition, the experiment
confirms that the loop is correctly implemented and effectively keeps
the particle within the OLV.

Because of the single-photon asynchronous read-out of the SPAD
array detector, the re-centering of the sFoV canbe decided a-priori at a
specific frequency, i.e., every fixed time interval Δtrc – as for synchro-
nous detectorswith limited frame rate – or,more interestingly, when a
specific event occurs. For example, when the number of detected
photons reaches a particular value, namely when a suitable SBR is
obtained – as for the previous RT-SPT experiment. This capability
enables us to easily set the tracking conditions tomatch the brightness
of the particle, thus achieving the best real-time temporal resolution. A
further interesting feature of our RT-SPT implementation is the ability
to decouple the lateral and axial re-centering by imposing different
update rates or different target photon countings for the two dimen-
sions. This allows achieving an isotropic localization precision at the
expense of anisotropic re-centering times.

We can now eliminate the constraint of a ground truth, such as an
imposed trajectory, to characterize our technique in a more realistic
scenario. To achieve this, we opt to track fluorescent beads of three
different sizes (40, 100, and 200 nm in diameter) freely diffusing in
water. These sizes are specifically chosen to validate our previous
estimation of the maximum measurable diffusion coefficient. Despite
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Fig. 2 | Characterization of the planar localization and tracking uncertainties.
a–c Lateral localization uncertaintymaps σxy(xe, ye). The CRB is calculated using an
experimental PSF, SBRp = 5 andNp = 100 photons, and assuming a fixed acquisition
time. The uncertainty maps of the MLE and centroid estimator are measured by
using a common dataset obtained by scanning 20 times a 20nm fluorescent bead
replicating the same conditions of the CRB. λexc = 561 nm. Scale bar = 100nm.
d–f Axial localization uncertainty maps σxz(xe, ze). The CRB is calculated using an
experimental PSF, SBRp = 5 andNp = 100 photons, and assuming a fixed acquisition
time. The uncertainty maps of the MLE and normalized difference estimator are
measured by using a common dataset obtained by scanning 33 times a 20nm
fluorescent bead replicating the same conditions of the CRB. λexc = 561 nm. Scale

bar = 100 nm. g Imposed and tracked trajectories of a single 20nm fluorescent
bead (λexc = 561 nm) moved at an average tangential speed of 5.5μm/s along a 3D
Lissajous pattern. The scanning position is updated simultaneously in the lateral
direction with the centroid estimator and in the axial directionwith the normalized
difference estimator every 100 photons (〈Δtrc〉 = 1.9 ± 0.4ms). The color is used to
visualize time, and black lines on the colormapmark the end of each complete turn
of the periodic pattern. Extended time trace of the trajectory in Supplementary
Fig. 14. h Histograms of the difference between the imposed and tracked trajec-
tories along the three directions for the experiment in (g). σx = 34.60 ±0.04nm,
σy = 30.36 ±0.04nm, and σz = 39.13 ± 0.07nm.
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being a single-particle technique, hence primarily focused on gen-
erating individual particle trajectories, our method can be automated
and optimized to sequentially capture multiple trajectories from the
same sample. This is accomplished by programming the control
module to initiate tracking whenever the photon flux surpasses a user-
defined threshold and to continue tracking as long as this condition is
met. Subsequently, the system remains stationary until a new particle
is recognized, and the process is repeated iteratively (further details in
“Methods”). By tuning the tracking threshold, excitation intensity, and
particle concentration, we achieve a condition in which we find, track,
and lose sight of a newbeadwithin seconds. This enables us to collect a
dataset of hundreds of tracked beads for each size in tens of minutes
(Supplementary Fig. 15). Each trajectory is analyzed independently to
generate a distribution of diffusion coefficients (Fig. 3a). As expected,

smaller particles yield larger diffusion coefficients and, collectively, the
histograms cover a range of coefficients up to and exceeding 10μm2/s.
The reliability of the trajectories obtained with our SPT technique is
further validated by deliberately changing the average diffusion coef-
ficient. For a fixed bead size, this is achieved by controlling the visc-
osity through the addition of glycerol at varying concentration levels
(Supplementary Information Note 4). Furthermore, our system’s cap-
abilities extend beyond 3D spatial tracking and enable simultaneous
measurement of each particle’s fluorescence lifetime, τ(t). The FPGA
control modulemanages the synchronization of pulsed excitation and
photon detection, generating real-time histograms of the photon
emission time. To achieve this, we implement 25 parallel TDCs, one for
each SPAD pixel, employing the DFD principle61,62. Specifically, our
implementation produces 25 fluorescence lifetime – or photon
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Fig. 3 | 4D tracking on free fluorescent beads in water. a Distributions of the
measured diffusion coefficients for different fluorescent beads (λexc = 488 nm)
freely diffusing in pure water. The legend reports the number of single trajectories
acquired per bead size. For each single bead trajectory, the re-centering in the
lateral and axial directions is performed at a fixed timing of Δtlatrc = 1ms and
Δtaxrc = 2ms respectively. Cumulative distribution function in Supplementary
Fig. 15a.bDistributions of the fluorescence lifetimes for the same fluorescent beads
populations in (a). Each entry is calculated as the average fluorescence lifetime of a
single bead trajectory. Differences in fluorescence lifetime between the popula-
tions may be due to variations in the fluorophore concentration inside the beads.
Cumulative distribution function in Supplementary Fig. 15b. c Example of the MSD
of three single trajectories from the beads populations in (a). The shadedarea is the
standard error of themean. Each curve is fitted with a linearmodel, and the relative

diffusion coefficient D is displayed accordingly. The legend reports the tracking
time length TL of each trajectory. d 2D projections of the spatial trajectories for the
beads in (c). The color visualizes the axial direction. For a fair comparison, each
trajectory is croppedat adurationof0.5 s. Extended time traceof the trajectories in
Supplementary Fig. 16. e 3D representation of the trajectory of a single 200nm
fluorescent bead (λexc = 488 nm) diffusing in pure water. The color visualizes the
fluorescence lifetime τ. The re-centering in the lateral and axial directions is per-
formed simultaneously at Δtallrc = 1ms. The estimation of the lifetime is performed
every Δtτ = 10ms. Extended time trace of the trajectory in Supplementary Fig. 17.
f 3D representation of the same trajectory as (e), butwith color used to visualize the
elapsed time. g Detail of the spatial trajectory of (e) and (f) rebinned in all the
directions in postprocessing with a dwell time of 20μs. The localization is also
refined by using the MLE.
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emission time – histograms every ≈ 5.7μs with a sampling step of 397
ps53. Consequently, alongside the diffusion coefficient, we also obtain
distributions of the average fluorescence lifetime for the same bead
populations (Fig. 3b). From the entire dataset, we select three exem-
plar 4D trajectories, one per bead size, characterizedby a tracking time
length TL exceeding 0.5 s and a relatively low photon flux. The linear
nature of the mean squared displacement (MSD) plots indicates
Brownian motion (Fig. 3c), with the diffusion coefficients consistent
with the estimated values (see Supplementary Eq. S.20). Coherently,
for a fixed time interval, a higher diffusion coefficient correlates with a
longer diffused range (Fig. 3d and Supplementary Fig. 16).

When the scientific question is directed towards the behavior of a
single specific particle rather than acquiring a statistical population, as
often seen in cell trafficking studies, adjusting the tracking settings
becomes crucial to prioritize longer trajectory measurements. This
involves reducing the tracking threshold and, when feasible, enhan-
cing the SBR. With respect to the previous acquisitions, we extend the
tracking duration of a single 200nm fluorescent bead freely diffusing
in water to over 2min by leveraging its remarkable photostability even
at high photon fluxes. A first intuitive representation of the
4-dimensional trajectory Trj(t) = [x(t), y(t), z(t), τ(t)] focuses on the
spatial informationbyplotting the 3D trajectory [x(t), y(t), z(t)] in space
and adding another observable through color coding (Fig. 3e, f and
Supplementary Fig. 17). We notice the fluorescence lifetime seems to
exhibit a space-dependent behavior, with a region near the beginning
of the trajectoryassociated to a valueof around2.5 nswhich then fades
to 3.4 ns as the particle diffuses. However, in this specific example, a
deeper understanding is obtained by observing the time evolution of
each component of the 4D trajectory (Supplementary Fig. 17). In par-
ticular, the fluorescence lifetime track reveals the presence of self-
quenching, which causes a decrease in a lifetime when a high amount
of fluorophores are packed in proximity to each other, i.e., in a big
fluorescent bead. As some emitters get bleached, this condition
relaxes, and the fluorescence lifetime gradually reaches the value
associated with the fluorophore in isolated conditions. Simulta-
neously, the fluorescence efficiency of the remaining fluorophores
increases, which justifies the lack of a concurrent intensity drop. Fur-
thermore, the diffusion regime is studied by calculating theMSD curve
and the power spectral density (Supplementary Fig. 18), fromwhichwe
deduce the particle is undergoing Brownian motion with a diffusion
coefficient of ≈0.5μm2/s.

Notably, this single experiment demonstrates the benefits of
having a 4D dataset, which allows us to simultaneously reveal spatial
properties, such as the diffusion regime, and photophysical properties
encoded in the lifetime, such as self-quenching.

Offline tracking and postprocessing
Our RT-4D-SPT technique belongs to the macro area of real-time
approaches, but the information content of the data is richer than its
usage in real-time and eventually emerges with postprocessing analy-
sis, as typically happens in offline tracking. To understand the spatio-
temporal resolution potentially achievable by our system, we consider
its hybrid real-time/offline nature.

In the context of real-time processing, although the read-out of
the SPAD array pulses occurs every 2 ns, the computational steps
required to produce a re-centering response demand significant
computational resources (see the pipeline described in “Methods”).
We experimentallymeasured that a triggering input on the digital card
is translated into a voltage output on the analog card with a minimum
time delay of 400.0± 2.5 ns. However, the actuation is further delayed
by the rise time of the positioners (Supplementary Information
Note 3), necessitating approximately ≈ 200μs for the galvanometric
mirrors (150 nm lateral shift) and ≈ 5ms for the objective piezoelectric
stage (300nm axial shift). Consequently, each real-time trajectory can
be assumed to have a temporal resolution in the millisecond regime.

While the rise time of the positioners imposes a limitation on
maximum temporal performance in real-time, the effective time
resolution of our technique remains independent of the maximum
trackable speed, as the control module sends the data to the PC with a
faster sampling. The microimages and the current scanning position
are buffered every 2μs, and the lifetime histogram is in a tunable
integer multiple of 10 ns (Supplementary Fig. 19). The resulting raw
data is, therefore, inherently temporally resolved in the microsecond
regime. Through offline postprocessing, the localization itself can be
performed at any integer multiple of the 2μs microimage dwell time.
Notably, during postprocessing, we are no longer forced to use fast
estimators, potentially enabling more accurate measurements. The
same reasoning applies to the fluorescence lifetime data.

As an example, in Fig. 3g, we display a portion of the trajectory
depicted in Fig. 3f that has been rebinned at 20 μs and whose loca-
lization estimation is refined with the MLE estimator. The post-
processing pipeline not only adds a 50-fold improvement in time
sampling but also reveals previously hidden spatial fast movements
that were averaged out in real time due to the longer integration
window.

4D tracking of lysosomes in living cells
To prove the versatility of our technique, we utilize it within a biolo-
gical context to explore the dynamics of lysosomemotion in living SK-
N-BE cells. Lysosomes are membrane-enclosed organelles that play a
critical role in cellular homeostasis by removing damaged organelles,
as well as extraneous particles through phagocytosis63. Dysfunction of
lysosomes has been linked to a range of diseases, including lysosomal
storage disorders64,65, neurodegenerative diseases66,67, and cancer68–70.
Tracking their movement is, therefore, a crucial task as it can help
develop new strategies for treatments or prevention of lysosomal-
related disorders71–73. Of particular interest are the lysosomes found at
the cell periphery, which show higher mobility74,75. Their motion pat-
tern is characterized by stationary states, when the lysosome is bound
in one location ("stop” states), alternated with fast movements
between locations ("run” states)75–77.

To study this “stop-and-run” alternating behavior, we fluores-
cently labeled the lysosomal membrane with GFP by tagging the
lysosome-associated membrane protein LAMP-1, and we performed
4D tracking on the organelles found at the periphery of living human
neuroblastoma SK-N-BE cells. The cellular context is provided by a
reference 2-dimensional image (x, y) of the microtubule structure
acquired right before any tracking experiment (Fig. 4a and Supple-
mentary Video SV1). We observe that the region of the sample
explored by the lysosome has a diameter of approximately 7μm,
which considerably exceeds the size of the OLV.

As expected, the lysosome displays movement along quasi-
rectilinear paths, partially aligning with the microtubule structure
revealed through imaging. Discrepancies between the trajectory and
microtubule structure predominantly stem from the different dimen-
sionality of the two datasets. Specifically, the recorded trajectory is in
3D space with sub-diffraction resolution (Fig. 4b and Supplementary
Fig. 20), while the 2D imaging captures the projection of a single,
diffraction-limited optical section. In addition, the elapsed time
between the recording of the underlying image and the trajectorymay
contribute to these disparities.

To provide additional evidence of the role of themicrotubules, we
compare the motility of lysosomes in wild-type cells and after the
addition of nocodazole, a drug that interferes with microtubule
polymerization78,79. To do so, we compute the average MSD of differ-
ent independent trajectories acquired before and after the treatment
(Fig. 4c). The depolymerization of microtubules clearly impacts the
movement of the lysosomes, which consequently exhibit a strongly
subdiffusive behavior, indicating a local confinement in space (Sup-
plementary Fig. 21).
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We developed a simple yet effective quantitative segmentation
procedure to unveil the “stop-and-run” motion pattern of the lyso-
somes. Briefly, the two states are differentiated by computing the
residence timeof the lysosome in neighboring positions inside the cell,
with the “stop” states identifiedby long residence times. This approach
is able to reveal the dual motion of the lysosomes in 3D (Fig. 4d).

When considering the full 4Ddataset providedby the experiment,
we can additionally analyze the time trace of the fluorescence lifetime
(Fig. 4e and Supplementary Fig. 20). We measure a not-constant value
of the fluorescence lifetime during the motion of the lysosome. Spe-
cifically, the fluorescence lifetime value gradually drops from the
expected value for the GFP τ = 2.5 ns80 to a plateau at 1.9 ns. Interest-
ingly, the fluorescence photon flux varies as well between peak values
of approximately 3 − 6MHz and minima as low as 50 kHz. The 4D
trajectory reveals a correlation between the two processes (Fig. 4e). By
adding the fluorescence lifetime information on a 3D plot of the tra-
jectory (Fig. 4f and Supplementary Video SV2), we observe the value of
the fluorescence lifetime correlates with the motion states of the
lysosome. Specifically, values around 2.4 ns are associated with the
“run” state, while the gradual drop below this value is associated with
the “stop” state. In the proposed case study of single lysosome track-
ing, the concurrent measurement of fluorescence lifetime greatly
simplifies and improves the recognition of the lysosomemotion state.
This possibility is further confirmed in Supplementary Information
Note 5, where we segment the motion state of of 15 independent 4D

lysosome trajectories by solely analyzing the fluorescence lifetime
value in an automatized manner, thereby eliminating the need for any
user intervention.

Discussion
The unique nature of asynchronous read-out SPAD array detectors
merges important abilities of offline and real-time SPT techniques. This
class of sensors works as a camera detector – with a small sFoV and
virtual sub-microsecond frame rate – and as a SPAD detector – with
single-photon sensitivity and timing. By combining the SPAD array
detector with a fast FPGA-based data-acquisition module, the virtual
photon-counting images are used to compute in real-time the position
of the particle. This position represents the input of a feedback close
loop system which maintains the single particle of interest in focus –

within the OLV – by driving the laser beam scanning microscope
apparatus. An offline procedure can then postprocess the same virtual
images for refining and rebinning the trajectory with a time resolution
multiple of 2μs. Because the real-time feedback system must simply
maintain the particle within the OLV, whilst a precise particle localiza-
tion can be obtained offline, the FPGA-based card can implement a fast
but less accurate particle position estimation. As a result, the primary
limitation of the proposed SPT approach is the actuators’ lag time for
re-centering themicroscope focus. For this reason,we envisage a series
of new RT-4D-SPT implementations in which the OLV size is changed
according to the apparent diffusion coefficient of the particle. Indeed,
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Fig. 4 | Investigation of lysosomes diffusion with RT-4D-SPT. a 2D projection of
the spatial trajectory of a single lysosomemoving inside a living neuroblastoma SK-
N-BE cell. Awhite star and awhite romb indicate thebeginning and the endingof the
trajectory, respectively. The Extended time trace of the trajectory is in Supple-
mentary Fig. 20, and the video version is in SupplementaryVideo SV1. The organelle
is tracked by exciting the GFP expressed on a membrane protein (λexc = 488 nm)
with the re-centering performed at a fixed timingΔtallrc = 2:5ms. The reference image
shows the tubulin proteins labeled with Abberior LIVE 560 (λexc = 561 nm) and is
acquired prior to the lysosome tracking measurement. The pixel dwell time of
100μs. b 3D plot of the trajectory shown in a. The colormap represents the tem-
poral scale. c Mean squared displacement of lysosomes tracked in wild-type living
neuroblastoma SK-N-BE cell and after the addition of nocodazole. Each curve is

obtained by averaging the MSD of 15 independent single lysosome trajectories
(Δtallrc = 2:5ms). The shaded area is the standard error of the mean. The mean
tracking time length is 53± 25 s in thewild-type and 5 ± 4 s after treatment. The inset
plot shows an enlarged version of the curve obtained after treatment. d 3D plot of
the trajectory shown in (a). The color represents the diffusion state of the lysosome.
Segmentation is performedby thresholding the average time spent by the lysosome
inside voxels of dimension 5 nm× 5nm× 20nm (see “Methods”). e Time evolution
of the fluorescence lifetime τ for the trajectory in (a) (Δtτ = 10ms). The color
represents the fluorescence intensity on a logarithmic scale. The black arrows
indicatewhenwe register a rapid increment of thephotonfluxof at least 1MHz. f 3D
plot of the same trajectory of (a) with the color indicating the fluorescence lifetime
value. Video version in Supplementary Video SV2.
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the excitation volume and the sFoV can be tuned by controlling the
laser beam size and the overall microscope magnification on the
detector plane, respectively. This scenario can be supported by the
recent introduction of larger (i.e., 7 × 7 pixels) asynchronous read-out
SPAD array detectors with the same temporal characteristics48. How-
ever, strategies to increase the size of the excitation volume should be
balanced by the fact that the increase in out-of-focus fluorescence
background can limit an effective increase of the OLV, leading to the
same problem as in image-based SPT. Notably, the proposed combi-
nation of real-time andoffline localization is also compatiblewith those
techniques sequentially moving the beam around the particle to esti-
mate its position (e.g., MINFLUX and orbital tracking).

A fundamental characteristic of the proposed RT-SPT approach is
the ability to measure the fluorescence lifetime, opening true RT-4D-
SPT experiments. The particle can be followed across a large 3D
effective field-of-view, while the fluorescence lifetime can be used to
understand the particle’s interactions or changes in its nano-
environment. Unlike current RT-SPT implementations that typically
require a separate slave and dedicated DAQ for registering photon
detection times, limiting the lifetime analysis to offline processing
only, our RT-4D-SPT system integrates the measurement of fluores-
cence lifetime directly into the sameDAQ and controlmodule used for
real-time particle tracking. This integration opens the possibility for
intelligent experiments, where actions such as activating a second
laser beam or a camera-based acquisition system can be triggered by
changes in fluorescence lifetime. In summary, this architecture repre-
sents a novel advancement in the emerging field of data-driven or
smart microscopy.

To demonstrate the importance of correlating dynamics infor-
mation with the fluorescence lifetime, we conducted live cell experi-
ments that monitored the diffusion behavior of lysosomes. Our
findings revealed an interesting correlation between the intermittent
“stop-and-run” motion pattern and the intensity and fluorescence
lifetime of the GFP expressed on the organelles’ membrane. The drop
and recovery in intensitymay be attributed to the physical 3D rolling of
the organelle in the two alternating states81, which could expose new
fluorophores on the top surface. Alternatively, the reduction in inten-
sity might result from quenching of the fluorophore by certain species
when the lysosome stops. However, the variation in the fluorescence
lifetime of the GFP is an unprecedented observation. Without further
investigations, providing a definitive explanation for this phenomenon
remains challenging. It is worth mentioning that the GFP is sensitive to
various environmental parameters, including refractive index82 and
pH83. Thus, the change in fluorescence lifetime could signal the orga-
nelle’s membrane rearrangement during its function. The lysosome
experiment demonstrates the substantial amount of information
potentially encoded by correlating particle movement and fluores-
cence lifetime. However, providing a robust biological explanation for
the reason behind this correlation goes beyond the scope of this work.

In conclusion, our ability to measure both the position and the
fluorescence lifetimeof a particle in real time using a single instrument
significantly broadens the range of biological phenomena that can be
observed. Our RT-4D-SPT technique, which combines simplicity and
informativeness, can potentially set a new gold standard. With the
rapid development of SPAD array technologies, our approach repre-
sents a promising avenue also for single molecule tracking experi-
ments, where the photon-flux value is substantially reduced.

Methods
Optical setup details
The backbone of the optical setup for the proposed RT-SPTmethod is
a conventional laser scanning microscope, in which we replace the
typical single-element detector with a 5 × 5 asynchronous read-out
CMOS SPAD array detector placed in the microscope's conjugate
image plane (Supplementary Fig. 22).

Laser light at the wavelength λexc = 561 nm (MPB VFL-P-1000-560)
and at λexc = 488 nm (PicoQuant LDH-D-C-485) is combined and
modulated in amplitude with an acousto-optic modulator (AA Opto-
Electronic MT80-A1-VIS) in a dedicated laser box. Using a single-mode
polarization-maintaining fiber (Thorlabs P5-405BPM-FC-2), the light is
brought to the microscope setup, collimated with a reflective colli-
mator (Thorlabs RC08FC-P01), and its polarization is cleaned and
controlled with a half-wave plate (Thorlabs AHWP10M-600) and a
linear polarizer beam splitter (Thorlabs CCM1-PBS251/M). The beam is
reflected towards the objective at a multi-color dichroic beam splitter
(Semrock Di01-R405/488/561/635-25 × 36), it passes through a first
telescope formed by lenses L2 (LINOS G063-232-000) and L1 (LINOS
G063-237-000) and it is scanned in the lateral directions (xs and ys) via
a pair of galvanometric mirrors (Thorlabs GVSM002-EC/M). A second
telescope composed of the scan lens (Thorlabs SL50-CLS2) and the
tube lens (Thorlabs TTL200MP) magnifies the collimated beam to an
effective diameter of ≈ 46mm, further cropped by the usage of 1-inch
optical elements. Nevertheless, the back-aperture of the 63x/1.40 oil
objective (Leica HC PL APO 63x/1,40 OIL CS2) is overfilled. Finally, a
quarter-wave plate (Thorlabs AQWP10M-580) turns the polarization
into circular and the objective lens focuses the excitation beam into
the sample. The axial position of the focal point zs is adjusted by
moving the objective along the axial direction with a linear piezo-
electric stage (Physik Instrumente PIFOC P-725.2CL). The sample is
moved in the micrometer scale with a manual 3D microstage (Piezo-
conceptManualMicrostageNikon+Piezoconcept Rectangularmanual
Z adjust) and moved in the nanometer scale with a 3D piezoelectric
stage (Piezoconcept BIO3.300) placed on top of the microstage. The
emitted fluorescence is collected in epifluorescencemode by the same
objective lens, de-scanned by the galvanometric mirrors, and trans-
mitted at the dichroic beam splitter into the detection arm. The
remaining leakages of the laser illumination are blocked with two
notch filters (Chroma ZET488NF and Chroma ZET561NF). The fluor-
escence light passes through the cylindrical lens (Thorlabs LJ1516RM-
A) to induce astigmatism and it is finally focused onto the SPAD array
detector by lens L3 (LINOS G063-238-000). The setup is contained in a
relatively small breadboard of 800mm×800mm (Standa 1B-A-80-80-
015-BL) and features an overall theoretical magnification from the
sample plane to the SPAD image plane ofM = 504.

Control module
The control module manages the microscope positioners and lasers,
performing the logical operations necessary for real-time tracking. It
runs a custom LabVIEW firmware and is user-controllable via a GUI.

The hardware consists of a chassis (NI PXIe-1071) that synchro-
nizes two FPGA-based data-acquisition cards in a master/slave con-
figuration. The master card (NI PXIe-7822R) collects single-photon
pulses and computes real-time responses, while the slave card (NI
PXIe-7856R) converts themaster’s control orders into voltage outputs.
Data is sent to the host PC at specified intervals through a thunderbolt-
based communication module (NI PXIe-8301) for efficient bandwidth
management.

For detailed design and algorithm information, see Supplemen-
tary Information Note 6.

Mean squared displacement calculation
Considering a set of Ntr independent trajectories rðnÞðtÞ= rðnÞs ðtÞ of
length L(n) sampled with a discrete sampling step dts, we calculate
the MSD as follows:

MSDðδtÞ=MSDðk � dtsÞ

=
1
Ntr

XNtr

n= 1

1

LðnÞ � k

XLðnÞ�k

i = 1

∣rðnÞðði+ kÞ � dtsÞ � rðnÞði � dtsÞ∣
2

" #
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It is important to note that the calculation averages over all the dif-
ferent trajectories and time intervals, implicitly assuming the ergodic
hypothesis for the single-particle trajectories84. Furthermore, this
formulation utilizes all the available displacements of duration k ⋅ dts,
increasing the averaging pool for eachMSDpoint, but at the same time
exposes the risk of correlations between overlapping displacements.

Cell line and sample preparation
Fluorescent beads. To produce a sample of free diffusing fluorescent
beads, we begin by diluting the beads’ mother solution in distilled
water. We adjust the dilution ratio between 1:200 to 1:10000
depending on bead size; larger beads require lower dilutions to obtain
the same particle density in the final solution. If glycerol addition is
necessary, we heat pure glycerol in a thermostatic bath at 55 ∘C, then
add it to the bead solution until the desired volumetric glycerol/water
ratio Rgly is achieved. We vortex the solution and sonicate for 5min.
Finally, we spill a droplet of the solution directly onto a cover glass
placed in the microscope’s sample holder.

To produce a samplewith fixed fluorescent beads,we first deposit
150μL of poly-L-lysine (PLL) on a clean cover slip and incubate it at
37 ∘C for 10min.Meanwhile, we prepare a dilution of the beads’mother
solution in distilled water with a volumetric ratio between 1:500 and
1:1000, whichwe sonicate for 5min.We dry the coverslip with clean air
and deposit 150μL of bead dilution on top of the adhesive film, fol-
lowed by incubation at 37 ∘C for 10min. We spill the remainder of the
solution on the cover glass and dry it with clean air. We add 5 μL of
Mowiol® mounting medium and seal the cover glass on a
microscope slide.

A summaryof all the beads used in the various experiments canbe
found in Supplementary Table 1.

Live cells. SK-N-BE neuroblastoma cells line are cultured in RPMI
medium 1640 (Gibco), supplemented with 10% fetal bovine serum
(FBS), GlutaMAX (Gibco), and penicillin/streptomycin, and induced to
differentiate by 10μM all-trans-Retinoic acid (RA, Sigma) for 5 days
before imaging observation. For lysosome live monitoring, SK-N-BE
cells expressing LAMP1-eGFP protein are generated. The stable cell line
is obtained upon plasmid transfection (epb-bsd-EIF1a-LAMP1eGFP)
using Lipofectamine™ 2000 Transfection Reagent (ThermoFisher).
The cells are then selected by Blasticidin (5μg/mL) administration. For
microtubule labeling, 1μg/mL of Tubulin Tracker™ Deep Red (Invi-
trogen) is added to sample media and incubated for 30min, followed
by a washout before imaging and by changing the complemented
media with RPMI 1640 Medium no phenol red (Gibco), to limit signal
background during imaging observation. To perturbate lysosome
motility, SK-N-BE cells expressing LAMP1-eGFP are treated with 10μg/
mL nocodazole (Merck) for 1 h, which destabilizes microtubules and,
as described in ref. 79, significantly increases the number of stationary
lysosomes.

Lysosome motion behavior segmentation
To differentiate between the “stop” and the “run”motion states of the
lysosomes, we analyze the time spent by the organelles in neighboring
positions during their movement. We start by dividing the 3D space
into a regular grid with a voxel size of 5 nm× 5 nm× 20nm. Each voxel
is then associated with the number of trajectory points inside it. By
multiplying with the trajectory sampling time we therefore obtain a
measure of the residence time of the considered lysosome inside each
voxel (Supplementary Fig. 23a). This 3D histogram is smoothed with a
3D Gaussian filter whose dimension is bigger than the voxel size to
obtain the neighboring score (Supplementary Fig. 23b). This operation
has the double purpose to enhance the contrast of clusters of voxels
with high residence times by reducing their fluctuations and at the
same time to dump the score of the “run”points,which are assumed to
be mainly surrounded by empty voxels. Each trajectory point is finally

associated to a motion state by thresholding its neighboring score
(Supplementary Fig. 23c, d). Depending on the particular experiment,
the voxel neighboring score threshold may vary and it’s up to the user
to define the optimal one.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The experimental 3D and 4D trajectories generated and analyzed in
this study have been deposited in a publicly available Zenodo reposi-
tory (https://doi.org/10.5281/zenodo.11191581). However, the dataset
containing the trajectories of the bead populations depicted in Fig. 3 is
too large to be uploaded. Nevertheless, it is available upon request.

Code availability
The Python data analysis source code has been deposited on a publicly
available Zenodo repository (https://doi.org/10.5281/zenodo.
11191581). The Lab-view data acquisition and control software used
for the current study are available upon request.
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