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Abstract: Honey’s antibacterial activity has been recently linked to the inhibitory effects of honey
microbiota against a range of foodborne and human pathogens. In the current study, the microbial
community structure of honey samples exerting pronounced antimicrobial activity was examined.
The honey samples were obtained from different geographical locations in Greece and had diverse
pollen origin (fir, cotton, fir–oak, and Arbutus unedo honeys). Identification of honey microbiota
was performed by high-throughput amplicon sequencing analysis, detecting 335 distinct taxa in
the analyzed samples. Regarding ecological indices, the fir and cotton honeys possessed greater
diversity than the fir–oak and Arbutus unedo ones. Lactobacillus kunkeei (basionym of Apilactobacillus
kun-keei) was the predominant taxon in the fir honey examined. Lactobacillus spp. appeared to be
favored in honey from fir-originated pollen and nectar since lactobacilli were more pronounced
in fir compared to fir–oak honey. Pseudomonas, Streptococcus, Lysobacter and Meiothermus were the
predominant taxa in cotton honey, whereas Lonsdalea, the causing agent of acute oak decline, and
Zymobacter, an osmotolerant facultative anaerobic fermenter, were the dominant taxa in fir–oak honey.
Moreover, methylotrophic bacteria represented 1.3–3% of the total relative abundance, independently
of the geographical and pollen origin, indicating that methylotrophy plays an important role in
honeybee ecology and functionality. A total of 14 taxa were identified in all examined honey samples,
including bacilli/anoxybacilli, paracocci, lysobacters, pseudomonads, and sphingomonads. It is
concluded that microbial constituents of the honey samples examined were native gut microbiota of
melliferous bees and microbiota of their flowering plants, including both beneficial bacteria, such as
potential probiotic strains, and animal and plant pathogens, e.g., Staphylococcus spp. and Lonsdalea
spp. Further experimentation will elucidate aspects of potential application of microbial bioindicators
in identifying the authenticity of honey and honeybee-derived products.

Keywords: fir and fir–oak honey; Arbutus unedo honey; methylotrophs; Apilactobacillus kun-keei;
Lonsdalea; Zymobacter

1. Introduction

The honey market constitutes an important agricultural sector, with the global honey
production being estimated at approximately 6.6 billion USD in 2015 [1]. Moreover, honey-
bees are essential for agriculture, ecology, and the maintenance of life, as the pollination
assures the reproduction of plants; thus, beekeeping is actually an issue of concern all
around the world [2]. In the European Union (EU), the second largest producer of honey
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in the globe after China, and EU Member States such as Spain, Romania, Greece, Poland,
France, and Italy [3], are the main producers not only of honey, but also of propolis, bee
pollen, bee bread, bee wax, and royal jelly (COM(2019) 635 final).

According to latest data from the European Commission, 19 million beehives owned
by 615,000 beekeepers produced 275,000 tons of honey in 2020, albeit covering only 60% of
the demand in the EU [4], whilst the remaining 40% was covered primarily by Ukraine
and secondarily by China [5]. The regulatory framework regarding honey production,
properties, and labeling is specified in the Council Directive (EU) 2001/110/EC relating
to honey.

In the recent decades, a series of factors, including the extensive application of pesti-
cides, the penetration of invasive species, and deforestation, have added excessive pressure
on the global bee population [6]. However, honey is a valuable natural food product, as well
as an ingredient used in various personal care products, as well as in traditional medicine.
Honey, a hypersaturated sugar solution of high viscosity and osmotic pressure, consists
mainly of fructose and glucose, which account for 54.3–87.5% of its content, while minor
concentrations of other monosaccharides and oligosaccharides are detected [7]. Moreover,
limited amounts of minerals, pollen, amino acids, proteins, organic acids, and their esters
are present in honey [7]. Any detected variation can be attributed to the geographical
region and flowering, climate conditions, production practices, and storage [7,8]. Moreover,
honey has a pH near 4 [9,10] and low water activity, which lies between 0.45 and 0.6 [9,11].
The presence of flavonoids and carotenoids, as well as of minerals, such as Fe, Zn, Cu, and
Mn, defines the color of honey [10,12].

In addition to its dietary value, honey is of high medicinal importance since its antimi-
crobial and wound-healing properties have been noticed since ancient times [13]. Honey’s
antibacterial activity, which is linked to enzymatic generation of hydrogen peroxide, wound
moisturization ability, and high viscosity, acting as a barrier against infections, are key
mode-of-action parameters regarding its medicinal properties [14]. In addition to the gen-
eration of hydrogen peroxide via the action of glucose oxidase present in the nectar, the
antimicrobial activity and healing properties of honey can be attributed to the antibacterial
properties of phenolic acids and flavonoids [14,15]. Moreover, the extremely low water
activity and the high osmolarity, as well as the acidic pH, of honey further strengthen the
inhibitory effects against bacterial pathogens [16]. On the other hand, spatial and temporal
variation in bee pollen and nectar influence the antimicrobial properties of honey [17].

Recently, the antimicrobial activity of honey has also been linked to the inhibitory
effects of honey microbiota against foodborne and human pathogens. Pajor et al. [18]
investigated the inhibitory effect of bacterial strains isolated from honey against pathogens,
reporting that Bacillus spp. exhibited antimicrobial activity against Listeria monocytogenes
ATCC 7644, whereas similar inhibitory activity was also induced by these bacilli against
certain Staphylococcus aureus and S. epidermidis strains. In addition, Voidarou et al. [19]
evaluated the therapeutic properties of oregano honey against gastric ulcers and gastritis
caused by Helicobacter pylori, pointing out that diethyl ether extracts of the honey and the
honey itself reduced urease activity exhibited by the specific pathogen. Moreover, Masoura
and Gkatzionis [20] examined possible antimicrobial effects of thyme and Manuka honeys
against methicillin-resistant Staphylococcus aureus (MRSA) strains. The low pH and the high
H2O2 concentration were the key factors influencing the antibacterial activity of monofloral
thyme honey. Similarly, Jia et al. [21] also reported the antagonistic action of Bacillus
sp. A2 from honey against the yeast Candida albicans and the bacterial species Escherichia
coli and Staphylococcus aureus. However, employment of high-throughput techniques to
uncover microbial diversity in honey is limited. Specifically, Wen et al. [22] performed
pyrosequencing to analyze microbial diversity during ripening of vitex honey, reporting
the dominance of Bacillus spp. and Lactococcus spp. and yeasts of the genus Metschnikowia.

Thus, the aim of the present study was to identify, for the first time, the predominant
microbial communities in Apis mellifera honey samples of various pollen origin (fir, cotton,
fir–oak, and arbutus) exhibiting high antimicrobial activity against common foodborne and
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human pathogens, and to comparatively evaluate their microbial community structure and
ecological indices, through the application of high-throughput sequencing techniques.

2. Results and Discussion

Four honey samples from bees fed with pollen and nectar of various melliferous
plant species were examined in terms of their microbial community structure. Regarding
diversity indices, the fir and cotton honeys exhibited significantly greater diversity than
the fir–oak and Arbutus unedo honeys (a < 0.05, in Duncan’s multiple tests for Chao1, Fisher,
Shannon, and Simpson diversity indices) (Figure 1). No statistically significant differences
were identified between fir and cotton honey, or between fir–oak and Arbutus unedo honey
regarding all ecological indices estimated, except for the Shannon index, where Arbutus
unedo honey showed the least score (Figure 1).
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Figure 1. Diversity indices of the examined honey samples. Bars represent ± standard errors of
means. Analysis of variance (ANOVA) using Duncan’s multiple post hoc tests at a significance level
of 5% (a < 0.05) were carried out to identify statistically significant differences. No letter in common
at the top of the subgraphs is indicative of statistically significant differences.

The examined fir honey was dominated by lactic acid bacteria of the genus Lactobacil-
lus (19.80 ± 0.59% of the total relative abundance), followed by members of the genera
Bradyrhizobium (11.93 ± 0.20%) and Pseudomonas (11.42 ± 1.68%) (Figure 2). Specifically, L.
kunkeei (current taxonomic name Apilactobacillus kun-keei) represented 19.34 ± 0.54% of the
total relative abundance at species level in fir honey (Table 1).
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Figure 2. Major bacterial taxa identified in honey samples of different pollen origin. Bars
represent ± standard errors of means. Analysis of variance (ANOVA) using Duncan’s multiple post hoc
tests at a significance level of 5% (a < 0.05) were carried out to identify statistically significant differences.
No letter in common at the top of the bars is indicative of statistically significant differences.
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Table 1. Relative abundance of Lactobacillus species detected in fir honey.

Taxon Relative Abundance (%)

Lactobacillus kunkeei 19.34 ± 0.54
Lactobacillus johnsonii 0.31 ± 0.03

Lactobacillus alvei Marginally detected
Lactobacillus sakei Marginally detected
Lactobacillus mellis Marginally detected

Lactobacillus melliventris Marginally detected

Lactobacilli appeared to be favored in honey produced from fir-originated pollen and
nectar, with Lactobacillus population being more pronounced in fir honey compared to
fir–oak honey, indicating a proliferation of this taxon under feeding of honeybees with fir
(Figure 3). Interestingly, Bradyrhizobium has been recently reported to exert antagonistic
activity against various pathogens [23]. Recently, co-existence of lactic acid bacteria and
Bradyrhizobium resulted in enhanced nodulation with positive impact on plant growth, a fact
that may be indicative of co-evolution of these microbiota in certain honeybee hosts [24].
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errors of means.

The predominant taxa in cotton honey were Pseudomonas, Streptococcus, Lysobacter, and
Meiothermus, representing 14.35 ± 2.10%, 7.66 ± 1.69%, 7.07 ± 1.75%, and 6.53 ± 3.93%
of the total relative abundance, respectively (Figure 2). Pseudomonas is an inhabitant of
bee pollen, contributing to the decomposition of pollen walls [25]. As a result, this taxon
is part of honeybee microbiome, which is commonly detected in honey [25–27]. Notably,
streptococci/lactococci, lactobacilli, and enterococci are common microbial constituents
of honeybee-collected pollen [28]. Moreover, Lysobacter was recently detected as a minor
component of intestine honeybee microbiota [29]. Interestingly, Meiothermus was reported
to be a beneficial bacterium of phytophagous insects, i.e., Phasmotaenia lanyuhensis [30].

The major bacterial taxa in fir–oak honey were Lonsdalea, causing acute oak decline [31],
and Zymobacter, a facultative anaerobic fermenter [32], which covered 18.53 ± 4.96% and
17.22 ± 4.48% of the total reads, respectively (Figure 2). Recent findings revealed that
“insects visiting drippy blight diseased red oak trees are contaminated with the pathogenic bacterium
Lonsdalea quercina” [33]; therefore, this bacterium appears to be transmitted from infected
oak trees to honeybees and subsequently to fir/oak-originated honey.
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The presence of Zymobacter may result in a reduced Lactobacillus population in these
honeybees, since this rarely appearing sugar-tolerant bacterium of Halomonadaceae [34] may
be favored as a specialized alternative fermenter [35]. Moreover, the acetic acid bacterium
Asaia is considered as an emerging symbiont of Apis mellifera [36]. Kocuria spp., which were
among the major taxa identified in fir-related honeys (fir and fir–oak honeys; Figure 2),
have been identified as the most abundant species in honeybees obtained from beehives in
Turkey, which, however, were entomopathogens of honybees [37].

Lysobacter (37.31± 5.58% of the total relative abundance), Chryseobacterium (12.66 ± 4.44%),
and Paenibacillus (8.81 ± 7.73%) were the predominant microbiota in Arbutus unedo honey
(Figure 2). Although Chryseobacterium is rarely detected in honey [26], this taxon belongs to
the native microbiota of Arbutus unedo (strawberry tree), since this bacterium was detected
in all strawberry tree specimens examined by Martins et al. [38]. Apart from Lysobacter,
which is a representative of honeybee gut microbiota [29] and a plant-associated microbe
with plant-protective properties [39], various Paenibacillus spp. have been also detected
in the microbiome of honeybee intestine [40]. Although certain members of the genus
Paenibacillus are entomopathogenic to honeybees [41], various Bacillus spp. can be beneficial
as biological control agents delivered from honeybees to plants [42].

Among other major taxa (Figure 2), Sphingomonas spp., which are also considered
as common constituents of honeybee gut microbiota [43,44], were detected in all honey
samples examined. Moreover, Methylobacterium has been previously detected in Ceratina
bees [45].

Performance of correlation network analysis in honeys examined showed the strong
relationships among certain members of Actinobacteria (Kocuria, Nakamurella, Tessaracoccus,
Acidothermus, Nocardia, Arcanobacterium, and Propionicicella), Bacteroidota representatives
(Flavobacterium and Ferruginibacter), the Rhodobacteraceae genera Amaricoccus and Gemmobac-
ter, and the methylotrophic bacterium Methylotenera. Such microbiota may be involved in
the decomposition of complex compounds present in flowering plants and honey, such
as phenolics, flavonoids, lignin, and cellulose [46]. A second distinct cluster was formed
solely by the major microbiota of the fir–oak honey (Lonsdalea, Zymobacter, and lactic acid
bacteria such as Fructobacillus and Leuconostoc), indicating the interaction of Lonsdalea with
key fermentative taxa in this honey sample.

Lactobacilli and especially L. kunkeei (basionym of Apilactobacillus kun-keei) strains in
the gut of melliferous bees have been reported to induce resistance against deltamethrin, a
pesticide that is considered as the major threat for pollinators [47]. Lactobacillus spp. are
members of the native gut microbiome of honeybees, which have been found to enhance
antiviral properties, even during tetracycline treatment that increases sensitivity to viral in-
fections [48]. Moreover, honey with a high Lactobacillus population was reported to exhibit
the greatest antioxidant activity among other honey samples examined by Wu et al. [49].
L. kunkeei (A. kun-keei) in the gut of Apis mellifera has been reported to exert antimicro-
bial activity and act as probiotic against the honeybee pathogens Paenibacillus larvae and
Melissococccus plutonius [50,51]. Indeed, L. kunkeei is favored by a long evolutionary sym-
biotic relationship in the gut of honeybees [52]. Moreover, Goh et al. [53] reported that
Lactobacillus strains, which were isolated from stingless bees and their products, exhib-
ited antimicrobial properties against Listeria monocytogenes. Kaškonienė et al. [54] also
reported that lactococci and lactobacilli during solid-state lactic acid fermentation of bee
pollen exerted antibacterial activity against Micrococcus luteus, Staphylococcus aureus, and
Escherichia coli. Similarly, lactic acid bacteria from the intestine tract of honeybees exhibited
inhibitory effects against Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Salmonella
typhimurium, and Staphylococcus aureus [55].

Comparative analysis of microbial communities in the examined honey samples
revealed that their major taxa were either indigenous microbiota of honeybees, mostly ben-
eficial and to a lesser extent potential foodborne and human pathogens, and/or inhabitants
of bee pollen and flowering plants, including both plant protective and phytopathogenic
microorganisms. In addition, honey originated from cotton (an industrial plant) included
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a higher proportion of potential foodborne and human pathogens compared to honey
originated from bees fed with pollen of wild plants, a fact that may be attributed to the
higher abundance of antimicrobial compounds in forest plants [56,57].

A total of 14 taxa were identified in all honey samples (Table 2), independently from
their geographic distribution and pollen origin, indicating that these genera may serve
as authenticity bioindicators of honey and honeybee-derived products. All of these are
either aerobes, capable of growing in low-oxygen conditions (lysobacters and sphingomon-
ads) [58,59] or presenting weak anaerobic growth (Microbacterium), as well as being facul-
tative anaerobes (e.g., bacilli/anoxybacilli, paracocci, pseudomonads, staphylococci, and
phenylobacteria) or common fermenters of insect gut (Propionibacterium spp.). Therefore,
restricted oxygen levels in the honeybee gut and/or honey seem to play a role in shaping
the microbial community structure in honey.

Table 2. List of bacterial taxa identified in all honey samples examined in order to serve as potential
authenticity bioindicators of honey.

Taxon 1 Fir Honey Cotton Honey Fir-Oak Honey A. unedo Honey

Pseudomonas 11.42 ± 1.68 (b) 14.35 ± 2.10 (b) 2.02 ± 1.23 (a) 0.32 ± 0.03 (a)
Lysobacter 2.67 ± 1.79 (a) 7.07 ± 1.75 (a) 14.93 ± 10.05 (ab) 37.31 ± 5.58 (b)

Anoxybacillus 2.24 ± 0.72 (a) 5.47 ± 1.80 (a) 1.78 ± 0.07 (a) 4.60 ± 2.97 (a)
Bacillus 0.30 ± 0.30 (a) 3.35 ± 1.47 (a) 3.61 ± 0.76 (a) 3.69 ± 2.66 (a)

Meiothermus 1.91 ± 0.29 (a) 6.53 ± 3.93 (a) 0.61 ± 0.07 (a) 1.65 ± 0.26 (a)
Sphingomonas 1.14 ± 0.03 (a) 0.63 ± 0.49 (a) 2.86 ± 0.05 (b) 3.33 ± 0.43 (b)
Cupriavidus 0.97 ± 0.42 (a) 1.94 ± 0.72 (ab) 1.52 ± 0.18 (ab) 3.41 ± 0.59 (b)

Phenylobacterium 0.20 ± 0.06 (a) 0.58 ± 0.23 (a) 1.21 ± 0.03 (a) 4.61 ± 0.87 (b)
Paracoccus 0.44 ± 0.05 (a) 1.04 ± 0.43 (a) 0.79 ± 0.54 (a) 0.48 ± 0.23 (a)

Staphylococcus 0.35 ± 0.28 (a) 1.23 ± 0.64 (a) 0.23 ± 0.09 (a) 0.57 ± 0.32 (a)
Methylibium 1.02 ± 0.48 (a) 0.22 ± 0.06 (a) 0.69 ± 0.12 (a) 0.29 ± 0.03 (a)

Propionibacterium 0.65 ± 0.26 (a) 0.61 ± 0.21 (a) 0.27 ± 0.17 (a) 0.17 ± 0.01 (a)
Methylobacterium 0.50 ± 0.12 (b) 0.67 ± 0.02 (b) 0.07 ± 0.05 (a) 0.05 ± 0.04 (a)
Microbacterium 0.31 ± 0.03 (a) 0.26 ± 0.10 (a) 0.23 ± 0.02 (a) 0.18 ± 0.04 (a)

1 No letter in common within the same row is indicative of statistically significant differences.

In all honey samples examined, methylotrophs represented an important fraction of
microbial population. In particular, methylotrophs covered 1.3–3.0% of the total relative
abundance (Table 3), independently of the geographical and pollen origin. Methanol
has been reported to be among the most abundant volatile compounds of honey [60,61].
Interestingly, plant-colonizing methylotrophs of the genus Methylobacterium were capable
of delivering insecticidal proteins and have been associated with the plant protective
properties of the common biocontrol agent Bacillus thuringiensis [62]. Moreover, volatiles
such as methanol promote the growth of the phyllosphere microbiota [63], serving as an
energy source for methylotrophic epiphytes [64]. Thus, both methanol concentration and
co-evolution of honeybees with their plant hosts and phyllosphere microbiota appear to
shape methylotrophic communities in honey.

Table 3. Relative abundance of methylotrophic bacteria identified in the examined honey samples.

Taxon Fir Honey Cotton Honey Fir-Oak Honey Arbutus unedo Honey

Methylibium 1.02 ± 0.48 0.22 ± 0.06 0.69 ± 0.12 0.29 ± 0.03
Methylobacterium 0.50 ± 0.12 0.67 ± 0.02 0.07 ± 0.05 0.05 ± 0.04

Methylocapsa 0.18 ± 0.18 n.d. n.d. n.d.
Methylopila 0.02 ± 0.02 n.d. 0.16 ± 0.16 n.d.

Methylosinus 0.25 ± 0.16 n.d. 0.12 ± 0.08 n.d.
Methylotenera 0.40 ± 0.01 0.85 ± 0.26 n.d. n.d.

Methyloversatilis 0.60 ± 0.60 1.26 ± 0.99 0.61 ± 0.53 1.00 ± 0.58

Total relative abundance 1 2.97 ± 1.20 (a) 3.00 ± 1.18 (a) 1.65 ± 0.44 (a) 1.34 ± 0.59 (a)
1 No letter in common within the same row is indicative of statistically significant differences; n.d., not detected.
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In conclusion, native microbiota of the honeybee microbiome, such as fermentative
bacteria, either with probiotic properties (e.g., lactobacilli) or potential foodborne and
human pathogens (e.g., staphylococci and streptococci), as well as common inhabitants of
bee pollen (e.g., pollen wall decomposers, such as Pseudomonas spp.) and flowering plants
(e.g., beneficial microorganisms of plants and phytophagous insects, such as Lysobacter
and Meiothermus spp., respectively), including plant pathogens of honeybee hosts that are
transmitted from flowering plants to honey via honeybees (e.g., Lonsdalea, the causing agent
of acute oak decline), constitute the microbial community structure in natural honeys.

3. Materials and Methods
3.1. Collection of Honey Samples

Honey samples from various locations in Greece were obtained aseptically and further
examined in terms of their antimicrobial properties. Four honey samples from beehives
situated in different geographical areas of Greece, i.e., from the Prefecture of Epirus (the
one honey sample was produced from honeybees fed with fir and oak and the other with
Arbutus unedo pollen and nectar), the Regional unit of Phthiotis, Mendenitsa region (from
fir pollen and nectar) and the Regional unit of Karditsa, Palama region (from cotton pollen
and nectar), were collected and further studied, due to their high antimicrobial activity
(as examined in Stavropoulou et al. [65,66]). These honey samples were subsequently
subjected to DNA extraction and phylogenetic analysis of microbial communities through
Illumina sequencing.

3.2. DNA Extraction from Honey Samples of Different Pollen Origin and Performance of
Amplicon Sequencing

The collected honey samples exhibiting high antimicrobial activity against foodborne
and human pathogens were subjected to DNA extraction. Genomic DNA was extracted
from honey through the use of NucleoSpin Tissue Kit (Macherey-Nagel, Düren, Germany),
by following the instructions of the manufacturer. Aliquots of 60 µL of 10 mg/mL lysozyme
and 60 µL of 10 mg/mL lysostaphin, as well as 6 µL of 60 U/µL lyticase (enzymes supplied
by Sigma-Aldrich, Germany), were added per treated sample to facilitate the lysis of
Gram(+) bacteria and yeast strains, respectively. The V4–V5 region of the 16S rRNA gene
was amplified using the primers 515F (5′–GTG YCA GCM GCC GCG GTA A–3′) and
909R (5′–CCC CGY CAA TTC MTT TRA GT–3′). No amplification was achieved using
primer set ITS1F (5′–CTT GGT CAT TTA GAG GAA GTA A–3′) and ITS4R (5′–TCC TCC
GCT TAT TGA TAT GC–3′) for fungi, including yeasts. Amplification of partial 16S rRNA
gene was conducted through a thermal scheme comprising of 3 min denaturation at 94 ◦C,
succeeded by 28 cycles of 30 s denaturation at 94 ◦C, 40 s primer annealing at 53 ◦C, and
1 min DNA elongation at 72 ◦C, before a 5 min DNA thermal extension at 72 ◦C to complete
the thermocycling reaction. The amplification reaction for the ITS region was performed by
using 2 min denaturation at 94 ◦C, succeeded by 35 cycles of 30 s denaturation at 95 ◦C,
30 s primer annealing at 55 ◦C, and 1 min DNA elongation at 72 ◦C, before a 10 min DNA
thermal extension at 72 ◦C to complete the thermocycling reaction. Illumina sequencing
reactions were carried out at Mr DNA’ (USA) in MiSeq equipment (Illumina, Inc., San Diego,
CA, USA) after amplicon cleanup through the use of DNA purification beads.

3.3. Bioinformatic Analysis and Analysis of Variance (ANOVA)

Bacterial amplicons were proceeded to demultiplexing and trimming, and partial 16S
rRNA gene sequences of abnormal size and low-quality were removed. The assembled
reads were further subjected to denoising and chimera discard using USEARCH v.11 [67,68].
Bacterial sequences were clustered and ZOTUs (zero-radius OTU of denoised sequences)
were generated, following National Center for Biotechnology Information (NCBI) taxonomy.
Ecological indices, i.e., Chao1, Shannon, Simpson, and Fisher diversity indices, were
sequentially calculated using the MicrobiomeAnalyst online suite of omics tools [69].
Relationships among bacterial taxa were identified in the MicrobiomeAnalyst platform via
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multiple correlation network matrix analyses based of the SparCC score at 0.97 correlation
coefficient. The sequenced amplicons were deposited in the Sequence Read Archive (SRA)
of the NCBI platform under the BioProject accession number PRJNA913297.

Analysis of variance (ANOVA) was conducted using Past v.4.10 [70] to identify statis-
tically significant differences among the relative abundances and diversity indices of the
bacterial communities identified in these Greek honey samples exhibiting high antimicro-
bial activity against foodborne and human pathogens.
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