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Abstract 

Background: In the era of evidence-based medicine, decision-making about treatment of individual patients involves conscious, specific, and 
reasonable use of modern, best evidences. Diagnostic tests are usually obeying to the well-established quality standards of reproducibility and validity. 
Conversely, it could be tedious to assess the validation studies of tests used for diagnosis of mental and behavioral disorders. This work aims at 
establishing a methodological reference framework for the validation process of diagnostic tools for mental disorders. We implemented this framework 
as part of the protocol for the systematic review of burnout self-reported measures. The objectives of this systematic review are (a) to assess the 
validation processes used in each of the selected burnout measures, and (b) to grade the evidence of the validity and psychometric quality of each 
burnout measure. The optimum goal is to select the most valid measure(s) for use in medical practice and epidemiological research. 

Methods: The review will consist in systematic searches in MEDLINE, PsycINFO, and EMBASE databases. Two independent authors will screen the 
references in two phases. The first phase will be the title and abstract screening, and the second phase the full-text reading. There will be 4 inclusion 
criteria for the studies. Studies will have to (a) address the psychometric properties of at least one of the eight validated burnout measures (b) in their 
original language (c) with sample(s) of working adults (18 to 65 years old) (d) greater than 100. We will assess the risk of bias of each study using the 
Consensus-based Standards for the selection of health Measurement Instruments checklist. The outcomes of interest will be the face validity, response 
validity, internal structure validity, convergent validity, discriminant validity, predictive validity, internal consistency, test-retest reliability, and 
alternate form reliability, enabling assessing the psychometric properties used to validate the eight concerned burnout measures. We will examine the 
outcomes using the reference framework for validating measures of mental disorders. Results will be synthetized descriptively and, if there is enough 
homogenous data, using a meta-analysis. 
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BACKGROUND  

Rationale 

In the era of evidence-based medicine (EBM), decision-making about treatment of individual patients involves conscious, specific, and reasonable use 
of modern, best evidences (1). The purpose of EBM is ultimately to provide patients with the best treatment solutions. Thus, EBM helps avoid mistakes 
in the course of treatment and raises the quality and the cost-effectiveness of health care. Diagnosis and prognosis, two basic aspects of medicine and 
paramedicine, provide valuable information enabling patients and professionals to make decision. The results of diagnostic and prognostic processes 
must be as correct as possible, as they can have far-reaching consequences. The application of the EBM methods in diagnostic and prognostic processes 
used in healthcare is thus essential (2). 

EBM requires from the physician the ability to search the medical literature and the skills in the interpretation of epidemiological and statistical results. 
However, evaluating the quality of a given study can be challenging in some cases, depending on the nature of the diagnostic test, the study design and 
statistics used. For instance, diagnostic tests involving measurable functional, biological or morphological changes of clinical significance usually obey 
to well established quality standards of reproducibility and validity and are relatively easy to compare based on their predictive values, sensitivity and 
specificity (3). In contrast, validity studies of tests in questionnaire format, commonly used for the diagnosis of mental and behavioral disorders, are 
more challenging to assess.  Diagnostic questionnaire assessing mental disorders should obey to a number of methodological standards, such as 
psychometric properties, as part of its validation process (4). However, terms that denominate the psychometric properties have rather broad, sometimes 
vague definitions, while the statistical methods for their assessment vary widely across publications (4-11). Moreover, available methodological 
guidelines are heterogeneous and generally incomplete. Some of them are even contradictory (4, 6, 7). To date, no consensual methodological guideline 
exists for the whole validation process of mental health questionnaires and rating scales used for screening and diagnosis of mental disorders. The 
currently available standards focus on the methodological quality of single studies reporting diagnostic accuracy and psychometric properties. Examples 
of those standards are the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) (12) or the Standards Reporting of Diagnostic Accuracy 
Studies (STARD) (13). The Consensus-based Standards for the selection of health Measurement Instruments (COSMIN) (14) is often used for the 
qualitative evidence appraisal in the systematic reviews. However, the latest is rather unhelpful from the statistical point of view.   

This lack of harmonization regarding acceptable validity standards or criteria for various mental health questionnaires directly challenges the EBM 
application in diagnosis and subsequently in treatment of mental disorders, in particular, among non-specialized health professionals. In order to remedy 
this situation, we have established a general reference framework for the validation process of diagnostic tools for mental disorders, including self-
reported measures of burnout. The burnout syndrome remains ill-defined and nosologically uncharacterized (15).  Despite its increasing importance 
(16), burnout syndrome still has no consensual definition, which makes it difficult to manage. Maslach and Jackson (17) proposed the most prominent 
definition of burnout: a psychological syndrome that occurs in professionals who work with other people in challenging situations that is measured 
through three domains: 1-emotional exhaustion 2-depersonalisation and 3-personal accomplishment. From this definition, Maslach developed a first 
burnout measure: the Maslach Burnout Inventory (MBI). Apart from the MBI, a meta-analysis by O’Connor et al. (18) cited six other validated burnout 



measures:  the Pines Burnout Measure (BM), the OLdenburg Burnout Inventory (OLBI), the Copenhagen Burnout Inventory (CBI), the Professional 
Quality of Life Scale (ProQOL III), the Psychologists Burnout Inventory (PBI), the Children’s Services Survey (CSS), and the Organizational Social 
Context Scale (OCS). Considering that psychological syndromes measures are heterogeneous, a closer look to the validation process of the currently 
used burnout measures should give insight on their legitimacy in medical practice and research.  

Objectives 

This article aims at presenting our methodological reference framework for the validation process of diagnostic tools for mental disorders as part of 
the protocol for our systematic review of burnout self-reported measures. The objectives of this systematic review are to assess the validation processes 
used in each of the selected burnout measures and to grade the evidence of the validity and psychometric quality of each burnout measure to select the 
most valid one(s) for use in medical practice and epidemiological research. 

METHODS AND ANALYSIS 

We developed the protocol according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations. We 
registered the protocol with the International Prospective Register of Systematic reviews (registration number CRD42019124621). 

Reference framework for the validation process of diagnostic tools for mental disorders 

This framework is provided in Supplementary material Table 1, organized in four columns, as follows: 1-psychometric validity criteria, 2-their 
definitions, 3-the methods commonly used to analyze them, and 4-the resulting statistical estimates and indices as well as the objective criteria for their 
respective interpretation.  To construct this framework, we completed the demarche initiated by the French National Institute of Research on Security 
(INRS) for a comparative analysis of different scales and tools used for assessing psychosocial risks available in French language (4).  First, we listed 
as exhaustively as possible the psychometric validity criteria and their definitions, using handbooks and published guidelines (4-11, 14, 15, 17-44).  
Second, we sorted the validity criteria, according to their most consensual denomination and definition and grouped them by sub-types according to 
Bolarinwa (6). Third, we filled the third and fourth columns of the table with appropriate analyses and indices’ interpretation for each validity criterion, 
using handbooks and published methodological guidelines (4-6, 8-11, 19-33, 35-44). Forth, we submitted the completed table of our framework to two 
independent experts with strong psychometric skills for critical review of the retained definitions, the completeness of the methods, and the appropriate 
choice of interpretation criteria. Finally, after discussion of the reviewers’ comments and getting consensus, we produced a current version of the 
framework. We consider it as a methodological referential because it allows non-specialized health professionals and researchers to understand and to 
correctly interpret the overall and specific validity criteria of a diagnostic tool for mental disorders, whatever the study design and statistical method 
used for its validation. Thanks to its multiple entries, it is possible to shift through validation studies by picking up terms about either validity criteria 
(20 criteria), analytical methods (21 methods) or the resulting indices and statistics grouped into 19 categories. Because of its analytical exhaustiveness 
and completeness for the three elements of the validation of diagnostic tests (i.e., validity, reproducibility and sensitivity), it constitutes a useful 
framework for quality appraisal of diagnostic tests for mental disorders. 

Eligibility criteria 

We will include 1-studies with quantitative methodology; 2-published in the original scientific article formats; 3-adressing the psychometric properties 
of at least one above-mentioned burnout measures in its original (not translated) version; 4-with sample size of at least of 100 participants. We will 
exclude 1-studies that do not meet the inclusion criteria; 2-studies for which no abstract and full text could be found; 3-studies where one of the eight 
burnout measures was used as a reference against another one, not included in this review; 4-studies where a translated version of burnout measure 
was used (e.g., translational validity and cross-cultural studies); 5-studies in which quantitative data on reliability or validity were missed; 6-studies 
where participants were not professionally employed (e.g., students, medical residents). 

Participants 

We will include studies with working adult participants aged between 18 and 65 years old. We will exclude studies where participants had no 
professional occupation (e.g., students, medical residents). 

Exposures/Interventions 

This review is focused on the psychometric properties and validity of the selected burnout self-reported measures. It would not consider the exposures 
or predictors of burnout in workers.  

Comparators 

We will consider measures of depression, anxiety, and somatic disorders as comparators to assess the discriminant validity of burnout measures. 

Outcome measures 

The outcome are the psychometric properties used to validate the eight aforementioned burnout measures: Face validity; Response validity; Internal 
structure validity; Convergent validity; Discriminant validity; Predictive validity; Internal consistency reliability; Test-retest reliability; Alternate form 
reliability. 

Time frame 

As we include quantitative studies reporting one of the above-mentioned outcomes, we expect different time frames to be used in the selected studies. 
Thus, no restriction to any particular time frame will be applied.  

Setting 

Given that the study population consists of working adults, all occupational settings will be considered. If enough homogenous data are available per 
type of occupation, we will perform additional analysis for specific occupational settings (e.g., health care, education). 

Language 

There will be no language restriction 

Information sources 

Systematic literature search will be performed for the period from 1980 to 2018 (September). This period was determined with the argument that the 
first validated measure of burnout was published in 1981 with the MBI (17).  We will use three databases to search for studies of interest via the online 
catalog of databases OVID interface: the Medical Literature Analysis and Retrieval System Online (MEDLINE) database, the world-class resource for 
abstracts and citations of behavioral and social science research PsycINFO database, and the Excerpta Medica database (EMBASE). In addition, we 
will check the reference lists from articles and reviews retrieved in our electronic search for any additional studies to include. 



Search strategy 

An experienced librarian will review the search strategy. It will consist of free-text words to specify three search strings: terms focusing on the burnout 
measure of interest (e.g., MBI), terms related to the validation of the measure, and a combination of the two first search strings results. Finally, one 
additional search string will consist of removing duplicates. 

Study records 

Data management 

We will import the collected studies in the bibliography software EndNote X8. 

Selection process 

Two independent reviewers will screen the references to eliminate the eventual remaining duplicates within each database. They will also eliminate 
duplicates between databases. They will screen the remaining articles based on their title and abstract. They will retain or reject the articles based on 
the above-mentioned inclusion and exclusion criteria. The two reviewers will then screen the remaining articles based on full-text reading. They will 
discuss any discrepancies and if needed, ask a third reviewer to arbitrate the decision. A reviewer will illustrate the selection process with a flowchart 
following the PRISMA guidelines. 

Data collection process 

To elaborate a standardized data extraction form convenient for all kinds of study design and methods applied; we will use our reference framework 
for the validation process of diagnostic tools for mental disorders (Table 1). Each burnout measure will have its own exemplary of data extraction form 
(MS Excel file) that will be filled with studies’ data concerning the burnout measure in question. Two independent reviewers will test the form using 
articles on different burnout measures. They will discuss any discrepancies and if needed, they will ask a third reviewer to arbitrate the decision and 
add clarification. This process will continue until complete agreement is reached between both reviewers on the finalized data extraction form. The 
data of the included studies will be extracted by one of two reviewers. A second reviewer will crosscheck a random 20% sample of the extracted data. 
The missing data will be identified by a code depending on the reason why they are missing (e.g., not assessed, not reported). The data extraction 
process will provide additional validation of the referential framework completeness. 

Data items 

The extracted data will concern studies’ identification (i.e., authors, year of publication, journal, and title); samples’ characteristics (i.e., size, gender 
ratio, age, occupational activity, participation rate, representativity, burnout scores’ distribution); burnout measures’ characteristics (i.e., name, version, 
number of items, number of domains, domains’ names); and statistical methods used for assessing the psychometric properties outcome. 

Outcomes and prioritization 

The outcomes of interest will be the face validity, response validity, internal structure validity, convergent validity, discriminant validity, predictive 
validity, internal consistency, test-retest reliability, and alternate form reliability. Those criteria will enable to assess the psychometric properties used 
to validate the eight concerned burnout measures.  

Risk of bias in individual studies 

Two reviewers will independently assess the quality of each study using the COSMIN checklist (14). They will discuss any discrepancies, and they 
will resort to the arbitration of a third reviewer if needed.  

Data synthesis 

Descriptive analyses 

We will interpret the quantitative based on our methodological reference framework. We will create a narrative synthesis of the findings from the 
included studies. We will structure this synthesis around the burnout measure, the target population characteristics, and the type of outcome.  

We plan to carry out subgroup analysis on the primary outcomes by grouping studies based on the following: 1-Burnout self-reporting measure: MBI, 
BM, OLBI, CBI, ProQOL III, PBI, CSS, and OCS.  

2-Burnout domain: Emotional exhaustion, Depersonalization, Personal accomplishment (MBI); Physical exhaustion, Mental exhaustion (BM); 
Disengagement, Exhaustion (cognitive and physical) (OLBI); Professional exhaustion, Personal Exhaustion, Relational Exhaustion (CBI); Compassion 
fatigue burnout (ProQOL III); Aspects of control, Support in the work setting, Type of negative clientele, Overinvolvement with the client (PBI); 
Emotional exhaustion (CSS); Culture, Climate, Work attitudes (OCS). 

3-Participants’ characteristics: gender, age, and burnout score.  

Meta-analyses 

There might be a limited scope for meta-analysis. There will be a range of different factors and outcomes measured and reported across existing studies. 
However, we will pool summary estimates in form of multiple logistic regression coefficients whenever possible. We will do it for study overlapping 
in terms of outcome measures, for at least one of the burnout domains. Since the participants in the various studies might be construed as coming from 
the same population (workers) or from different populations (i.e., according to each study’s inclusion criteria) we will use a fixed effects model. 

Meta-biases 

According to standard practice in meta-analysis, the first step will be to represent the data as forest plots including the I-square that estimates the 
percentage of the between-study heterogeneity. If the latter is very large, this means that the between-study heterogeneity is much larger than the 
between-subject heterogeneity and any attempt of obtaining a reference value for individual subjects will not be valid(45). 

Assessment of publication bias 

We will produce funnel plots to investigate possible publication bias, as recommended in the epidemiological literature. 

Assessment of heterogeneity 

For each model, heterogeneity will be assessed by quantifying the inconsistency across studies using I² statistic greater than 50% as criterion. If 
heterogeneity is identified, potential causes will be explored (e.g. clinical and/or methodological diversity). We will try to clarify heterogeneity via 
subgroup analysis, but if it cannot be explained (i.e. there is considerable variation in the results), then a meta-analysis using a random-effect model 



will be conducted. We will exclude studies with a high risk of bias to determine the extent to which the synthesized results are sensitive to risk of bias. 
Statistical analysis will be performed using STATA software, 16th version.  

Confidence in cumulative evidence 

The strength of the evidence for the relationship between different risk factors and burnout onset will be assessed using the Grading of 
Recommendations Assessment, Development and Evaluation (GRADE) approach. It will allow to rate the certainty of a body of evidence as suggested 
by GRADE guidelines 18 (46). We will use a checklist designed by Meader et al. (2014) (47) to improve consistency and reproducibility of our GRADE 
assessment. The results will be presented using the GRADE Summary of Findings Tables and Evidence Profiles (48). 
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Table 1. Referential framework for validation of questionnaires and rating scales 

 

Validation step Definition  Analysis/techniques Indices and interpretation 

Validity assessment Capacity of a scale to measure effectively 

what it is supposed to measure 

    

Translational/representational 

validity  

(Theoretical construct) 

How well the idea of theoretical construct 

is represented in an operational measure 

(scale) 1. 

    

   Face validity Acceptability of the scale by users or by 

subjective judgement of experts. It is a 

superficial and not a robust validity 

methodology. 

Expert judgement Subjective measurement (halo effect) 

   Content validity The degree in which the scale content 

adequately reflects the construct that is 

being measured; it evaluates how much an 

item sample represents in a defined 

universe or content domain2. 

Scale items cover all aspects of the construct 3. 

Compare test content to the theoretical construct content to see if they are related 4. 

1) Qualitative approach: assessment by an expert committee 

 

2) Quantitative approach: calculation of the content validity index (CVI ) to measure the 

proportion of judges who agree on certain aspects of a tool and its items 2. 

 

 

a) Deductive approach. 

 

b) Four points Likert scale where items rated with 1 or 2 points have to be removed.  

CVI  = number of answers 3 or 4/total number of answers.  

.>8 = acceptable 

>.9 preferable 2. 

    All aspects of the construct must be represented by items in a proportional manner 

(e.g. number of items by facets of the construct) 3. 

Compare test content to the theoretical construct content to see if they are related 4. 

1) Qualitative approach: assessment by an expert committee 

 

2) Quantitative approach: calculation of the CVI 2 

 

 

 

a) Deductive approach.  

 
b) CVI calculation as above 

  
 

No item should tap outside the construct domain. 

Compare test content to the theoretical construct content to see if they are related 4. 

1) Qualitative approach: assessment by an expert committee 

 

2) Quantitative approach: Quantitative approach: calculation of the CVI  2.  

 

3) Structural equation modeling (method to assess the theoretical models that might 

explain the interrelations among a set of variables5): Exploratory and confirmatory 

approaches. When doing both exploratory factor analysis (EFA) and Confirmatory 

factor analysis (CFA), they should be made on different samples in order to avoid 

 

 

a) Deductive approach.  

 

b) CVI calculation as above 

 

c)  

 

 

 



overfitting6. CFA is preferred to EFA because in EFA variables produce loads to all 

factors*, whilst in CFA the variables only produce loads in the factors* assigned in the 

model2. 

 

1. First, you have to assess the suitability of the data for a factor analysis, which is 

done by analyzing the adequacy and the sphericity of the data thanks to the following 

tests: 

1.1. Adequacy: Kaiser-Meyer-Olkin (KMO ) test measures sampling adequacy for 

each variable in the model and for the complete model. It measures the proportion of 

variance among variables that might be common variance. The lower this proportion, 

the more suited the data is to factor analysis7. 

 

1.2. Sphericity: Bartlett's Test tests the hypothesis that the correlation matrix is an 

identity matrix, which would indicate that the variables are unrelated and therefore 

unsuitable for structure detection8. 

 

2. Second, if you have no a priori hypothesis on the composition of the sub-

dimensions of a construct, you can use exploratory approaches: Principal Component 

Analysis (PCA) and EFA. PCA and EFA are sometimes confused, but they are 

mathematically and conceptually different: PCA implies a formative measurement 

model (i.e, a model assuming items’ scores to be the causes of a construct), while 

EFA implies a reflective measurement model (i.e, a model assuming a direct effect 

from the construct on the items scores)9. The observed items in PCA are assumed to 

have been assessed without measurement error, whereas EFA include a measurement 

error. Both PCA and EFA are computed based on correlation matrices, but the former 

assumes the value of 1.00 (i.e., perfect reliability) in the diagonal elements, while the 

latter utilizes reliability estimates10. PCA and EFA use different techniques to achieve 

two goals11:  

a. Data reduction by discovering optimal weightings of the measured variables so 

that a large set of related variables can be reduced to a smaller set of general summary 

scores that have maximal variability and reliability. This goal is achieved with PCA. 

The components are estimated to represent the variances of the observed variables in 

the as small as possible number of dimensions, and no latent variables underlying the 

observed variables need to be invoked. Principal components are linear composites of 

the original measured variables and thus contain both common and unique variance. 

PCA should not be used as an extraction method12, so it should not be used for 

psychometry. 

 

b. Identification of the underlying dimensions* (i.e, factors) of a domain of 

functioning, as assessed by a particular measuring instrument. This goal is achieved 

 

 

 

 

 

 

 

1.1. KMO  test: results vary from -1 to 1 where: 

0.00 to 0.49 unacceptable / 0.50 to 0.59 miserable / 0.60 to 0.69 mediocre / 0.70 to 0.79 

middling / 0.80 to 0.89 meritorious / 0.90 to 1.00 marvelous 7. 

 

 

1.2. Bartlett's Test: Values < 0.05 of the significance level indicate that a factor analysis may be 

useful with the data 8.  

 

2. 

 

 

 

 

 

 

 

 

 

 

 

 

a. 

 

 

 

 

 

 

 

 

 

b. 

 



with an (EFA) or common factor analysis, which is based on the notion of a "latent 

structure", i.e, the presence of a certain number of factors (or dimensions*) that allow 

explaining why certain variables are intercorrelated while other variables are not. The 

EFA uses the matrix of correlations or covariances among measured variables 

(items/subscales), to identify a set of more general latent variables/factors*, that explain 

the covariances among the measured variables. In theory, these latent variables are the 

underlying causes of the measured variables. 

EFA requires to choose12 

1.The type of correlation matrix to analyze: 

 

2.The number of factors* to retain, thanks to different techniques: 

2.1. Scree-test 

 

 

 

 

2.2. The Minimum Average Partial (MAP) method is based on the matrix of partial 

correlations, and gives an exact stopping point (i.e, when the averaged squared partial 

correlation reaches a minimum) after which no factors* are extracted13. 

 

2.3. Parallel Analysis (PA): random data sets are generated pm the basis of the same 

number of items and persons as in the real data matrix. Then the scree plot of the 

eigenvalues from the real data is compared with the scree plot of the eigenvalues from 

the random data.  

2.4. Kaiser’s K1 rule (or Kaiser-Guttman criterion) rule. This criterion is commonly 

used, but it is not recommended as there is no statistical justification for it14.  

 

 

3. The Extraction method: It exists different extraction methods (Principal 

Component Analysis; Unweighted Least-Squares Method; Generalized Least-Squares 

Method; Maximum-Likelihood Method; Principal Axis Factoring; Alpha; Image 

Factoring15). 

 

4.The rotation method relates the calculated factors* to theoretical entities, 

depending on if the factors* are believed to be correlated (oblique method) or 

uncorrelated (orthogonal method)16:  

4.1. Orthogonal: equamax, orthomax, quartimax, and varimax 16. Varimax is 

automatic method that maximizes the variance of saturations for each factor*. Varimax 

gives orthogonal axes, when the sub-dimensions* are independent a priori. It minimizes 

 

 

 

 

 

 

 

 

1.Polychoric correlation: for items with ≤ 4 categories 

Pearson correlation: for items ≥5 categories  

2. 

2.1. Scree-test: allows computing first differences between variances. When this difference 

becomes negative, the computation stops and all positive axes are to be kept. A graphical analysis 

of the involvement of the axes permits to look for a sharp bend (“elbow”) in the plot, which 

indicates the number of factors. It is appropriate when the number of factors is clear 14. 

 

2.2. MAP : Extract the number of factors until the stopping point.  

 

 

 

2.3. PA: The point where the two plots meet provides an idea of the absolute maximum 

number of factors to extract. A factor that explains less variance in the real data than a 

corresponding factor in the simulated data should not be extracted 25. 

 

2.4. Kaiser’s K1 rule: Select only axes with a bigger variance than the average one as they 

have an explanatory variance that is smaller than the variance of one manifest variable. The 

average variance is 1/x where x is the number of axes needed to explain all the information.  

 

3. When there is no severe violations of distributional assumptions solutions provided by these 

methods are usually very similar11. 

 

 

 

4.  

 

 

4.1. Usually a loading is considered significant if  ≥0.3016.  

 

 

 



the number of variables implying strong changes on each factor*, which simplifies the 

interpretation of the factors*17. 

4.2. Oblique: binormamin, biquartimin, covarimin, direct oblimin, indirect 

oblimin, maxplane, oblinorm, oblimax, obliquimax, optres, orthoblique, orthotran, 

promax, quartimin, and tandem criteria16.  

 

3. Confirmatory approaches are used to confirm a priori hypotheses based on theory 

or resulting from previous empirical studies. Construct validity is supported if the factor 

structure of the scale is consistent with the construct the instrument purports to measure. 

Confirmatory factor analysis (CFA) is a method for evaluating whether a prespecified 

factor model provides a good fit to the data. A factor structure is explicitly hypothesized 

and is tested for its fit with the observed covariance structure of the measured variables. 

 

Confirmatory factor models can be assessed with goodness of fit criteria. It exists 

hundreds of fit indices gathered under three categories18, 19: 

   1.Absolute fit indices category measures how far the model is from perfect fit; 0 

corresponding to the best fitting model. It includes:  

Chi-squared (χ2): Two limitations exist with this statistic: 1-it tests whether the model 

is an exact fit to the data, and finding an exact fit is rare; 2-large sample sizes increase 

power, resulting in significance with small effect sizes 20, so it's not good for large 

sample sizes. χ2 is affected by a) sample size, b) model size (i.e. the more variables, the 

higher the χ2), c) the distribution of the variables, d) the omission of variables 21. χ2 is 

therefore more useful for testing whether two models differ in their fit to the data, 

which is done with the χ2/df ratio  (minimizes the sample size impact). Root mean 

square residual (RMR ) is a simple transformation of chi-square (χ2), so it presents the 

same affectations21. The RMR ranges is based on the scales of the indicators in the 

model, which is hard to interpret. Standardized root mean square residual (SRMR) 

removes this difficulty in interpretation (it is free of the χ2 affectations). For a given χ², 

Root mean square error of approximation (RMSEA) decreases as sample size, 

increases. Goodness fit index (GFI ) calculates the proportion of variance that is 

accounted for by the estimated population covariance19. Adjusted goodness-of-fit 

statistic (AGFI ) adjusts GFI based upon degrees of freedom, with more saturated 

models reducing fit19.  

 

   2.Incremental (or relative, or comparative) fit indices category compares the χ2 value 

to a baseline model19. It is analogous to r2, with values ranging from 0 (worse model) to 

1 (best model). It includes Non normed fit index (NNFI ) or Tucker-Lewis index (TLI ), 

which take into account the size of the correlations in the data and the number of 

parameters in the model, Normed Fit index (NFI ) , which compares the χ2 of the model 

to the χ2 of the null model. Comparative fit index (CFI , or Bartlett's fit index ), which 

 

4.2. When delta is null, the solutions are the most oblique. The more negative the value of delta, 

the less oblique the factors*17. 

 

 

3.  

 

 

 

 

 

 

 

 

1. χ2: a nonsignificant χ2 is indicative of a model that fits the data well 20.  

χ2/df ratio : no consensus, recommendations range from 5.0 to 2.0, but the lower the value, the 

higher the fitting19. 

RMR: range is calculated based upon the scales of each indicator, therefore, if a questionnaire 

contains items with varying levels (some items may range from 1 – 5 while others range from 1 – 

7) the RMR becomes difficult to interpret / SRMR ranges from 0 to 1, with a value <0.05 or 

<0.08 being indicative of an acceptable model 19 

RMSEA: The interpretation of RMSEA varied a lot. Until 90’s, a RMSEA between 0.05 and 0.10 

indicated a fair fit and a RMSEA > 0.10 a poor fit. In the 90’s, a RMSEA between 0.08 and 0.10 

indicated a mediocre fit and needed to be <0.08 to provide a good fit. At the beginning of the 21st 

century, a cut-off value close to 0.06 or a stringent upper limit of 0.07 seemed to be the general 

consensus amongst authorities in this area.  

GFI  ranges between 0 and 1. Values >0.9 indicate acceptable model fit19. 

AGFI ranges between 0 and 1 values ≥0.9 indicate acceptable model fit19.  

 

 

 

 

 

 

2. Range between 0 and 1: NNFI  good fit with value > 0.80 or ≥ 0.95 / NFI : good fit with value > 

0.90 or ≥ 0.9519 / CFI : larger values indicate better fit. Previously, CFI  ≥.90 was considered to 

indicate acceptable model fit. However, recent studies indicate that a value >.90 is needed to 

avoid the acceptance of misspecified models 5. Thus, a CFI value ≥.95 is presently accepted as an 

indicator of good fit 5.  

 



is a revised form of the NFI that takes into account the sample size19. 

   3.Parsimony fit indices category adjusts for the loss of degrees of freedom or for the 

sample size. It includes Parsimonious Goodness-of-Fit Index (PGFI) and Parsimonious 

Normed Fit Index (PNFI) that adjust for the loss of degrees of freedom for GFI and 

NFI respectively. It includes also information criteria indices which adjust for the 

sample size : Akaike information criterion (AIC ), the Consistent Version of AIC 

(CAIC) and Bayesian information criterion (BIC ). They compare non-nested or non-

hierarchical models estimated with the same data and indicates to the researcher which 

of the models is the most parsimonious19.  

 

4) Harman’s single-factor test: technique used to assess the common method variance. 

All variables are loaded on an unrotated factor solution to determine the number of 

factors necessary to account for the variance in the variables 22.  

 

5) Item Response Theory (IRT)  

     1.Rasch Model postulates that items have a similar discriminatory power but a 

distinct difficulty level. It bases its theory on individual answers to practical items 

rather than scores. Each item and each response of one individual to one item are 

considered separately as sources of information about a scale.  

Appropriate for one-dimensional variable and used to discriminate an item by the 

degree of difficulty. Raw scores have unknown spacing between them. Rasch model 

builds estimates of true intervals of item difficulty and person ability by creating linear 

measures. In this process, item values are calibrated and person abilities are measured 

on a shared continuum that accounts for the latent trait. Should an item rating be 

missing, the model estimates the person's probable rating without imputing the missing 

data 23.  Used to analyze items during test development to produce a health measure that 

taps single dimension* of health and to select an optimum set of items evenly spaced 

across the continuum being measured 24. Rasch model developed for tests with a lot of 

items 14.  

     2.Mokken analysis is prefered for tests with small number of items. Two models 

a)The monotone homogeneity model is the least restrictive one. It assumes 

unidimensionality (each person is characterized by one number, which is called the 

ability of the person); monotonicity (the probability that the person will give a correct 

answer to the item increases with the ability of the person); local independence (the 

probability that the person answers an item correctly depends only on the person’s 

ability and, given that ability, not on the person’s other answers). b) A more restrictive 

model with an additional assumption: the double monotonicity (each item is 

characterized by one number, which is called the difficulty of the item. The probability 

that the person will give a correct answer to the item decreases with the difficulty of the 

item) 14. 

 

3. PGFI and PNFI: no consensual threshold, but a value > 0.50 is recommended for good fit. 

     AIC and BIC require a sample size >200 to be reliable. The model with the smallest AIC or 

BIC is preferred19, 26. BIC  is most popular than AIC variation. If model parsimony is important, 

then BIC is more widely used as the model-size penalty for AIC is relatively low. The model 

with smallest BIC is preferred 26. 

 

 

 

 

d) If the single factor explains >50% of the variance, there is a common method bias. 

 

 

 

e)  

1.Measures are originally expressed in log-odd units but may be rescaled to suit conventional 

scaling, as from 0 to 100, while still retaining conjoint additivity. The model also estimates the 

scoring error at each level as standard errors of the measure 23. 

     

 

 

 

 

 

 

 

 

 

 

2.Interpretation of an IRT function that shows how the probability of a positive answer (correct, 

yes, agree) increases with the ability (latent variable). The ‘ability’ of the persons is viewed as a 

latent variable, just like a factor in factor analysis and a true score in test theory. Thus the ability 

is not equal to the total score of the test. The total score is only an estimate of the ability, just as a 

sample average is an estimate for the population mean, and the interpretation should be adapted to 

the test items*14.  



Empirical construct  How well a given measure relates to one or 

more external criterion, based on empirical 

constructs 1. 

    

   Criterion-related validity Validity indicated by comparing the results 

obtained using a measurement scale with a 

"criterion standard" or indicator of the true 

situation or “gold standard” 27. 

1) Ensure that the subject sample reflects the population for whom the test is designed, 

especially with regard to sex, age, educational status and social class. Tests designed for 

psychiatric use should be administered to the appropriate psychiatric groups.  

2) Large enough samples (n>200) is required to produce statistically reliable 

correlations which can bear factorial analysis  

3) Use of a variety of other tests of the variable as wide as possible is recommended to 

ensure that the correlation is not due to a similarity of specific factors rather than group 

of factors.  

4) If factor analysis is used, the simplest structure  should be sought.  

5) In discussing the results, clear reasons should be provided as to what correlations or 

factor loadings would be expected. This allows the reader to judge the psychological 

significance of the results.  

  

      Predictive validity If a test is applied and its results are 

compared with a criterion applied later 2. 

Predictions should be correctly made on 

the basis of specific criteria. 

1) Correlation analysis to calculate r correlation coefficient  

 
 
 
2) Mixed effect regression 
 
 
 

1) r ≥0.7 : good correlation 

    r = 0 :  no correlation 

 

2) β estimate: mean change in the response variable for one unit of change in the predictor 

variable while holding other predictors in the model constant. Its interpretation depends on the 

nature of the variables, e.g. continuous or categorical.  

      Concurrence validity Concordance between a test results and the 

actual value of other variables 

Correlation analysis to calculate r correlation coefficient  See above 

   Construct validity Explores and confirms (or not) the 

relational structure between items. The 

degree to which a group of variables really 

represents the construct to be measured 
2.The more abstract the concept is, the 

more difficult it will be to establish the 

construct validity. It is hardly obtained on 

a single study 2. It does not have a criterion 

for comparison rather it utilizes a 

hypothetical construct for comparison 1.  

Corrected item-total correlation (the correlation of item i with the total without item i).  r≥.40 (focusing too hard on the ≥.40 could deteriorate content validity. A very narrow item pools 

of a construct could display only item-total correlation larger than >.50, some impressive "fit" for 

the CFAs, yet, they do not measure the whole domain of the construct. There might exist a little 

trade-off here. Thus, when analyzing these results, you should go back to content validity too and 

look whether the item "deserves" removal). 

      Convergent validity Correlation between the measures of the 

same concept by two different methods. 

1) Multitrait matrix is used for presenting validity and reliability correlation in which 

the agreement among several measurement methods as applied to several dimensions* 

is shown to facilitate the interpretation of construct validity 

 

2) % of shared variance 

1) r≥.40 (focusing too hard on the ≥.40 could deteriorate content validity. A very narrow item 

pools of a construct could display only item-total correlation larger than >.50, some impressive 

"fit" for the CFAs, yet, they do not measure the whole domain of the construct. There might exist 

a little trade-off here. Thus, when analyzing these results, you should go back to content validity 

too and look whether the item "deserves" removal). 



      Discriminant validity The ability of a scale to distinguish groups 

from the studied characteristic when they 

are supposed to differentiate upon the 

latter. Comparison of the convergent 

validity with the correlation between two 

concepts measured by the same method. 

1) Multitrait matrix (see above) 

 

 

2) Canonical correlation analysis is the study of the linear relations between two sets of 

variables. It is the multivariate extension of correlation analysis 28.  

 

3) The Heterotrait-monotrait ratio of correlations (HTMT ) is the average of the 

heterotrait-heteromethod correlations (i.e., the correlations of indicators across 

constructs measuring different phenomena), relative to the average of the monotrait-

heteromethod correlations (i.e., the correlations of indicators within the same construct). 

HTMT can assess discriminant validity in two ways, as a29: 

1. Criterion, which involves comparing the HTMT to a predefined threshold.  

 

 

2. Statistical test, which allows constructing confidence intervals for the HTMT in order 

to test the null hypothesis (H0: HTMT ≥1 ) against the alternative hypothesis (H1: 

HTM <1 )29. 

1) See above 

 

 

2) r between -1 and -0.5: strong negative correlation / -0.5 and 0: weak negative correlation / 0 

and 0.5: weak positive correlation / 0.5 and 1: strong positive correlation 

 

3)  

 

 

 

 

1. A higher HTMT value than the predefined threshold indicates a lack of discriminant validity. 

The threshold value is not consensual, some authors propose a 0.85, and others 0.9029. 

 

2. A confidence interval including the value one indicates a lack of discriminant validity29. 

      Nomological validity  A higher-order model cannot exist in 

insularity. It needs to relate to other factors 

or be placed in a nomological network of 

consequent and/or antecedent variables to 

determine if it acts as a better mediator30 

than its underlying first-order factors. Such 

an aspect of measurement efficacy is 

called “nomological validity”. 

Predictive efficiency assumes that using a single construct rather than multiple first-

order constructs represent a concept parsimoniously  

 

Mediating efficiency assumes that the domain of a multi-dimensional concept is fully 

covered by its first-order factors. 

The lower the efficiencies, the higher the possibility of getting an artificial entity. Note that both 

predictive and mediating efficiencies are defined as percentages of variance retained; their 

thresholds cannot go below 50% or the higher-order construct loses more explained or captured 

variance than it retains. The more reasonable threshold may be >75%, which means that the 

higher-order construct loses no more than a quarter of the variance explained or captured. 

      Known-group validity Comparison of a group with already 

established attribute of outcome of 

construct is compared with a group in 

whom the attribute is not yet established 1. 

Since the attribute of the two groups of respondents is known, it is expected that the 

measured construct will be higher in the group with related attribute but lower in the 

group with unrelated attribute 1.  

  

      Factorial validity Validation of the contents of the construct 

employing the factor analysis 1 (see the 

point c)2) and c)3) of the content validity).  

The several items put up to measure a particular dimension* within a construct of 

interest is supposed to be related to one another in a higher manner than those 

measuring other dimensions* 1.  

 

      Hypothesis-testing validity Evidence that a research hypothesis about 

the relationship between the measured 

variable or other variables, derived from a 

theory, is supported 1.  

The hypothesis derived from a theory is statistically tested thanks to z-test and t-test 

(the latest is preferred nowadays). The null hypothesis H0 is tested regarding the mean 

difference between two samples. 

The samples’ size should be n>30. 

The null hypothesis is rejected if the p-value is <0.05 or <0.01 depending on the set alpha (i.e, 5 

and 1 respectively), which indicates that differences exist between the means of the variables.  

Reliability Measure of  stability, independently of the 

interviewer, of the moment of the test, and 

of the choice of the questions sample. 

    



Test-retest reliability (stability) Measure of the results stability between a 

first measure of a scale and a second 

measure of the same scale. 

1) Fidelity coefficient 

 

 

 

 

2) Structural equation modeling/CFA: testing the configural (same pattern of significant 

factor loadings), metric (invariance of the factor loadings) and scalar invariance 

(invariance of the item intercepts) of the measurement across time.  

 

3) Gives a Pearson correlation coefficient (ρ) between the mean scale scores at both 

time points. 

1) Sample with n>50 is required to be adequate 2. 

Values >.7 are satisfactory 2. 

A stable short term (2-3 weeks) dimension* should have a fidelity coefficient from .8 to .9 27. 

For a long term (> 2 months) stability, a ≥.6 fidelity coefficient is satisfying 27. 

 

2) See the Content validity section point c) 

 

 

 

3) Pearson ρ from : -1 to -0.5: strong negative correlation / -0.5 to 0: weak negative correlation / 0 

to 0.5: weak positive correlation / 0.5 to 1: strong positive correlation 

Alternate-form reliability 

(equivalence) 

Alternate forms of a standardized test are 

designed to have the same general 

distribution of content and item formats, 

the same administrative procedures and 

approximately the same score, means and 

standard deviations in some specified 

population. Useful for  reducing learning, 

memory, and monotony impacts on retest 

answers 27.   

Two different forms of the same scale are administered to the same subjects of a sample 

and the correlation coefficient (or equivalence coefficient) between both test forms is 

assessed.  

Pearson ρ correlation (see interpretation above) 

A strong correlation means a same ranking of the subjects for both test forms, so variations due to 

the questions/items are negligible. 

 

A weak correlation means that the ranking of subjects varies depending on the items, so both test 

forms are not equivalent and the scores interpretation is ambiguous. 

Internal consistency reliability 

(homogeneity) 

Shows if all dimensions* of an instrument 

measure the same characteristic 2. 

    

    
 

1) The Split-half method consists in splitting items into two parts and comparing the 

results of one half with the results from the other half27. 

 

2) Kuder-Richardson formula 20 (KR-20) index allows estimating reliability for 

dichotomous (i.e. yes/no; true/false) response scales1. 

 

3) Cronbach's alpha (lambda 3 coefficient, α) is typically used during scale 

development with items that have several response options (e.g. Likert scale). It 

demonstrates the covariance level between the items of a scale, it is the estimation of 

the mean split-half of all possible split-half reliabilities 31. The lower the sum of items 

variance is, the more consistent the scale will be 2. It assumes that the item responses 

are continuous. Using Likert type response scales, the magnitude of α can be spuriously 

deflated with less than five scale points. 32. 

 

4) Coefficient lambda 2 estimates the reliability of the total score based on relationships 

between items 14. It is an estimation of between-score correlation for parallel measures 

1) Spearman’s ρ interpretation criteria are the same as for Pearson ρ (see above) 

 

 

2) Values ≥0.7 are satisfactory  

 

 

3) No consensus about the interpretation exists. Some studies establish α >0.7 as ideal and other 

from .0.6 to 0.7 as satisfactory 2. 

α >0.7 are acceptable for group comparisons, and α ≥0.9 are recommended for individual 

assessments 34. 

α > 0.9: excellent / 0.8 to 0.9:  ≤10 items: good ; 11 to 30 items: just acceptable / 0.7 to 0.8:  ≤10 

items: acceptable / 0.6 to 0.7: questionable / 0.5 to 0.6: poor / <0.5: unacceptable 

 

 

4)                                                            Classical standard: 

0.7 is acceptable in preliminary research / 0.8 is good enough for group research / 0.9 is the 

minimum required for individual decisions  



33 based on relationships between items 14  The problem of this coefficient is that it 

ignores the experiment’s lasting. 

 

5) Coefficient lambda 4 calculates the likely correlation between scores on a test and 

another (theoretical) test designed to the same specification.  Division of the items in a 

test into two halves such that covariance between scores on the two halves is as high as 

possible 31.  

 

 

 

6) Ordinal coefficient alpha is an ordinal estimate, i.e. it takes into account the ordinal 

nature of the Likert response data. It is used when assuming factor analysis model. It is 

suitable of the theoretical reliability, regardless of the magnitude of the theoretical 

reliability, the number of scale points, and the skewness of the scale point distributions. 

In contrast, coefficient alpha is in general a negatively biased estimate of reliability32. 

 

7) Ordinal coefficient theta  has the same definition of the coefficient alpha (see above), 

except that it used when assuming a principal components model32. 

Most published values considered as acceptable  

>0.85 for individual decisions / >0.65 for group decisions  

 

5) There is a positive bias for small sample sizes: lambda 4 value tends to decrease as the sample 

size increases. This bias is less likely to be an issue if the estimated value of lambda 4 is >0.85, if 

the number of items is <25, and if the sample size is >3’000.  

  >0.9: sample size >1’000 

  <0.85: difficult to identify the necessary sample size dependent upon the number of items 

 

6) As for Cronbach's alpha (see above) 

 

 

 

 

 

7) As for Cronbach's alpha (see above) 

   Intra-judge fidelity Verifies that the coding of the same 

sequence done by the interviewer does not 

vary with time 

1)Kappa concordance coefficient 35 

 

 

2) Intraclass correlation coefficients (CCI ) compares two codings of the same sequence 

by the same interviewer  when data are measured on a continuous scale. CCI measure 

the average similarity of the subjects’ actual scores on the two ratings. CCI takes into 

account the measurement error contrary to Pearson or Spearman correlations 2. Ten 

forms of CCI  exist and the choice of CCI should be done carefully depending on the 

study design 36.  

1) <.5:poor reliability/.5 to .75: moderate reliability/ .75 to .9: good reliability/>.9: excellent 

reliability 

 

2) CCI<.4=poor agreement/CCI between 

.4 to .75=fair to good agreement 

CCI >.75=excellent agreement 

   Standard error of estimation   

(SEm) 37 

The standard deviation of errors of 

measurement that is associated with the 

test scores for a specified group of test 

takers 37. 

A measure of how much measured test scores are spread around a "true" score.  The larger the SEm, the lower the test’s reliability. 

If test reliability = 0, the SEm will equal the standard deviation of the observed test scores.  

If test reliability = 1.00, the SEm is zero  

   Item analysis Basis to reorganize the scale for it to 

present desired characteristics. Even if the 

scale is one-dimensional, some items can 

have stronger correlation than with others, 

showing different facets of the evaluated 

characteristic. 

Item-total correlation: The correlation between each item or question in a health 

measurement and the total score, suggesting how far each question contributes to the 

overall theme being measured 24. 

 

Inter-items correlation: Examine the extent to which scores on one item are related to 

scores on all other items in a scale. It provides an assessment of item redundancy. 

For values <0.2, the items may not be representative of the same content domain 

 

For values >0.4, the items may be only capturing a small band-width of the construct 34. 



Sensitivity Ability of the scale to discriminate the 

subjects/groups/changes in time. The 

measure should cover all the possible 

values for the people, i.e. performance 

zone. 

    

Sensitivity to change The scale should be able to measure 

changes in order to compare them. An 

evaluation by the same scale should then 

be administrated before and after the 

setting of an action to measure the 

change27.  

Indices for sensitivity to change are not consensual. However, the observed change is 

quantified by indicators based on the statistical distribution of the observation: 

1 Effect size is the degree to which sample results diverge from the expectations 

specified in the null hypothesis. It is expressed in standard deviation units, which can be 

be obtained through differents techniques38:  

1.1. Baseline SD: average difference divided by the standard deviation of the 1st 

measurement (Glass' Δ). 

 

1.2. Pooled SD: average difference divided by the pooled standard deviation of both 

measurements (Cohen's d). 

 

1.3. Standardized response means (SRM): The average difference divided by the 

standard deviation of the differences between the paired measurements 39.  

 

2. The Receiver operating characteristic (ROC) curve plots true positive (sensitivity) 

versus false positive rates (1 - specificity) to identify cutoff points that maximize 

sensitivity and specificity.  

 

 

1. If the effect size is: 

d = 0: the sample results match the null hypothesis38 

d = 0.2: small effect size40. The treatment group mean is 20% of a standard deviation higher 

than the control group mean38. 

d = 0.5 : medium effect size 

d = 0.8 : large effect size 40. 

 

 

Sensitivity of interindividual 

differences and intergroups 

Ability of the scale to discriminate the 

subjects/groups. 

Descriptive statistics: histogram of answers, floor/ceiling effect, indicators of central 

tendency (mean, dispersion, standard deviation)27. 

  

*A test is composed of different items. The items are reunited under different dimensions (or factors, or latent variables). 
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