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THEBIGGERPICTURE Thediscussionsof hypothesis testingand thepvalueare enduring. Theyare, however,
done in relative isolation; theorists inspect them using mathematical arguments, and applied scientists scru-
tinize them via experimental intuition. Most are aware that the interpretation of the p value needs to be contex-
tual, butwhat does ‘‘contextual’’mean?Here, linking examples andequations,wepresent a relatively compre-
hensive inquiry into the foundations,merits, and challenges of hypothesis testing and thep value:why they are
useful andwhen negligencemay occur.We build presentations from relatively simple history, philosophy, and
cases to slightly complex statistical reasoning. We endeavor to make our language accessible and stories
complementary to a broad audience; some apply those instruments frequently, some aspire to develop new
methods, and perhaps all hope to one day find a cogent way to translate patterns from data into knowledge.
SUMMARY

Since the 18th century, the p value has been an important part of hypothesis-based scientific investigation.
As statistical and data science engines accelerate, questions emerge: to what extent are scientific discov-
eries based on p values reliable and reproducible? Should one adjust the significance level or find alternatives
for the p value? Inspired by these questions and everlasting attempts to address them, here, we provide a
systematic examination of the p value from its roles and merits to its misuses and misinterpretations. For
the latter, we summarize modest recommendations to handle them. In parallel, we present the Bayesian al-
ternatives for seeking evidence and discuss the pooling of p values frommultiple studies and datasets. Over-
all, we argue that the p value and hypothesis testing form a useful probabilistic decision-making mechanism,
facilitating causal inference, feature selection, and predictive modeling, but that the interpretation of the p
value must be contextual, considering the scientific question, experimental design, and statistical principles.
INTRODUCTION

David Hume argued in A Treatise of Human Nature that ‘‘all

knowledge degenerates into probability.’’1 Probable inference
This is an open access article und
is chief in guiding decisions.2–4 Sports fans make bets on the

likelihood that a club will win the next game. Investors decide

to buy or sell a stock based on how likely it is to go up or

down. One chooses whether to bring an umbrella given the
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Figure 1. Recent trends of p value, p hacking, and Bayesian evidence in scientific studies
(A) The growth pattern of the p value in the past decade. Recent years have witnessed a considerable increase in articles consisting of topics related to p value, p
hacking, and Bayesian evidence. Particularly, articles that discuss both p value and p hacking as well as those that discuss both p value and Bayesian evidence
have grown in an exponential-like trajectory. We used the following literature search strategy. We first define three sets of keywords: PV (p value), PH (p hacking),
and BE (Bayesian evidence). We then define publications in [1]–[4] as PV X PH \ BE, PV X BE \ PH, PH X BE \ PH, and PV X PH X BE, respectively.
The search used the advanced search function provided by Google Scholar, where, for example, the query PV X PH \ BE is equivalent to entering ‘‘p value;
p hacking -Bayesian evidence.’’
(B) The distribution of the p values across academic disciplines. The p values are widely used in 14 common subjects, noticeably in biological sciences, medical
and health sciences, multidisciplinary fields, and psychological and cognitive sciences. Across different subjects, smaller p values (those between 0 and 0.025)
seem to be more commonly reported than larger (albeit significant at 0.05) counterparts. Data for plotting (B) are from Head et al.6
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chance of rain. But what about scientists? Does probability guide

scientific enquiries, and, if so, how?5

The p value-based hypothesis testing is a widely used princi-

ple in scientific decision-making. Text mining using 385,393

PubMed Central (PMC) articles from 1990–2015 identified

3,438,299 appearances of p values; that is, about nine p values

per article.7 It has interested social scientists,8 philosophers,9

biomedical scientists,10 clinicians,11 and ecologists12 no less

than statisticians (Figure 1). Yet, as a probabilistic statement un-

derpinning decision-making, the p value has generated enduring

debates.13–20 Central to these debates is its inconsistency and

potential lack of credibility in providing evidence. To raise pro-

tection, scholars have suggested lowering the significance level

from 0.05 to 0.0121 or 0.005.22,23 Others have asked whether the

p value (and, therefore, the significance test) should be

banned.24–26 The Basic and Applied Social Psychology (BASP)

journal, at perhaps the extreme end, cast an editorial ban on

the p value.27
2 Patterns 4, December 8, 2023
The debates and ensuing responses have inspired us to have a

thorough reflection on and discussion about the p value, from its

origin and definition to its usefulness, misuses, and potential mit-

igations. Fortunately, we have access to a resourceful volume of

past works on the p value in the fields of economics, statistics,

biology, and philosophy. Standing on the shoulders of the pio-

neers, we make our addition.

We begin with a brief history of the p value. We then outline the

roles the p value plays in scientific enquiries, including causal

inference, feature selection, and predictive modeling. Next, we

present its common misuses, misinterpretations, and potential

treatments. Subsequently, we compare statistical significance

and clinical relevance. In parallel, we examine Bayesian evi-

dence and discuss the promises and challenges of pooling p

values from multiple studies and datasets via meta-analysis

and multiple comparisons. We conclude with a discussion.

Through our explorations and discussions, we argue that the

p value and hypothesis testing are useful devices for extracting
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evidence, but one needs to employ and interpret them in context,

considering the scientific question, experimental design, model

specification, statistical power, effect size, whether there is prior

knowledge, and reproducibility.

A brief history of the p value
The debut of the p value

John Arbuthnot performed perhaps the first significance testing

(see page 40 in Heyde et al.28), although the origin of the hypoth-

esis test and the p value is difficult to trace. Having observed that

the number of males born in London exceeded the number of fe-

males for 82 consecutive years (1629–1710), Arbuthnot wanted

to examine whether the birth rates of males and females were

equal. He assumed two hypothetical individuals, A and B, where

B claimed that ‘‘.every year there shall be bornmoreMales than

Females,’’ and A laid a hypothesis against B’s. He then argued

that, if the birth rates were equal, then the probability of

observing more male newborns for 82 consecutive years would

be (0.582).29 Based on this infinitely small likelihood, he

concluded that the birth rates were not equal. It was a relatively

simple sign test, but ‘‘the first example of reasoning about statis-

tical significance’’30 and ‘‘perhaps the first published report of a

nonparametric test.’’31

The rise of the p value

‘‘Throughout the 19th century, hypothesis testing was carried

out rather informally without a prespecified rejection level. It

was roughly equivalent to calculating a (approximate) p value

and rejecting the hypothesis if this value appeared to be suffi-

ciently small.’’32

Francis Edgeworth and Karl Pearson advanced the practice of

significance tests during the late 19th and early 20th centuries.

The former designed a test to compare means from two sam-

ples33 and introduced the concept of standard distance and a

rejection rule (see chapter 13 in Spanos34). The latter introduced

the chi-square test and calculated the tail probability (which he

denoted as capital P) by integration.35 Edgeworth implicitly

used the tail probability, or the p value, in his test, followed by

Pearson’s formalization. It is, therefore, reasonable to credit

them, in concert, with the very considerable contribution to es-

tablishing the concept of the p value.

The next milestone was made by R.A. Fisher. In his seminal

work,36 Fisher argued that ‘‘the (critical) value for which p =

0.05, or 1 in 20, is 1.96 or nearly 2 (standard deviations); it is

convenient to take this point as a limit in judging whether a devi-

ation is to be considered significant or not. Deviations exceeding

twice the standard deviation (under a standard normal distribu-

tion defined on R) are thus formally regarded as significant.’’

He also recast Pearson’s descriptive statistics into a model-

based statistical induction, which changed the ad hoc ap-

proaches before him.34

To better understand p value-based decision-making, it is

perhaps helpful to discern the fundamental goal of a hypothesis

test and how the p value helps to address this goal. The funda-

mental goal of performing hypothesis testing is to derive evi-

dence from the observed data to uncover the (underlying) mech-

anism that gives rise to the observed data (see Figure 2 and

supplemental information for mathematical formulations). The

mechanism can be biological or physical; uncovering the mech-

anism not only improves the description of the observed data but
also discovers the biological or physical, and hence potentially

causal, underpinning of the data.

Let us take an example. Consider 50 different isotopically

pure rare earth metals attached to antibodies binding spe-

cific markers that are differentially expressed on two types

of cells (type 1 and type 2). We want to know which of

the biomarkers can distinguish the two types of cells. Sup-

pose there are 100,000 cells (50,000 type 1 cells and 50,000

type 2 cells) and they are ‘‘stained’’ by all 50 biomarkers (a

cell may attach to several biomarkers). The data are, there-

fore, a matrix of 100,000 rows and 50 columns, and each

entry shows how much every biomarker is expressed on

each cell. Let x0 denote the data, a matrix of dimensionality

100,000 by 50.

Let q� = ðq�1; q�2; :::;q�50Þ denote the parameters that drive the

true data-generating mechanism M�. It is necessary to as-

sume that such a data-generating mechanism exists and is

generally consistent under similar experimental conditions

and that one can derive new knowledge by uncovering the

mechanism. In the above example, a true mechanism is a bio-

logical deposition so that the ith biomarker either binds type 1

cells and/or type 2 cells or does not bind (note that each cell

type may need several different combinations of markers for

specific identification). More concretely, suppose q�i desig-

nates the mean difference between the expressions of the

ith biomarker regarding two cell groups. But we do not know

about q� and, therefore, do not know about the model driven

by it (i.e., M�ðq�Þ).
One way to learn about the unknown q� and the (biological or

physical) mechanism M� is to propose a statistical model

Mqðx0Þ that takes in data x0 and puts out an estimated param-

eter bq. A good model renders a bq that is close to q�. But to
determine how well the model performs, one needs to quantify

how close bq and q� are using some measure (metric). A dis-

tance metric may work, but it may be subject to its magnitude;

for example, if the estimated distance from the Earth to the Sun

is off by a few hundred kilometers, then one can say it is rather

accurate, but if the estimated distance between your workplace

and your home is off by a few hundred meters, it is less impres-

sive. The p value, a probabilistic measure between 0 and 1, al-

lows different individuals to quantify and compare the statistical

significance of their results. To quantify a probabilistic measure,

a useful way is to perform a hypothesis test: one first generates

a (test) statistic from the data and then calculates the tail prob-

ability (the p value) to evaluate the strength of support for the

hypothesis or lack thereof. Because the null-hypothesis statis-

tical test (NHST) has been widely used in scientific studies (e.g.,

in biological studies,37 education,38 psychology,39,40 and social

sciences41) and has been adopted by textbook writers, journal

editors, and publishers,39,42 we use the NHST to develop our

discussion.

The definition of the p value
Put simply, the p value is the tail probability calculated using a

test statistic (see Figure 3A). To define it formally, let us use an

example. A psychologist was interested in estimating the

average fluid intelligence (Gf) in a specific age group. Suppose

Gf follows a normal distribution, andwe denote Xi as theGf score

for an individual i˛ f1;2; :::g, then
Patterns 4, December 8, 2023 3
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Figure 2. The fundamental goal of hypothesis testing in science
(A) The triad of data-generatingmechanism, observed data, and uncovering the truemechanism via hypothesis testing. One chief goal of scientific investigation is
to understand the underlying (biological or physical) mechanism that gives rise to the observed data. When one has no or only preliminary knowledge about the
mechanism M� and its parameters q�, one hopes to learn about the mechanism and its parameters using observed data x, which are generated via x =
M�ðq�Þ + ε, where ε indicates noise andmeasurement errors. To do so, one proposes amodelMwith parameters q (which, one hopes, approximateM� and q�),
and, given data x, obtains the estimated parameter bq. One then performs hypothesis tests to examine how close the estimated parameter may be to q�.
(B) The true but unclear data-generating mechanism. Using CyTOF (cytometry by time of flight) mass cytometry, rare earth metal isotopes are coupled to an-
tibodies via a chelator tag, which is detected by amass cytometer to quantitatively assess the concentrations of antibody-specific antigen present on a given cell.
From left to right: cells are first incubated with a cocktail of metal isotope-labeled antibodies, washed to remove unbound antibodies, and then sprayed into
droplets using a nebulizer. The droplets are dried in the heated spray chamber, allowing antibody-bound cells to individually enter the inductively coupled plasma
(ICP) flame, resulting in instantaneous atomization of the cell into an ion cloud with its corresponding elemental composition. Elements found in normal biological
samples with a mass of less than 80 atomic mass unit (AMU) are filtered out in the quadrupole, and the remaining rare earth metals coupled with specific an-
tibodies are measured using a time-of-flight analyzer.
(C) The true model and the observed data. Left: a schematic representation of the CyTOF model. Two new types of cells are marked by 50 different biomarkers.
There exists a true data-generating mechanism M� driven by some parameter q� = ðq�1;q�2;:::;q�50Þ, where q�i determines whether the ith biomarker tags one cell
type, both cell types, or neither (see text for details). We do not know aboutM� or q�. Right: starting from the data, one proposes a statistical model to discover,
via a hypothesis test, significant biomarkers that can distinguish the two cell types. Parts of (B) and (C) were drawn using BioRender.
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Xi
i:i:d:

� Nðm;s2Þ

where i:i:d: means independent and identically distributed,

EðXiÞ = m, and VarðXiÞ = s2 > 0.

Suppose there is no prior knowledge about the disease;

the psychologist hypothesized that the average intelligence

was less than or equal to 100 in that age group. That is, the

psychologist hypothesized that the unobserved (but true,

population) mean m was less than or equal to m0, where m0 is

set at 100; note that m is a fixed value, not a random variable.

This forms the null hypothesis H0 : m%m0. In other words,

the null hypothesis is true so long as the true parameter

falls in the parameter space Md½0; m0�. The alternative hy-

pothesis is that m was greater than m0, namely H1 : m = m1,

for any m1 >m0.

Suppose now there is some prior knowledge supporting the

null hypothesis H0 : m%m0 (with a mean mp that sits slightly left

of m0), and the likelihood function has a center xn that is far right

from m0 (see Figure 3D). Then, the posterior mean mn is pulled, af-

ter seeing the data, in a direction rightward away from mp and to-

ward m0 and beyond; the farther the center of the likelihood func-

tion is from m0 (namely, the more evidence the data provide

against the null), the farther the posterior mean mn is pulled right-

ward away from m0, and there is, therefore, stronger a posteriori

evidence supporting the alternative hypothesis. To avoid confu-
4 Patterns 4, December 8, 2023
sion, unless otherwise specified, in this paper we speak of p

value in the frequentist sense; we will discuss Bayesian evidence

under ‘‘Hypothesis test in the Bayesian realm.’’

Now consider a null hypothesis H0: m = 100. Suppose that one

draws two samples and finds that the average Gf score from the

first sample is 90 and that from the second sample is 110. This

may yield a contradiction where the p values from samples 1

and 2 may each reject the null, but after combining the two sam-

ples, the p value may fail to reject the null. It is also possible that

findings from the combined sample would still reject the null but

the p value changes. The p value, therefore, depends on the

sample data.

How, then, may the p value, a data-specific entity, be useful for

scientific discovery, which requires a degree of universality?

First, (scientific) universality does not mean a discovery holds

for every situation and for every ‘‘experimental unit’’ (individual,

plot, etc.). For example, the utility of penicillin does not suggest

that it works on everyone or every infection (i.e., sample or data

specific). The heart of data-driven scientific enquiry is to extract

knowledge from the data via a statistical model (e.g., hypothesis

testing). But to draw conclusions about the evidence and to raise

gained knowledge to the rank of science, one needs to quantify

the degree of trustworthiness (including reliability and reproduc-

ibility). The p value offers such a (probabilistic) quantification

(about the belief) when there is little to no a priori knowledge

(see ‘‘Hypothesis test in the Bayesian realm’’).
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Figure 3. The p value and related concepts
(A) Calculating the p value (see text for details).
(B) Significance level (type I error), type II error, and
power. The significance level (type I error or a) is a
predetermined value (say 0.05), which quantifies the
probability of observing extreme values given that the
null hypothesis is true (red shades). The type II error (or
b) quantifies the probability of failing to reject the null
hypothesis given that the alternative hypothesis is true
(blue shades). The power (or 1 � b) quantifies the
probability of rejecting the null hypothesis given that
the alternative hypothesis is true (dashed shades). The
value 1 � a quantifies the probability of failing to reject
the null hypothesis when it is true (represented by the
white area, not completely shown, under the null hy-
pothesis curve).
(C) The frequentist perspective of the p value. In the
frequentist view of hypothesis testing, the parameter
is considered as an unknown constant rather than a
random variable.
(D) Bayesian perspective of evidence seeking. Sup-
pose the prior knowledge weakly supports the null
hypothesis H0 : m%m0 (with a mean mp that sits
slightly left of m0), and the likelihood function has a
center xn that is far right of m0. Then, the posterior
mean mn is pulled, after seeing the data, in a direction
rightward away from mp and toward m0 and beyond;
the farther the center of the likelihood function is from
m0 (namely, the more evidence the data provide
against the null), the farther the posterior mean mn is
pulled rightward away from m0, and there is, therefore,
stronger a posteriori evidence supporting the alter-
native hypothesis.
(E) The three-world system—the physical world, the
Platonic mathematical world, and the mental world—
and our modification of it. The physical world repre-
sents the entire universe (from every chemical element
to every individual) and contains properties that are
not readily accessible to the observer. Some of these
properties are governed by and/or can be explained
using mathematical principles. The mathematical
principles translate into (mental) understanding and
form one’s perspective about the physical world.
(F) The role of the p value inmaking scientific enquires.
Consider an example where a clinician was making
inquiries into the prevalence of a disease in a specific
age group (i.e., a specific population). Suppose the
clinician considered a null hypothesis where the
prevalence was 10% (in the population). Because
measuring the prevalence of a disease in a population
was impractical, the clinician selected a random
sample of 10 individuals from the population falling in

that age group (left arrow) and found that two had the disease (top circle). The clinician then conducted a hypothesis test that generated a p value of 0.26 (right
arrow) and used this to make inferences about the population (bottom arrow). Given the p value, the clinician concluded that there was not enough evidence (at a
significance level of 0.05) from the sample that would reject the null hypothesis (made about the population).
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Certainly, there will be people who will still choose to believe,

even given strong quantifiable evidence, that the Earth is not

roundor that a vaccinedeveloped todealwith avirus is not useful.

The p value, along with the probabilistic belief system it forms,

however, provides a platform through which most people with a

shared (probabilistic) belief system can compare, debate, or

reproduce the findings (Figure 4). Whereas studies with large p

values (especially in small sample studies) do not conclude that

the findings yield no scientific insights, if one observes an

extremely small p value in a study (for a given sample size) while

others with similar settings do not, then this suggest that either

there is something wrong with this study (therefore worth investi-

gating) or something exciting is happening (also worth investi-

gating). If small p values are observed consistently across sam-
ples and laboratories (and, especially, when the directions of

the effects are also consistent), there is a stronger consensus

that there may be something scientifically meaningful. It does

not necessarily raise findings to the level of knowledge but brings

it closer to it (or prevents bad results from being adopted into sci-

entific understanding) through such explorations. Finally, there is

no divorce between the p value and Bayesian evidence; when

there are only data and no prior knowledge, one can rely on the

hypothesis test and the p values to gain insights about the

data, and when prior knowledge exists, one can use the prior to

modify information gained from the observations and vice versa.

Under ‘‘Hypothesis test in the Bayesian realm,’’ we show that the

Bayesian evidence is, in essence, a compromise (or integration)

between prior knowledge and data-driven knowledge.
Patterns 4, December 8, 2023 5
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Figure 4. A few key useful roles of the p value
From left to right: (A) It underpins a simple and clear decision-making system that has been accepted by broad scientific, clinical, and medical communities.
yPhase I is primarily aimed at safety and tolerability and, in a second order, on pharmacokinetics and pharmacodynamics. zIn phase II, the study ismost of the time
not powered for a clinical endpoint but rather for a biomarker. {Phase III must indeed be significant. xFor drug approval, significance is important, but also safety
issues and effect size. (B) It provides a common, and straightforward rule that guides multiple experimenters to evaluate and compare findings based on
respective p values and a pre-agreed significance level. (C) It evaluates the outcomes of a test on a continuous scale. (D) It allows integrating results frommultiple
studies and datasets (see ‘‘The pooling of p values via meta-analysis?’’). (E) It facilitates causal inquiries and provides a metric to evaluate and determine the
existence and strength of potential causation (see ‘‘The roles of the p value in causal inference, feature selection, and predictive modeling’’ for more details).
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Nevertheless, when making discussions, debates, or conclu-

sions leveraging evidence derived from the p value-based hy-

pothesis testing, one needs to remind oneself to consider the

context. How were the samples collected, and are the samples

representative? What is the sample size? How are the data

aggregated (were samples spuriously combined; see ‘‘The hack-

ing and misuse of the p value’’)? Are p values consistent from

sample to sample? And so on. See the use of the p value in

context under ‘‘Some paradoxes and misuses of the p value.’’

The interpretation of the p value
The philosophy of the p value

In our view, a hypothesis testing framework links a population

(e.g., a group of individuals), a statistical model, and probabilistic

belief. Inspired by Roger Penrose’s three-world system linking

the physical, mathematical, and mental worlds,43 the population

has a property (e.g., the prevalence of a disease in the popula-

tion) that is interesting to the investigators; the property is gov-

erned by a data-generatingmechanism that is not yet well known

or difficult to state explicitly; to gain insights about this particular

property, one develops a hypothesis about the data-generating

principle. To evaluate this hypothesis, one then draws a sample

(via a proper statistical manner, such as randomization) and tests

whether there is evidence for it. The hypothesis test produces a p

value with which one assigns probabilistic belief about the prop-

erty and decides whether to reject the hypothesis (Figures 2

and 3F).

The roles of the p value in science
The p values must confront a few challenges. First, it may be

possible that the sample property does not well represent the
6 Patterns 4, December 8, 2023
population property. Next, the unknown property of the popula-

tion may not be well established using a statistical argument

(e.g., a test done on a sample whose distribution violates the

assumption of the test). Thus, the p value and the belief attached

to it (to make any statement about the population property) via a

hypothesis test may be inconsistent with the true (but unknown)

population property.

In spite of criticisms, the p value has been of great interest to

biological and medical scientists, clinicians, ecologists, econo-

mists, philosophers, and statisticians in its three-century-long

history.8–12,18 Hypothesis testing and the p value form a knowl-

edge-acquiring system that derives evidence from a sample;

they also form an inferential system that throws probabilistic

light on the population. There are, in general, four important

roles the p value plays in scientific inquiries. First, it allows

comparing and bridging decision-making outcomes regarding

the same testing problem done on different studies and data-

sets. ‘‘Different individuals faced with the same testing problem

may have different criteria of size. Experimenter I may be satis-

fied to reject hypothesis H using a test with size 0.05, whereas

experimenter II insists on using 0.01. It is then possible that

experimenter I rejects H, whereas experimenter II accepts H

on the basis of the same outcome of an experiment. If the

two experimenters can agree on a common test statistic, this

difficulty may be overcome by reporting the outcome of the

experiment in terms of the p value.’’ (See page 221 in Bickel

and Doksum.44) Second, it supports evidence at a continuous

(rather than binary) scale: ‘‘.the smaller the p value, the stron-

ger the evidence for rejecting the null hypothesis. Hence, a p

value reports the results of a test on a more continuous scale,

rather than just the dichotomous decision ‘Accept the null
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Figure 5. The roles of hypothesis testing and the p value in making causal inquiries, feature selection, and predictive modeling
(A) Estimation of a causal effect. The average causal effect in a randomized study can be identified and quantified using the difference between the expected
outcome of the treatment group and the control group and can subsequently be examined via a p value.
(B) Out-of-sample test. The model performance or the causal effect estimated from one dataset, when not validated, may be exaggerated or overfit the dataset.
Out-of-sample testing can, to a certain degree, alleviate overfitting by training the model using a subset of the data (left) and testing it in the remaining, previously
unseen, data (center). Additional testing using data from another study or demographic distinctive sample may further support the generalization of the trained
model and its suggested causal claims (right). The p value is critical to evaluate whether the tests are successful, thereby guarding their validity and efficacy.
(C) Graphical causal reasoning. The directed arrows (called edges) indicate potential causation. The figure gives a schematic example of the potential directed
causal flows in the brain when performing moving object recognition. When one views a moving object, areas in the visual cortex, including V1, V3, and V4, first
receive input from the pulvinar nucleus (PN) and lateral geniculate nucleus (LGN) (left). Subsequently, V1 sends signals to V3 (which processes dynamic form
recognition) and V4 (which processes color recognition), and through V3, sends information to the prefrontal cortex (center). Finally, there is reverse feedback
from V3 and V4 to V1 (right).
(D) Causal alternation. If altering the cause (while controlling for covariates) results in a change in the outcome, then it suggests that the stimuli cause the change in
the outcome. The figure gives an example of deep brain stimulation (DBS), where, when applying DBS to a target brain region, the brain patterns of the area
change accordingly, which then modifies (behavioral) symptoms. DBS is used in treating severe Parkinson’s disease (PD).
(E) The method of instrumental variable (IV). When directly altering causes or randomization is unavailable, one can consider the method of IV. Someone is
interested in studying whether a head injury causes risky behavior. On the one hand, randomization or assigning a head injury is impossible; on the other hand, it
could be argued that reverse causation, where risky behavior causes a head injury, is also possible. By using an IV (i.e., wearing a helmet), one can then study
whether a head injury causes risky behavior. Suppose one assumes that wearing a helmet is unlikely to cause risky behavior (in the long term), and it is likely to
reduce (the chance of getting) a head injury. If introducing wearing helmets reduces risky behavior (while controlling for all other variables, such as age and
gender), then it suggests that wearing helmets reduces head injury, which reduces risky behavior.
(F) The role of p values in feature selection and predictive modeling. From left to right: each box refers to a brain region; boxes with the same color but different
hues indicate the same anatomical or functional brain area. Hypothesis testing between brain data and clinical (categorical, continuous, and longitudinal) out-
comes yields a whole-brain p value map. Based on the p values, one can select features (biomarkers); the orange dots indicate selected (significant) features.
These features, when coupled with estimated weights (not shown), can be used to predict categorical, continuous, or longitudinal outcomes in previously unseen
subjects.55
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hypothesis’ or ‘Reject the null hypothesis.’’’ (See page 397 in

Casella and Berger.45) Third, it enables merging results from

multiple studies and datasets. When different experiments pro-

duce various types of data, the p value can combine the evi-

dence relating to a given hypothesis.46 This is the basis for

‘‘data fusion’’ and meta-analysis47 (see below for further dis-

cussion). Fourth, it facilitates causal inference, feature selec-

tion, and predictive modeling.
The roles of the p value in causal inference, feature
selection, and predictive modeling
Hypothesis tests and the p value make important contributions

to causal studies, feature selection, and predictive modeling.

First, thepvaluehelps toestimateacausaleffect (seeFigure5A).

Suppose a researcher is interested in studying whether a levo-

dopa-based drug is effective in treating Parkinson’s disease

(PD). They need to compare the symptoms of a PD patient after
Patterns 4, December 8, 2023 7
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taking the drug with those of the same (our emphasis) patient not

taking the drug. Only one of the two is observable, andwithin-sub-

ject designs are not suitable because of carry-over effects. Using

randomization, the Neyman-Rubin causal model (or the potential

outcomes framework) shows that the average causal effect can

be identified and estimated using the difference between the ex-

pected outcome of the treatment group and the expected

outcome of the control group (without randomization, one cannot

derive causal properties from twogroupsconsisting of different in-

dividuals).48–50 There are times when randomization becomes

impossible. For example, it is unethical to assign a group of

45-year-old healthy subjects to take a new levodopa-based drug

to investigate whether the drug reduces one’s PD symptoms at

50. Additionally, there is likely another source, say, socioeconomic

status (which may be related to the affordability of new drugs) or

genetics (if there is a family history of PD, one may bemore willing

to take the drug), that is associatedwith taking the drug and devel-

oping PD at 50. Similarly, it would be difficult to estimate the effect

of taking the drugon reducingPDsymptomsbycomparing thePD

symptomsof an individual at 50who had taken the drugwith his or

her PD symptoms at 50 had he or she not taken the drug. To solve

these issues, propensity score matching (PSM) estimates the

treatment effect by comparing the outcomesof the subjects under

treatment (e.g., taking the drug) with a set of ‘‘matched’’ subjects

without treatment (e.g., not having taken the drug).51–54 More

concretely, one could first compute the propensity score of A tak-

ing the drugbasedonhis or her gender, economic, social, genetic,

and demographic background and choose an individual from a

group of 50-year-olds who had not taken the drug but has a pro-

pensity score (of taking the drug during his or her younger years)

closest to A’s. Then we can compare the PD symptoms between

these two individuals and estimate the effect of taking the drug

on reducing PD symptoms at age 50. By evaluating the p value,

a hypothesis test can then examine whether, and, if so, to what

extent, the drug effect from the treatment group ismore significant

than that of the control group.

Second, the p value facilitates out-of-sample testing. The p

value is useful to verify whether evidence (e.g., hypothesis

testing conclusions and model performance) discovered in a

sample can be extrapolated to another independent sample

(Figure 5B). For example, if one is interested in developing a

model to select neural markers that can predict the severity of

PD (say the Movement Disorder Society-Sponsored Revision

of the Unified Parkinson’s Disease Rating Scale [MDS-UPDRS]

score), one can first fit the model on brain data obtained from

a training sample of 70 people during model development. Sub-

sequently, one can test whether the neural markers developed

from the training data can predict the MDS-UPDRS scores in

30 previously unseen subjects without further modeling. The ef-

ficacy of the selected neural markers can be evaluated by

comparing how well the predictions are made using a distance

measure (e.g., Pearson correlation) and its p value. If significant,

then one can say that themodel fitted on the training set is repro-

ducible (regarding the test set). Additionally, the p value can be

used to test whether the model trained (and results obtained)

from one study (including within-study training and testing) can

be extrapolated to or reproduced in another dataset or

study.56,57 Neither type of out-of-sample test, strictly speaking,

examines causation; an out-of-sample study endorsed by a
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significant p value, however, reduces the likelihood of model

overfitting. Although an overfit model suggests nothing about

causation, a reproducible model does offer stronger evidence

of association. In short, out-of-sample testing potentially yields

more rigorous statistical claims about model performance and

potential causal relationships between variables under investi-

gation. Overall, when significant results are discovered from an

experiment, it is useful to repeat the experiment to verify whether

the result can be replicated or reproduced.58

Third, the p value is useful in graphical causal reasoning,

whose modern development is based on Reichenbach’s macro

statistical theory59 and Suppes’ probabilistic theory60 (interested

readers could refer to the books edited by Sosa61 and Sosa and

Tooley62 for a thorough review). Suppose one uses a graphical

model to study how activities from brain region Amay be causing

those from region B (Figure 5C). One can perform a hypothesis

test and use the p value to evaluate whether a significant

directed edge exists from A to B (or from B to A).63–65

Fourth, the p value is useful to study causal alteration. It exam-

ineswhether themodification of a hypothesized cause, results in a

change of the hypothesized effect while fixing other potential

causes (Figure 5D). For example, via transcranial magnetic stimu-

lation (TMS), one can use a magnetic field coil to generate electric

current, which modifies the magnetic field of a specific group of

neurons in a small surface region of the brain.66,67 After controlling

for confounds, one can perform a hypothesis test to examine

whether there is a significant difference between the outcomes

(e.g., human behavior) when these neurons are ‘‘on’’ with the out-

comes when they are ‘‘off’’ and conclude, based on the p value,

whether these neurons are responsible for the outcome change.

When a direct manipulation of the cause is impractical, the p

value is useful when employing the method of instrumental var-

iable (IV; Figure 5E).68 For example, head injury in rugby players

may cause behavioral, emotional, and sensory changes (such

as developing risky behavior, becoming irritable and angry,

and having trouble with balance). A significant correlation be-

tween the severity of head injuries and changes in behavior,

emotions, and sensation, however, does not conclude that

the former causes the latter. On the contrary, having risky

behavior and being irritable and angry may result in fights be-

tween players, whereas having a poor sense of balance may

cause falling, both of which may result in head injuries. Further-

more, a head injury may first affect another variable, such as

developing depression, which then affects the behavioral,

emotional, and sensory changes. One cannot randomize indi-

viduals to receive a head injury but could relatively easily intro-

duce an additional variable, or IV, that affects the chance of

having a head injury but has no independent effect on the

outcome (i.e., the behavioral, emotional, and sensory changes).

More specifically, a suitable IV is one that is correlated with an

endogenous explanatory variable, such as the severity of a

head injury, but is not correlated with the error term (for

example, in a regression), where an endogenous explanatory

variable is a covariate that is correlated with the error term. A

possible IV here is wearing helmets (in rugby union, players

usually do not wear helmets), which may reduce the chance

of having a head injury but does not directly affect the out-

comes. If, after introducing the helmet, the behavioral,

emotional, and sensory changes become insignificant, then
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one can conclude with more confidence that head injuries are

the cause of changes. The p value helps to evaluate the effect

size, strength, and direction of the causal effect of the IV.

Finally, hypothesis testing and p values are useful for feature

selection and predictive modeling. Via hypothesis testing, one

finds variables (or features) that are significantly associated

with an outcome (for example, disease severity)—this may help

to explain the outcome. It also helps out-of-sample predictions.

Features are first selected during model development. Subse-

quently, one can couple the selected (significant) features with

their trained weights to predict outcomes for previously unseen

subjects55 (Figure 5F). In general, there are two ways to perform

feature selection and predictive modeling. The first approach is

to use a stepwise hypothesis test, such as a mass univariate

analysis. During each step, a hypothesis test examines one

feature and its association with an outcome to decide whether

to admit or discard the feature (see multiple testing under ‘‘A

note on multiple comparisons’’). The selected features can

then enter a predictive model for further training and testing.

The second approach performs feature selection and prediction

simultaneously, using statistical methods such as regularized

models. The weights of less significant features are shrunk

toward (or strictly to) zero, thereby removing these features.

Out-of-sample prediction can then be made using the remaining

features and their trainedweights. One can then evaluate the val-

idity of the chosen features by checking prediction performance

and looking at their scientific or biological relevance.55

Certainly, there are other contributions that hypothesis testing

and p valuesmake to science, but it would be difficult to list every

derivative. Although the applications may differ from one subject

to another, the roles of the p value suggest that there are com-

mon merits it offers to general studies. We hope that our presen-

tation may stir further discussion and that the ever-expanding

statistical and scientific knowledge will one day allow us to

formulate more universal statements about hypothesis testing

and the p value.

Some paradoxes and misuses of the p value
In this section, we discuss a few paradoxes and misuses of the p

value. ‘‘The relationshipbetween thepvalue, samplesize, andpo-

wer’’ makes enquiries into the relationships between the p value,

sample size, and significance level in hypothesis testing anddeci-

sion-making. ‘‘The hacking and misuse of the p value’’ presents

commonphacking strategies in scientific studies. ‘‘Statistical sig-

nificance (p < 0.0x) vs. clinical relevance’’ compares statistical

significance and clinical relevance. ‘‘Big data and the p value’’

discusses the connection between the p value and big data.

‘‘Recommendations for avoiding misuses of the p value’’ and

Table 1 summarizemodest tips todealwithmisusesandmisinter-

pretations of the p value. ‘‘Making better use of the p value’’ sug-

gests a pipeline for making potentially more effective use of the p

value in scientific studies. We hope that our discussions and sug-

gestions, by no means exhaustive, may improve the use of the p

value to deliver more consistent and reproducible scientific dis-

coveries.

The relationship between the p value, sample size,

and power

Suppose a clinician wanted to test whether the prevalence of a

disease was 10%. To do so, the clinician selected a sample of
10 individuals, found that two of the 10 had the disease, and

used evidence from the sample (20% sample incident rate) to

make inferences about the population prevalence. With

p = 0.26, the hypothesis was not rejected.

The first paradox is that decisions made on the same effect

size from data of different sample sizes may be inconsistent.

For example, suppose we increased the sample size from 10

to 50, of which 10 had the disorder (the sample incident rate re-

mained at 20%). This yielded a p value of 0.02. Although the new

sample had the same (20%) incident rate, the null hypothesis

was rejected under a significance level of 0.05. This test, howev-

er, would still fail to reject the null under a significance level of

0.005. Now consider an even larger sample of 100, of which 20

had the disease (the sample incident rate remained 20%), but

the p value was 0.002. The hypothesis was rejected under 0.005.

Generally, the p value decreases monotonically as the sample

size increases, a phenomenon perhaps first observed by Berk-

son69 (see an example in Figure 6). Thus, a hypothetically aggres-

sive scientist may attempt to ‘‘hack’’ the p value by adding more

subjects to the study or by repeating significance tests. To avoid

this, one may consider sample size and effect size during exper-

imental plans. For example, in clinical trials, a phase II study is first

done to determine effect size and population variation, and this in-

formation is then used to power a phase III study to ensure col-

lecting enough samples to detect the difference. Indeed, given

unlimited resources, most people may prefer studies with very

large sample sizes because they feel larger sample studies are

more reliable than smaller trials. Here, wedo not advocate against

large-sample studies (which have many advantages, as we see

below); rather, we argue that one should treat the p value contex-

tually and avoid being that aggressive scientist70 (see suggested

guidelines in Table 1 and Figure 7).

The second paradox arises because of the relationship be-

tween the sample size, the p value, and power. To see this,

let’s return to the example above. On the one hand, adding

more data may appear as p hacking, but it improves power. Un-

der the same significance level (say 0.05), the type II error de-

creases as the sample size goes up; as a result, the power in-

creases. On the other hand, a stringent significance level is not

always beneficial: comparing Figures 6C and 6D, a test with a

more stringent significance level yields less power, and this is

true for every sample size.

Taken together, although the incidence in the three samples

(n = 10;50, and 100) was the same, the hypothesis testing re-

sults were different. In other words, for each (lower) significance

level, when the sample incidence rate was relatively stable, it

was possible to obtain a significant p value by increasing the

sample size, thereby ‘‘hacking’’ the test. This highlights that

the interpretation of a p value needs to be contextual. Moreover,

when designing experiments and conducting hypothesis testing,

there is a compromise tomake, one that considers balancing the

sample size, significance level, and power.

To summarize:

(1) The p value-based hypothesis testing is sample size

dependent.

(2) Lowering the threshold alone may make rejecting a null

hypothesis more difficult, but one may increase the sam-

ple size to ‘‘hack’’ the p value.
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Figure 6. The paradoxes of the p value
(A) The associations between the p value, the sample size, and the significance level. The figure shows that the p value goes down as the sample sizes increase.
The paradox lies in that, given a particular significance level (say 0.05), one can increase the size of the sample to obtain a p value that is significant.
(B) Even if the significance level is lowered (to, say, 0.005), one could keep increasing the sample size to obtain a significant p value. On the other hand, with a fixed
sample size, one may adjust the significance level to ‘‘control’’ whether the result is significant.
(C) The paradox between the p value, the sample size, and statistical power. A larger sample sizemay yield amore significant p value with a small effect size, but it
also increases power.
(D) Reducing the significance level (say, from 0.05 to 0.005) may produce more conservative testing results, but it reduces power.
(A)–(D) demonstrate, from different perspectives, why the interpretation of the p value needs to be contextual.
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(3) Increasing the sample size may yield a more significant,

but not necessarily meaningful, p value (see ‘‘The hacking

and misuse of the p value’’), but it increases power.

Reducing the significance level (say from 0.05 to 0.005)

may produce more conservative testing results but re-

duces power.

(4) The interpretation of the p value needs to be contextual,

accounting for the experimental design, model specifica-

tion, sample size, significance level, desired power, and

the scientific question.

The hacking and misuse of the p value

In this section, we provide examples of common p hacking strate-

gies.6,71–73Wehopeour exploration could helpbetter identify their

various disguises and avoid the misuses of the p value, whether

done consciously or innocently, in practice. For theoretical detec-

tion of p hacking, one may refer to work by Elliott et al.74
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In the following, we summarize six types of commonmistakes.

In brief, the first is regarding inflating the sample size (see ‘‘The

relationship between the p value, sample size, and power’’).

The second is about omitting a part of the data. For example,

one performs a hypothesis or runs a model on a subset of the

data that yields significant results or removes ‘‘outliers’’ contain-

ingmeaningful signals. The third is regardingmistreatingmultiple

variables, either during multiple comparisons, feature selection,

or predictive modeling. For example, one does not correct for

multiple comparisons (to reduce, for example, spurious correla-

tions), or searches for and adds more variables, after performing

a hypothesis test or modeling to boost significance. The fourth is

not having a well-formed hypothesis or applying a test or model

to data that do not actually test the outlined hypothesis, such as

pseudo-replication. The fifth is about misusing hypothesis tests,

such as applying the t test to highly skewed data. Last but

perhaps not least is selective reporting: running several



Table 1. A brief summary of common misinterpretation and misuse of the p values and recommendations22,23,94–96

Misuse and misconception of the p value Recommendations

(1) Scientific conclusions and decisions

are based on whether a p value is less than

a specific threshold.

Observing a p value less than a threshold (e.g., 0.05) alone does not, and should not,

endorse a binary scientific conclusion. This point is crucial when the p value is close

to the threshold. For example, neither a rejection of a null hypothesis when p = 0.045

nor a failure to reject one when p = 0.055 offers conclusive evidence regarding the null;

such close calls need further analyses, such as cross-validation, test-retest (e.g.,

permutation and bootstrap tests), and out-of-sample extrapolation. By further evidence,

it means that, when reporting a p value is mandatory (e.g., by a journal, consortium, or

funding organization), reproducing a significant p value is highly recommended.

For example, when a significant p value is discovered in a training sample, check

whether an independent testing sample also yields a significant p value. If modeling

is concerned, verify whether fitted parameters obtained from a discovery sample

can be extrapolated to a previously unseen testing sample. Extrapolation here means

applying a trained model to new test data and examining whether meaningful

prediction can be made without further model fitting on the test data.

(2) p hacking (e.g., conducting several statistical

tests and only reporting those that pass

the threshold).

Instead of ‘‘hacking’’ the p, (re)evaluate whether the experimental design is

appropriate (e.g., is the design balanced; is the sampling randomized?), data

collection is appropriate, the data processing is rigorous, the model is suitable,

and all assumptions are met. If multiple statistical tests are conducted on the same

data or several tests are done on different datasets, then report all analyses and

their p values. In these cases, if a single p value is required (by a journal, consortium,

or funding organization), then conduct a proper meta-analysis to combine

p values (see ‘‘The pooling of p values via meta-analysis?’’).

(3) The value 0.05 is the

‘‘gold-standard’’ significance level.

We cannot offer a strong recommendation for a ‘‘gold-standard’’ significance level.

The number 0.05 was coined by Fisher for convenience (see ‘‘The rise of the p value’’).

In general, we suggest that, when data are too small to be split into a training set and

a test set, use a conservative significance level for confirmative discovery (e.g., 0.05 is

more conservative than 0.1). Whenever possible, replicate the result in a new sample.

For large data that can be split into a training set and a test set, consider a conservative

significance level (e.g., 0.005) for training and a relatively more liberal one (e.g., 0.05)

for out-of-sample prediction.

(4) The p value measures the probability that

the research hypothesis is true. The p value

measures the probability that observed data

are due to chance.

The p value measures the tail probability of the distribution of a test statistic; it makes

a statement about whether observed data supports a hypothetical research

explanation. It does not give a statement about the explanation.

(5a) I have a very large sample.

(5b) I have conducted a hypothesis test

and obtained a very small p value.

(5c) Thus, the result must be significant.

The p value is sensitive to sample size and variability in the sample. A very large

sample size with a very small effect size can yield a significant p value. Such

results may offer little inference in scientific studies and are likely to be

irreproducible.93 When facing large sample sizes, one may consider a data-driven

approach instead (see point 6). If, however, a small but significant effect size is

reproducible, the finding may still shed light on basic science, but it needs to be

contextual (see point 1). In biomedical studies, one could begin with a statistical

statement; for example, ‘‘the difference was statistically significant,’’ followed

by an additional statement on the clinical significance, using the effect

size and their directions.

(6) Scientific discovery must be accompanied by

hypothesis testing and a p value.

They are standard or popular ways to extract scientific evidence, but they

are not the only ways. Depending on the specific scientific question,

prior insights, and observed data, a few alternative approaches are sometimes

more suitable and feasible than hypothesis testing. For example, scientists can

also report confidence, credibility, or prediction intervals to indicate effect size

and direction. If scientists have prior knowledge about the problem, then they

could consider Bayesian evidence. There are other measurements for evidence,

such as the likelihood ratio or Bayes factor (see supplemental information).

Finally, one could consider approaches based on decision theory and FDRs.

For further reading, please see references 22, 23, and 94–96.22,23,94–96
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experiments, fitting several models, or applying various transfor-

mations to the data but only reporting the significant one(s).

Certainly, here we mainly focus on errors that are somewhat
disguised or may be made by an oversight. We do not discuss

strategies such as rounding the decimals or forging data, which

are superficial or downright unscientific.
Patterns 4, December 8, 2023 11



Compute the p value

Define research hypotheses

Experimental design

Data collection

Test
An exact test, a permutation test, etc.

Null Hypothesis 
Correlation 0

Alternative Hypothesis
Correlation 0

p 0.05 p 0.05

Significant Not significant

Significant Not significant

Potential 
Granger
causation

No Yes
No confounds Confounds

Significant
Not significant

Effect
changes

Effect does 
not change

Fail
Survive

Not 
reproducible

Reproducible

Se
ar

ch
fo

r
c o

nf
ou

nd
s

Cross
-validation

Extrapolate to 
new samples

Data 
collection

Time

No known
causation

Test for
non-linear causation

Experimental design

Correlation test

Test for (lag)
adjusted correlation

Promising
Causation

Potential 
causation

Po
te

nt
ia

lly
sp

ur
io

us
ca

us
at

io
nAl

te
rt

he
ca

us
e

in
ex

pe
rim

en
ta

ld
es

ig
n

Causation
restricted to

a sample

Removing
confounding effect &
re-test for correlation

A B

Figure 7. Making better use of the p value
(A) A typical flowchart for conducting hypothesis-led testing of, for example, whether the correlation between two random variables is significantly different from
zero. A significant correlation, however, does not equate causation. Note that this framework forms the first part of the flowchart in (B).
(B) A more rigorous flowchart. We use the correlation test as an example, which can be replaced with other models or tests. It can also extend to cases involving
more than two variables. For demonstration, we focus on testing linear causation and abbreviate the procedure for testing non-linear causation (which is marked
with two parallel bars; interested readers can refer to Bai et al.97 and Hiemstra and Jones98). The illustration demonstrates that even simple analysis needs
additional caution when causal inference and reproducibility are concerned. Such a flowchart, however, is not the only way to perform hypothesis testing; rather,
we show that a more streamlined pipeline may help remove confounding effects, avoid overfitting, and facilitate reproducible research. A careful experimental
design, appropriate data processing, and contextual scientific interpretation (not shown) are also important.
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p hacking. We define p hacking as taking inappropriate

steps, whether consciously or innocently, to obtain significant

p value(s) in science. Compared with misuses discussed below,

which are not completely unfounded but not ideal, p hacking is,

in general, inappropriate statistical practice, and one should

strive to avoid it.

Inflating sample size. Under ‘‘The relationship between the

p value, sample size, and power,’’ we have shown how, by

increasing the sample size, one can ‘‘obtain’’ a small enough

p value.

Pseudo-replication. Related to inflating sample size is pseudo-

replication. In scientific studies in general, and biological studies

in particular, replications help distinguish and quantify variations

because of biological (or treatment) replicates and repeated

measurements (technical replicates that may be due to devices).

Yet, caution is needed. For example, one can take blood sam-

ples from 10 potential patients and check, using a cell analyzer,

whether the average CD4 count is significantly below a

threshold. One can also take three blood samples for each indi-

vidual and evaluate whether, and, if so, to what extent, there are

technical variations because of the cell analyzer. Suppose none
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of the patients has significantly lower CD4 counts than a

threshold; by combining the 30 replicates (3 technical replicates

times 10 subjects), one may observe, and erroneously report,

that the average CD4 count (among these 10 subjects) is signif-

icantly less than the threshold.

Significant but spurious relationships. When an algorithm

selects features by looking for variables that are significantly

associated with the outcome, not all the selected features are

necessarily meaningfully linked with the outcome. This is

because, when the number of features is quite large, some of

them are likely to be spuriously associated with and predictive

of the outcome. A similar phenomenon may appear in multiple

comparisons; when one makes a large number of (pairwise)

comparisons, it is likely that some of the pairs are spuriously

significantly related. Additionally, when one performs several hy-

pothesis tests, it may be erroneous to obtain one significant

p value by joining p values, (especially) from different test statis-

tics (e.g., t, chi-square, and Wilcoxon tests) because the joint

distributions of the test statistics are unknown; even when the

same type of test statistics are involved (e.g., t tests for multiple

endpoints), the correlations between the test statistics are often
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unknown. In these cases, one can use stepwise, gatekeeping,

and group sequential multiple test procedures (MTPs) to control

the family-wise error rate (FWER)75 (see ‘‘A note onmultiple com-

parisons’’).

Data fishing (by studying a subset of the whole data). Statistical

analysis aims to extract information from the (entire) data. Data

fishing, however, uses data analysis to find useful information

the way one wants. A common way of data fishing is to perform

the otherwise standard analysis on a (selected) part of the data

and argue that the findings hold for the whole sample and there-

fore extend to the population. For example, suppose one wants

to examine the efficacy of a new drug. A useful way is to run a

randomized control study with half of the randomized sample

taking the drug and the other half taking a placebo and then eval-

uate the difference between the twomeans. Suppose the means

are not statistically significant; one way to make (proper) further

investigation (to check whether there are any neglected consid-

erations) is to break the sample into different age and/or gender

groups and study the drug effect for each group. Another is to

match subjects (via, for example, PSM). But if, instead, one finds

a subset of the treatment sample (who took the drug) that shows

positive effects and then compares them with a matched pair

who took the placebo and finds that the difference between

these sub-samples is significant and argues that the drug is

effective, one is fishing for information (to show that the drug is

effective). Certainly, there are more ‘‘discrete’’ ways of sub-sam-

pling, but our message remains: the results are likely biased and

not reproducible because one omits people in the treatment

group who show little to no drug effect.

Removing meaningful ‘‘outliers’’. Outlier detection (or novelty

detection) is an important, oftentimes necessary part when

handling real-world data. Outliers are either driven by noise or

measurement errors or given rise because they come from a

mechanism different from the one under investigation. For nor-

mally distributed data with outliers, removing true outliers may

make the data distribution more normal, thereby satisfying the

assumption of several prominent statistical models; for other dis-

tributions, removing outliers may reduce bias (for example, the

estimated parameter will be biased if estimated on outliers and

the rest of the data). Not all data that fall outside of the common

(not necessarily normal) distribution, however, are outliers.

Sometimes they may be unique cases with new scientific in-

sights. For example, in HIV studies, some individuals have innate

immunity to the HIV virus; removing them may delay the discov-

ery of mutation of the gene encoding CCR5. Other times, they

may be from a less represented subpopulation. For example,

for patients with diabetes, about 90% have type 2 diabetes

and 10%have type 1 or gestational diabetes. For amodel trained

on a randomly selected diabetes sample, if a small percentage of

type 1 diabetic patients are considered outliers, its parameters

may fail to capture type 1- or gestational diabetic-specific infor-

mation. In general, when the removal of outliers may not be

optimal, one may consider robust estimators.76

Selective reporting. Selective reporting comes in several

forms. The most common ones are running several experiments

but reporting only the significant one(s) or trying different statis-

tical tests and reporting one(s) that give significant results. One

of the most embarrassing moments in a statistician’s career is

perhaps when one asks whether there is a statistical test that
will give significant results. Certainly, the persons who asked

the question were, oftentimes, not ill intentioned. But one needs

to reflect on statistical education, which statistical experts and

those who apply statistics should work together to improve.

Indeed, one can investigate data using several types of hypoth-

esis tests or models so long as one does not hide all insignificant

ones, and even when only a proportion of the tests gives signif-

icant results, it still suggests that there may be meaningful infor-

mation worth investigating further. It is when one cherry-picks

one test (or model) that yields significant findings (and/or only re-

ports the significant one(s)) that concerns arise. Certainly, some

tests require assumptions (such as the normality assumption in a

t test), and if the data meet the assumption, then one can start

with a particular test. Oftentimes, real data do not meet all statis-

tical assumptions (normality, independence, etc.); even when

they do, several tests (and models) may be suitable. In these

cases, we encourage our readers to report findings from all tests

performed (and models run) and conduct model comparisons to

provide themselves (and their audience) with a holistic view of

the data and the process leading to the argued results.

Misuses of p values. Practices such as model selection, data

transformation, and variable selection are common practices in

statistics. But when done inappropriately, they may yield errors.

Trying different models. Model comparison is critical in statisti-

cal science. One proposes a (statistical or machine learning)

model with the hope of optimally describing a system (or phe-

nomenon). Up until that point, one knows, at best, a few probable

models that may be suitable candidates, but no one knows

which may work the best. Therefore, one runs (or develops)

several candidate models and sees which fits the data best. To

do so, one runs model comparisons and cross-validations and

finds an optimal model that minimizes errors or maximizes the

likelihood. The chief point here is that the candidate models

should be laid out before model comparison and drawing con-

clusions. If one tries sequentially different models until one finds

a model that gives the ‘‘desired’’ results, then one may bring

about soft p hacking.

Transformation. Another standard statistical technique is data

transformation. For example, via generalized linear models, one

transforms the outcome (via a link function) so that the relation-

ship between the transformed outcome and the variables is

linear. It is simple because the (transformed) relationship is linear,

and it helps explanation (e.g., logit link function canbe interpreted

as log odds) and prediction. However, it becomes problematic

when one transforms one set (or column) of data but not the other

sets (columns). A more stealthy practice is when one applies an

arbitrary (arbitrarily complex) function so that the model fits well

(e.g., gives good prediction) for a set of (e.g., biological or medi-

cal) data. Despite advances in explainable artificial intelligence

(XAI), someof theblack-boxmodelsmay fall into these territories.

The predictions are good, but the explanation is feeble; we do not

knowwhy the hidden layers and activation functions work or how

they facilitate scientific explanation. Certainly, it is useful to

design black-box models: if one’s goal is prediction, then an ac-

curate black-box model may suffice. But if one wants to gain in-

sights into a biological or physical phenomenon, then the trans-

formation made into data via hidden layers and various

activation functionsdoesnot seem to, asof yet, deliver significant

biological or medical intuition.
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Increasing the number of variables. A study may consist of a

single, several, or large number of variables. Suitable univariate,

multivariate, and high-dimensional statistical methods are devel-

oped to deal with each of these cases. Yet, suppose the original

experiment considered q (qR 1) variables, but none yielded sig-

nificant results, and one subsequently added more variables

hoping to find significant ones; this is improper. Indeed, if one

has realized, after running the model, that one forgets to include

important variables, such as age and gender, then one needs to

re-fit the model (although one perhaps needs to make a reflec-

tion). In general, however, one should include and fix all variables

of scientific relevance or interest during the experiment design

(i.e., before performing hypothesis testing, variable selection,

and model fitting). One should avoid adding new variables after

statistical analyses to get more significant results. If one must

append additional variables, then one needs to document the

rationale and steps.

Misuse of tests and models. Parametric tests are useful to

detect differences between groups, but they typically require

distributional assumptions. For example, Li et al.77 investigated

why DESeq2 and edgeR, two popular methods to identify differ-

entially expressed genes (DEGs) under two (e.g., normal vs. dis-

ease) conditions, had many false-positive discoveries and sug-

gested that the poor result was in part due to violation of the

negative binomial distribution assumed by both methods.

Similar to the misuse of tests, model misspecification would

also yield erroneous p values. For example, when the relation-

ship between a set of features (exposures) and an outcome is

non-linear, the p values generated using linear models are likely

to be erroneous, and so are the identified features.

Statistical significance (p < 0.0x) vs. clinical relevance
The paradoxes of the p value raise the need to distinguish sta-

tistical significance and clinical relevance. First, a significant

p value may not equate to clinical relevance. When employing

hypothesis tests in clinical studies, a p value that is greater than

or equal to the significance level (e.g., 0.05) only indicates a

lack of evidence to reject the null hypothesis; it is not equivalent

to ‘‘no difference between groups.’’ A statistically significant ef-

fect need not to be indicative of a large or meaningful effect

size. Second, ignoring a statistically non-significant clinical

finding from a sample with high variation or a small sample

size may neglect useful information or yield publication

biases.78,79

Mayo and Spanos80 used the concept of post-data severity

evaluation to explain how p value-based decision-making can

cause the fallacies of acceptance (when no evidence against

H0 is mistreated as evidence for it given low test power and small

sample size in detecting sizable discrepancies) and rejection

(when the evidence against H0 is interpreted as evidence for a

particular H1 given high test power and large sample size for triv-

ial discrepancies).80 The fallacy of rejections concerns the

dangerous practice to conflate statistical significance with sub-

stantive (or clinical, for most medical research questions) signif-

icance or, to be more specific, to conflate the statistical alterna-

tive with a substantive theory.80 The null and alternative

hypotheses under the Neyman and Pearson framework must

exhaust the parameter space of a given statistical model and

thus only allow the alternative hypothesis to be deduced upon
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the null being rejected, but not based on a substantive theory

or knowledge.

Hypothesis testing-based p value alone may oversimplify a

clinical question or provide insufficient information regarding

the clinical (trial) results. In clinical trials and drug development,

‘‘clinical significance,’’ which may be a cardinal element in

driving treatment decisions,81 typically refers to the magnitude

of the actual treatment effects; it suggests whether the results

of, say, a trial, can impact current medical practice. Information

on minimal clinically important differences (MCIDs) or minimal

important changes (MICs) needs to be discussed beforehand

based on prior knowledge or experiments. Model interpretation

in clinical studies, therefore, needs combined expertise from

statisticians, clinicians, and general scientists. In addition to

evaluating a p value, it is useful to take the effect size and the di-

rection of the effect into consideration.82 Suggestions under

‘‘Recommendations for avoiding misuses of the p value’’ may

be useful in this regard.

Another way is to report the p value and a confidence interval

(CI).83 Although there is a mathematical duality between CI and

hypothesis testing, the CIs are less vulnerable to the large n prob-

lem and contain, arguably, more information than p values.84 By

presenting CI along with the p value, one may steer away from

purely seeking statistical significance and into considering statis-

tical significance in light of clinical relevance. The advantage of

including the CI is that CI (1) reports results directly on the scale

of the data, (2) provides the direction and strength of the effects,

(3) partly implies sample size and variability through its

width,82,85,86 and (4) avoids the problem of sharp dichotomy

(e.g., rejecting null at p = 0.0499 but failing to do so at p =

0.0501).34

Big data and the p value

Bigger data provide a larger platform to make scientific enquiries

and, properly treated, may produce more consistent conclu-

sions.55,87 In the following, we will present a few perspectives

regarding the relationship between the p value and big data.

First, big data may introduce big errors. Large-scale data,

such as magnetic resonance imaging (MRI) data, may contain

large-scale noise. For example, in fMRI data, multiple sources

of noise, such as scanner-related noise, including thermal noise

and scanner instability noise, noise because of head motion and

physiology, HRF model errors, and noise because of different

sites, can corrupt the true signals.55 There are three ways tomiti-

gate this issue. First, one can aim to reduce noise by, for

example, improving data acquisition, pre-processing, and de-

noising procedures before performing hypothesis testing. Sec-

ond, scientists who consider a massive number of comparisons

can improve reproducibility via cross-site and cross-study ana-

lyses and impose a very strict significance level (e.g., 5310� 8

for geneticists; 3310� 3 and 33 10� 7, respectively, for ‘‘evi-

dence of a particle’’ and for ‘‘discovery of a particle’’ in phys-

ics).88–90 Third, even with extensive replication and strong sig-

nals, one may still observe false discoveries because of

confounding variables or other biases. Therefore, in addition to

designing stringent test pipelines (e.g., Figure 7), integrating,

and reproducing evidence, it is important to improve statistical

thinking, teaching, and interdisciplinary training.91

A second problem with big data is the increasing likelihood of

obtaining spurious findings. Consider a hypothesis test to
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investigate the relationships between 500 brain edges and indi-

vidual creativity scores. Among the 500 edges under consider-

ation, it is likely that a few of them will be spuriously associated

with the outcome. This may introduce an erroneous scientific

conclusion that these edges are underpinning creativity.

Third, a small effect may appear significant, although not

necessarily meaningful, when studying big data. Empirically, a

correlation of 0.1 in a sample of 500 has a p value around

0.025; a correlation of 0.01 in a sample of 100,000 has a p value

around 0.002. The former is significant at a= 0:05 and the latter

at a = 0:005, but the p values in these cases may offer little

insight. In psychological and sociological investigations invo-

lving very large numbers of subjects, it is regularly found that

almost all correlations or differences between means are statis-

tically significant’’.92 In clinical trials and pathological studies, a

small but significant effect size may not offer much clinical infer-

ence and is difficult to interpret and reproduce.93

Recommendations for avoiding misuses of the p value

Here, we summarize recommendations for a few common mis-

interpretations and misuses of the p value.22,23,94–96 Before pro-

ceeding, let us ask a few questions.

(1) Should scientific conclusions be solely based on whether

a p value is less than a specific threshold? Is post hoc sci-

entific interpretation based on the p value justified?

(2) How could we prevent ‘‘p hacking’’ (for example, con-

ducting several statistical tests and only reporting those

that pass the threshold or adding subjects to existing

studies to lower the p value in scientific discoveries)?

(3) Many studies report results when observing a p value

smaller than 0.05, 0.01, or 0.005. But is 0.05, 0.01, or

0.005 an optimal bar?

(4) Does the p value measure the probability that the

research hypothesis is true? Or does it measure the prob-

ability that observed data are due to chance?

(5) Does obtaining a very small p value from hypothesis

testing using a very large sample provide conclusive ev-

idence?

(6) Must scientific discovery always be accompanied by a

hypothesis test and a p value? Are there alternative statis-

tical approaches?

In Table 1, we attempt to answer these questions and present

a collection of recommendations from the statistical and scienti-

fic communities with ourminor comments. Under ‘‘Making better

use of the p value’’ and in Figure 7, we use a flowchart to depict

our suggestion on how to potentially make better use of the

p value in hypothesis testing.

Making better use of the p value

Through our explorations, one may see that it is difficult to sug-

gest an optimal sample size, significance level, or power with

which everyone agrees. A compromise, however, can perhaps

bemade by suggesting a streamlined pipeline for conducting hy-

pothesis testing aimed at improving reproducibility in scientific

studies (Figure 7). One can see that even a seemingly simple

associative analysis requires extra caution. We highlight that

the interpretation of the p value is contextual. We need to inter-

pret the p value along with, perhaps never independent of, the

research (experimental) design, hypothesis, model and its as-
sumptions, and prior evidence. Finally, it is important to improve

statistical thinking and interdisciplinary training integrating sta-

tistical concepts and scientific insights.91
Hypothesis test in the Bayesian realm
Comparing two different types of evidence, Bayesian evidence

and the p value, is like comparing two belief systems. Indeed,

one colleague has nicely summarized the discrepancy as follows:

‘‘I have always found the comparison between p values and pos-

terior tail areas very puzzling because the p value is defined as a

tail area where the value of the sample changes, but the posterior

tail area varies over different values of theta (the unknown param-

eter). How are these two comparable unless wewant to compare

eggs with sausages?’’ Here, for completion purposes, and as the

discussion and debate between Bayesian evidence and p value

persist, we add this section to show an alternative way to gather

knowledge via the Bayesian lens.13,14,99–106

Unlike the p value, which is determined by the observations

and the statistical model MqðxÞ (i.e., completely data driven),

Bayesian evidence depends not only on the observations and

the model but also on a priori knowledge. In other words, if one

has a strong prior (a very large precision relative to the likelihood),

then no matter how much information the data contain, the pos-

terior parameters are chiefly dictated by the prior. The hypothesis

testing outcomes are, consequently, chiefly determined by the

density function of the prior. On the other hand, a weak prior sur-

renders to data; the posterior parameters, therefore, are closer to

the maximum likelihood estimators (MLEs) of the likelihood.

Consequently, the hypothesis testing outcomes may be chiefly

determined by the likelihood function. When a uniform prior

(perhaps the most extreme case of a non-informative prior) and

a Gaussian likelihood are employed, it is relatively easy to see

that the p value and the Bayesian provide the same information.

To see these points more concretely, let’s consider an example.

Suppose we have some prior knowledge about a parameter

m � Nðmp;s
2
pÞ. The likelihood of drawing data x = ðx1; x2;.; xnÞ is

PðxjmÞ =
Yn
i = 1

PðxijmÞ = ð2ps2xÞ�
n
2exp

�
� 1

2sx2

Pn
i = 1ðxi � mÞ2

�
.

It follows that after seeing data x, the posterior distribution of

mjx �Nðmn; s2nÞ, where mn =
�

n
s2x
+ 1

sp2

�� 1

2
64 n
s2x

0
B@Pn

i = 1
xi

n

1
CA +

1
sp2

mp

3
75, and s2n =

�
n
s2x
+ 1

sp2

�� 1
. Suppose mp = 90 and xn = 110,

and we wish to examine two sets of hypotheses.

ðS1Þ : H0: m % 109 vs: H1: m > 109;

ðS2Þ : H0: m % 111 vs: H1: m > 111

Let’s consider scenarios that cover three fundamental relation-

ships between the precision of the prior and that of the likelihood.

(1) The prior is more precise (with a smaller standard division)

than the likelihood; i.e., sp : sx = 1 : 5.
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Figure 8. An illustration of Bayesian posterior evidence
(A) The behavior of the posterior mean.
(B) The behavior of the posterior standard deviation.
(C) The behavior of posterior evidence for H0 : m% 109.
(D) The behavior of posterior evidence for H0 : m%111.
See text for explanations.
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(2) The prior has similar precision as the likelihood; i.e.,

sp : sx = 5 : 5.

(3) The prior is less precise than the likelihood; i.e.,

sp : sx = 5 : 1.

In all scenarios (Figures 8A and 8B), the posterior mean ap-

proaches the mean of the likelihood function (which equals the

MLE) as more data are gathered (i.e., as n increases), and the

variance (which determines our confidence about the accuracy

of the posterior estimate) decreases toward zero. The rate of

convergence, however, differs across the three scenarios.

When the prior is less precise than the likelihood (e.g.,

sp : sx = 5 : 1Þ, the posterior mean converges to xn (the MLE)

rather quickly with smaller a posteriori variance, as the domi-

nating information is provided by the data. When the prior is

more precise than the likelihood (e.g., sp : sx = 1 : 5Þ, the poste-
rior mean is quite resistant to converging to xn (the MLE) with a

larger a posteriori variance; unless a lot more data are used,
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the posterior takes into significant consideration the prior.

When the prior and the likelihood have similar precision (e.g.,

sp : sx = 5 : 5), the convergence rate of the posterior mean is

moderate.

The usefulness of Bayesian evidence lies in that it balances (or

modulates) prior knowledge and knowledge gathered from the

data (the likelihood).106 Let’s consider the first set of hypotheses

(S1): H0 : m %109 vs. H1 : m > 109. The mean of the prior (mp =

90) is in favor of the null, but the likelihood is not (xn = 110).

When the prior is not as precise as the likelihood (e.g.,

sp : sx = 5 : 1), the posterior mean gives up supporting the null

immediately after seeing the data from a distribution centered

at 110 (the red line in Figure 8C). When the prior is more precise

than the likelihood (e.g., sp : sx = 1 : 5), however, it requires

more data to convince the posterior mean (the blue line in

Figure 8C).

Next, let us consider the second set of hypotheses (S2):

H0 : m %111 vs. H1 : m > 111. The means of the prior (mp = 90)
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and the likelihood (xn = 110) are in favor of the null, and the prior

is more in favor of the null than the likelihood. When the prior is

more precise than the likelihood (e.g., sp : sx = 1 : 5), the poste-

rior went to support the null right after seeing a small number of

data points (the blue line in Figure 8D). When the prior is not as

precise as the likelihood (e.g., sp : sx = 5 : 1), the posterior

mean needed more data to support the null (the red line in

Figure 8D). An interesting scenario occurs when the prior and

the likelihood are not precise (sp : sx = 5 : 5); in this case, it

takes some battling, after seeing more data, to achieve

consensus regarding supporting the null (the purple line in

Figure 8D). See also an example of using the Bayes factor in

model comparison in the supplemental information.

Bayesian posterior evidence vs. the p value

‘‘Most nonspecialists interpret p precisely as PðH0jxÞ (see Dia-

mond and Forrester;101 thereby committing the fallacy of the

transposed conditional, our insertion), which only compounds

the problem.’’13

One chief difference between the p value and Bayesian evi-

dence is that the former considers the parameter as an unknown

but fixed value, and the latter considers the parameter as a

random variable on which a probability distribution can be

imposed. Naturally, it is difficult to compare an argument built

on a fixed number with one built on a distribution. Yet, there is

a special case.

For Bayesian evidence, when the prior brings in little informa-

tion (i.e., a non-informative prior), it is possible that the Bayesian

evidence may deliver the same amount of information (i.e., from

the data alone) as the p value does. More vividly, let’s consider

a case. Consider a uniform prior defined on the real line

and Gaussian likelihood xi
��m � Nðm; s2xÞ. The posterior then

is mjx �Nðmn;s
2
nÞ, where mn = xn, and s2n = s2x

n . For a null hypoth-

esis H0 : m%m0, the Bayesian evidence is Pðm %m0jxÞ =
P

�
m� xn
sxffiffiffi
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p
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sxffiffiffi
n

p
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sx

�
, where F is the cumulative

distribution function (CDF) for Nð0; 1Þ. For the same hy-

pothesis, the p value is 1 � PðDðXÞ>DðxÞ; m = m0Þ =
P
�
DðXÞ %

ffiffi
n

p ðm0 � xn Þ
sx

�
= F

� ffiffi
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sx

�
. Thus, using a non-infor-

mative prior, the Bayesian evidence and the p value provide the

same information.

Naturally, one would ask: which is more suitable for scientific

studies? In general, we suggest that one may consider the

Bayesian approach when one has some a priori belief about

the parameter and considers the p value when one only has

data without prior knowledge about them. There are a few gen-

eral consensuses regarding the amount of evidence they pro-

vide. Because one- and two-sided hypothesis tests are the pre-

dominant practices in scientific expositions, we will focus on

these two types of tests in the following. Readers who are inter-

ested in composite hypothesis tests could refer to Bayarri and

Berger99 and Berger et al.100

1. For a two-sided (point null) test: the p value tends to over-

state the evidence against the null;13,102,104 that is, the p

value is smaller than the Bayesian posterior evidence.

2a. For a one-sided test: the p value can be approximately

equal to the Bayesian posterior evidence.107
2b. For a one-sided test: one can construct an (improper)

prior so that the p value and the Bayesian posterior evi-

dence match.108

3a. For a one-sided test: for data following distribution with a

monotone likelihood ratio that has unimodal density,

symmetric about zero, or is normal ð0; s2Þ, where

0< s2 <N, the p value is equal to inf PðH0jxÞ, where the

infimum is taken over a class of priors.14

3b. For a one-sided test: for other distributions, the p value is

greater than or equal to inf PðH0jxÞ, suggesting that the p

valuemaybeunderstating the evidenceagainst the null.14

4. If a prior mass is concentrated at a point (or in a small in-

terval), and the remainder is allowed to vary over the alter-

native hypothesis H1 (in other words one has strong prior

information), then there could be a (noticeable) discrep-

ancy between the Bayesian posterior evidence and the p

value (see examples in Casella and Berger14).

Taken together:
(1) For a two-sided test (e.g., testing whether the disease

prevalence is not equal to 20%), the conclusions made

using Bayesian evidence may be more conservative

than using the p value.13,102,104

(2) For a one-sided test (e.g., testing whether the disease

prevalence is above 20%), the two offer approximately

the same evidence (and can be constructed to be

equivalent).107,108

(3) When one has strong prior information about the null hy-

pothesis, the Bayesian alternatives would favor the null.14

(4) When samples are large, small p values (see discussions

above and Figure 6) almost systematically reject the null;

the Bayesian alternatives may not.109

(5) One should be aware that, if different studies adopt

different priors, then it would be problematic to compare

findings between studies.110

(6) If one has a lot of (quality) data, then onemay want to hear

the opinions of the data (Figure 8).

The pooling of p values via meta-analysis?

The analysis of large-scale datasets has two attractive aims: in-

formation accumulation and commonality extraction.55

Information accumulation can be done by either increasing

the size of a single dataset or combining different datasets.

For the former, it can expand the sample size (by collecting

more subjects), enrich temporal dynamics (by obtaining

more longitudinal measurements for each subject), and

augment spatial variability (by increasing the number of spatial

features collected or areas measured for each subject). For

the latter, it can compound heterogeneous samples, disease

categories, or task paradigms. The p values obtained from

large-scale datasets may more clearly suggest the difference

between subpopulations (e.g., healthy versus disease, male

versus female, individuals under various treatments, or stimuli

versus controls) and identify the pathological-, gender-, treat-

ment-, and task-specific phenotypes. Hypothesis testing and

the p value obtained from repeated measurements help to

delineate the longitudinal changes of the features, thereby

potentially improving disease assessment over time and
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paving the way for longitudinal disease prediction and pro-

gression monitoring.111–115

Commonality extraction refers to obtaining converging evi-

dence from multiple studies and datasets. Datasets obtained

from different studies and experimental conditions may contain

heterogeneous signals. Theymay also be subject to different de-

grees of systematic bias because of different experimental de-

signs (e.g., a complete factorial design versus a fractional facto-

rial design116), noises (such as head motion117), measurement

errors (because of data aggregation under different paradigms

and from different sites),118 missing data,119 and reporting bias

(for example, only positive results are reported120). Conse-

quently, data analysis results reported from mis-specified

models121 or datasets obtained under different designs and con-

ditions may provide different p values, thereby generating

different, sometimes opposite conclusions.

Naturally, one would ask, how then can one obtain evidence

from various studies and datasets? The meta-analysis (analysis

of analyses) is a useful approach to integrate and extract evi-

dence from large-scale heterogeneous datasets, reduce report-

ing bias, and draw potentially reliable conclusions by pooling

multiple p values from different studies and datasets.

(1) Meta-analysis can integrate results from different studies.

For example, Fisher’s and Pearson’s methods combine

the p values obtained from multiple studies and datasets

(Figure 4).122,123When data are sparse (for example, when

there are only a small number of features associated with

an outcome in high-dimensional data), one can use Tip-

pett’s minimum p value test,124 the higher criticism

test,125 and the Berk-Jones test126 to improve power.127

(2) Meta-analysis may reduce bias. For example, when re-

gions of interest have more liberal thresholds than others

(such as in large-scale neuroimaging studies), the results

are likely biased toward these regions. Meta-analyzing

functional and structural data across multiple large-scale

studies can reduce bias and improve power.128,129 First,

peak coordinates (e.g., the brain regions where the differ-

ences between healthy and disease are the highest) are

combined with t-statistic maps (each t-statistic map can

be plotted to the brain space where regions with large t

values indicate activation). Second, statistical maps and

effect-sizes maps are recreated. Finally, individual maps

are combined according to intra-study variance (i.e.,

studies with large sample sizes and/or lower error

contribute more) and inter-study heterogeneity (i.e.,

studies with large variances contribute less).

(3) Meta-analysis can examine whether discoveries are repro-

ducible. Like a leave-one-subject-out cross-validation, it

can perform a leave-one-study-out cross-validation. For

example, it first compares the estimate (e.g., mean activa-

tion of a brain lesion) from one study to the summarized es-

timate from the remaining (n-1, where n is the number of to-

tal studies) studies and then iterates the process and

judges, via the p value, whether the conclusions made

across the studies are reliable and reproducible.

Today, it is increasingly common to see studies considering

and balancing information accumulation and commonality
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extraction. For example, a committee of researchers may orga-

nize several study groups conducting multiple experiments and

gathering data at different locations under various conditions, a

good practice that has already been adopted in clinical trials

(multicenter studies), to seek converging evidence that may

address a common scientific question.

When performing a meta-analysis of p values, however, one

needs to be cautious when the p values are obtained from

different test statistics. First, meta-analysismay be inappropriate

in practice unless all p values share (approximately) the same

statistical context (including the model, framing of hypotheses,

sample size, etc.).121When p values come fromdifferent test sta-

tistics (e.g., t, chi-square, and Wilcoxon tests) or the same test

statistics with unknown correlations, one can adopt MTPs to

control the FWER.75 When the test statistics or p values are

correlated (for example, in genome-wide association studies

[GWASs], some SNPs can be highly correlated; in brain imaging

studies, values from some voxels in a brain can be highly corre-

lated), one can combine p values in these settings leveraging the

Cauchy distribution.127 Alternatively, one can combine p values

from multiple tests by scaling up their harmonic mean by a fac-

tor123 or use conformal inference.130

A NOTE ON MULTIPLE COMPARISONS

When performing multiple tests, the probability of observing sig-

nificant results, purely due to chance, rises. More specifically, for

N independent tests at the a level, the expected number of false

positives is Na, and the probability of making at least one type I

error, also called the FWER, is 1 � ð1 � aÞN. One of the simplest

and perhaps most widely usedmethods to address this (multiple

testing) issue is the Bonferroni correction, which rejects p values

that are less than a=N to control the FWER at level a. An alterna-

tive method to control the FWER is the Bonferroni-Holmmethod,

a step-down procedure that adjusts significance thresholds less

conservatively; it is less straightforward to implement but is uni-

formly more powerful than the Bonferroni correction in detecting

true effects (see supplemental information for details).

In genomics studies, testing hundreds of thousands of genes

for potential association with a treatment is a routine task; in

brain imaging studies, one needs to examine hundreds of thou-

sands of voxels for potential effects from a stimulus. The number

of type II errors increases sharply with N. Indeed, with the rise of

high-throughput data, the FWER has been criticized for being

too conservative, causing large type II errors. To address this

challenge, Benjamini and Hochberg131 introduced the false dis-

covery rate (FDR) and imposed the empirical Bayes perspec-

tive.132 By ranking p values, they introduced amethod that effec-

tively controls the FDR, which represents the expected

proportion of false discoveries, or type I errors (see supplemental

information). Instead of controlling the probability of making one

type I error at level a, the method ensures that the expected pro-

portion of type I errors among the total number of significant re-

sults is less than a3 100%. This permits a less conservative test

and a decrease in the number of false negatives. Stated differ-

ently, it allows a small proportion of type I errors to significantly

decrease the number of type II errors.

Naturally, one might wonder when p values should be cor-

rected and, if so, which error type (FWER or FDR) should be



ll
OPEN ACCESSReview
controlled. There is no simple answer to this question. The

correction of p values depends again on the context and on

the purpose for conducting the multiple tests. In general, the

aims of the tests fall into three categories: (1) to test pre-speci-

fied hypotheses that are not related, (2) to test one null hypothe-

sis through testing of multiple sub-hypotheses (e.g., given a null

hypothesis that states that a gene cluster is not related to treat-

ment; if one p value is significant, the null hypothesis would be

deemed rejected), and (3) feature selection (e.g., differential

expression analysis). Accordingly, (1) requires no correction;

(2) requires FWER control, such as Bonferroni-Holm; and (3)

requires FDR corrections.

Nevertheless, some are concerned about increasing the num-

ber of false negatives when applying corrections, which may un-

dermine the tests’ ability for new discoveries. Some are also con-

cerned about the efficacy of the routinely used correction

devices—whether they effectively control the number of false pos-

itives. Additionally, some may be uncomfortable to consider

trade-offs involved in using correction techniques when dealing

with real data. These concerns are not unjustified, and several au-

thors have raised issues thatmay impact the efficacy of correction

methods: (1) model misspecification, (2) the presence of outliers,

and (3) the dependence between tests. For example, for (1) and

(2), model misspecification and the presence of outliers may raise

the number of false discoveries in genomics.77 For (3), multiple

testing methods often assume that the tests are independent;

however, in practice, where dependence appears (for example,

co-regulated genes and spatially correlated blood-oxygen-level-

dependent [BOLD] signals), such assumptionsmay lead to under-

or overcorrection.133 While one can reduce the errors because of

(1) and (2) by carefully selecting models, checking assumptions,

and evaluating outliers, there are no universally agreed treatments

for dealing with (3). Yet, since the introduction of the FDR, correc-

tion under dependence has been actively investigated, with new

methods being vigorously developed. One popular way to

address the dependence issue is to consider common fac-

tors.134,135 Using this approach, the dependence between the

test statistics will be significantly reduced, and standard correc-

tion can be applied. The problem of dependence between tests,

however, cannot be fully addressed by simply studying p values,

as classical procedures do. Rather, it requires effective modeling

of the interdependencies among features, a task particularly chal-

lenging in fields such as biology because of the high dimension-

ality and intricate nature of biological processes. A beginning,

however, can perhaps be made by considering a multiple-com-

parisons framework that rests on statistical methods but allows

adjustment based on scientific (e.g., biological) insights.

Conclusion
In this review, we aimed to discuss the roles, challenges, and

merits of the p value in hypothesis testing. We first outlined the

roles the p value plays in scientific studies and discussed the as-

sociations between the p value, sample size, significance level,

and statistical power. Subsequently, we presented common p

hacking strategies as well as misuses and misinterpretations of

the p value, accompanied by modest recommendations. To

complement our discussion, we compared statistical signifi-

cance and clinical relevance. Additionally, we presented the

Bayesian alternatives of seeking evidence. Finally, we discussed
the potential usefulness and challenges of performing meta-an-

alyses to integrate p values from multiple studies and datasets

and included a note on multiple comparisons.

To summarize, hypothesis testing and the p value form a use-

ful decision-making system; they provide a common, simple rule

that guides experimenters in evaluating and comparing findings

via p values; they help to examine test outcomes on a continuous

scale; they enable, when appropriately done, results integration

frommultiple studies and datasets; and they facilitate causal en-

quires, feature selection, and predictive modeling. Today, they

are supporting scientific enquires to test the relationship be-

tween group, idiosyncratic, genetic, and environmental features;

the difference between outcomes from multiple geographical

units (such as crop yields from different fields) and biological

units (such as patterns from different brain areas); how external

stimuli and environmental factors affect genetic organizations

and biological characteristics (such as heart rate and brain sig-

nals); how these patterns underpin human behavior; and how

their irregularity may lead to malfunction and illness.

We believe that the p value will continue to play important roles

in hypothesis-testing-based scientific enquiries, whether in its

current form or modified formulations. We also believe that there

will be a continued effort to seek more rational ways to extract

knowledge from data and a more holistic interpretation of statis-

tical and scientific evidence.

Because the employment of hypothesis testing and p values is

and will for the foreseeable future remain one of the standard

practices in scientific enquiries, a beginning can perhaps be

made by improving our understanding of its roles, weaknesses,

misuses, and merits. Our discussions highlight that its applica-

tions and interpretation must be contextual, considering the sci-

entific question, experimental design, statistical power, effect

size, prior knowledge, and reproducibility. Finally, if some of

our explorations have brought you insights into your current

and future studies, then we have received the utmost reward.
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