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Abstract
Hausdorff–Young’s inequality establishes the boundedness of the Fourier transform
from L p to Lq spaces for 1 ≤ p ≤ 2 and q = p′, where p′ denotes the Lebesgue-
conjugate exponent of p. This paper extends this classical result by characterizing
the L p − Lq boundedness of metaplectic operators, which play a significant role
in harmonic analysis. We demonstrate that metaplectic operators are bounded on
Lebesgue spaces if and only if their symplectic projection is either free or lower block
triangular. As a byproduct, we identify metaplectic operators that serve as homeomor-
phisms of L p spaces. To achieve this, we leverage a parametrization of the symplectic
group by Dopico and Johnson. We use our findings to provide boundedness results
within L p spaces for pseudodifferential operators with symbols in Lebesgue spaces,
and quantized by means of metaplectic operators. These quantizations consists of
shift-invertible metaplectic Wigner distributions, which are essential to measure local
phase-space concentration of signals. Using the factorization by Dopico and John-
son, we infer a decomposition law for metaplectic operators on L2(R2d) in terms
of shift-invertible metaplectic operators, establish the density of shift-invertible sym-
plectic matrices in Sp(2d, R), and prove that the lack of shift-invertibility prevents
metaplectic Wigner distributions to define the so-called modulation spaces Mp(Rd).
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1 Introduction

The metaplectic group Mp(d, R) appeared in mathematics in the second half of twen-
tieth century. Initially explored by Van Hove in his Ph.D. thesis [34], it was later
reintroduced in 1959 by Segal [32] and in 1962 by Shale [33], within the framework
of quantum mechanics. Subsequently, Weil extended its study to the realm of number
theory in 1964 [35].

Algebraically, the metaplectic group Mp(d, R) is a realization of the double cover
of the symplectic group Sp(d, R). From a mathematical analysis perspective, a
metaplectic operator Ŝ is a unitary operator on L2(Rd) satisfying the intertwining
relation:

Ŝρ(x, ξ ; τ)Ŝ−1 = ρ(S(x, ξ); τ), x, ξ ∈ R
d , τ ∈ R,

where ρ(x, ξ ; τ)g(t) = e2π iτ e−iπx ·ξ e2π i t ·ξ g(t − x), g ∈ L2(Rd), is the Schrödinger
representation of the Heisenberg group.

Many aspects of harmonic analysis, such as frame theory [9, 22], quantummechan-
ics [15, 16], PDEs [29, 30], Schrödinger equations [23], and time–frequency analysis
[10, 27], can be settled in the framework of metaplectic operators. Despite the very
algebraic definition of the metaplectic group, any metaplectic operator reduces to the
composition of a few concrete operators, revealing a manageable structure for the
metaplectic group Mp(d, R): the Fourier transform

F f (ξ) = i−d/2
∫
Rd

f (x)e−2π i x ·ξdx, f ∈ S(Rd), (1)

the products by chirps:

pQ f (x) = eiπQx ·x f (x), f ∈ L2(Rd), (2)

(Q ∈ R
d×d symmetric), and the rescalings: for L ∈ R

d×d invertible, and m ∈ Z

corresponding to a choice of arg det(L),

TL f (x) = im | det(L)|1/2 f (Lx), f ∈ L2(Rd), (3)

generate the group Mp(d, R). The properties of metaplectic operators are not always
evident by their factorization in terms of the generators of Mp(d, R), and they may
depend on how the operators in (1)–(3) are combined. Nevertheless, during the years,
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many different factorizations have been established, facilitating the study of meta-
plectic operators, within different contexts. In this work, we use a parametrization of
the symplectic group, which is due to Dopico and Johnson [19, Theorem 3.2], to fac-
torize metaplectic operators. Specifically, if Ŝ ∈ Mp(d, R), then there exist matrices
P, Q ∈ R

d×d symmetric, L ∈ R
d×d invertible and indices J ⊆ {1, . . . , d}, such that

Ŝ = pQTLmPFJ ,

up to a phase factor, where

mP f (x) = F−1(e−iπ Pu·u f̂ )(x), f ∈ S(Rd), (4)

andFJ is the partial Fourier transform with respect to the variables indexed byJ , see
Sect. 2 below. This description of metaplectic operators through partial Fourier trans-
form is originally due toMaslov. On the other side, their feature of being factorized by
the operators in (1)–(3) does not limit the variability of the applications of metaplectic
operators, which exhibit variegated behavior in the contexts. A prototypical example is
provided by recent developments in the theory of time–frequency representations. In
[7, 11, 13, 26] the authors introduce a generalization of the cross-Wigner distribution,

W ( f , g)(x, ξ) =
∫
Rd

f (x + t/2)g(x − t/2)e−2π i t ·ξdt, x, ξ ∈ R
d , (5)

using metaplectic operators [4, 5, 36]. Properties such as covariance, belonging to
the Cohen’s class, being generalized spectrograms, and the feature of measuring local
time–frequency content were characterized in [6, 9, 12, 14] in terms of the block struc-
ture of symplectic projections. Moreover, the classical results for Segal algebras [31]
stated in the context of locally compact abelian groups, and the recent contribution
by Cordero and Rodino [12], and Fuhr and Shafkulovska [24], show that the bound-
edness of metaplectic operators is optimal on modulation spaces. Recall that given
1 ≤ p, q ≤ ∞ and g ∈ S(Rd) \ {0} fixed, the modulation space Mp,q(Rd) is the
space of tempered distributions f ∈ S ′(Rd) such that W ( f , g) ∈ L p,q(R2d), where
L p,q(R2d) are the mixed-norm Lebesgue spaces. The space M1(Rd), also known as
Feichtinger’s algebra, is a Segal algebra, where we write Mp(Rd) = Mp,p(Rd)

if p = q. We have, Ŝ : Mp(Rd) → Mp(Rd) for every 1 ≤ p ≤ ∞ and
Ŝ : Mp,q(Rd) → Mp,q(Rd) for every 1 ≤ p �= q ≤ ∞ if and only if the projection
S ∈ Sp(d, R) has block decomposition:

S =
(
A B
C D

)
, A, B,C, D ∈ R

d×d , (6)

with C = 0 (the matrix with all zero entries). Consequently, metaplectic operators
exhibit optimal boundedness properties on modulation spaces Mp(Rd). This is a
concrete example of how a property of metaplectic operators, or related objects, can
be inferred by the structure of the related projections on the symplectic group.
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The property of metaplectic operators we focus on in this work is their boundedness
on Lebesgue spaces. The fact that metaplectic operators do not behave on Lebesgue
spaces as well as they do on modulation spaces shall not surprise the reader. For
example, it is well known that the Fourier transform is bounded from L p(Rd) to
Lq(Rd) if and only if 1 ≤ p ≤ 2 and q = p′ is the Lebesgue conjugate exponent of
p. In these instances, the operator norm of F was determined in 1975 by Beckner, cf.
[1], as ‖F‖B(L p,L p′ ) = (p1/p/(p′)1/p′

)d/2, for 1 ≤ p ≤ 2. This result generalizes to

metaplectic operators Ŝ with symplectic projections S having block decompositions
(6) satisfying det(B) �= 0. In 1960, Hörmander proved thatmetaplecticmultipliers (4),
cannot be bounded from L p(Rd) to itself unless p = 2 or P = 0, as detailed in [28,
Lemma 1.4]. If P is invertible, a direct consequence of the Riesz–Thorin interpolation
theorem establishes their boundedness from L p(Rd) to Lq(Rd) if 1 ≤ p ≤ 2 and
q = p′. Observe that if B = 0d , then

Ŝ f (ξ) = | det(A)|−1/2eiπCA−1ξ ·ξ f (A−1ξ), f ∈ L2(Rd),

up to a phase factor. In this scenario, Ŝ : L p(Rd) → L p(Rd) is bounded for every
0 < p ≤ ∞. The main contribution of this work is the following converse:

Theorem 1.1 Let Ŝ ∈ Mp(d, R) have projection S with block decomposition (6). If
Ŝ : L p(Rd) → L p(Rd) is bounded for some 0 < p ≤ ∞, p �= 2, then B = 0d .

Moreover, we prove that if B �= 0d and B /∈ GL(d, R), then Ŝ : L p(Rd) →
Lq(Rd) is bounded if and only if p = q = 2. Along with Theorem 1.1, this allows to
characterize completely the boundedness properties of metaplectic operators on L p

spaces:

Theorem 1.2 Let Ŝ ∈ Mp(d, R) have projection S with block decomposition (6). The
following statements hold true.

(i) If B = 0d , then Ŝ is a surjective quasi-isometry of L p(Rd) for every 0 < p ≤ ∞,
with ‖Ŝ‖B(L p) = | det(A)|1/2−1/p (where we understand 1/∞ = 0).

(ii) If B is invertible, then Ŝ : L p(Rd) → Lq(Rd) is bounded if and only if 1 ≤ p ≤
2 and q = p′.

(iii) If B �= 0 is not invertible, then Ŝ : L p(Rd) → Lq(Rd) is bounded if and only if
p = q = 2.

Themain tool to prove this result involves an intertwining relationwhich emphasises
the interaction between partial Fourier transforms FJ and Fourier multipliers mP ,
defined above.

Lemma 1.3 Let P ∈ R
d×d be symmetric and J ⊆ {1, . . . , d}. Let J c = {1, . . . , d} \

J . Let FJ be the partial Fourier transform with respect to the variables indexed by
J , IJ be the projection x ∈ R

d 
→ IJ x ∈ {x ∈ R
d : x j = 0 ∀ j /∈ J }, (IJ x) j =

x j , j ∈ J , and IJ c = Id − IJ . Then,

mPFJ = FJmIJ c P IJ c (TI+IJ c P IJ p−IJ P IJ ), (7)

where the operators appearing in (7) are defined as in (2), (3) and (4).
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Observe that the operator TI+IJ c P IJ p−IJ P IJ appearing in (7) is a homeomor-
phism of L p(Rd) for every p. So, the very core of right hand-side of (7) is the
operatorFJmIJ c P IJ c ,where the contributions ofJ and its complementaryJ c appear
separated.

For a given metaplectic operator Â ∈ Mp(2d, R), it is possible to construct a
quantization that generalizes the Wigner distribution (5), by considering:

WA( f , g) = Â( f ⊗ ḡ), f , g ∈ S(Rd) (8)

(metaplectic Wigner distribution). Consequently, the pseudodifferential operator
OpA(a) : S(Rd) → S ′(Rd) with symbol a ∈ S ′(R2d) and quantization WA is
defined as:

〈OpA(a) f , g〉 = 〈a,WA(g, f )〉, f , g ∈ S(Rd).

An important class of quantizations (8) includes shift-invertible metaplectic Wigner
distributions, defined in [12] and characterized in [14] as:

WA( f , g)(z) = | det(L)|1/2�C (Lz)W ( f , Ŝg)(Lz), f , g ∈ L2(Rd), z ∈ R
2d ,

(9)
for some L ∈ GL(2d, R), C ∈ Sym(2d, R) and Ŝ ∈ Mp(d, R). If WA if shift-
invertible, we say also that Â and its projectionA are shift-invertible. The boundedness
of these bilinear operators within Lebesgue spaces depends on the choice of Ŝ. The
second contribution of this work is using Theorem 1.2 to improve [14, Proposition
3.6]:

Theorem 1.4 Let 1 ≤ p, q ≤ ∞. Let WA be as in (9), with S having block decom-
position (6). Let a ∈ Lq(R2d) and OpA(a) : S(Rd) → S ′(Rd) be the associated
metaplectic operator. The following statements hold true.

(i) If B = 0d , then OpA(a) : L p(Rd) → L p(Rd) is bounded if and only if 1 ≤ q ≤ 2
and q ≤ p ≤ q ′.

(ii) If det(B) �= 0, 1 ≤ q ≤ 2 and q ≤ p ≤ q ′, then OpA(a) : L p(Rd) → L p′
(Rd)

is bounded.

The third contribution of this work is in the field of time–frequency representations.
First, we prove a density result for shift-invertible metaplectic Wigner distributions.

Theorem 1.5 The following statements hold true.

(i) The set of shift-invertible symplectic matrices is dense in Sp(2d, R).
(ii) For every A ∈ Sp(2d, R) there exists A′ ∈ Sp(2d, R) shift-invertible and � ∈

Sp(2d, R) free (see Sect.2 below) such that A = �A′.
The Rihacek distribution W0( f , g)(x, ξ) = f (x)ĝ(ξ)e−2π iξ x ( f , g ∈ S(Rd)) is a

non shift-invertiblemetaplecticWigner distribution and ‖W0( f , g)‖p � ‖ f ‖p. Stated
differently, there exists WA non shift-invertible so that ‖ · ‖Mp is not proportional to
‖WA(·, g)‖p. However, it was still an open problem whether this occurs for every non
shift-invertible metaplectic Wigner distribution. The last contribution of this work
answers this question.
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Theorem 1.6 Let WA be a non shift-invertible metaplectic Wigner distribution, i.e.,
WA cannot bewritten in the form (9). Let g ∈ S(Rd)\{0}. Then, for every 0 < p ≤ ∞,
p �= 2:

M p(Rd) �= { f ∈ S ′(Rd) : WA( f , g) ∈ L p(R2d)}.

This paper is structured as follows: Sect. 2 outlines the notation and introduces
preliminary concepts regarding metaplectic operators. In section 3 we synthesize the
elementary case of metaplectic operators on L2(R), while subsequent sections explore
the multivariate scenario. Section4 presents a characterization of non-free symplectic
matrices and their associated metaplectic operators, drawing on the decomposition by
Dopico and Johnson. In Sect. 5, we establish that compositions of rescalings with chirp
products encompass all metaplectic operators that serve as homeomorphisms of L p.
Furthermore, Sect. 6 concludes the investigation by addressing the remaining cases
and establishing the L p (un-)boundedness of metaplectic operators. Section7 explores
applications to pseudodifferential operators quantized via shift-invertible metaplectic
operators. Finally, in Sect. 8 we prove Theorems 1.5 and 1.6.

2 Preliminaries

2.1 Notation

In this work, we will use the following notation.

2.2 Linear Algebra

We denote by xy = x · y the standard inner product inR
d . Sym(d, R) is the symmetric

group of matrices d × d, and GL(d, R) is the group of d × d invertible matrices. The
matrix Id is the d×d identity and 0d is the d×d matrix with all zero entries. eig(P) is
the set of the eigenvalues of a matrix P ∈ R

d×d and diag(eig(P)) denotes the diagonal
matrix with diagonal entries given by the eigenvalues of P .

2.3 Index Notation

We will make extensive use of indices. To facilitate the reading, we introduce the
following notation.

We denote set of indices with calligraphic capitals. If J ⊆ {1, . . . , d}, J c =
{1, . . . , d} \ J . Also, IJ ∈ R

d×d denotes the diagonal matrix with j-th diagonal
entry equal to 1 if j ∈ J and 0 otherwise. Observe that if J = ∅, then IJ = 0d .
If J ,K ⊆ {1, . . . , d} and P = (p j,k)

d
i, j=1 ∈ R

d×d , then PJK = (p j,k) j∈J ,k∈K
(see Fig. 1). Moreover, if x = (x j )dj=1 ∈ R

d and J = {1 ≤ j1 < . . . < jr ≤ d} ⊆
{1, . . . , d}, we write xJ = (x j1 , . . . , x jr ) ∈ R

r and dxJ = dx j1 . . . dx jr .
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Fig. 1 Definition of the matrix PJK

2.4 Function Spaces

We denote by S(Rd) the Schwartz space of rapidly decreasing smooth functions on
R
d . Its topological dual S ′(Rd) is the space of tempered distributions. The sesquilin-

ear inner product of L2(Rd), i.e., 〈 f , g〉 = ∫
Rd f (x)g(x)dx , f , g ∈ L2(Rd), extends

uniquely to a duality pairing 〈·, ·〉 : ( f , g) ∈ S ′(Rd)×S(Rd) → 〈 f , g〉 = f (ḡ) ∈ C,
which is antilinear in the second component. The Dirac’s delta (point mass) distri-
bution is the tempered distribution δ0 ∈ S ′(Rd) such that 〈δ0, g〉 = g(0) for every
g ∈ S(Rd). If f , g ∈ S ′(Rd), f ⊗ g denotes their tensor product. Notably, if f , g are
functions, f ⊗ g(x, y) = f (x)g(y). If 0 < p, q ≤ ∞, B(L p(Rd), Lq(Rd)) denotes
the space of bounded linear operators from L p(Rd) to Lq(Rd). If p = q, we write
B(L p(Rd)).

2.5 Symplectic Group

A matrix S ∈ R
2d×2d is symplectic if

S =
(
A B
C D

)
, (10)

with the blocks A, B,C, D ∈ R
d×d satisfying the following relations:

⎧⎪⎨
⎪⎩
ATC = CT A,

BT D = DT B,

AT D − CT B = Id ,

(11)

A free symplectic matrix is a symplectic matrix S with block decomposition (10)
having det(B) �= 0.

The 2d × 2d symplectic group is denoted by Sp(d, R) and it is generated by the
symplectic matrix of the standard symplectic form of R

2d :

J =
(

0d Id
−Id 0d

)
, (12)
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and by matrices in the form:

VP =
(
Id 0d
P Id

)
, DL =

(
L−1 0d
0d LT

)
, (13)

where P ∈ Sym(d, R) and L ∈ GL(d, R). If J ⊆ {1, . . . , d}, we consider the
symplectic interchange matrix:

	J =
(
IJ c IJ
−IJ IJ c

)
. (14)

Observe that IJ IJ c = 0, and I 2J = IJ , so that

	−1
J = 	T

J =
(
IJ c −IJ
IJ IJ c

)
(15)

The symplectic group can be parametrized in terms of the matrices in (13) and (14),
as stated in the following result by Dopico and Johnson, see [19, Theorem 3.2].

Proposition 2.1 Let S ∈ Sp(d, R). Then, there exist (possibly non unique) P, Q ∈
Sym(d, R), L ∈ GL(d, R) and J ⊆ {1, . . . , d} such that:

S = VQDLV
T
P 	J . (16)

Definition 2.2 If S ∈ Sp(d, R), we refer to any factorization of S in the form (16) as
to a Dopico–Johnson factorization (DJF) of S.

Remark 2.3 As observed in [19], in Proposition 2.1, (16) can be replaced by S =
	J VQDLV T

P .

2.6 Metaplectic Operators

For the theory of metaplectic operators with our notation, we refer the reader to [10,
17]. Other valuable sources are [15, 17, 18, 23]. The Schrödinger representation of
the Heisenberg group ρ is:

ρ(x, ξ ; τ) f (t) = e2π iτ e−iπξ x e2π iξ t f (t − x), f ∈ L2(Rd), τ ∈ R, x, ξ ∈ R
d .

The operatorsρ(x, ξ ; τ) are also known as displacement orHeisenberg-Weyl operators
in the literature. For every S ∈ Sp(d, R) there exists Ŝ : L2(Rd) → L2(Rd) unitary
such that:

Ŝρ(z; τ)Ŝ−1 = ρ(Sz; τ), z = (x, ξ) ∈ R
2d , τ ∈ R. (17)

Ŝ is called metaplectic operator. If Ŝ satisfies the intertwining relation (17), so
does every operator in the form cŜ, with c ∈ C, |c| = 1. Nonetheless, the group
{Ŝ : S ∈ Sp(d, R)} has a subgroup, denoted by Mp(d, R), containing exactly two
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metaplectic operators for each symplectic matrix. Mp(d, R) is called metaplectic
group. The projection πMp : Mp(d, R) → Sp(d, R) is a group homomorphism with
kernel ker(πMp) = {±I dL2}. This means that πMp(Ŝ1) = πMp(Ŝ2) if and only if
Ŝ1 = Ŝ2 up to a sign.

To facilitate the reading, we transport the terminology from Sp(d, R) to Mp(d, R)

and say that a metaplectic operator is free if its projection is free.

Proposition 2.4 Let Ŝ ∈ Mp(d, R). Then, Ŝ enjoys the following continuity properties:

(i) Ŝ : L2(Rd) → L2(Rd) is unitary.
(ii) Ŝ : S(Rd) → S(Rd) is a homeomorphism.
(iii) Ŝ extends to a homeomorphism of S ′(Rd) as follows:

〈Ŝ f , g〉 = 〈 f , Ŝ−1g〉, f ∈ S ′(Rd), g ∈ S(Rd).

Examples of metaplectic operators are reported hereafter. In what follows it may
be useful to denote some of the components of a vector v ∈ R

d with different letters,
and the matrices IJ can be used for the purpose: if x, ξ ∈ R

d , v = IJ ξ + IJ c x is the
vector with coordinates:

v j =
{

ξ j if j ∈ J ,

x j if j ∈ J c.

Example 2.5 (i) The Fourier transform F , defined for every f ∈ S(Rd) as

(F f )(ξ) = f̂ (ξ) = i−d/2
∫
Rd

f (x)e−2π iξ xdx, ξ ∈ R
d ,

is a metaplectic operator. Moreover, πMp(F) = J , where J is defined as in (12).
(ii) More generally, ifJ = { j1, . . . , jr } ⊆ {1, . . . , d}, the partial Fourier transform

with respect to the variables indexed byJ is the operatorFJ : S(Rd) → S(Rd)

given by:

(FJ f )(IJ ξ + IJ c x) = i−r/2
∫
Rr

f (x)e−2π i
∑

j∈J ξ j x j dxJ , x, ξ ∈ R
d .

Since FJFK = FJ∪K for every J ,K ⊆ {1, . . . , d} disjoint, a direct conse-
quence of [6, Example 2.4] shows that πMp(FJ ) = 	J , where 	J is defined
as in (15). Observe that F∅ = I dL2 and F{1,...,d} = F .

(iii) For L ∈ GL(d, R), the rescaling operator TL f = im | det(L)|1/2 f (L·) is meta-
plectic with projection πMp(TL) = DL , as defined in (13). Here, the integer m
corresponds to a choice of arg det(L). (iv) Let Q ∈ Sym(d, R) and consider the
chirp function:

�Q(x) = eiπQx ·x , x ∈ R
d .

The chirp product pQ f = �Q f is metaplectic with πMp(pQ) = VQ , defined
as in (13).
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(v) Analogously, for P ∈ Sym(d, R), the multipliers mP f = F−1�−P ∗ f are
metaplectic, with projections πMp(mP ) = V T

P .

Clearly, the boundedness properties of the operators in Examples (i), (i i), and (i i i)
are independent of the phase factors in their definitions; therefore, these factors will
be omitted in the present work.

Remark 2.6 Concerning the metaplectic multipliers defined in Example 2.5 (v), a
straightforward computation, see e.g. [14, Lemma 4.5], shows that if P = 
T�


with � = diag(eig(P)) = diag(λ1, . . . , λd), and 
 is the corresponding orthogonal
matrix diagonalizing C , then:

F−1�−P = γPT


⎛
⎝ d⊗

j=1

ψ j

⎞
⎠ ,

where γP is a suitable constant, which depends on the non-zero eigenvalues of P ,

ψ j =
{

δ0 if λ j = 0,

eiπ(·)2/λ j if λ j �= 0,

and T
 is defined as in Example 2.5 (i i i).

In view of Proposition 2.1 and the fact that πMp is a homomorphism, the examples
above provide the building blocks to construct metaplectic operators.

Proposition 2.7 Let Ŝ ∈ Mp(d, R). There exist (possibly non unique) P, Q ∈
Sym(d, R), L ∈ GL(d, R) and J ⊆ {1, . . . , d} such that:

Ŝ = pQTLmPFJ , (18)

up to a phase factor.

Definition 2.8 Let Ŝ ∈ Mp(d, R). We refer to any factorization (18) as to a Dopico–
Johnson factorization (DFJ) of Ŝ.

2.7 Modulation Spaces

The Wigner distribution defined in (5) for L2 functions can be extended to f , g ∈
S ′(Rd) by means of metaplectic operators. Indeed, ifF2 = F{d+1,...,2d} ∈ Mp(2d, R)

is the partial Fourier transform with respect to the frequency variables and

L1/2 =
(
Id Id/2
Id −Id/2

)
,

then
W ( f , g) = F2TL1/2( f ⊗ ḡ), f , g ∈ L2(Rd), (19)
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up to a phase factor. Since f ⊗ ḡ is defined for every f , g ∈ S ′(Rd), (19) extends (5)
to f , g ∈ S ′(Rd). If

Lst =
(

0d Id
−Id Id

)
,

the short-time Fourier transform is defined as:

Vg f = F2TLst ( f ⊗ ḡ), f , g ∈ S ′(Rd).

If f , g ∈ L2(Rd),

Vg f (x, ξ) =
∫
Rd

f (t)g(t − x)e−2π iξ t dt, x, ξ ∈ R
d .

If f ∈ S ′(Rd) and g ∈ S(Rd),W ( f , g) and Vg f define continuous functions on R
2d .

For 0 < p, q ≤ ∞ and g ∈ S(Rd) \ {0} fixed, the quantities:

‖ f ‖Mp,q = ‖Vg f ‖L p,q , f ∈ S ′(Rd) (20)

define (quasi-)norms on the subspaces of S ′(Rd),

Mp,q(Rd) = { f ∈ S ′(Rd) : ‖ f ‖Mp,q < ∞},

which are called modulation spaces. Here, if F : R
2d → C is measurable,

‖F‖L p,q = ‖y 
→ ‖F(·, y)‖p‖q .

These spaces were defined by Feichtinger in the Banach case (1 ≤ p, q ≤ ∞) in
[20, 21], and later extended to the quasi-Banach setting (0 < p, q ≤ ∞) by Galperin
and Samarah in [25]. Different g ∈ S(Rd) \ {0} yield to equivalent (quasi-)norms. If
p = q we write Mp(Rd) = Mp,p(Rd). Moreover, it was observed in [17] that the
Wigner distribution can be used to replace the short-time Fourier transform in (20):

‖ f ‖Mp,q = ‖W ( f , g)‖L p,q , f ∈ S ′(Rd).

The following relation between the short-time Fourier transform and the Wigner
distribution is classical:

W ( f , g)(x, ξ) = 2de4π i xξVIg f (2x, 2ξ), (21)

for f , g ∈ L2(Rd), x, ξ ∈ R
d , and Ig(t) = g(−t) is the flip operator.

In what follows, we will primarily use the Wigner distribution. The short-time
Fourier transform will be employed mainly in the final section, which is more time–
frequency analysis oriented, as it simplifies certain computations.
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3 The One-Dimensional Case

We reserve one section to report on the trivial case d = 1, and in the next sections we
will assume d > 1. Let S ∈ Sp(1, R) = {S ∈ GL(2, R) : det(S) = 1},

S =
(
a b
c d

)
, a, b, c, d ∈ R, ad − bc = 1.

We divide two cases.
Case b = 0. If b = 0, since det(S) = ad = 1, it must be:

S =
(
a 0
c a−1

)
.

An easy computation shows that:

S =
(

1 0
ca−1 1

) (
a 0
0 a−1

)
, (22)

so that the associated metaplectic operator Ŝ has DJF Ŝ = pca−1Ta−1 (see Examples

2.5 for the definitions of these operators), i.e., Ŝ f (t) = |a|−1/2eiπca
−1t2 f (t/a) up to

a phase factor, which is a surjective quasi-isometry of L p(R) for every 0 < p ≤ ∞.
Case b �= 0. This is the case of free symplectic matrices. An easy computation

shows that in this case S factorizes as:

S =
(

1 0
db−1 0

)(
b 0
0 b−1

) (
0 1

−1 0

)(
1 0

b−1a 1

)
, (23)

or, equivalently, the associated metaplectic operator is Ŝ = pdb−1Tb−1Fpb−1a (see
Example 2.5 for the definitions of these operators), which is bounded from L p(R)

to Lq(R) if and only if 1 ≤ p ≤ 2 and q = p′, due to the presence of the Fourier
transform.

Theorem 3.1 Let Ŝ ∈ Mp(1, R) and S = πMp(Ŝ). The following statements hold
true.

(i) If b = 0, Ŝ is a surjective quasi-isometry of L p(R) for every 0 < p ≤ ∞, with
‖Ŝ‖B(L p) = |a|1/2−1/p.

(ii) If b �= 0, then Ŝ ∈ B(L p(Rd), Lq(Rd)) if and only if 1 ≤ p ≤ 2 and q = p′,
with

‖Ŝ‖B(L p,L p′ ) = |b|−1/2+1/p
(

p1/p

(p′)1/p′

)1/2

.



Journal of Fourier Analysis and Applications            (2024) 30:69 Page 13 of 31    69 

Proof (i) follows trivially by (22). Item (i i) follows by (23):

‖Ŝ‖B(L p,Lq ) = sup
f ∈L p(Rd )\{0}

‖pdb−1Tb−1Fpb−1a f ‖q
‖ f ‖p

= sup
f ∈L p(Rd )\{0}

|b|−1/2+1/p‖Fpb−1a f ‖q
‖Fpb−1a f ‖p

= |b|−1/2+1/p‖F‖B(L p,Lq ),

and we are done. ��
Surprisingly, the situation in the multivariate case is not more complex.

4 Dopico–Johnson Factorizations of (Non-)FreeMetaplectic
Operators

Let S ∈ Sp(d, R) be a free symplectic matrix. This means that the upper-right block
of S in its block decomposition (10) is invertible. The classical factorization of the
symplectic projection of S can be presented in two forms:

S = VDB−1DB−1 JV−B−1A (24)

= VDB−1DB−1V T
AB−T J , (25)

see (13) for the definitions of the matrices appearing in (24) and (25). Formula (24),
from the metaplectic operators perspective, reads as Ŝ = pDB−1TB−1Fp−B−1A, up to
a phase factor. Hence, Ŝ inherits the boundedness properties of the Fourier transform,
i.e. it is bounded from L p(Rd) to Lq(Rd) if and only if 1 ≤ p ≤ 2 and q = p′.

Theorem 4.1 Let Ŝ ∈ Mp(d, R) be a free metaplectic operator. Then, Ŝ ∈
B(L p(Rd), Lq(Rd)) if and only if 1 ≤ p ≤ 2 and q = p′. In those cases,

‖Ŝ‖B(L p,L p′ ) = | det(B)|−1/2+1/p
( p1/p

(p′)1/p′
)d/2

.

In this section, we characterize the DJF of free symplectic matrices, which yields
to a deeper understanding of the complementary case in which det(B) = 0. Let
S = VQDLV T

P 	J any DJF of S, where the matrices appearing in the product are
defined as in (13) and (15). The property of being free cannot depend on the choice
of the DJF, which for fixed P, Q ∈ Sym(d, R), L ∈ GL(d, R) and J ⊆ {1, . . . , d}
can be computed explicitly:

S =
(
I 0
Q I

) (
L−1 0
0 LT

) (
I P
0 I

) (
IJ c IJ
−IJ IJ c

)

=
(

L−1 0
QL−1 LT

)(
IJ c − P IJ IJ + P IJ c

−IJ IJ c

)
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=
(

L−1(IJ c − P IJ ) L−1(IJ + P IJ c )

QL−1(IJ c − P IJ ) − LT IJ QL−1(IJ + P IJ c ) + LT IJ c

)
. (26)

The matrix (26) is free if and only if L−1(IJ + P IJ c) ∈ GL(d, R) or, equivalently,
IJ + P IJ c ∈ GL(d, R). We simplify this latter condition further in the following
lemma.

Lemma 4.2 Let P = (p jk)
d
j,k=1 ∈ Sym(d, R) and J � {1, . . . , d}. Then, IJ +

P IJ c ∈ GL(d, R) if and only if the submatrix PJ cJ c = (p jk) j,k∈J c is invertible.

Proof If J = ∅, then IJ + P IJ c = PJ cJ c = P and the equivalence follows
trivially. Assume J � {1, . . . , d} and J �= ∅, and let 1 ≤ r < d be the cardinality
of J . By the expression (26) and the invertibility of L , S is free if and only if IJ +
P IJ c ∈ GL(d, R). We need to show that IJ + P IJ c ∈ GL(d, R) if and only if
PJ cJ c ∈ GL(d, R). Let WL ,WR ∈ GL(d, R) be the permutation matrices such that
if A ∈ R

d×d ,

WL AWR =
(

AJJ AJJ c

AJ cJ AJ cJ c

)
.

Obviously, the matrix IJ + P IJ c is invertible if and only if WL(IJ + P IJ c )WR is
invertible. Since (P IJ c )JJ c selects the columns of P IJ c indexed by J c, we have
(P IJ c )JJ c = PJJ c , and analogously (P IJ c )J cJ c = PJ cJ c . Therefore,

WL(IJ + P IJ c )WR = WL IJWR + WL P IJ cWR

=
(

Ir 0r×(d−r)

0(d−r)×r 0d−r

)
+

(
0r×r (P IJ c )JJ c

0(d−r)×r (P IJ c )J cJ c

)

=
(

Ir 0r×(d−r)

0(d−r)×r 0d−r

)
+

(
0r×r PJJ c

0(d−r)×r PJ cJ c

)

=
(

Ir PJJ c

0(d−r)×r PJ cJ c

)
.

By Schur’s formula,

| det(IJ + P IJ c )| = | det(WL(IJ + P IJ c )WR)| = | det(PJ cJ c )|,

from which it follows that the matrix IJ + P IJ c is invertible if and only if PJ cJ c ∈
GL(d, R). This concludes the proof. ��
Corollary 4.3 Let S ∈ Sp(d, R). The following statements are equivalent.

(i) S is free.
(ii) Every DJF of S satisfies one of the following properties:

(ii.1) J = {1, . . . , d}. (ii.2) J � {1, . . . , d} and PJ cJ c ∈ GL(d, R).
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Proof The implication (i) ⇒ (i i) follows trivially by the DJF in (24), which has
J = {1, . . . , d}. The converse is straighforward: assume that there exists a DJF S =
VQDLV T

P 	J with J � {1, . . . , d} and PJ cJ c singular. Then, L−1(IJ + P IJ c ) /∈
GL(d, R) by Lemma 4.2. Consequently, S is not free. If, instead, J = {1, . . . , d},
then B = L−1 ∈ GL(d, R). This concludes the proof. ��
Corollary 4.4 Let Ŝ ∈ Mp(d, R). Then, only one of the following statements holds.

(i) Ŝ is free.
(ii) Ŝ can be factorized as Ŝ = pQTLmPFJ , for some P, Q ∈ Sym(d, R), L ∈

GL(d, R) and J � {1, . . . , d}, with PJ cJ c /∈ GL(d, R).

5 Homeomorphisms of Lp(Rd)

In view of Theorem 1.2, to conclude the characterization of L p boundedness of meta-
plectic operators, it remains to understand the boundedness of non-free metaplectic
operators, i.e. metaplectic operators that factorize as Ŝ = pQTLmPFJ for some
P, Q ∈ Sym(d, R), L ∈ GL(d, R) and J � {1, . . . , d} such that PJ cJ c is singular.

If Ŝ = pQTL , Ŝ is trivially a homeomorphism of L p(Rd) for some (every) 0 <

p ≤ ∞. The core of this section is proving the converse, i.e., if Ŝ is a homeomorphism
of L p(Rd), then its only possible DJF can be Ŝ = pQTL . Equivalently, from the
symplectic group perspective, Ŝ is a homeomorphism of L p(Rd) for some (every)
0 < p ≤ ∞ if and only if its projection S has block decomposition:

S =
(
A 0d
C D

)
, A,C, D ∈ R

d×d . (27)

For the benefit of the presentation, we begin emphasizing some well-known fact
about symplectic matrices which decompose as in (27), and the related metaplectic
operators.

Remark 5.1 Let S ∈ Sp(d, R) have block decomposition (27). The symplectic
relations (11) for S can be rephrased as:

{
CA−1 ∈ Sym(d, R),

D = A−T .

Moreover, a direct computation shows that S can be factorized as:

S = VCA−1DA−1, (28)

or

S = DA−1VATC ,
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where the matrices at the right hand-sides are defined as in (13). From the metaplectic
operators perspective,

Ŝ = pCA−1TA−1 , (29)

or

Ŝ = TA−1pAT C ,

up to a phase factor. As observed in Remark 2.3, in this work we consider the factor-
ization (28). This choice is irrelevant: all of our findings can be rephrased by reverting
the order of the two operators.

Remark 5.2 Let S ∈ Sp(d, R) have block representation (27). The factorization in (28)
is the unique representation of S as a product VQDL , Q ∈ Sym(d, R), L ∈ GL(d, R).
Indeed, if S = VQDL = VQ′DL ′ , using (13):

VQDL = VQ′DL ′ ⇔
(

L−1 0d
QL−1 LT

)
=

(
L ′−1 0d

Q′L ′−1 L ′T

)
,

from which the uniqueness follows.

Remark 5.3 Let S ∈ Sp(d, R) have block representation (27). Formula (28) is also a
DJF of S. If we prove that any DJF of S has P = 0d and J = ∅, we would get that S
admits a uniqueDJF, namely S = VCA−1DA−1 , or equivalently, that (29) is the unique
DJF of Ŝ, up to a phase factor.

The factorization in (28) is actually a characterization of symplectic matrices S ∈
Sp(d, R) having lower block triangular representation (27). Indeed, if S = VQDL for
some Q ∈ Sym(d, R) and L ∈ GL(d, R), then

S =
(

L−1 0d
QL−1 LT

)

is in the form (27). In the following lemma, we prove that if S has block decomposition
(27), then there cannot be P ∈ Sym(d, R) \ {0d} and ∅ �= J ⊆ {1, . . . , d} so that
V T
P 	J = Id .

Lemma 5.4 Let S ∈ Sp(d, R) have block decomposition (10). The following are
equivalent.

(i) B = 0d .
(ii) Every DJF S = VQDLV T

P 	J has P = 0d and J = ∅.
(iii) Ŝ factorizes (uniquely) as Ŝ = pQTL , for some Q ∈ Sym(d, R) and L ∈

GL(d, R).

Proof The projection πMp is a homomorphism with ker(πMp) = {±I dL2}, so that
the equivalence (i i) ⇔ (i i i) follows, the uniqueness in (i i i) following by Remark
5.2.
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Let us show the equivalence (i) ⇔ (i i). It is obvious that if every DJF of S has
J = ∅ and P = 0d , then B = 0d . The converse is straightforward. Assume that
S = VQDLV T

P 	J is a DJF of S. The matrix B = L−1(IJ + P IJ c) = 0 if and only
if IJ + P IJ c = 0d . Using IJ IJ c = 0d ,

0d = IJ + P IJ c ⇒ 0d = (IJ + P IJ c)IJ = IJ ⇒ J = ∅,

which entails J c = {1, . . . , d}, and consequently 0d = P IJ c = P , and the assertion
follows. ��

The following lemma is the key tool we use in this work to find counterexamples.

Lemma 5.5 Let J ⊆ {1, . . . , d} and P ∈ Sym(d, R). Then,

	−1
J V T

P 	J = V T
IJ c P IJ cDI+IJ c P IJ V−IJ P IJ ,

where the matrices are defined as in (13) and (15). Consequently, up to a phase factor,

mPFJ = FJmIJ c P IJ c (TI+IJ c P IJ p−IJ P IJ ),

where the operators are defined as in Example 2.5(ii)–(v).

Proof Using that: IJ IJ c = IJ c IJ = 0d , I 2J = IJ , I 2J c = IJ c and IJ + IJ c = Id ,
and observing that IJ c P IJ c , IJ P IJ ∈ Sym(d, R) and Id − IJ c P IJ ∈ GL(d, R)

with (Id − IJ c P IJ )−1 = Id + IJ c P IJ , we have:

	−1
J V T

P 	J =
(
IJ c −IJ
IJ IJ c

)(
Id P
0d Id

)(
IJ c IJ
−IJ IJ c

)

=
(
IJ c IJ c P − IJ
IJ IJ P + IJ c

)(
IJ c IJ
−IJ IJ c

)

=
(
IJ c − IJ c P IJ + IJ IJ c P IJ c

−IJ P IJ IJ + IJ P IJ c + IJ c

)

=
(
Id − IJ c P IJ IJ c P IJ c

−IJ P IJ I + IJ P IJ c

)

=
(
Id IJ c P IJ c

0d Id

)(
Id − IJ c P IJ 0d

0d Id + IJ P IJ c

)(
Id 0d

−IJ P IJ Id

)

=
(
Id IJ c P IJ c

0d Id

)(
(Id + IJ c P IJ )−1 0d

0d (Id + IJ c P IJ )T

)(
Id 0d

−IJ P IJ Id

)
,

and the assertion follows. ��
Lemma 5.5 entails the following reduction result.

Corollary 5.6 Let Ŝ ∈ Mp(d, R), and 0 < p, q ≤ ∞. Let Ŝ = pQTLmPFJ be a DJF
of Ŝ. The following statements are equivalent.

(i) Ŝ ∈ B(L p(Rd), Lq(Rd)).
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(ii) mPFJ ∈ B(L p(Rd), Lq(Rd)), with

‖mPFJ ‖B(L p,Lq ) = | det(L)|1/q−1/2‖Ŝ‖B(L p,Lq ).

(iii) FJmIJ c P IJ c ∈ B(L p(Rd), Lq(Rd)), with

‖mPFJ ‖B(L p,Lq ) = | det(Id + IJ c P IJ )|1/2−1/p‖FJmPJ cJ c ‖B(L p,Lq ).

Proof First,

‖Ŝ f ‖B(L p,Lq ) = sup
f ∈L p(Rd )\{0}

‖pQTLmPFJ f ‖q
‖ f ‖p

= sup
f ∈L p(Rd )\{0}

| det(L)|1/2−1/q‖mPFJ f ‖q
‖ f ‖p

= | det(L)|1/2−1/q‖mPFJ ‖B(L p,Lq ).

Observe that the previous computation holds also forq = ∞, understood that 1/q = 0.
This establishes (i) ⇔ (i i). Similarly, by Lemma 5.5,

‖mPFJ ‖B(L p,Lq ) = sup
f ∈L p(Rd )\{0}

‖FJmIJ c P IJ c (TId+IJ c P IJ p−IJ P IJ f )‖q
‖pIJ P IJ T−1

Id+IJ c P IJ (TId+IJ c P IJ p−IJ P IJ f )‖p

= sup
g∈L p(Rd )\{0}

‖FJmId+IJ c P IJ g‖q
| det(Id + IJ c P IJ )|1/p−1/2‖g‖p

= | det(Id + IJ c P IJ )|1/2−1/p‖FJmId+IJ c P IJ ‖B(L p,Lq ),

with the same consideration on p = ∞. This proves (i i) ⇔ (i i i), and we are done. ��
Theorem 5.7 Let Ŝ ∈ Mp(d, R) have projection S = πMp(Ŝ), with block decompo-
sition (10). The following statements are equivalent.

(i) B = 0d .
(ii) Ŝ ∈ B(L p(Rd)) for some 0 < p ≤ ∞, p �= 2.
(iii) Ŝ is a surjective quasi-isometry of L p(Rd) for every 0 < p ≤ ∞, with

‖Ŝ‖B(L p) = | det(A)|1/2−1/p, where we mean 1/∞ = 0.
(iv) Ŝ = pQTL for some (unique) Q ∈ Sym(d, R) and L ∈ GL(d, R). Namely,

Q = CA−1 and L = A−1.

Proof of Theorem 5.7 The implications (i) ⇒ (i i), (i i i), (iv) are proved in Lemma
5.4. The implications (iv) ⇒ (i), (i i), (i i i) are trivial. The following diagram
summarizes the implications that we have for free.

(i) (i i)

(iv) (i i i)
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To sum up, (i) ⇒ (iv) ⇒ (i i i) ⇒ (i i) follow by elementary arguments. To close the
loop, we need to prove the implication (i i) ⇒ (i). Specifically, we show that if Ŝ is
bounded on L p(Rd) for some p �= 2, and S = VQDLV T

P 	J is any DJF of S, then it
must be the case that P = 0d and J = ∅. According to Lemma 5.4, this is equivalent
to having B = 0d . By contradiction, assume that Ŝ is bounded on L p(Rd) for some
p �= 2 and that there exist P, Q ∈ Sym(d, R), L ∈ GL(d, R) and J ⊆ {1, . . . , d}
such that the corresponding DJF Ŝ = VQDLV T

P FJ has either P �= 0d or J �= ∅. By
Corollary 5.6, the contradiction follows if we prove that FJmIJ c P IJ c is unbounded
on L p(Rd).

The case J = ∅ is classical and it is is due to L. Hörmander [28, Lemma 1.4].
Analogously, the case J c = ∅ follows from:

FJmIJ c P IJ c = F ,

which is not bounded from L p(Rd) to itself for any p �= 2.
Let us consider the case J ,J c �= ∅. Observe that here we use d > 1. Consider

f (x) = g(xJ )h(xJ c ), for g ∈ L p(Rr ) and h ∈ L p(Rd−r ) to be fixed, where 1 ≤
r < d is the cardinality of J .

FJmIJ c P IJ c f (ξ) = FJ (F−1�−IJ c P IJ c ∗ f )(ξ)

= FJF−1
(
�−IJ c P IJ c f̂

)
(ξ)

= F−1
J c

(
�−IJ c P IJ c f̂

)
(ξ)

= F−1
J c

(
�−PJ cJ cFJ c h

)
(ξJ c )FJ g(ξJ ). (30)

Since g depends only on the variables indexed byJ , we use (now and in the following)
the simplified notation: FJ g(ξJ ) = ĝ(ξJ ). Similarly,

F−1
J c (�−PJ cJ cFJ c h)(ξJ c ) = F−1(�−PJ cJ c ĥ)(ξJ c ).

Under this notation, by Tonelli’s theorem,

‖FJmIJ c P IJ c f ‖p = ‖F−1(�−PJ cJ c ĥ)‖p‖ĝ‖p.

The contradiction follows by choosing g ∈ L p(Rr ) so that ĝ /∈ L p(Rr ). This proves
the implication (i i) ⇒ (i), and we are done.

6 UnboundedMetaplectic Operators

We observed that if Ŝ is free, then Ŝ ∈ B(L p(Rd), Lq(Rd)) if and only if 1 ≤ p ≤ 2
and q = p′, and we characterized metaplectic homeomorphisms of L p(Rd). In view
of Corollary 4.4, it remains to study the case in which Ŝ has DJF Ŝ = pQTLmPFJ for
some P, Q ∈ Sym(d, R), L ∈ GL(d, R) and J � {1, . . . , d}, with PJ cJ c singular.
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Theorem 6.1 Let Ŝ ∈ Mp(d, R) be a non-free metaplectic operator. Then, Ŝ ∈
B(L p(Rd), Lq(Rd)) if and only if p = q = 2.

Proof By Corollary 4.4, Ŝ admits a DJF Ŝ = pQTLmPFJ for some P, Q ∈
Sym(d, R), L ∈ GL(d, R) and J � {1, . . . , d}, with PJ cJ c singular.

Let 0 < p, q ≤ ∞, (p, q) �= (2, 2). By Lemma 5.5, it is clearly enough to prove
that the operator FJmIJ c P IJ c is unbounded. By (30), choosing

f (x) = g(xJ )h(xJ c ), x ∈ R
2d , (31)

as in the proof of Theorem 5.7, we retrieve:

FJmIJ c P IJ c f (ξ) = F−1(�−PJ cJ c ĥ)(ξJ c )ĝ(ξJ ), (32)

with:

‖FJmIJ c P IJ c f ‖q = ‖F−1(�−PJ cJ c ĥ)‖p‖ĝ‖q .

First, we prove the assertion for J �= ∅. Let 1 ≤ r < d be the cardinality of
J . Consider the diagonalization PJ cJ c = 
T�
, where 
T
 = I and � =
diag(eig(PJ cJ c )) = {λ1, . . . , λd−r }. To simplify the notation, let us write η = ξJ c .
Interpreting the integrals in the distributional sense,

F−1(�−PJ cJ c ĥ)(η) =
∫
Rd−r

�−�(
x)ĥ(x)e2π iηxdx

=
∫
Rd−r

�−�(y)ĥ(
T y)e2π iy·
ηdy.

Since h ∈ L p(Rd−r ), the function h′ := T
h belongs to L p(Rd−r ). Continuing the
computation:

F−1(�−PJ cJ c ĥ)(η) =
∫
Rd−r

�−�(y)ĥ′(y)e2π iy·
ηdy = F−1(�−�ĥ′)(
η),

which belongs to Lq(Rd−r ) if and only ifF−1(�−�ĥ′) ∈ Lq(Rd−r ). To conclude the
proof it is enough to exhibit h′ ∈ L p(Rd−r ) so thatF−1(�−�ĥ′) /∈ Lq(Rd−r ). Choose
h′ = ⊗d−r

k=1 h
′
k , with h′

1, . . . , h
′
d−r ∈ L p(R). Let K = {k = 1, . . . , d − r : λk = 0},

which is non-empty, since PJ cJ c is singular. Then, by Remark 2.6,

F−1(�−�ĥ′)(η) = F−1�−� ∗ h′(η)

= γ−�

∏
k∈K

δ0 ∗ h′
k(ηk)

∏
k /∈K

eiπλk (·)2 ∗ h′
k(ηk)

= γ−�

∏
k∈K

h′
k(ηk)

∏
k /∈K

eiπλk (·)2 ∗ h′
k(ηk),
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for a suitable constant γ−� ∈ C. The assertion for the case J ,J c �= ∅ follows fixing
k ∈ K, and choosing the corresponding h′

k ∈ L p(R) \ Lq(R). Remarkably, the same
rationale applies when J = ∅. In this scenario, g does not appear in (31), and thus
is absent in (32). Since the previous argument involved selecting h, rather than g, it
equally establishes the claim for J = ∅. ��

7 Applications to Pseudodifferential Operators

Our motivation for investigating the L p boundedness of metaplectic operators stems
from the result highlighted in [14, Theorem 3.8], which addresses the boundedness of
pseudodifferential operators. In the following, we prioritize presenting this result over
delving into the details of the objects appearing in the theorem below.

Theorem 7.1 Let q ≥ 1 and WA be a shift-invertible distribution (see Definition 7.2
below). Assume that, for 1 ≤ p ≤ ∞, Ŝ : L p(Rd) → L p(Rd) is a homeomorphism.
Let a ∈ S ′(R2d) and OpA(a) be the associated metaplectic pseudodifferential opera-
tor (see (33) below). Then, the mapping OpA(a) ∈ BL(L p(Rd)) if and only if q ≤ 2
and q ≤ p ≤ q ′.

Theorem 7.1 is a partial result for at least two reasons: it focuses on metaplectic
operators that are homeomorphisms of L p, and even under this restriction, it leaves
unresolved the question of precisely characterizing these operators within this context.

For the purpose of the present work, we need a brief digression on metaplectic
Wigner distributions. Apart from its importance in the context of time-frequency anal-
ysis, this discussion provides some example of how metaplectic operators are applied
to define quantizations for pseudodifferential operators and how their properties are
related to the structure of the blocks of their projections.

Consider a metaplectic operator on L2(R2d), denoted by Â ∈ Mp(2d, R). The
associated metaplectic Wigner distribution WA is the time–frequency representation
defined for every f , g ∈ S ′(Rd) as

WA( f , g) = Â( f ⊗ ḡ).

For a comprehensive treatment of these distributions and their properties in terms of
the symplectic projections of the corresponding metaplectic operators Â, we refer
the reader to [8, 9, 14]. Notably, we stress that WA : S(Rd) × S(Rd) → S(R2d) is
continuous, WA : L2(Rd) × L2(Rd) → L2(R2d) is bounded and WA : S ′(Rd) ×
S ′(Rd) → S ′(R2d) is continuous.

Metaplectic Wigner distributions are natural generalizations of the classical cross-
Wigner distribution, defined in (5) for L2 functions, which reads as:

W ( f , g)(x, ξ) = Â1/2( f ⊗ ḡ),
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where the projection A1/2 ∈ Sp(2d, R) has d × d block decomposition:

A1/2 =

⎛
⎜⎜⎝
Id/2 Id/2 0d 0d
0d 0d Id/2 −Id/2
0d 0d Id Id

−Id Id 0d 0d

⎞
⎟⎟⎠ .

Metaplectic Wigner distributions provide quantization laws for pseudodifferential
operators. Specifically, for given a ∈ S ′(R2d) (symbol) and WA metaplectic Wigner
distribution (quantization), the operator OpA(a) : S(Rd) → S ′(Rd) defined by:

〈OpA(a) f , g〉 = 〈a,WA(g, f )〉, f , g ∈ S(Rd), (33)

is the (metaplectic) pseudodifferential operator with symbol a and quantization WA.
In [14] the authors proved Theorem 7.1, a boundedness result for pseudodifferential

operators with symbols in Lebesgue spaces having as quantization a shift-invertible
metaplectic Wigner distribution. These time–frequency representations play a central
role in characterizing the quasi-norms of modulation spaces.

Definition 7.2 A metaplectic Wigner distribution WA is shift-invertible or, equiv-
alently, Â and A = πMp(Â) are shift-invertible, if there exist L ∈ GL(d, R),
C ∈ Sym(d, R) and Ŝ ∈ Mp(d, R) such that:

WA( f , g)(z) = | det(L)|1/2�C (Lz)W ( f , Ŝg)(Lz), f , g ∈ L2(Rd), z ∈ R
2d .

(34)

We denote by Shp(2d, R) = {A ∈ Sp(2d, R) shift-invertible}, the set of shift-
invertible matrices.

The original definition of shift-invertibility was given in [12] in terms of the
invertibility of the submatrix

EA =
(
A11 A13
A21 A23

)

of the projection

A =

⎛
⎜⎜⎝
A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

⎞
⎟⎟⎠ , Ai j ∈ R

d×d , i, j = 1, . . . , 4. (35)

Under the notation above, it was proved in [9, 14] that EA ∈ GL(d, R) if and only if
WA enjoys the representation formula (34).

Remark 7.3 If WA is shift-invertible, with expression (34), and a ∈ S ′(R2d), we can
write OpA(a) as a Weyl operator. Indeed,

〈OpA(a) f , g〉 = 〈a,WA(g, f )〉 = 〈p−CT
−1
L a,W (g, Ŝ f )〉 = 〈ãw(x, D)Ŝ f , g〉,
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where ã = p−CT
−1
L a = p−CTL−1a and

ãw(x, D) f (x) =
∫
R2d

e2π i(x−y)ξ ã
( x + y

2
, ξ

)
f (y)dydξ, f ∈ S(Rd), (36)

(see also [13]). Observe that the metaplectic operator p−CTL−1 is a homeomorphism
of Lq(R2d) for every 0 < q ≤ ∞, since B = 0d in its block decomposition, so that
a ∈ Lq(R2d) if and only if ã ∈ Lq(R2d), with

‖ã‖q � ‖a‖q .

We use the following result from [3], originally stated for the short-time Fourier
transform, and formulated hereafter for the cross-Wigner distribution (5).We point out
that some of the results in this section follow trivially by the representation of shift-
invertible metaplectic Wigner distributions as rescaled cross-Wigner distributions,
exhaustive sources in this topic are [17, 18].

Proposition 7.4 Let 1 ≤ p, q ≤ ∞.

(i) If q ≥ 2 and q ′ ≤ p ≤ q, W : L p′
(Rd) × L p(Rd) → Lq(R2d) is bounded.

(ii) If p > q or p < q ′, then W is not bounded from L p′
(Rd) × L p(Rd) to Lq(R2d).

Proof It is a restatement of [3, Propositions 3.1 and 3.2] using (21). ��
Proposition 7.4 was generalized to metaplectic Wigner distributions (34) with Ŝ ∈

B(L p(Rd)) in [14, Proposition 3.6]. The following result covers all the cases in which
Ŝ is bounded between Lebesgue spaces.

Theorem 7.5 Let WA be a shift-invertible metaplectic Wigner distribution, as in (34),
and 1 ≤ p, q ≤ ∞. Let S = πMp(Ŝ) have block decomposition (10). The following
statements hold.

(i) If Ŝ ∈ B(L p(Rd)), then WA : ( f , g) ∈ L p′
(Rd) × L p(Rd) → WA( f , g) ∈

Lq(R2d) is bounded if and only if q ≥ 2 and q ′ ≤ p ≤ q.
(ii) If Ŝ is free and q ≥ 2 and q ′ ≤ p ≤ q, then WA : ( f , g) ∈ L p(Rd)× L p(Rd) →

WA( f , g) ∈ Lq(R2d) is bounded.

Proof Item (i) is the content of [14, Proposition 3.6]. We prove (i i) with a similar
argument. For every f , g ∈ L2(Rd), Moyal’s identity:

‖WA( f , g)‖22 = 〈WA( f , g),WA( f , g)〉=〈Â( f ⊗g), Â( f ⊗ g)〉 = 〈 f ⊗ g, f ⊗ g〉
= ‖ f ‖22‖g‖22

tells that ‖WA( f , g)‖2 = ‖ f ‖2‖g‖2. On the other hand, from (5) and Hölder’s
inequality, for every 1 ≤ r ≤ 2,

‖WA( f , g)‖∞ = | det(L)|1/2‖W ( f , Ŝg)(L·)‖∞ = | det(L)|1/2‖W ( f , Ŝg)‖∞
� ‖ f ‖r‖Ŝg‖r ′ � ‖ f ‖r‖g‖r .
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for every f , g ∈ L2(Rd) and 1 ≤ r ≤ 2. By multilinear interpolation (see e.g. [2,
Theorem 2.7]),WA : L p(Rd)× L p(Rd) → Lq(R2d) is bounded for every q ≥ 2 and
q ′ ≤ p ≤ q. ��

We are ready to state the improved version of Theorem 7.1.

Theorem 7.6 Let 1 ≤ p, q ≤ ∞. Let WA be a shift-invertible metaplectic Wigner
distribution as in (34) with S = πMp(Ŝ). Let a ∈ Lq(R2d) and OpA(a) : S(Rd) →
S ′(Rd) be the associated metaplectic operator. The following statements hold true.
(i) If Ŝ = pQTL for some Q ∈ Sym(d, R) and L ∈ GL(d, R), then OpA(a) ∈
B(L p(Rd)) if and only if 1 ≤ q ≤ 2 and q ≤ p ≤ q ′, with

‖OpA(a)‖B(L p) � ‖a‖q .

(ii) If Ŝ is free, 1 ≤ q ≤ 2 and q ≤ p ≤ q ′, then OpA(a) ∈ B(L p(Rd), L p′
(Rd)),

with

‖OpA(a)‖B(L p,L p′ ) � ‖a‖q .

Proof (i) is a restatement of [14, Theorem 3.8] using Theorem 5.7. We prove (i i)with
an elementary duality argument for (p, q) �= (+∞, 1), and using Remark 7.3 for the
remaining case. For f , g ∈ S(Rd), 1 ≤ q ≤ 2 and q ≤ p ≤ q ′, by Theorem 7.5 (i i),

|〈OpA(a) f , g〉| = |〈a,WA(g, f )〉| ≤ ‖a‖q‖WA(g, f )‖q ′ � ‖a‖q‖ f ‖p‖g‖p,

since q ′ ≥ 2. A standard density argument entails that:

‖OpA(a) f ‖p′ � ‖a‖q‖ f ‖p, f ∈ L p(Rd)

and, consequently, that OpA(a) ∈ B(L p(Rd), L p′
(Rd)), with ‖OpA(a)‖B(L p,L p′ ) �

‖a‖q .
This proves the assertion for all the couples (p, q) with (p, q) �= (+∞, 1). By

(36),

|OpA(a) f (x)| ≤
∫
R2d

∣∣∣ã
( x + y

2
, ξ

)∣∣∣|Ŝ f (y)|dydξ

� ‖Ŝ f ‖∞
∫
R2d

|ã(z, ξ)|dzdξ = ‖ã‖1‖Ŝ f ‖∞

� ‖a‖1‖ f ‖1,

for every x ∈ R
d , where ã is defined as in Remark 7.3. Therefore, ‖OpA(a) f ‖∞ �

‖a‖1‖ f ‖1. This concludes the proof for (p, q) = (+∞, 1), thereby completing the
proof of the theorem. ��
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8 Representation Formulae forMp(2d,R) and Applications to
Time–Frequency Analysis

Among all the metaplectic Wigner distributions, shift-invertible distributions revealed
to play a central role in the measurement of local time–frequency content of signals
[6, 9]. As a first contribution of this section, we employ the DJF to demonstrate
the density of shift-invertible matrices in Sp(2d, R). As a consequential insight, we
unveil a factorization theorem asserting that any 4d × 4d symplectic matrix can be
decomposed (albeit non-uniquely) as the product of a free symplectic matrix and a
shift-invertible symplectic matrix.

Lemma 8.1 Let Â ∈ Mp(2d, R). The following are equivalent.

(i) Â is shift-invertible.
(ii) Any DJF A = VQDLV T

P 	J of the symplectic projection of Â, with P, Q ∈
Sym(2d, R), L ∈ GL(2d, R) and J ⊆ {1, . . . , 2d}, has P12 ∈ GL(d, R),
where:

P =
(
P11 P12
PT
12 P22

)
, P11, P12, P22 ∈ R

d×d , P11 = PT
11, P22 = PT

22. (37)

Proof Let A = VQDLV T
P 	J be any DJF of A, as in item (i i). Write J = J1 ∪ J2,

with J1 ⊆ {1, . . . , d}, J2 ⊆ {d + 1, . . . , 2d}. Then,

	J =

⎛
⎜⎜⎝

IJ c
1

0d IJ1 0d
0d IJ c

2
0d IJ2

−IJ1 0d IJ c
1

0d
0d −IJ2 0d IJ c

2

⎞
⎟⎟⎠

(see e.g., [6, Appendix B]). A straightforward computation shows that:

A = VQDL

⎛
⎜⎜⎝

IJ c
1

− P11 IJ1 −P12 IJ2 IJ1 + P11 IJ c
1

P12 IJ2

−PT
12 IJ1 IJ c

2
− P22 IJ2 PT

12 IJ c
1

IJ c
2

+ P22 IJ2

−IJ1 0d IJ c
1

0d
0d −IJ2 0d IJ c

2

⎞
⎟⎟⎠ .

The product by DL modifies the upper blocks with a left multiplication by L−1,
whereas the product by VQ does not affect the upper blocks. Therefore,

EA = L−1
(
I P11
0d PT

12

)(
IJ c

1
IJ1

−IJ1 IJ c
1

)
= L−1

(
Id P11
0d PT

12

)
	J1 .

Hence, EA ∈ GL(2d, R) if and only if P12 ∈ GL(d, R), and we are done. ��
Lemma (8.1) is interesting on its own, as it entails a decomposition law for

Mp(2d, R), improving the well-known factorization of symplectic matrices in terms
of free symplectic matrices (see e.g. [23]), and the density of Shp(2d, R) in Sp(2d, R).
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Theorem 8.2 The following statements hold true.

(i) Shp(2d, R) ⊆ Sp(2d, R) is dense.
(ii) For every A ∈ Sp(2d, R) there exists A′ ∈ Shp(2d, R) and � ∈ Sp(2d, R) free

such that A = �A′.
(iii) For every A ∈ Sp(2d, R) there exists A′′ ∈ Shp(2d, R) and � ∈ Sp(2d, R) such

that A = A′′�, where the block decomposition (10) of � has A ∈ GL(2d, R).

Proof Let A = VQDLV T
P 	J be a DJF of A, with P ∈ Sym(2d, R) having block

decomposition (37). For every 0 < τ < min{|λ| : λ ∈ eig(P12) \ {0}} (where the
minimum is +∞ if P12 = 0d ) P12 + τ Id is invertible. It follows that the matrix
Aτ = VQDLVP+τ R	J is shift-invertible, where:

R =
(
0d Id
Id 0d

)
,

and it can be easily related to A:

Aτ = VQDLV
T
P+τ R	J = VQDLV

T
τ RV

T
P 	J

= VQV
T
τ L−1RL−TDLV

T
P 	J = VQV

T
τ L−1RL−T V−QVQDLV

T
P 	J

= VQV
T
τ L−1RL−T V−QA. (38)

The matrices

�τ = VQV
T
τ L−1RL−T V−Q =

(
Id − τ L−1RL−T Q τ L−1RL−T

−τQL−1RL−T Q Id + τQL−1RL−T

)

are obviously free for every τ �= 0 sufficiently small. Observe that this is equivalent to
having �−1

τ free for every τ �= 0 sufficiently small. Moreover, �τ → I2d for τ → 0
component-wise. Consequently,A = �−1

τ Aτ for every τ �= 0 sufficiently small, with
Aτ shift-invertible and �−1

τ free. This concludes the proof of (i) and (i i). To prove
(i i i), we continue the computation above from (38). Using Lemma 5.5,

Aτ = VQDLV
T
P V T

τ R	J = VQDLV
T
P 	J (	−1

J V T
τ R	J )

= A(V T
τ IJ c RIJ cDI+τ IJ c RIJ V−τ IJ RIJ ),

where:

V T
τ IJ c RIJ cDId+τ IJ c RIJ V−τ IJ RIJ =

(
Id − τ IJ c R IJ τ IJ c R IJ c

−τ IJ RIJ Id + τ IJ RIJ c

)
.

Since Id + τ IJ c R IJ is the inverse of Id − τ IJ c R IJ , (i i i) follows, and we are done.
��
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Lemma 8.1 states that shift-invertibility can be expressed in terms of DJF as the
condition P12 ∈ GL(d, R) stated in (37). In [9], it was proved that if WA is shift-
invertible then for every g ∈ S(Rd) \ {0},

‖ f ‖Mp � ‖WA( f , g)‖p, f ∈ Mp(Rd), (39)

showing that shift-invertibility is a fundamental property in measuring local time–
frequency content of distributions.

Remark 8.3 We outlined the (quasi-)norm equivalence (39) for every 0 < p ≤ ∞,
but it is far more general. It applies to every weighted modulation space Mp,q

m (Rd)

(0 < p, q ≤ ∞, m moderate weight function, see e.g., [10] for the more general
definition of Mp,q

m ), under the further assumption A21 = 0 in (35). In the same work,
it was observed that if either shift-invertiblity does not hold, or A21 �= 0, then there
exists WA such that:

Mp,q
m (Rd) �= { f ∈ S ′(Rd) : ‖WA( f , g)‖L p,q

m
< ∞}

(where L p,q
m are the mixed-norm Lebesgue spaces).

Here, we prove rigorously that if WA is not shift-invertible, then (39) fails for every
0 < p ≤ ∞.

Theorem 8.4 Let 0 < p ≤ ∞, p �= 2. Let WA be a non shift-invertible metaplectic
Wigner distribution and g ∈ S(Rd) \ {0}. Then,

{ f ∈ S ′(Rd) : ‖WA( f , g)‖p < ∞} �= Mp(Rd).

Proof Let A = DLVQV T
P 	J be a DJF of A, with L ∈ GL(2d, R), P, Q ∈

Sym(2d, R) and J ⊆ {1, . . . , 2d}. Since A is not shift-invertible, P12 /∈ GL(d, R)

by Lemma 8.1. Let us write J = J1 ∪ J2, with J1 ⊆ {1, . . . , d} and J2 ⊆
{d + 1, . . . , 2d}, and

P̃ =
(
P11 0d
0d P22

)
, Q̃ =

(
Q11 0d
0d Q22

)
,

where Pi j , Qi j , i, j = 1, . . . , 2 are the d × d blocks of P and Q, respectively. Let

M =
(
Id + P12QT

12 −P12
−QT

12 Id

)
∈ GL(2d, R). (40)

It is easy to show that:

A = DLVQ̃A−1
FT2DMAFT2V

T
P̃

	J1	J2 , (41)
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whereAFT 2 ∈ Sp(2d, R) is the symplectic projection of the partial Fourier transform
with respect to the frequency variables, F2 = F{d+1,...,2d}, i.e.,

AFT 2 =

⎛
⎜⎜⎝
Id 0d 0d 0d
0d 0d 0d Id
0d 0d Id 0d
0d −Id 0d 0d

⎞
⎟⎟⎠ .

From the metaplectic Wigner distributions perspective, (41) reads as:

WA( f , g) = (TLpQ̃I2)(F2TM )(mP11FJ1 f ⊗ FmP22FJ2 ḡ)

(up to a phase factor) where I2F(x, ξ) = F(x,−ξ). The operator TLpQ̃I2 is a

homeomorphims of L p(R2d), whereas metaplectic operators are homeomorphisms of
Mp(Rd), as observed in [24]. Therefore, it is enough to prove the assertion for F2TM

instead of Â.
The following integrals must be interpreted in the sense of distributions. Let ϕ ∈

S ′(Rd) andψ ∈ S(Rd)\{0} to be fixed. Using the change of variables−QT
12x+t = s,

we have:

F2TM (ϕ ⊗ ψ)(x, ξ) =
∫
Rd

ϕ(x + P12Q
T
12x − P12t)ψ(−QT

12x + t)e−2π iξ t dt

=
∫
Rd

ϕ(x − P12s)ψ(s)e−2π iξ(s+QT
12x)ds

= e−2π iξQT
12x

∫
Rd

ϕ(x − P12s)ψ(s)e−2π iξsds.

Since P12 is symmetric, P12 = 
T�
, where 
 ∈ R
d×d is orthogonal and � is

the corresponding diagonal matrix with diagonal entries given by the eigenvalues
λ1, . . . , λd of P12. By Lemma 8.1, P12 /∈ GL(2d, R) so that the set J = { j : λ j = 0}
is non-empty. Without loss of generality, let us assume that λ1, . . . , λr �= 0 and
λr+1, . . . , λd = 0. Choosing ψ(t) = e−π |·|2 (with an abuse of notation, hereafter ψ

denotes a Gaussian on R
n for any n), using the change of variables 
s = u,

F2TM (ϕ ⊗ ψ̄)(x, ξ) = e−2π iξQT
12x

∫
Rd

ϕ(x − 
T�u)ψ(
T u)e−2π iξ
T udu,

entails

F2TM (ϕ ⊗ ψ̄)(
x, 
ξ) = e−2π i
ξQT
12
x

∫
Rd

ϕ ◦ 
T (x − �u)ψ(u)e−2π iξudu.

Let ϕ̃ = ϕ ◦ 
T (observe that rescalings preserve modulation spaces), then

F2TM (ϕ ⊗ ψ̄)(
x, 
ξ) = e−2π i
ξQT
12
x

∫
Rd

ϕ̃(x − �u)ψ(u)e−2π iξudu.
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Choosing ϕ̃(v) = ϕ̃1(vJ c )ϕ̃2(vJ ) and setting � = diag(λ−1
1 , . . . , λ−1

r ), we find:

F2TM (ϕ ⊗ ψ̄)(
x, 
ξ) = �Vψ◦�ϕ̃1(xJ ,�ξJ )ϕ̃2(xJ c )ψ(ξJ c ),

for a suitable function�with |�| ≡ 1. Since the rescalings (
x, 
ξ) and (xJ ,�ξJ )

preserve the L p (quasi-)norms,

‖F2TM (ϕ, ψ)‖p � ‖ϕ̃1‖Mp‖ϕ̃2‖p‖ψ‖p,

whereas

‖ϕ‖Mp � C(ψ)‖ϕ̃1‖Mp‖ϕ̃2‖Mp ,

for some C(ψ) > 0. If p �= 2, then Mp �= L p and, consequently, by choosing
ϕ̃2 ∈ (L p(Rd−r ) \ Mp(Rd−r )) ∪ (Mp(Rd−r ) \ L p(Rd−r )) the assertion follows. ��
Remark 8.5 A rescaling TL F is bounded on (a homeomorphism of) the mixed-norm
Lebesgue spaces L p,q(R2d) (p �= q) if and only if L ∈ GL(2d, R) has block
decomposition

L =
(
A B
0d D

)
, A, B, D ∈ R

d×d .

However, it is straightforward to verify that the operator TM , with M defined as in
(40), possesses the following boundedness property on tensor products:

‖TM ( f ⊗ g)‖L p,q = ‖ f ‖p‖g‖q . (42)

Althoughwewill not elaborate on this fact here, we conjecture that (42) can be utilized
to study the boundedness of metaplectic Wigner distributions in greater detail. This
could potentially used to characterize ‖WA( f , g)‖L p,q (0 < p, q ≤ ∞) in terms of
the function spaces to which f belongs to.
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