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Rapport de synthèse 
 

 
La douleur neuropathique est une forme de douleur chronique apparaissant suite à des lésions 

du système nerveux somato-sensoriel. Caractérisée par une plasticité neuronale inadaptée, elle 

est très souvent intense, invalidante, associe des symptômes comme l’allodynie ou 

l’hyperalgésie et reste difficile à traiter avec les agents thérapeutiques actuels.   

Le thème de mon travail de thèse se concentre sur des mécanismes moléculaires de 

modulation des canaux sodiques voltage-dépendants suite à une lésion du nerf périphérique.  

Dans l’article présenté en annexe, j’ai focalisé mon travail sur une protéine, Nedd4-2, qui est 

une ligase ubiquitine. Elle a pour rôle de réguler et d’internaliser dans la cellule des protéines 

membranaires dont les canaux sodiques. Suite aux lésions du système nerveux périphérique, il 

existe une hyperexcitabilité neuronale engendrée notamment par un surplus et une 

dysrégulation des canaux sodiques à la membrane cellulaire. Dans l’hypothèse que 

l’ubiquitine ligase Nedd4-2 soit présente dans les neurones sensitifs primaires et ait un rôle 

dans la régulation des canaux sodiques, nous avons identifié cette protéine dans les neurones 

nociceptifs primaires du rat. En utilisant des techniques de Western Blot et 

d’immunohistochimie, j’ai trouvé que Nedd4-2 est présente dans presque 50% des neurones 

du ganglion spinal et ces neurones sont principalement des neurones nociceptifs. Dans un 

modèle expérimental de douleur neuropathique (SNI, pour spared nerve injury), Nedd4-2 se 

retrouve significativement diminuée dans le tissu du ganglion spinal. J’ai également 

investigué l’expression de 2 isoformes des canaux sodiques connues pour leur implication 

dans la douleur, Nav1.7 et Nav1.8, et ces 2 isoformes se retrouvent dans les mêmes neurones 

que Nedd4-2. La caractérisation détaillée est décrite dans le manuscrit:  

« Neuronal expression of the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: modulation 

in the SNI model of neuropathic pain; Cachemaille M, Laedermann CJ, Pertin M, Abriel H, 

Gosselin RD, Decosterd I. » 

Les résultats obtenus indiquent que Nedd4-2, en étant downrégulé après une lésion nerveuse, 

pourrait ainsi contribuer à une augmentation des canaux sodiques fonctionnels à la membrane. 

Ainsi Nedd4-2 pourrait être proposée comme cible thérapeutique de manière alternative aux 

bloqueurs de canaux sodiques.  

Ce travail a permis l’initiation d’autres expériences. J’ai contribué activement à la 

construction de vecteurs viraux type adéno-associé recombinant (rAAV2/6) et surexprimé la 

protéine in vivo dans les ganglions spinaux. Cette partie de mon travail se trouve intégrée 

dans d’autres travaux de mon laboratoire d’accueil qui a pu démontrer les effets fonctionnels 

de cette approche sur les courants sodiques enregistrés par électrophysiologie et une 

diminution de la douleur neuropathique chez la souris. 
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NEURONAL EXPRESSION OF THE UBIQUITIN LIGASE NEDD4-2
IN RAT DORSAL ROOT GANGLIA: MODULATION IN THE SPARED
NERVE INJURY MODEL OF NEUROPATHIC PAIN
M. CACHEMAILLE, a,b* C. J. LAEDERMANN, a,b,c

M. PERTIN, a,b H. ABRIEL, c R.-D. GOSSELIN a,b

AND I. DECOSTERD a,b

aPain Center, Department of Anesthesiology, University

Hospital Center (CHUV) and University of Lausanne (UNIL),

Lausanne, Switzerland

bDepartment of Fundamental Neurosciences (DNF), University

of Lausanne, Lausanne, Switzerland

cDepartment of Clinical Research, University of Bern, Bern,

Switzerland
Abstract—Neuronal hyperexcitability following peripheral

nerve lesions may stem from altered activity of voltage-

gated sodium channels (VGSCs), which gives rise to

allodynia or hyperalgesia. In vitro, the ubiquitin ligase

Nedd4-2 is a negative regulator of VGSC a-subunits (Nav),

in particular Nav1.7, a key actor in nociceptor excitability.

We therefore studied Nedd4-2 in rat nociceptors, its

co-expression with Nav1.7 and Nav1.8, and its regulation in

pathology. Adult rats were submitted to the spared nerve

injury (SNI) model of neuropathic pain or injected with com-

plete Freund’s adjuvant (CFA), a model of inflammatory

pain. L4 dorsal root ganglia (DRG) were analyzed in sham-

operated animals, seven days after SNI and 48 h after CFA

with immunofluorescence and Western blot. We observed

Nedd4-2 expression in almost 50% of DRG neurons, mostly

small and medium-sized. A preponderant localization is

found in the non-peptidergic sub-population. Additionally,

55.7 ± 2.7% and 55.0 ± 3.6% of Nedd4-2-positive cells are

co-labeled with Nav1.7 and Nav1.8 respectively. SNI

significantly decreases the proportion of Nedd4-2-positive

neurons from 45.9 ± 1.9% to 33.5 ± 0.7% (p< 0.01) and

the total Nedd4-2 protein to 44%± 0.13% of its basal level

(p< 0.01, n= 4 animals in each group, mean ± SEM). In

contrast, no change in Nedd4-2 was found after peripheral

inflammation induced by CFA. These results indicate that

Nedd4-2 is present in nociceptive neurons, is downregu-

lated after peripheral nerve injury, and might therefore
0306-4522/12 $36.00 � 2012 IBRO. Published by Elsevier Ltd. All rights reserve
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contribute to the dysregulation of Navs involved in the

hyperexcitability associated with peripheral nerve injuries.

� 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: Nedd4-2, neuropathic pain, voltage-gated sodium

channels, Nav1.7, Nav1.8, dorsal root ganglion.

INTRODUCTION

Neuropathic pain affects a high proportion of the world

population (Bouhassira et al., 2008) and originates from

a maladaptive plasticity caused by a lesion in the

somatosensory system (Woolf and Salter, 2000;

Costigan et al., 2009). Clinically, it is associated

with sensory dysfunctions referred as spontaneous pain,

allodynia and hyperalgesia (Woolf and Decosterd,

1999). Convergent studies have shown that after a

peripheral nerve lesion, ectopic activity, potentially

accounting for pain symptoms, arises in injured and

non-injured Ab (normally non-nociceptive), Ad and

C-fibers (nociceptive) and in dorsal root ganglion (DRG)

(Ma et al., 2003; Wu et al., 2001; Devor, 2009).

Membrane hyperexcitability is thought to cause such

abnormal generation of action potentials in DRG

neurons (Amir et al., 2005) with the dysregulation of

voltage-gated sodium channels (VGSCs) being the

cornerstone of this regulation (Rush et al., 2007; Sheets

et al., 2008).

Increased membrane ion permeability during action

potential relies on the pore forming a-subunit (Nav) of

VGSCs, and its inhibition explains conduction blockade

by local anesthetics (Catterall, 2000). Remarkably, the

stability and internalization of ion channels are under the

control of post-translational modifications, especially

their ubiquitylation by E3 ubiquitin ligases driving their

routing to degradation (Abriel and Staub, 2005). In

particular the Nedd4 family of E3 proteins are potent

regulators of channels, including Nav (Abriel et al., 1999;

Harvey and Kumar, 1999; van Bemmelen et al., 2004;

Kabra et al., 2008). Most of the ten Nav isoforms are

expressed in DRG neurons and contribute to

electrogenesis, with a specific expression for Nav1.7,

Nav1.8 and Nav1.9 in the peripheral nervous system

(Black et al., 2002; Rush et al., 2007; Ho and O’Leary,

2011). Interestingly, mutations leading to loss or gain of

Nav1.7 function result in congenital insensitivity to pain

or lead to severe familial pain disorders (Raouf et al.,

2010). Mice with selective knock out of Nav1.7, Nav1.8
d.
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and Nav1.9 in DRG neurons have reduced pain

sensitivity or diminished response to inflammatory pain

(Nassar et al., 2004). These data suggest a key role of

peripheral Navs in basal nociception, and also a

possible impact of the regulation of nociceptor-specific

Nav in pathological pain. Various reports have indicated

that inflammatory and neuropathic pain are associated

with changes in Nav1.7, Nav1.8 and Nav1.9 expression

at both the mRNA and the protein levels in DRG

neurons (Cummins and Waxman, 1997; Berta et al.,

2008; Strickland et al., 2008; Thakor et al., 2009) but

the mechanism leading to the selective alteration of

some Nav currents in neuropathic pain is still unclear

(Berta et al., 2008). One theory posits the existence of

refined mechanisms at the post-translational level

leading to change in Nav function or trafficking. In this

context Nedd4-2, a well-described Nedd4 member, can

interact with all Navs expressed in DRG neurons (except

Nav1.9) via their C-terminal PY motive. Indeed, Xenopus
oocytes exogenously coexpressing Nedd4-2 with

Nav1.2, 1.7 and 1.8 present a reduction of their

respective currents (Fotia et al., 2004). However,

despite the apparent importance of Nav regulation by

Nedd4-2, the expression of Nedd4-2 in the nociceptive

pathway has not been studied so far.

The aim of the present study is first to investigate

in vivo the expression of Nedd4-2 in rat DRG and

characterize its localization in the different subpo-

pulations of primary sensory neurons using specific

markers. In addition, we have assessed Nedd4-2

modulation in rodent models of neuropathic and

inflammatory pain. Our results indicate that Nedd4-2

immunoreactivity (IR) is present in small diameter

nociceptive neurons together with Nav1.7 and Nav1.8

and that this expression is down-regulated after nerve

injury.
EXPERIMENTAL PROCEDURES

Surgery

All procedures were approved by the Committee on Animal

Experimentation for the Canton of Vaud, Switzerland, in

accordance with Swiss Federal Law on Animal Welfare and

guidelines of the International Association for Study of Pain

(IASP) (Zimmermann, 1983). We used the spared nerve

injury (SNI) model of neuropathic pain as previously described

(Decosterd and Woolf, 2000). Briefly, adult Sprague–Dawley

rats were deeply anesthetized using 1.5% isoflurane and,

after exposure of the sciatic nerve, the common peroneal and

tibial nerves were ligated with 5.0 silk sutures and transected

while the sural nerve was left intact. Muscle and skin were

closed in two distinct layers with 5.0 silk thread and wound

clips. Sham surgery was performed similarly, although without

nerve damage, as the control condition. Eight animals were

used for SNI (n= 4 for immunolabeling and n= 4 for

Western blot) and a similar group of eight rats was used for

sham surgery.

For experiments with complete Freund’s adjuvant (CFA), rats

were injected with 50 ll of CFA (Sigma, St. Louis MO, USA,

n= 4) or NaCl 0.9% (n= 4), in the dorsal part of the left

hindpaw, under isoflurane anesthesia (1.5% isoflurane).

Animals were kept for 48 h and tissues dissected at this time-

point for further analysis (Nagakura et al., 2003).
Please cite this article in press as: Cachemaille M et al. Neuronal expression of

spared nerve injury model of neuropathic pain. Neuroscience (2012), http://dx.
Immunohistochemistry

One week after the SNI surgery or 48 h after CFA injection,

animals were lethally anesthetized with sodium pentobarbital

and transcardially perfused with saline, followed by

paraformaldehyde 4% in PBS. L4 DRGs (Hammond et al.,

2004) were dissected and post-fixed at 4 �C for 90 min and

then transferred in 20% sucrose in PBS overnight. The

following day, tissues were mounted in cryoembedding fluid

(Tissue-Tek; Sakura Finetek, Zoeterwoude, Holland). Then

samples were frozen, cryosectioned in 12-lm thick sections

and thaw-mounted onto slides.

Nedd4-2 was revealed using a specific rabbit anti-Nedd4-2

antibody (Nedd4-2, 1:100, generously provided by Olivier

Staub, Department of Pharmacology and Toxicology, University

of Lausanne, Switzerland). For the colocalization experiments,

antibodies were as follows: mouse anti-peripherin (Peripherin;

1:500, Chemicon International, Billerica, MA, USA), mouse

anti-neurofilament 200 (NF200, 1:400, Sigma, St. Louis, MO,

USA), rat anti-Substance P (1:400, BD Bioscience, Basel,

Switzerland), mouse anti-Nav1.7 (1:100, Neuromab, Davis, CA,

USA), mouse anti-Nav1.8 (1:100, Neuromab, Davis, CA, USA),

rabbit anti-Activating Transcription Factor 3 (ATF-3, 1:200,

Santa Cruz Biotechnology, Heidelberg, Germany). Secondary

antibodies were as follows: Cy3-conjugated anti-rabbit (1:400,

Jackson ImmunoResearch, Suffol, UK) for Nedd4-2,

Cy3-conjugated anti-mouse (1:300, Jackson ImmunoResearch)

for Nav1.7, FITC-conjugated anti-rabbit (1:200, Jackson

ImmunoResearch, Suffol) for ATF-3, FITC-conjugated anti-rat

(1:200, Jackson ImmunoResearch, Suffol) for Substance P,

Alexa 488 anti-rabbit (1:500, Molecular Probes, Basel,

Switzerland) for Nedd4-2 and Alexa 488 anti-mouse (1:1000,

Molecular Probes) for peripherin, NF200, Nav1.8. Non-

peptidergic neurons were stained using biotinylated griffonia

simplicifolia Isolectin B4 (IB4) (1:100, Vector Laboratories,

Burlingame, CA) followed by AMCA-conjugated streptavidin

(1:50; Jackson ImmunoResearch). Standard protocols for

fluorescent immunohistochemistry were used. Sections of

DRGs were blocked for 30 min at room temperature (RT) with

10% normal goat serum (NGS) and 0.3% PBS 1X-Triton

X-100. Primary antibodies were diluted in 5% NGS and 0.1%

PBS 1X-Triton X-100, and incubated on sections overnight at

4 �C. For ATF-3/Nedd4-2 dual labeling, the sequence of the

protocol started with the primary and secondary incubations for

ATF-3 followed by primary and secondary probing for Nedd4-2

(Pertin et al., 2005; Fukuoka et al., 2012). Control experiments

were performed to rule out the possibility of a nuclear presence

of Nedd4-2. Slides were washed in PBS and then incubated at

RT with the corresponding secondary antibody or AMCA-

conjugated streptavidin diluted in NGS 1% and PBS 1X-Triton

X-100 0.1% for 90 min. Slides were washed in PBS and

mounted in Mowiol medium (Calbiochem, Gibbstown, NJ).
Pictures and counting

Fluorescence was detected using an epifluorescent microscope

(AxioPlan and AxiVision, Carl Zeiss, Feldbach, Switzerland).

Images were taken at 20� magnification, with the same

parameters used between experimental conditions, saved as

TIFF files and then juxtaposed as one picture using Photoshop

CS4 software (11.0, Sun Microsystems, Redwood City, CA) in

order to reconstruct a complete DRG. The same parameters

for image capture were used between experimental conditions

and ganglia from four animals were analyzed per condition.

Mean cell counts from each animal were the average of four

sections selected 60 lm apart. The first slide was randomly

selected and the three next ones were chosen every five slides

from the series of consecutive cut sections. In all conditions,

only neurons in which the nucleus was visible were counted.

The observer was blinded to experimental groups. Counts of
the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: Modulation in the
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labeled neuronal profiles were expressed as a percentage of the

total number of labeled and unlabeled neuronal profiles. Neuronal

cross-sectional areas were measured in lm2 and the mean gray

value of each cell was recorded based on mean pixel intensity

using ImageJ software (1.42, National Institute of Mental

Health, Bethesda, MD, USA). Groups for cell area were as

follows: 0–600 lm2 for small neurons, 600–1200 lm2 for

medium-sized neurons and >1200 lm2 for large neurons

(Harper and Lawson, 1985; Noguchi et al., 1993).
Threshold of detection for IR-positive cells

Positively labeled cells were identified on acquired digital images

by the experimenter. The accuracy of detection was verified for

each condition by determining the signal/background threshold

as follows (King et al., 2009). Ten pictures were randomly

chosen in images libraries of four independent markers

(Nedd4-2, Nav1.7, peripherin and NF-200). Background

intensities were measured and averaged. The final threshold of

mean gray values was calculated by adding two standard

deviations, giving a value of 18. Twenty out of 718 Nedd4-2-

positive cells (sham) and 42 out of 616 positive cells (SNI)

were below the detection threshold. For Nav1.7 counting, all

positive cells were above the detection threshold.
A

Cell transfection

Human Embryonic Kidney cells (HEK293) were cultured in

DMEM (Gibco, Life Technologies, Zug, Switzerland)

supplemented with 10% fetal bovine serum, 0.2% glutamine

and gentamicin (20 mg/mL) at 37 �C in a 5% CO2 incubator.

For control of antibodies, cells were transfected, using calcium

phosphate, with 0.8 lg of truncated human Nedd4-2 cDNA

(without the amino-terminal C2 domain) cloned into pcDNA3.1

(generously provided by Olivier Staub, Department of

Pharmacology and Toxicology, Lausanne, Switzerland) or 1 lg
of Nav1.7 cDNA cloned into pCIN5h and provided by Dr. Simon

Tate (Convergence Pharmaceuticals, Cambridge, UK). Protein

extraction was performed 48 h after transfection.
B

GAPDH

Nedd4-2

150
130
100

75

kDa

34

1 2 3

Nedd4-2

Fig. 1. Protein expression of Nedd4-2 in rat DRG. (A) Nedd4-2-

immunoreactivity (IR) in rat L4 DRG (scale bar = 100 lm). (B)

Western blot analysis of Nedd4-2. Lane 1: rat L4 DRG; lane 2:

HEK293 cells; lane 3: Nedd4-2 transfected HEK293 cells; GAPDH

was used as a loading control.
Western blotting

Animals were sacrificed 7 days after Sham or SNI surgery, or

48 h after CFA injection. L4 and L5 DRGs were quickly

dissected and kept at �80 �C until use. HEK293 transfected

cells were detached using dissociation buffer (Invitrogen, Life

Technologies), centrifuged at 2000g for 2 min at RT and

supernatants were removed. Homogenization of DRGs or HEK

cells was done in 100 mM Tris–HCl (pH 6.8), SDS 2%, glycerol

20%, NaCl and complete protease inhibitor cocktail tablets

(Roche, Basel, Switzerland). Samples were centrifuged at

14,000 rpm for 20 min at 4 �C and proteins in the supernatants

were quantified using Bradford assays. Protein samples

(15–20 lg) were separated by SDS–PAGE and transferred

onto PVDF membranes (BioRad, Hercules, CA). Blots were

blocked with non fat dry milk 5% for 30 min at RT and then

incubated overnight at 4 �C with the appropriate antibody:

rabbit anti-Nedd4-2 (1:100) (Flores et al., 2005), mouse anti-

Nav1.7 (1:400, Neuromab) or mouse anti-Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH, 1:500,000, Abcam,

Cambridge, UK). These blots were further incubated with

horseradish peroxydase-conjugated secondary antibody anti-

mouse or anti-rabbit (1:2000, Dako, Heverlee, Belgium),

developed in Super Signal Solution (Pierce, Rockford, IL, USA)

and revealed with LAS-4000-Mini Fujifilm (Bucher Biotec,

Basel, Switzerland). Pixel intensities were quantified with

ImageJ. Results were expressed as the ratio of the signal of

interest over sham after normalization by GAPDH loading control.
Please cite this article in press as: Cachemaille M et al. Neuronal expression of

spared nerve injury model of neuropathic pain. Neuroscience (2012), http://dx.
Statistics

Data are represented as mean ± SEM. Comparisons between

groups were performed using Student’s t test or a one-way

ANOVA followed by Dunnett’s Multiple Comparison Test for

Fig. 3F. Statistical analyses were done with JMP statistical

software (5.01, SAS institute, Cary, NC). Differences were

considered significant at p-values below 0.05.
RESULTS

Nedd4-2 is present in nociceptive neurons

Nedd4-2 IR is widely distributed in rat DRG neurons

(Fig. 1A). Western blot analysis (Fig. 1B) reveals one

major band in DRG at approximately 120 kDa corres-

ponding to the endogenous form of Nedd4-2 (lane 1). In

HEK293 cells, the endogenous form of Nedd4-2

corresponds to a slightly lower band (�115 kDa), in line

with species differences (van Bemmelen et al., 2004;

Rougier et al., 2005). In DRG, we inconstantly observed

one additional band between 100 and 120 kDa, which is

known to be a splice variant (Itani et al., 2003; Hryciw

et al., 2004) (see Figs. 3A and 5B). As a positive

control, the analysis of HEK293 cells transfected with a

truncated form of human Nedd4-2 cDNA showed a

robust protein level at 100 kDa, in line with the size of

the construct (Kamynina et al., 2001).

We thoroughly explored the molecular identity of

Nedd4-2-immunopositive DRG neurons using dual

immunofluorescence (Fig. 2). The six sets of counting

performed throughout our study gave overall

percentages of Nedd4-2-expressing neurons ranging
the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: Modulation in the
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Fig. 2. Nedd4-2 is mainly present in nociceptive DRG neurons and colocalizes with the sodium channels Nav1.7 and Nav1.8. (A) Representative

double immunofluorescence for Nedd4-2 (first column) with the markers peripherin, NF-200, IB4, Substance P, or with Nav1.7 and Nav1.8 (second

column) and merged images (third column, arrows) in rat DRG neurons (sham group). (B) Quantitative analysis of Nedd4-2-IR with the different

markers. Among all Nedd4.-2-positive neurons, 54.8 ± 3.8% co-stained for peripherin, 7.8 ± 2.7% for NF-200, 51.9 ± 2.2% for IB4, 9.0 ± 1.2%

for Substance P, 57.7 ± 2.7% for Nav1.7 and 55.0 ± 3.6% for Nav1.8. (C) Among the following markers, many co-stained with Nedd4-2: peripherin

(65.6 ± 3.2%), NF-200 (13.1 ± 3.7%), IB4 (77.3 ± 4.6%), Substance P (33.1 ± 2.8%), Nav1.7 (64.0 ± 2.9%) and Nav1.8 (59.4 ± 4.9%). Data are

presented as mean ± SEM. n= 4. Scale bar = 50 lm.
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from 43.3 ± 2.6% to 49.6 ± 0.9% of total neurons

(n= 4). Peripherin, an intermediate filament selective

for small sensory neurons presumably nociceptive, is

found in about half of neurons with Nedd4-2-IR (Fig. 2B)
Please cite this article in press as: Cachemaille M et al. Neuronal expression of

spared nerve injury model of neuropathic pain. Neuroscience (2012), http://dx.
and conversely Nedd4-2-IR is present in a large majority

of peripherin-positive neurons (Fig. 2C). Nedd4.2 is

weakly expressed in the NF200-postive large myeli-

nated fiber cell population. Within the subpopulations of
the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: Modulation in the
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small neurons, Nedd4-2-positive cells are mainly repre-

sented in the non-peptidergic neurons (IB4 positive)
Please cite this article in press as: Cachemaille M et al. Neuronal expression of
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while less than 10% of Nedd4-2 immunoreactive cells

are positive for the neuropeptide Substance P.
the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: Modulation in the
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immunoreactive cells. (C) Cell-size of Nav1.7-IR profiles in L4 DRG, expressed as the percentage of Nav1.7-positive cells in total cells. 0–600 lm2

indicates small neurons, 600–1200 lm2 medium neurons, >1200 lm2 represents large neurons. 1040 Nav1.7-positive neurons were measured in

the sham group and 1304 in the SNI group. (D) Representation of mean pixel number of all Nav1.7-positive cells according to their size. The

horizontal line at 18 represents the threshold between Nav1.7-positive and -negative neurons. (E) Control of Nav1.7 antibody by Western blot
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Together, these results indicate that Nedd4-2 is

expressed in DRG neurons and is predominantly

localized in small diameter sensory neurons, which

include many nociceptive neurons.
Nedd4-2-IR is decreased after SNI

In order to test the hypothesis that Nedd4-2 plays a role in

the hyperexcitability associated with neuropathic pain in

rats, we explored the regulation of its expression

following peripheral nerve injury. Using Western blot

analysis of L4 DRG (Fig. 3A and B), we observed a

decrease of about 56% in Nedd4-2 protein content

after SNI. Similar results were observed using

immunofluorescence on DRG (Fig. 3E and F):

quantification indicated a decrease in the number of

Nedd4-2-IR cell profiles after SNI. In addition, we

evaluated whether Nedd4-2 signal could be shifted to

another DRG neurons subpopulation after nerve injury

(Fig. 3C). The distribution of Nedd4-2-positive neurons

in DRG cells of different sizes confirms an expression

mainly in small neurons (<600 lm2), but no significant

difference was detected between sham and SNI groups.

The reduction of Nedd4-2-IR observed after SNI is not

associated with a decrease of mean pixel intensity

calculated for individual neurons (Fig. 3D), but rather

with a reduced number of Nedd4-2-expressing neurons

(Fig. 3F).
Please cite this article in press as: Cachemaille M et al. Neuronal expression of
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We therefore investigated whether the downregulation

of Nedd4-2-IR occurs in injured DRG neurons (injured

afferents of the tibial and peroneal nerves) after SNI,

which are known to be positive for the transcription

factor ATF-3 (Tsujino et al., 2000; Miyoshi et al., 2011).

As anticipated, the proportion of immunoreactive

neurons for ATF-3 in SNI rats is higher than in the sham

group (34.8 ± 2.8% as compared to 4.8 ± 0.2%), yet a

detailed analysis shows that downregulation of Nedd4-2

occurs in both injured (ATF positive) and the remaining

non-injured (ATF negative) neurons present in the DRG

(Fig. 3F). This suggests that neuronal deterioration and

in turn the previously reported neuronal death following

nerve section (Tandrup et al., 2000; McKay Hart et al.,

2002) is unlikely to account for the reduction of Nedd4-2

IR, in line with the reported absence of neuronal death

in neuropathic pain without axonal injury (Schaeffer

et al., 2010).
Nedd4-2-IR colocalizes with sodium channels Nav1.7
and Nav1.8

The regulation of ion channels by Nedd4-2, in particular

the voltage-gated sodium channels Nav1.7 and Nav1.8,

implies their coexpression in the same DRG neurons. In

line with this hypothesis, strong colocalizations between

Nedd4-2 and Nav1.7 (Figs. 2 and 4A) or Nav1.8 (Fig. 2)

were found. More than 60% of Nav1.7-positive neurons
the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: Modulation in the

doi.org/10.1016/j.neuroscience.2012.09.044

http://dx.doi.org/10.1016/j.neuroscience.2012.09.044


8 M. Cachemaille et al. / Neuroscience xxx (2012) xxx–xxx
co-expressed Nedd4-2, a value that dropped

concomitantly with Nedd4-2 downregulation after SNI

(64.0 ± 2.9% to 40.1 ± 3.0% in sham and SNI groups

respectively, p< 0.01, n= 4 in each group).

A significant increase in the number of Nav1.7

immunoreactive neuronal profiles is observed after SNI

as compared to sham (Fig. 4B), without any significant

change in the distribution of Nav1.7-IR cross-sectional

area (Fig. 4C). The enrichment in Nav1.7-IR is mostly

observed in small neurons (0–600 lm2) and a

simultaneous increase in mean pixel intensity is

observed in individual cells of this category after SNI

(Fig. 4D). Remarkably, Western blot quantification

shows a decrease in Nav1.7 content in DRG after SNI

(Fig. 4F–G).

Many Nav1.8-IR cells express Nedd4-2 (Fig. 2A–C) in

a proportion that is not altered by SNI (59.4 ± 4.9% and

59.6 ± 5.3% in sham and SNI groups respectively,

n= 4). Conversely, 55.0 ± 3.6% of Nedd4-2-IR profiles

showed Nav1.8-IR, but this proportion was significantly

decreased to 38.6 ± 4.4% after SNI (p< 0.05, n= 4).

This parallels the known downregulation of Nav1.8 after

peripheral nerve injury, which is here confirmed by the

decrease of cells expressing Nav1.8 in DRG:

46.9 ± 5.2% of total DRG neuronal profiles showed

Nav1.8-IR from control rats compared with 21.1 ± 1.7%

of DRG neuronal profiles from SNI animals (p< 0.01,

n= 4).

Nedd4-2 IR is not altered by peripheral inflammation

We further tested the hypothesis that Nedd4-2 might be

regulated after peripheral inflammation (Fig. 5). As

shown in (Fig. 5A and B) 48 h following intraplantar

injection of CFA, neither the density of Nedd4-2-positive

neurons nor the global Nedd4-2 content was modified.

DISCUSSION

In the present study, we characterized the expression of

Nedd4-2 in primary sensory neurons and showed its

downregulation after a peripheral nerve lesion. Using

immunofluorescence and Western blot, we first

established the presence of Nedd4-2-IR in DRG

neurons and its main localization in small-diameter

neurons. Furthermore, after SNI, we found a significant

decrease in Nedd4-2 content in DRG neurons. Finally

we demonstrated that the expressions of Nav1.7 and

Nav1.8 strongly co-localize with Nedd4-2-IR in the basal

condition and after peripheral nerve injury.

The demonstration of a colocalization between

Nedd4-2 and Nav1.7 or Nav1.8 immunoreactivities was

the first crucial step before postulating an involvement of

Nedd4-2 in the regulation of Nav after peripheral nerve

injury. In rat DRG, we found that a large proportion of

neurons were immunoreactive for Nedd4-2, a proportion

that further increased when we considered the sole

population of small neurons that express peripherin. This

result, together with the low percentage of Nedd4-2-

positive cells in myelinated NF200 immunoreactive

neurons (presumably non-nociceptive except the Ad sub-

population), suggests that Nedd4-2 may have a role to
Please cite this article in press as: Cachemaille M et al. Neuronal expression of
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play in the physiology of nociceptive neurons. In

addition, the further enrichment of Nedd4-2 in

IB4-positive nociceptive neurons (77.3 ± 4.6%) indi-

cates a putative specific role of Nedd4-2 in the

excitability of non-peptidergic nociceptors, a cell popu-

lation described as having longer duration action

potentials and expressing a high density of Nav1.8

(Stucky and Lewin, 1999). The marked downregulation

of Nedd4-2-IR in DRG neurons following peripheral

nerve injury suggests changes in ion channel trafficking

and the possible role of this in neuropathic pain is a

promising subject for future study. After nerve injury, the

reduced proportions of Nedd4-2-positive neurons were

not significantly different between injured (ATF-3

positive) and non-injured (ATF-3 negative) DRG

neuronal populations. This might imply that Nedd4-2

downregulation contributes to Nav turnover in both

injured (axotomized) and non-injured adjacent neurons.

Sodium channels exist both at the plasma membrane

and in intracellular pools (Schmidt et al., 1985; Ritchie

et al., 1990). Multiple and complex mechanisms

contribute to the forward trafficking of sodium channels

– and other voltage-gated ion channels – from the

intracellular pool to their subsequent functional insertion

in the plasma membrane. In this process, insertion is

counter-balanced by various post-translational

modifications including ubiquitylation and consequent

internalization of the channel (Jenkins and Bennett,

2001; Okuse et al., 2002; Garrido et al., 2003; Mohler

et al., 2004; Lopez-Santiago et al., 2006), a pheno-

menon in which Nedd4-2 has been implicated in trans-

fected cells (Fotia et al., 2004). In SNI, the Nedd4-2

decrease may influence this balance, possibly leading to

an accumulation of Nav at the cell membrane while the

total quantity of sodium channels in neurons may

remain stable. This mechanism might explain

discrepancies that have been reported between the

apparent rate of Nav synthesis and the observed

functional current, as in the case of TTX sensitive Nav
isoforms (Berta et al., 2008). In accordance with

previous studies on Nav1.7 transcriptional expression

(Raymond et al., 2004; Berta et al., 2008), we found a

significant reduction in total Nav1.7 protein after SNI.

Nevertheless, the number of Nav1.7-IR neurons was

increased after SNI. This discrepancy might originate

from a redistribution of Nav1.7 protein to a different

neuronal compartment more easily accessible to the

antibody, such as plasma membrane. It is also possible

that following peripheral nerve injury Nav1.7 is

upregulated but redistributed from the soma of sensory

neurons toward fibers resulting in apparent

simultaneous signal reduction in the cell bodies and

increase in the total DRG protein content.

Further investigations should be conducted in order to

distinguish the membrane and intracellular pools of

Nav1.7 using electrophysiological and biochemical appro-

aches. Nav1.7 has so far never been investigated in DRG

using patch clamp techniques due to the difficulty to

selectively isolate its currents. Interestingly, however,

Nav1.7 specific blockers have recently been developed

and will allow Nav1.7 exploration (Schmalhofer et al.,
the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: Modulation in the
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2008; Liu et al., 2012). Furthermore, biochemical

strategies might also be employed to quantify the

internalization and membrane targeting of Nav in

neuropathic pain and the importance of the specific

interaction with Nedd4-2 in this process.

The strong downregulation of Nav1.8, in line with

many other studies but in apparent contradiction of our

hypothesis, would suggest that a transcriptional

downregulatory mechanism predominates regardless of

the inhibition by Nedd4-2 of channel internalization.

In addition, it was already proposed that the

downregulation of Nav1.8 mRNA and protein in DRGs is

due to a redistribution of this channel along the axons of

injured (Thakor et al., 2009) or uninjured nerves (Gold

et al., 2003). Nedd4-2 downregulation in the DRG might

also impact Nav1.8 expression at the membrane along

the axon and further studies are needed to answer this

question.

Nedd4-2 is not the only potential post-translational

regulator of Nav. An interaction between p11 (from the

S100 protein family) and Nav1.8 has been reported to

facilitate Nav1.8 sorting toward the cell membrane

(Okuse et al., 2002). Besides, ankyrin interacts with and

upregulates Nav1.5 in cardiac cells (Mohler et al., 2004)

as well as Nav1.2 and Nav1.6 at nodes of Ranvier

(Jenkins and Bennett, 2001; Garrido et al., 2003). In

addition, Navb-subunits fulfill important regulatory

functions. In particular, the b2-subunit was shown to

modulate mRNA and protein expression of various Nav
(Lopez-Santiago et al., 2006) and is increased after

nerve injury (Pertin et al., 2005). Finally, protein kinases

such as PKA or PKC also modulate VGSC, with PKA

increasing Nav1.8 and decreasing Nav1.7 currents

while PKC decreases Nav1.8 and Nav1.7 currents

(Vijayaragavan et al., 2004). Nedd4-2 interacts

specifically via one of its WW domains (protein–protein

interaction modules) with a PY motif situated in the

COOH termini of Nav or ENaC (Harvey et al., 1999;

Rougier et al., 2005). Previous studies have established

the connection between Nedd4-2 and the Nav in vitro
(Fotia et al., 2004; van Bemmelen et al., 2004;

Rougier et al., 2005). In cardiac cells, Nav1.5 can be

downregulated by Nedd4-2 (Abriel et al., 2000; van

Bemmelen et al., 2004) implying a probable modulation

of cardiac excitability. With the exception of Nav1.4 and

Nav1.9, all Nav contain the specific PY motif suggesting

an interaction with Nedd4-2. These include Nav1.6,

whose mRNA is the third most abundant among sodium

channels in the DRG (Berta et al., 2008); this channel

has recently been reported to be modulated by Nedd4-2

(Gasser et al., 2010). Additionally, Nav1.2, mainly

present in the central nervous system, has been shown

to be downregulated when associated with Nedd4-2

(Fotia et al., 2004; Rougier et al., 2005). In addition to

Nav, Voltage-gated K+ channels play major roles in

modulating electrical excitability in neurons. For

instance, KCNQ2/3/5contain a PY motif and is

subjected to Nedd4-2 dependent downregulation in a

Xenopus oocyte expression system (Ekberg et al.,

2007; Pongs, 2008; Bongiorno and Poronnik, 2011).

This regulation and modulation of K+ channels might
Please cite this article in press as: Cachemaille M et al. Neuronal expression of
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also be a key point in the excitability generated after a

peripheral nerve injury.

Finally, besides its expression level, Nedd4-2

is regulated by a direct phosphorylation as well

(Debonneville et al., 2001; Snyder, 2009). In particular,

serum- and glucocorticoid kinase 1 (Debonneville et al.,

2001) increases ENaC cell-surface expression through

a negative regulation of Nedd4-2 (Alvarez et al., 1999).

These findings imply a posttranslational regulation of

Nedd4-2 playing therefore a role in Nav modulation.

Upstream regulatory mechanisms of Nedd4-2 might

therefore represent other perspectives to explore in the

context of peripheral nerve injuries.
CONCLUSION

In summary, we have demonstrated in vivo the presence

of the ubiquitin ligase Nedd4-2 in the rat DRG. Moreover

meticulous analyses of the immunoreactive cell

populations showed its presence mainly in small

nociceptive neurons, especially the non-peptidergic

neurons. We also colocalized Nedd4-2 with Nav1.7 and

Nav1.8. In a model of peripheral nerve injury, the

decrease of Nedd4-2-positive neurons suggests a

putative role in altered Nav turnover, especially Nav1.7,

which could contribute to hyperexcitability. Future

studies will shed light on the exact molecular impact of

Nedd4-2 on Nav in nociceptors and pathological pain.
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