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Abstract 

 

Purpose 

Carbon monoxide (CO) is one of the most important toxic gases in the atmosphere. Its high affinity for hemoglobin 

made carboxyhemoglobin (COHb) the most appropriate biomarker for CO poisonings. COHb is measured using 

spectrophotometric (UV-spectrophotometry, CO-oximetry) or gas chromatographic (GC) methods hyphenated 

with flame ionization or mass spectrometry detectors. However, inconsistencies in many cases were reported 

between measured values and reported symptoms, raising doubts over the suitability of COHb as biomarker 

together with the accuracy and reliability of its measurement methods. Therefore, we aimed to review the accuracy 

of current methods to measure CO and to determine their sources of error and their effects on the interpretation 

process.  

 

Methods 

A detailed search of PubMed was performed in November 2018 using relevant keywords. After exclusion criteria, 

46 articles out of 191 initial hits were carefully reviewed.  

 

Results 

While optical methods are highly affected by changes of blood quality due to degradation of the samples during 

storage, GC methods are less affected. However, measurement of COHb does not quantify free CO, which is 

mainly responsible for toxicity mechanisms other than hypoxia such as inhibition of hemoproteins, thus 

underestimating the true CO burden. Therefore, measurement of COHb is insufficiently accurate for CO poisoning 

diagnosis. 

 

Conclusions  

An alternative biomarker is required, such as determining the total amount of carbon monoxide in blood. Even 

though further research is required, we recommend toxicologists to consider all sources of error that can alter 

COHb concentrations and, in more challenging cases, they should use GC–MS methods to confirm the results 

obtained by spectrophotometry.   

 

 

Keywords Carbon monoxide poisoning, Carboxyhemoglobin, CO-oximetry, UV-Spectrophotometry, GC–MS, 

Source of error   

 

 

 

 

 

 

 

 



3 
 

Introduction  
Carbon monoxide (CO) concentrations may be measured in exhaled breath, ambient air, or in blood. Due to the 

high affinity of CO to hemoglobin (Hb), it has been assumed that the majority, if not all, CO binds with Hb when 

introduced into the blood circulation. This has resulted in carboxyhemoglobin (COHb) being considered the most 

appropriate clinical marker of exposure for CO poisoning [1]. However, COHb does not represent the only 

reservoir of CO in the human body because CO may be found dissolved in blood at free state and can bind to 

other heme-containing respiratory globins, such as myoglobin in muscle, neuroglobin in the nervous system and, 

to a lesser extent, cytoglobin [2]. CO dissolved in blood in free form is known to have a role in the pathophysiology 

of CO poisonings [3, 4], but might be more substantial than what studies revealed so far. This would result in 

under- or misestimation of the true CO level present in the analyzed blood sample, potentially elucidating some 

of the cases where inconsistencies between measured COHb level and reported symptoms were found. However, 

currently there is not much data on free CO available.  

COHb in blood is measured directly or indirectly by using either optical methods (CO-oximetry, UV-

spectrophotometry or pulse-oximetry) or gas chromatographic methods in combination with a variety of detectors 

(flame ionization detector, mass spectrometer). In clinical cases, the “gold standard” is the measurement of COHb 

in blood is by CO-oximetry (or pulse-oximetry), either as a separate instrument or integrated in what is commonly 

known as a blood gas analyzer (BGA) or radiometer [5]. Although ultraviolet (UV)-spectrophotometry remains 

the most frequently used method in forensic cases, CO-oximetry and gas chromatographic methods are also widely 

employed in this field.  

Like any biomarker, the quantitative measurement of COHb is subject to a variety of factors that 

influence the measurement. Measurement error in analytical studies is defined as “uncertainty” or “bias”. 

Uncertainty originates when several predictable, but not always controllable factors affect the measured values 

and may potentially alter the obtained value, resulting in a deviation from the true value due to these factors. In 

medical practice and especially for toxicologists, it is crucial to correctly and accurately determine a biomarker, 

in order to make the correct diagnosis and initiate the proper treatment in clinical cases and to determine the 

correct cause of death in forensic cases. Shortcomings in doing so can have severe clinical and legal consequences. 

Therefore, in this paper, we aim to review the accuracy of current methods to measure CO and to determine their 

potential sources of error and their effects in the interpretation process.   

 

Methods 
PubMed was searched in November 2018 using the keywords (“carbon monoxide” OR “carboxyhemoglobin”) 

AND (“poisoning”) AND ("measurement" OR "determination" OR "quantification" OR "analysis" OR "breath" 

OR "blood" OR "oximet*" OR "spectro*" OR "gas chromatography" OR "storage"); this gave 191 hits. Systematic 

reviews, meta-analyses and general review articles, retrospective, prospective, observational and clinical cohort 

studies were excluded as well as case reports, limiting included articles to those which were focused specifically 

on describing a method for analysis of CO or COHb in various tissues and those describing issues related to 

analysis of samples (storage, sample pretreatment, etc.). This left 49 relevant articles on measurement methods 

and sources of errors.  
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Measurement of CO in breath 

Analytical techniques 
Analysis of CO in exhaled breath was evaluated as a measurement method for clinical cases, since a good 

correlation between alveolar breath CO and COHb was found by several research groups [6–9]. Portable devices, 

called MicroCOmeters or CO monitors, are often used in smoking cessation programs [8, 10] and may be useful 

when a rapid on-site assessment in multiple casualties is necessary, enabling the most severe cases to be identified 

[11]. This measurement is based on an electrochemical fuel cell sensor, which works through the reaction of CO 

with an electrolyte on one electrode and oxygen (from ambient air) on the other. This reaction generates an 

electrical current proportional to a CO concentration. The output from the sensor is monitored by a 

microprocessor, which detects a peak at expired concentrations of CO in the alveolar gas [12]. These are then 

converted to COHb% using the mathematical relationships described by Jarvis et al. [8] for concentrations below 

90 parts per million (ppm) and by Stewart et al. [13] for higher levels.  

 

Sources of errors 
Measurement of CO in breath cannot account for the total CO concentration present in the blood at the time of 

exposure. It is a very susceptible method and affected by a variety of factors that can easily alter the result into 

under- or overestimating the true concentration (Table 1). A major aspect is the variation among the subjects’ 

abilities of breath-holding. To obtain the alveolar gas, it was found that the breath needs to be held for 20 s and 

then only the end tidal expired air is used for CO measurement. Given the interpersonal differences in pulmonary 

function, capillary diffusion surface and inspiration and expiration rates, as well as the inability to fully control 

whether a subject is properly holding the breath, the portion of expired alveolar gas sampled and the results 

obtained can have a high degree of variability [6, 8, 13].This can also pose an issue in susceptible groups of the 

population, such as elderly, children or subjects with respiratory diseases. Furthermore, since they were initially 

designed for smoking cessation programs, accuracy of CO monitors is better in lower CO concentrations and 

might therefore not be sufficiently accurate for acute intoxications [14]. Nevertheless, CO monitors have high 

usefulness on sites of mass casualties or for first responders. They are portable and can give an indication of the 

gravity of the case, which can allow the appropriate treatment of the patient as well as proper precautions to be 

taken by first responders.            

 

Measurement of CO in blood: optical techniques CO-oximetry and spectrophotometry 

Analytical techniques  
Spectrophotometric or optical methods measure the concentration of COHb based on the quantity of absorbance 

of light when the compound is exposed to light of different wavelengths. In the past, single-beam UV-

spectrophotometry or double wavelength spectrophotometry was first developed due to the spectral absorbance 

of the Hb structures and due to the distinct spectral differences between oxyhemoglobin (O2Hb) and COHb [15–

17]. A similar method involves the measurement in the visible spectra of the differences in absorbance between 

reduced Hb (HHb) and COHb, where a reducing agent is added to the blood sample that reduces O2Hb, but not 

COHb [18, 19].   
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However, double wavelength spectrophotometry was not a very accurate and specific method [16], since 

results were based on the measurement of only two wavelengths. Automated differential spectrophotometry was 

later developed, which uses double-laser beams to determine the difference in absorbance of a sample compared 

to a negative sample, thus with this method, matrix effects are accounted for, resulting in better accuracy.  

CO-oximetry is a measurement technique based on multiple wavelength spectrophotometry, which uses 

the multiple wavelengths up to the full range of wavelengths for analysis, allowing for more accurate measurement 

of  COHb [20–22]. They are currently the standard analytical technique used for measurement of COHb, either 

with a separate instrument or, for hospital cases, integrated into a BGA [18, 23, 24].  

Despite the advantages of CO-oximetry, due to cost-efficiency UV and double wavelength 

spectrophotometers are currently still used in many developing countries and are also listed in the International 

Organization for Standardization (ISO) 27368:2008 ‘Analysis of blood for asphyxiant toxicants – carbon 

monoxide and hydrogen cyanide’ standards [25].  

 

Sources of error 
Several issues can alter the measurement results from optical methods, mainly due to the susceptibility of these 

methods to changes in sample quality in the light of poor choice of sample handling techniques and storage 

conditions (e.g., temperature, preservative, etc.) as well as biochemical alterations that occur overtime [26]. Some 

of the most important potential errors for COHb determinations include: 

1) Type of preservative: the type of preservative used in the blood tube used to store the sample can alter the 

results due to biochemical reactions that can take place, which can either increase or decrease the 

concentration of CO[27, 28].  

2) Storage temperature: the use of different storage temperatures was shown to alter the results; storage over 

prolonged periods of time can lead to degradation of the sample, which can lead to in vitro CO production, 

resulting in overestimation of the concentration; storage at room or hot temperatures leads to faster 

degradation as compared to storage in the fridge or freezer [26, 28, 29].   

3) Dead volume: the different amounts of volume of headspace (HS) in the sampling tube (which is known as 

dead volume) can alter the results because of the reversibility of the bond between CO and Hb; the more dead 

volume in the tube, the more likely there is dissociation of CO from Hb and release into the HS [30].  

4) Freeze-and-thaw cycles: whether a sample has been frozen and then thawed one or more times can also alter 

the resulting measurement, due to the breakdown of the erythrocytes [28]. 

5) Reopening of the sampling tubes: the repeated opening of the tube can lead to substance loss (in gaseous state 

when CO is not bound to Hb) with increasing number and time of reopening as well as increased exposure of 

the sample to oxygen [23, 28]. 

6) Postmortem (PM) changes: thermo-coagulation, putrefaction and PM CO production are all known sources 

of error, but they cannot be quantified due to their biological unpredictable nature [27, 31, 32].  

7) Instrument and personal error: errors due to the instrument or the operator are random, but they can be 

corrected by using an internal standard when possible, which minimizes the error [33]. 
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These altering factors are applicable not only to optical measurements of COHb, but also to gas chromatographic 

measurements of CO. Specifically for spectrophotometric methods, several of the factors listed in Fig. 1 have 

been investigated and are described in more detail as follows.  

Storage studies performed earlier by Chace et al. [28] and later by Kunsman et al. [27] evaluated a number 

of storage conditions, including the amount of air present in the sampling tube (known as dead volume, which can 

alter the results because of the reversibility of the bond between CO and Hb and potential dissociation of the gas 

into the HS of the tube), storage temperatures, preservatives and initial COHb saturation levels. They observed 

decreased COHb levels that were related to the ratio of exposed surface area to the volume of blood (the higher 

the exposed surface area, the greater the loss), the storage temperature (the higher the temperature, the greater the 

loss) as well as initial COHb% saturation levels (the higher the COHb levels, the greater the loss). The hypothesis 

of the formation of an equilibrium between CO in blood and air above the blood sample in the tube was proposed 

to explain the influence of the HS in the sampling tube [28]. Storage at room or hot temperatures of blood leads 

to faster degradation and lower sample stability, affecting spectrophotometric measurement of CO, which was 

also confirmed by other research groups [26, 34]. Additionally, they found no effect from the preservative used, 

even though it was tested on an insufficient number of preservatives (only two, namely sodium fluoride (NaF) 

and ethylenediaminetetraacetic acid (EDTA)), which were compared to samples with no preservative, and only 

on samples stored frozen right after sampling over a period of two years [39]. Analysis of the samples on only 

two significantly distant time points might fail to notice changes in short-term storage due to preservative use, 

which is more relevant than long-term storage, since samples are in the majority of cases analyzed within a few 

hours to days. Nevertheless, these findings are especially relevant for forensic or legal cases, where retrospective 

analyses can still provide sufficiently reliable information. The resulting lack of impact from the preservative 

might however be biased because the measurements were performed with optical methods only, which are known 

to be influenced by the blood state. Therefore smaller changes due to the preservatives might not have been picked 

up by this less sensitive measurement methods. However, Vreman et al. [35] were able to find that using EDTA 

as preservative led to falsely increased COHb values when measured by CO-oximetry. Nevertheless, stronger 

significance of these findings would have been achieved with confirmation by another measurement method, such 

as gas chromatography (GC).     

Furthermore, these conditions may not only influence the CO levels present in the blood, but also the 

blood quality [28]. For samples that cannot be readily analyzed and are not stored under optimal conditions, a 

degradation of the sample occurs, which was confirmed to trouble the optical measurement methods used to 

determine COHb levels [36]. This can be a major issue for many laboratories where optical techniques are 

routinely used for sample analysis.  

Additional factors influencing the measurement of COHb-levels that have been reported in the literature 

include the presence and amount of oxygen in air [23] and, in PM samples, thermo-coagulation in fire victims 

[34], putrefaction during a prolonged PM interval (PMI) [37], contamination due to hemolysis, high lipid 

concentrations or thrombocytosis, all of which result in turbidity of the sample troubling the measurement 

performed with optical techniques. Another recurring and significant phenomenon to be considered during 

evaluation of the results is the PM production of CO in the organism [32, 38]. CO was found to be produced in 

significant quantities in cases that were not related to fire- or CO exposure. However, the cases in which this 

occurs are mostly cases of putrefied bodies. It was confirmed that CO is formed due to the decomposition of 
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various substances present in the body, such as erythrocytes catabolism, a phenomenon that occurs also in living 

organisms [32]. Therefore, it is important to differentiate those cases from the real CO intoxication cases, which 

can be done with the help of the cause of death determined with an autopsy, even though it is not always a simple 

task to completely exclude the possibility of the role played by CO in these cases [23]. As a result, PM 

decomposition currently constitutes a field with open questions that requires further investigation. 

 

Antemortem COHb measurement by pulse CO-oximetry 

Analytical techniques 

In clinical settings and generally for living patients, a noninvasive alternative to venous or arterial blood COHb 

measurement by a BGA or CO-oximetry that has been widely investigated is pulse CO-oximetry [39–43]. 

Similarly to standard CO-oximetry, pulse CO-oximetry is a spectrophotometric method that quantifies multiple 

types of hemoglobin, including COHb, based on the absorbance of light after exposure to different wavelengths 

[43]. As opposed to regular CO-oximeters, pulse CO-oximeters have the ability to measure COHb continuously 

and without the need of blood sampling, thus allowing the monitoring of COHb levels in real time and 

simultaneously to the administration of treatment.  

     

Sources of error 

Noninvasiveness and cost- and time-efficiency are some evident advantages of using pulse CO-oximeters. 

However, for CO poisoning diagnosis, there are factors of higher importance from a medical perspective, such as 

accuracy, precision and reliability. Being able to diagnose a CO poisoning case quickly is necessary, but if the 

results obtained over- or underestimate the true COHb levels, this can have severe and potentially fatal 

consequences. Several studies have reported low precision and accuracy as well as an elevated false positive and 

negative rate, as opposed to regular blood measurements [5, 39–42]. Especially for COHb levels above 10%, pulse 

CO-oximeters significantly underestimated the COHb levels [39].  

Furthermore, factors such as blood pressure, oxygen saturation and body temperature also seem to affect 

the accuracy of pulse CO-oximeters [42]. Feiner et al. [40] reported low signal quality or no report of CO 

saturation levels when the oxygen saturation decreased below 85%, which is indicative of hypoxia. Considering 

that hypoxia is one of the main effects of a CO poisoning, it is a severe disadvantage not to be able to measure 

COHb accurately in hypoxic states. However, a more recent study by Kulcke et al. [43] found good accuracy 

levels in measuring COHb during hypoxemia, even though a slightly higher underestimation of COHb levels is 

reported for COHb concentrations above 10%. This confirms that pulse CO-oximeters can be useful for 

monitoring exposures to low CO levels, but accuracy and precision are not guaranteed for more severe poisonings 

as well as for smokers, who generally have baseline COHb levels that can range from 3-8% in normal smokers 

but can easily reach 10-15% in heavy smokers [1, 2].        

 In comparison to postmortem CO-oximetry, antemortem COHb measurement by pulse CO-oximetry is 

not affected by storage or sampling parameters, which reduces the sources of error. Additionally, no laborious 

and time-consuming calibration of the device seems to be needed based on what is reported in the literature, 

leading to a more simplified routine analysis, even though there is scarce information regarding device 
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maintenance. Similarly to general CO-oximetry and despite good accuracy and precision, measurement of only 

CO bound to Hb can lead to underestimation of the total CO burden and thus lead to misdiagnosis. Another 

relevant point from a judicial perspective is that pulse CO-oximetry does not provide samples that can be used for 

confirmation or counter expertise in legal disputes.        

 

Measurement of CO in blood: gas chromatography 

Analytical techniques  
The principle behind gas chromatographic CO detection is based on the measurement of the released CO dissolved 

in blood as well as the one bound to Hb through a liberating agent (after red cell lysis). Therefore, the sample is 

firstly treated with a hemolytic agent, such as saponin, Triton X-100 or other detergents, and subsequently 

acidified to liberate the CO in blood [34, 44–47]. The reaction of COHb with a powerful acid/oxidizing agent was 

found to efficiently release CO and water as products. The releasing agents commonly used are sulfuric acid 

(H2SO4), hydrochloric acid (HCl) and potassium ferricyanide (K3Fe(CN)6). Other acids such as lactic acid [48], 

citric acid [48, 49] or phosphoric acid [49] have also been tested.  

In the studies performed in earlier years (70s, 80s and 90s), potassium ferricyanide was introduced for 

the release of CO and became very popular due to the availability, since it was already used in spectrophotometric 

methods as hemolytic agent. It was also found to be efficient in liberating the CO and its extent of reaction was 

not influenced by the presence of O2 or O2Hb at a wide pH range, as compared to other acids tested [30, 46, 48, 

50, 51]. However, in more recent studies, sulfuric acid has been preferred, mostly because, as compared to other 

acids of same efficiency, it is more readily available, cheaper and allows the simultaneous liberation of CO and 

production of 13CO used as internal standard [4, 30, 31, 47, 49, 52–54]. After successful liberation, CO is analyzed 

by GC and then detected with one of the above mentioned detectors.  

For the GC separation, a capillary column with a 5Å molecular sieve has been found to be specific for 

the separation of CO from other interfering gases such as nitrogen (N2), oxygen (O2) and methane (CH4) [51]. 

Various packed columns were used previously, but have been substituted by the capillary columns due to their 

significantly reduced size.   

To enhance sensitivity and accuracy and increase the range of analysis, GC methods were studied with 

various types of detection, such as thermal conductivity detection (TCD), flame ionization detection (FID), mass 

spectrometry (MS) and reduction gas analyzer (RGA) [55-66]. The most commonly used and investigated detector 

was FID, firstly reported in relation to CO determination in 1968 [51]. After GC separation, the CO is chemically 

reduced to methane (CH4) with a methanizer and subsequently analyzed via FID.             

 

Sources of error  
The most important sources of error for GC techniques are found in the process of calibration before analysis and 

the methods of correlating measured CO concentrations to COHb levels that have previously been linked to the 

symptomatology. Generally, calibration of the instrument is performed either with pure CO gas, which was diluted 

to obtain the desired CO concentrations, or with fortification of blood with CO to reach different COHb% 

saturation levels. Additionally, excess CO was removed through the performing of a “flushing” step, in which the 

calibrators were flushed with a stream of inert gas (usually N2). This step enabled the removal of unbound CO 
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from the sample, thus leaving only CO bound to Hb to be analyzed, but thereby deliberately neglecting the 

potential toxicity of free CO.  

First changes in the calibration method were made in 1993, when Cardeal et al. [49] firstly took advantage 

of the reaction of formic acid with sulfuric acid to form CO for calibration. However, no detail was given on how 

the analyzed blood was saturated with CO, nor was it explained how the formula used to back-calculate the 

measured CO concentration to a COHb level was created.  

Czogala and Goniewicz [67] proposed a GC–FID based method which directly correlated the CO levels 

in air to COHb in blood through back-calculation and extrapolated it to the other factors assessed (exposure time, 

smoking frequency, number of smoked cigarettes and ventilation conditions). The technique was designed to 

ensure complete release of CO from the blood samples by performing the reaction and subsequent analysis in an 

airtight reactor. Similarly, the air samples were directly transferred from the room to the analysis instrument, 

which avoided time delays and possible losses of CO and allowed for direct correlation of the results to the other 

measurements. However, the details about the procedure to obtain 100% CO saturated blood used for calibration 

were not described, which is necessary to assess whether the method is reliable and reproducible. Furthermore, 

the formula used to back-calculate the COHb saturation levels from the measured CO concentrations contained 

the Hüfner factor of 1.51, which differed from the factor reported by other studies [30, 46]. The Hüfner factor 

expresses the maximum amount of CO that can be bound to 1 g of Hb [68, 69]. A detailed list of additional pitfalls 

of GC methods is found in Table 1. 

Measurement of CO in blood: mass spectrometry, GC-MS and HS-GC-MS 

Analytical techniques  
MS is the method of choice to detect CO because the identification is not only based on the retention time, but 

also the mass spectrum. Middleberg et al. [31] developed a method, which combined GC–MS with flame atom 

absorption spectroscopy (FAAS). Hereby CO was determined by GC–MS after release with sulfuric acid and 

heating, while FAAS was used to determine the total iron content of the blood, which is used to calculate a more 

precise total amount of available Hb. By using this assay, it was assumed that all the iron present in blood was 

part of the heme protein and was capable of binding CO, even though it needs to be taken into account that this is 

not completely true and depends on the state of the organs, tissues and possible present diseases. Therefore, the 

obtained values might not accurately reflect the real CO levels.   

 
Sources of error 
Similarly to other GC methods, also in MS, main errors derive from calibration of the methods, the subsequent 

back-calculation of COHb from CO and extrapolation of already existent COHb% saturation-symptom correlation 

(Table 1).  

Hao et al. [37] published an approach built on a HS-GC–MS method for analysis of CO in putrefied PM 

blood. Hereby, the standard curve was constructed from putrefied blood, which was saturated by CO-bubbling to 

reach 100% COHb and then flushed to remove excess CO. COHb% levels were then calculated from the ratio of 

saturated to untreated blood. In PM cases, to prevent the variation of Hb levels to affect the results, direct blood 

saturation was performed. It was stated that 30 min of pure CO exposure of the blood was necessary to fully 
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saturate blood, even though the procedure applied to assess complete saturation, putrefied blood state and PMI 

were not described [37]. Furthermore, according to their results of the storage condition tests (possible loss of 

sealing parts of the HS vial, water bath temperature, stability, interval and temperature), the storage temperature 

did not affect the COHb% levels. However, this appears in contradiction with the majority of previously published 

studies, even though they were obtained with the use of other approaches, such as optical methods and other GC-

detectors.  

Varlet et al. [52] were able to develop and validate a new method, which used isotopically labelled formic 

acid (H13COOH) to produce 13CO as internal standard for a HS-GC–MS method. This is very advantageous, since 

formic acid (HCOOH) was already used for the calibration, and sulfuric acid could be used to react with both 

types of formic acid, forming a mixture of CO and 13CO, from which the CO concentration could be derived 

mathematically and correlated to the COHb levels through the use of formulae previously published by other 

authors [46, 49]. However, these formulae describing back-calculation of COHb from CO concentrations 

measured by GC could be debatable due to the random finding of good correlation between the 

spectrophotometrically measured COHb levels and the CO levels measured by GC–MS  [52]. Varlet et al. [36] 

improved their method and compared it with results obtained through CO-oximeter. They were able to obtain cut-

off values for different categories of back-calculated COHb% levels as compared to the ones directly measured 

by the CO-oximeter. However, even if this approach seems to show reliability for both clinical and forensic cases, 

only a limited number was tested. Oliverio and Varlet [4, 70] further developed this approach by validating both 

clinical and PM settings for the measurements of total amount of CO in blood (TBCO) by GC–MS with use of 

airtight gas syringe for samplings, which minimized any potential loss that could occur with a normal syringe or 

HS sampler. Application to PM samples showed relevant differences between the contents of CO and COHb when 

applying formulae in the literature for back-calculation. Significant differences were also observed between 

flushed and not flushed samples from a clinical cohort exposed to CO [70]. This demonstrates the presence of free 

CO and confirms the weaknesses of COHb for accurate CO poisoning determination, even though the number of 

subjects in the cohort was limited. Thus, the measurement of TBCO should be done as an alternative to COHb 

and the currently routinely used spectrophotometric methods for the determination of CO.  

 

Interpretation of results and choice of biomarker 

After analysis of the samples, an important and challenging aspect for CO determination is the interpretation of 

the results. There is not a consensual agreement on the cutoff values for the different levels of exposure and 

severity of poisonings. According to the World Health Organization (WHO), COHb levels in blood of the healthy 

non-smoking population should not exceed 2.5-3%, while for smokers, levels above 10% are considered to be 

abnormal [11, 71–73]. Values of 30-35% COHb are the upper extreme values reportedly found in clinical 

poisoning cases. Above this limit, irreversible damages to the organs are expected, thus resulting in a cascade of 

events that eventually leads to death. 

However, these values are interpreted differently according to the cases. Various parameters can affect 

the perimortem COHb% levels and in the agonal period before death, which include the presence of oxidative 

smokes or other gases that can interfere and/or compete with the absorption mechanism of CO such as nitrogen 

dioxide (NO2) (increased MetHb), or the formation of other toxic gases like hydrogen cyanide (HCN)[74]. Pre-
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existing cardiovascular, hemolytic and respiratory diseases also can alter the mechanism and magnitude of CO 

absorption, with the potential to both decrease and increase the resulting COHb% levels [11, 23]. Therefore, each 

case needs to be analyzed and interpreted individually, based on all the relevant information available. For 

example, a COHb level of 25% in a PM cases may be considered as a contributing factor to the cause of death but 

should not be considered exclusively as cause of death. Similarly, in clinical cases, 15% COHb can be considered 

as a poisoning case, but in heavy smokers, levels up to 18% have been found [72] in individuals that did not show 

any symptom of CO poisoning. Overall, there seem to be some significant discrepancies between COHb values 

and reported symptoms, which make the correct diagnosis of CO poisonings in clinical cases and the determination 

of the cause of death in forensic cases challenging.  

A possible explanation for these phenomena is that basing the diagnosis of a CO poisoning only on 

COHb% levels might actually underestimate the real CO burden. There might be an unknown amount of CO that 

on the one hand dissociates back from COHb, and on the other hand is dissolved in the blood without being bound 

to Hb, resulting in a higher total CO content than the one determined by CO-oximetry. The conventional 

assumption that the part of CO bound to Hb causes the most significant adverse health effects was repeatedly 

debated [3, 4, 75–78]. Free CO in blood could constitute a toxic reservoir of CO for the organism and additionally 

fuel the major implications on the central nervous system (CNS) by the known binding to other globins such as 

myoglobin, neuroglobin and cytoglobin [79, 80]. The ratio of COHb to CO dissolved and dissociated probably is 

also subject to interpersonal variability, which includes all factors such as e.g., metabolic rate and age [11] and 

needs to be taken into account when interpreting the results obtained by CO-oximetry.  

Another issue is that the majority of GC assays, with exception of Varlet et al. [36, 52] and Oliverio and 

Varlet [4, 70], includes the “flushing” step in their sample-preparation procedure. The CO in excess, which is not 

bound to Hb, is flushed away with inert gas, allowing the determination of only CO bound to Hb. This procedure 

is done under the assumption that only CO bound to Hb is relevant and responsible for the adverse effects of a 

CO poisoning. However, this assumption has been widely debated, leaving the possibility of additional CO found 

in blood and not bound to Hb to be able to have an effect on an intoxicated individual. Furthermore, in clinical 

routine COHb analyses, blood samples are not flushed, because it does not comply with the pathophysiology of 

CO poisoning. In general, the use of formulae to back-calculate CO measured with GC methods to COHb might 

be prone to additional errors and could lead to a misestimation of true amount of CO present in the blood of an 

individual.  

All these issues raise the doubt whether the measurement of COHb is the most appropriate method for 

CO poisoning determinations. It seems plausible to propose a more accurate biomarker for CO poisonings. Several 

alternative biomarkers have been proposed in the past, such as lactate [81–83], bilirubin [84], S100β [85] and 

troponin concentrations in blood. Some of these gave positive and good correlations with COHb and were reported 

to be potentially helpful in diagnosing CO poisonings. However, none of these biomarkers is specific to CO 

poisonings, but are rather indirect biomarkers derived from toxicity caused by CO in the cardiovascular, nervous 

system and cellular levels, which can be attributed also to other diseases.   

The development of an alternative biomarker specific to CO should be derived from the investigation of 

a novel measurement approach that does not only focus on the CO bound to Hb, but also takes into consideration 

the role and toxicity of CO at cellular level, by measuring the total amount of CO present in the analyzed sample, 

such as TBCO. Mainly due to the dependency of spectrophotometric methods from the good quality of the sample, 
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which especially in forensic cases is not always available, it seems that GC methods are currently the most suitable 

techniques to be further explored. As detector, the mass spectrometer is the most versatile, accurate, user-friendly 

and nowadays routinely present in the majority of laboratories. Being able to determining the true CO exposure 

and correlating this to the symptoms reported by patients would allow a more conclusive and comprehensive CO 

poisoning determination, diminishing the number of misdiagnosed cases and falsely determined causes of death.  

 

Conclusions 

Even though COHb is routinely measured by spectrophotometric methods, several issues concerning sample 

stability and the dependency of optical methods from the sample quality have led to the search for an alternative 

way for measuring CO, such as GC. In addition, there is evidence showing a significant amount of CO present in 

blood in free form. Free CO has major toxic effects at a cellular level, affecting not only the respiratory system, 

but also especially the CNS. However, it is not quantified with current methods focusing only on COHb; hence 

the back-calculation of COHb from CO leads to misestimations. Therefore, an alternative approach to quantify 

the total amount of CO in blood directly instead of using CO in breath or COHb in blood should be used for CO 

poisoning determinations, such as the proposed TBCO measurement by GC–MS. Even though blood CO 

concentration cut-offs and their correlation with symptomatology are not yet available and GC–MS is more time-

consuming, we recommend toxicologists especially for doubtful or very challenging cases to use GC–MS methods 

to verify the results obtained by CO-oximetry or spectrophotometry. This leads to results closer to the true CO 

burden, reducing the underestimation caused by COHb measurement and thus the risk and number of 

misdiagnoses. Especially if the analysis is delayed from sampling requiring storage, we further recommend 

toxicologists to document and indicate information about sampling time, analysis time and storage conditions 

because they can significantly influence the final interpretation.   
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Table 1 Overview of analytical methods used for carboxyhaemoglobin/carbon monoxide analysis, their main properties and limitations and 
reference examples 

Specimen/method Technique Main characteristics Pitfalls References 

Breath  Electrochemical 
sensor 

• Easy to use 
• Non-invasive 
• Rapid (multiple determinations in short 

time period – useful in mass accidents) 
• Low cost 
• Portable 
• Alveolar breath CO correlated to COHb 
• Used in smoking cessation programs 

and to detect hemolytic diseases 

• Only fraction of CO exhaled is measured 
• Not able to determine total amount of CO in 

blood circulation 
• No correlation to CO in tissues  
• Not sufficiently sensitive for low level CO 

exposures 
• Only approximate diagnosis can be made 
• Correlation between exhaled CO and COHb 

still debatable 
• Not suitable for all patients (elderly, 

diseased) – requires sufficient exhaled air 
flow 

Ogilvie et al. 1957 [6] 
Jarvis et al. 1980 [7] 
Jarvis et al. 1986 [8] 
Vreman et al. 1994 [14] 
Middleton et al. 2000 [9] 
Macintyre et al. 2005 [10] 
Penney 2007 [11] 

Blood 

  

  

Double wavelength 
(DW)/automated 
differential/ultraviolet 
(UV) 
spectrophotometry 

• Use of multiple wavelengths 
• Rapid 
• Easy to use 
• Fairly accurate 
• Small sample size 

• DW: not precise, accurate and specific 
• Sensitive to alteration of sample quality 
• Not optimal especially for PM samples with 

long/unknown PMI and/or storage 
conditions 

• Risk of misdiagnosis due to artifacts 
• Not able to determine total amount of CO in 

blood circulation 
• No correlation to CO in tissues  
• Focus only on COHb 
• Time consuming sample preparation (COHb 

reduction) 
• Often observed inconsistency between 

measured levels and reported symptoms 

Ramieri et al. 1974 [16] 
Winek et al. 1981 [17] 
Fukui et al. 1984 [19] 
Vreman et al. 1984 [46] 
Lewis et al. 2004 [55] 
Luchini et al. 2009 [56] 
Olson et al. 2010 [22] 
Varlet et al. 2012 [52] 
Hao et al. 2013 [37] 
Varlet et al. 2013 [36] 

CO-oximetry • Easy to use 
• Rapid 
• Low cost 
• Accurate 
• Precise 
• COHb saturation correlated to severity 

of poisoning and symptoms reported by 
patients 

• Limit of accuracy: >5% COHb 
• Not applicable to low level CO exposures 
• Invasive 
• Only CO bound to Hb taken into account 
• Often observed inconsistency between 

measured levels and reported symptoms 
• Susceptible to alterations due to sample 

quality 

Dubowski and Lu 1973 [57] 
Costantino etal. 1986 [58] 
Mahoney et al.1993 [24] 
Oritani et al. 1996 [65] 
Levine et al. 1997 [59] 
Bailey et al. 1997 [21] 
Widdop 2002 [23] 
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• Difficult interpretation for PM samples with 
long/unknown PMI and/or storage 
conditions 

Lee et al. 2002 [60] 
Lee et al. 2003 [61] 
Brehmer and Iten 2003 [62] 
Boumba and Vougiouklakis 
2005 [18] 
Penney 2008 [11] 
Piatkowski et al. 2009 [5] 
Olson et al. 2010 [22] 
Fujihara et al. 2013 [20] 
 

Attachment to 
the finger 

Pulse CO-oximetry • Measurement of COHb% saturation in 
circulation 

• Continuous measurement 
• Non-invasive 
• Rapid 
• Cheap 
• Applicable in clinical setting 
• No laborious calibration needed 
 

• Not applicable in PM setting 
• Only CO bound to Hb taken into account 
• No correlation to CO in tissues 
• No blood sample available for 

confirmation/counter expertise  
• Low precision and accuracy for COHb 

>10% 
• Scarce information on device maintenance 

Piatkowski et al. 2009 [5] 
Zaouter and Zavorsky 2012 [39] 
Feiner et al. 2013 [40] 
Weaver et al. 2013 [41] 
Wilcox and Richards 2013 [42] 
Kulcke et al. 2016 [43]  

Blood, tissue GC–RGA • Measurement of CO in tissues 
• No dependency on blood quality 
• Automation possible 

• Use of highly toxic mercury vapors 
• Time consuming sample preparation  
• Invasive 

Coburn et al. 1964 [44] 
Vreman et al. 1984 [46] 
Mahoney et al. 1993 [24] 
Marks et al. 2002 [63] 
Vreman et al. 2006 [30] 

Blood GC–TCD • Accuracy for low COHb% 
• Precise 
• Specificity 
• Measurement of CO released into HS of 

tube possible 
• No dependency on blood quality 
• Automation possible 

• Time consuming sample preparation 
• High cost  
• Invasive 

Ayres 1966 [40] 
Dubowski and Lu 1973 [57] 
Fukui et al. 1984 [19] 
Van Dam and Daenens 1994 
[66] 
Oritani et al. 1996 [57] 
Lewis et al. 2002 [55] 
Brehmer and Iten 2003 [64] 

Blood, tissue GC–FID • Rapid 
• Best sensitivity for CO 
• Specificity 
• Lowest LOD and LOQ  

• Instrument specific for CO due to necessity 
of methanizer  

• Not applicable to analysis of other 
substances 

• Time consuming sample preparation 

Collison et al. 1968 [51] 
Rodkey and Collison 1970 [48] 
Guillot et al. 1981 [58] 
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• Assessment of different sample 
preparation and storage conditions 
(liberating agent, heating time, heating 
temperature, etc.) 

• Application to CO in tissues (PM) 
• Automation possible  
• Measurement of CO in tissues 
• No dependency on blood quality 

• Invasive 
• Backcalculations of COHb from measured 

CO 
• Flushing of calibrators  removal of 

dissolved CO 

Vreman et al. 1984 [46] 
Costantino et al. 1986 [60] 
Cardeal et al. 1993 [49] 
Levine et al. 1997 [61] 
Penney 2000 [69] 
Sundin and Larsson 2002 [53] 
Czogala and Goniewicz 2005 
[67] 
Boumba and Vougiouklakis 
2005 [18] 
Vreman et al. 2006 [30] 
Walch et al. 2010 [47] 

Blood, tissue GC–MS • Versatile  
• Simple 
• Rapid 
• Accurate 
• Reproducible 
• High power of identification (retention 

time + mass spectrum) 
• Automation possible  
• Application to clinical and PM samples 
• No dependency on blood quality  
• Use of isotopically labelled formic acid 

for calibration and internal standard  
• Measurement of total amount of CO 

• Back calculations of COHb from measured 
CO 

• Debatable correlation between CO and 
COHb%  often inconsistency between 
COHb% and reported symptoms  

• Flushing of calibrators  removal of 
dissolved CO 

• Invasive  
• Time consuming sample preparation 

Middleberg et al. 1993 [31] 
Oritani et al. 2000 [50] 
Marks et al. 2002 [63] 
Varlet et al. 2012 [52] 
Hao et al. 2013 [37] 
Varlet et al. 2013 [36] 
Oliverio and Varlet 2018 [4] 
Oliverio and Varlet 2019 [70] 

CO carbon monoxide, COHb carboxyhemoglobin, PM post-mortem, PMI post-mortem interval, GC–RGA gas chromatography–reduction gas analyser, GC-
TCD gas chromatography–thermal conductivity detector, GC–FID gas chromatography–flame ionization detection, GC–MS gas chromatography–mass 
spectrometry  

 



 

Fig. 1 General steps for a quantitative laboratory analysis and their respective potential 
sources of error for carbon monoxide (CO) determinations 

 

Origin of 
sample

• Clinical samples: pre-analysis interval (time between sample obtainment and analysis)
• Postmortem (PM) samples: PM interval (time since death) can cause thermo-coagulation, 
putrefaction, PM CO generation; pre-analysis time

Storage

• Type of preservative
• Storage temperature, freeze- and thaw cycles
• Volume of air in sampling tube/reopening of sampling tubes
• Initial concentration of analyte in sample

Pretreatment 
and 

extraction 

• Extraction method
• Use of chemicals for washing, purification, solution
• Use of other materials

Instrumental 
Analysis

• Measurement method (chromatography, spectrophotometry, X-ray, infrared)
• Instrument (low resolution/high resolution, low accuracy/high accuracy)
• Detection method (mass spectrometry, flame ionization, diode array)
• Operator and operating conditions

Data 
treatment

• Operator 
• Software for data acquisition
• Software for statistical data treatment 
• Choice of statistical data treatment methods

Interpretation 
of results

• Operator
• Academic background
• Experience in the field


