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Abstract
Pharmacologically-induced activation of replication competent proviruses from latency in

the presence of antiretroviral treatment (ART) has been proposed as a step towards curing

HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have

yielded mixed results. Here, we report a proof-of-concept phase Ib/IIa trial where 6 aviremic

HIV-1 infected adults received intravenous 5 mg/m2 romidepsin (Celgene) once weekly for

3 weeks while maintaining ART. Lymphocyte histone H3 acetylation, a cellular measure of

the pharmacodynamic response to romidepsin, increased rapidly (maximum fold range:

3.7–7.7 relative to baseline) within the first hours following each romidepsin administration.

Concurrently, HIV-1 transcription quantified as copies of cell-associated un-spliced HIV-1

RNA increased significantly from baseline during treatment (range of fold-increase: 2.4–5.0;

p = 0.03). Plasma HIV-1 RNA increased from <20 copies/mL at baseline to readily quantifi-

able levels at multiple post-infusion time-points in 5 of 6 patients (range 46–103 copies/mL

following the second infusion, p = 0.04). Importantly, romidepsin did not decrease the num-

ber of HIV-specific T cells or inhibit T cell cytokine production. Adverse events (all grade

1–2) were consistent with the known side effects of romidepsin. In conclusion, romidepsin

safely induced HIV-1 transcription resulting in plasma HIV-1 RNA that was readily detected

with standard commercial assays demonstrating that significant reversal of HIV-1 latency in
vivo is possible without blunting T cell-mediated immune responses. These finding have

major implications for future trials aiming to eradicate the HIV-1 reservoir.
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Author Summary

One proposed way of curing HIV is to activate virus transcription and kill latently infected
cells while the presence of antiretroviral therapy prevents spreading the infection. Induc-
tion of global T cell activation by mitogenic or other potent activators effectively reverses
HIV-1 from latency ex vivo, but such compounds are generally too toxic for clinical use.
Therefore, investigating the capacity of small molecule latency reversing agents to induce
production of virus without causing global T cell activation has been a top research prior-
ity for scientists in recent years. In the present clinical trial, we demonstrate that significant
viral reactivation can be safely induced using the depsipeptide romidepsin (HDAC inhibi-
tor) in long-term suppressed HIV-1 individuals on antiretroviral therapy. Following each
romidepsin infusion, we observed clear increases in lymphocyte H3 acetylation, HIV-1
transcription, and plasma HIV-1 RNA. Importantly, this reversal of HIV-1 latency could
be measured using standard clinical assays for detection of plasma HIV-1 RNA. Further-
more, romidepsin did not alter the proportion of HIV-specific T cells or inhibit T cell cyto-
kine production which is critically important for future trials combining HDAC inhibitors
with interventions (e.g. therapeutic HIV-1 vaccination) designed to enhance killing of
latently infected cells.

Introduction
Antiretroviral therapy (ART) effectively suppresses viral replication and partially restores
immune functions in human immunodeficiency virus type-1 (HIV-1) infected individuals [1].
However, HIV-1 integrates into the host DNA, thus establishing the basis for latent infection.
As ART cannot eliminate transcriptionally inactive or latent virus, adjunctive interventions
that efficiently activate latent virus are needed to achieve the ultimate goal of a cure for HIV-1
infection.

HIV-1 preferentially integrates into the host genome of activated CD4+ cells [2, 3]. Upon
integration, activation of the host cell transcription machinery leads to the production of new
virions. Cells that are actively producing virus typically die rapidly (half-life ~24 hrs) due to
virus-induced cytopathic effects and/or immune-mediated killing [4]. However, a minority of
memory CD4+ T cells carrying replication-competent provirus persists in a resting state during
viral suppression by ART [5, 6]. Such transcriptionally silent infected cells are invisible to the
host immune system but retain the capacity to reinitiate production of infectious viral particles
upon activation. This latent reservoir, likely established within days of infection [7], persists
throughout life due to long half-life as well as proliferation of the latently infected memory
CD4+ T cells [8, 9], and thus represents the primary barrier to an HIV-1 cure [10].

One proposed way of curing HIV is to activate virus transcription and kill latently infected
cells in the presence of ART to prevent spreading the infection [11]. Induction of global T cell
activation by mitogenic or other potent activators (e.g. PHA, PMA, prostratin) effectively
reverses HIV-1 from latency ex vivo [12, 13], but such compounds are generally too toxic for
clinical use [14]. Therefore, investigating the capacity of small molecule latency reversing
agents (LRA) to induce production of virus without causing global T cell activation has been a
top research priority for researchers in recent years [15–17]. The ability to induce HIV-1 vire-
mia or at least cell surface expression of viral proteins and presentation of viral antigens is a
fundamental requirement for enabling immune mediated killing of latently infected cells and,
thus, defines the key goal of LRAs in eradication strategies.
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A central mechanism for maintaining HIV-1 latency is the activity of histone deacetylases
(HDAC) that represses proviral transcription by promoting histone deacetylation [3, 18]. Sev-
eral studies have shown that HDAC inhibitors (HDACi) can disrupt HIV-1 latency in vitro
[19–21]. There is, however, great variability in the potency among HDACi and very limited
data exist on clinical efficacy of various HDACi in reversing HIV-1 latency [15]. Vorinostat,
the first potent HDACi to be investigated in a HIV-1 clinical trial [22], increased HIV-1 tran-
scription in CD4+ T cells but did not induce plasma HIV-1 RNA in two multiple-dose studies
[23, 24]. In contrast, we recently demonstrated that treatment with panobinostat, a hydroxamic
acid pan-HDACi like vorinostat, increased both HIV-1 transcription as well as the proportion
of plasma samples positive for HIV-1 RNA in 15 ART suppressed participants [25]. Although
no significant reductions in the size of the latent HIV-1 reservoir were observed in any of these
studies, they demonstrated that HDACi exhibit desired key qualities of LRA including the abil-
ity to induce virus transcription in vivo. To investigate further the potential of HDACi as the
LRA component in the ‘kick and kill approach’ to purge the HIV-1 reservoir, we initiated a
study of romidepsin, the most potent HDACi according to ex vivomeasures [26], to investigate
its clinical safety and potential for reversing HIV-1 latency in individuals on long-term ART.
In addition, we investigated the impact of romidepsin on T cell activation and function in light
of the findings of a recent in vitro study suggesting that HDACi negatively affect cytotoxic T-
lymphocytes thus impairing the elimination of HIV-infected cells by [27].

The trial data reported here are the results of the first part of a two-step clinical trial. The
objective of the first part was to verify the safety and effect of romidepsin prior to incorporation
into the second part comprising combination therapy with romidepsin and the therapeutic
HIV-1 vaccine, vacc-4x (Bionor Pharma) [28].

Results

Participants enrolled in the study
Six HIV-1 infected persons (5 male, 1 female) were enrolled in the study (Fig 1). The study par-
ticipants were all Caucasian and had been on ART for a median of 9.5 years (range 4.2–14.5)
with a median CD4+ count of 645 cells per μL (range 510–1,000) at inclusion (baseline charac-
teristics shown in Table 1). All six participants received one 4 hour romidepsin infusion (5 mg/
m2) per week for three consecutive weeks and were followed for up to 70 days after the last
infusion.

Romidepsin was safe
The per-protocol defined dose of romidepsin (5 mg/m2) had not been investigated previously
in HIV patients and corresponded to ~36% of the recommended dosing in cancer treatment
(14 mg/m2). We observed no severe adverse events (SAEs) or suspected unexpected serious
adverse reactions (SUSAR). Forty-one adverse events (AE) were registered during follow-up of
which 35 AEs were considered related to romidepsin (Table 2). All drug-related AEs were mild
(grade 1, n = 35) and resolved spontaneously within a few days. The number of AEs reported
by each study participant during follow-up ranged from 1 to 13. The most common romidep-
sin-related AEs were abdominal symptoms (e.g. nausea [n = 11], borborygmia [n = 4], abdomi-
nal pain [n = 2]) and fatigue (n = 5). Modest changes in white blood cell counts (WBC) and T
cell counts were observed during the study (S2 Fig) with the lowest levels generally observed
after the second romidepsin infusion, but no further decline following the third infusion. Reas-
suringly, neutrophil counts below 1000 cells/μL, CD4+ cell counts below 350 cells/μL, or plate-
let counts below 100,000 cells/μL were not observed.
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Fig 1. Flow diagram. The flow diagram shows information about the method of recruitment and the number
of patients undergoing romidepsin treatment.

doi:10.1371/journal.ppat.1005142.g001

Table 1. Baseline characteristics of the six study participants at enrolment.

Baseline characteristics n = 6

Male gender, n(%) 5 (83.3)

Caucasian origin, n(%) 6 (100)

Age (years), median (range) 56 (36–60)

Years since HIV diagnosis, median (range) 13.3 (7.0–22.6)

Years from HIV diagnosis to cART initiation, median (range) 1.6 (0.1–18.5)

cART regimen

TDF, FTC, ATV/r, n(%) 2 (33.3)

TDF, FTC, DRV/r 1 (16.7)

TDF, FTC, RPV 1 (16.7)

TDF, FTC, EFV 1 (16.7)

TDF, FTC, EVG/c 1 (16.7)

Years on cART, median (range) 10.1 (4.1–14.5)

Years with HIV RNA <50 copies per mL, median (range)A 9.1 (3.6–12.7)

Nadir CD4+ cell count per μL, median (range) 250 (40–340)

Baseline CD4+ cell count per μL, median (range) 645 (510–1000)

AOne patient had one blip, 2.3 years prior to inclusion (81 copies/mL), another patient had two blips, latest

blip (64 copies/mL) 9.3 years prior to inclusion.

doi:10.1371/journal.ppat.1005142.t001
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Cyclic spikes in viral transcription and plasma HIV-1 RNA during
romidepsin treatment
The level of histone acetylation is a biomarker of the pharmacodynamic effect of an HDACi on
cells [25]. Using flow cytometry, we observed cyclic increases in lymphocyte histone H3 acety-
lation following each romidepsin infusion confirming the anticipated biological effect of the
drug (Fig 2A). The peak level of lymphocyte histone H3 acetylation tended to be higher from
the first to third infusion (p = 0.06). Next, as an intracellular measure of HIV-1 transcription in
latently infected cells we quantified changes in cell-associated un-spliced HIV-1 RNA (CA US
HIV-1 RNA) [29]. In all 6 patients, CA US HIV-1 RNA levels increased significantly from
baseline to multiple on-treatment time points (p = 0.03, Fig 2B and S1 Fig). CA US HIV-1
RNA peaked immediately (~½ hr) after the completion of each romidepsin infusion but the
increases in HIV-1 transcription were most pronounced after the second and third infusion
(maximum fold-increase from baseline ranged from 2.8 to 5.0). We found no association
between baseline CA US HIV-1 RNA and the relative increase in HIV-1 transcription (S1 Fig).
To determine if the observed increases in HIV-1 transcription also led to the viral particle
release into the plasma, we quantified plasma HIV-1 RNA using a standard clinical assay
(Roche COBAS TaqMan HIV-1 Test, v2.0, lower limit of quantification of 20 copies/mL). In 5
of 6 patients, plasma HIV-1 RNA increased from undetectable levels at baseline to quantifiable
levels (range 21–119 copies/mL) at least once post-infusion (Fig 2C, p = 0.03 for baseline com-
pared to day 10 after first infusion). While two participants had had plasma HIV-1 RNA
“blips” of 81 copies/mL and 64 copies/mL 2.3 and 9.3 years prior to inclusion, respectively, the

Table 2. Self-reported adverse events and their severity during romidepsin treatment.

Type of adverse event (AE) Grade 1 Grade 2 Any grade No of patients

Related to romidepsin

Nausea 11 0 11 5

Fatigue 5 0 5 3

Borborygmia 4 0 4 4

Fever/chills 2 0 2 2

Headache 2 0 2 2

Palpitation 2 0 2 1

Heat sensation 2 0 2 1

Reduced appetite 1 0 1 1

Gastrointestinal pain 1 0 1 1

Gastroesophageal reflux 1 0 1 1

Constipation 1 0 1 1

Feeling unwell 1 0 1 1

Intermittent change in sense of taste 1 0 1 1

Intermittent change in sense of smell 1 0 1 1

Any related AE 35 0 35 6

Not related to romidepsin

Dizziness 1 0 1 1

Fracture (accident) 0 1 1 1

Gastrointestinal pain 1 0 1 1

Diarrhea 1 0 1 1

Fever 0 1 1 1

Fatigue 0 1 1 1

Any non-related AE 3 3 6 3

doi:10.1371/journal.ppat.1005142.t002
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Fig 2. Romidepsin induced HIV-1 transcription and presence of extracellular viral RNA. Panel (A) shows mean (SEM) levels of H3 acetylation
measured by flow cytometry in lymphocytes. (B) shows mean (SEM) change from baseline in the level of CA US HIV-1 RNA. The first sample time point after
each of the 3 romidepsin doses is approximately½ hour after end of the 4 hour infusion. (C) shows individual levels of plasma HIV-1 RNA, determined using
the Roche Cobas Taqman assay, while panel (D) shows mean plasma HIV-1 RNA data for all 6 participants determined using a Transcription-Mediated
Amplication assay. (E) is an overlay of H3 acetylation and CA US HIV-1 RNA data presented in Panels A and B. (F) is an overlay of CA US HIV-1-RNA (B)
and plasma HIV-1 RNA (E). SEM, standard error of mean; CA US HIV-1-RNA: cell-associated unspliced HIV-1 RNA; LoQ, limit of quantitation; TMA,
Transcription-Mediated Amplication. Statistical comparisons were performed using Wilcoxon matched-pairs signed-ranks test, Asterisk indicate p<0.05.

doi:10.1371/journal.ppat.1005142.g002
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median duration of viral suppression below 50 copies/mL prior to study inclusion was 9.1
years (Table 1). Despite comparable levels of HIV-1 transcription, quantifiable plasma HIV-1
RNA was detected in only 2 of 6 subjects after the third infusion compared to 5 of 6 after the
second infusion (p = 0.24). These increases in plasma HIV-1 RNA were subsequently con-
firmed (Fig 2D) with a transcription mediated amplification (TMA)-based methodology (Pro-
cleix Ultrio Plus, Genprobe) that is commonly used for screening donor blood for HIV-1
infection [30]. The detection of quantifiable plasma HIV-1 RNA coincided with romidepsin
infusions and generally appeared following increases in lymphocyte H3 acetylation as well as
HIV-1 transcription (Fig 2E and 2F). In one participant (ID3, Fig 2C) who initially displayed
detectable plasma HIV-1 RNA and then became undetectable by 7 days after the third infusion,
we observed quantifiable plasma HIV-1 RNA of 42 and 68 copies/mL at day 56 and 84 post
first romidepsin dose, respectively. This individual reported being adherent to ART throughout
the study and no external cause for the appearance of quantifiable HIV-1 RNA at the late fol-
low-up visits could be identified. Extended follow-up revealed that by day 112 following the
third infusion, plasma HIV-1 RNA had returned to undetectable levels in this individual. Alto-
gether, these data demonstrate that romidepsin had a pronounced and consistent effect on
HIV-1 transcription leading to quantifiable levels of plasma HIV-1 RNA using a standard clini-
cal assay.

The size of the HIV-1 reservoir was unchanged by romidepsin
To determine if reversal of HIV-1 latency by romidepsin impacted the viral reservoir, we first
used qPCR-based assays to measure total HIV-1 DNA and 2-LTR episomes in CD4+ T cells
isolated from the 6 participants. Although one participant had a 67% decline in total HIV-1
DNA from baseline to last follow-up, we observed no overall change in total HIV-1 DNA levels
indicating that the frequency of CD4+ T cells harboring total HIV DNA remained stable fol-
lowing romidepsin administration (Fig 3A and 3B). On a cohort level, the amount of 2-LTR
HIV-1 DNA also did not change during the study (Fig 3C). Of note, a large increase in 2-LTR
HIV-1 DNA was observed in the individual receiving integrase-inhibitor based combination
ART. Next, we used the novel Tat/rev Induced Limiting Dilution Assay (TILDA) to measure
the frequency of cells with multiply spliced HIV RNA upon maximal cellular activation with
PMA/ionomycin before and after romidepsin treatment (Fig 3D). Four of 4 (100%) partici-
pants with available samples, were TILDA positive before romidepsin treatment, and 5 of 6
(83.3%) patients were TILDA positive 6 weeks after the third romidepsin infusion. In the four
participants with available samples before romidepsin, 2 of 4 participants had stable numbers
of positive events in the TILDA assay from pre/on romidepsin levels to 6 weeks after the last
infusion (1–2% decrease) whereas 2 of 4 participants had moderate 49–83% decreases. Finally,
we used a quantitative viral outgrowth assay (qVOA) to assess changes in the frequency of rest-
ing CD4+ cells carrying inducible replication competent proviruses. We found no significant
changes the replication competent reservoir from baseline to 6 weeks after the third romidepsin
infusion as measured by qVOA (Fig 3E and S1 Table). Overall, we found no substantial reduc-
tion in the frequency of cells harboring total HIV-1 DNA or in the size of the inducible replica-
tion-competent HIV-1 reservoir following romidepsin treatment.

Romidepsin increased T cell activation and lowered PD-1 expression
To assess the effects of romidepsin on differentiation and activation status of T cells, we per-
formed flow cytometry analyses at day one, day 10, and day 56 after the first romidepsin infu-
sion. First, we observed changes in the relative proportions of both CD4+ and CD8+ T cell
memory subsets. The mean frequency of naïve CD4+ T cells increased from 47.3% at baseline
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to 56.9% day one after the first dose (p = 0.03) (Fig 3A). These frequencies had returned to pre-
dosing levels at the subsequent time points. Similarly, the frequency of naïve CD8+ T cells sig-
nificantly increased 24 hours after the first dose (baseline 19.3% to 31% on day 1, Fig 3B).

T cell activation was evaluated by measuring the frequency of cells expressing CD69 or co-
expressing HLA-DR and CD38 (gating strategy depicted in S3 Fig). The percentage of both
CD4+ and CD8+ T cells expressing CD69 increased substantially at 24 hours after the first dose
(Fig 4C and 4D).

The largest increase in percentage of cells expressing CD69 was observed in the effector
memory (EM) CD4+ T cells (mean increase from 11.9% to 23.7% CD69+, Fig 4C) and termi-
nally differentiated (TD) CD8+ T cells (Fig 4D). Similarly, the proportion of CD4+ and CD8+

cells co-expressing HLA-DR/CD38 increased significantly over baseline at three days following
the second infusion (Fig 4E and 4F). As observed for CD69, the greatest increase in HLA-DR/
CD38 co-expressing CD4+ and CD8+ T cells was observed in the effector memory compart-
ment. Further, we evaluated the effect of romidepsin on frequency of CD4+ and CD8+ T cells
expressing the exhaustion marker PD-1. Day one after the first infusion there was a significant

Fig 3. The size of the HIV-1 reservoir was unchanged by romidepsin. Panels (A) to (E) showmeasures of the size of the viral reservoir as well as in the
inducible HIV-1 reservoir during romidepsin treatment. (A) Absolute levels of total HIV-1 DNA per 106 CD4+ T cells. (B) Fold changes in total HIV-1 DNA per
106 CD4+ T cells. (C) Absolute levels of 2-LTR HIV-1 DNA per 106 CD4+ T cells. (D) Frequency of cells with multiply spliced HIV RNA upon maximal cellular
activation with PMA/ionomycin as measured using a tat/rev induced limiting dilution assay (TILDA). (E) shows results from a quantitative viral outgrowth
assay (qVOA) which was used to assess the frequency of resting CD4+ cells carrying inducible replication competent proviruses at baseline and day 56.
LoQ, limit of quantitation; Lod, limit of detection; IUBM, infectious units per million.

doi:10.1371/journal.ppat.1005142.g003
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Fig 4. Romidepsin increased T cell activation and reduced the proportion of lymphocytes expressing PD-1. Flow cytometric characterization of CD4+

/ CD8+ T cell subsets and activation status. Relative proportions of both CD4+ (A) and CD8+ (B) T cell memory subsets are shown in the first two panels.
Next, the proportion of CD4+ (C) and CD8+ (D) T cells expressing the early activation marker CD69. (E) Percentage of CD4+ and (F) CD8+ T cells co-
expressing the late activation markers HLA-DR and CD38. (G, H) Show the effect of romidepsin on the proportion of CD4+ and CD8+ T cells expressing the
exhaustion marker PD-1. CM, central memory; EM, effector memory TD; terminally differentiated. Statistical comparisons were performed usingWilcoxon
matched-pairs signed-ranks test, Asterisk indicate p<0.05.

doi:10.1371/journal.ppat.1005142.g004
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decrease in the frequency of both CD4+ and CD8+ T cells expressing PD-1 and for the CD4+ T
cells there was also a reduction at day 10 after the first infusion (Fig 4G and 4H). These early
changes in the frequency of cells expressing PD-1 which were found across all memory subsets
had returned to pre-dosing baseline levels at day 56 after the first infusion.

T cell responses to antigen stimulation were intact during romidepsin
treatment
In vitro data suggests that HDACi, and romidepsin in particular, may induce or intensify T cell
dysfunction compromising the clearance of virus-producing cells [27]. To investigate whether
this finding could be recapitulated during clinical administration, we first evaluated the impact
of romidepsin on the function of HIV-1-specific CD4+ and CD8+ T cells. Following ex vivo
stimulation of PBMCs with a library of 150 overlapping HIV-gag peptides, we performed intra-
cellular cytokine staining (ICS) for IFN-γ, TNF-α and IL-2 (S4 Fig). The HIV-1-specific CD8+

T cells primarily exhibited an EM or TD phenotype and produced solely IFN-γ or both IFN-γ
and TNF-α. The majority of HIV-1-specific CD4+ T was EM cells and co-produced all three
cytokines analyzed. The ICS analyses showed no negative impact on the CD4+ or CD8+ T cell
capacity to produce IFNγ, TNFα, or IL-2 following romidepsin administration, both with
regard to the frequency (%) of HIV-gag specific EM CD4+ and EM and TD CD8+ T cells pres-
ent and with regard to the levels (MFI) of cytokines produced by the individual cells (Fig 5A–
5H). We also found no change in non-HIV-1 specific CD4+ and CD8+ T cell responses to
staphylococcal enterotoxin b (SEB) during romidepsin treatment (S5 Fig). Similar to the flow
cytometry-based measures, ELIspot analyses with overlapping HIV p24 gag peptides showed
no change in functional responses following romidepsin treatment (S6 Fig). Collectively, these
data indicate that romidepsin treatment had no detrimental effect on HIV-1-specific and gen-
eral T cell immunity in this study.

Discussion
Herein, we demonstrated that significant viral reactivation can be safely induced using the
HDACi romidepsin in long-term suppressed HIV-1 individuals on ART. The cyclic increases
in lymphocyte H3 acetylation, HIV-1 transcription, and plasma HIV-1 RNA following infu-
sion of romidepsin link the events leading from romidepsin infusion, via epigenetic modifica-
tion and induction of HIV-1 transcription, to increases in plasma HIV-1 RNA. Importantly,
this reversal of HIV-1 latency was measured using standard clinical assays for detection of
HIV-1 RNA in plasma. Furthermore and very important from a safety perspective, romidepsin
did not alter the proportion of HIV-1-specific T cells or inhibit T cell cytokine production.
However, despite the increases in viral production and preserved T cell functions, no substan-
tial changes in the size of the HIV-1 reservoir were observed.

Previous clinical trials provide support for the use of HDACi to safely disrupt HIV-1 latency
in vivo; however, the magnitude of viral induction in the present study was greater than any-
thing previously reported for any LRA tested in humans. In the pioneering study by Archin
et al. [22], a single 400 mg oral dose of the HDACi vorinostat produced a median 4.6 fold
increase in HIV-1 transcription in resting memory CD4+ T cells. Despite the clear increase in
HIV-1 transcription, no increase in plasma HIV-1 RNA could be detected using the ultrasensi-
tive single copy assay [22, 31]. Subsequent multi-dose studies have confirmed an effect of vori-
nostat on HIV-1 transcription but no consistent changes in plasma HIV-1 RNA were detected
in these studies [23, 24] suggesting that post-transcriptional blocks may mitigate the effect of
vorinostat as an LRA[32]. Further, a recent publication questioned whether any of the clinically
available LRAs would be potent enough to reverse latency when administered individually
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[13]. The present study demonstrated potent in vivo latency reversal with a single drug result-
ing in increased plasma HIV-1 RNA that was readily quantified with standard commercial
assays. However, the exact proportion of infected cells reversed from latency out of the total
pool of inducible latently infected cells remains unknown.

Fig 5. HIV-specific T cell responses were preserved during romidepsin treatment. Flow cytometric characterization of HIV-gag-specific CD8+ and CD4+

T cells within the memory subsets at baseline (Base, n = 6), on treatment (ROMI, n = 5) and at follow-up (Post, n = 6). Proportion of EM (A) and TD (B) CD8+

T cells producing only IFNγ or both IFNγ and TNFα. Horizontal bars showmedian values. (C, D)Median fluorescence intensity (MFI) for IFNγ and TNFα for
HIV-specific EM CD8+ T cells and (E, F) TD CD8+ T cells identified in Panels A-B. (G), Proportion of polyfunctional memory EM CD4+ T cells producing IFNγ,
TNFα and IL-2. (H) Expression levels (MFI) for each cytokine (i.e. IL-2, TNFα and IFNγ) examined on the polyfunctional HIV-specific EM CD4+ T cells
identified in panel (G) TD, terminally differentiated; EM, effector memory. Statistical comparisons were performed using Wilcoxon matched-pairs signed-
ranks test, Asterisk indicate p<0.05.

doi:10.1371/journal.ppat.1005142.g005
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Another key observation in the present study was the unambiguous increase in HIV-1 tran-
scription and release of viral particles following the second romidepsin infusion as compared
to following the first romidepsin infusion. Clearly, the hyper-acetylated state induced by the
first romidepsin infusion (Fig 2B) did not reach baseline level before the second romidepsin
infusion. Therefore, the effect of the second romidepsin infusion may add to the sustained
effects of the first infusion, which might explain the more pronounced effect on HIV-1 tran-
scription and viral particle release. It is likely that on a single cell basis HIV-1 transcription
needs to cross a certain threshold to overcome transcriptional blocks before it gives rise to viral
protein translation and virion production [3]. Such an outcome would be consistent with the
increase in both CA US and plasma HIV-1 RNA following the second infusion.

Interestingly, lymphocyte H3 histone acetylation and CA US HIV-1 RNA levels further
increased following the third infusion, compared to after the second infusion, whereas plasma
HIV-1 RNA did not. Up-regulation of intracellular factors that block viral translation,
unknown effects of romidepsin or the induction of intracellular antiviral immune responses
towards HIV-1 could also account for this observation but larger studies are needed to shed
light on whether this potential difference in response between the second and third infusion is
biologically relevant. In addition, indirect effects of romidepsin on CD4+ T cells such as more
generalized activation (as measured by CD69 expression) may also play a role in the observed
increases in HIV transcription.

HDACs are epigenetic regulators with the capacity to alter the expression of genes involved
in a broad range of immune cell functions, thus affecting their interaction with and responsive-
ness to pathogens [33]. In vitro studies have suggested that HDACi in general and romidepsin
in particular inhibit HIV-1 specific T cell immunity leading to impaired clearance of virus-pro-
ducing cells [27]. In this study, we examined the participants’ cellular immunity and found no
evidence for suppression of HIV-1-specific or non-HIV-1-specific CD4+ or CD8+ T cell immu-
nity during or after romidepsin treatment. Our clinical observations are in line with other find-
ings from anti-tumor experiments showing that T and NK cells are resistant to the
immunosuppressive functions of HDACi [34]. Further, in our study expression of the negative
regulator of immune responses, PD-1 on CD4+ and CD8+ T cells, decreased significantly while
T cell activation increased suggesting that romidepsin did not impair T cell reactivity. Collec-
tively, our findings strongly suggest that romidepsin does not negatively affect T cell functions
in vivo which is critically important for future trials combining HDACi with interventions (e.g.
therapeutic HIV-1 vaccination) designed to enhance CTL-mediated killing of latently infected
cells. One such trial combining romidepsin and therapeutic HIV-1 vaccination using vacc-4x is
currently under way as part B of the present study in our clinic (see http://clinicaltrials.gov
NTC02092116).

In the current study, we found no significant effect of romidepsin treatment on the size of
the HIV-1 reservoir when measuring total HIV-1 DNA, the frequency of cells with multiply
spliced HIV RNA upon maximal cellular activation with PMA/ionomycin according or by
qVOA. Whether this persistence of a functional reservoir is due to incomplete latency reversal
and/or insufficient clearance of reactivated cells (e.g. due to CTL-resistant viruses as recently
suggested [35]) remains to be investigated.

In general, the safety and tolerability of HDACi in latency reversal trials has been good.
Nevertheless, due to the broad epigenetic effects of HDACi including the potential to modulate
signaling pathways and the expression of numerous proteins, careful monitoring of adverse
events is essential [23–25]. In accordance with experiences in oncology patients [36], the most
frequently reported adverse effects of romidepsin in HIV-infected persons were abdominal
symptoms and fatigue. While these symptoms were common in this study, they were generally
mild and did not lead to dose de-escalations or study withdrawals according to the pre-

Romidepsin Reverses HIV-1 Latency In Vivo

PLOS Pathogens | DOI:10.1371/journal.ppat.1005142 September 17, 2015 12 / 22

https://clinicaltrials.gov/ct2/show/NTC02092116


specified protocol criteria. In addition to potential AE that lead to patient discomfort, animal
and in vitro studies indicate that HDACi could potentially interfere with the function of other
immune cells such as plasmacytoid dendritic cells, macrophages, and neutrophils, leading to
increased risk of infection [27, 37]. Reassuringly, in our trial and in previous trials using
HDACi treatment to reverse HIV-1 latency, an increased risk of infections among study partic-
ipants has not been observed [23–25]. Further, we did not observe clinically significant or per-
sistent decreases in neutrophil, monocyte, CD4+, or CD8+ counts. Collectively, our data
suggest that the utilized romidepsin dosing schedule has an acceptable safety profile in HIV-
1-infected persons and does not result in persistent changes in blood biochemistry levels.

While our findings can be used as a basis for investigating romidepsin in future HIV eradi-
cation trials, the limitations of this study should also be acknowledged. First, the small sample
size limited the strength of our statistical analyses. Despite this limitation, the cyclic appearance
and near-identical inter-individual patterns of HIV-1 transcription and plasma HIV-1 RNA
levels, clearly show that pronounced viral reactivation does occur during romidepsin treatment
in ART treated HIV-1 subjects. Second, our study only included Caucasians and care should be
taken when generalizing the results to other populations as responses to romidepsin may differ
among populations [38].

In summary, in this study we demonstrated significant reversal of HIV-1 latency following
romidepsin infusions. Romidepsin-induced increases in HIV-1 transcription were followed by
increases in readily measurable plasma HIV-1 RNA. Plasma HIV-1 RNA peaked at levels read-
ily quantifiable with certified clinical assays thus establishing a new benchmark for future trials
investigating the in vivo potency of LRAs to be used in HIV-1 eradication efforts.

Methods

Trial design and study participants
We conducted this single-arm, single-site, phase Ib/IIa clinical trial at Aarhus University Hos-
pital, Denmark as a first step of a two-step clinical study between March 2014 and July 2014.
This study enrolled HIV-1 infected adults on ART with virological suppression for at least one
year (<50 copies/mL, minimum 2 measurements per year) and CD4+ T cell counts above 500/
μL at inclusion. Major exclusion criteria included: hepatitis B or C co-infection; clinically sig-
nificant cardiac disease including QTc-prolongation; any significant acute medical illness in
the 8 weeks prior to inclusion; unacceptable values of the hematologic and clinical chemistry;
history of malignancy; or diabetes. Full details regarding inclusion/exclusion criteria can be
found at http://clinicaltrials.gov.

Patient procedures
Approximately one hour prior to romidepsin treatment, a blood draw was performed. Hema-
tologic and clinical chemistry was checked pre-infusion and additional material stored for end-
point analyses. Thirty minutes prior to infusion patients received 8 mg ondensatron as
prophylactic antiemetic treatment. Patients received romidepsin (5 mg/m2) administered
intravenously over a 4 hour period once weekly for three consecutive weeks while maintaining
ART. This dose regimen corresponds to the 28-day cyclic regimen used to treat T cell lympho-
mas but at ~36% of the recommended oncology dose (14 mg/m2). The dose of 5 mg/m2 was
chosen based upon extensive pre-clinical ex vivo testing of the ability of romidepsin to induce
HIV-1 production in latently infected resting CD4+ T cells isolated from ART suppressed HIV
patients [26]. Of note, romidepsin is metabolized through CYP3A4 and inhibitors or inducers
of this enzyme could affect romidepsin exposure. In a pharmacokinetic drug interaction trial
the strong CYP3A4 inhibitor ketoconazole increased the overall romidepsin exposure by
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approximately 25% and 10% for area under the curve (AUC)0-1 and peak exposure (Cmax),
respectively, compared to romidepsin alone [39]. Thus, co-administration of ketoconazole
slightly decreased the romidepsin clearance and volume of distribution, but did not have a sta-
tistically significant effect on Cmax. While ketoconazole is classified by FDA as a strong in vivo
inhibitor of CYP3A4, protease inhibitors such as darunavir/ritonavir and atazanavir are classi-
fied as moderate inhibitors of CYP3A4 whereas efavirenz is classified as a moderate inducer of
CYP3A4 [40]. Based on a thorough evaluation of the romidepsin investigator’s brochure, we
estimated that the risk of clinically significant drug-drug interaction was extremely low and
that a potential interaction between antiretroviral drugs and romidepsin was very unlikely to
cause>25% increase/decrease in romidepsin exposure.

Including the baseline, on therapy and follow up visits, there were a total of 13 study visits.
Blood was drawn at each visit including 1 hour prior to and 1/2 hour after receipt of each dose,
24 and 72 hours after the first dose, 72 hours after the second and third dose, as well as 1, 6,
and 10 weeks after completion of romidepsin. At each follow-up visit, self-reported adherence
to ART was recorded.

Safety assessments were actively performed during on all study visits. This included record-
ing all patient-reported adverse events (AEs) and serious adverse events (SAEs). For each AE/
SAE the relationship to romidepsin was evaluated and the severity graded according to the
Common Terminology Criteria for Adverse Events (CTCAE) version 4.0.

Endpoints
The pre-specified primary endpoint was safety and tolerability of romidepsin at a reduced dos-
ing of 5 mg/m2 in HIV-1 infected patients. Secondary endpoints included change from baseline
in HIV-1 transcription according to CA US HIV-1 RNA measures in unfractionated CD4+ T
cells, change from baseline in plasma HIV-1 RNA, and change from baseline in total HIV-1
DNA per 106 CD4+ T cells. Changes from baseline in T cell activation markers, T cell subset
distribution, and PD-1 expression as well as changes from baseline in HIV-1-specific and non-
HIV-1-specific T cell immunity were exploratory immunological endpoints. Change from
baseline in the frequency of cells with multiply spliced HIV RNA upon maximal cellular activa-
tion with PMA/ionomycin using a novel assay Tat/rev Induced Limiting Dilution Assay
(TILDA) and 2-long terminal repeat (LTR) circles per 106 CD4+ T cells were exploratory viro-
logical endpoints.

Cell-associated un-spliced HIV-1 RNA
For quantification of CA US HIV-1 RNA, CD4+ T-cells were isolated from peripheral blood
mononuclear cells (PBMC) using a CD4+ T-cell isolation kit and magnetic-activated cell sort-
ing (MACS) columns (Miltenyi Biotec, Teterow, Germany; purity>95%). Isolated CD4+ cells
were lysed and lysates were stored at -80°C until RNA and DNA was extracted (Allprep isola-
tion kit, Qiagen). Template preparation and denaturation was performed in 13.5μL reaction
volume containing a mixture of 11.5μL patient extracted RNA, 1μL of 10mM deoxynucleoside
triphosphates mix, 1.5 μg of random primers and 0.25 μg Oligo(dT)12-18 primer (LifeTechnol-
ogies, Denmark) at 65°C for 5 min followed by immediate incubation on ice for 5 min. First-
strand cDNA production was performed by adding a mixture of 4 μL 5X first-strand buffer
(250 mM Tris-HCl (pH 8.3), 375 mM KCl, 15 mMMgCl2), 1μL of 0.1M DTT, 20 U RNase-
OUT Recombinant RNase Inhibitor and 200 units of SuperScriptTM III reverse transcriptase
(LifeTechnologies, Denmark). Reverse transcription was performed in the resulting 20μL total
reaction volume at 42°C for 45 minutes followed by heat inactivation of the reverse transcrip-
tase at 80°C for 15 minutes.
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The ddPCR mixture for the CA US HIV-1 RNA assay consisted of: 11 μL 2x digital PCR
supermix (BioRad, DK), 3 μL of primer/probe (primers SL19/20 final concentration1000nM
and MGB probe SL30MIDDLE 5’-TACTCACCAGTCGCCGC-3 final concentration 250nM,
5μL nuclease-free water and 3μL patient derived cDNA resulting in 22μL reaction volume. To
adjust for the total cellular input in each sample, relative copy numbers were normalized to
two human endogenous control genes: TBP PL (VIC) assay ID—Hs00183533_m1 and IPO8
(FAM) assay ID—Hs00427620_m1 (TaqMan gene expression assay, LifeTechnologies, Den-
mark). All HIV RT samples were assayed in six replicates while the reference genes were
assayed in duplicate. The PCR reaction mixture was loaded into the BioRad QX- 100 emulsifi-
cation device fractionating each sample into ~20,000 nanoliter-sized droplets following the
manufacturer’s instructions. PCR cycling conditions were as follows: 95°C for 10 min, followed
by 40 cycles of a 30 second denaturation at 95°C followed by a 59°C extension for 60 seconds
and a final 10 minutes at 98°C. After cycling droplets were subsequently read automatically by
the QX100 droplet reader (BioRad) and the data was analyzed with the QuantaSoftTM analysis
software (BioRad). The six HIV replicates generated 80,000–98,000 droplets to be analyzed per
time point.

Plasma HIV-1 RNA
The presence of HIV-1 RNA in EDTA plasma was quantified with the Cobas TaqMan HIV-1
Test, v2.0 (Roche) according the manufacturer’s instruction. This assay has a lower limit of
quantification of 20 copies HIV-1 RNA/mL but can provide a qualitative assessment of the
presence of HIV-1 RNA below the 20 copy range. The presence of HIV-1 RNA in plasma was
also qualitatively assessed using nucleic acid testing using a transcription-mediated amplifica-
tion (TMA) based detection method as described by the manufacturer (Procleix Ultrio Plus,
Novartis) with 50% sensitivity at 3.8 copies/mL and 95% sensitivity at 12 copies/mL [30]. TMA
results were considered binary and defined as positive or negative according to assay outcomes.

Quantifications of cell-associated HIV-1 DNA
For HIV-1 DNA quantifications, CD4+ T cells were isolated using a CD4+ T Cell Isolation Kit
Miltenyi biotec, cat no 130-096-533) on LS columns (Miltenyi biotec, cat no 130-042-401).
After CD4+ T isolation, cells were resuspended in lysis buffer and digested as previously
described [41]. Cell lysates were used directly for HIV-1 DNA quantifications using the QX100
Droplet Digital PCR system (Bio-Rad) to determine the absolute levels of total HIV-1 DNA
per 106 CD4+ T cells. HIV-1 2-LTR circles where quantified as previously described [42].

Inducible virus quantification using Tat Rev Inducible Limiting Dilution
Assay (TILDA)
CD4+ T cells were isolated from PBMCs from study participants by negative magnetic selection
(StemCell), and stimulated with phorbol myristate acetate (PMA; 100ng/mL) and ionomycin
(1μg/mL) for 12hrs. Dilutions of the stimulated cells (ranging from 18,000 to 1,000 cells, 24
replicates per dilution) were distributed in a 96 well plate and directly subjected to RT-PCR.
Multiply spliced HIV RNA was quantified by semi-nested real time PCR with primers in tat
and rev as previously described [43] with some minor modifications. The frequency of positive
cells was calculated using the maximum likelihood method [44] and this number was then
expressed as a frequency of cells with inducible multiply spliced HIV RNA per million CD4+

T-cells.
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Viral outgrowth assay
Viral outgrowth assays were performed as previously described with the following modifica-
tions [25, 45–47]. Resting CD4+ T cells were enriched from 150 million cryopreserved PBMCs
by negative depletion via a 2-step protocol [45]. Briefly, the first step was to enrich CD4+ T
cells from PBMCs using Miltenyi CD4+ T Cell Isolation Kit (Cat #: 130-096-533) according to
the manufacturer’s protocol. The second step was to further enrich for resting CD4+ T cells via
depletion of cells expressing CD69, CD25 or HLA-DR (Miltenyi Cat #: CD69 Microbeads Kit
II– 130-092-355; CD25 Microbeads II– 130-092-983; HLA-DR Microbeads– 130-046-101).
Resting CD4+ T cell purity, as determined by flow cytometry, was 98% [mean value with a 95%
CI of 97.03 to 98.97%]. All cell incubations at 37°C unless otherwise noted. The culture
medium for this assay was RPMI with L-glutamine; 1% streptomycin and penicillin; 10% fetal
calf serum; recombinant human IL-2 (100 U/mL) (Gibco #PHC0027); conditioned media from
a mix lymphocyte reaction culture as described in [46].

On day 0 resting CD4+ T cells were seeded at 20,000 cells/well in round-bottom 96-well
plates and stimulated with irradiated allogeneic PBMCs fromHIV-negative healthy donors and
phytohemagglutinin (1μg/mL) (PHA; Remel #R30852801). After 48 hours, the cells were exten-
sively washed to remove PHA and 10,000 MOLT-4/CCR5+ cells were added to each well. On
days 5, 7, and 9, 75% of the culture media per well was replenished with fresh media with an
additional 10,000 MOLT-4/CCR5+ cells added to each well with the fresh media on day 9. On
day 12, the cell supernatant from each well was harvested and the number of wells containing
replication competent HIV was assessed by incubation of the supernatant with TZM-bl cells via
firefly luciferase reporter gene activity [48]. On day 15, wells positive for luciferase activity was
determined using the Britelite plus Reporter Gene Assay System, 100 mL (Perkin Elmer #:
6066761). Estimated frequencies of cells with replication-competent HIV before and after romi-
depsin treatment were calculated using limiting dilution analysis as described in [44].

Detection of histone acetylation levels
Flow cytometry for histone acetylation levels was based on the method developed by Rigby et al.
[49]. Immediately after isolation 1x106 PBMCs were re-suspended in 3 mL ice-cold PBS contain-
ing 1% FBS, centrifuged and re-suspended for fixation in 200μL 1% paraformaldehyde. The cells
were fixed on ice for 15 min, washed in 4 mL ice-cold PBS, re-suspended in 200μL of PBS, and
stored at 4°C. Within one week cells were washed with PBS containing 2% FBS and permeabi-
lized with 200μL of 0.1% Triton X-100 in PBS for 10 min. at room temperature. After washing
with PBS/2% FBS, the samples were blocked in 600μL of PBS/10% FBS for 20 min. Samples were
stained with polyclonal rabbit anti-acetyl histone H3 (10μg/mL) (Merck Millipore #06–599) or
normal rabbit serum (control stain) (LifeTechnologies #10510) for 1 hour and then washed and
incubated with donkey anti-rabbit IgG (H+L) Alexa Flour 488 (6μg/mL) (LifeTechnologies
#A21206) for 1 hour at room temperature in the dark. Cells were washed, re-suspended in
150μL PBS and analyzed. ~50,000 events were acquired per sample. The median fluorescence
intensity (MFI) for each patient at each time point was derived via subtraction of the background
MFI (isotype control stain) for each sample from the anti-acetyl histone H3 stain.

T cell activation, subsets, and PD-1 expression
Frozen PBMC’s were thawed and 5x105 cells were immediately stained with Near-IR live-dead
dye (LifeTechnologies, Denmark), blocked and then stained with antibodies to CD4-PE-Cy7
(SK3), CD8+-PerCP-Cy5.5 (SK1), CD45RA (HI100), CCR7 (G043H7) CD69-APC (FN50),
HLA-DR-PE (G46-6) and CD38-BV605 (HB7) or PD-1 (EH12.1) (all Biolegend except PD-1,
CD38, HLA-DR and CD8+; BD Bioscience). Only singlet, live cells were included in the data
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analyses. T cells were gated based upon size and granularity (lymphocyte gate). Within the lym-
phocyte gate T cells were sub-gated based upon their expression of either CD4 or CD8+. Memory
subsets within CD4+ and CD8+ T cells were defined based on CCR7 and CD45RA expression.
Activation status was determined based upon CD69 expression or HLA-DR/CD38 co-expres-
sion. Gates for activation markers and PD-1 were determined using isotope control antibodies.

HIV-1- specific and SEB-specific T cell immunity
Cryo-preserved PBMCs were analyzed using intracellular cytokine staining (ICS). PBMCs were
thawed and rested for 18 hours at 37°C, 5%CO2. Next, PBMCs were washed, counted and resus-
pended at a concentration of 3.3x106 cells/mL in total volume of 0.6 mL for each condition.
PBMCs were stimulated for 6 hours at 37°C, 5%CO2 with HIV-1 Gag peptide pool (150 peptides
mix, final conc. 2μg/mL per peptide, IPT, PepMix HIV (GAG) Ultra) in the presence of secre-
tion inhibitors (Golgistop at 0.7μL/mL, and Golgiplug at 1μL/mL, BD) and co-stimulatory mole-
cules (αCD28, and αCD49d, at 1μg/mL each, BD). Un-stimulated and positive control samples
(staphylococcal enterotoxin b, SEB at 1μg/mL, Sigma-Aldrich) were included for each time
point. After the stimulation, cells were stained with Near-IR amino reactive dye for viability
(Invitrogen) followed by surface staining (including CD4+ (OKT4) and CCR7 (G043H7) from
Biolegend and CD8+ (RPA-T8) and CD45RA (HI100) from BD) and intracellular cytokine
staining (IFNγ (B27), IL-2 (MQ1-17H12), TNFα (Mab11) from Biolegend) using BD Cytofix/
Cytoperm protocol. ~800,000 events were collected per sample. Gating strategy for analyzing
CD8+ and CD4+ T cell responses in memory subsets are illustrated in S3 Fig. After defining
gates for positive IFNγ, TNFα, and IL-2 expression, we utilized Boolean combination gate analy-
ses to create the full array of possible combinations (7 response patterns for 3 functions). Fluo-
rescence minus one (FMO) controls were performed for surface marker CCR7 and intracellular
markers IFNγ, IL-2, TNFα. Based on background cytokine response in un-stimulated control
samples a positive HIV-1-specific response for CD8+ and CD4+ T cells was defined as values
greater than 0.05% and 0.015% respectively (after background response in the un-stimulated
control was subtracted. For the analyses of MFI values (S4 Fig) only samples with a positive
HIV response were included. All samples were analyzed on a BD FACSVerse cytometer and
data was analyzed using FlowJo Version 10.0.7. T-cell proliferation assays and ELISPOT (to
detect γ-interferon were carried using overlapping 15-mer peptides to HIV p24 synthesized at
Schafer-N (Copenhagen, Denmark) and staphylococcal enterotoxin B as positive control
(Sigma-Aldrich AG, St. Louis MO, USA) as antigens according to the methods described by Pol-
lard et al. [28]. ELISPOT results were considered valid if the mean of triplicate wells did not
exceed 50 spot forming units (sfu)/106 cells and the positive control was>500 sfu/106 cells.

Statistical analyses
The study was designed to determine the safety profile of a reduced romidepsin dose regimen
in HIV-1 patients on ART. Baseline characteristics were tabulated and adverse events graded
according to CTCAE criteria. Changes from baseline to specific time points were tested using
paired t-test or Wilcoxon signed-rank test. Delta values were assessed using the binomial test
(two-sided).

Ethics statement
The study was approved by the Danish Health and Medical Authorities as well as the Danish
Data Protection Agency. Ethics committee approval was obtained in accordance with the prin-
ciples of the Helsinki Declaration. Each patient provided written informed consent prior to any
study procedures. The trial is registered at http://clinicaltrials.gov (NTC02092116)
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Supporting Information
S1 Fig. Individual levels of cell-associated unspliced HIV-1 RNA.
(EPS)

S2 Fig. CD4+, CD8+, and white blood cell counts during romidepsin study.Wilcoxon
matched-pairs signed-ranks test, Asterisk indicate p<0.05.
(TIF)

S3 Fig. Gating strategy for activation markers CD69, HLA-DR, CD38, and exhaustion
marker PD-1. Shown are representative dot plots for patient 2. Samples were analyzed using
the following gating strategy for identifying T cell activation and PD-1 expression: Live gate
(SSC versus NEAR IR viability stain)! Singlet gate (FSC-A vs. FSC-H)! Lymphocyte gate
(SSC-A vs. FSC-A)! CD8+ or CD4+ T cells (CD8+ vs. CD4+) and then CCR7 versus CD45RA
to define memory subsets within both the CD8+ and CD4+ T cell populations; naïve (CD45RA-

+CCR7+), central memory (CM) (CD45RA-CCR7+), effector memory (EM) (CD45RA-CCR7-)
and terminally differentiated (TD) (CD45RA+CCR7-). Finally, within each of the CD8+ and
CD4+ memory subsets we gated on CD8+ and CD4+ respectively versus CD69, HLA-DR,
CD38 or PD-1. Numbers represent percentage of the shown population that's within the
shown gate. (A) Full stain and isotype control for CD69 within EM CD4+ T cell (left panels)
and EM CD8+ T cell (right panels) populations.(B) Full stain and isotype controls for CD38
and HLA-DR within EM CD4+ T cells (left panels). (C) Full stain and isotype controls for
CD38 and HLA-DR within EM CD8+ T cells (left panels). (D) Full stain and isotype control
for PD-1 within EM CD4+ T cell (left panels) and EM CD8+ T cell (right panels) populations.
(EPS)

S4 Fig. Gating strategy for flow cytometric intracellular cytokine staining. Shown are repre-
sentative dot plots for patient 2. (A) Samples were analyzed using the following gating strategy for
identifying CD8+ and CD4+ T cells responses: Live gate (SSC versus NEAR IR viability stain)!
Singlet gate (FSC-A vs. FSC-H)! Lymphocyte gate (SSC-A vs. FSC-A)! CD8+ or CD4+ T cells
(CD8+ vs. CD4+) and then CCR7 versus CD45RA to define memory subsets within both the CD8+

and CD4+ T cell populations; naïve (CD45RA+CCR7+), central memory (CM) (CD45RA-CCR7+),
effector memory (EM) (CD45RA-CCR7-) and terminally differentiated (TD) (CD45RA+CCR7-).
Finally, within each of the CD8+ and CD4+ memory subsets we gated on CD8+ and CD4+ respec-
tively versus IFNγ, TNFα and IL2. (B) Response to stimulation with HIV-gag-peptides; (C)Un-
stimulated and (D) staphylococcal enterotoxin b (SEB) for EM CD8+ T cells and EMCD4+ T cells.
Numbers represent percentage of the shown population that's within the shown gate.
(EPS)

S5 Fig. The effect of romidepsin treatment on Staphylococcal enterotoxin B-responsive
CD8+ and CD4+ T cells. Flow cytometric characterization of HIV-gag-specific CD8+ and
CD4+ T cells within the memory subsets at baseline (Base, n = 6), on treatment (ROMI, n = 5)
and at follow-up (Post, n = 6). (A) Percentages of EM and TD; (B) CD8+ T cells producing
only IFNγ or both IFNγ and TNFα. (C, D)Median fluorescence intensity (MFI) for IFNγ and
TNFα for SEB-responsive EM (E) CD8+ T cells and TD (F) CD8+ T cells. (G) Percentages of
triple cytokine producing memory EM CD4+ T cells producing IFNγ, TNFα and IL-2. (H, I, J)
MFI for IL-2, TNFα and IFNγ for triple cytokine producing SEB-responsive EM CD4+ T cells
shown in (G). TD, terminally differentiated; EM, effector memory. Horizontal bars show
median values. Statistical comparisons were performed using Wilcoxon matched-pairs signed-
ranks test, Asterisk indicate p<0.05.
(EPS)
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S6 Fig. HIV-1 T cell immunity before and after romidepsin treatment as determined by
ELIspot. PBMCs stimulated in triplicate wells with 15-mer peptide pools of15-mer pool for
p24 Gag peptides. Mean SFU per 106 shown for baseline and day 84 (70 days after the last
romidepsin infusion). One patient who had an invalid ELIspot result on day 84 is not included
in the graph. SFU, spot-forming units.
(EPS)

S1 Table. Quantitative viral outgrowth assay outcomes.
(DOCX)

S1 Checklist. TREND Checklist.
(PDF)
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