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Abstract

We extract firms’ cyber risk with a machine learning algorithm measuring the proxim-

ity between their disclosures and a dedicated cyber corpus. Our approach outperforms

dictionary methods, uses full disclosure and not devoted-only sections, and generates a

cyber risk score uncorrelated with other firms’ characteristics. We find that a portfolio

of US-listed stocks in the high cyber risk quantile generates an excess return of 18.72%

p.a. Moreover, a long-short cyber risk portfolio has a significant and positive risk pre-

mium of 6.93% p.a., robust to all factors’ benchmarks. Finally, using a Bayesian asset

pricing method, we show that our cyber risk factor is the essential feature that allows

any multi-factor model to price the cross-section of stock returns.
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1. Introduction

In 2023, the SEC introduced new regulations impacting cybersecurity compliance for

US public companies. These rules, announced by SEC Chair Gary Gensler on July 26,

2023, require disclosure of “material” cybersecurity incidents within four business days, with

exceptions for national security or public safety reasons. Additionally, companies must

submit detailed annual reports on cybersecurity risk management, strategy, and governance

practices. For annual reports such as Form 10-K, disclosures will be due for fiscal years

ending on or after December 15, 2023.1

This regulatory change reflects that cyber threats are becoming ever more widespread

and costly; similarly, cyber insurance contracts have become vital for public companies

and governments, who must assess cyber risk premia. These insurance contracts, however,

need a thorough understanding of the systematic and firm-level cyber risks. In a recent

interview2, Mario Greco, CEO of Zurich Insurance Group, said that cyberattacks are set to

become “uninsurable” and called on governments to “set up private-public schemes to handle

systemic cyber risks that can’t be quantified, similar to those that exist in some jurisdictions

for earthquakes or terror attacks”.

In this paper, we develop a method to quantify the cyber risk of a company based on its

disclosures and investigate whether this risk is costly to firms in the form of a market risk

premium that shows up in their stock returns. To do this, we collect financial fillings, monthly

returns, and other firm characteristics for over 7,000 firms listed on US stock markets between

January 2007 and December 2022. We use a machine learning algorithm, the “Paragraph

Vector”, in combination with the MITRE ATT&CK cybersecurity knowledgebase to score

each firm’s filing based on its cybersecurity content.

We find evidence that our cyber risk does not correlate with firm size, book-to-market,

beta, and other standard firms’ characteristics known to help price stock returns. At the

aggregated level, our cyber risk score shows a monotonic increasing trend, moving from 0.51

to 0.54. In contrast, the cross-sectional distribution of that score is exceptionally narrow

(standard deviation of 0.03). We compare our cyber risk score across Fama-French 12 in-

dustries and find results aligned with the view that “Business Equipment” and “Telephone

1https://www.sec.gov/news/press-release/2023-139.
2Available at https://www.ft.com/content/63ea94fa-c6fc-449f-b2b8-ea29cc83637d
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and Television Transmission” are the riskiest and “Oil and Gas” and “Utilities”, the safest.

The cyber risk sorted long-short portfolio, which invests in high cyber risk stocks and

shorts low cyber risk stocks, has an average annual excess return of 6.93% and is statistically

significant at the 10 or 5% level even when controlling for common risk factors. This portfolio

performs particularly well before the first mention of a cyber risk premium on SSRN in

November 2020 by Florackis, Louca, Michaely, and Weber (2023), with an average annual

excess return of 11.88%. It is statistically significant at the 1% level. Double sorts confirm

that cyber risk captures a variation in stock returns when controlling for other factors.

We use asset pricing tests and find that the cyber risk exposure generates a signifi-

cant premium after controlling for market beta, book-to-market, size, momentum, operating

profitability, and investment aggressiveness (see Fama and French, 2015). This performance

shows up both in cross-section, with Fama and MacBeth (1973) regressions, and time se-

ries, with no significant joint alphas in Gibbons, Ross, and Shanken (1989) tests. Using

the Bayesian approach of Barillas and Shanken (2018), we show that the optimal subset of

factors pricing stock returns always includes our cyber risk factor.

We conduct tests to verify the robustness of our factor. First, we control that our

baseline estimate, revised at each new filing, captures the latent cyber risk and not the

immediate effect of a cyberattack. To do so, we build a long-run cyber risk score capturing

the cumulative cyber risk effect. Our results are virtually unchanged. Second, we control

for the possibility that firms in the cybersecurity business have risk occurrences that might

positively affect them. We also do not find any differences after that control.

Finally, we compare our model to the dictionary approach used by Florackis et al. (2023).

While the two estimates are positively correlated, our score performs better, especially for

firms assigned with zero cyber risk using the dictionary approach. We also argue that

previous methods employed to extract cyber risk scores from financial documents need to

be revised for this purpose. First, the dictionary approach may miss the context and does

not allow for capturing high-level semantics. Second, given this first issue, it also requires

limiting the scope of the analysis to a specific section (Item 1.A in the 10-K case). Third,

it requires training based on the actual realization of cyberattacks, thereby raising doubts

about whether the effect captured is a “post-attack recovery”, or indeed a latent cyber risk

perceived by investors. We demonstrate it conceptually and from our results while finding

strong support for the fact that cyber risk is priced in the cross-section of stock returns.
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The remainder of the paper proceeds as follows. Section 2 introduces the existing liter-

ature and highlights our contributions. Section 3 presents the data and methods, Section 4

details the results, and Section 5 concludes.

2. Literature review

2.1. Economic implications of cyber risk

Our study contributes to the literature on the economic implications of cyber risk, the

costs of cyberattacks, and corporate measures to mitigate them. For instance, Amir, Levi,

and Livne (2018) compare firms with voluntary disclosures and those withholding informa-

tion. They find that as the former are associated with a 0.7% decline in share value, the

latter experience a 3.6% decline, the month during which the attack is discovered. Gordon,

Loeb, and Sohail (2010) assess the firm value of voluntary cybersecurity disclosures. They

find positive correlations between voluntary disclosure and both firm value and liquidity.

Anderson, Barton, Böhme, Clayton, Eeten van, Levi, Moore, and Savage (2013) perform

a systematic study of the costs of cybercrimes by types. They find the typical yearly cost

for a citizen to lie between hundreds of USD (for tax and welfare fraud) and a few cents (for

“new crime” such as botnets). Revisited by Anderson, Barton, Böhme, Clayton, Ganan,

Grasso, Levi, Moore, and Vasek (2019), the updated study shows that payment frauds have

doubled over the seven years separating the initial one, along with a significant fall in average

costs for citizens. Bouveret (2018) estimates an average cyberattack loss of USD 97 bn at the

country level and a value-at-risk in the USD 147-201 bn range. Closely, Romanosky (2016)

finds that the cost distribution is heavily skewed, with an average cost of USD 6 mln and a

median cost of USD 170,000.

Much literature on the economic impact of cyber incidents involves event studies. For

instance, Gordon, Loeb, and Zhou (2011) find that news about information security breaches

significantly negatively affects stock returns, although they also document a downward trend

of this effect over time. Similarly, Campbell, Gordon, Loeb, and Zhou (2003) uncover a sys-

tematic adverse market reaction around cyber incidents but only when it involves confidential

information. Similarly, studying data breaches Johnson, Kang, and Lawson (2017) find that,

on average, stocks decrease by 0.37% around them, whereas Lending, Minnick, and Schorno
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(2018) uncover a long-term effect and identify one-year buy-and-hold abnormal returns of

-3.5%. Studying the channels by which these abnormal returns around cyber incidents ma-

terialize, Tosun (2021); Kamiya, Kang, Kim, Milidonis, and Stulz (2021) attribute their

effects to arise from shocks to firms’ reputations. Finally, Andreadis, Kalotychou, Louca,

Lundblad, and Makridis (2023) focus on the US municipal bonds market and estimates that

a 1% increase in the number of cyberattacks leads to an increase in yields from 3.7 to 5.9

basis points. Conversely, Jensen and Paine (2023) find no immediate effect on bond yields

of hacked towns. Furthermore, in the subsequent 24 months, they document the municipal

bond yields to decline along with an increase in IT spending.

2.2. Information extraction from natural language

Our study also contributes to a growing body of literature in finance that uses text-

extracted information and recent machine-learning advances to treat texts. First, natural

language processing in the financial literature often uses sentiment, i.e. a concept that

parses the single dimension of positive vs. negative content. To alleviate this concern,

Loughran and McDonald (2011), while showing that “standard” dictionaries can not capture

the sentiment in financial documents, develop their negative and positive dictionaries and

four others to extract other tones.3 Similarly, Jegadeesh and Wu (2013) use positive and

negative dictionaries to extract sentiment from 10-K statements that they directly map to

market reactions. Garcia (2013) uses ratios of positive and negative words from the New York

Times news over a century to predict stock returns in the US, while Calomiris and Mamaysky

(2019) use a similar method to predict risk and returns in stock markets worldwide.

Dictionary-based methods may also capture more meaning than positive or negative

sentiment. For instance, Bodnaruk, Loughran, and McDonald (2015) study 10-K statements

with a dedicated lexicon identifying constraining words and build a measure uncorrelated

with traditional financial constraint measures, yet accurately predicting liquidity events.

Antweiler and Frank (2004) use a measure of stock disagreement on internet forums and

identify that disagreement is positively associated with trading volume. Hassan, Hollander,

van Lent, and Tahoun (2019) use word and bigram counts in quarterly earnings conference

calls to capture the political risk of US-listed firms, whereas Sautner, van Lent, Vilkov, and

3The other tones are: uncertainty, litigious, strong modal, and weak modal.
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Zhang (2023) use a similar approach in the same documents to capture climate change risk

contexts. Finally, Hoberg and Phillips (2010) uses a measure of product market language

proximity between firms in 10-K statements and finds that it predicts the likelihood of a

future merger or acquisition between them.

Our study finally borrows from recent advances in the machine-learning treatment of

texts. Le and Mikolov (2014) develop an unsupervised algorithm called “Paragraph Vector”

that can learn fixed-length vector representations from variable-length pieces of texts, such

as sentences, paragraphs, and documents. For example, each piece of text is represented

by a dense vector that can be used for text classification and sentiment analysis. The ad-

vantage of this algorithm over other methods, such as bag-of-words, is that it learns the

semantics of words and sentences. Lau and Baldwin (2016) perform a rigorous empirical

evaluation of this algorithm and provide recommendations on hyper-parameter settings for

general-purpose applications. Mendsaikhan, Hasegawa, Yamaguchi, and Shimada (2019)

use the Paragraph Vector algorithm with cybersecurity-specific training data to identify

cybersecurity-related texts. Their training data combines online forums, news outlets, and

vulnerability databases. Their model identifies cybersecurity texts with 83% accuracy. Fi-

nally, close to our research, Adosoglou, Lombardo, and Pardalos (2021) construct portfolios

based on the semantic differences between two consecutive 10-K statements of each firm,

thereby revisiting Cohen, Malloy, and Nguyen (2020). They find that cosine similarity is the

most effective metric for neural network embeddings, such as the ones obtained using the

Paragraph Vector algorithm.

2.3. Asset pricing with cyber risk

Last, our study relates to asset pricing research, using firms’ cyber risk scores as a

portfolio-sorting variable, a body of literature in its infancy. Florackis et al. (2023) build

a text-based cyber risk score using the risk-disclosure section of 10-K statements (“Item

1.A Risk Factors”). They restrict their analysis to cyber-risk-related sentences from this

section, extracted with a match on a list of cyber-related keywords. They consider recently

(-1 or -2 years before filing) hacked firms as a training sample and compute the cyber risk

exposure of firms. This exposure is computed as the average similarity between the bag-of-

words representation (vector of the number of occurrences of each word in their dictionary)
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of the firm’s cybersecurity sentences and the cybersecurity sentences of the training sample.

They find that stocks with high exposure have higher returns on average but perform worse

in periods of cyber risk. Jamilov, Rey, and Tahoun (2023) perform a similar analysis using

quarterly earnings calls worldwide from 2002 to 2021. They construct a cyber risk score using

the frequency of cyber-related keywords in earnings calls and find that cyber risk exposure

is priced in stocks and options markets and predicts cyberattacks. Jiang, Khanna, Yang,

and Zhou (2023) use a cyber dictionary from NIST to count the number of cyber-related

words in Item 1.A. Combining it with firm characteristics, they perform a logit ridge regres-

sion where the dependent variable is the probability for a firm to experience a cyberattack.

Thus, this ex-ante probability also provides a measure of the cyber risk faced by a firm. Liu,

Marsh, and Xiao (2022) use an intertemporal CAPM where the betas are estimated vs. a

cybercrime news attention proxy (Thomson-Reuters MarketPsych, TRMI). They find that

high cybercrime-beta stocks generate 0.6% lower return than low cybercrime-beta stocks,

in apparent contradiction with studies above. However, they likely capture sensitivities to

realized cyberattacks, not latent cyber risk.

We are only aware of these four studies focusing on cyber risk and its implications for

asset pricing. As they all use a dictionary approach as a starting point, we argue that this

method is unsuitable for estimating firm-level cyber risk exposure for several reasons. First,

it leaves many firm-year observations with a cyber risk of zero (71% of firms in 2007 in the

case of Florackis et al. (2023) and over 98% of earnings calls in 2007 in the case Jamilov

et al. (2023)). Second, missing observations or measurement errors sometimes implies to

build a common cyber factor from which firm-level betas are estimated instead of directly

estimating it at the firm-level (see Jiang et al., 2023).4 Third, this approach only considers

word presence in disclosures and not the general cyber risk context. Finally, it sometimes

requires calibration with respect to realized cyberattacks (see, Florackis et al., 2023; Jiang

et al., 2023), which casts doubt about whether the estimates proxies for latent cyber risk

or cyberattack realization.5 Thus, their score may very well proxy for a post-cyberattack

4This was also the case in an earlier version of Jamilov et al. (2023)
5Florackis et al. (2023) present a robustness test to alleviate this concern, in which they withdraw

the firms having experienced cyberattacks from the sample, obtaining less significant results. However, by
calibrating their risk score on past cyberattacks, they likely capture the probability of a past cyberattack
(missed by the news or the cyberattacks database, PRC) rather than capturing contemporaneous cyber risk
exposure.
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recovery effect. Our contribution is also to clear these concerns up. Using the Paragraph

Vector machine learning algorithm of Le and Mikolov (2014), our method is free of cyberat-

tack calibration, focuses on the cybersecurity context, and consistently generates a non-zero

score.

3. Data and methodology

3.1. Market data

We download public equity data from Wharton Research Data Services (WRDS), using

the data from the Center for Research in Security Prices (CRSP) and S&P Global Market

Intelligence’s Compustat database. We report the list of variables in Table A1. We write a

Python script that queries all available information from WRDS’ API and filters the firms

based on the existence of a 10-K filing with the SEC so that all of the retained firms have at

least one 10-K statement available. We extract monthly stock returns and financial ratios

for 7,059 firms between January 2007 and December 2022. Figure 1 depicts the industry

distribution of these firms using the Fama-French 12 industry classification.

We also download the one-month Treasury bill rate and returns on the market, book-

to-market (HML), size (SMB), momentum (MOM), investment (CMA), and operating prof-

itability (RMW) factors from the Kenneth French data repository6.

[Insert Figure 1 here.]

3.2. 10-K statements

10-K statements are financial filings publicly traded companies submit annually to the US

Securities and Exchange Commission (SEC). They contain information such as companies’

financial statements, risk factors, and executive compensation. We use 10-K statements to

build a cyber risk score.

To download these statements, we use the index files from the SEC’s Edgar archives7.

These index files contain information about all the documents filed by all firms for a specific

quarter. Each line of the index file corresponds to a document and is structured as follows,

6Available at: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
7Available at: https://www.sec.gov/Archives/edgar/full-index/
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CIK—Company Name—Form Type—Date Filed—Filename

where Filename is the URL under which an HTML version of the document is available.

To identify firms, we use their Central Index Key (CIK), a number used by the SEC to

identify corporations and individuals who have filed disclosures. We write a Python script

that goes through these index files and identifies URLs that correspond to 10-K statements

using the Form Type entry. Using the CIK entry, these URLs are matched to one of the

7,059 firms mentioned in Section 3.1. We identify 60,470 10-K statements, corresponding to

8.6 statements per firm on average over the sample. Figure 2 shows the number of 10-Ks

filed per year. This number increases from 3,301 in 2007 to 5,370 in 2022.

[Insert Figure 2 here.]

3.3. Cybersecurity tactics

We use the MITRE ATT&CK8 cybersecurity knowledge base as a reference for cyber-

security descriptions. This knowledge base was created in 2013 to document cybersecurity

tactics, techniques, and procedures used by adversaries against particular platforms, such

as Windows or Google Workspace. Figure 3 illustrates the structure of the knowledge base.

Each sub-technique has a short description describing it. Table 1 shows two sub-technique

descriptions from the knowledge base.

[Insert Figure 3 here.]

[Insert Table 1 here.]

There are 14 tactics: reconnaissance, resource development, initial access, execution, persis-

tence, privilege escalation, defense evasion, credential access, discovery, lateral movement,

collection, command and control, exfiltration, and impact. There are 785 sub-techniques

across all tactics.

8Available at: https://attack.mitre.org/
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3.4. Methodology

3.4.1. Text preprocessing

We download 10-K statements from the SEC Archives as HTML files. We use the Beau-

tifulSoup9 Python library to extract the usable text from these files. We remove the punc-

tuation and numbers and set all letters to lowercase. Given the resulting texts, we write

a Python script that uses the wordfreq10 and NLTK11 libraries to divide the text into sen-

tences, remove stop-words (“the”, “is”, “and”, . . . ) and remove the most common words

of the English language. Since these words frequently appear in the texts, removing them

allows us to focus on essential cybersecurity-related words .12

After pre-processing, the average length of the cybersecurity sub-technique descriptions

from MITRE ATT&CK is close to 40 words (≈ 39.7). Based on this number, we write

a Python algorithm to merge consecutive sentences from 10-K statements into paragraphs

with an average length of close to 40 words after pre-processing. On average, we obtain 44

words per paragraph and 638 paragraphs per 10-K statement, with standard deviations of

2.6 words per paragraph and 304 paragraphs per 10-K statement.

3.4.2. Paragraph Vector

The Paragraph Vector algorithm, proposed by Le and Mikolov (2014), is an extension of

the word2vec algorithm (Mikolov, Chen, Corrado, and Dean (2013)). It aims to learn fixed-

length vector representations from variable-length pieces of text. The main advantage of this

algorithm over other methods, such as bag-of-words, is that semantically similar paragraphs

are mapped close to each other in the vector space.

The algorithm has two versions: a distributed memory model (DM) and a distributed

bag-of-words model (DBOW). In the distributed memory model, the algorithm trains to

get both word and paragraph vectors. During training, the concatenation or the average

of the paragraph vector and the vector representation of context words are used to predict

9Available at: https://www.crummy.com/software/BeautifulSoup/
10Available at: https://pypi.org/project/wordfreq/
11Available at: https://www.nltk.org/
12Stop-words contain no valuable information that could hint at the paragraph’s content. For this reason,

it is standard practice to remove them before using such models (see, e.g., Mendsaikhan et al., 2019). We
also attempted to train the models to keep stop-words, but they were then less powerful at identifying
cyber-related paragraphs.
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another word in the paragraph. In the distributed bag-of-words model, the paragraph vector

is trained to predict words in a window sampled from the paragraph. Word vectors are not

trained in this version. Figure 4 illustrates the two models.

[Insert Figure 4 here.]

Both models are unsupervised, as the paragraph vectors are learned from unlabelled data.

We use the implementation by Gensim called doc2vec13. To train the model, we use the

paragraphs from 10-K statements filed in 2007 as well as the 785 sub-technique descriptions

from MITRE, which together amount to more than 1.7 million training paragraphs. Using

this sample, we train DM and DBOW doc2vec specifications with various vector dimensions,

epochs, and window sizes. The baseline for the hyperparameters is taken from Lau and

Baldwin (2016) (see Table 2).

To choose the best specification, we compute the vector representations of the para-

graphs from 10 randomly chosen 10-K statements from 2008 (validation sample) using each

specification and compare the highest-scoring paragraphs between the models (the scoring

algorithm is explained below). We choose the best specification where the proportion of the

highest-scoring cyber risk-related paragraphs is the highest. Table 2 presents the parameters

of the best-performing doc2vec specification, which is used for the remainder of this study.

Appendix Table A2 gives an excerpt of top-scoring paragraphs from the validation sample

(after pre-processing).

[Insert Table 2 here.]

3.4.3. Cosine similarity

We use cosine similarity to measure the distance between the vector representations of two

paragraphs, i.e., the cosine of the angle between the two vectors. As explained in Adosoglou

et al. (2021), cosine similarity is the most effective similarity estimate as the orientation of

the embedding vectors is more stable than their magnitude due to the random initialization

of the weights of the neural networks. Cosine similarity is a number between −1 and 1. The

closer the vectors, the higher the value. The similarity between two paragraphs, with vector

representations v1 and v2, is therefore computed as sim = v1·v2
∥v1∥∥v2∥ .

13Available at: https://radimrehurek.com/gensim/models/doc2vec.html
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3.4.4. Cyber risk score

The cyber risk score is based on the cosine similarities with the cybersecurity descriptions

from MITRE ATT&CK. First, we compute the vector representation of every paragraph of

every 10-K statement using the trained doc2vec best-performing specification. We also com-

pute the vector representation of every sub-technique description from MITRE ATT&CK.

Next, we compute the cosine similarity of each paragraph from the 10-K statements with

each of the MITRE descriptions. This gives 785 similarities for each paragraph from the

10-K statements. The cyber risk score of a paragraph is the maximum value out of those

785 similarities. Finally, we compute the score of a 10-K statement as the average score of

the 1% of its highest-scoring paragraphs.

This algorithm assumes that a typical 10-K statement has at most six or seven cyber

risk-related paragraphs, representing 1% of the paragraphs (average of 638 paragraphs per

10-K statement). This method has several advantages. First, taking a percentage of the

total number of paragraphs, as opposed to a fixed number of paragraphs, makes it possible

to have a meaningful comparison between 10-K statements that are much shorter or much

longer than the others. Second, considering only the highest-scoring paragraphs makes the

cyber risk score of the 10-K statement solely dependent on paragraphs that are most likely

to be cyber risk-related.

Since the cosine similarity takes values between −1 and 1, we only consider positive

values for several reasons. First, interpreting a paragraph whose context is “opposite” to

cybersecurity is not intuitive. Upon inspection of the paragraphs with negative values in

the validation sample, we cannot uncover meaningful differences between paragraphs with

negative scores and those with scores close to zero. Furthermore, only considering positive

similarities guarantees that the cyber risk scores are between 0 and 1, making them compa-

rable to those obtained using dictionary methods such as in Jamilov et al. (2023); Florackis

et al. (2023).14

Figure 5 shows the distribution of the cyber risk scores of the paragraphs from the 10-K

statements of Meta Platforms, Inc. and Tesla, Inc. filed in 2022. The paragraphs in red are

the top 1% of paragraphs with the highest cyber risk scores. We compute the 10-K cyber

14We report in Appendix Table A4 an excerpt of these negative paragraphs to illustrate that they are
orthogonal to the concept of cyber risk and not indicators of cybersecurity.
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risk scores as the average score of this highest percentile.15 This yields a score of 0.605 for

META and 0.563 for TSLA.

[Insert Figure 5 here.]

3.5. Asset pricing tests

We use two-step Fama-MacBeth regressions (Fama and MacBeth, 1973) as follows. First,

we estimate security betas on several factors using time series regressions with 2-year rolling

windows. Second, we sort firms into 20 value-weighted portfolios based on their cyber risk.

We compute the factor exposures of the portfolios and standardize the portfolio betas for

economic interpretation. Finally, we estimate gammas using cross-sectional regressions of

the portfolio returns on their lagged factor exposures and their value-weighted cyber risk

score.

Next, we use the time series approach of Gibbons et al. (1989) (hereafter, GRS) to test

for portfolio efficiency. The GRS statistics allow testing whether the pricing errors are jointly

equal to zero when using a model with several traded factors. We also use 20 portfolios built

on cyber risk scores and factor betas, in turn, as test assets. We implement the GRS test

and compare two model specifications, the five-factor model from Fama and French (2015)

and the same five factors plus the cyber risk factor.

We implement the Bayesian approach of Barillas and Shanken (2018). Using this method,

it is possible to compute the probability that a given factor model is best to price factor

returns. The method does not presume that any model under consideration exactly satisfies

the requirement that all alphas are zero, as it is possible that some relevant factors still need

to be identified. The approach compares the relative success of the models in predicting the

observed data. The method is based on Barillas and Shanken (2017) and looks at the extent

to which a model prices the factors left out and not the extent to which the model prices

test assets. The unrestricted factor model is,

Rt = α + βFt + ϵt, ϵt ∼ N(0,Σ), (1)

15We try, in turn, other scores, such as the firm average of the cyber risk score distribution, with virtually
no changes. We retain the top percentile approach since, intuitively, these paragraphs are the most likely to
discuss actual cybersecurity issues.
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and the null hypothesis is H0 : α = 0. The prior for α is concentrated at zero under the

null hypothesis. Under the alternative, they assume a multivariate normal informative prior

for α: P (α|β,Σ) = MVN(0, kΣ), where k reflects the beliefs about the potential magnitude

of deviations from the expected return relation. By assumption, all the models contain the

market factor. The marginal likelihood of a model is given by,

ML = MLU(F |Mkt)×MLR(F
∗|Mkt, F )×MLR(R|Mkt, F, F ∗), (2)

where MLU is the unrestricted regression marginal likelihood, MLR is the restricted regres-

sion marginal likelihood (α constrained to zero), F are the included factors and F ∗ are the

excluded factors. The MLU(X|Y ) notation assumes the following regression equation:

Xt = α+ βYt + ϵt. The unrestricted and restricted regression marginal likelihoods are given

by,

MLU = |Y ′Y |−N/2|S|−(T−K)/2Q

MLR = |Y ′Y |−N/2|SR|−(T−K)/2,
(3)

where |S| and |SR| are the determinants of the N × N cross-product matrices of the OLS

residuals, T is the number of periods, K the number of factors, and N the number of

portfolios. The scalar Q is given by,

Q =

(
1 +

a

a+ k
(W/T )

)−(T−K)/2(
1 +

k

a

)−N/2

, (4)

where a = (1+Sh(Y )2)/T , k = (Sh2
max−Sh(Y )2)/N, W is the GRS F-statistic times NT/(T−N−K),

Sh(Y )2 the squared sample Sharpe Ratio. Under the alternative prior, k is the expected

increment to the squared Sharpe ratio from the addition of one more factor. Shmax is

the maximum expected Sharpe ratio. Barillas and Shanken (2018) take Shmax = 1.5 ×
ShMkt, which corresponds to a square root of the prior expected squared Sharpe ratio for

the all factors-tangency portfolio 50% higher than the market Sharpe ratio. They call this

value the prior multiple. Similarly, we use 1.5 as the baseline value for the prior multiple

but experiment with several values as in the original paper. The posterior probabilities,
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conditional on the data D, are given by Bayes’ rule,

P (Mj|D) =
MLj × P (Mj)∑
i

MLi × P (Mi)
, (5)

where P (Mj) is the prior probability of the model. Barillas and Shanken (2018) use uniform

prior probabilities to avoid favoring one model over another. Hence, they cancel out in

the division and can be omitted. MLR(R|Mkt, F, F ∗), in equation 2, is the same for all

combinations of F and F ∗. Hence, it also cancels out in the division and can be omitted.

Following the methodology of Barillas and Shanken (2018), we compute the posterior

probabilities for each month from January 2010 until December 2022. We use all of the data

available from January 2009 until the given time for each computation.

4. Results

4.1. Cyber risk score

Table 3 presents descriptive statistics of the cyber risk score and various firm characteris-

tics. The average cyber risk is 0.52, and its distribution is positively skewed, meaning there

are more very high-risk firms than very low-risk ones. The cyber risk distribution is narrow,

with a standard deviation of 0.03 and a spread between the top and bottom percentiles

of 0.14. The correlation coefficients between our cyber risk score and firms’ characteristics

are small, except for Tobin’s Q (0.23) and the Firm age (-0.17). The latter coefficient is

consistent with the view that older firms are less subject to cyberattacks since their core

businesses are less likely to be IT-related. Given that all other coefficients are below 0.15 in

absolute value, we are confident that our score is orthogonal to other characteristics known

to price stock returns.

[Insert Table 3 here.]

4.1.1. Time series and industry properties

Figure 6 presents the cross-sectional average cyber risk score for every year in the study

sample. We observe a monotonic positive time trend in line with the results of Florackis
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et al. (2023) and Jamilov et al. (2023).

[Insert Figure 6 here.]

Figure 7 shows the average cyber risk by industry, using the Fama-French 12 industry classi-

fication (also see, Fama and French, 1997). Industries that rely on technology systems such

as “Business Equipment” and “Telephone and Television Transmission” have high cyber risk.

In contrast, sectors such as “Oil and Gas” and “Chemicals”, which traditionally rely less

on technology systems, have lower scores. Nonetheless, the variation of cyber risk across

industries remains limited, similar to the overall cyber risk distribution.

[Insert Figure 7 here.]

4.1.2. Determinants of firm-level cyber risk

To investigate the dependence of cyber risk on firm characteristics, we perform two

regressions, presented in Table 4. In Model 1, we control for year- and firm-fixed effects;

in Model 2, we control for year- and industry-fixed effects. In both models, firm age has a

statistically significant negative coefficient at the 1% level, reinforcing the view that younger

firms are exposed to a higher cyber risk. The book-to-market coefficient is negative and

significant at the 1% level, meaning value firms have a lower cyber risk than growth firms.

In Model 2, the coefficient of intangible assets to total assets is positive and statistically

significant at the 1% level. This supports the view that firms with more intangible assets,

such as patents or software, have a higher cyber risk. The R-squared is low for both models,

showing that firm characteristics can not readily explain cyber risk.

[Insert Table 4 here.]

4.2. Univariate portfolio sorts

We sort firms into portfolios based on their cyber risk and study the returns on the

portfolios. We use a firm characteristic approach based on the results of Daniel and Titman

(1997), who argue that characteristics and not covariances determine expected returns. More

precisely, we assign firms to five portfolios based on the cyber risk score of their most recent

10-K statement. We rebalance the portfolios quarterly to allow for listings and delistings and
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incorporate information from new 10-K statements. We build five value-weighted portfolios,

where Portfolio 1 (5) is the low (high) cyber risk portfolio. We track the performance of

the portfolios from January 2009 until December 2022. Figure 8 shows the evolution of

the cumulative returns of the market and the five portfolios. We observe that the higher

the cyber risk of the portfolio, the higher the cumulative returns. Specifically, Portfolio 5

significantly outperforms the market.

[Insert Figure 8 here.]

Table 5 presents the excess returns and alphas of the portfolios with respect to three standard

factor models. The average monthly excess returns increase monotonically from 0.88% to

1.44%, from low to high cyber risk portfolios. The long-short portfolio, going long in Portfolio

5 and short in Portfolio 1, has excess returns and alphas that remain statistically significant at

the 5% level, after controlling for the Fama and French (2015) five-factor model. In addition,

we also observe that the Sharpe, Treynor, and Sortino ratios all experience monotonical

growth as the cyber risk increases, reinforcing our views that the performance is not driven

by compensation for total volatility, market exposure, or downside risk, respectively.16

[Insert Table 5 here.]

4.3. Double sorts

We also perform double sorts, where we first sort five portfolios on an alternative firm

characteristic and then sort the resulting portfolios on cyber risk. Akin to the previous

section, we build value-weighted portfolios that we rebalance quarterly. We use three char-

acteristics for the first sort, market beta, book-to-market ratio, and firm size. Table 6 shows

the average excess returns of each portfolio. The factor structure of cyber risk is more

prevalent among large firms, low to medium book-to-market firms, and medium beta firms.

The long-short portfolio has positive excess returns for most of the portfolio sorts. This

further supports the view that cyber risk captures a specific variation in average returns by

controlling for market beta, firm size, and book-to-market value.

[Insert Table 6 here.]

16in Appendix, Figure A1 we depict the 2-year rolling window correlation of the cyber risk long-short
portfolio and the market. On average, this correlation shows up at only 2%.
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4.4. Asset pricing tests

4.4.1. Fama-Macbeth regressions

Table 7 presents the results of Fama-Macbeth regressions. Specification 1 only includes

the market factor. The coefficient on the market is insignificant, and the average adjusted

R-squared is small, showing that the CAPM can not price the cyber beta-sorted portfolios.

In Specification 2, we use the cyber risk proxy, and as shown, the risk premium is statis-

tically significant, and the average adjusted R-squared increases from virtually 0 to 0.13.

Specifications 3, 4, and 5 control for other common factors, while the cyber risk premium

remains economically and statistically significant. The economic interpretation of this table

is that a one-standard-deviation increase in cyber risk drives returns up by about 18 basis

points per month. This increase is statistically significant at the 10 or 5% level, even when

controlling for other common factors.

[Insert Table 7 here.]

We further test whether an industry effect drives the cyber risk premium. We run Fama-

Macbeth regressions, expanding the set of explanatory variables with betas on seven value-

weighted Fama-French industry-portfolios17. We report these results in Specification 6 of

Table 7. The cyber risk premium decreases to 0.150% but remains statistically significant

at the 10% level. These results are obtained using portfolios sorted on cyber risk. As

highlighted by Lewellen, Nagel, and Shanken (2010), asset pricing tests, such as Fama-

Macbeth regressions, can be improved by using additional portfolios sorted on other firm

characteristics. Following their recommendations, we expand the set of test assets with

portfolios sorted by industry. We report the results in Specification 7 of Table 7. Once

again, the economic significance of the cyber risk premium is virtually unchanged at 0.176%

per month, and its statistical significance remains below the 5% level.

4.4.2. GRS test

We implement the GRS test as follows. We build 20 value-weighted portfolios sorted

on cyber risk. Next, we compute the GRS test statistic using the five-factor model from

17We drop four of them due to collinearity and leave the “Other” categories aside because of the lack of
interpretability.
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Fama and French (2015) and the same model augmented with the cyber risk factor. We

report the results and repeat this procedure, sorting portfolios on market beta, firm size,

and book-to-market ratio. Table 8 presents the results. The GRS test statistic is smaller

for the model containing the cyber risk factor when sorting on cyber risk, size, and book-

to-market. Interestingly, when sorting on firm size and book-to-market, we reject the null

hypothesis that αi = 0, ∀i, for the five-factor model but not for the model containing the

cyber risk factor. This is not the case when sorting on market beta. However, we can not

reject the null hypothesis for either model.

[Insert Table 8 here.]

4.4.3. Bayesian factor model selection

Given the results of the GRS tests, a subset of factors could explain the cross-section of

returns. The approach of Barillas and Shanken (2018) detailed in Section 3.5 allows us to

determine the optimal combination of factors. Including the market factor in all cases, we

compute the 62 permutations between all factors, i.e. HML, SMB, CMA, RMW, MOM, and

the cyber factor.18 Figure 9 presents the posterior probabilities of the five most likely models

ranked at the end of the sample. All five optimal models contain the cyber risk factor, and

the model with the highest probability, of 21.18%, comprises the market, book-to-market,

investment, operating profitability, and cyber risk factors.

[Insert Figure 9 here.]

Figure 10 presents the cumulative factor probabilities, i.e. the sum of probabilities of all

models containing the factor. The cyber risk factor has a cumulative probability of 91.66%

at the sample’s end. Unlike the remaining factors, the investment and operating profitability

factors also have high cumulative probabilities.

[Insert Figure 10 here.]

Finally, we study the sensitivity of the model probabilities to the prior multiple of the Sharpe

ratio. Following Barillas and Shanken (2018), we repeat the analysis using three other values

of prior multiple: 1.25, 2, and 3. Table 9 reports the posterior model probabilities at the end

18There are 26 − 2 permutations since we discard the case when all six factors are included in the model.

20



of the sample for the top five models for each prior. The set of top five models is unchanged

for each prior multiple. Furthermore, the book-to-market factor is no longer included in the

most likely model for higher values of the prior multiple.

[Insert Table 9 here.]

4.5. Comparison with the work of Florackis et al. (2023)

To compare our cyber risk score to the one of Florackis et al. (2023), we start by com-

puting the correlation between the two and obtain 0.34.19 Encouragingly, the correlation is

positive but relatively low, which shows that our estimate is novel.

The methodology of this paper improves that of Florackis et al. (2023). Specifically,

the Paragraph Vector algorithm is more potent than a dictionary approach in capturing

cyber risk-related content in 10-K statements. Indeed, the dictionary will only contain some

words needed to identify all cyber risk-related text. The dictionary used by Florackis et al.

(2023) can locate many of these texts unless the authors of the 10-K statements use slightly

different wording than the others, which is not uncommon. For example, Appendix Table A3

shows three paragraphs that were missed by their approach, and consequently, the firm-year

observations got a cyber risk score of zero. Using the methodology presented in this paper,

these 10-K statements were given an above-average cyber risk score.

To investigate this further, we use our cyber risk score to sort firms attributed with a zero

cyber risk score by Florackis et al. (2023)) into three portfolios. We report the portfolios’

average excess returns and alphas in Table 10. We observe that there is a structure left to

exploit in returns sorted from zero-risk firms with dictionary methods. The average excess

returns and alphas increase with the cyber risk (as measured using our indicator), and the

long-short portfolio has economically significant excess returns and alphas.

[Insert Table 10 here.]

An additional advantage of systematically capturing a score is that it resolves the unbalanced

portfolio’s firm number that their method was implying, thereby allowing the formation of

as many portfolios as needed. Finally, we test how much cyber risk information is missed in

19The Florackis et al. (2023) data is available at:
https://alucutac-my.sharepoint.com/personal/christodoulos louca.
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10-K statement parts other than Items 1.A. We sort portfolios based on the cyber score that

excludes this section, and we report the results in Table 11. We observe that alphas and

statistical significance levels are slightly lower, but our interpretation is unchanged. Thus,

we conclude that the entirety of the filings needs to be considered since a significant amount

of cyber risk-related information remains outside of Items 1.A. Specifically, computing other

statistics, we find that, on average, only 34% of paragraphs used for our cyber risk score

comes from Items 1.A. This proportion has increased regularly over the years, from about

15% in 2008 to about 50% in 2022. We also report an excerpt of these Paragraph Vector-

identified top-scoring paragraphs in Appendix Table A3.

[Insert Table 11 here.]

In unreported tests, we also circumvent the cyber risk score to be only on Item 1.A; we obtain

slightly less significant results, further supporting that the information should be extracted

from the full statement.

4.6. Robustness tests

4.6.1. Long-run cyber risk

By design, our cyber risk score depends only on each company’s most recent 10-K state-

ment. A firm may discuss cybersecurity concerns and risks extensively in its 10-K statement

in year T , for example, because of an increasing number of cyberattacks in the industry, re-

sulting in a high cyber risk score. Having focused on cybersecurity in year T and not having

been attacked itself, the firm could decide not to talk about cyber risks in its following 10-K

statements (in years T + i) or not as much as in year T , even though it still has similar cyber

risks. The previously computed cyber risk score would miss these cases as it has no memory.

We compute the expanding average cyber risk score to study the long-run cyber risk of

firms. The long-run cyber risk score in year T is the average of its simple cyber risk scores

from 2008 to year T . This new estimate could account for the case companies described

above. The advantage of using the long-run average instead of the long-run maximum is

that it does not discard the observations. This is beneficial when considering firms in the

following situation: consider a firm that discusses cyber risks in its 10-K statement in year

T following a cyberattack or data breach. The firm might purchase protection (insurance
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or software), minimize its future cyber risk, and not discuss this risk in its subsequent 10-K

statements. The low cyber risk scores in the upcoming years represent the firm’s reality and

should not be discarded.

We repeat the portfolio sorts from Section 4.2 using the long-run cyber risk to sort

firms. Table 12 presents the results. We observe no significant change from Table 5, and

the long-short portfolio remains significant at the 5% or 10% level. These results indicate

that firms incorporate all available information regarding their cyber risk in their newest

10-K statements; hence, incorporating information from past statements does not improve

the estimation of the cyber risk.

[Insert Table 12 here.]

4.6.2. Controlling for cybersecurity firms

Our cyber risk score does not make a distinction between firms that discuss cybersecu-

rity because they consider it a risk and firms that are cybersecurity solutions providers, for

example, Fortinet20. As there is no dedicated cybersecurity industry classification, we iden-

tify cybersecurity firms using the HACK ETF21. The fund’s description explains that this

ETF invests in companies providing cybersecurity solutions, including hardware, software,

and services. As cybersecurity providers, these firms are expected to discuss cybersecurity

extensively in their 10-K statements, resulting in a false high cyber risk score. Indeed, these

firms have an average score of 0.59, which is in the top 3% of cyber risk scores. We repeat the

analysis from Section 4.2, and we exclude the holdings of the HACK ETF from the universe

of firms.

Table 13 presents the results. The results for Portfolios 1, 2, and 3 are unchanged, and

the excess returns and alphas of Portfolios 4 and 5 increase. Furthermore, we observe that

the t-statistics on Portfolios 4 and 5 also increase.

[Insert Table 13 here.]

20Available at: https://www.fortinet.com/
21Available at: https://etfmg.com/funds/hack/
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4.6.3. Before and after Florackis et al. (2023) was first released

We repeat our analysis by splitting the study period before and after the time of the first

release of Florackis et al. (2023) on SSRN (January 2009 until October 2020) and then after

the release (November 2020 until December 2022). Table 14 presents the results using the

period before the publication. The long-short portfolio has statistically significant positive

excess returns and alphas (significant at the 1% level). The outperformance of Portfolio 5 and

the underperformance of Portfolio 1 is also more substantial, with the long-short portfolio

having an average monthly excess return of 0.94%. Portfolio 1 has statistically significant

negative alphas at the 1% level.

[Insert Table 14 here.]

Table 15 presents the results using the period after the release. Portfolio 1 has a high

average monthly excess return of 2.16%, significant at the 5% level, and outperforms the

other portfolios whose excess returns are not statistically significant. The long-short portfolio

has negative average excess returns of -1.49%, significant at the 5% level, and statistically

significant negative alphas when controlling for the market at the 1% level. Still, the alphas

are not statistically significant when controlling for the factors from Carhart (1997) or Fama

and French (2015). Last, the correlation between the long-short cyber risk and the market

portfolios spikes in this period (see Appendix, Figure A1).

[Insert Table 15 here.]

There could be several explanations for these results. It could be that the publication made

some arbitrageurs trade stocks based on their cyber risk evaluation, which results in lower

returns post-publication, as explained in McLean and Pontiff (2016). Another interpretation

provided by Florackis et al. (2023) is that high-risk firms lost value in a higher concentration

of cyber incidents while low-risk firms, being less affected, appreciated.

For instance, T-Mobile was a victim of a cyberattack in August 2021 during which more

than 76.6 million current and former customers’ information had been accessed22. Fur-

thermore, the U.S Treasury Department published a report that as of June 2021, financial

institutions had already reported 635 suspicious ransomware-related activities which consti-

tuted a 30% increase from all reported activity in 202023. The report also found that the

22Available at:https://www.t-mobile.com/news/network/cyberattack-against-tmobile-and-our-customers
23Available at: https://cyberscoop.com/ransomware-treasury-cryptocurrency-sanctions/

24

https://www.t-mobile.com/news/network/cyberattack-against-tmobile-and-our-customers
https://cyberscoop.com/ransomware-treasury-cryptocurrency-sanctions/


cost of ransomware payments increased. These events could explain why Portfolio 5 has

low returns and the long-short portfolio has negative returns. However, the post-publication

period is much smaller; thus, the estimates could be spurious.

5. Conclusion

This paper implements the “Paragraph Vector” algorithm to estimate firms’ cyber risk

based on their 10-K statements. Documenting that this score is unrelated to other economic

variables, we sort portfolios across this cyber risk score that we submit to various asset

pricing tests. Our results support the view that cyber risk is priced in the cross-section of

stock returns. Indeed, a long-short strategy on cyber risk sorted portfolios has a positive and

statistically significant alpha over traditional factor models and an average monthly excess

return of 0.56%. We investigate the interactions of cyber risk with the other sources of risks

by performing double sorts. The results show that cyber risk captures a variation in average

returns by controlling for market beta, firm size, and book-to-market value. Furthermore, we

show that cyber risk has a significant premium using Fama-Macbeth regressions. Using the

GRS test of Gibbons et al. (1989) and the methodology from Barillas and Shanken (2018),

we show that the cyber risk factor helps to price stocks and is present in the five most likely

factor models.

We compare our score to the one of Florackis et al. (2023) and conclude that while

being mildly correlated with theirs (34%), our score performs better at capturing cyber

risk. By design, our method allows us to capture cyber risk contexts and not only specific

keywords. Consequently, this method can be unrestricted to specific sections of firms’ dis-

closures, thereby integrating all available information. We confirm this with a specific test

on firms sorted on 10-K statements, excluding Item 1.A and document excess returns in

line with those obtained using the full corpus. Second, our approach always enables us to

obtain a firm cyber risk score, avoiding the issue of classifying firms as zero-risk. Specifically,

while sorting firms attributed to zero-cyber risk with the dictionary approach, we uncover

a remaining structure in the portfolio’s returns with tercile long-short portfolios’ returns

statistically significant at the 5% level and of 0.53% per month. A third benefit of this ap-

proach is that it does not require the use of past cyberattacks to be calibrated, which solves

the problem of whether what is captured are “post-cyberattacks recovery”, or actual latent
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cyber risk.

Finally, we run two robustness tests. First, we compute the long-run cyber risk as the

expanding average of the cyber risk. We perform the portfolio sorts and observe that the

results are very similar. Hence, we conclude that firms incorporate all available information

about cyber risk in their newest 10-K statement. Second, we exclude cybersecurity firms

from the sample and perform the portfolio sorts. We find that the average monthly returns of

the two high cyber-risk portfolios increase, and the others are left unchanged, supporting the

view that the alpha arises from cyber risk exposure. We are confident that this new semantic

approach incorporating information in textual documents would successfully identify other

risk factors or characteristics, such as legislative or geopolitical risks. These risks could

be readily captured by changing the MITRE knowledgebase to one close to the risk under

scrutiny.
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Anderson, R., Barton, C., Böhme, R., Clayton, R., Eeten van, M. J. G., Levi, M., Moore,

T., Savage, S., 2013. Measuring the cost of cybercrime. Workshop on the Economics of

Information Security 11, 265–300.
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Figures and Tables

Fig. 1: Industry distribution

This figure depicts the distribution of firms in the 12 Fama-French industries Standard Industrial Classifi-
cation. (SIC) codes are obtained from CRSP. The conversion table, from SIC to 12 Fama-French industries,
is available on the Kenneth French data repository.
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Fig. 2: Number of 10-Ks per year

This figure depicts the number of companies in the study sample that have filed a 10-K statement in a given
calendar year.
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Tactic

Tactics represent the “why” of an ATT&CK technique or sub-technique. It is the
adversary’s tactical goal: the reason for acting. For example, an adversary may want
to achieve credential access, collect data, or run malicious code.

Technique

Techniques represent “how” an adversary achieves a tactical goal by acting. For
example, an adversary may dump credentials to achieve credential access or may
use social engineering to run malicious code.

Sub-technique

Sub-techniques describe the different types of a technique. For example,
when trying to run malicious code for social engineering, the adversary may
use a malicious link, a malicious file, or a malicious image for execution.

Fig. 3: Structure of the tactic descriptions on MITRE ATT&CK
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Description
Tactic Credential Access Adversaries may forge web cookies that can be

used to gain access to web applications or
Internet services. Web applications and services
(hosted in cloud SaaS environments or
on-premise servers) often use session cookies to
authenticate and authorize user access.

Technique Forge Web Credentials

Sub-technique Web Cookies

Tactic Reconnaissance Adversaries may gather employee names that can
be used during targeting. Employee names can
be used to derive email addresses as well as to
help guide other reconnaissance efforts and/or
craft more-believable lures.

Technique Gather Victim Identity Information

Sub-technique Employee Names

Table 1: Examples of sub-technique descriptions from MITRE ATT&CK

34



Fig. 4: “Paragraph Vector” model versions

The left panel of the figure depicts the framework for learning paragraph vectors. A paragraph token
is mapped to a vector via matrix D (in orange). In this case, the concatenation of this vector with a
context of three words is used to predict the fourth word (“on”). The paragraph vector represents the
missing information from the context and is a memory of the paragraph’s topic. The right panel depicts
the “Distributed Bag of Words” version of paragraph vectors. This version trains the paragraph vector to
predict the words in a small window. The images (captions) are taken (rewritten) from Le and Mikolov
(2014).
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Method Training Size Vector Size Window Size Min Count Sub-Sampling Negative Sampling Epoch

Best specification DBOW 1.7M 200 15 5 10−5 5 50
Baseline specification DBOW - 300 15 5 10−5 5 20

Table 2: doc2vec parameters

This table reports the chosen parameters used to train the doc2vec specification and the baseline specification
parameters of Lau and Baldwin (2016). The chosen parameters correspond to the best specification we find
in computing the vector representations of the paragraphs from 10 randomly selected 10-K statements from
2008 (validation sample). We try each specification and compare the highest-scoring paragraphs between the
specifications. We assume the best specification to be the one with the highest proportion of highest-scoring
cyber risk-related paragraphs. “DBOW” stands for distributed bag-of-words.
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Fig. 5: Paragraph level score distributions for Meta Platforms and Tesla

This figure depicts the distribution of paragraphs from 10-K statements filed in 2022 for Meta (left panel)
and Tesla (right panel) based on their cyber risk score. We choose 50 bins and color in red the paragraphs
within the top 1% of cyber risk scores.
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Mean SD P1 P25 P50 P75 P99 Correlation with
cyber risk

Cyber risk 0.52 0.03 0.47 0.50 0.52 0.54 0.61 -
Firm Size (ln) 20.18 2.39 13.15 18.53 20.25 21.86 25.46 -0.10
Firm Age (ln) 2.70 1.06 -0.88 2.21 2.93 3.41 4.07 -0.17
ROA -0.11 0.47 -2.57 -0.07 0.02 0.07 0.36 -0.05
Book to market ratio 0.68 1.15 0.02 0.24 0.46 0.81 4.42 -0.12
Tobin’s Q 2.20 2.14 0.58 1.09 1.50 2.37 12.15 0.23
Market Beta 1.20 0.84 -1.01 0.71 1.13 1.60 3.90 0.00
Intangibles/Assets 0.17 0.21 0.00 0.00 0.07 0.27 0.78 0.14
Debt/Assets 0.53 0.28 0.06 0.32 0.52 0.70 1.48 -0.09
ROE -0.08 0.61 -2.96 -0.08 0.07 0.15 0.88 -0.06
Price/Earnings 1.55 112.17 -511.4 -4.44 12.57 23.82 294.46 -0.01
Profit Margin -0.38 5.53 -25.20 0.21 0.36 0.57 0.94 0.00
Asset Turnover 0.92 0.74 0.01 0.39 0.76 1.26 3.54 -0.03
Cash Ratio 1.85 3.41 0.01 0.23 0.65 1.81 18.20 0.11
Sales/Invested Capital 1.54 1.59 0.01 0.56 1.08 1.94 8.88 -0.01
Capitalization Ratio 0.30 0.32 0.00 0.02 0.24 0.47 1.54 -0.10
R&D/Sales 0.67 4.21 0.00 0.00 0.00 0.08 19.40 0.03
ROCE 0.00 0.45 -1.97 -0.02 0.09 0.17 0.95 -0.07

Table 3: Descriptive statistics of the cyber risk measure and firm characteristics

This table reports firm-level characteristics, Mean, standard deviation, percentiles, and correlation with
cyber-risk. The measure is winsorized at the 1st and 99th percentile (by year). We define the characteristics
in Table A1.
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Fig. 6: Evolution of the average cyber risk across all firms

This figure depicts the yearly evolution of our firm-level cyber risk measure averaged across all firms over
our sample period: 2007–2022.
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Fig. 7: Cyber risk across industries

This box plot depicts the minimum, first quartile, median, third quartile, and maximum values of our cyber
risk measure for each Fama-French 12 industry classification. The whiskers extend no more than 1.5 times
the interquartile range (third quantile - first quantile) from the edges of the box, ending at the farthest data
point within that interval. Outliers are plotted as separate dots. Standard Industrial Classification (SIC)
codes are obtained from CRSP. The conversion table, from SIC codes to the 12 Fama-French industries, is
available on the Kenneth French data repository.
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Firm-level indicator of cyber risk
Model 1 Model 2

Constant -0.416∗∗∗ -0.738∗∗∗

[-24.89] [-14.22]
Firm Size (ln) 0.019 0.024

[0.56] [1.22]
Firm Age (ln) -0.114∗∗∗ -0.211∗∗∗

[-3.91] [-12.09]
ROA 0.057 0.0321∗∗

[0.79] [2.27]
Book to Market -0.023∗∗∗ -0.066∗∗∗

[-4.82] [-3.67]
Tobin’s Q 0.019∗∗∗ 0.112∗∗∗

[2.84] [7.87]
Market Beta -0.009 -0.013

[-1.54] [-1.31]
Intangibles/Assets -0.026∗∗ 0.082∗∗∗

[-2.04] [5.51]
Debt/Assets -0.032∗∗ 0.032

[-2.49] [1.21]
ROE 0.002 -0.009

[0.37] [-0.72]
Price/Earnings 0.005 0.002

[1.20] [0.29]
Profit Margin 0.006 0.048∗∗∗

[1.18] [3.98]
Asset Turnover -0.014 -0.135∗∗∗

[-0.67] [-4.49]
Cash Ratio 0.001 0.019

[0.09] [1.19]
Sales/Invested Capital 0.008 0.104∗∗∗

[0.54] [3.80]
Capital Ratio 0.001 -0.191∗∗∗

[0.02] [-8.49]
R&D/Sales -0.001 -0.003

[-0.22] [-0.30]
ROCE 0.005 0.000

[0.71] [0.01]
Year fixed effect Yes Yes
Industry fixed effect No Yes
Firm fixed effect Yes No
Observations 27760 27760
R-squared 0.2944 0.3921

Table 4: Determinants of firm-level cyber risk

This table reports the results of cyber risk regressions on firm characteristics. We include in turn year-,
industry-, and firm-fixed effects. We report t-statistics in brackets. The variables are standardized, and the
standard errors are clustered at the firm level. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1%
levels, respectively. We define the characteristics in Table A1.
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Fig. 8: Cyber risk-sorted portfolios cumulative returns

This figure depicts the performance of value-weighted portfolios of firms sorted on our cyber risk measure.
We rebalance the portfolios quarterly. “Market” refers to the market portfolio obtained from the Kenneth
French data repository. One unit of the ordinate axis unit is 100% return. The frequency is monthly and
the period is 2009–2022.
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Value Weighted Portfolios

L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by cyber risk
Average excess returns 0.88∗∗∗ 1.02∗∗∗ 1.13∗∗∗ 1.20∗∗∗ 1.44∗∗∗ 0.56∗

[3.20] [3.88] [3.73] [4.65] [4.19] [1.72]
CAPM alpha -0.22 -0.06 -0.04 0.07 0.31 0.54

[-0.95] [-0.42] [-0.35] [1.21] [1.61] [1.32]
FFC alpha -0.14 -0.01 0.03 0.04 0.24∗ 0.38∗

[-1.20] [-0.15] [0.41] [0.62] [1.93] [1.87]
FF5 alpha -0.16 -0.08 0.03 0.04 0.25∗ 0.41∗∗

[-1.62] [-0.89] [0.39] [0.54] [1.89] [2.21]

B. Characteristics
Number of firms 615.7 615.1 615.1 615.1 615.5 -
Cyber risk 0.493 0.507 0.518 0.532 0.572 -
Sharpe Ratio 0.637 0.775 0.801 0.892 1.037 0.628
Treynor Ratio 0.031 0.037 0.038 0.042 0.050 3.283
Sortino Ratio 0.942 1.199 1.263 1.462 1.790 2.733

Table 5: Average monthly excess returns and alphas

This table reports the excess returns and alphas (in percent) of quintile portfolios of firms sorted on our
cyber risk measure. “FFC” refers to the four-factor model of Carhart (1997), and “FF5” refers to the five-
factor model of Fama and French (2015). Panel B shows the average number of firms in each portfolio, the
average cyber risk, and the annualized Sharpe, Treynor, and Sortino ratios. Newey-West (Newey and West,
1994) t-statistics are reported in brackets. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1% levels,
respectively. The period is from January 2009 to December 2022.
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Value Weighted Portfolios

Cyber Q1 (Low) Cyber Q2 Cyber Q3 Cyber Q4 Cyber Q5 (High)

A. sorted on market beta
Beta Q1 (Low) 0.94 1.01 0.85 1.09 0.91
Beta Q2 1.04 1.03 1.23 1.25 1.55
Beta Q3 0.98 1.22 1.25 1.36 1.39
Beta Q4 1.36 1.19 1.38 1.29 1.96
Beta Q5 (High) 1.61 1.71 1.79 1.86 1.72

B. sorted on book-to-market
BM Q1 (Low) 0.90 1.09 1.22 1.28 1.54
BM Q2 1.02 1.09 1.32 1.23 1.36
BM Q3 0.99 1.04 1.23 1.18 1.51
BM Q4 1.04 1.17 1.29 1.25 1.37
BM Q5 (High) 1.87 1.77 1.73 1.64 1.71

C. sorted on size
Size Q1 (Small) 1.33 1.25 1.45 1.77 1.24
Size Q2 1.35 1.54 1.23 1.18 1.38
Size Q3 1.43 1.39 1.19 1.33 1.47
Size Q4 1.16 1.21 1.29 1.24 1.30
Size Q5 (Large) 0.86 1.00 1.14 1.25 1.52

Table 6: Double sorted portfolios

This table reports average monthly excess returns in percent of double-sorted portfolios, first on market
beta, book-to-market, or size and then on cyber risk. The period is from January 2009 to December 2022.
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Portfolio returns RP,t+1

(1) (2) (3) (4) (5) (6) (7)

βMarket,t -0.005 -0.025 0.065 0.024 -0.033
[-0.064] [-0.429] [0.997] [0.275] [-0.578]

Cyber riskt 0.183∗ 0.182∗∗ 0.183∗ 0.172∗∗ 0.150∗ 0.176∗∗

[1.794] [1.994] [1.913] [2.037] [1.736] [2.103]
βHML,t 0.027 -0.012 -0.033

[0.439] [-0.126] [-0.293]
βSMB,t 0.069 0.049 -0.042

[0.835] [0.536] [-0.385]
βMOM,t 0.011

[0.153]
βRMW,t -0.085 -0.086

[-1.436] [-1.150]
βCMA,t -0.088 0.011

[-0.816] [0.076]

βConsumerDurables,t -0.005
[-0.053]

βEnergy,t -0.005
[-0.064]

βChemicals,t 0.025
[0.351]

βTelecommunications,t 0.045
[0.619]

βRetail,t 0.116
[1.015]

βHealthcare,t 0.048
[0.623]

βFinance,t 0.101
[1.104]

Constant 1.445∗∗∗ 1.465∗∗∗ 1.457∗∗∗ 1.455∗∗∗ 1.476∗∗∗ 0.945∗∗ 1.362∗∗∗

[5.311] [5.540] [5.493] [5.413] [5.450] [2.525] [5.015]

R2adj 0.007 0.134 0.186 0.258 0.284 0.302 0.295
MAPE 1.360 1.312 1.233 1.064 0.987 0.914 1.243
Nb portfolios 20 20 20 20 20 20 31

Table 7: Fama-MacBeth regressions

This table reports the results of Fama-MacBeth regressions of 20 value-weighted portfolios arithmetic returns
sorted on their cyber risk. In Specification (7), we extend the set of test assets with an additional 11 industry
portfolios. These portfolios are regressed each month on portfolio value-weighted betas with the market,
HML, SMB, MOM, RMW, and CMA and on portfolio value-weighted betas with industry portfolios in
Specification (6). “Cyber risk” is the value-weighted cyber-risk of each portfolio. The betas are standardized
before the second step-regressions and estimated with a two-year rolling window. HML and SMB refer to
the book-to-market and size factors from Fama and French (1992). MOM refers to the momentum factor
from Carhart (1997). CMA and RMW refer to the investment and operating profitability factors from Fama
and French (2015). R2adj is the average adjusted R-squared, and MAPE is the mean average pricing error.
Newey-West t-statistics are reported in brackets. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1%
levels, respectively. The period is from January 2009 to December 2022.
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GRS p-value R2 GRS p-value R2

Sorted on cyber risk Sorted on market beta

FF5 1.211 0.253 0.869 0.712 0.802 0.783
FF5 + CyberFactor 0.947 0.530 0.886 0.825 0.680 0.801

Sorted on size Sorted on book-to-market

FF5 1.490 0.093 0.879 1.709 0.038 0.878
FF5 + CyberFactor 1.458 0.106 0.880 1.417 0.124 0.883

Table 8: GRS test statistics

This table reports the results of time series regressions of 20 value-weighted portfolios sorted on cyber-risk
on the five-factor model of Fama and French (2015) (FF5) and on the “CyberFactor”, i.e. the factor built
as the long-short of extreme quintile portfolios sorted on our cyber risk score. The study period is from
January 2009 to December 2022.
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Fig. 9: Factor model posterior probabilities

The figure depicts the posterior probabilities for the top five models, ranked at the end of the sample. “Mkt”
refers to the excess return on the market from the Kenneth French data repository. HML and SMB refer to
the book-to-market and size factors of Fama and French (1992). CMA and RMW refer to the investment and
operating profitability factors of Fama and French (2015). “CyberFactor” refers to the long-short portfolio
built on our cyber risk score. The prior multiple is 1.5, and the study period is from January 2010 to
December 2022.
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Fig. 10: Cumulative posterior factor probabilities

This figure depicts the cumulative posterior probabilities, i.e. the sum of probabilities of all models containing
the factor. HML and SMB refer to the book-to-market and size factors from Fama and French (1992). MOM
refers to the momentum factor from Carhart (1997). CMA and RMW refer to the investment and operating
profitability factors from Fama and French (2015). “CyberFactor” refers to the long-short portfolio built
on our cyber risk score. The prior multiple is 1.5, and the study period is from January 2010 to December
2022.
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Prior Multiple 1.25 1.5 2 3

Mkt HML RMW CMA CyberFactor 19.40 21.18 21.31 18.79
Mkt RMW CMA CyberFactor 16.54 19.01 21.89 26.08
Mkt SMB HML RMW CMA CyberFactor 18.38 18.38 15.92 10.41
Mkt SMB RMW CMA CyberFactor 11.92 12.85 12.81 11.24
Mkt CMA CyberFactor 5.76 5.87 7.15 11.18

Table 9: Prior sensitivity of the posterior model probabilities

This table reports the posterior model probabilities (in percent) for the top five models (ranked at the end
of the sample) for different values of the prior multiple. The top five models remain the same for every prior
multiple. “Mkt” refers to the excess return on the market from the Kenneth French data repository. HML
and SMB refer to the book-to-market and size factors of Fama and French (1992). CMA and RMW refer to
the investment and operating profitability factors of Fama and French (2015). “CyberFactor” refers to the
long-short portfolio built on our cyber risk score. The study period is from January 2010 to December 2022.
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Value Weighted Portfolios

L H H-L
P1 P2 P3 P3-P1

A. Portfolios sorted by cyber risk
Average excess returns 0.71 0.88∗∗ 1.24∗∗∗ 0.53∗∗

[1.83] [2.25] [3.37] [2.00]
CAPM alpha -0.58∗∗∗ -0.35 -0.07 0.51∗

[-2.75] [-1.11] [-0.35] [1.73]
FFC alpha -0.40∗ -0.23 -0.05 0.35

[-1.89] [-0.82] [-0.37] [1.38]
FF5 alpha -0.37∗ -0.27 0.01 0.38

[-1.73] [-0.97] [0.09] [1.54]
B. Characteristics
Number of firms 248.5 247.9 248.3 -
Cyber risk 0.486 0.504 0.534 -
Sharpe Ratio 0.489 0.645 0.856 0.567
Treynor Ratio 0.023 0.030 0.039 3.976
Sortino Ratio 0.735 1.071 1.463 2.349

Table 10: Average monthly excess returns and alphas of firms classified as zero-
risk by Florackis et al. (2023)

This table reports the average monthly excess returns and alphas (in percent) of firms classified as zero-risk
when using the procedure of Florackis et al. (2023). FFC refers to the four-factor model of Carhart (1997),
and FF5 refers to the five-factor model of Fama and French (2015). Panel B reports the average number
of firms in each portfolio, the average cyber risk, and the annualized Sharpe, Treynor, and Sortino ratios.
Newey-West (Newey and West, 1994) t-statistics are reported in brackets. ∗, ∗∗, and ∗∗∗ indicate significance
at the 10%, 5% and 1% levels, respectively. The period is from January 2009 to December 2018.

50



Value Weighted Portfolios

L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by cyber risk
Average excess returns 0.97∗∗∗ 1.05∗∗∗ 1.15∗∗∗ 1.19∗∗∗ 1.48∗∗∗ 0.51

[3.61] [4.01] [3.99] [4.10] [4.24] [1.62]
CAPM alpha -0.15 0.00 -0.01 0.07 0.33 0.48

[-0.81] [-0.02] [-0.04] [0.85] [1.54] [1.26]
FFC alpha -0.09 0.05 0.04 0.08 0.24∗ 0.33∗

[-0.98] [0.46] [0.45] [1.16] [1.82] [1.69]
FF5 alpha -0.10 -0.03 0.05 0.05 0.25∗ 0.35∗∗

[-1.40] [-0.38] [0.51] [85] [1.90] [2.10]

B. Characteristics
Number of firms 592.9 592.3 592.1 592.1 592.6 -
Cyber risk 0.482 0.496 0.507 0.521 0.565 -
Sharpe Ratio 0.702 0.820 0.829 0.883 1.029 0.571
Treynor Ratio 0.034 0.039 0.039 0.042 0.051 2.027
Sortino Ratio 1.058 1.305 1.346 1.417 1.777 2.818

Table 11: Average monthly excess returns and alphas omitting Items 1A

This table reports the average monthly excess returns and alphas (in percent) when items 1A from 10-K
statements are omitted. FFC refers to the four-factor model of Carhart (1997), and FF5 refers to the five-
factor model of Fama and French (2015). Panel B reports the average number of firms in each portfolio, the
average cyber risk, and the annualized Sharpe, Treynor, and Sortino ratios. Newey-West (Newey and West,
1994) t-statistics are reported in brackets. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1% levels,
respectively. The period is from January 2009 to December 2022.
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Value Weighted Portfolios

L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by the long-run cyber risk
Average excess returns 0.86∗∗∗ 1.13∗∗∗ 1.14∗∗∗ 1.18∗∗∗ 1.45∗∗∗ 0.60∗

[3.00] [3.94] [3.93] [4.35] [4.23] [1.70]
CAPM alpha -0.26 -0.01 -0.03 0.11∗ 0.31 0.57

[-1.05] [-0.04] [-0.27] [1.71] [1.52] [1.33]
FFC alpha -0.17 0.01 0.05 0.10 0.23∗ 0.40∗∗

[-1.56] [0.67] [0.75] [1.24] [1.83] [2.01]
FF5 alpha -0.17∗ 0.03 -0.01 0.06 0.25∗ 0.43∗∗

[-1.80] [0.34] [-0.16] [0.93] [1.94] [2.28]

B. Characteristics
Number of firms 615.7 615.1 615.1 615.1 615.5 -
Long-run cyber risk 0.490 0.501 0.511 0.524 0.567 -
Sharpe Ratio 0.610 0.818 0.816 0.918 1.027 0.638
Treynor Ratio 0.030 0.039 0.038 0.044 0.050 2.572
Sortino Ratio 0.893 1.305 1.294 1.525 1.768 2.643

Table 12: Average monthly excess returns and alphas using the long-run cyber
risk

This table reports the average monthly excess returns and alphas (in percent) when the portfolios are sorted
on our long-run cyber risk measure, i.e. the cumulative cyber risk for each firm over the period. FFC refers
to the four-factor model of Carhart (1997), and FF5 refers to the five-factor model of Fama and French
(2015). Panel B shows the average number of firms in each portfolio, the average long-run cyber risk, and
the annualized Sharpe, Treynor, and Sortino ratios. Newey-West t-statistics are reported in brackets. ∗, ∗∗,
and ∗∗∗ indicate significance at the 10%, 5% and 1% levels, respectively. The period is from January 2009
to December 2022.
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Value Weighted Portfolios

L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by cyber risk
Average excess returns 0.88∗∗∗ 1.02∗∗∗ 1.13∗∗∗ 1.22∗∗∗ 1.45∗∗∗ 0.57∗

[3.19] [3.86] [3.71] [4.73] [4.18] [1.74]
CAPM alpha -0.22 -0.07 -0.05 0.08 0.33 0.55

[-0.94] [-0.44] [-0.39] [1.38] [1.67] [1.34]
FFC alpha -0.14 -0.02 0.03 0.05 0.25∗∗ 0.39∗

[-1.18] [-0.19] [0.34] [0.81] [2.027] [1.91]
FF5 alpha -0.16 -0.08 0.03 0.06 0.26∗∗ 0.41∗∗

[-1.61] [-0.93] [0.35] [0.72] [1.97] [2.26]

B. Characteristics
Number of firms 611.9 611.3 611.3 612.3 611.7 -
Cyber risk 0.493 0.507 0.518 0.532 0.571 -
Sharpe Ratio 0.637 0.772 0.796 0.903 1.049 0.641
Treynor Ratio 0.031 0.037 0.038 0.042 0.051 4.408
Sortino Ratio 0.942 1.196 1.253 1.483 1.812 2.759

Table 13: Average monthly excess returns and alphas excluding cybersecurity
firms

This table reports the average monthly excess returns and alphas (in percent) when we exclude cybersecurity
firms from the sample. We identify cybersecurity firms from the “HACK” cybersecurity ETF. FFC refers to
the four-factor model of Carhart (1997), and FF5 refers to the five-factor model of Fama and French (2015).
Panel B shows the average number of firms in each portfolio, the average cyber risk, and the annualized
Sharpe, Treynor, and Sortino ratios. Newey-West t-statistics are reported in brackets. ∗, ∗∗, and ∗∗∗ indicate
significance at the 10%, 5% and 1% levels, respectively. The period is from January 2009 to December 2022.
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Value Weighted Portfolios

L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by cyber risk
Average excess returns 0.70∗∗ 0.97∗∗∗ 1.10∗∗∗ 1.23∗∗∗ 1.64∗∗∗ 0.94∗∗∗

[2.41] [3.58] [3.69] [5.76] [5.76] [3.23]
CAPM alpha -0.52∗∗∗ -0.20 -0.14 0.06 0.51∗∗ 1.03∗∗∗

[-3.11] [-1.50] [-1.07] [0.95] [2.40] [2.95]
FFC alpha -0.28∗∗∗ -0.06 0.00 -0.03 0.27∗ 0.55∗∗∗

[-3.58] [-0.73] [0.01] [-0.52] [1.91] [2.83]
FF5 alpha -0.26∗∗∗ -0.08 0.03 -0.06 0.30∗ 0.56∗∗∗

[-3.45] [-0.88] [0.36] [-0.95] [1.90] [3.01]

B. Characteristics
Number of firms 600.4 599.9 599.9 599.9 600.2 -
Cyber risk 0.490 0.504 0.515 0.529 0.570 -
Sharpe Ratio 0.511 0.752 0.807 0.965 1.272 1.157
Treynor Ratio 0.024 0.034 0.037 0.043 0.060 -0.714
Sortino Ratio 0.723 1.137 1.257 1.571 2.393 4.319

Table 14: Average monthly excess returns and alphas before the first release of
Florackis et al. (2023).

This table reports the average monthly excess returns and alphas (in percent) before the first release of
Florackis et al. (2023) on SSRN in November 2020. FFC refers to the four-factor model of Carhart (1997),
and FF5 refers to the five-factor model of Fama and French (2015). Panel B reports the average number
of firms in each portfolio, the average cyber risk, and the annualized Sharpe, Treynor, and Sortino ratios.
Newey-West t-statistics are reported in brackets. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1%
levels, respectively. The period is from January 2009 to October 2020.
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Value Weighted Portfolios

L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by cyber risk
Average excess returns 2.16∗∗ 1.56 1.34 1.55 0.67 -1.49∗∗

[2.18] [1.64] [0.97] [1.19] [0.44] [-2.11]
CAPM alpha 1.34∗∗∗ 0.71∗∗∗ 0.34 0.54∗∗∗ -0.40∗ -1.74∗∗∗

[4.37] [2.91] [1.15] [3.44] [-1.67] [-3.35]
FFC alpha 0.57∗ 0.19 -0.07 0.54∗∗∗ 0.17 -0.39

[1.76] [0.71] [-0.37] [3.10] [0.61] [-0.67]
FF5 alpha 0.34 -0.15 -0.15 0.65∗∗∗ 0.11 -0.23

[0.89] [-0.53] [-0.74] [3.63] [0.38] [-0.34]

B. Characteristics
Number of firms 695.5 695.0 694.9 695.0 695.2 -
Cyber risk 0.504 0.523 0.536 0.550 0.582 -
Sharpe Ratio 1.374 1.009 0.758 0.873 0.357 -1.287
Treynor Ratio 0.088 0.061 0.045 0.051 0.021 0.092
Sortino Ratio 2.798 1.830 1.280 1.665 0.529 0.640

Table 15: Average monthly excess returns and alphas after the first release of
Florackis et al. (2023).

This table reports the average monthly excess returns and alphas (in percent) after the first release of
Florackis et al. (2023) on SSRN in November 2020. FFC refers to the four-factor model of Carhart (1997),
and FF5 refers to the five-factor model of Fama and French (2015). Panel B reports the average number
of firms in each portfolio, the average cyber risk, and the annualized Sharpe, Treynor, and Sortino ratios.
Newey-West t-statistics are reported in brackets. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5% and 1%
levels, respectively. The period is from November 2020 to December 2022.

55



Appendix

Variable Description Source
Firm size (ln) ln(total assets [at]) Compustat
Firm Age (ln) ln(years) since the firm first appeared in Compustat Compustat
Book to market ratio Common equity [ceq] / market equity [prc*shrout] Compustat and CRSP
Tobin’s Q (Total assets - common equity + market equity) / total assets Compustat and CRSP
ROA Net income [ni] / total assets Compustat
Market Beta 5-year rolling market beta [beta] Compustat
Intangible/Assets Intangible assets [intan] / total assets Compustat
Debt/assets Total Debt / Total Assets [debt assets] WRDS Financial Ratios
ROE Net Income / Book Equity [roe] WRDS Financial Ratios
Price/Earnings Stock Price / Earnings [pe exi] WRDS Financial Ratios
Profit Margin Gross Profit / Sales [gpm] WRDS Financial Ratios
Asset Turnover Sales / Total Assets [at turn] WRDS Financial Ratios
Cash Ratio (Cash + Short-term Investments) / Current Liabilities [cash ratio] WRDS Financial Ratios
Sales/Invested Capital Sales per dollar of Invested Capital [sale invcap] WRDS Financial Ratios
Capitalization Ratio Long-term Debt / (Long-term Debt + Equity) [capital ratio] WRDS Financial Ratios
R&D/Sales R&D expenses / Sales [RD SALE] WRDS Financial Ratios
ROCE Earnings Before Interest and Taxes / average Capital Employed [roce] WRDS Financial Ratios

Table A1: Variable definitions

This table reports the variable names used throughout the paper, their description, and their source. Square
brackets indicate variable name definitions in CRSP and Compustat.
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Score Preprocessed paragraph Ticker Tactic
0.593 currently available internet browsers allow users modify browser settings

remove cookies prevent cookies stored hard drives however third persons
able penetrate network security gain access otherwise misappropriate users
personal information subject liability liability include claims misuses per-
sonal information unauthorized marketing purposes unauthorized use credit
cards

VSTY Defense Evasion

0.590 network security data recovery measures may adequate protect computer
viruses break ins similar disruptions unauthorized tampering computer sys-
tems theft sabotage type security breach respect proprietary confidential
information electronically stored including research clinical data material
adverse impact business operating results financial condition

LXRX Collection

0.583 domain names derive value individual ability remember names therefore
assurance domain name lose value example users begin rely mechanisms
domain names access online resources government regulation internet regu-
lation increasing number laws regulations pertaining internet

VSTY Credential Access

0.577 perceived actual unauthorized disclosure information collect breach security
harm business factors beyond control cause interruptions operations may
adversely affect reputation marketplace business financial condition results
operations timely development implementation continuous uninterrupted
performance hardware network applications internet systems including may
provided third parties important facets delivery products services customers

MDAS Credential Access

0.571 unauthorized parties may attempt copy aspects products obtain use in-
formation regard proprietary others may independently develop otherwise
acquire similar competing technologies methods design around patents cases
rely trade secret laws confidentiality agreements protect confidential propri-
etary information processes technology

CSCD Collection

0.570 possible cookies may become subject laws limiting prohibiting use term
cookies refers information keyed specific server file pathway directory loca-
tion stored user hard drive possibly without user knowledge used among
things track demographic information target advertising

VSTY Discovery

0.561 cannot certain advances computer capabilities discoveries field cryptogra-
phy developments result compromise breach algorithms use protect con-
tent transactions website proprietary information databases anyone able
circumvent security measures misappropriate proprietary confidential cus-
tomer company information cause interruptions operations

VSTY Impact

0.558 ordering delivery customers ready place order proceed shopping cart func-
tion directly checkout page orders placed online website via toll free tele-
phone number customer service agents available take orders customers ac-
cess internet uncomfortable placing order online

VSTY Credential Access

Table A2: Top scoring paragraphs from the doc2vec validation sample

This exhibit reports the paragraphs selected after preprocessing (as described in section 3.4.1). “Tactic”
refers to the MITRE tactic the paragraph is most similar to, as measured by cosine similarity. The tickers
of the ten companies in the validation sample are CSCD, GTS, LXRX, MDAS, PBY, PZZA, UMH, VALU,
VSTY and VXRT.
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Ticker Filling year Paragraph

STX 2008 System failures caused by events beyond our control could adversely affect computer equipment
and electronic data on which our operations depend. Our operations are dependent upon our
ability to protect our computer equipment and the electronic data stored in our databases from
damage by, among other things, earthquake, fire, natural disaster, power loss, telecommunica-
tions failures, unauthorized intrusion and other catastrophic events. As our operations become
more automated and increasingly interdependent, our exposure to the risks posed by these
types of events will increase. While we continue to improve our disaster recovery processes,
system failures and other interruptions in our operations could have a material adverse effect
on our business, results of operations and financial condition.

MANH 2014 Our software may contain undetected errors or “bugs” resulting in harm to our reputation which
could adversely impact our business, results of operations, cash flow, and financial condition.
Software products as complex as those offered by us might contain undetected errors or failures
when first introduced or when new versions are released,. Despite testing, we cannot ensure that
errors will not be found in new products or product enhancements after commercial release,.
Any errors could cause substantial harm to our reputation, result in additional unplanned
expenses to remedy any defects, delay the introduction of new products, result in the loss of
existing or potential customers, or cause a loss in revenue. Further, such errors could subject
us to claims from our customers for significant damages, and we cannot assure you that courts
would enforce the provisions in our customer agreements that limit our liability for damages. In
turn, our business, results of operations, cash flow, and financial condition could be materially
adversely affected.

MBCN 2017 Material breaches in security of bank systems may have a significant effect on the Company
business. We collect, process and store sensitive consumer data by utilizing computer systems
and telecommunications networks operated by both banks and third party service providers.
We have security, backup and recovery systems in place, as well as a business continuity plan to
ensure systems will not be inoperable. We also have security to prevent unauthorized access to
the system. In addition, we require third party service providers to maintain similar controls.
However, we cannot be certain that these measures will be successful. A security breach in the
system and loss of confidential information could result in losing customers’ confidence and thus
the loss of their business as well as additional significant costs for privacy monitoring activities.

Table A3: Examples of paragraphs missed by the dictionary approach of Florackis
et al. (2023)
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Score Paragraph Ticker
Sub-technique

(Tactic)

-0.097 The increase in income from operations during 2021 was primarily the result
of higher net sales and production volumes and improved margins, which
benefited from positive pricing impacts and a favorable sales mix that offset
substantial inflationary material and freight cost pressures along with higher
manufacturing costs. Net income per diluted share was favorably impacted
by the reversal of valuation allowances previously established against our
deferred tax assets in both the United States and Brazil during 2021

AGCO SSH Authorized Keys
(Persistence)

-0.092 In addition, we generally would expect to be able to recover a significant
portion of the amounts paid under such guarantees from the sale of the
underlying financed farm equipment, as the fair value of such equipment is
expected to offset a substantial portion of the amounts paid. We also guar-
antee indebtedness owed to certain of our finance joint ventures if dealers
or end users default on loans.

AGCO Fast Flux DNS
(Command and Control)

-0.099 In December 2021, the Company completed the sale of its Le Parfait brand
in Europe and a previously closed plant in the Americas. Gross proceeds on
these divestitures were approximately $113 million and the related pretax
gains (including costs directly attributable to the sale) were approximately
$84 million ($70 million after tax) in 2021. The pretax gains were recorded
to Other income (expense), net on the Consolidated Results of Operations.
In January 2021, the Company completed the sale of its plant in Argentina.

OI GUI Input Capture
(Collection)

-0.088 In 2020, the Company recognized a net gain (including costs directly at-
tributable to the sale of ANZ and subject to post-closing adjustments) on
the divestiture of approximately $275 million, which was reported on the
Other income (expense), net line in the Consolidated Results of Opera-
tions. In addition, at closing, certain subsidiaries of the Company entered
into certain ancillary agreements with Visy and the ANZ businesses in re-
spect of the provision of certain transitional and technical services to the
ANZ businesses.

OI Scheduled Transfer
(Exfiltration)

Table A4: Examples of negative scoring paragraphs

This exhibit reports examples of paragraphs with negative similarities, as measured by cosine similarity.
“Sub-technique” refers to the MITRE sub-technique the paragraph is most dissimilar to. The displayed
score is the cosine similarity between the paragraph and the previously mentioned sub-technique. Given
their low cyber risk score, we select two firms, AGCO Corporation (AGCO) and O-I Glass Inc (OI). The
10-K statements are filed in 2022.
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Fig. A1: Rolling correlation between the returns on the long-short cyber risk
portfolio and the market

This figure depicts the rolling correlation between the monthly returns on the long-short portfolio built on
the cyber risk score and the market portfolio. The rolling window is two years, and the period is from
January 2011 to December 2022.
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