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13 Abstract

14 Nektaspids are Paleozoic non-biomineralised euarthropods that were at the peak of their diversity 

15 in the Cambrian period. Post-Cambrian nektaspids are a low diversity group with only a few 

16 species described so far. Here we describe Tariccoia tazagurtensis, a new species of small 

17 bodied nektaspid from the Lower Ordovician Fezouata Shale of Morocco. The new species 

18 differs from the type (and only other known) species from the Ordovician of Sardinia (Italy), 

19 Tariccoia arrusensis, in possessing more pointed genal angles, a cephalon with marginal rim, a 

20 pygidium with anterior margin curved forwards, a rounded posterior margin and longer and more 

21 curved thoracic tergites. The two specimens of T. tazagurtensis sp. nov. show remains of 
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22 digestive glands that are comparable to those seen in the Cambrian nektaspid Naraoia. The rare 

23 occurrence of T. tazagurtensis sp. nov. in the Fezouata Shale and the distribution of other liwiids 

24 suggest that these liwiids were originally minor members of open marine communities in the 

25 Cambrian, and migrated into colder brackish or restricted seas in the Ordovician.

26 Keywords: Tariccoia; Nektaspida; Euarthropoda; Ordovician; Morocco; Fezouata Shale

27

28 1. Introduction

29 Nektaspida Raymond, 1920 is a clade of artiopod euarthropods that were major constituents of 

30 Cambrian marine ecosystems, especially during Epoch 2 (Dzik and Lendzion 1988, Hou and 

31 Bergström 1997, Budd 1999, Zhang et al. 2007, Paterson et al. 2010) and the Miaolingian 

32 (Whittington 1977, 1985, Mayers et al. 2019). Nektaspids, however, are only rarely found in the 

33 younger strata of the Ordovician (Hammann et al. 1990, Fortey and Theron 1994, Budil et al. 

34 2003, Van Roy et al. 2010, Van Roy 2013, Van Roy et al. 2015a) and Silurian (Caron et al. 

35 2004). Nektaspida is generally considered to contain three families: Naraoiidae, Liwiidae and 

36 Emucarididae (Paterson et al. 2010, Paterson et al. 2012, Legg et al. 2013, Mayers et al. 2019), 

37 and the genus Buenaspis (Lerosey-Aubril et al. 2017, Chen et al. 2019). In addition to these three 

38 families, recent phylogenetic analyses have suggested that Nektaspida may also include other 

39 artiopods not traditionally classified with this clade, such as Petalopleura, Saperion, Tegopelte 

40 (Mayers et al. 2019), Phytophylaspis, Panlongia, (Legg et al. 2013, Hou et al. 2018) and 

41 Campanamuta (Legg et al. 2013). Consequently, they have been central to discussions of the 

42 first appearance and expanding diversity of euarthropods, and of animals more broadly, during 

43 the radiations of the Cambrian Period (Budd et al. 2001, Marshall 2006, Daley et al. 2018). The 
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44 possession of a non-biomineralised exoskeleton (Hammann et al. 1990, Edgecombe and 

45 Ramsköld 1999), together with changes in their habitat preferences (e.g. Hammann et al. 1990), 

46 could explain such scarcity in the fossil record after the Miaolingian, after which time soft tissue 

47 preservation declines in abundance and quality (Brasier et al. 2011, Peters and Gaines 2012, 

48 Gaines et al. 2012, Daley et al. 2018). Consequently, the diversity of nektaspids in post-

49 Cambrian ecosystems is low, but this seems likely to be a result of taphonomic bias, rather than 

50 representing a true evolutionary absence.

51 Similar bias occurs in our knowledge about the morphology and anatomy of nektaspid soft-parts. 

52 The detailed information regarding morphology of the appendages, ventral sternites and 

53 digestive system is largely restricted to the Family Naraoiidae (Whittington 1977, Chen et al. 

54 1997, Vannier and Chen 2002, Mayers et al. 2019, Zhai et al. 2019). In the family Emucarididae 

55 only cephalic appendages have been described by Paterson et al. (2010b). In Liwiidae, a pair of 

56 antennae were figured in Liwia plana (Lendzion, 1975) (see Dzik and Lendzion 1988), but the 

57 data regarding post-antennal appendages are missing. This lack of morphological and anatomical 

58 information hinders our understanding of the phylogeny and ecology of the Nektaspida and the 

59 Artiopoda more broadly.

60 Herein Tariccoia tazagurtensis sp. nov., is described from the Lower Ordovician (Tremadocian) 

61 Fezouata Shale Konservat-Lagerstätte of Morocco. This is the first species of Liwiidae (and of 

62 Nektaspida) to be described from the Lower Ordovician. Tariccoia tazagurtensis sp. nov. shows 

63 strong similarity with Tariccoia arrusensis Hammann et al., 1990 from the Middle or Upper 

64 Ordovician of Sardinia (Italy). The first description of the anterior digestive glands in Liwiidae, 

65 is also presented augmenting knowledge of soft parts in Nektaspida. Moreover, 
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66 palaeogeographic distribution patterns and habitat preferences are evaluated in this euarthropod 

67 group.

68

69

70 2. Geological settings 

71 The Fezouata Shale is a sequence of Lower Ordovician strata geographically belonging to the 

72 Anti-Atlas region of Morocco. North of Zagora, the Lower Ordovician is exposed in the Ternata 

73 plain, forming the Outer Feijas Shale Group, Tremadocian to early Darriwilian (Choubert et al. 

74 1947, Destombes et al. 1985). The Outer Feijas Shale Group unconformably overlies middle 

75 Cambrian sandstones of the Tabanite group and underlies the First Bani Group (Middle 

76 Ordovician; Destombes et al. 1985, Martin et al. 2015). The Outer Feijas Shale Group is 

77 subdivided into the Lower Fezouata Shale formation, the Upper Fezouata Shale formation, the 

78 Zini sandstone and quatzite formation and the Tachilla Shale formation (Destombes et al. 1985).

79 In the Zagora area, the boundary between the Lower and the Upper Fezouata formation is 

80 unclear, with both formations grouped into a single, 850 m thick unit called the “Fezouata Shale” 

81 (Martin et al. 2016). The Fezouata Shale contains the only known Konservat-Lagerstätte from 

82 the Lower Ordovician providing a critical link between the evolutionary events of the Cambrian 

83 Explosion and the Great Ordovician Biodiversification Event (Servais et al. 2010, Landing et al. 

84 2018, Servais and Harper 2018). The Fezouata Shale is renowed for its exceptional preservation 

85 of non-biomineralised body fossils and contains more than 160 different genera (Van Roy et al. 

86 2010, Van Roy et al. 2015b, Van Roy et al. 2015a, Saleh et al. 2019). The exceptional 

87 preservation occurs in two horizons (Martin et al. 2016, Lefebvre et al. 2018), the lower interval 
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88 of which is about 70 m thick and situated 260–330 m above the Cambrian-Ordovician contact, 

89 and the second of which is about 50 m thick and 570–620 m above the Cambrian-Ordovician 

90 contact. The lower interval with exceptional preservation is situated mostly within the 

91 Araenograptus murray Zone and lowermost parts of the Hunnegraptus copiosus Zone, which 

92 both correspond to the late Tremadocian (Stage slice Tr3, see Gutiérrez-Marco and Martin 2016, 

93 Lefebvre et al. 2018). This age is further corroborated by acritarchs and conodonts that also 

94 support a latest Tremadocian age for this level (Lehnert et al. 2016, Nowak et al. 2016). The 

95 upper interval with exceptional preservation most likely belongs to the ?Baltograptus jacksoni 

96 Zone, which is of Floian age (Lefebvre et al. 2018).

97 The Fezouata Shale is generally composed of argillites with blue-green to yellow green sandy 

98 mudstone and siltstones interbeds (Destombes et al. 1985). It is interpreted to have been 

99 deposited around storm wave-base, in an open shallow marine environment (Martin et al. 2015), 

100 ranging from proximal offshore to foreshore with a depth range from 50 to 150 m (Martin et al. 

101 2015, Vaucher et al. 2016). The fluctuations of the water level are of low amplitude, but it is 

102 possible to recognize the deepest depositional environment in the middle of the Fezouata Shale 

103 (Martin et al. 2016).

104

105 3. Material and Methods

106 Two specimens assigned here to Tariccoia tazagurtensis sp. nov. were studied. Both specimens 

107 are covered by iron oxides and/or hydroxides and preserved as compressions in shales. To 

108 expose the whole individual, the parts were mechanically prepared with a Micro-Jack 4 equipped 

109 with 4/16" chisel. Photographs were taken with a digital camera Olympus E-PL8 with associated 
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110 Olympus M.Zuiko 30 mm f/3,5 macro lens. The lens was equipped with a polarizing filter to 

111 reduce reflections, and a second polarizer on the light source created crossed polarization to 

112 increase contrast. All specimens were photographed with low angle NW lighting, both dry and 

113 immersed in ethanol (to increase contrast between rock and specimen). The images were 

114 subsequently processed in Adobe Photoshop CC 19.0, to enrich brightness, contrast, shadows, 

115 highlights and saturation. Line drawings were made directly from photographs using Adobe 

116 Illustrator CC 22.0.1., like a digital camera lucida (Antcliffe and Brasier 2011). 

117

118

119 4. Systematic palaeontology

120 Order Nektaspida Raymond, 1920

121 Family Liwiidae Dzik & Lendzion, 1988

122

123 Emended diagnosis. Family of Nektaspida with the following combination of characters: three to 

124 four thoracic tergites that are narrower (tr.) than the cephalic shield; first one or two thoracic 

125 tergites overlapped by cephalic shield; pygidium narrower than the cephalic shield, but of similar 

126 length to the cephalic shield.

127

128 Discussion. Liwiidae was originally proposed as a family, although not erected formally (Dzik 

129 and Lendzion 1988). They used the presence of free thoracic tergites to distinguish it from 

130 Naraoiidae, which is characterized by the absence of articulating thoracic tergites. Fortey and 
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131 Theron (1994) instead included the liwiid genera Maritimella Repina & Okuneva, 1969, Liwia 

132 Dzik & Lendzion, 1988, Tariccoia Hammann et al., 1990, and Soomaspis Fortey & Theron, 1994 

133 in the family Naraoiidae. They considered the presence of three or four free thoracic segments a 

134 plesiomorphic character of the group and not valid for designating a new family. Hou and 

135 Bergström (1997) formally elevated Liwiidae to family level, but without providing a diagnosis. 

136 They included the genera Liwia, Tariccoia and Soomaspis in the Liwiidae. Budd (1999) defined 

137 family Liwiidae by having more than one axial articulation and added the genus Buenaspis 

138 Budd, 1999. However, in recent phylogenetic analyses Buenaspis was always resolved either 

139 outside the Liwiidae, but inside Nektaspida (Legg et al. 2013, Lerosey-Aubril et al. 2017, 

140 Mayers et al. 2019, Chen et al. 2019), or even outside Nektaspida itself (Paterson et al. 2010, 

141 Paterson et al. 2012). Recently, most analyses resolve Liwiidae as a monophyletic group that is 

142 sister to Naraoiidae (Paterson et al. 2010, Paterson et al. 2012, Ortega‐Hernández et al. 2013a, 

143 Lerosey-Aubril et al. 2017, Chen et al. 2019) or sister to Emucarididae (Legg et al. 2013, Hou et 

144 al. 2018). In the analysis of Mayers et al. (2019) liwiids were resolved within Naraoidae, which 

145 led the authors to demote Liwiidae to the subfamily level and include it within the family 

146 Naraoidae. We prefer to keep Liwiidae at the family level for two reasons: 1) the topology 

147 presented by Mayers et al. (2019) is the only analysis with Liwiidae resolved inside Naraoiidae 

148 in recent years; and 2) this topology also shows a low degree of nodal support in favour of the 

149 position of Liwiidae within Naraoiidae.

150

151 Genus Tariccoia Hammann, Laske and Pillola 1990

152
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153 Type species. Tariccoia arrusensis Hammann et al., 1990; 100 m N of the mouth of the Roia 

154 Srappas into the Riu Is Arrus, ca. 4 km SE of Fluminimaggiore (Sardinia, Italy); Riu is Arrus 

155 Member of the Monte Argentu Formation (Upper Ordovician, see Hammann and Leone 1997).

156

157 Emended diagnosis. A genus of Liwiidae with the following combination of characters: cephalic 

158 shield sub-circular; four thoracic tergites with rounded lateral extremes; first one or two thoracic 

159 tergites overlapped by posterior margin of cephalic shield; pygidium longer than wide, with a 

160 long median keel and smooth (non-spinose) margin.

161

162 Remarks. The diagnosis of Tariccoia provided by Hammann et al. (1990) is now regarded as the 

163 diagnosis of the type species Tariccoia arrusensis Hammann et al., 1990.

164

165 Discussion. Liwia differs from Tariccoia in its pointed tips of the thoracic tergites and sub-

166 trapezoidal pygidium with well-defined axial part and with marginal spines. Soomaspis differs 

167 from Tariccoia by having only three thoracic tergites with articulating half-rings, an axial part 

168 defined on the trunk, and by a sub-circular pygidium showing five pleural furrows.

169

170 Tariccoia tazagurtensis sp. nov.

171 Figs 1–3

172
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173 Zoobank no. Will be added.

174

175 Material, locality, horizon. Holotype (Fig. 1a-c): MGL 102155a (part) and MGL 102155b 

176 (counterpart). Other material: MGL 103036a (part) and MGL 103036b (counterpart). Both 

177 specimens come from an outcrop located in the Ternata plain, ca. 18 km NW of the city of 

178 Zagora (Morocco) and ca. 6 km NNE of the village of Beni Zouli. The outcrop falls within the 

179 lower exceptional preservation interval of the Fezouata Shale (Araneograptus murrayi Zone, 

180 Tremadocian, Lower Ordovician). Material is stored in the collections of the Cantonal Museum 

181 of Geology (Lausanne, Switzerland). Exact locality data curated with the specimens.

182

183 Etymology. In Tamazight language, Tazagurt (ⵜⴰⵣⴰⴳⵓⵔⵜ in Neo-Tifinagh script) is a name for 

184 the city of Zagora near which the material was discovered. Tamazight is a language of the 

185 Amazigh people, an ethnic group that is indigenous to north Africa and have large population in 

186 the Anti-Atlas region of Morocco.

187

188 Diagnosis. A small (up to 8 mm long) species of Tariccoia having the following unique 

189 combination of characters: cephalon with pointed genal angles and marginal rim; pygidium with 

190 anterior margin curved forwards, a rounded posterior margin, and a medial keel that does not 

191 reach posterior pygidial border.

192
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193 Description. The total exoskeletal length is 6.68 mm in specimen MGL 103036a and 7.24 mm in 

194 specimen MGL 102155a. Cephalic shield is sub-circular in outline and its sagittal length ranges 

195 between 3.04 mm in MGL 103036a and 3.39 mm in MGL 102155a, and transverse width 

196 between 3.47 mm in MGL 103036a and 3.79 mm in MGL 102155a. The anterior and lateral 

197 margins of the cephalic shield (‘ce’ in Fig. 1b, e) are rounded, and the posterior cephalic margin 

198 is anteriorly curved. The cephalic shield reaches its maximum width near the mid-length. A 

199 distinct anterior marginal cephalic rim (‘rm’ in Fig. 1b) is delineated by a sharp ridge (‘rd’ in 

200 Fig. 1b). The length of the cephalic rim extends to about one fifth the cephalic shield, being 

201 longest (sag.) in the medial part. The postero-lateral edges of the cephalic shield form distinct, 

202 pointed genal angles (‘ga’ in Fig. 1b) with rounded tips. The dorsal surface of the cephalic shield 

203 is without trilobation, facial sutures or visual organs. The holotype MGL 102155a (Fig. 1a–c) 

204 shows raised finger-like structures (‘dg’ in Fig. 1b, see also Fig. 2a) that are connected medially 

205 and located in the anterior half of the cephalic shield. In specimen MGL 103036a (Fig. 1d–e), the 

206 surface of the cephalic shield preserves distinct, radially arranged, wrinkles (‘dg’ in Fig. 1e, see 

207 also Fig. 2b).

208 The thorax is comparatively narrow (tr.), being approximately 70-80% of the width of cephalic 

209 shield. It is composed of four thoracic tergites, but the anterior two (1st and 2nd) tergites (‘T1’ 

210 and ‘T2’ in Fig. 1b, e) are overlapped by the posterior portion of the cephalic shield (‘ce’ in Fig. 

211 1b, e), and consequently are not easily discernible in the holotype, but are clearly visible in MGL 

212 103036a. The two posterior (3rd and 4th) thoracic tergites (‘T3’ and ‘T4’ in Fig. 1b, e) are 

213 completely exposed (Fig. 1a–f). In dorsal view all thoracic tergites are curved backward and 

214 slightly downwards abaxially. The thoracic tergites become slightly wider (tr.) and more curved 

215 posteriorly, so the 4th tergite is the widest and is in its medial part strongly deflected forward. 
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216 The first tergite seems to taper abaxially. No distinct axial lobe is visible in any of the tergites. 

217 The lateral extremes of each tergite end in rounded tips. No articulating facets or articulating 

218 half-rings are present in the thoracic tergites. The tergites seem to be articulated with each other 

219 by a narrow flange (‘fl’ in Fig. 1e) that is visible and runs along the anterior margin of the 3rd 

220 and 4th tergites (Fig. 1d–f), but is probably also present in the 1st and 2nd.

221 Pygidium (‘py’ in Fig. 1b, e) is sub-oval in outline, elongated and measures 3.08 mm (MGL 

222 103036a) and 3.18 mm (MGL 102155a) in sagittal length and 2.52 mm (MGL 103036a) and 

223 3.04 mm (MGL 102155a) in transverse width. Consequently, the pygidium is aproximately 25% 

224 narrower than the cephalic shield, and is just slightly wider than the thorax. The anterior margin 

225 of the pygidium is curved forward, exactly matching the posterior margin of the last thoracic 

226 tergite. A narrow flange (‘fl’ in Fig. 1e) runs along the anterior margin of the pygidium. The 

227 posterior margin of the pygidium is rounded. The central part of the pygidium is slightly inflated 

228 and slopes down abaxially and posteriorly. In its medial part, the pygidium carries a pronounced 

229 median keel (‘mk’ in Fig. 1b, e), that is nearly as long as the entire pygidium but does not reach 

230 its posterior margin.

231

232 Discussion. Tariccoia tazagurtensis sp. nov. resembles Tariccoia arrusensis from the Ordovician 

233 of Sardinia (Hammann et al. 1990, Hammann and Leone 1997), in overall morphology of both 

234 the cephalon and pygidium and in possessing four thoracic tergites with rounded lateral 

235 extremes. The differences between these two species are (see also Fig. 3a, b for comparison): 1) 

236 more pointed genal angles in T. tazagurtensis sp. nov.; 2) the cephalon with marginal rim in T. 

237 tazagurtensis sp. nov.; 3) the pygidium in T. tazagurtensis sp. nov. has anterior margin curved 

238 forwards and rounded posterior margin, while in T. arrusensis the anterior pygidial margin is 
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239 nearly straight and the posterior margin is pointed; 4) the thoracic tergites are proportionally 

240 longer (sag.) and more curved in T. tazagurtensis sp. nov.; 5) the median keel in T. tazagurtensis 

241 sp. nov. never reaches the posterior pygidial margin, but it does in T. arrusensis; and 6) the 

242 pygidium of T. tazagurtensis sp. nov. lacks the sharp lateral edges forming a ventral ridge seen in 

243 T. arrusensis (sensu Hammann et al. 1990, text-fig. 4).

244 The sharp ridge that separates the marginal rim of the cephalon is one of the characters that 

245 distinguishes T. tazagurtensis sp. nov. from T. arrusensis. This structure is only preserved well 

246 in the holotype (MGL 102155, Fig. 1a, b). For this reason, it is not easy to interpret it 

247 unambiguously. This structure could also be interpreted as an imprint of the cephalic doublure or 

248 compaction related deformation of the cephalic margin.

249 The exact number of thoracic tergites in T. tazagurtensis sp. nov. is not easy to determine, 

250 because the anterior ones are overlapped by the cephalic shield. Such an overlap in Tariccoia, 

251 Liwia and Soomaspis was recognised by Edgecombe and Ramsköld (1999, character 9) and used 

252 as one of the synapomorphies of Liwiinae (= Liwiidae in this paper). Contrary to Edgecombe and 

253 Ramsköld (1999), we suggest that in Tariccoia the cephalic shield overlap the first and also the 

254 second (at least partially) thoracic tergite. In all articulated specimens of T. arrusensis usually 

255 two or at most three thoracic tergites are exposed, while specimens lacking the cephalic shield 

256 always show four (Hammann et al. 1990, pl. 1–3; Hammann and Leone 1997, pl. 1, fig. 1–3). In 

257 some articulated specimens, however, the anterior one or two tergites are imprinted onto the 

258 posterior portion of the cephalic shield (Hammann et al. 1990, pl. 1, fig. 1, 2, 5). Similar 

259 exoskeletal configuration was likely present also in T. tazagurtensis sp. nov. Specimen MGL 

260 103036a (Fig. 1d–f) shows clearly two posterior tergites, and traces of two more under the 

261 posterior part of the cephalic shield. Although, the slightly different shape of the 1st thoracic 
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262 tergite (Fig. 1d) in T. tazagurtensis sp. nov. resembles an articulating half-ring, the interpretation 

263 of it as a thoracic tergite is favoured for two main reasons. Firstly, it is too wide to be an 

264 articulating half-ring, and secondly, it is quite similar to the shape of first thoracic tergite in T. 

265 arrusensis (cf. Hammann et al. 1990, pl. 2, fig. 2a–b).

266 The articulation of individual thoracic tergites and of the pygidium was apparently facilitated by 

267 a structure morphologically similar to a flange as is known in the pleural parts of numerous, 

268 especially basal, trilobites (Whittington 1989, Geyer 1996, Ortega‐Hernández et al. 2013b, 

269 Esteve et al. 2013, Laibl et al. 2016). Such an articulation can be regarded as functionally simple, 

270 as no other articulation structures are present (e.g. articulating half-rings, fulcrum, or articulating 

271 facet, cf. for example with Bruton and Haas 1997). With such a simple articulation, it seems 

272 unlikely that T. tazagurtensis sp. nov. was able to enroll, as the flange does not allow for rotation 

273 movement of arched structures, such as the thoracic tergites of T. tazagurtensis sp. nov.

274

275

276 5. Digestive system in Tariccoia tazagurtensis sp. nov.

277 There is currently little understanding of the soft anatomy in the Liwiidae. So far, only a pair of 

278 antennae were described for Liwia plana (Dzik and Lendzion 1988), but no other information of 

279 the postantennal appendages, the digestive system, or the nervous system has been reported.

280 The holotype of T. tazagurtensis sp. nov. shows finger-like structures connected medially under 

281 the anterior half of the cephalic shield (Fig. 2a). We interpret these structures as the proximal 

282 parts of a pair of well-developed ramified digestive glands connected to an anterior part of the 

283 digestive tract. Both their preservation and morphology strongly resemble such structures as seen 
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284 in Naraoia spinosa Zhang and Hou, 1985 from Chengjiang (cf.Vannier and Chen 2002, fig. 2A, 

285 B, Zhang et al. 2007, fig. 28, 29). The distal ramification of the digestive glands is not preserved 

286 in the holotype, but the other specimen (MGL 103036a) shows numerous wrinkles, some of 

287 which seem to bifurcate distally (Fig. 2b). These are likely not compression-related wrinkles, 

288 which are usually concentric (cf. Hammann et al. 1990, Budd 1999, Caron et al. 2004) or 

289 randomly orientated (Peng et al. 2012), as opposed to radial in MGL 103036a. These structures 

290 therefore likely represent the distal parts of the ramified digestive glands. Digestive structures are 

291 known from Megistaspis (Ekeraspis) hammondi Corbacho & Vela, 2010 and other trilobites 

292 from the Fezouata Shale (Gutiérrez-Marco et al. 2017; Van Roy et al. 2015a), showing that 

293 preservation of gut features is possible at this locality. Preservation of internal soft tissues in 

294 general is relatively rare in the Fezouata Shale compared to other BSTs such as the Burgess and 

295 the Chengjiang Biota, and is usually only founds in the presence of a mineralized or sclerotized 

296 external cuticle (Saleh et al. 2020), as is the case with trilobites and T. tazagurtensis respectively.  

297 Within Nektaspida the digestive system is known only in Naraoiidae and up to now, two 

298 different morphotypes have been recognized (Vannier and Chen 2002) – one with a long, 

299 extensively ramified anterior pair of digestive glands, present in species of Naraoia Walcott, 

300 1912 and in Misszhouia canadensis Mayers et al., 2019 (see Vannier and Chen 2002, Mayers et 

301 al. 2019) and one with only short digestive glands present in Misszhouia longicaudata Zhang and 

302 Hou, 1985 (Vannier and Chen 2002). Given that the digestive system of T. tazagurtensis sp. nov. 

303 resembles the ramified pattern seen in Naraoia and M. canadensis, we suggest that these 

304 morphologies are homologous. Indeed, the majority of phylogenies would suggest a single origin 

305 for the well-developed ramified digestive glands in both naraoids and liwiids (e.g. Paterson et al. 

306 2010, Ortega‐Hernández et al. 2013a, Lerosey-Aubril et al. 2017, Mayers et al. 2019).
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307

308

309 6. Distribution and habitat preferences in liwiids

310 The distribution of liwiids shows a different pattern than that of other nektaspids (Fig. 4). 

311 Naraoiids have a comparatively wide distribution, being known from low latitudes of 

312 Laurentia/Laurussia (Whittington 1977, Robison 1984, Caron et al. 2004, Schwimmer and 

313 Montante 2007, Mayers et al. 2019, Lerosey-Aubril et al. 2020), South China (Hou and 

314 Bergström 1997, Chen et al. 1997, Zhang et al. 2007, Peng et al. 2012, Fu et al. 2019) and 

315 possibly also from high latitudes on the West Gondwana margin (Budil et al. 2003). Emucaridids 

316 are restricted to low latitude areas of East Gondwana (Paterson et al. 2010) and South China 

317 (Zhang et al. 2012). According to the results of Mayers et al. (2019) putative nektaspids 

318 including petalopleurans indicate a broader distribution, equatorial in Laurentia (Whittington 

319 1985, Budd 1999, 2011), South China (Hou and Bergström 1997) and Siberia (Ivantsov 1999), 

320 with the exception of Xandarella mauretanica Ortega-Hernández et al., 2017 from West 

321 Gondwana (Ortega-Hernández et al. 2017).

322 In the Cambrian, the only liwiids (sensu stricto, i.e. without genus Buenaspis) so far described 

323 are Liwia convexa (Lendzion, 1975) and Liwia plana (see Lendzion 1975, Dzik and Lendzion 

324 1988), both known from boreholes in NE Poland (Baltica, Fig. 4). An Atdabanian age for the 

325 Liwia bearing beds has been inferred (Dzik and Lendzion 1988), which roughly corresponds to 

326 the provisional Cambrian Stage 3 within the early Cambrian subdivision (Zhang et al. 2017), 

327 making this older than the more famous and fossiliferous Early Cambrian Konservat-

328 Lagerstätten: the Sirius Passet and Chengjiang biotas (Zhang et al. 2001, Harper et al. 2019). 
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329 After this early first appearance, liwiids are completely absent from the renowned low latitude 

330 Konservat-Lagerstätten of the rest of the Cambrian, including Sirius Passet (Harper et al. 2019), 

331 the Chengjiang Biota (Hou and Bergström 1997, Zhao et al. 2009), Emu Bay Shale (Paterson et 

332 al. 2016), Burgess Shale (Dunne et al. 2008, Caron and Jackson 2008) and Weeks Formation 

333 (Lerosey-Aubril et al. 2018). This suggests that during the Cambrian, liwiids were either 

334 extremely rare, formed restricted populations, and/or preferred specific environmental conditions 

335 that were not conductive for exceptional preservation.

336 Previously published Ordovician liwiids are only known from localities that represent atypical 

337 marine conditions, where nektaspids are not commonly found. Soomaspis splendida Fortey & 

338 Theron, 1994 is known only from the Soom Shale Member of the Cedaberg Formation, South 

339 Africa (Fortey and Theron 1994; Fig. 4), where the depositional environment is interpreted to be 

340 brackish-to-marine setting, close to a retreating and downwasting ice front (Theron et al. 1990, 

341 Aldridge et al. 1994). Tariccoia arrusensis occurs abundantly in the Riu Is Arrus Member of the 

342 Monte Argentu Formation of SW Sardinia (Hammann et al. 1990; Hammann and Leone 1997) 

343 that is considered to be largely deposited in terrestrial and marginal marine environments 

344 (Oggiano et al. 1986, Hammann et al. 1990). Sedimentological, biostratinomical and 

345 palaeontological data suggest that T. arrusensis inhabited a restricted marine oxygen deficient 

346 (sheltered bay, lagoon) environment, populated mainly by this species and macroscopic algae 

347 (Hammann et al. 1990; Hammann and Leone 1997).

348 Tariccoia tazagurtensis sp. nov. is the only Ordovician liwiid described from a typical open 

349 marine deposits. Unlike the abundant T. arrusensis of the Monte Argentu Formation, T. 

350 tazagurtensis sp. nov. is a very rare faunal component of the Fezouata Shale community. This 

351 species is not even locally abundant as shown by its general absence from most of the excavated 
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352 sites and from both the proximal and distal parts of the Fezouata Shale, despite extensive 

353 collecting in these areas. Moreover, the available specimens of T. tazagurtensis sp. nov. are 

354 complete and articulated. Considering their non-biomineralized exoskeleton and the presence of 

355 digestive glands, these specimens likely represent carcasses. Interpretations of the 

356 palaeoenvironmental settings of the Fezouata Shale (Martin et al. 2016) suggest that these fossils 

357 experienced little or no transport before deposition. Therefore, it seems that T. tazagurtensis sp. 

358 nov. was living in the environment in which it was found.

359 From a palaeogeographic point of view, all Ordovician liwiids were restricted to cold-water 

360 settings (Fig. 4). Both T. tazagurtensis sp. nov. and T. arrusensis are known from very high 

361 latitudes on the West Gondwana margin (cf. Scotese 2004, Torsvik and Cocks 2013a, 2013b), 

362 close to the South Pole. Soomaspis splendida comes from an area that was located at around 

363 30°S in the Late Ordovician (Torsvik and Cocks 2013a, 2013b), apparently in cold water very 

364 close to a retreating ice shield (Aldridge et al. 1994). Liwiids might thus have preferred cold 

365 water conditions (at least during Ordovician), in contrast to naraoiids, emucaridids and other 

366 nektaspids.

367 The stratigraphic distribution of liwiids suggest that they were originally components of open 

368 marine communities (Liwia, T. tazagurtensis sp. nov.), but were apparently rare. By the Middle 

369 and Upper Ordovician, some of their members had migrated to brackish marine environments (S. 

370 splendida) or to restricted areas where they formed locally abundant populations (T. arrusensis).

371

372

373 7. Summary
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374 1. A new species of a small nektaspid euarthropod – Tariccoia tazagurtensis sp. nov. – is 

375 described from the Lower Ordovician (Tremadocian) Fezouata Shale Konservat-

376 Lagerstätte of Morocco. This species is characterized by a sub-circular cephalon with 

377 pointed genal angles and with a marginal rim; a thorax consisting of four tergites, the 1st 

378 and 2nd of which are overlapped by the cephalic shield; and by a pygidium with its 

379 anterior margin curved forwards, a rounded posterior margin, and a long medial keel that 

380 does not reach the posterior pygidial border.

381 2. Tariccoia tazagurtensis sp. nov. preserves remains of the anterior part of the digestive 

382 tract, which is comparable to the ramified digestive glands seen in species of Naraoia and 

383 Misszhouia canadiensis. This is the first description of the digestive system in Liwiidae.

384 3. From the distribution and abundance data of Liwiidae, it is likely that members of this 

385 group preferred cold-water settings, in contrast to other nektaspids, and were members of 

386 open marine communities during their early evolutionary history, but later migrated to 

387 brackish or restricted environments.

388
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606

607

608 Figures

609 Figure 1. Tariccoia tazagurtensis sp. nov., Araneograptus murrayi Zone (Tremadocian, Lower 

610 Ordovician), Fezouata Shale, near Beni Zouli (Morocco). MGL 102155a, holotype, 

611 photographed dry (a), interpretative drawing (b), photographed under ethanol (c). MGL 103036a, 

612 photographed dry (d), interpretative drawing (e), photographed under ethanol (f). Abbreviations: 

613 ce, cephalic shield; dg, digestive glands; fl, flange; ga, genal angle; mk, median keel; py, 

614 pygidium; rd, marginal ridge; rm, marginal rim; T1-T4, thoracic tergite one to four. Scale bar is 1 

615 mm.

616

617 Figure 2. Tariccoia tazagurtensis sp. nov., Araneograptus murrayi Zone (Tremadocian, Lower 

618 Ordovician), Fezouata Shale, near Beni Zouli (Morocco); close-up of the anterior part of the 

619 cephalic shield of the holotype, MGL 102155a (a) and of MGL 103036a (b). Arrows pointing to 

620 proximal parts of digestive glands (a), and to bifurcation of digestive glands (b). Scale bar is 1 

621 mm. 

622

623 Figure 3. Reconstruction of members of the family Liwiidae Dzik & Lendzion, 1988 and the 

624 genus Buenaspis Budd, 1999: (a) Tariccoia tazagurtensis sp. nov., Fezouata Shale, Morocco; (b) 

625 Tariccoia arrusensis Hammann et al., 1990, Riu is Arrus Member of the Monte Argentu 

626 Formation, Sardinia; (c) Liwia plana (Lendzion, 1975), Zawiszyn Formation, Poland; (d) 

627 Soomaspis splendida Fortey & Theron, 1994, Soom Shale, South Africa; (e) Buenaspis forteyi 
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628 Budd, 1999, Buen Formation, Greenland. Dotted lines represent underlying structures of the 

629 dorsal exoskeleton. Scale bar is 1 mm. Reconstruction of T. arrusensis, L. plana, S. splendida 

630 and B. fortey based on Hammann et al. (1990), personal observation, Fortey and Theron (1994), 

631 and Budd (1999), respectively.

632

633 Figure 4. Paleogeographical distribution of nektaspids during the Cambrian (a), Ordovician and 

634 Silurian (b) periods. Map reconstruction for the early Cambrian (520 Ma) (a) and Early 

635 Ordovician, Tremadocian (480 Ma) (b); redrawn, adapted and simplified from Torsvik & Cocks 

636 (2013a, fig. 2.7 and fig. 2.11). The Silurian species Naraoia bertensis Caron et al. 2004, is 

637 marked by asterisk. Distribution data based on Whittington 1977, Robison 1984, Dzik and 

638 Lendzion 1988, Hammann et al. 1990, Fortey and Theron 1994, Hou and Bergström 1997, Chen 

639 et al. 1997, Budd 1999, Budil et al. 2003, Caron et al. 2004, Schwimmer and Montante 2007, 

640 Zhang et al. 2007, Paterson et al. 2010, Peng et al. 2012, Zhang et al. 2012, Fu et al. 2019, 

641 Mayers et al. 2019, Lerosey-Aubril et al. 2020.

642
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Figure 1. Tariccoia tazagurtensis sp. nov., Araneograptus murrayi Zone (Tremadocian, Lower Ordovician), 
Fezouata Shale, near Beni Zouli (Morocco). MGL 102155a, holotype, photographed dry (a), interpretative 
drawing (b), photographed under ethanol (c). MGL 103036a, photographed dry (d), interpretative drawing 
(e), photographed under ethanol (f). Abbreviations: ce, cephalic shield; dg, digestive glands; fl, flange; ga, 
genal angle; mk, median keel; py, pygidium; rd, marginal ridge; rm, marginal rim; T1-T4, thoracic tergite 

one to four. Scale bar is 1 mm. 
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Figure 2. Tariccoia tazagurtensis sp. nov., Araneograptus murrayi Zone (Tremadocian, Lower Ordovician), 
Fezouata Shale, near Beni Zouli (Morocco); close-up of the anterior part of the cephalic shield of the 

holotype, MGL 102155a (a) and of MGL 103036a (b). Arrows pointing to proximal parts of digestive glands 
(a), and to bifurcation of digestive glands (b). Scale bar is 1 mm. 
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Figure 3. Reconstruction of members of the family Liwiidae Dzik & Lendzion, 1988 and the genus Buenaspis 
Budd, 1999: (a) Tariccoia tazagurtensis sp. nov., Fezouata Shale, Morocco; (b) Tariccoia arrusensis 

Hammann et al., 1990, Riu is Arrus Member of the Monte Argentu Formation, Sardinia; (c) Liwia plana 
(Lendzion, 1975), Zawiszyn Formation, Poland; (d) Soomaspis splendida Fortey & Theron, 1994, Soom 

Shale, South Africa; (e) Buenaspis forteyi Budd, 1999, Buen Formation, Greenland. Dotted lines represent 
underlying structures of the dorsal exoskeleton. Scale bar is 1 mm. Reconstruction of T. arrusensis, L. plana, 

S. splendida and B. fortey based on Hammann et al. (1990), personal observation, Fortey and Theron 
(1994), and Budd (1999), respectively. 
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Figure 4. Paleogeographical distribution of nektaspids during the Cambrian (a), Ordovician and Silurian (b) 
periods. Map reconstruction for the early Cambrian (520 Ma) (a) and Early Ordovician, Tremadocian (480 

Ma) (b); redrawn, adapted and simplified from Torsvik & Cocks (2013a, fig. 2.7 and fig. 2.11). The Silurian 
species Naraoia bertensis Caron et al. 2004, is marked by asterisk. Distribution data based on Whittington 
1977, Robison 1984, Dzik and Lendzion 1988, Hammann et al. 1990, Fortey and Theron 1994, Hou and 

Bergström 1997, Chen et al. 1997, Budd 1999, Budil et al. 2003, Caron et al. 2004, Schwimmer and 
Montante 2007, Zhang et al. 2007, Paterson et al. 2010, Peng et al. 2012, Zhang et al. 2012, Fu et al. 2019, 

Mayers et al. 2019, Lerosey-Aubril et al. 2020. 
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