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1 Table S1: List of the 70 countries included in the analysis 
Algeria    Ghana  Pakistan   
Argentina  Greece Panama 
Australia  Guatemala  Paraguay   
Austria    Honduras   Peru   
Bangladesh Iceland    Portugal   
Benin  India  Republic of Korea  
Bolivia Indonesia  Senegal    
Brazil Iran South Africa   
Cameroon   Iraq   Spain  
Canada Ireland    Sri Lanka  
Chile  Israel Sweden 
China  Italy  Thailand   
Colombia   Jamaica    Togo   
Congo  Japan  Trinidad and Tobago    
Costa Rica Kenya  Tunisia    
Côte d'Ivoire  Mexico Turkey 
Dominican Republic Morocco    United Kingdom 
Ecuador    Myanmar    United States of America   
Egypt  Nepal  Uruguay    
El Salvador    Netherlands    Venezuela  
Finland    New Zealand    Zambia 
France Nicaragua  Zimbabwe   
Gabon  Nigeria     
Germany    Norway  

 

2 Correlation tables of variables considered in the analysis 

These tables correspond to the data used in the paper, for the countries listed in Table S1. 

Table S3: correlation coefficients for the variables in 1971 

Variable 
Carbon 

emissions 
Primary 
energy 

Income 
MER 

Income 
PPP 

Food 
supply 

Residential 
electricity 

Life 
expectancy 

Units 
t CO2 per 

cap 
GJ per 

cap 
$ per cap $ per cap 

kCals per 
cap per 

day 

kWh per 
cap 

years 

 log log log log log log linear 
 1 2 3 4 5 6 7 

1 1.000 0.884 0.901 0.887 0.744 0.890 0.791 
2 0.884 1.000 0.883 0.879 0.737 0.877 0.777 
3 0.901 0.883 1.000 0.937 0.795 0.913 0.794 
4 0.887 0.879 0.937 1.000 0.789 0.883 0.800 
5 0.744 0.737 0.795 0.789 1.000 0.760 0.762 
6 0.890 0.877 0.913 0.883 0.760 1.000 0.840 
7 0.791 0.777 0.794 0.800 0.762 0.840 1.000 
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Table S4: correlation coefficients for the variables in 2014 

 

Variable Carbon 
emissions 

Primary 
energy 

Income 
MER 

Income 
PPP 

Food 
supply 

Residential 
electricity 

Life 
expectancy 

Units t CO2 per 
cap 

GJ per 
cap 

$ per cap $ per cap 
kCals per 
cap per 

day 

kWh per 
cap 

years 

 log log log log log log linear 
 1 2 3 4 5 6 7 

1 1.000 0.916 0.878 0.898 0.720 0.896 0.729 
2 0.916 1.000 0.890 0.883 0.670 0.901 0.654 
3 0.878 0.890 1.000 0.979 0.749 0.940 0.812 
4 0.898 0.883 0.979 1.000 0.769 0.944 0.833 
5 0.720 0.670 0.749 0.769 1.000 0.722 0.647 
6 0.896 0.901 0.940 0.944 0.722 1.000 0.808 
7 0.729 0.654 0.812 0.833 0.647 0.808 1.000 

 

3 Relation of Functional Dynamic Decomposition (FDD) to other methods  

In this section, we relate the FDD method to other related or similar methods which others 
may have used or choose to use in the future. 

3.1 Time derivative 

If we can generally write: 

Equ S7. 𝑦௜(t) = 𝑎(𝑡) + 𝑏(𝑡) ∙ 𝑥௜(𝑡) + 𝑒௜(𝑡) 

Then we can express the change in y as a time derivative: 

Equ S8. 𝑦ప̇(t) = 𝑎̇(𝑡) + 𝑏̇(𝑡) ∙ 𝑥௜(𝑡) + 𝑏(𝑡) ∙ 𝑥ప̇(𝑡) + 𝑒ప̇(𝑡) 

This approach would work for small (infinitesimal) and smooth changes in y. Unlike the FDD 
approach, it is not an exact decomposition, and does not express the full change in y for 
larger shifts in a, b, x and e.  

3.2 Elasticity 

The elasticity approach is used to characterise the connection between the change in two 
variables, like the time derivative approach above, when their functional relationship is well 
described by a log-log relation (as it is for the GDP-carbon part of our analysis, and the 
relationship between the variables is not expected to change over time.   

Then we would be able to write: 

Equ S1. log൫y௜(t)൯ = 𝑎 + 𝑏 ∙ log൫𝑥௜(𝑡)൯ + 𝑒௜(𝑡) 

then 

Equ S2. ௬ഢ̇(୲)

௬೔(୲)
= 𝑏 ∙

௫ഢ̇(୲)

௫೔(୲)
+ 𝑒ప̇(𝑡) 
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If 𝑒௜(𝑡) is also expected not to change much or systematically over time, then the change in 
time of y is simply related to the change in x through b: a change in x of 1% will translate to 
a change in y of b% (b is the the time elasticity characterising the relation). This approach is 
commonly used, but deeply flawed in the case when in fact a and b themselves are time-
varying parameters. If a and b change over time, the FDD gives a full accounting of the 
change in y, and even the time derivative approach above gives a more complete 
description of the change in time of y. In contrast, the elasticity approach is flawed because 
it attributes all change in y to changes in x through b: no changes in other parameters (such 
as the functional relation itself) are allowed to be considered in this formalism. 

3.3 Easterlin Paradox 

The Easterlin Paradox method, most recently published here (Easterlin, McVey et al. 2010), 
takes as its starting point the fact that a correlation in x and y at one point in time would 
lead to a correlation between changes in x and in y (according the difference & rates of 
change shown in Table S5). Easterlin uses this method to contrast international level 
changes (y) in life satisfaction with rates of change in income x/x, implicitly using a log-
linear relationship between the two.  

This method is also used in a slightly different form to test Okun’s law, relating changes in 
unemployment to changes in economic output (Lee 2000), but in this case it is used for one 
country at annual intervals, rather than for an international sample at across a large time 
span.  

We applied Easterlin’s approach to our variables in Table 1, and found no significant 
correlation between changes in x and changes in y. This is similar to Easterlin’s result, but 
unexpected in our case, since at least for Market Exchange Rate income and carbon 
emissions, for instance, we would expect to see a very significant correlation between x/x 
and y/y. Our own FDD results show that 90% of MER income growth can be statistically 
attributed to emissions growth. We investigated this result further, and showed by Monte 
Carlo simulations on a synthetic dataset that the Easterlin approach tends to produce null 
results when the stochastic change (residual change ∆𝑒௜ in Eq. 2) is on the same order of 
magnitude as the driver change (𝑏ത ∙ ∆𝑥௜ in Eq. 2). The Easterlin approach may thus mask 
systematic relations between international parameters when the stochastic change in 
individual countries is significant, as it can be expected to be over long time spans. It may be 
worth revisiting the Easterlin income-happiness paradox using a version of the FDD method 
to resolve this issue. 

The application of this method to Okun’s Law analysis, considering differences only within 
one country and over shorter (annual) timespans, would suffer much less from the issue of 
∆𝑒௜ being as large as (or larger than)  𝑏ത ∙ ∆𝑥௜, since the stochastic term is expected to vary 
much less at short time intervals and within one country. 
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3.4 Panel data analysis 

Panel data analysis is an econometric technique that is used to quantify the relationship 
between different variables using data that involve spatial and temporal dimensions. In 
other words, the analysis involves data for several observational units at a specific moment 
in time, as well as time series for each single unit. This method is thus particularly helpful 
when we wish to statistically estimate relationships between variables that belong to more 
than one country over a certain period of time. 

The objective of the analysis is to estimate the parameters of a linear regression equation 
that involves a dependent (y) and one or more independent variables (x, z, etc.). In the case 
of a bivariate regression, the general form of the equation can be expressed as: 

𝑦௜௧ = 𝑎 + 𝑏 ∙ 𝑥௜௧ + 𝑢௜௧  

where the indices ‘i’ and ‘t’ stand for the individual observational units and time, 
respectively, while ‘a’ and ‘b’ are the parameters to be estimated. The term ‘u’ represents 
the stochastic error. 

A common econometric procedure is to conduct regressions using variables expressed in 
first differences and logarithmic form, which is comparable to expressing the variables in 
terms of annual percentage changes. The estimated slope parameter thus represents an 
elasticity, which indicates the extent to which the dependent variable changes when the 
independent changes in 1%. Differencing the variables also allows controlling for omitted 
factors that are time invariant and prevents co-integration issues, given that the differenced 
variables are stationary. Applying first differences to a variable already expressed in log form 
denotes subtracting its value in time ‘t-1’ from its value in ‘t’, as shown below: 

∆ log(𝑦௜) = log(𝑦௜௧) − log(𝑦௜௧ିଵ) 

Rearranging, the general form of a bivariate equation in differences can be expressed as: 

∆log(𝑦௜௧) = 𝑏∆log (𝑥௜௧) + ∆𝑢௜௧ 

The parameters in the regression equation are then estimated taking into account any 
issues that affect the residuals, like as heteroskedasticity, serial correlation or cross-
sectional correlation. If any such issues are present, ordinary least squares may yield 
statistically inefficient estimators and other techniques are thus more appropriate. In cases 
where heteroskedasticity and serial correlation are present, the method of feasible 
generalized least squares (FGLS) can produce more efficient estimators. 

At the outset, panel data analysis seems to be an appropriate method to examine to what 
extent improvements in international life expectancy can be attributed to contemporaneous 
growth in carbon emissions, income or food supply over time. The same can be said in 
relation to the increase in income that can be attributed at an international scale to carbon 
emissions. In fact, regressions using cross-sectional data (i.e. at a moment in time) 
expressed in levels (non-differentiated) yield satisfactory goodness-of-fit values larger than 
75% when examining life expectancy versus emissions, income and food. Similar results are 
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obtained when using pooled data (i.e. all countries and all years). However, when we 
examined the same functional form over time and used data expressed as first differences, 
the goodness-of-fit values that we found were low. This is essentially analogous to 
Easterlin’s result. However, we also found that the same variables had predictive power in 
this method and in FDD, showing consistency across analytic approaches. The difficulty in 
using traditional panel methods in the particular case of this paper is that these produce 
slope estimators (i.e. elasticities) for each independent variable, which characterise the 
behaviour of the different observational units (i.e. countries) during the whole time period. 
Nevertheless, as is illustrated in this article, the estimators or parameters do change over 
time, and these methods do not truly capture these dynamics. 

3.5 Multilevel regression analysis 

Multilevel regression analysis, also known as hierarchical or mixed-level analysis, is 
commonly used when observational units can be organised at more than one level or 
category. This technique thus allows determining how parameters, like the slope and 
intercept, in a regression vary at different levels (Hox, 2010). The multilevel method offers 
an advantage over the general pooled regression model, which ignores the variation 
between observational units. In this paper, multilevel regression analysis was used given 
that it is useful to assess how both intercepts and slopes vary over time. By considering time 
as the ‘level’ or ‘grouping’ criteria for a dataset comprised of 70 countries, this tool allows 
estimating the intercept and slope parameters for every year in the period under study. The 
annual variations, as well as the trend, of the estimated parameters can then be analysed. 
The case of a bivariate linear multilevel regression model can expressed as follows: 

 

𝑌௜௧ = 𝛽଴௧+𝛽ଵ௧𝑋௜௧ + 𝑒௜௧   (1) 

 

where Y and X are the dependent (e.g. life expectancy) and independent variables (e.g. CO2 
emissions per capita) expressed in logs, respectively; e stands for the residuals, subscript i 
refers to the units (or countries) and subscript t to individual years. In turn, the estimated 
intercept β0 and slope β1 parameters are assumed to present variations over time. If no 
additional level-specific predictors are used, then it can be said that the parameters are 
given by: 

 

𝛽଴௧ = 𝛾଴଴ + 𝑢଴௧    (2) 

 

𝛽ଵ௧ = 𝛾ଵ଴ + 𝑢ଵ௧    (3) 
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By substituting equations (2) and (3) back into (1), a general expression can be obtained: 

 

𝑌௜௧ = 𝛾଴଴ + 𝛾ଵ଴𝑋௜௧ + 𝑢ଵ௧𝑋௜௧ + 𝑢଴௧ + 𝑒௜௧ (4) 

 

The right-hand side of equation (4) can be divided into two portions. The first one, given by 
γ00 + γ10Xit, represents the fixed or deterministic part of the model, while the second, given 
by u1tXit + u0t + eit, contains the random and stochastic elements.1 It is worth noting that the 
terms γ00 and γ10 represent the mean of the yearly intercepts and slopes, respectively. The 
parameters in this last expression can then be estimated using maximum likelihood 
estimation. See Hox (2010) and Gelman and Hill (2007) for a more detailed description of 
estimation procedures used in multilevel regression analysis. 

In order to compare the goodness of fit in this type of models, the traditional R2 cannot be 
used due to the complex structure of the residuals, as can be implied from (4). Measures 
such as the Akaike Information Criteria (AIC) or the Bayesian Information Criteria (BIC) can 
be employed to check the quality of each specification, relative to others. 

3.6 Comparison of Functional Dynamic Decomposition and Multilevel Regression 

We conducted multilevel regression analysis on the same dataset as we used in the main 
paper. Two data issues had to be addressed, since Gabon and Iraq both had years missing 
for the residential electricity indicator (these countries were thus omitted for specific years 
for regressions involving that variable).  

We then used the slope and intercept coefficients resulting from the multilevel analysis in 
the FDD decomposition (Eqs. 2 & 3 in the main text).  

These results are summarized in Table S1. Unlike FDD, the multilevel regression does not 
result in an exact decomposition, and thus the remaining fraction of  ∆𝑦  is shown as a 
residual term.  

The result we report in the article is the “driver”, or ∆𝑥 related fraction of ∆𝑦. We compare 
these specifically in Figure S1. The correspondence is extremely good, and means that we 
are effectively measuring the same quantity with both methods. As a consequence, we only 
display the results for FDD in the paper itself, since it is the simpler method. 
  

                                                      
1 It is important not confuse this terminology with that used in panel data regression analysis, where 
‘fixed’ and ‘random’ effects are related to completely different models (see: Wooldridge, 2002). 
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Table S1: Comparison of multilevel and FDD results. 
  Multilevel FDD 
Dependent 
variable 

Independent 
variable 

∆𝑫𝒓𝒊𝒗𝒆𝒓

∆𝒚
 

∆𝑭𝒖𝒏𝒄.

∆𝒚
 

Residual AIC 
∆𝑫𝒓𝒊𝒗𝒆𝒓

∆𝒚
 

∆𝑭𝒖𝒏𝒄.

∆𝒚
 

Primary 
Energy 

Carbon 
emissions  

71.7% 18.0% 10.3% 3324 72.4% 27.6% 

MER income Carbon 
emissions  

72.4% 9.8% 17.8% 5783 71.9% 28.1% 

MER income 
Primary 
energy  

92.6% 6.8% 0.7% 5909 89.2% 10.8% 

PPP income 
Carbon 
emissions  

42.7% 53.2% 4.1% 3837 40.0% 60.0% 

PPP income 
Primary 
energy  

53.0% 39.9% 7.2% 4190 48.9% 51.1% 

PPP income MER income 55.4% 41.5% 3.1% 1462 52.9% 47.1% 

Food supply  
Carbon 
emissions  

35.3% 51.3% 13.4% -4297 32.3% 67.7% 

Food supply  Primary 
energy  41.5% 43.7% 14.8% -3751 39.2% 60.8% 

Food supply  MER income 45.3% 43.6% 11.2% -4554 42.7% 57.3% 
Food supply  PPP income 79.9% 10.3% 9.8% -4512 78.4% 21.6% 
Residential 
electricity  

Carbon 
emissions  35.4% 60.0% 4.6% 6564 35.1% 64.9% 

Residential 
electricity  

Primary 
energy  46.0% 51.1% 3.0% 6247 44.3% 55.7% 

Residential 
electricity  

MER income 
47.2% 53.8% -1.0% 5166 45.9% 54.1% 

Residential 
electricity  PPP income 83.8% 19.8% -3.6% 6037 82.3% 17.7% 
Residential 
electricity  

Food supply  
67.0% 19.1% 13.9% 8907 66.7% 33.3% 

Life 
expectancy 

Carbon 
emissions  21.2% 73.8% 5.0% 19814 21.7% 78.3% 

Life 
expectancy 

Primary 
energy  25.4% 74.3% 0.3% 20518 26.0% 74.0% 

Life 
expectancy 

MER income 
28.0% 68.0% 4.0% 19378 28.7% 71.3% 

Life 
expectancy 

PPP income 
51.4% 44.4% 4.2% 18950 53.0% 47.0% 

Life 
expectancy 

Food supply  
44.4% 48.4% 7.2% 20234 45.7% 54.3% 

Life 
expectancy 

Residential 
electricity  59.3% 31.4% 9.3% 19058 60.0% 40.0% 
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Figure S1: comparison of  ∆஽௥௜௩௘௥

∆௬
 in multilevel and FDD methods. 

 

 

4 Summary of additional single and multi-variate analysis 

This section presents additional material and explains the detailed rationale for our specific 
variable choices. 

We present results including different energy indicators (section 4.1), multi-variable cases 
(section 4.2) and considerations of changes within the time interval of 1971-2014 (section 
4.3). We also present more recent time interval results (1990-2014), during which both 
consumption-based and territorial emissions accounts are available (Le Quéré et al 2018, 
Peters & Hertwich 2008) (section 4.4). Finally, we show an extreme example of reverse 
paradoxical behaviour (low correlation but high dynamic coupling) for electricity and 
education (section 4.5). 

All the analyses in the main text were conducted for the countries listed in Table S1. This is 
not the case for the analysis covered in this section: instead the number of countries 
covered is documented in each case. Restricting the analysis to the same countries involving 
so many variables & time intervals would result in a much smaller country sample, and 
hence internationally less representative results. 

4.1 Comparing types of final energy use (as dynamic drivers of life expectancy) 

The International Energy Agency provides final energy use for several aggregate sectors: 
industrial, commercial, residential and transport. We can test these separately in terms of 
their dynamic coupling with life expectancy. 
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Table S5: Comparing final energy types as dynamic drivers of life expectancy improvements, 
1971-2014 (pairwise analysis) 

 Industrial 
Final Energy 

Commercial 
Final Energy 

Residential 
Final Energy 

Transport 
Final Energy 

Total Final 
Energy 

Driver 15% 44% 8% 37% 22% 

R2 0.57 0.44 0.09 0.62 0.48 

Number of 
countries 

108 88 109 108 109 

Commercial and transport final energy are clearly much more dynamically coupled to life 
expectancy improvements than industrial or residential. The reason residential final energy 
is so very different from residential electricity is because it is dominated by diverse heating 
and cooking fuels, which depend on locally available fuels, as well as geography and climate. 

We repeat the same exercise for electricity use categories (Table S6).  

Table S6: Comparing electricity categories as dynamic drivers of life expectancy 
improvements, 1971-2014 (pairwise analysis) 

 Industrial 
Electricity 

Commercial 
Electricity 

Residential 
Electricity 

Transport 
Electricity 

Total 
Electricity 

Driver 33% 64% 61% 17% 52% 

R2 0.61 0.65 0.66 0.34 0.68 

Number of 
countries 

100 80 96 36 109 

 

Residential and commercial electricity stand out as the most dynamically coupled to life 
expectancy. The reason we chose to use residential electricity in our analysis (rather than 
commercial electricity) is simply due to data availability: commercial electricity is available 
for far fewer countries than residential. As indicators, they are extremely tightly coupled 
internationally, and effectively express the same information: availability of electricity 
services in buildings, both public and private, for heating, cooling, cooking, food & medicine 
storage, communication, lighting, and many more. 

4.2 Multi-variable results 

Equations 1-3 can be trivially adapted to the case of multi-variable regressions (as long . as 
no non-linear interaction terms are included). Since this paper represents the first time this 
method is applied, we prefer to keep the analysis in the main text to simple bivariate cases. 
However, we have applied multi-variate analyses to our dataset, and some of the results are 
interesting enough to share here. 
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First, we combine the final energy categories in Table S5 (except residential final energy, 
which does not warrant inclusion, due to its low dynamic explanatory power). 

Table S7: Multi-variable results for final energy categories as dynamic drivers of life 
expectancy improvements, 1971-2014 

Driver   

Industrial Final Energy 7% 

Commercial Final Energy 10% 

Transport Final Energy 17% 

Sum of all 34% 

R2 0.69 

Number of countries 88 

Transport final energy stands out as the strongest contribution, much stronger here than 
commercial final energy (the reverse was true in Table S5 where single variable 
contributions were compared).  

It is worth noting here that, because FDD is a 2-step process, where the first step consists in 
a linear regression, an explanatory variable that is more highly correlated to the dependent 
variable (as is the case with transport vs. commercial final energy and life dependency) will 
tend to have “stronger” (steeper) coefficients and dominate in the second stage of the 
method. 

We then can conduct a multi-variable FDD on the different categories of electricity use 
(except transport, due to lack of significance and data in Table S6). 
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Table S8: Multi-variable results for electricity categories as dynamic drivers of life 
expectancy improvements, 1971-2014 

Driver  

Industrial Electricity 3% 

Commercial Electricity 19% 

Residential Electricity 40% 

Sum of all 62% 

R2 0.74 

Number of countries 77 
 

In the multi-variate case, industrial electricity fades to insignificance, whereas residential 
electricity dominates over commercial. 

We now turn to combinations of transport final energy, residential electricity, food supply 
and PPP income, since these are the most important variables which qualify as “satisfiers” of 
life expectancy in our dataset  (Table S9). 

None of the variables in Table S9 fades to complete insignificance when considered 
alongside the others (as industrial electricity does in Table S8, for instance).   However, 
every time transport is considered in the same models as residential electricity, its dynamic 
contribution to life expectancy improvements drops to 13% or less (from 37% when  
considered alone). This is the reason why we did not include it in the analyses presented in 
the main paper. In contrast, food supply maintains itself at a higher level, no matter which 
other indicators are included in the models. 

In terms of the models shown in Table S9, we don’t consider that one multi-variable model 
is ultimately superior to the other, either through its dynamic explanatory power (higher 
sum of Driver contributions) or goodness-of-fit (R2). As shown in Table S10, this is a system 
with a lot of cross-correlation. Contributions from one variable in FDD could be easily 
attributed to another with similar statistical behaviour, so we do not venture any 
interpretation beyond the pair-wise analysis shown in the main text. However, in the next 
section, we will see that trends in the multi-variable results can be observed and do warrant 
interpretation.
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Table S9: Multi-variable results for residential electricity, transport energy, food supply and PPP income as dynamic drivers of life expectancy 
improvements, 1971-2014 

Model number 

Driver from: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Residential Electricity 61%    43% 43% 32%    31.5% 22% 22%  16% 

Final Energy Transport  37%   13%   25% 24%  9.5% 10%  15% 9% 

Food Supply   44%   18%  22%  20% 15.6%  14% 18% 12% 

PPP income    42%   22%  17% 30%  18% 18% 14% 15% 

Sum of all 61% 37% 44% 42% 56% 61% 54% 47% 41% 50% 56.7% 50% 54% 47% 51% 

R2 0.66 0.62 0.49 0.61 0.69 0.69 0.70 0.67 0.68 0.67 0.71 0.72 0.71 0.70 0.73 

Number of countries 96 108 138 144 95 85 92 94 103 127 84 91 84 92 83 

 

Table S10: correlation coefficients of variables in Table S9 (83 countries), all variables logged except life expectancy. 

 Final Energy 
Transport 

Food Supply PPP income Life 
Expectancy 

Residential Electricity 0.926 0.750 0.887 0.816 

Final Energy Transport  0.755 0.879 0.811 

Food Supply   0.729 0.730 

PPP income    0.773 
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4.3 Changes within the time interval 1971-2014 

It is possible to apply the FDD method to different time intervals during the 43 years 
covered by the dataset: we show some of these results here. 

Figure S2 shows the fraction of income growth which can be explained by increases in 
territorial per capita carbon emissions over time, for both MER and PPP income. The pattern 
is similar, showing first high and increasing dynamic coupling in the 1970s & 1980s, then 
decreasing in the 1990s & 2000s, although the level is always much higher for MER income 
than for PPP.  The decline of territorial carbon emissions in statistically accounting for 
growth in income is quite dramatic, and we believe to be robust.  

Figure S2: FDD analysis of dynamic coupling between per capita territorial carbon emissions 
and MER income (left) and PPP income (right) ( 1= 100%) over time. Each bar corresponds to 
a decade interval. 

 

This trend is reversed, and dramatically so, when we consider consumption-based emissions 
rather than territorial emissions and their ability to account for growth in income (Figure 
S3). Consumption-based carbon emissions, sometimes known as carbon footprints, take into 
account the carbon embodied in traded goods and services (Le Quéré et al 2016, Peters & 
Hertwich 2008).  

Figure S3: FDD analysis of dynamic coupling between per capita territorial (blue) and 
consumption-based (red) carbon emissions and MER income (2 plots on left) and PPP 
income (2 plots on right) ( 1= 100%) over time. Each bar corresponds to a decade interval. 
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Figure S3 shows two striking facts: first that trade-adjusted carbon emissions are much 
more highly dynamically coupled than territorial emissions to income, especially for MER 
income, and second that this coupling is increasing over time. In the years between 2002 & 
2014, territorial emissions increases could only explain 53% of MER income growth – but 
consumption-based emissions could account for a whopping 91%. It would thus be incorrect 
to state that economic growth is in any way decoupled or decoupling from emissions 
growth. Trade-corrected metrics are clearly increasingly important to understand the 
resource dependency of societies. However, since they are unavailable for most countries 
before 1990, we did not use them in the main article, which focused on the longer timespan 
1971-2014. 

In terms of dynamic coupling with life expectancy, both consumption-based and territorial 
emissions show an increased coupling over time (Figure S4). Again, consumption-based 
emissions are markedly more highly dynamically coupled to life expectancy than territorial 
emissions, but remain at an overall low level (below one third).   

Figure S4: FDD analysis of dynamic coupling between per capita territorial (blue) and 
consumption-based (red) carbon emissions life expectancy ( 1= 100%) over time. Each bar 
corresponds to a decade interval. 

 

 

We now turn to the changes in FDD contributions to life expectancy, considering the multi-
variable case of model 13 in Table S9: residential electricity, food supply and PPP income 
(Figure S5).  

Figure S5: changing multivariate contributions of residential electricity, food supply and PPP 
income to improvements in life expectancy (1 = 100%). Each bar corresponds to a decade 
interval. 

 



- 16 -  
 

 

The total level of improvement in life expectancy which can be accounted for by these 
indicators is highly variable and shows no clear trend. However, there is a clear trend in the 
increasing proportion of life expectancy improvements which can be accounted for by PPP 
income. The proportion accounted for by food supply is variable, but relatively stable, and 
the proportion accounted for by residential electricity is decreasing. Without more 
information, it is difficult to interpret these results, but it may be that adequate food supply 
and electricity access are becoming more widespread, and hence contribute less to relative 
improvements in life expectancy over time. PPP income can be understood here as a proxy 
for diverse forms of consumption and access not covered by either food or electricity, but 
without more detail on which types of expenditure or investment are most important it is 
not possible to make clear statements of priorities. Again this points to the importance of 
identifying and measuring specific satisfiers of human needs, rather than blanket economic 
or resource use metrics. 

4.4 Reverse paradox: education and electricity 

One of the most curious and interesting cases in our dataset was that of education, 
measured by the World Bank indicator of “School enrollment, primary (% gross)”. Despite 
being very weakly correlated to residential electricity use (goodness-of-fit R2 of 0.22), the 
growth in electricity use between 1971 and 2014 can account for 49% of the improvement 
in school enrolment. This is an extreme example of reverse paradoxal behaviour: low 
correlation at each point in time, but relatively high dynamic coupling. The reason we did 
not include this indicator and result in our main paper is due to lack of data: if we had 
included it, the number of countries in our dataset would have decreased to 56, 
representing only 70% of global population.  
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