
 

  

 

 
 

 

Serveur Académique Lausannois SERVAL serval.unil.ch

Author Manuscript
Faculty of Biology and Medicine Publication

This paper has been peer-reviewed but does not include the final publisher
proof-corrections or journal pagination.

Published in final edited form as:

Title: Comparing the Advanced REACH Tool’s (ART) estimates with

Switzerland’s occupational exposure data

Authors: Savic N, Gasic B, Schinkel J, Vernez D

Journal: Annals of Work Exposures and Health

Year: 2017 Oct 1

Issue: 61

Volume: 8

Pages: 954-964

DOI: 10.1093/annweh/wxx069

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains
an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article.

http://dx.doi.org/10.1093/annweh/wxx069


1 
 

Title: 

Comparing the Advanced REACH Tool’s (ART) estimates with Switzerland’s 
occupational exposure data 

Authors: 

Nenad Savic1*, Bojan Gasic2, Jody Schinkel3, David Vernez1 

1 Institute for Work and Health (IST), University of Lausanne and University of Geneva, 
Route de la Corniche 2, CH-1066 Epalinges-Lausanne, Switzerland 

2 Chemicals and Occupational Health Unit, Swiss State Secretariat for Economic Affairs 
(SECO), Holzikofenweg 36, CH-3003 Bern, Switzerland 

3 TNO, PO Box 360, 3700 AJ Zeist, The Netherlands  
 
*Address correspondence to: 

Nenad Savic 

Institute for Work and Health (IST) 

Route de la Corniche 2 

CH-1066 Epalinges-Lausanne 

Switzerland 

Phone:   +41 21 314 37 82 

Fax:    +41 21 314 74 20 

E-mail:   nenad.savic@chuv.ch  

 
 
 
Keywords: Advanced REACH Tool, Occupational exposure models, REACH, Exposure 
measurements, Model performance and validation 
 
Funding: This research was supported by the Swiss Centre for Applied Human 
Toxicology (SCAHT) and Switzerland’s State Secretariat for Economic Affairs (SECO). 

 

 

mailto:nenad.savic@chuv.ch


2 
 

Abstract 

The Advanced REACH Tool (ART) is the most sophisticated tool used for evaluating exposure 

levels under the European Union’s Registration, Evaluation, Authorisation and restriction of 

CHemicals (REACH) regulations. ART provides estimates at different percentiles of exposure 

and within different confidence intervals. However, its performance has only been tested on a 

limited number of exposure data. The present study compares ART’s estimates with exposure 

measurements collected over many years in Switzerland. Measurements from 584 cases of 

exposure to vapours, mists, powders and abrasive dusts (wood/stone and metal) were extracted 

from a Swiss database. The corresponding exposures at the 50th and 90th percentiles were 

calculated in ART. To characterise the model’s performance, the 90% confidence interval of the 

estimates was considered. ART’s performance at the 50th percentile was only found to be 

insufficiently conservative with regard to exposure to wood/stone dusts, whereas the 90th 

percentile showed sufficient conservatism for all the types of exposure processed. However, a 

trend was observed with the residuals, where ART overestimated lower exposures and 

underestimated higher ones. The median was more precise, however, and the majority (≥ 60%) 

of real world measurements were within a factor of ten from ART’s estimates. We provide 

recommendations based on the results and suggest further, more comprehensive, 

investigations.   
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INTRODUCTION 
Exposure measurements are still considered the gold standard for occupational hygiene 
compliance testing of exposure limits. However, substance concentrations may vary between 
companies, workers and even the same worker over time (Kromhout et al., 1993). To account 
for this variability, exposure assessments must be based on sufficient numbers of 
measurements (Kromhout, 2002). In practice, this number is seldom sufficient, due to high costs 
and time constraints. Alternative methods, such as exposure modelling, can screen exposure 
situations and target measurements more efficiently. Although modelling is the cheaper solution, 
the complexity of the computation grows with the number of different physicochemical 
determinants considered. Including the potential variability of exposure can add even further 
complexity (Keil, 2000). More recent statistical models, such as the Advanced REACH Tool 
(ART) (Fransman et al., 2013), have been developed in order to estimate exposure under 
different working conditions, but using only 5–15 exposure determinants. Simplifications of real 
world phenomena, such as those in the source–receptor model described in Cherrie (1996) and 
Tielemans et al. (2008), were made to enable the statistical models to estimate exposure using 
a limited number of determinants. It has thus been correctly argued that models lack the 
accuracy of field measurements (Kromhout, 2002). However, models should aim to estimate the 
worst-case situation or provide exposure distribution estimates (e.g. ART) accounting for inter- 
and intra-worker variability. 

In the European Union, these so-called generic (statistical) models are used for registration 
purposes under its Registration, Evaluation, Authorisation and restriction of CHemicals 
(REACH) legislation. This stipulates that companies manufacturing or importing high volumes of 
potentially dangerous chemicals (i.e. ≥ 10 metric tonnes/year) must perform a detailed chemical 
safety assessment and estimate potential exposure levels in numerous exposure situations. 
Several exposure models are currently available, based on expert judgment and/or statistical 
analysis of previous exposure data. Since different models often calculate different exposure 
estimates, leading to different conclusions about risk, the selection of the appropriate tool is 
crucial. To aid the selection of an appropriate model, the REACH framework advocates a tiered 
approach (ECHA, 2016). Tier 1 models, such as the EMKG-EXPO-TOOL (BAuA, 2016; ECHA, 
2016), ECETOC TRA (ECETOC, 2009; ECETOC, 2012) are intended to provide a conservative 
exposure estimate and screen situations which are of some concern from those which are of no 
concern (Tielemans et al., 2007). More sophisticated models, such as Stoffenmanager® 
(Marquart et al., 2008; Schinkel et al., 2009)—currently considered as Tier 1.5 (ECHA, 2016)–
and ART (Tier 2) (Fransman et al., 2013; Schinkel et al., 2011), are assumed to be more refined 
versions of Tier 1 models. Such higher-level approaches use more exposure determinants and 
should thus deliver more precise exposure estimates. The model’s performance (level of 
conservatism, accuracy and bias), however, remains unknown for a broader range of 
occupational conditions, due to the limited scale of data available and its restricted accessibility 
in the previous studies (Schinkel et al., 2010; Kupczewska-Dobecka et al., 2011; McDonnell et 
al., 2011). This further inhibits straightforward model selection and, in some cases, leads to an 
underestimation or insufficient control of the workers exposure (Lamb et al., 2015). TREXMO, a 
tool recently developed by Savic et al. (2016), may therefore prove to be a good starting point 
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for exposure assessments since it promotes a time-efficient and coordinated use of multiple 
models recommended by ECHA (Guidance R.14, ECHA, 2016).  

A recent study evaluating Tier 1 (including Stoffenmanager®) exposure assessment models 
(eteam: Lamb et al., 2015) showed that the level of conservatism varied between different 
models and exposure types (e.g. dust, vapour). For volatile liquids, for example, ECETOC TRA 
v.3 showed a low level of conservatism, with ≥ 25% of exposure measurements exceeding the 
model’s estimates; Stoffenmanager®, however, was sufficiently conservative. Previous 
performance assessments of ECETOC TRA v.2 (Kupczewska-Dobecka et al., 2011), 
Stoffenmanager® (Koppisch et al., 2012) revealed that these models demonstrated a 
satisfactory level of conservatism. For ART, a comparison with pharmaceutical data (McDonnell 
et al., 2011) found that this model tends to underestimate the measured exposure data. Two 
recent studies (Landberg et al., 2017; Spinazzè et al., 2017) confirmed these findings for ART. 
However, these studies were restricted to the limited diversity of exposure situations and 
relatively small number of measurements per exposure situation (McDonnell et al., 2011). It was 
often unclear whether the overall uncertainties resulted from validity or reliability issues. ART’s 
reliability was recently investigated by comparing the exposure assessments produced by 
different expert groups (Schinkel et al., 2014). There were substantial differences between the 
gold standard reference and both exposure assessors and exposure assessments. This 
suggested that between-user reliability could be an important contributor to overall levels of 
assessment uncertainty.  

ART is the only inhalation Tier 2 model recommended for exposure assessment by the 
European Chemicals Agency (ECHA, 2016). The model was calibrated against approximately 
2,000 exposure measurements from different industries and countries (Schinkel et al., 2011). 
However, as reported in Schinkel et al. (2011), these measurements were insufficient to cover 
all the possible combinations of parameters. Since ART is proposed as a general model, its 
validation using external data is a vital means of investigating its weaknesses and strengths and 
suggesting further refinements. The present study used a set of independent field exposure 
measurements, collected in Switzerland over many years, to investigate ART’s performance.  
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METHODOLOGY 
Advanced REACH Tool (ART) 

ART, as introduced in 2010, was developed to assess exposure to chemicals and provide more 
sophisticated estimates than the tools then in existence (Ogden, 2011). ART is structured as a 
mechanistic source–receptor model that includes exposure parameters for source emissions 
(e.g. vapour pressure for volatile compounds, dustiness for powders, or different activity 
classes), localised controls (LCs), and substance transportation or dilution in the workplace. 
Detailed information on its parameters is available in previous publications (Tielemans et al., 
2008; Marquart et al., 2011; Tongeren et al., 2011; Tielemans et al., 2011; Fransman et al., 
2013). The mechanistic model calculates a dimensionless exposure score. A calibration for 
vapours (volatile liquids, with a vapour pressure higher than 10 Pa, as defined in ART, see 
Fransman et al., 2013) and mists (non-volatile liquids, with a vapour pressure ≤ 10), powders 
(dusts) and solids (abrasive wood and stone dust) translates the score into an exposure 
estimate in mg/m3 (Schinkel et al., 2011). The calibration estimates also estimate exposure at 
different percentiles, i.e. the 50th (median), 75th, 90th, 95th and 99th (McNally et al., 2014). For 
each of these percentiles, the model estimates different confidence intervals (CI): inter-quartile, 
80%, 90% and 95%.  

SUVA Database 

The National Accident Insurance Fund (Schweizerische UnfallVersicherungsAnstalt, SUVA) 
operates under Switzerland’s accident insurance law. In order to prevent occupational diseases, 
SUVA regularly carries out monitoring programmes and exposure measurements to ensure 
compliance with national Occupational Exposure Limits (OELs). These actions result in reports 
describing the relevant company’s activities, the data measured and contextual information 
about the measurements (including pictures). 

SUVA started collecting the reports used in the present study in 2003, but 73% of them are 
more recent: 2008–2012. We processed a total of 124 reports from the SUVA database. 
Exposure measurements were selected according to the following criteria: 

• Only personal measurements were considered.  

• Measurements that were not representative of an occupational activity were discarded. 

• Measured concentrations above five times the appropriate short-term OEL (15-min OEL) 
or below 0.1 times the 8-hour OEL, although within the functional range of ART, were 
excluded. Values <  0.1 8-h OEL (SUVA, 2013) are not a great concern and may be 
considered—by definition—to be low occupational risks. Conversely, measurements 
> 15-min OEL (SUVA, 2013) can already be considered as occupational risks at a Tier 0 
or Tier 1 level (i.e. before models like ART are applied). Less than 5% of the data was 
excluded due to this criterion and thus their inclusion was not expected to change the 
study results meaningfully. 
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• Reports usually included multiple measurements of the substance at different times or 
locations. All these measurements were used for ART’s evaluation since they were 
considered as independent measurements. 

• When several substances had been measured in the same situation and exposure 
period, only one substance was considered for our study (randomly selected) in order to 
avoid any bias due to the weighting of that situation.  

• Only inhalable dust was considered for testing ART’s performance with exposure to 
powders and solids (Marquart et al., 2008; Fransman et al., 2013). 

• The total amount of dust was considered unless the molar fraction of a specific 
component was given (e.g. total welding dust and nickel content). This applied to both 
inert and metal dusts.  

Overall, 584 relevant measurements fulfilled the inclusion criteria and were thus processed 
further. The exposure pollutants measured included 346 vapours, 5 mists, 115 powders, 60 
wood/stone dusts and 58 metal dusts. Furthermore, task duration and non-exposed periods 
were considered in the conversion of measured, task-based exposures into 8-h Time-Weighted 
Averages (TWAs) in ART. 

Data Coding in ART 

Contextual data were extracted from the reports and coded into ART’s corresponding exposure 
parameters. Both the coded parameters and measured exposure values were stored in 
Microsoft Office Excel 2007. R software (R development core team, 2010), version 3.3.1, was 
used to calculate the model’s estimates based on its published scoring system (Fransman et al., 
2013) and the previous calibration (Schinkel et al., 2011), and to analyse the data. The 
components of variance in McNally et al. (2014) were used to calculate exposure at the higher 
percentiles and their CIs. 

Most parameters (e.g. room volume) were readily available in the reports and were directly 
translated into model parameters. Some parameters, such are those describing the activity 
carried out, however, were not explicitly noted and had to be evaluated from the pictures and 
textual description. Where the data were unclear, realistic conservative parameters were used. 
For example, when in doubt whether coarse or fine dust category is more adequate for the 
contaminant under concern, the latter category was selected. Substance properties (e.g. vapour 
pressure, boiling and melting points) were taken from TOXNET (NIH, 2016) or the ECHA 
database (ECHA). When vapour pressure was not readily available, it was estimated (Mackay 
et al., 2006). 

All exposure data were coded by an intern hired for the task, and the parameters were then 
revised by an expert. The 50th (median) and 90th percentiles, with their respective 90% 
confidence interval CIs, were calculated and further analysed. In addition, the median estimate 
and the 95th percentile, with their corresponding 95% CIs, were also analysed because they are 
levels recommended in Switzerland for compliance testing. The computed results are presented 
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in the present paper’s Supplementary Material, available in the Annals of Work Exposures and 
Health, online. Findings for vapours and powders did not differ significantly, although different 
conclusions were obtained for solids. 

Exposure to metals was also estimated in this study, although it is not yet applicable via the 
online tool. The calibration parameters for other solids (wood and stone, Schinkel et al., 2011) 
and the scoring system published in Fransman et al. (2013) were used to calculate exposure to 
metals. If the results found via the calibration for wood/stone dust were determined to be robust, 
then they could also be used as an indication for metal dust. 

Data analysis 

After the contextual data had been coded into ART’s parameters, the modelled exposure was 
compared to SUVA’s respective measured values. Because of the variability in measured 
workplace exposure, single measurements generally lack representativeness and the "true" 
average exposure concentrations remain unknown. The fractions of measured values above or 
below certain thresholds were therefore considered. ART’s performance was assessed by 
comparing the percentage of measurements (𝑦𝑦) below and above the 90% CI (± 1.645 standard 
deviations, 𝜎𝜎�) of the 50th and 90th percentiles of the model estimate (𝑦𝑦�):  

 % =  �
� �yi <  (𝑦𝑦�𝑖𝑖 − 1.645𝜎𝜎�𝑖𝑖)�

𝑖𝑖
𝑛𝑛� × 100 overestimation 

� �yi >  (𝑦𝑦�𝑖𝑖 + 1.645𝜎𝜎�𝑖𝑖)�
𝑖𝑖

𝑛𝑛� × 100 underestimation
   (1) 

 

where, 𝑦𝑦𝑖𝑖 is the ith measurement out of n measurements for the given exposure type. If the 
measured data are perfectly represented by the model, the 50th and 90th percentiles will 
underestimate 50% and 10% of the measurements, respectively. 

Regression (slope and intercept) and correlation (R-squared) coefficients were calculated to 
determine how well the model explained the measured exposure. The residuals were also 
calculated and plotted to depict systematic deviations of ART’s estimates from the measured 
exposure. For a measurement, the residual (r) is calculated as the log difference between the 
modelled value (𝑦𝑦�) and measured value (y): 

 𝑟𝑟 = log(𝑦𝑦�) −  log(y) (2) 

A positive residual indicates that the model overestimated the measured exposure and a 
negative residual indicates that the model underestimated the measured exposure. To specify 
whether the model overestimates or underestimates the complete set of measurements, relative 
bias was calculated: 

 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  
1
𝑛𝑛

 �log(𝑦𝑦�) − log(y)
𝑛𝑛

𝑖𝑖=1

 (3) 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1� × 100% (4) 
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Precision was calculated as the percentage of ART’s estimates lying within a certain factor Φ of 
the respective measured estimates. In this study, Φ was set to 5, 10,100 and 1,000, and thus 
the percentages of ART’s estimates lying within these factors from the measured exposure were 
calculated. 

Multiple linear regression 

ART’s dimensionless exposure score for near-field (nf) and far-field (ff), 𝐵𝐵𝑛𝑛𝑛𝑛+𝑓𝑓𝑓𝑓, is given as 
(Fransman, Cherrie et al. 2010, McDonnell et al. 2011) 

 𝐵𝐵𝑛𝑛𝑛𝑛+𝑓𝑓𝑓𝑓  = 𝐸𝐸 × 𝐻𝐻 ×  𝐿𝐿𝐿𝐿1  ×  𝐿𝐿𝐿𝐿2  ×  �𝐷𝐷𝑛𝑛𝑛𝑛 (1 + 𝑆𝑆𝑆𝑆) +  𝐷𝐷𝑓𝑓𝑓𝑓  ×  𝑆𝑆𝑆𝑆𝑆𝑆 ×  𝑆𝑆𝑆𝑆𝑆𝑆�  (5) 
 

where: E is the intrinsic emission score; H is the handling (or activity emission) score; LC1 and 
LC2 are the primary and secondary local controls; Dnf and Dff are dispersion determinants 
related to nf and ff exposure sources; Seg is segregation of the source; Sep is the score for the 
separation of worker from source; and Su is the score for surface contamination/fugitive 
emission sources. 

The regression analysis was performed using the scores from ART’s modifying factors and the 
log-transformation of each measurement from the SUVA database. ART’s source emission 
contributes significantly to the model’s estimates (Riedmann et al., 2015). The source emission 
was therefore subdivided into its underlying factors, which were then analysed separately. For 
vapours, the source emission was subdivided into the scores for the three entry parameters of 
vapour pressure p, mole fraction χ, and activity coefficient γ. For powders, a similar subdivision 
of the activity emission potential was chosen: dustiness δ, mole fraction χ, and moisture content 
η. For solids, the terms E and H are not defined separately in the mechanistic model but are 
instead given as a combined activity emission potential EH (Fransman et al., 2013). However, 
the moisture content η is available as a separate input parameter and was taken into account 
here as well. LC1 and LC2 are contracted into LC; the term in brackets was contracted to D. The 
regression models for measured data for vapours (𝑦𝑦𝑣𝑣), powders (𝑦𝑦𝑝𝑝), and solids (wood or stone 
and metals,𝑦𝑦𝑠𝑠) are: 

 𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝑣𝑣 = 𝛽𝛽0 + 𝛽𝛽1 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 + 𝛽𝛽2 𝑙𝑙𝑙𝑙𝑙𝑙 𝜒𝜒 + 𝛽𝛽3𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛽𝛽4𝐻𝐻 + 𝛽𝛽5𝐿𝐿𝐿𝐿 + 𝛽𝛽6𝐷𝐷 (6) 

 𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝑝𝑝 = 𝛽𝛽0 + 𝛽𝛽1𝛿𝛿 + 𝛽𝛽2𝑙𝑙𝑙𝑙𝑙𝑙𝜒𝜒 + 𝛽𝛽3𝜂𝜂 + 𝛽𝛽4𝐻𝐻 + 𝛽𝛽5𝐿𝐿𝐿𝐿 + 𝛽𝛽6𝐷𝐷 (7) 

 𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝑠𝑠 = 𝛽𝛽0 + 𝛽𝛽1𝐸𝐸𝐸𝐸 + 𝛽𝛽2𝑙𝑙𝑙𝑙𝑙𝑙𝜒𝜒 + 𝛽𝛽3𝐿𝐿𝐿𝐿 + 𝛽𝛽4𝐷𝐷 (8) 

where, 𝛽𝛽0 is the intercept of the model and 𝛽𝛽𝑖𝑖,1−6.are the respective regression coefficients of 
the exposure parameters. The logarithmic values were used for the determinants that take 
continuous parameters (e.g. vapour pressure), whereas the others used the scores already 
defined on the logarithmic scale.  
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RESULTS 
The comparison between the modelled and measured exposures in Fig. 1 is presented 
separately for vapours, powders and solids (wood, stone and metal dusts). Fig. 2 shows the 
estimated residuals for the different exposure categories. However, mists, due to the small 
number of measurements (N = 5), were not shown in the figures. The percentages of under- 
and overestimated measurements are given in Table 1. The regression coefficients and relative 
biases are given in Table 2, whereas the estimated precision of the modelled estimates is given 
in Table 3. 
 
Vapours. The upper limit of the 90% CI (Eq. 1) for ART’s median underestimated 20% (N = 70) 
of measured values and overestimated 31% (N = 107) of them. For the 90th percentile, the 90% 
CI underestimated 7% of measurements and overestimated 44% of them. ART tends to 
overestimate low measured exposures and underestimate high ones (Fig. 2). Furthermore, 
Table 2 shows that the modelled exposure was moderately correlated with (R2 = 0.38) and 
positively biased for vapour measurements. 

Powders. In 30% (N = 34) of ART’s median predictions and 9% (N = 10) of the 90th percentile’s 
predictions, measured values for powders were underestimated with the corresponding upper 
limits of the 90% CI. The lower limit of the 90% CI (Eq. 1)  for the modelled median and the 90th 
percentile overestimated the measured values (single data predictions) in 24% (N = 28) and 
47% (N = 54) of cases, respectively. As for vapours, the residuals indicated that the model 
tended to overestimate lower exposures and underestimate higher ones. A weak correlation 
(R2 = 0.09, Table 2) was found between the modelled and measured exposures. Unlike 
vapours, the modelled median was negatively biased, meaning that ART tends to underestimate 
the measured exposure overall. 

Solids. The upper limit of the 90% CI for ART’s median underestimated the measured exposure 
in 70% (N = 42) of the measurements for wood and stone and its lower limit overestimated 17% 
(N = 10) of that data. For the 90th percentile, the modelled upper limit of the 90% CI 
underestimated 23% (N = 14) and its lower limit overestimated 27% (N = 16) of the 
measurements. Measured exposure to metals was underestimated with the upper limit in 52% 
(N = 30) of cases and overestimated with the lower limit in 22% (N = 13). For the 90th percentile, 
the upper limit underestimated 3% (N = 2) and the lower limit overestimated 38% (N = 22) of the 
measured exposures. As above, Fig. 2 shows the same residual trend for solids, overestimating 
lower exposures and understimating higher ones. The regression parameters for this exposure 
type, as shown in Table 2, were the lowest, with R2 within 0.02–0.04. Furthermore, negative 
biases were found for the modelled medians for both wood/stone and metal dust. 

Precision 

Depending on the exposure type, 40–74% (Table 3) of the modelled median estimates were 
within a factor of 5 from the measured values, 60–83% were within a factor of 10, and > 90% 
were within a factor of 100 or more. The results calculated for metal dusts were the most 
precise, whereas the least precise estimates were for wood/stone dusts. For the 90th percentile, 
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ART’s precision did not differ significantly from the results obtained for the median. The maximal 
deviation found between the two values was 15% (see wood/stone and metals in Table 3).  

Multiple linear regression 
 
The regression analysis of model parameters versus the (log-transformed) measured exposure 
for vapours, powders and solids confirmed the above findings (Tables 4–7). The models for 
vapours and for wood/stone and metal dusts explain 49%, 30%, 27% and 10% of the variance, 
respectively.  
 
The analysis for vapours (Table 4) showed that all exposure factors, except dilution, were 
significant at the 5% level of significance or lower. The activity coefficient (βγ) showed the 
highest significance for vapours. More specifically, increasing γ in the model by a factor of two 
explained a measured exposure value eight times higher. The measured exposure was found to 
increase almost linearly with pressure and the mole fraction. Handling activity, localised controls 
and dilution showed week correlation (< 0.2) with the measured exposure. The order of 
significance was: p = χ > γ > LC = H > D. 

Overall, for exposure to powders, the regression analysis explained less than half (30%, Table 
5) of the variance. Handling, dilution and dustiness were significant factors for powders. The 
order of significance was: H > D > δ > η > χ > LC. 

The regression analysis for wood/stone dusts explained 27% of the variability (Table 6). The 
only statistically significant factors were the localised exposure control and handling. The order 
of significance of the model parameters was: LC > H > η > D. A substance concentration of 
100% was assumed for all cases involving wood/stone dusts and thus no corresponding results 
were shown for the weight fraction in Table 6. 

None of the exposure factors were statistically significant for metals (Table 7). The regression 
model was also insignificant (p value = 0.12) and only explained 10% of the variance. The order 
of significance for the factors was: LC > H > D. In addition, a moisture content < 5% and a 
substance concentration of 100% were assumed for all cases. 
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DISCUSSION 
A set of 584 independent measurement data was used to assess the Advanced REACH Tool’s 
performance for exposure prediction. This number might be seen as large when compared to 
the size of data used in ART’s calibration (~2,000). 124 different exposure situations (reports), 
for which the measurements were taken, is also more compared to the number of exposure 
situations considered in two recent studies (N=14 and N=29) by Spinazzè et al. (2017) and 
Landberg et al. (2017). Furthermore, the occupational data used in our study reflects the work 
conditions in Switzerland. The chemical regulations enforced in Switzerland – the Swiss 
Chemical act and its ordinances - are conceptualized to be very close to REACH. The data, 
therefore, presents similar work conditions as that in the EU. 

When using a 90% CI, ART’s median prediction was insufficiently conservative for solids; it 
underestimated 70% of the wood/stone dust measurements and 52% of the metal dust 
measurements. The corresponding 90% CI for the 90th percentile was also insufficiently 
conservative for wood/stone dusts, with 23% of the measurements underestimated. The 
predictions for the 95th percentile using the 95% CI were found to be adequately conservative 
for all types of exposure (see Supplementary Material, available online). Unlike previous studies 
(McDonnell et al., 2011; Landberg et al., 2017; Spinazzè et al., 2017), the 90% (or 95%; see 
Supplementary Material) CI range was accounted, which might explain the higher 
overestimation found. 

Overall, due to the computed (relative) bias, the model’s median and the 90th percentile tend to 
overestimate exposure to vapours. This contradicts the findings in Landberg et al. (2017) and in 
Spinazzè et al. (2017). The negative bias for the median estimate that was found for the other 
exposure types means that the central estimate rather underestimates exposure to powders, 
especially metal and wood/stone dusts. For powders, a similar, although more negative, bias 
has been already found by McDonnell et al. (2011). More specifically, the calculated residuals 
show that the model overestimates low exposure concentrations and underestimates high ones. 
The same observation has been reported previously for Stoffenmanager by Landberg et al. 
(2017). Furthermore, in our study, this trend is most pronounced for solid materials, especially 
metals – an exposure form that is not applicable in the current online version of ART. To our 
knowledge, there is no study comparing ART’s estimates versus measured exposure to solids 
conducted previously. 

With regard to the model’s precision, the median appears to produce slightly more aligned 
prediction outcomes than the 90th percentile. For more than half of the cases (60–83%), ART’s 
median prediction and the measured exposure were within the same order of magnitude, and 
they differed by one order of magnitude or more in less than 10% of predictions. These results 
are in accordance with the modelled exposure distribution in ART, as the 90% CI ranges within 
two orders of magnitude. 

The correlation can be characterised as moderate for vapours, whereas it is weak for powders. 
The lowest correlations found, for metal and wood/stone dusts, mean that ART’s determinants 
are not significant explanations of real exposure situations for this exposure type. The 
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calculated regression coefficients (slope and intercept) appear to be arbitrary for this exposure 
type: they differed significantly between wood/stone dusts and those for metal dusts. This might 
also suggest that the calibration used for wood/stone dusts is not applicable to metal dusts. 

Multiple Linear Regression 

Overall, multiple linear regression explained less than 50% of the variance in the 
measurements. Although ART’s exposure factors explained the measured values for vapours 
best (49%), they only explained 10% of the variance seen for metal dusts in the SUVA 
database. This made further interpretation of the regression coefficients found for the exposure 
factors in Eq. 6–8 difficult, especially for non-vapour measurements. 

The slope of ~1 for vapour pressure and mole fraction indicates that both are good predictors of 
the exposure estimate for vapours. The activity coefficient (γ) seemed to be an even better 
predictor, with its slope of ~4. However, in 89% of cases, the activity coefficient was assigned a 
value of 1.1, slightly higher than for the pure (undisclosed) substance. The only other value 
chosen was γ = 2. This parameter depends strongly on the polarity and volume fractions of the 
substances present in the product mixture (Schwarzenbach et al., 2005). The activity coefficient 
for an organic mixture (such as formalin, styrene or dimethyl ether, which where the substances 
modelled with larger activity coefficients) decreases exponentially with the increasing volume 
fraction of completely water miscible organic solvents (such as ethanol, a typical co-formulate). 
It may be possible, therefore, that this study has underestimated the activity coefficient. 

LCs were also significant in the prediction of exposure to vapours. However, the database was 
limited (see Supplementary Material, available online) and did not cover all the LC parameters 
possible (see Fransman et al., 2013), which might have explained their apparent limited 
significance. In addition, the SUVA reports only identified the primary LC.  

In order to be conservative, dustiness was only modelled using the options of coarse, fine 
powder and extremely fine powder, since the size distribution of the particles was generally not 
measured. All the situations modelled for extremely fine powders overestimated exposure. 
Thus, it could be argued that this dustiness category’s score (= 1, see Fransman et al., 2013) is 
highly conservative. However, only eight cases (see Supplementary Material, available online) 
were assigned the highest dustiness category. The slope for dustiness was evaluated 
additionally by removing this category from the data set. The new slope was less negative (-
0.1), which might mean that these eight categories were misinterpreted lower dustiness 
category. This may, however, explain only partly the negative slope found as there might have 
also been other causes.  

For the cases involving powders, 83% of the measurements involved no LCs (see 
Supplementary Material, available online) and the data may be unbalanced. The statistical 
weight of the remaining 17% of cases was therefore overly significant. In addition, only a smaller 
number of the different LC techniques were identified for dusts. This may explain the low 
significance of LCs in the regression analysis. A similar situation was found for weight fractions, 
since only 10% of cases did not involve pure substances (χ = 1).   



13 
 

For wood/stone dusts, the low correlation may be the result of the small number of the exposure 
measurements, meaning that such data was more influenced by variability (e.g. different 
workers, companies, etc.).  

None of the exposure factors for metal dusts were statistically significant (< 5%). All the cases 
involved dry materials and pure substance, and therefore no results involving the moisture 
content or weight fraction were involved. Also, the regression model was not statistically 
significant because the small range of scores could not explain the variability of the 
measurements. 
 
Limitations 
 
The SUVA database covers a wide range of exposure situations and is a reflection of the 
working conditions in Switzerland’s industry. Between-country differences could exist due to 
differences in working conditions or sampling strategies. The dataset used in this study could, 
therefore, differ from the datasets previously used to test and calibrate ART. Furthermore, the 
number of the different exposure situations (reports) was small to cover all the real-world 
exposure conditions possible.  The number of measurements per exposure situation was also 
relatively small for an accurate representation of total exposure variability caused by between- 
and within-worker variabilities. 

Translation of the contextual data into ART’s parameters was carried out by a trained intern and 
later revised by an expert in the field. In most cases, this data interpretation involved a degree of 
uncertainty. It has been shown that ART’s estimates are sensitive to this uncertainty (Riedmann 
et al., 2015). Furthermore, an inter-user reliability study (Schinkel et al., 2014) showed 
significant variability between multiple users’ outputs when using the model. 

Recommendation and Conclusion 

When using ART for exposure assessments within the context of the REACH safety regulations, 
we recommend that investigators use the upper level of the 90% CI of the 90th percentile for 
predictions involving vapours and powders. However, because our study found that ART 
performed worst with solids, we recommend the use of the upper level of the 95% CI of the 95th 
percentile. Unfortunately, due to the limited number of situations corresponding to exposure to 
mists, we cannot provide recommendations. Also, because the exposure to metal dusts is not 
yet available in the tool and because of the weak performances observed, no recommendations 
for this exposure type can be provided. 

The systematic trend observed in this study—of ART overestimating lower exposure 
concentrations and understimating higher ones—especially for wood/stone and metal dusts, 
should be further investigated and corrected. It is, however, unclear whether this trend is a 
drawback of the model or an artefact of the SUVA database. Further studies should also 
examine whether the scoring system and calibration used for wood/stone dusts can also be 
applied to metal dusts.  
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Tables and Figures 

Figure 1. SUVA measurements versus the ART model’s estimates. The figures illustrate the distances of the measured exposure from 
the modelled 50th percentile (first row) and the 90th percentile (second row), surrounded by the corresponding 90% confidence intervals 
(shaded area) for vapours, powders and solids (wood/stone and metal dusts). 

Vapours, N = 346 Powders, N = 115 Wood/stone dusts, N = 60; Metal dusts, N = 58 
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Figure 2. Residuals for vapours, powders and wood/stone and metal dusts. 
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Table 1. Number of SUVA measurements used in this study, and the ART model’s percentages of under- and overestimation (as 
calculated using Eq. 1). 

Exposure type Number (N) of 
measurements 

90% CI for 50th percentile 90% CI for 90th percentile 

% (N) 
Underestimation 

% (N) 
Overestimation 

% (N) 
Underestimation 

% (N) 
Overestimation 

Vapours 346 20 (70) 31 (107) 7 (24) 44 (154) 

Mists* 5 N = 3 N = 0 N = 3 N = 2 

Powders 115 30 (34) 24 (28) 9 (10) 47 (54) 
Wood/stone 
dusts 60 70 (42) 17 (10) 23 (14) 27 (16) 

Metal dusts 58 52 (30) 22 (13) 3 (2) 38 (22) 
*Percentages were not calculated for this exposure type due to the small number of measurements available. 
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Table 2. Linear regression coefficients and bias for exposure measurements. 

Exposure type 
50th percentile 90th percentile 

Intercept Slope R2 Rel. bias, % Intercept Slope R2 Rel. bias, % 

Vapours 0.10 0.65 0.38 30 -0.23 0.66 0.38 315 

Powders -0.02 0.23 0.09 -11 -0.15 0.23 0.09 249 
Wood/stone 
dusts 0.38 -0.12 0.02 -74 0.46 -0.15 0.04 4.7 

Metal dusts -0.07 0.35 0.03 -32 -0.28 0.35 0.03 154 
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Table 3. Percentages of modelled point estimates lying within a factor of 5, 10, 100 or 1,000 times the measured SUVA estimates. 

Factor Percentile Vapours Powders Wood/stone 
dusts Metal dusts 

5 
50th 49 50 40 74 

90th 47 40 55 66 

10 
50th 63 68 60 83 

90th 57 63 70 98 

102 
50th 92 96 92 97 

90th 83 91 90 100 

103 
50th 99 98 100 100 

90th 98 97 100 100 
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Table 4. Coefficients of multiple linear regression for vapours. 

 Estimate Std. error Pr (> |t|) 
Intercept -4.53 0.36 < 2.2e-16 

Pressure 1.18 0.09 < 2.2e-16 

Mole fraction 1.17 0.11 < 2.2e-16 

Activity coefficient 4.13 0.72 2e-8 

Handling 0.23 0.05 3e-5 
Localised controls 0.57 0.14 3e-5 
Dilution 4e-3 0.01 0.70 

Multiple R2: 0.49 
p-value: < 2.2e-16 

 

Table 5. Coefficients of multiple linear regression for powders. 

 Estimate Std. error Pr (> |t|) 
Intercept -0.75 0.76 0.32 

Dustiness -1.07 0.39 7e-3 

Weight fraction 0.35 0.29 0.23 

Moisture content 0.29 0.16 0.08 

Handling 0.02 3e-3 9.7e-5 
Local controls 0.17 0.24 0.47 
Dilution 0.41 0.14 4e-3 

Multiple R2: 0.30 
p-value: 7e-7 
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Table 6. Coefficients of multiple linear regression for wood and stone dusts. 

 Estimate Std. error Pr (> |t|) 
Intercept 1.87 0.84 0.03 

Moisture content -1.43 0.70 0.05 

Weight fraction n.a. n.a. n.a. 
Handling -0.01 4e-3 0.01 
Localised controls 0.72 0.23 2.3e-3 
Dilution 0.24 0.26 0.36 

Multiple R2: 0.27 
p-value: 2e-3 

 

 

Table 7. Coefficients of multiple linear regression for metal dusts. 

 Estimate Std. error Pr (> |t|) 
Intercept 0.48 0.48 0.32 

Weight fraction n.a. n.a. n.a. 

Moisture content n.a. n.a. n.a. 

Handling -0.13 0.14 0.35 
Localised controls 0.52 0.27 0.06 
Dilution 3e-3 0.10 0.97 

Multiple R2: 0.10 
p-value: 0.12 
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