
 
 
Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

 
 
 

RRRRYear : 2017 

 

 
IMAGING AND BIOLOGICAL MARKERS IN RETINAL DISORDERS 

TO ASSESS GENE THERAPY SAFETY AND INVESTIGATE 
VASCULAR DISEASE MECHANISMS 

 
Matet Alexandre 

 
 
 
 
 
 
Matet Alexandre, 2017, IMAGING AND BIOLOGICAL MARKERS IN RETINAL DISORDERS 
TO ASSESS GENE THERAPY SAFETY AND INVESTIGATE VASCULAR DISEASE 
MECHANISMS 

 
Originally published at : Thesis, University of Lausanne 
 
Posted at the University of Lausanne Open Archive http://serval.unil.ch 
Document URN : urn:nbn:ch:serval-BIB_CF374B4068C01 
 
 
Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 
loi. Nous déclinons toute responsabilité en la matière. 
 
Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 
author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect.

http://serval.unil.ch/


	

	
	

Département	:	Ophtalmologie	
	
	
	

IMAGING	AND	BIOLOGICAL	MARKERS	IN	RETINAL	DISORDERS	TO	
ASSESS	GENE	THERAPY	SAFETY	AND	INVESTIGATE	VASCULAR	

DISEASE	MECHANISMS	
	
	

Thèse	de	doctorat	ès	sciences	de	la	vie	(PhD)	
	

présentée	à	la	
	

Faculté	de	biologie	et	de	médecine		
de	l’Université	de	Lausanne	

	
par	
	

Alexandre	MATET	
	

Master	de	l’Université	Pierre-et-Marie-Curie	(Paris,	France)	
	
	
	

Jury	
	

Prof.	Nicolas	Senn,	Président	
Prof.	Yvan	Arsenijevic,	Directeur	de	thèse	
Prof.	Francine	Behar-Cohen,	Co-directrice	

Prof.	Micah	Murray,	expert	
PD	Dr.	Pascal	Escher,	expert	

	
	
	

Lausanne	2017	
	
	





	

	i 

	
ACKNOWLEDGEMENTS	

 

I wish to express my absolute gratitude for their unlimited support to Professor Yvan 

Arsenijevic and Francine Behar-Cohen, thesis Director and Co-Director, and to Corinne 

Kostic, thesis supervisor, all outstanding scientists, exemplary mentors and noble persons. 

They provided an environment of knowledge, curiosity and freedom favoring research and 

initiative. 

 

I warmly thank Professor Micah Murray and Pascal Escher, who accepted to participate to 

the Jury as Experts, and Professor Nicolas Senn, who presides the Jury. 

 

I am grateful to the University of Lausanne, the Faculty of Biology and Medicine and the 

Doctoral School, as well as to the Research and Medical retina units at Hôpital ophtalmique 

Jules-Gonin, where most of the work was performed. 

 

My deepest gratitude goes to all the colleagues and friends involved in the research projects, 

and those who provided useful advice, including Alexis Bemelmans, Laura Kowalczuk, 

Natacha Turck, Aurélien Thomas, Alexandre Moulin, Leonidas Zografos, Alejandra Daruich, 

Richard F. Spaide, Knut Stieger, Brigit Lorentz, Marianne Dor, Nasim Bararpour, Elena 

Brazhnikova, Céline Jaillard, Claire-Maëlle Fovet, Joanna Demilly, Lev Stimmer, Serge 

Rosolen, José-Alain Sahel, Samia Martin, Fulvio Mavilio, Vazrik Amirjanians, Michaël 

Nicolas, Francis Munier, Jérémie Canonica, Martial Mbefo, Sarah Decembrini, Florian Udry, 

Lilly Khamsy, Dana Wanner, Catherine Martin, Tatiana Favez, Charlène Joséphine, Solenne 

Metrailler, Damien Grize, Marc Curchod, and many more. 

 

I acknowledge the financial support of Swiss Transmed and the Research Commission, 

Faculty of Biology and Medicine, University of Lausanne. 

 

Finally, I would like to acknowledge the generous participation of the patients of the medical 

retina unit, Hôpital ophtalmique Jules-Gonin, who kindly contributed to many research 

projects with interest and good will, and whom I hope will benefit from the progresses 

achieved in current and upcoming projects. 

 

This thesis is dedicated to Alejandra and Amalia.  



	

	ii 

 

 

 

 

 

  



	

	iii 

ABSTRACT	

The retina is the neurosensory tissue responsible for the acquisition of visual stimuli. It is biologically 
separated from the systemic circulation by blood-retinal barriers, limiting the possibility for circulating 
markers to reflect retinal changes due to disease or therapeutic intervention. However, due to the 
transparency of ocular media, the retina is highly accessible to high-resolution imaging, and image 
processing provides access to physiological parameters quantitatively. In addition, the analysis of 
ocular media sampled during surgical procedures provides access to biological data regarding disease 
processes. In this work, imaging and biological markers were developed for several experimental and 
clinical situations: a gene therapy preclinical safety study (Project 1); the analysis of disease 
mechanisms in the choroical choroidal vascular disorder central serous chorioretinopathy (CSCR) 
(Project 2), and a similar translational approach in retinal vascular telangiectatic disorders (Project 3). 
Specific image processing algorithms were designed. 
 
In Project 1, the preclinical safety of a lentiviral subretinal gene therapy for RPE65 replacement in 
Leber congenital amaurosis, LV-RPE65, was assessed on healthy non-human primates by 
conventional methods (in vivo electrophysiology, ex vivo immunohistochemistry, systemic 
biodistribution study) combined to in vivo analysis of the retinal structure by optical coherence 
tomography (OCT) at different timepoints, including early follow-up within 7 days. Imaging techniques 
revealed a transient and pronounced inflammatory process linked to LV-RPE65 injection that delayed 
retinal reattachment. Partial and transient photoreceptor loss was observed in the macular region, that 
was to a lesser extent also observed in control eyes injected with the vehicle. This work highlights the 
need to improve the surgical procedure for subretinal gene therapy delivery, and to consider using 
anti-inflammatory agents to prevent damaging processes occurring rapidly after subretinal injection. 
 
In Project 2, mechanisms of CSCR, a retinal disease caused by choroidal vessel dilation leading to 
subretinal fluid accumulation, were explored. We analyzed predictive multimodal imaging factors of 
episode duration (2a) and recurrence (2b), evidencing in particular choroidal thickness as prognosis 
factor. Non-invasive OCT angiography images of the choriocapillaris, the innermost layer of the 
choroid beneath the retinal pigment epithelium, were processed to detect flow voids and investigate 
their distribution (2c). Finally, the molecular composition of subretinal fluid from a unique case of 
CSCR requiring subretinal surgery, was explored using a multi-omics approach (2d). 
 
In Project 3, mechanisms of retinal vasculopathy were investigated in two pure phenotypes 
represented by telangiectatic disorders:  type 1 macular telangiectasia (Mactel 1) (3a and 3b), and 
radiation maculopathy (3c). For the investigation of Mactel 1, image processing tools were used to 
compute global and local capillary density on OCT angiography images, showing that non-perfusion is 
a critical feature in Mactel 1, related to visual outcome and telangiectasia formation. This approach 
was combined to the biological investigation of aqueous humor from Mactel 1 cases. Intraocular levels 
of angiogenic factors demonstrated the involvement of placental growth factor in the pathophysiology 
of MacTel 1, that was correlated with multimodal imaging findings (3b). Finally, an image processing 
algorithm was designed and applied to radiation maculopathy, to compute automatically the fractal 
dimension of OCT angiography images. This parameter was relevant in assessing capillary network 
disruption, and demonstrated that alterations of the deep plexus influence independently visual 
function. 
 
The strategies developed throughout these three projects demonstrate the interest of quantitative 
image analysis for the investigation of retinal disorders, and the possibility of coupling imaging and 
biological data. This approach contributed to identify potential imaging or biological markers for 
diagnosis, prognosis, therapeutic response and toxicity in several biomedical situations. 
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RÉSUMÉ	

La rétine est un tissu neurosensoriel responsable de l'acquisition des signaux visuels. Elle se trouve 
biologiquement séparée de la circulation systémique par les barrières hémato-rétiniennes, limitant la 
possibilité pour des marqueurs circulants de refléter des altérations du tissu rétinien, dus à des 
maladies ou secondaires à des interventions thérapeutiques. Cependant, en raison de la transparence 
des milieux oculaires, la rétine est accessible à l'imagerie haute résolution, et l’analyse d'images 
permet d’extraire des paramètres physiologiques quantitatifs. En outre, l'analyse des milieux oculaires 
prélevés au cours d’interventions chirurgicales permet d'accéder à des données biologiques 
concernant les processus physiopathologiques. Dans ce travail, des marqueurs biologiques et 
d'imagerie ont été développés pour plusieurs situations expérimentales et cliniques : une étude de 
sécurité préclinique en thérapie génique (Projet 1), l'analyse de mécanismes pathologiques dans la 
choriorétinopathie séreuse centrale (CRSC) (Projet 2), et dans les pathologies télangiectatiques 
vasculaires rétiniennes (Projet 3). Des algorithmes de traitement d'image spécifiques ont été conçus. 
 
Dans le Projet 1, la tolérance préclinique d'une thérapie génique sous-rétinienne lentivirale pour 
remplacement du gène RPE65 dans l'amaurose congénitale de Leber, LV-RPE65, a été évaluée sur 
des primates non humains sains par des méthodes conventionnelles (électrophysiologie in vivo, 
immunohistochimie ex vivo, étude de biodistribution systémique), et par analyse in vivo de la structure 
rétinienne par tomographie par cohérence optique (OCT) à différents points, y compris un suivi 
précoce dans les 7 jours. Les techniques d'imagerie ont révélé un processus inflammatoire transitoire 
lié à l'injection de LV-RPE65 qui a retardé le réattachement rétinien. Une perte partielle et transitoire 
des photorécepteurs a été observée dans la région maculaire, détécté également, et dans une 
moindre mesure dans les yeux témoins, injectés avec la solution véhicule. Ce travail souligne la 
nécessité d'améliorer la procédure chirurgicale pour l’administration de thérapies géniques sous-
rétiniennes, et d'envisager l’usage d’agents anti-inflammatoires pour limiter ces altérations. 
 
Dans le projet 2, les mécanismes de la CRSC, une maladie rétinienne causée par la dilatation des 
vaisseaux choroïdiens menant à l'accumulation de liquide sous-rétinien, ont été explorés. Nous avons 
analysé les facteurs d'imagerie multimodaux prédictifs de la durée des épisodes (2a) et de récurrence 
(2b), mettant en évidence notamment l'épaisseur choroïdienne comme facteur pronostic. Des images 
en OCT angiographie, non invasive, de la choriocapillaire, la couche la plus interne de la choroïde 
sous l'épithélium pigmentaire rétinien, ont été traitées pour détecter des lacunes dans le flux sanguin, 
et étudier leur distribution (2c). Enfin, la composition moléculaire du liquide sous-rétinien d'un cas rare 
de CRSC nécessitant une chirurgie sous-rétinienne, a été explorée en utilisant une approche multi-
omique collaborative (2d). 
 
Dans le projet 3, les mécanismes de vasculopathie rétinienne ont été étudiés dans deux phénotypes 
purs représentés par les troubles télangiectasiques : télangiectasie maculaire de type 1 (Mactel 1) (3a 
et 3b), et maculopathie radique (3c). Pour l'étude de Mactel 1, des outils de traitement d'images ont 
été utilisés pour calculer la densité capillaire globale et locale sur des images d’OCT angiographie, 
montrant que la non-perfusion est un paramètre critique dans les Mactel 1, corrélé à la fonction 
visuelle et à la formation des télangiectasies. Cette approche a été combinée à l'étude biologique de 
l'humeur aqueuse dans des cas de Mactel 1. Des niveaux intraoculaires de facteurs angiogéniques 
ont démontré l'implication du facteur de croissance placentaire dans la physiopathologie de MacTel1. 
De plus, ce facteur était corrélé avec la densité capillaire en OCT angiographie (3b). Enfin, un 
algorithme de traitement d'images a été conçu et appliqué à la maculopathie radique pour calculer 
automatiquement la dimension fractale des images d’OCT angiographie. Ce paramètre était pertinent 
dans l'évaluation de la perturbation du réseau capillaire, et a démontré que les altérations du plexus 
profond influencent indépendamment la fonction visuelle. 
 
Les stratégies développées dans ce travail démontrent l'intérêt de l'analyse d'image quantitative pour 
l'étude des pathologies rétiniennes, et la possibilité de coupler l'imagerie et les données biologiques. 
Cette approche a permis d'identifier des marqueurs biologiques ou d'imagerie potentiels pour le 
diagnostic, le pronostic, la réponse thérapeutique et la toxicité dans les différentes situations étudiées. 
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INTRODUCTION	

Overview	of	the	structure	and	vasculature	of	the	retina	and	choroid	
 

The retina is a remarkable neurosensory organ ensuring the perception of light stimuli, the 

preliminary coding of visual signal and its transmission to the brain via the optic pathways. The 

highly demanding metabolic activity of the retina is supported by the retinal pigment epithelium 

(RPE), recycling essential compounds for the phototransduction cycle and maintaining 

photoreceptor homeostasis; by the choroid, an intermeshed vascular network located between 

the retina and the sclera, ensuring the blood supply of outer retinal layers; and by the retinal 

vasculature itself, divided into three parallel plexuses supplying the inner retina.1 Other retinal cell 

types have critically supportive metabolic functions, such as glial cells consisting in astrocytes 

and Müller cells, that modulate the inner blood-retinal barrier and the retinal hydro-electrolytic 

homeostasis, deliver neuroactive substances and retinoids to cone photoreceptors, and degrade 

metabolic byproducts. 

The neuroretina is a multi-layer specialized tissue (Figure 1), composed from the innermost to 

the outermost layer by the inner limiting membrane (ILM), basal membrane of the retinal Müller 

glial (RMG) cells, the nerve fiber layer, the ganglion cell layer, the inner plexiform layer (IPL) that 

contains synapses between ganglion cells and interneurons (or bipolar cells), the inner nuclear 

layer (INL), formed by nuclei of bipolar, amacrine, horizontal and RMG cells, the outer plexiform 

layer (OPL), composed by synaptic connections between visual neurons (or photoreceptors) and 

interneurons, the outer nuclear layer (ONL) formed by nuclei of cone and rod photoreceptors, and 

the inner and outer segments of the photoreceptors.2 The outer limiting membrane (OLM) is 

formed by the cellular contacts between RMG cells and photoreceptor inner segments. 

Photoreceptor outer segments are in close contact with RPE microvilli, but no molecular adhesion 

or junction system maintains the neuroretina attached to the RPE. The RPE lies on the Bruch 

membrane, which outermost part forms the basal membrane of the choriocapillaris, the innermost 

vascular layer of the choroid. 

The retina is vascularized by two independent vascular beds, the retinal and choroidal 

vasculatures. The larger retinal vessels, branches of the central retinal artery and vein, lay below 
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the ILM, and are surrounded by astrocytes, pericytes and RMG cells. Between pre-capillary 

arterioles and post-capillary venules, the retinal capillary network is arranged in three layers, the 

superficial, intermediate and deep plexuses located in the nerve fiber and ganglion cell layers, at 

the inner border of the IPL, and at the inner and outer border of the INL, respectively,3 although 

current clinically available imaging techniques only allow to discriminate the superficial and deep 

plexuses.4 Around the optic nerve head, a radial capillary network lays within the nerve fiber 

layer, along the temporal superior and inferior retinal vessels.5  

 

 

Figure 1. Schematic representation of retinal layers and main retinal cell types. 
Histology section of a human retina at the mid-periphery, stained with hematoxylin-eosin. Color 
drawings of the different neuronal cell types and the retinal glial Müller cells (RMG) are 
superimposed on the histologic picture. 
ILM= Inner Limiting Membrane; GCL= Ganglion Cell Layer; NFL= nerve fiber layer; IPL= Inner Plexiform Layer; INL= Inner 
Nuclear Layer; OPL= Outer Plexiform Layer; ONL= Outer Nuclear Layer; OLM= outer limiting membrane; IS= Inner 
Segment; OS= Outer Segment; RPE= Retinal Pigment Epithelium. 
(Adapted with permission from Daruich et al., Prog Ret Eye Res 2017. In press)6 
 
 

Since the outer retinal layers are avascular, the choroidal vessels supply nutrients and oxygen 

to the high energy-demanding photoreceptors. Sympathetic regulation is present in the choroidal 

vasculature but not in retinal vessels. Most of the choroidal space is occupied by vessels 

organized in three vascular layers: the choriocapillaris, a thin interconnected capillary network is 

the innermost layer, the medium- and small-sized vessels form the intermediate Sattler's layer, 
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and large arteries derived from the short posterior ciliary arteries and large lumen veins form the 

outermost Haller's layer. The supra-choroid is the virtual space separating Haller's layer from the 

sclera. Numerous non-vascular cell types, such as melanocytes, macrophages/microglia and 

mast cells lay around choroidal vessels. Lymphatic-like vessels have been described in the 

human choroid, located in the innermost vascular layers external to the fenestrated vessels of the 

choriocapillaris.7 In the normal retina, no lymphatic vessel has been identified. 

Three types of glial cells are present in the neuroretina: astrocytes, located in the inner retina, 

at the vitreal interface and around vessels, microglial cells, which in physiologic conditions are 

ramified cells, located only in the inner retina and around retinal vessels, and RMG cells. RMG 

cells are the only cells spanning the entire thickness of the neuroretina, ensuring contact between 

all neuronal cell types, retinal vessels and the vitreous cavity. 

The macula is a highly specialized region of the retina responsible for fine visual acuity. It is 

located temporal to the optic nerve head and can be recognized on fundus visualization by its 

yellow color, due to the accumulation of the xanthophyll pigments lutein and zeaxanthin. The 

center of the macula, the fovea, where inner retinal layers are displaced laterally, is exclusively 

composed of cone photoreceptors and specific foveal RMG cells. In the fovea, cones are densely 

packed, thinner, and have elongated outer segments, as compared to cones of the peripheral 

retina. The center of the macula is generally avascular, surrounded by circularly arranged 

capillaries delimitating the foveal avascular zone, a central 400-500-µm-diameter area. There are 

important variations in the shape of the avascular zone among healthy subjects, with a small 

proportion of subjects harboring a vascularized fovea, with limited functional consequences.8 

 

Multimodal	retinal	imaging	
	

The retina and choroid are the only internal vascular organs belonging to the central nervous 

system and directly accessible to visual examination by optical means, due to the transparency of 

ocular media. The multimodal imaging of intraocular structures, that started with the revolutionary 

invention of indirect ophthalmoscopy allowing fundus examination by Helmholtz in 1851,9,10 has 

experienced a dramatic acceleration over the past decades, since the introduction and 
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progressive clinical developments of fluorescein angiography in the 1960’s,11,12 of indocyanine 

green angiography in the 1980’s,13–16 and of autofluorescence imaging in the 1990-2000’s.17–20 

 

 

Figure 2. History of retinal multimodal imaging since the advent of fluorescein angiography 
in 1962, based on the number of publications per year registered on PubMed 
(https://www.ncbi.nlm.nih.gov/pubmed/). Note the steep rise of OCTA since its advent in 2012. 
FA= fluorescein angiography; ICG= indocyanine green angiography; OCT= optical coherence tomography; OCTA= optical 
coherence tomography angiography 
Search terms in PubMed (on August 16th, 2017): 
"fluorescein angiography" AND retina WITHOUT "indocyanine" 
"indocyanine angiography" or "indocyanine green angiography" AND eye 
"optical coherence tomography" AND eye WITHOUT "angiography" 
"optical coherence tomography angiography" AND eye 

 

A major breakthrough was achieved with the advent of optical coherence tomography (OCT) 

in 1995,21 that provides histology-like sections based on the infrared reflectivity of retinal and 

choroidal layers. It was then followed by improvements in data acquisition and processing, that 

led from time-domain to spectral-domain OCT, and its integration into multimodal devices, 

combining confocal fundus autofluorescence, angiography with fluorescein (FA) and indocyanine 

green (ICG), and OCT.22 Enhanced-depth imaging (EDI-OCT)23 and swept-source OCT (SS-

OCT)24,25 improved the visualization of choroidal layers. Further improvements consisted in 

volume reconstruction of OCT scans, allowing “en face” OCT representation.26 Finally, these 

advancements in tridimensional viewing, combined to decorrelation algorithms, opened a new 

avenue with the emergence of OCT angiography in the 2010’s,27 imaging non-invasively (without 

intravenous dye injection) the vasculature of the retina and to a lesser extent, of the choroid. 
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A timeline of these innovations and their impact on clinical research is provided in Figure 2. 

according to the number of publications per year. It shows especially the sharp rise in 

publications based on OCT, and more recently on OCT angiography. The possibility to record 

disease processes manifesting on one or several imaging modalities (for instance, 

exudation/staining/non-perfusion on fluorescein angiography, hypercyanescence, 

hyperpermeability on ICG, alteration of retinal layers on OCT, capillary network disruption on 

OCTA) coupled to digital acquisition techniques opening the way to computerized processing, 

have allowed to extract qualitative or quantitative parameters from these images, that may serve 

as imaging biomarkers. Some of these markers are available via built-in tools and may be 

validated as endpoints in clinical ocular research on certified devices (such as retinal, choroidal or 

intraretinal layer thickness on OCT) or not (such as vascular density on OCTA), are qualitative 

and require the grading of a masked observer (such as presence of hyper/hypo-fluorescence, 

area of non-perfusion outlined manually on FA/ICG), or are quantitative and may be extracted by 

custom image processing techniques (such as fluorescein expansion ratio on FA,28 subretinal 

fluid volume28 or of cystoid cavity area on OCT,29 local capillary density30 or fractal dimension on 

OCTA,31 developed in this thesis). 

 

Biomarkers	in	retinal	diseases:	an	emerging	field	
 

The fine balance of complex molecular and cellular communications between the retina, RPE 

and choroid that maintains the retinal homeostasis is deregulated in pathological conditions. 

Biological modifications detected in ocular and body fluids or morphological alterations detected 

by multimodal imaging of the retina, RPE or choroid may correlate with these deregulated 

processes, providing useful “biomarkers”. Biomarkers were recently classified according to their 

significance for disease diagnosis, monitoring, assessment of treatment safety, prognosis, etc, in 

the BEST glossary (Biomarkers, EndpointS, and other Tools) by the FDA-NIH Joint Leadership 

Council.32 Biomarkers can also be extremely useful to expand our understanding of retinal 

disease pathophysiology. Since the blood-ocular barriers ensure a strict control of molecular 

exchanges between intraocular media and the systemic circulation, specific markers can be 
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detected in intraocular fluids (for instance in retinal exudative disorders) or in the systemic 

circulation (for instance in diseases affecting the choroidal vasculature, located upstream of the 

blood-retinal barrier).  

The extensive classification by the BEST glossary includes diagnostic, monitoring, 

pharmacodynamics/treatment response, predictive, prognostic, safety or susceptibility/risk 

biomarkers. In order to be qualified as valid biomarkers, candidate parameters should ideally be 

recognized as surrogate endpoints. The concept of surrogacy implies that a parameter is 

intimately connected (for instance, statistically correlated) to a clinical outcome, or “hard 

endpoint” (for instance, visual acuity or retinal thickness, two frequent outcomes in retinal disease 

studies), and in the meantime, that this parameter has a mechanistic connection to the underlying 

disease process or therapeutic intervention, as illustrated in Figure 3.  

  

 

Figure 3. Schematic representation of biomarkers validated as surrogate endpoints in ocular 
clinical research: a direct causative and mechanistic link between the disease process/therapeutic 
intervention and clinical manifestations. 
(reproduced from Vujosevic and Villani, IOVS 2017, under the CC BY-NC-ND 4.0 license)32 

 

Exploration and validation of biomarkers are essential in the search of valid surrogate 

endpoints in pre-clinical and clinical ophthalmological research. In this thesis, we have explored 

imaging and biological markers to address several biomedical questions in three categories of 

retinal disorders: Project 1, to assess the ocular and systemic tolerance of a gene therapy 

strategy for Leber congenital  amaurosis, an inherited retinal conditions of genetic origin; Project 

2, to investigate candidate diagnosis and prognosis biomarkers related to different forms of 

central serous chorioretinopathy (CSCR), a condition that originates in the choroid and manifests 

with serous retinal detachments; Project 3, to investigate telangiectatic retinal disorders by 

This special issue is a great opportunity to take stock of this
important and complex topic. The invited and unsolicited
reviews provide precious information and novel updates on
scientific and regulatory issues. The original research report
new advances in biomarkers and surrogate endpoints devel-
opment, validation and usage in different areas of ophthalmic
clinical research and care.

We would like to thank all the reviewers for their
fundamental and anonymous work and all the researchers
who have contributed to this special issue.

We would also like to thank Thomas Yorio, Editor-in-Chief
of IOVS, for having shared our enthusiasm for this project
and for his invaluable guidance, and Marco Stoutamire, Gayle
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We hope that this special issue will help to increase
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assessing intraocular levels of angiogenic factors, and extracting quantitative markers from 

cutting-edge OCT angiography imaging of retinal capillaries, coupled to custom image processing 

algorithms. 

 

Strategy	to	identify	candidate	biological	and	imaging	markers		
	

In each project, several parameters relevant to a biological or clinical situation were assessed. 

The evaluation of each candidate marker, either extracted from image processing, or from 

biological experiments, followed a rationalized methodology: identification, testing, validation and 

attempted application (Figure 4). 

	

	
Figure 4. General methodology employed for the identification, testing, validation and application of 
ocular biological or imaging markers	
	
This methodology can be exemplified by two representative markers explored in this thesis. First, 

PlGF, biological ocular marker elevated in the vascular disease MacTel 1 (Project 3b), was: 

1) identified from a preclinical experiment (rat model overexpressing PlGF33) 

2) then tested among other candidate angiogenic factors in aqueous humor from patients 

with a retinal vascular condition (MacTel 1). Its intraocular levels were higher in patients 

compared to age-matched control samples. 

3) Several of these markers did not show different levels and were then rejected as potential 

disease markers 

4) Finally, PlGF was further validated by showing correlations between its intraocular levels 

and morphological parameters using multimodal imaging. 

5) This finding has an important clinical application since it supports the treatment of 

MacTel1, and possibly other retinal vascular disorders, by PlGF-neutralizing agents such 

as intravitreal aflibercept. 
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A second example is provided by the local fractal dimension in OCT angiography of radiation 

maculopathy (Project 3c). This parameter was: 

1) identified from the scientific literature.34–36 

2) tested on a subset of images, among other candidate imaging markers potentially 

reflecting the degree of capillary disorganization, such as perifoveal intercapillary areas 

(also identified from the literature37; code provided in the Appendix 1), that was rejected 

because not providing convincing results. 

3) validated by showing a significant difference with healthy control eyes, and a significant 

correlation with numerous structural and functional parameters in affected eyes, especially 

visual acuity. 

4) Potential applications are numerous, if such imaging tools were incorporated in daily 

practice. For instance, fractal dimension could serve as prognosis marker and help identify 

eyes without visual potential that should not undergo intense treatment. 

	

Other approaches have been followed to fulfill each step of this process. For instance, the 

identification of a biological marker can be performed via unbiased molecular target identification 

using multi-omics screening (as on subretinal fluid samples in Project 2d). Imaging markers can 

also be derived from presumed pathological mechanisms, for instance choroidal thickening in 

CSCR,38,39 and then tested and validated in cohorts of increasing sizes, as was performed in the 

literature to validate choroidal thickness as relevant marker of CSCR, although it is not a strict 

criteria to diagnose CSCR (see Introduction to Project 2). 

	

Image	processing	and	analysis:	general	methodology	
	

Different image processing programs were developed in the works composing this thesis, 

each adapted to the specific features of the retinal disorder studied, and are provided in the 

Appendices section. This individualized approach allowed to extract the most relevant 

quantitative parameters adapted for each retinal disorder, in an exploratory pilot approach, 
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optimized on relatively small samples of images, and validated by the comparison to healthy 

control cases (for instance, fellow eyes in unilateral disorders). The different findings will require 

additional validation on larger cohorts, and some of the techniques developed may be more 

largely diffused by dedicated methodology publications. 

MatLab (MathWorks, Natick, MA, USA)40 is a high-level numerical computing environment and 

programming language, particularly adapted for the treatment of matrix data, and hence for 

image processing since the code source of digitalized images is composed of 2-dimension 

(grayscale image) or 3-dimension matrices (color image in RGB space). Its first release was 

issued in 1984 and its name is derived from “matrix laboratory”. It is widely used in fields like 

applied mathematics, engineering, and for academic purposes. Among other functions, MatLab 

allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation 

of user interfaces. 

Additional commercially available packages, or “Toolboxes” carry several preprogrammed 

function groups tailored for specific applications. The “Image processing toolbox” is an essential 

adjunct to MatLab for the manipulation of digital images.41 It provides a comprehensive set of 

standard algorithms for image processing, analysis, visualization, and algorithm development. 

The main applications of these algorithms include image segmentation, particularly based on 

binarization techniques, image enhancement, noise reduction, geometric transformations, image 

registration, creation and manipulation of regions of interest (ROI). 

The combination of the “Image processing toolbox” to basic MatLab file managing tools allows 

the programming of repeated automated functions for batch-processing of large datasets. This 

automation of image processing workflows is critical, since it warrants the intra- and inter-image 

reproducibility and repeatability when the image processing algorithm is 100% automated, or 

minimizes the variability in semi-automated processes. In contrast, a large proportion of 

publications based on retinal image processing are based on manual single file manipulation, 

using, for instance, the publicly available ImageJ (https://imagej.nih.gov/ij/) or Fiji (https://fiji.sc), 

an expanded version of ImageJ, which may raise concerns regarding the repeatability of 

operator-dependent processes, except when batch processing is performed via macro 

programming. An example of MatLab code for mass file processing is provided in the Appendix 2 
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(file moving and renaming) and 3 (extraction of OCT angiography images from exported screen 

captures on the Angiovue RTx100 device). 

 

Biological	markers	in	ocular	media	
 

In recent years, many medical fields have been characterized by the discovery of multiple 

clinical, genetic, biological or imaging markers that provide diagnostic or prognostic information 

on diseases. In the near future, these markers, grouped under the term "biomarkers", could 

become common practice and revolutionize diagnostic and therapeutic strategies with a precise, 

individualized approach to medicine. This approach is exemplified by the research effort launched 

worldwide, such as the Precision Medicine Initiative42 of the National Institutes of Health (USA), 

the Swiss Personalized Health Network,43 the Joint Nordic Biobank Research Infrastructure44 or 

the European Alliance for Personalized Medicine.45 

 The eye, by its accessibility, the diversity of the conditions this organ may present, and the 

need to detect early ocular affections that can leave irreversible visual sequelae, offers a target of 

choice for the search for biomarkers. In addition, intraocular tissues lay into aqueous media 

allowing sampling without any tissue lesions. The superficial localization of the eye and its 

transparency make it possible to retrieve ocular media, most often during a surgical procedure, 

with ethical approval from regulatory authorities and patient consent. In addition, blood-brain 

barriers and the immune privilege of the eye make it a "sanctuary" where local biochemical 

alterations, potentially causal or secondary to the disease process and/or to its progression, can 

be reflected in ocular fluids. 

These local ocular fluids are, from the most superficial to the less accessible: tears, aqueous 

humor (which bathes the anterior chamber between the cornea and the lens), vitreous (aqueous 

gel filling the eyeball behind the lens), and subretinal fluid (when present in case of retinal 

detachment of various causes). Interestingly, in the blood, numerous alterations associated to 

retinal disorders have also been recognized.46,47 

The different samples and their sampling routes are exposed on Figure 5. The retrieval of 

these samples is submitted to strict ethical regulations. A specific ethical authorization requiring 
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the informed consent of each patient was established at Jules-Gonin Eye Hospital, where the 

samples presented in this thesis were obtained. This authorization, delivered by the local ethics 

committee of the Swiss Federal Department of Health (CER-VD n°340/15) required each patient 

to agree to the research use of his/her samples, after anonymization.  

 

Figure 5. Ocular samples and sampling routes. 
1. Tear sampling by Schirmer blotting paper in the inferior conjunctival fornix. 
2. Aqueous humor sampling by a corneal punction with a 30G needle (during intravitreal treatment 
administration) or 20-23G incision (during cataract surgery) at the temporal or nasal limbus. 
3. Vitreous sampling by pars-plana vitrectomy, at the beginning of a surgical posterior segment 
procedure, without turning the infusion line on in order to obtain an undiluted sample. 
4. Subretinal fluid sampling during surgical procedures for rhegmatogenous retinal detachment, with 
the vitrectomy probe, through the peripheral retinal tear, with the same precautions as vitreous 
sampling to avoid sample dilution. 
G= Gauge; AH= aqueous humor; SF= subretinal fluid 

 

Powerful analytical methods, such as proteomics, metabolomics, and increasingly fine 

biochemical assays (immuno-assays, spectroscopy) allow either a targeted, detailed analysis of 

these media, but also large-scale screening for instance through omics techniques.48 In addition, 

advances in high-throughput sequencing have also allowed genomics to explore a large number 

of ocular pathologies.49 

There is a recent surge in literature focusing on ophthalmic biomarkers, subject to a special 

issue of Investigative Ophthalmology and Vision Sciences,32,50–52 and summarized in a recent 

review.53 

The clinical and biological background of the 3 projects composing this thesis are detailed 

below, and the specific aims guiding these works are exposed at the end of the Introduction. 
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[Project	1]	Evaluation	of	tolerance	to	lentiviral	LV-RPE65	gene	therapy	vector	
after	subretinal	delivery	in	non-human	primates	

 

Leber	congenital	amaurosis	and	the	RPE65	gene	
	

Leber congenital amaurosis (LCA) is a juvenile, aggressive form of inherited retinal dystrophy, 

a wide group of Mendelian neurodegenerative conditions that also includes retinitis pigmentosa 

(rod or rod-cone dystrophies), macular dystrophies (Stargardt disease, pattern dystrophy, cone 

and cone-rod dystrophies), choroideremia, and other entities such as cone dysfunction 

syndromes, congenital stationary night blindness, syndromic presentations (Usher syndrome, 

Bardet-Biedl), etc.54–56 According to reported rates, 6-15% of affected individuals present 

mutations in the RPE65 gene,57–59 coding for a 65-kDa isomerase mainly expressed in the RPE, 

which plays a key role in the visual cycle by recycling the retinoids necessary for the 

phototransduction.60–63 More specifically, RPE65 isomerizes within RPE cells all-trans-retinyl 

esters, either recycled from the light-triggered isomerization of 11-cis-retinal (bound to 

rhodopsin/opsins) to all-trans-retinal in photoreceptors, or originating from the circulation, to 11-

cis-retinol (Figure 6). 

Numerous other genes causing Leber congenital amaurosis have been identified, the most 

notable of which are involved in phototransduction (AIPL1, GUCY2D), the retinoid cycle (RDH12, 

LRAT), photoreceptor development and structure (CRX, CRB1), transport across the 

photoreceptor connecting cilium (TULP1, RPGRIP1, CEP290, Lebercilin) and other 

miscellaneous cellular functions (IMPDH1, MERTK, RD3). The most frequently mutated genes 

are CEP290 (15%), GUCY2D (12%) and CRB1 (10%). Yet, approximately one third of LCA cases 

still lack a specific genetic diagnosis, suggesting that unknown causing genes, or more complex 

molecular mechanisms are involved, for instance relying on multiple genes, on gene copy 

number variations, or on splice site/intronic mutations.57 

Mutations in RPE65 or other genes that cause LCA lead to heterogeneous clinical 

manifestations, with alteration of retinal function, manifesting in early childhood by reduced visual 

acuity, reduced night vision and dark adaptation, and progressive reduction in visual field 
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amplitude. Fundus shows progressive pigmentary deposits (‘osteoclasts’), and OCT shows outer 

retinal atrophy, that tend to aggravate over time in most patients (Figure 7).  

 

 

Figure 6. Retinoid cycle showing the critical role of RPE65 that isomerizes all-trans retinyl 
esters into 11-cis-retinol, further recycled into 11-cis-retinal and transported to 
photoreceptor outer segments via CRALBP and IRBP. 
Upon light stimulation, 11-cis-retinal bound to opsins is converted to all-trans-retinal, triggering a 
complex phototransduction cascade that ultimately leads to opening of the cyclic nucleotide–gated 
cation channels (CNG1 in rods and CNG3 in cones) in the plasma membrane, and depolarization of 
the photoreceptor cell membrane. A fraction of all-trans-retinal is localized within discs, and is 
transported to the cytoplasmic space by the ABCA4 transporter. All-trans-retinal is converted to all-
trans-retinol in the photoreceptors by a specific all-trans retinal dehydrogenase (atRDH), and then 
transported to the RPE by the interphotoreceptor retinoid-binding protein (IRBP). LRAT (lecithin 
retinol acyltransferase) converts all-trans-retinol (either recycled from the above-mentioned steps or 
originating from the circulation where it is bound to the retinol binding protein, RBP) to all-trans-
retinyl esters, that serve as substrate for the isomerization reaction catalyzed by RPE65 to produce 
11-cis-retinol. Finally, 11-cis-retinol is converted to 11-cis-retinal by other 11-cis specialized 
members of the RDH family (11cRDH), including RDH5 and RDH10, and is transported to the 
photoreceptor outer segments by several intra- and extracellular retinol-binding proteins such as 
CRALBP and IRBP. 
Mutations in any of these enzymes or transporters involved in retinoid recycling may lead to 
inherited retinal dystrophies, indicated in red characters on the figure: LCA, RP, STGD, FA, and 
others. 
 
LCA= Leber congenital amaurosis; STGD= Stargardt disease; RP= retinitis pigmentosa; FA= fundus albipunctatus; 
CRALBP=cellular retinoic acid binding-protein; IRBP= interphotoreceptor retinoid-binding protein; LRAT= lecithin retinol 
acyltransferase; RBP=	retinol binding protein 
(Adapted from Palcewski et al., IOVS, 2014)62 
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Nystagmus can be present, possibly developing as a result of the poor fixation in these 

patients, further aggravating their impaired visual ability.64 Optic nerve hypoplasia, and various 

degrees of ocular colobomas may be associated to LCA. Other ocular manifestations, such as 

keratoconus and cataract, may develop. Regarding the extra-ocular manifestations, these young 

patients may also present mental retardation, autism, olfactory dysfunction, and a range of 

syndromic disorders.57 

The diagnosis of LCA relies on a compatible clinical presentation, alteration in the function of 

rods, cones, or both on full-field electroretinography, and genetic confirmation.59,65,66 The 

inheritance pattern of most genetic abnormalities causing the LCA phenotype is autosomal 

recessive, explaining the high rate of cases in rural areas of developing countries with high rates 

of consanguinity,67 although a few families with autosomal dominant inheritance have also been 

reported.68 

The RPE65 protein was first isolated from the RPE and characterized by Hamel et al. in 

1993,63 followed by successful cloning60 and identification of its encoding gene.61 A few years 

later, Hamel et al. demonstrated that mutations in RPE65 cause the LCA phenotype.58 

 

 

Figure 7. Clinical presentation of RPE65 Leber congenital amaurosis in a 18-year old patient. 
Pigment clumping and diffuse retinal atrophy are shown on fundus examination (top left), while 
complete disappearance of photoreceptor outer segments and inner segment ellipsoid line is visible 
on OCT (bottom left), and advanced peripheral visual field loss leaving a tubular field (right). 
(Courtesy Prof. Munier, Dr Tran, Dr Vaclavik) 
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Rapidly, RPE65 was identified as an outstanding candidate for gene replacement therapy, 

given that 1) it is mainly expressed in RPE cells, and thus accessible to gene transfer after 

subretinal delivery; 2) the size of the RPE65 gene is compatible with the cargo capability of 

existing viral vectors; 3) the RPE65 protein exerts a unique enzymatic activity that, once replaced 

at sufficient level, may restore the retinoid cycle for ensuring a proper phototransduction, and 

hence potentially restore visual function; 4) there is prolonged photoreceptor survival despite the 

functional impairment, allowing for an extended treatment window and the possible rescue of 

more photoreceptors, as compared to other inherited retinal disorders originating from 

photoreceptor-specific protein deficiency.69 

 

RPE65	gene	therapy	based	on	adeno-associated	vectors	
	

Shortly thereafter, models of RPE65-deficient animals were identified showing retinal structure 

abnormalities and altered visual function, that recapitulated the LCA phenotype. Several studies 

evaluated the subretinal treatment by adeno-associated virus (AAV)-mediated gene therapy and 

reported a restoration of visual function, both in dogs70 and mice,71 confirming the potential of this 

approach and the interest of the RPE65 gene as candidate for gene augmentation therapy in 

humans. Studies in dogs have been of particular interest. First, because they were performed on 

a naturally occurring model of canine blindness in Briard dogs72 that was shown to be due to 

RPE65 mutations;73 then, because it demonstrated the possibility of sustained long-term effect 

(up to a decade in the animal with the longest follow-up);74 and finally, because it showed that 

optimal results were found in juvenile animals.75,76 

Several groups have translated this gene therapy approach to human patients with RPE65 

Leber congenital amaurosis in Phase 1, 2, and 3 clinical trials (Table 1). To date, strategies that 

reached the clinical stages rely on adeno-associated viral vectors.77–79 None of these studies has 

raised major safety concerns. One group (Consortium led by the Children Hospital of 

Philadelphia) has recently completed a Phase 3,80 with promising short-term results. However, 

two other groups (University College London, University of Pennsylvania) had initially 

documented favorable short-term results in Phase 1 trials, with visual improvement peak at 6-12 

months,77,81 but limited long-term effect with subsequent visual loss in the following 3-6 years.78,79 
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Trial ID 

(Clinical-
Trials.gov) 

Vector Phase Start 
date 

Sponsor Center References 

NCT-
00516477 
 
 
 
 
NCT-
01208389 
 
 
NCT-
00999609 

AAV2-hRPE65v2 ½ 
 
 
 
 
 
1 follow-
on 
 
 
 
3 

2007 
 
 
 
 
 
2010 
 
 
 
2014 

Spark 
therapeutics 

CHOP, UPENN, 
UIowa (USA) 

Phase 1/2: 
Maguire el al, 200882 
Maguire et al., 200983 
Simonelli et al., 201084 
Testa et al., 201385 
 
Phase 1 follow-on: 
Bennett et al., 201286 
Bennett et al., 201687 
 
Phase 3 : 
Russel et al., 2017 

NCT-
00481546 

AAV2-CBSB-
hRPE65 

1 2007 UPENN UPENN, UFL (USA) Cideciyan et al., 200869 
Hauswirth et al., 200888 
Cideciyan et al., 200977 
Cideciyan et al., 201374 
Jacobson et al., 201289 
Jacobson et al., 201579 

NCT-
00643747 

rAAV2/2.hRPE65 
p.hRPE65 

1-2 2007 UCL Moorefields, UCL 
(UK) 

Bainbridge et al., 
200890 
Bainbridge et al., 
201578 

NCT-
00749957  

AAV2-CB-hRPE65 1  2008 Applied Gen. 
Tech. Corp 

OHSU, UMass 
(USA) 

- 

NCT-
00821340 

AAV2-CB-hRPE65 1 2010 Hadassah  Hadassah Hospital 
(Jerusalem, Israël) 

- 

NCT-
01496040 

rAAV2/4.hRPE65 1-2 2011 Nantes Univ. Nantes Univ Hospital 
(France) 

- 

 
Table 1. Human clinical trials for RPE65 Leber congenital amaurosis registered on 
www.clinicaltrials.gov (accessed July 7th, 2017). All trials use the subretinal route. 
CHOP= Children Hospital of Philadelphia (USA); UPENN= University of Pennsylvania (USA), UFL= University of Florida (USA); 
UIowa= University of Iowa (USA); OHSU= Oregon Health Sciences University; UMass= University of Massachusets (USA); 
UCL= University College London (UK) 

 
Importantly, these pioneering studies have demonstrated the feasibility of human ocular gene 

therapy via the subretinal route, showed some degree of visual cortex reactivation in areas 

corresponding to the topography of treated retinal areas,91 and established the tolerance of re-

injection in the contralateral untreated eye in human subjects, without elicited immune reaction 

either in the first or second injected eye.86,87 As a result, the only Phase 3 trial to date was 

designed with bilateral treatment.80  

These trials have also investigated novel endpoints and developed specific tools to assess 

retinal function impairment and recovery, that conventional methods such as visual acuity, visual 

field testing or microperimetry were unable to detect at sufficient sensitivity. For instance, the 

groups from the Children Hospital of Philadelphia (Bennett, Maguire) and from University College 

London (Bainbridge, Ali) used vision-guide ambulatory navigation tests, a widely employed 
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method to test animal mobility in vision research, adapted and optimized for visually impaired 

patients, including young infants. In addition to conventional visual field testing (Goldman kinetic 

testing and Humphrey/Octopus automated testing), these groups also used dark-adapted 

perimetry and full-field light sensitivity threshold testing.78,80,87 Furthermore, the London group 

reported their perimetry explorations in a novel manner by plotting the number of retinal loci with 

significant improvement in sensitivity.78 Finally, the group from the University of Pennsylvania 

(Hauswirth, Cideciyan, Jacobson) also relied mostly on dark-adapted perimetry testing, but 

reported their results differently by displaying serial time-dependent maps of retinal sensitivity, 

and plotting the areas of retinal sensitivity at different sensitivity levels extracted from these 

maps, and their evolution over time. Although these innovative methods raise concerns as to their 

comparability, both groups from London and the University of Pennsylvania reported a similar 

initial increase in retinal sensitivity after treatment, followed by a secondary decrease, probably 

due to the continuing degenerative process and to the transient, partial restoration of retinal 

function after gene therapy administration.78,89 

Characterization of retinal structure was also critical, and these trials relied on different custom 

retinal layer segmentation techniques. It showed a continuing degenerative process manifesting 

by retinal thinning.78,79 Moreover, this retinal thinning and foveal morphological changes may 

result also from the subretinal injection under the macula (see paragraph below). To note, the 

sole phase 3 study to date did not include retinal structural parameters (such as total retinal or 

specific layer thicknesses) among study endpoints.80 

In addition, despite improvements in visual sensitivity, these clinical trials reported that the 

degenerative rate of the treated eye remained similar to the non-treated eye,78,79 indicating 

either an unstoppable disease progression, inappropriate treatment delivery (timing of 

treatment, surgical techniques), or an insufficient vector efficacy. Moreover, combinatorial 

strategies relying on gene transfer and neural growth factor administration may be of interest. 

	
RPE65	lentiviral	gene	therapy	
	

The available amount of chromophore is determinant for photoreceptor function and survival, 

and consequently RPE65 protein expression levels are correlated to retinal function and to the 
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rate of retinal degeneration in animal models. For instance, in the Rpe65R91W/R91W mouse model, 

where the amount of the RPE65 protein is decreased by around 90%, electroretinography 

showed a 3-log reduction in retinal sensitivity at 1-month of age, as compared to wild-type mice, 

which is correlated to the levels of the RPE65 protein.92 In human, no ERG responses were 

observed after AAV-mediated RPE65 gene transfer, whereas similar doses in dogs deficient for 

the same gene led to clinical responses, such as recovery of retinal activity on ERG and vision-

guided mobility.93 To note, dogs injected with suboptimal doses also showed improvement of 

visual behavior without ERG amelioration.78 These discrepancies between clinical observations 

and animal studies raised concerns over required therapeutic protein levels in humans. 

Over the last decade, Corinne Kostic and Yvan Arsenijevic at the Unit of gene therapy and 

stem cell biology (currently, the Unit of retinal degeneration and regeneration) at Jules-Gonin Eye 

Hospital have developed an alternative, lentiviral-based strategy for RPE65 gene transfer. This 

strategy relies on a lentiviral vector encoding a wild type RPE65 cDNA under the control of a 

fragment of the RPE65 human gene promoter (0.8 kb), followed by the woodchuck hepatitis virus 

post-transcriptional regulatory element (WPRE), and pseudotyped with the Vesicular Stomatitis 

Virus Glycoprotein (VSVG) envelop protein conferring broad-range specificity. 

Previous studies in Rpe65-knockout mice confirmed that this approach was efficient to protect 

cone photoreceptors from degeneration and to preserve the function of these surviving cones 

until at least four months (after treatment at postnatal day 5), an age at which almost all cones 

have degenerated in untreated Rpe65-deficient mice, and to preserve the function of these 

surviving cones.94,95 In addition, this lentiviral strategy also slowed down the cone degeneration 

process, and restored the expression of the RPE65 protein in cones of Rpe65R91W/R91W mouse 

model,92 harboring the frequent R91W mutation among LCA patients.96 Treatment of young adult 

mice (postnatal day 30) was more efficient in presence of this mutation than in knockout mice 

suggesting that patients harboring missense mutations may benefit from an extended treatment 

window.92 

To further progress towards the clinical application of lentiviral vectors for RPE65 deficiency, 

we have evaluated the safety of a Good Manufacturing Practice (GMP)-like production of 

lentiviral vector expressing human RPE65 cDNA under this human RPE65 partial promoter, 
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injected subretinally in healthy non-human primates (NHPs), reported in Project 1.97 The LV-

RPE65 lentiviral vector solution used in this study is a GMP-like production of a vector containing 

a transgene cassette similar to the one evaluated previously in Rpe65-deficient mice but with a 

human cDNA and a mutated WPRE sequence devoid of promoter activities or open-reading 

frames.92,94,95,98 LV-RPE65 is an integrative, third-generation, replication-defective, self-

inactivating lentiviral vector, produced at the Genethon facility (Evry, France).	

	
[Project	2]	Translational	approaches	in	the	vascular	disease	central	serous	
chorioretinopathy	

 

CSCR:	Clinical	presentation	
	

Our group, including the PhD candidate as co-first author, has published in mid-2015 a 

comprehensive review on CSCR in Progress in Retinal and Eye Research.99* We will summarize 

below the major features of the clinical presentations and current pathophysiological 

understanding of CSCR. For more details, the reader is invited to refer to this review, that is 

accessible open access. 

Central serous chorioretinopathy (CSCR) is a retinal disorder consisting in spontaneous 

serous detachments of the neuroretina from the retinal pigment epithelium (RPE). 

The term “central” refers to the form of the disease causing visual symptoms due to the 

presence of serous detachments in the macular area. But asymptomatic subjects may have 

presented one or multiple episodes of extramacular serous detachments, as often observed in 

the contralateral eye of an active CSCR patient or when systematically examining relatives of 

CSCR patients.100,101 The prevalence of CSCR is therefore likely to have been underestimated, 

and CSCR is considered the fifth most frequent retinal disorder, ranking after age-related macular 

degeneration (AMD), diabetic retinopathy, retinal vein occlusion and rhegmatogenous retinal 

detachment.102 

It most frequently occurs in middle-aged men,99 and the acute, predominant form is self-

resolving within 6 months in 80% of cases.28 However, the clinical diagnosis of chronic forms of 

																																																								
*	where it ranks as the most downloaded article, as of August 2017	
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the disease may be more challenging, as chronic CSCR may resemble AMD, complicated or not 

by choroidal neovascularization (CNV).103–105 

CSCR is the only retinal disease (besides bacterial or viral infectious posterior uveitis) that can 

be provoked or exacerbated after systemic corticosteroid intake. Moreover, psychological 

stress,106,107 and a range of personality profiles108 and psychological traits109,110 are considered 

risk factors for CSCR, the most frequent of which being ‘type-A’ personality.111  

Advances in multimodal imaging and the advent of enhanced-depth imaging (EDI) of the 

choroid with SD-OCT23,112 has improved the investigation of choroidal changes in CSCR, and has 

clearly identified increased choroidal thickness, or ‘pachychoroid’,113 as the hallmark of CSCR.114 

Although clinically relevant, the ‘pachychoroid’ concept has to be used with caution, since there is 

no definitive threshold separating ‘normal’ from ‘thick’ choroids, and since ‘pachychoroid’ is not a 

definitive criteria to diagnose CSCR, that can occur in subjects not presenting increased 

choroidal thickness. In a review of published studies reporting choroidal thickness in healthy 

subjects, Lehman et al. have proposed that 395 µm be considered a reasonable minimal 

threshold to define ‘pachychoroid’.100 

Based on these observations, it was recently proposed that CSCR belongs to the 

“pachychoroid spectrum” of diseases, ranging from “pachychoroid pigment epitheliopathy”,113 

an often asymptomatic, dormant form of RPE alteration with increased choroidal thickness, 

to polypoidal choroidal vasculopathy,115 a neovascular condition arising in the choroid. 

 

Clinical	subtypes	of	CSCR	
	

There is no consensual definition of the various clinical subtypes of CSCR, although 

determining their exact limits is critical in the prospect of therapeutic clinical trial design. In 

particular, the term ‘chronic’ is employed in the literature to designate both non-resolving acute 

CSCR episodes after 3-6 months, and long-standing cases with specific signs of chronic retinal 

disease. The following definitions have been proposed in a review by our group as an attempt to 

solve these inconsistencies,99 although some of the proposed subtype raised some issues 

recapitulated here: 
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• Acute CSCR: subretinal detachment lasting for less than 6 months (Figure 8).  

• Persistent CSCR (also termed non-resolving): acute CSCR with duration of subretinal 

detachment longer than 6 months after onset of symptoms. This form is often 

associated with elongated photoreceptor outer segments on SD-OCT, indicating 

potential visual recovery. 

• Recurrent CSCR: episode of acute CSCR with history of previous episode(s) followed 

by complete resolution of subretinal detachment. Recurrent CSCR may originate from 

the same or from a new leakage point on fluorescein angiography. If lasting more than 

6 months, a recurrent CSCR episode would be considered as a persistent episode. 

The term recurrent persistent CSCR could be added to the classification but 

complicates the terminology. 

• Chronic CSCR: persistent CSCR associated with chronic signs of RPE 

decompensation, such as confluent hyper-/hypoautofluorescent areas on fundus 

autofluorescence, and RPE alterations on OCT. Chronic CSCR cases may have 

fluctuating subretinal fluid, and whether cases without active subretinal detachment 

should be classified as chronic CSCR is subject of debate. Indeed, the chronic 

epitheliopathy affecting the RPE, and other frequent signs such as flat irregular 

pigment epithelial detachments, that may be caused by type 1 choroidal 

neovascularization116 and intraretinal cystoid degenerative edema117–119 are 

manifestations of chronic CSCR potentially decreasing vision (Figure 9). 

• Diffuse retinal pigment epitheliopathy: this term characterizes advanced chronic CSCR 

where confluent hyer-/hypo-autofluorescent areas adopt a gravitational topography, 

probably due to chronic subretinal fluid movement, and are termed ‘descending 

tracks’.120,121 

• Inactive CSCR: patients with history of CSCR but without SRD at the time of 

evaluation. The recently introduced ‘pachychoroid pigment epitheliopathy’ entity could 

be included among the inactive CSCR, yet there is no certainty that patients with 

‘pachychoroid pigment epitheliopathy’ have experienced previous CSCR episode(s). 

Fundus autofluorescence may harbor sequellae of previous episodes (often, 
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hyperautofluorescent areas). In addition, patients with alterations suggestive of chronic 

CSCR may rather be classified as chronic than inactive. 

 

Figure 8. Clinical illustration of acute CSCR with small pigment epithelial detachment and 
hyperreflective leakage (blue arrow) on OCT (A), fluorescein angiography showing a clear leakage 
site (B) and subnormal fundus autofluorescence (C). Increased choroidal thickness is visible on 
OCT (A, star). An OCT from a different case of acute CSCR harboring an elevated pigment 
epithelial detachment (yellow arrow) demonstrates a striking similitude with a sketch drawn by Gass 
in 1967 (E, red arrow). 
(E: adapted from Gass, Am J Oph 1967)122 

 

An illustration of these clinical subtypes is provided in Figures 8 and 9. This classification, as 

any proposed attempt to categorize CSCR subtypes,102,123 has several limitations. In particular, 

the strict determination of the time of onset of a CSCR episode is challenging, since serous 

detachments probably start before macular involvement when the leakage point is not strictly 

macular. Neither considering the time of symptom onset, nor the time of diagnosis, is therefore 

fully satisfactory. In addition, patients may have bilateral CSCR but different stages in each eye, 

or unilateral CSCR with RPE alterations on fundus autofluorescence in the contralateral eye, as 

often observed, which could modulate this classification and its clinical significance. Finally, it is 

unclear whether there is a strict continuum between acute CSCR and the long-standing variants 

of the disease (chronic CSCR and diffuse retinal pigment epitheliopathy), or whether they should 

be considered as distinct clinical entities, with only sporadic reports of cases progressing from the 

acute to the severe chronic form.124–126 
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Figure 9. Clinical illustration of diffuse retinal pigment epitheliopathy, the most severe form 
of chronic CSCR. OCT shows an increased choroidal thickness with deep choroidal vasodilation, a 
flat irregular pigment epithelial detachment, subretinal fluid and intraretinal cystoid degeneration, a 
frequent finding in chronic CSCR (A). Fundus autofluorescence shows extended descending 
gravitational tracks (B), and fluorescein angiography show an extended window defect indicating 
diffuse epitheliopathy and multiple pin points suggestive of multifocal chronic leakage sites (C). 

 

CSCR:	a	mysterious	pathophysiology	
	

Combining fundus observations and nascent fluorescein angiography, Gass described in 1967 

the canonical hallmarks of CSCR: fluorescein leakage in the subretinal space, combined to 

neurosensory and pigment epithelial detachments,122 that would be detected on OCT three 

decades later (Figure 8). 

Several theories have been proposed to explain fluid entry from the choroid towards the 

subretinal space: dilated and hyper-permeable choroidal vessels, choriocapillaris non-perfusion, 

all favoring trans- or intercellular entry flow through the retinal pigment epithelium (RPE). This 

flow can result from changes in RPE cell polarity altering hydro-ionic pumping direction, uni- or 

multifocal rupture of the RPE barrier, or active reverse flow by unknown triggering mechanisms. 

Although serous macular detachments form rapidly and may last 3 to 6 months in most acute 

CSCR cases (see Article 2a),28 visual acuity is usually preserved, suggesting a good 

maintenance of photoreceptors.8 This differs strikingly from macula-off rhegmatogenous retinal 

detachment (RRD), in which detachment lasting more than 3-5 days leads to irreversible visual 

impairment.127 
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Recently, Zhao et al. and Bousquet et al. (group of Francine Behar-Cohen) showed that 

mineralocorticoid-receptor (MR) over-activation, especially in the choroidal vasculature, induced a 

CSCR-like phenotype in rats,128 and that treatment of patients presenting long-standing CSCR 

with the commercially available oral MR antagonists eplerenone or spironolactone had a 

beneficial effect in reducing the amount of subretinal fluid.129,130 A schematic representation of the 

putative MR-mediated mechanisms leading to choroidal vasodilation is provided in Figure 10. 

Moreover, the MR over-activation hypothesis accounts for the exceptional pro-CSCR effect of 

systemic corticosteroids, regardless of the route of administration, and may explain a range of 

systemic conditions often associated with CSCR, that may also result from abnormal MR 

stimulation.99 The relationship between CSCR and corticosteroids is probably one of the most 

intriguing aspects of the disease. Glucocorticoids efficiently reduce macular edema of many 

origins, even when associated with subretinal fluid,131,132 but glucocorticoids can aggravate 

subretinal fluid accumulation in CSCR patients. Even exposure to low-dose non-ocular 

corticosteroids has been associated with the occurrence of CSCR.133,134 Yet, high-dose 

intraocular injection of glucocorticoids, routinely administered for the treatment of macular edema, 

has not been associated with increased incidence of CSCR. Such discrepancies reflect the still 

non-elucidated complexity of steroid regulation on ocular physiopathology. 

Since glucocorticoids aggravate rather than improve CSCR, inflammation was disregarded 

among potential disease mechanisms, but this notion should be revisited, from the perspective of 

other “non-inflammatory” vascular retinal disorders, in which inflammation and para-

inflammation135 are recognized as key mechanistic players, such as diabetic retinopathy47,136 or 

neovascular age-related macular degeneration.137,138 

Specific psychological profiles have been associated with CSCR (see above) but the exact link 

between anxiety-sensitive personalities and steroid biology has not been elucidated. Similarly, 

CSCR patient tend to present cardiovascular risk factors, and recent evidence suggest a possible 

link between cardiovascular risk and steroid biology. Interestingly, the systemic steroid hormonal 

profile of CSCR patients has been partially explored, and showed for instance that ~50% of 

patients with active acute CSCR have elevated 24-hour urine cortisol or tetrahydroaldosterone 

levels.139–141 
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Figure 10. Putative pathophysiology of CSCR based on the mineralocorticoid-receptor over-
activation hypothesis. 
A. Permanent MR occupancy by glucocorticoids is prevented by the metabolizing enzyme 11-ß 
hydroxysteroid dehydrogenase type 2 (11ßHSD2), which transforms the glucocorticoids into 
metabolites that have a weak affinity for MR. Activation of the MR pathway by either aldosterone or 
glucocorticoids induces up-regulation of the endothelial vasodilatory potassium channel KCa2.3 
(calcium-dependent channel) that leads to the hyperpolarization of endothelial cells and underlying 
smooth muscle cells (electric coupling through myo-endothelial gap junctions) resulting in choroid 
vasodilation. 
B. Vasoldilation of large choroidal vessels exerts vascular or mechanical effects on the 
choriocapillaris and retinal pigment epithelium (RPE), leading to fluid leakage through the RPE and 
accumulation in the subretinal space. 
K+ = potassium; Ca2+ = calcium. 
(reproduced from Daruich et al., Prog Ret Eye Res 2015, under the CC BY-NC-ND 4.0 license)99 

 

In this context, the MR over-activation hypothesis in CSCR pathogenesis is relevant in that it 

could account for the observed systemic associations of CSCR. The MR pathway is indeed 

involved in psycho-neurological biology142,143 and in cardiovascular remodeling.144,145 More 

recently, circardian deregulation in shift workers has also been linked to CSCR,146 and is related 

to steroid biology through the morning cortisol peak.147 
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Four articles addressing different clinical and pathophysiological aspects of CSCR are 

presented in this thesis. First, we investigated the clinical and imaging risk factors related to 

episode duration in acute CSCR [Article 2a], and to recurrence of CSCR after an acute episode 

[Article 2b], using clinical data and custom image processing techniques. Then, we explored the 

structural changes affecting the choriocapillaris using OCT angiography. This layer is of particular 

interest (Figure 1), since it is located at the interface between large choroidal vessels, where the 

disease is thought to originate (Figure 10), and the RPE, whose disruption leads to subretinal 

fluid accumulation and clinical expression [Article 2c]. Finally, we contributed to investigate the 

molecular composition of subretinal fluid, retrieved from a unique case requiring intraocular 

surgery, by a multi-omics approach [Article 2d]. 

 

[Project	3]	Translational	approaches	in	telangiectatic	retinal	vascular	disorders:	
example	of	macular	telangiectasia	type	1	and	radiation	maculopathy	

 

Macular telangiectasia type 1 (MacTel 1) and radiation maculopathy are two vascular retinal 

diseases of distinct origins, that share very similar clinical manifestations. Both present a “pure” 

phenotype associating macular telangiectasia, capillary depletion, and macular edema secondary 

to increased capillary permeability leading to rupture of the inner blood-retinal barrier. Therefore, 

they provide an interesting model to develop biological and imaging tools that could be expanded 

to other multifactorial vascular disorders, such as diabetic retinopathy, or retinal vascular 

occlusive disease. In addition, history of radiation has been recognized as risk factor for retinal 

telangiectasia,148 and both conditions respond poorly to intravitreal bevacizumab/ranibizumab, 

monoclonal antibodies designed to neutralize vascular endothelial growth factor (VEGF)-A, but 

favorably to intravitreal aflibercept,29,149 a monoclonal antibody neutralizing both VEGF-A and 

Placental Growth Factor (PlGF), suggesting possible common mechanisms. 

The majority of existing experimental work on retinal vascular disorders has focused on 

diseases that have well-established animal models, such as retinopathy of prematurity or diabetic 

retinopathy.150 These two disorders are characterized by wide areas of retinal non-perfusion and 



	

	 27 

develop subsequently retinal neovascularization, due to the release of pro-angiogenic factors, 

predominantly VEGF, that stimulates angiogenesis. 

 

 

Figure 11. MacTel 1: clinical presentation and animal model of PlGF overexpression. 
MacTel 1 associates exudative telangiectasia on early (A) and midphase fluorescein angiography (B), 
and subsequent macular edema on OCT (C). A rat model of intraocular PlGF overexpression in 
otherwise healthy rats (D) led to the formation of multiple diffuse telangiectasia resembling MacTel 1 
(E, F). 
(D-F: reproduced from Kowalczuk et al., 2011, under the Creative Commons Attribution License) 

 

However, several vascular diseases, including pre-proliferative stages of diabetic retinopathy 

(before the development of neovascularization), manifest with increased microvascular 

permeability. In humans, the macular region is particularly susceptible to alterations of the inner 

blood-retinal barrier, which, among numerous other factors, leads to macular edema.6 A model of 

altered retinal microvasculopathy was created by Kowalczuk et al. (Behar-Cohen group) in 

healthy rats, secondary to long-term continuous intraocular PlGF overexpressing by ciliary 

muscle electrotransfer of a PlGF-coding plasmid.33 This model developed focal exudative 

capillary dilations (Figure 11), resembling diffusing telangiectasia observed in patients with 

MacTel 1 (see clinical description below). Therefore, we wished to validate clinically the role of 

the different angiogenic factors, and particularly PlGF, in this disorder. 
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Angiogenic	factors:	the	controversial	role	of	the	VEGFR-1	and	-2	pathways	in	retinal	vascular	
permeability	
	

VEGF receptors are tyrosine kinase receptors localized at the cell surface. Upon binding to 

one of their ligands, they dimerize and trigger intracellular signaling. Both VEGFR-1 and -2 have 

critical roles in retinal vessel development and in the maintenance of retinal vessel integrity. From 

the perspective of retinal vascular disease, VEGFR-2, is mainly involved in angiogenesis.151 On 

the contrary, the exact functions of VEGFR-1 (also termed Flt-1) are less clear. VEGFR-1 is 

thought to regulate VEGFR-2 signaling and may possibly act as decoy receptor, sequestrating 

VEGF-A from VEGFR-2 (Figure 12).152 These effects result in the modulation of capillary vessel 

permeability, essential to maintain the inner blood-retinal barrier integrity, whose disruption leads 

to macular edema. While VEGF-A is considered the main ligand of VEGFR-2 (also bound by 

VEGF-C, -D and -E), both VEGF-A and PlGF bind to VEGFR-1 (also bound by VEGF-B). 

Historically, VEGF was first designated as “vascular permeability factor”,153,154 highlighting its 

multiple roles in angiogenesis and vascular permeability. VEGF-C, via the VEGFR-3 receptor, is 

mainly an inducer of lymphangiogenesis.155 

These different actions of VEGF receptor pathways have clinical implications. For instance, 

bevacizumab and ranibizumab are specific anti-VEGF-A monoclonal antibodies, whereas 

aflibercept functions as a soluble decoy receptor with a chimeric structure built from binding 

domains of both VEGFR-1 and VEGFR-2, thus binding both VEGF-A and PlGF.156 Therefore, the 

involvement of PlGF in the pathophysiology of certain retinal diseases, may open therapeutic 

perspectives, and PlGF may be considered as a prognosis marker related to treatment response. 

	
MacTel	1:	a	“pure”	disease	of	retinal	capillaries	
	

MacTel 1 is a rare congenital or developmental vascular disorder affecting mostly male 

subjects and consisting in focal, exudative dilations of perifoveal retinal capillaries.157 These 

telangiectasia have altered blood-retinal barrier properties, inducing focal intraretinal leakage and 

macular edema, responsible for vision loss. To date, little is known on the pathophysiology of this 

“orphan” disease and treatment options are limited. MacTel 1 is usually unilateral and may extend 

beyond the macula. Therefore, it may be part of the larger spectrum of Coats disease, an 



	

	 29 

aggressive congenital disorder manifesting in early childhood with peripheral retinal 

telangiectasia and exudation, but that may also develop in young adults with milder 

presentations.158 

 

 

Figure 12. Schematic structure and ligands of VEGF receptors, and structure of aflibercept 
A. VEGF-A binds to both VEGFR-1 and -2, while PlGF binds specifically to VEGFR-1. VEGFR-2 
stimulates angiogenesis, while VEGFR-1 is involved in vascular permeability and modulates the 
effect of VEGFR-2 signaling. VEGFR-3 is involved in lymphangiogenesis. 
B-D. Schematic representation of VEGFR-1 (B) and 2 (C), and structure of aflibercept, fusion of the 
2nd and 3rd binding domains of VEGFR-1 and 2, respectively, over the Fc region of a humain 
immunoglobulin G. This structure explains why aflibercept neutralizes both VEGF and PlGF. 
VEGF= vascular endothelial growth factor; VEGF-R= VEGF receptor; PlGF= placental growth factor; sVEGFR-1= soluble 
VEGF receptor 1 
(A: adapted with permission from Witmer et al., Prog Ret Eye Res 2003)159 
(B: adapted with permission from Balaratnasingam et al., Clin Oph 2015)156 
 
 

Historically, several classifications have been proposed and the condition has been termed 

“miliary aneurysms” by Leber, “idiopathic juxtafoveal telangiectasis” (group 1A-1B) by Gass and 

Blodi,160 “Type 1 aneurysmal telangiectasia” by Yannuzzi et al.161 and finally MacTel 1 in the 

recent classification by the MacTel Study Group.162 

In contrast with type 2 idiopathic macular telangiectasia or “MacTel2”, where telangiectasia 

develop along with pathognomonic degenerative alterations of the retinal architecture linked to 

RMG cell depletion,163 MacTel 1 is primarily a vascular disease, complicated by macular edema 

originating from the exudative telangiectasias.161 FA allows the visualization of telangiectasias but 

its ability to image the fine perifoveal capillaries at high resolution and to discriminate between the 

superficial and deep capillary plexuses is limited. Therefore, OCT angiography may provide a 

useful tool in imaging details of the perifoveal capillary network and its alterations in MacTel 1, 
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and to gain insight into the disease manifestations at the capillary level, as developed in Project 

3a. 

 

Radiation	maculopathy:	a	vision-threatening	complication	in	eyes	salvaged	from	an	
intraocular	malignancy	

 

Radiation maculopathy is a devastating cause of visual loss occurring in eyes receiving 

radiotherapy for ocular or orbital malignancies. It develops in approximately 50-60% of eyes 

treated by plaque brachytherapy or proton beam therapy for intraocular tumors,164 the most 

frequent indication being uveal melanoma, and results in variable degrees of visual alteration. 

Tumors located inside or close to the macular area are at higher risk to develop this 

complication.165 The tumoricidal effect of radiation relies on two mechanisms: the ‘direct’ action 

produces DNA damages that impair endothelial cell division, and the ‘indirect’ action generates 

free radicals from water and other molecules, which in turn induce DNA alterations.166 Radiation 

of the retinal vasculature generates endothelial cell loss and capillary closure, leading to 

microangiopathy. In the macular area, this microangiopathy also leads to cystoid macular 

edema.167 The diagnostic of radiation maculopathy relies on multimodal imaging, with the 

presence of possible lipid exudates and hemorrhages on fundus examination, cystoid macular 

edema on OCT, and exudative telangiectasia in the macular area on FA. FA also reveals the 

morphology of the perifoveal capillary network during early phases and the presence of increased 

vascular permeability with progressive dye diffusion. 

Since OCT angiography provides a representation of the macular microvasculature via flow 

detection, it may overcome limitations of FA due to dye diffusion. It also images the parafoveal 

capillary network and its alterations at higher resolution than FA.168,169 Moreover, by segmenting 

OCT angiography volumes allows to analyze separately the superficial and the deep retinal 

capillary plexuses, where specific lesions may be identified. OCT angiography was applied to 

radiation maculopathy in the Article 3c,170 in order to identify prognosis markers related to the 

visual function of irradiated eyes. 
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Aims	of	the	thesis	
 

The investigations of biological and imaging markers applied performed in this thesis aim at: 

1) Identify novel parameters relevant for non-standard clinical situations lacking 

established endpoints (gene therapy preclinical safety study): toxicity markers 

2) Improve our understanding of manifestations and mechanisms of retinal and 

choroidal vascular disorders and identify diagnosis markers 

3) Improve our understanding of treatments effect and guide therapeutic decision in 

these disorders: therapeutic response markers 

4) Identify new potential molecular therapeutic targets in these disorders 

5) Identify prognostic markers in these disorders. 
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RESULTS	

[Project	1]	LV-RPE65	
 

Aim 

The aim of this project was to evaluate the ocular and systemic tolerance of this lentiviral-

based therapy (LV-RPE65) in five healthy non-human primates following subretinal 

administration, in terms of retinal structure, retinal function, and systemic biodistribution. Contrary 

to previous safety studies in large animals (Briard dogs, non-human primates),75,76,93,171 no 

systemic adjuvant corticosteroids were administered, as in the rodent experiments, to avoid 

masking potential side effects in primates not observed in rodents. The detailed study is found in 

the Article 1 below.97  

 

Methods 

Two doses of LV-RPE65 were employed: low (2 eyes), and high (2 eyes), corresponding to a 

1:1 and 10:1 ratio of lentiviral particle per RPE cell in the treated area, respectively. To assess 

retinal structure changes, we used multimodal imaging with extraction of segmented retinal 

layers, and ex vivo immunohistochemical analysis. Retinal function was assessed with 

electroretinography. To analyze vector systemic biodistribution, regularly sampled tears, urine 

and serum, were analyzed for lentiviral particle presence, and critical organs were tested post-

sacrifice for lentiviral genomic DNA integration (quantitative PCR and RT-PCR were performed 

by A. Bemelmans, INSERM). 

 

Image processing 

OCT images graphically segmented on the Spectralis device (Heidelberg Engineering, 

Germany) were processed with a custom MatLab algorithm (Mathworks, Natick, MA) to extract 

quantitative thicknesses along retinal sections (Appendix 4). This program processed the layer 

thickness profile segmented by the OCT device, and extracted from the image the thickness 

values at each pixel location in the detached area, resulting in a mean thickness in the detached 

part of the retinal section. This analysis was confirmed by a second method in collaboration with 
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K. Stieger and B. Lorenz (Giessen University, Germany), who analyzed with another custom, 

device-independent OCT segmentation software,172 the retinal layer thicknesses within a fixed 

area, that was included in the detached zone in all eyes, allowing for a better inter-animal 

comparability. 

 

Results 

• Multimodal imaging: the early kinetics of retinal detachment at 2, 4, and 7 days post-

subretinal injection revealed prolonged reattachment times in LV-RPE65-injected eyes compared 

to vehicle-injected eyes. All LV-RPE65-injected eyes showed an initial perivascular inflammatory 

reaction that resolved spontaneously within 14 days but raised concerns regarding the immune 

response to LV-RPE65. 

• OCT segmentation: Low- (n=2) and high-dose (n=2) LV-RPE65-injected eyes presented a 

reduction of the outer nuclear and photoreceptor outer segment layer thickness in the detached 

part of the macula, that was more pronounced than in vehicle-injected eyes (n=4). Inner layer 

thinning was not observed, which indicates that the transient perivascular inflammatory reaction, 

mostly localized around retinal venules in the inner layers, had absent or limited long-term 

structural consequences. 

• Electroretinography: despite foveal structural changes, full-field electroretinography 

indicated that the overall retinal function was preserved over time. 

• Immunohistochemistry: we identified no difference in glial (GFAP staining), microglial (Iba-

1 staining) or leukocyte (CD45 staining) ocular activation between low-dose, high-dose and 

vehicle-injected eyes (1 or 3 months after injection). 

• Systemic vector distribution: LV-RPE65-injected animals did not show any sign of vector 

shedding signs from Day 2 post-injection to the end of follow-up in tears, serum, urine, or extra-

ocular genomic DNA integration at the time of animal sacrifice, confirming the safe ocular 

restriction of the vector.  
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[Project	2]	CSCR	
 

[2a]	Acute	CSCR:	multimodal	imaging	and	clinical	prognosis	markers	influencing	episode	
duration	
 

Aim 

This work28 aimed at identifying prospectively the rate of self-resolution and the factors 

influencing episode duration in acute CSCR episodes. Despite their accessibility in routine 

medical retina clinical settings, these clinical characteristics had not been previously reported in 

the era of modern multimodal imaging. 

 

Methods 

Thirty-one patients with a first episode of acute CSCR, followed for 6 months without 

therapeutic intervention, were included in the study. The mean time from the initial visit 

(corresponding to the first objective identification of serous retinal detachment) to CSCR 

resolution was 83 ± 46 days. Twenty-six patients (84%) were self-resolved by 6 months. 

The multimodal imaging parameters extracted as potential prognosis markers of resolution 

reflected the choroidal status (subfoveal choroidal thickness, SFCT on EDI-OCT; pattern of 

choroidal vascular hyperpermeability on ICG angiography), the RPE status (elevation of pigment 

epithelial detachments on OCT; intensity of fluorescein leakage on FA), and finally the time-

dependent kinetic of subretinal fluid volume resorption (initial subretinal fluid volume on OCT; 

observation of a peak in subretinal fluid volume during follow-up, on OCT). 

In addition, systemic markers reflecting the current understanding of CSCR pathophysiology 

were evaluated, that included age, corticosteroid intake, and hypertension. 

Image processing 

Two custom algorithms were designed on MatLab for this study. 

• First, an assessment of the leakage intensity was performed using fluorescein 

expansion ratio (Appendix 5), semi-automatically computing the area of the fluorescein 

leakage on FA, and comparing this area between mid-phase (2-2.5 min) and early (40-

60 s) fluorescein angiograms. The area were detected via an intensity-based 
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algorithm, using image binarization, by adapting a method described by Pryds et al. 

(Figure 3 of Article 2a).173 The grayscale intensity binarization threshold was 

determined as 0.75 ´ Imax, where Imax is the maximal fluorescence intensity at the 

leakage site (a threshold of 0.50 had been employed by Pryds et al.). This method was 

semi-automatic, and required the operator to detect grossly the localization of the 

leakage point, then the program identified the local maximal intensity pixel, and 

searched for the 0.75- mean intensity isopter centered on this point, yielding the 

fluorescein leakage area. Incorporating the fully automatic detection of this maximum 

intensity pixel in the program proved difficult given the variability of both pattern 

(smokestack, ink blot, pin points, faint or absent leakage) and intensity of leakage sites 

in acute CSCR, requiring a trained observer for appropriate detection. 

• Second, a segmentation method was designed to measure subretinal fluid volume 

from stacks of OCT sections encompassing the macula (Appendix 6). This method 

was also semi-automatic, since the observer labeled an area comprised within the 

serous retinal detachment in one of the OCT sections, and the borders of the serous 

retinal detachment were then segmented on each scan using an intensity-based 

method and a variable binarization threshold depending on the subretinal fluid 

intensity. Briefly, a circular detection of the serous retinal detachment borders (RPE or 

elongated photoreceptor outer segments, both relatively hyper-reflective structures on 

OCT) was performed. After visual verification of the segmentation, the total volume of 

subretinal fluid was estimated across the 97 OCT sections by trapezoidal integration, 

and a heat map representing the subretinal detachment morphology was generated 

(Figures 5 and 6 of Article 2a). The kinetics of subretinal volume reabsorption was 

then analyzed in each patient by comparing volumes at each time-point, identifying the 

initial volume and the patients who presented a volume peak during follow-up. 

 

Results 

In the univariate analysis, episode duration was longer in cases with SFCT ≥500 µm 

(p=0.0002), RPE elevation at leakage sites ≥50 µm (p=0.033), and a peak in subretinal volume 
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observed during follow-up (p=0.013), and there was a near-significant association of intense 

fluorescein leakage (p=0.074) with longer episodes. 

Using multivariate analysis, SFCT ≥500 µm (p=0.017), RPE elevation at leakage sites ≥50 µm 

(p=0.010) and patient age ≥40 years (p=0.010) were significantly and independently associated 

to longer episodes. ICG angiography pattern, corticosteroid intake and blood pressure did not 

influence episode duration. 

These results highlighted the interest of customized imaging segmentation techniques 

adapted to a given clinical problematic. They identified an influence of choroidal dilation, RPE 

alteration, and patient age on acute CSCR episode duration, in agreement with current 

pathophysiology concepts. 
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[2b]	Risk	factors	for	recurrent	CSCR:	a	multimodal	imaging	study	

 

Aim 

This retrospective study is a follow-on to study [2a], analyzing the course of acute CSCR after 

resolution of the initial episode. It aimed at describing recurrence patterns in CSCR patients, and 

investigating the influence of a panel of candidate systemic and imaging ocular markers on the 

risk of recurrence. 

While acute episodes are usually self-resolving, ~20-50%174–176 of affected eyes may later 

present one or several recurrences. Despite a remarkable resistance of photoreceptors to serous 

detachments during single CSCR episodes,177,178 repeated episodes and prolonged serous 

detachment lead to irreversible photoreceptor/RPE damage, and vision loss.179 Yet, little is known 

about the underlying mechanisms triggering recurrences and leading to chronic forms of the 

disease. Whether recognized risk factors for CSCR or anatomical changes in the choroid, RPE 

and retina do also influence the recurrence rate of the disease has not been comprehensively 

explored. Identifying factors predisposing for CSCR recurrences would help detect patients at 

higher risk of recurrence, potentially needing preventive and/or more aggressive therapeutic 

interventions. 

 

Method 

 In 46 patients with acute CSCR and follow-up >12 months after first episode resolution, 

parameters influencing recurrences were retrospectively evaluated using a frailty Cox 

proportional hazard survival model. Covariates included baseline systemic findings: age, gender, 

corticosteroid use, stress, shift work, sleep disorder, depression, allergy, cardiovascular risk; 

baseline optical coherence tomography findings: subfoveal choroidal thickness (SFCT), pigment 

epithelial detachment pattern (regular/bump/irregular), number of subretinal hyper-reflective foci 

at leakage site; baseline angiographic findings: fluorescein leakage intensity 

(intense/moderate/subtle/absent), hyper-permeability pattern on indocyanine-green angiography 

(focal/multifocal); and episode-related findings: duration and treatment of previous episode. 
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Image processing 

The previously developed algorithm extracting leakage intensity ratio from fluorescein 

angiograms (Appendix 5), was employed as a cross-validation of a subjective, multi-observer 

grading of fluorescein intensity as intense, moderate, subtle or absent. There was a significant 

correlation between fluorescein leakage intensity (graded as none, subtle, moderate, intense) 

and fluorescein leakage expansion ratios (P=0.0002, r=0.54) (Table, Supplemental Digital 

Content 4). 

 

Results 

Twenty of 46 subjects (43%) presented ≥1 recurrences during a mean follow-up of 29.9±9.5 

months [range, 15-54 months]. Follow-up duration did not differ between cases with or without 

recurrences (P=0.3). Worse final visual acuity levels (logarithm of the minimal angle of resolution) 

were associated with a higher number of episodes during follow-up (P=0.032, r=0.28). In a 

univariate analysis, higher SFCT (P=0.021), non-intense fluorescein leakage 

(=moderate/subtle/absent, P=0.033), multiple subretinal hyper-reflective foci (P=0.026), and shift 

work (P<0.0001) were significantly associated with recurrences, with a near-significant influence 

of irregular pigment epithelial detachment (P=0.093). In a multivariate analysis, higher SFCT 

(P=0.007), non-intense fluorescein leakage (P=0.003) and shift work (P<0.0001) remained 

significant and independent risk factors for recurrences. 

Multiple factors influence the risk of CSCR recurrence. These findings may contribute to 

identify patients at higher risk, who could benefit from earlier or more intensive treatment. 

Moreover, they highlight the contribution to disease recurrence of important mechanistic players 

in CSCR pathophysiology, such as choroidal vasodilation, circadian rhythm disruption and RPE 

integrity reflected by the leakage intensity. The identification of these markers is important 

because recurrence of CSCR indicates the conversion from a benign, self-resolving ocular 

disorder to a potentially vision-threatening, chronic disease. 
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[2c]	OCT	and	OCT	angiography	imaging	of	the	choroidal	vasculature	in	CSCR	

	

Articles 2a28 and 2b180 have highlighted the paramount role of the choroid in several clinical 

forms of CSCR. Historically, the clinical observation by in vivo imaging of choroidal vascular 

dilation and hyperpermeability on indocyanine-green angiography,38,39 and choroidal thickening 

on OCT,114 have revealed the central role of the choroid in CSCR patients. Some authors have 

also proposed that the vasodilation of large choroidal vessels characterizing CSCR is locally 

associated with a thinning of inner choroidal layers and choriocapillaris, based on EDI-OCT181 

and choroidal maps after choroidal layer segmentation obtained by SS-OCT.182 

The advent of OCT angiography has provided unprecedented access to the choriocapillaris 

blood flow in vivo. Current OCT angiography imaging technology does not allow to penetrate 

deeper than the choriocapillaris, but this layer lying just beneath the RPE (see Figure 1 in the 

Introduction) is finely imaged by commercially available devices.  

Two groups have described features of the choriocapillaris in CSCR eyes using OCT 

angiography, and showed the presence of “dark spots or “flow voids”.183,184 However, no detailed 

analysis of factors influencing their extension or topography has been advanced. 

Recently, Spaide has described small hyporeflective flow voids in normal eyes, and showed 

that they correlated with age, hypertension and presence of pseudodrusen in the fellow eye.185 

This author employed local thresholding and image binarization on the publicly available Fiji 

software to extract the areas of these flow voids. 

We have adapted this strategy in an automated, batch-processing algorithm on MatLab 

(Appendix 7), applied to a set of normal healthy eyes for validation, and to CSCR eyes. 

Moreover, the two largest flow voids were selected and reported on the corresponding Spectralis 

EDI-OCT scans to assess choroidal morphology at these sites. 

Fifty-three eyes from 48 subjects were included, and 34 control eyes. Twenty-two eyes were 

classified as acute, 15 eyes as recurrent and 13 eyes as chronic CSCR. CSCR eyes presented a 

higher total flow void area, and a higher number of flow void lesions as compared to normal 

subjects (P=.0004 and .003, respectively). In a univariate evaluation of CSCR eyes, age 
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(P=.0002), duration since CSCR diagnosis (P=.004) and CSCR type (factorized as acute, 

recurrent, chronic) (P<.0001) had a significant influence on the total flow void area. In a 

multivariate analysis, age (P=.023) and CSCR type (P=.007) remained the only independent 

contributors to the total area of flow voids (R2=.35). 

Regarding the correlation of flow voids with choroidal morphology on EDI-OCT, deep choroidal 

vessel diameter was higher (P<.0001), and choriocapillaris was thinner (P<.0001) at flow void 

sites compared to “normal” sites, independently from eccentricity of sites from the fovea. 

 

This study provides the first assessment of choriocapillaris morphology coupled to the kinetics 

of choriocapillaris blood flow in CSCR. Indeed, previous studies had employed flow laser Doppler 

velocimetry to assess choroidal blood flow, with variable results, but the contribution of the 

choriocapillaris to these measurements could not be discriminated.186–188 

It confirms the pathophysiology notion that choriocapillaris thinning results from a possible 

compression by inwardly displaced large choroidal vessels, possibly impeding proper blood flow 

in this layer.182 

Finally these results provide a possible explanation bridging choroidal changes observed in all 

forms of CSCR – explored in detail in this thesis in both acute28 (Article 2a) and recurrent 

CSCR180 (Article 2b),  and possible causes for subretinal fluid accumulation, whose molecular 

composition will be assessed in detail in the next subproject (Article 2d). A focally decreased or 

absent blood flow in the choriocapillaris may result in focal RPE ischemia, possibly leading to 

abnormal hydro-ionic exchanges, or to the disruption of intercellular junctions, resulting in the 

leakage classically observed on fluorescein angiography. 
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[2d]	Proteomics/metabolomics	of	subretinal	fluid	in	CSCR	
	

In the previous works (Articles 2a and 2b), we identified imaging markers predictive of the time 

course of various CSCR subtypes, bridging clinical manifestations with microstructural choroidal 

and RPE morphological changes. Then (Article 2c), we imaged dynamically and analyzed the 

blood flow within the choriocapillaris layer using cutting-edge OCT angiography, demonstrating 

the high number of flow voids compared to normal eyes, and analyzed how choroidal vasodilation 

affects the choriocapillaris and induces focal RPE disturbances. This analysis provided a 

dynamic, high-resolution visualization of blood supply at an almost cellular scale. Pursuing the 

path towards assessing at finer level the pathophysiology events leading to CSCR, we have 

explored the molecular composition of subretinal fluid, that may reflect molecular processes 

potentially contributing to the disease, in the hope of identifying clinically relevant candidate 

biological markers of the disease. 

 

Aim 

The aim of this pilot study, in collaboration with the proteomics laboratory, University of 

Geneva (N. Turck), and the metabolomics laboratory, University of Lausanne/CHUV (A. 

Thomas), was to assess the feasibility of subretinal fluid analysis using proteomics and 

metabolomics, and to investigate the molecular composition of subretinal fluid in CSCR and RRD 

using this approach. We compared the subretinal molecular profile from one case with severe 

CSCR and two pooled samples from cases with chronic RRD. 

Severe CSCR can present as bullous exudative retinal detachment with persistence of 

subretinal material,189 exceptionally requiring surgery. During the procedure, subretinal fluid can 

be collected. The composition of subretinal fluid from a CSCR patient has never been analyzed, 

and may provide a mechanistic insight into the complex processes leading to subretinal fluid 

accumulation. 

As developed in the Introduction to CSCR (Project 2), the function and structure of 

photoreceptors in the detached retina is much better preserved in CSCR than in RRD, although 

serous macular detachments usually last for several months in CSCR, and for only a few days in 

RRD undergoing surgical repair. Mechanisms of photoreceptor cell death after RRD are multiple, 
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triggered by oxidative and metabolic stress, complement alternative pathway activation, immune 

response and inflammation.190,191 In RRD, subretinal fluid originates mainly from liquefied 

vitreous, which diffuses under the neurosensory retina through a peripheral retinal tear. Whether 

the composition of subretinal fluid differs in CSCR and RRD, and influences the differential 

photoreceptor survival and visual prognosis is presumed, but, to date, has not been investigated. 

 

Methods 

We compared the subretinal fluid profile from one case with severe CSCR and two cases with 

chronic RRD. Proteomics and metabolomics analysis were performed independently, and both 

experimental procedure and bio-informatics analyses were carried out by the two collaborative 

teams mentioned above. 

Proteins were trypsin-digested, labeled with Tandem-Mass-Tag and fractionated according to 

their pI for identification and quantification by tandem mass spectrometry. Independently, 

metabolites were extracted on cold methanol/ethanol, and identified by untargeted ultra-high-

performance liquid chromatography and high-resolution mass spectrometry. Bioinformatics 

analyses were conducted, including comparison to protein and metabolite databases, protein, 

metabolite and pathway over-representation analysis, and gene ontology.	

	

Results 

In total, 291 proteins and 651 metabolites were identified in subretinal fluid samples. One-

hundred twenty-eight proteins (77 down-regulated; 51 up-regulated) and 76 metabolites (43 

down-regulated; 33 up-regulated) differed in the subretinal fluid from CSCR compared to RRD. In 

summary, protein and metabolites notably deregulated in CSCR were related to: 

• glycolysis/gluconeogenesis 

• inflammation (including serum amyloid P component, versican) 

• alternative complement pathway (complement factor H and complement factor H-

related protein) 

• cellular adhesion 

• biliary acid metabolism (farnesoid X receptor/retinoid X receptor) 
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• gluco- and mineralocorticoid systems (aldosterone, angiotensin and corticosteroid-

binding globulin) 

These results proved the feasibility of multi-omics techniques applied to subretinal fluid, a 

biological material rarely retrieved from RRD eyes during surgery, and exceptionally from CSCR 

eyes. In addition, they identified key pathways consistent with the current understanding of CSCR 

mechanisms, including cellular adhesion (potentially intervening in the disruption of RPE cell-cell 

adhesion at leakage sites), alternative complement (polymorphism in the complement factor H 

gene was identified in CSCR patients192,193), and gluco- and mineralocorticosteroid systems, 

whose roles in CSCR have been discussed in the Introduction of this thesis. 
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[Project	3]	Telangiectatic	retinal	disorders	
	
[3a]	Capillary	density	and	microvascular	abnormalities	assessed	by	OCT	angiography	in	
MacTel1	
	

We developed a custom semi-automated image processing method on Matlab to extract 

global and local capillary density from OCT angiography images, based on binarization and 

skeletization. This approach is adapted to MacTel 1, a disease characterized by focal areas of 

capillary non-perfusion on fluorescein angiography.157 A simulation-based statistical strategy was 

used to generate N circular non-overlapping areas within an OCT angiography image and 

compare the local density within these areas to the density of peri-telangiectasia regions of 

interest. This method was applied to describe microvascular abnormalities and global/focal 

capillary density in an observational case series of MacTel 1 patients. 

Seven OCTA acquisitions from patients with MT1 and 12 age-matched controls were included. 

Focal microvascular dilations were identified on 3´3-mm OCT angiography and early-frame 

fluorescein angiography images. OCT angiography images were processed to determine the 

global capillary density after subtraction of larger vessels and cystoid edema cavities (code 

provided in Appendix 8). Local capillary densities were calculated inside 100-µm circles around 

telangiectasias, projected over superficial (SCP) and deep capillary plexuses (DCP) (code in 

Appendix 9). They were compared to a random sample of 100-µm circles generated in each OCT 

angiography image (code in Appendix 10). fluorescein angiograms were processed to measure 

mean perifoveal intercapillary areas, inversely reflecting capillary density (code in Appendix 11) 

The global capillary density on OCT angiography was significantly lower in MacTel 1 eyes 

than in fellow and control eyes: SCP, 0.347 versus 0.513 (p=0.004) and 0.560 (p=0.0005); DCP, 

0.357 versus 0.682 (p=0.016) and 0.672 (p=0.0005). Capillary density was significantly reduced 

around telangiectasia, in both SCP (p=0.021) and DCP (p=0.042). Capillary density of the SCP 

correlated inversely with the mean perifoveal intercapillary areas on fluorescein angiography (r= -

0.94, p=0.017). LogMAR visual acuity was inversely correlated with SCP (r= -0.88, p=0.012) and 

DCP capillary densities (r= -0.79, p=0.048). 
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These results confirmed that MacTel 1 eyes present global and focal capillary depletion. The 

latter is either a local triggering factor for the development of telangiectasia, or results from higher 

intraretinal oxygen diffusion surrounding telangiectasia, focally inhibiting capillary angiogenesis. 
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[3b]	Analysis	of	aqueous	humor	angiogenic	profile	in	MacTel	1	and	relationship	to	the	efficacy	
of	intravitreal	aflibercept	

 

Based on the similarity of clinical manifestations of MacTel 1 with the reitinal phenotype of a 

rat model overexpressing the angiogenic Placental growth factor (PlGF),33 a co-ligand of the 

VEGF Receptor-1 (VEGFR-1), along with VEGF-A, we measured the ocular angiogenic profile in 

MacTel 1 patients and analyzed the effect of intravitreal aflibercept. 

Eight subjects with MacTel 1 refractory to bevacizumab, ranibizumab, or laser therapy and 

switched to aflibercept were included. Best-corrected visual acuity, central macular thickness, 

and cystic areas quantified on OCT B-scans were assessed over 12 months. Perifoveal capillary 

densities were obtained using the built-in analysis software of the OCT angiography device. 

Aqueous humor was sampled from six patients and eight control subjects undergoing cataract 

extraction. Growth factors were quantified using a high-sensitive multiarray immunoassay. 

Over 12 months, patients received 6.6 ± 1.4 (range, 5–8) intravitreal aflibercept injections. 

Twelve months after switching to aflibercept, best-corrected visual acuity increased by >5 letters 

in 5 of 8 patients, compared with pre-aflibercept levels. Mean best-corrected visual acuity 

improved from 79.6 to 88.0 Early Treatment Diabetic Retinopathy Study letters (P=0.042), and 

central macular thickness decreased from 434 ± 98 mm to 293 ± 59 mm (P=0.014). Compared 

with control subjects, the profile of angiogenic factors in MacTel 1 eyes revealed no difference in 

VEGF-A levels but significantly higher levels of placental growth factor (P=0.029), soluble 

vascular endothelial growth factor receptor-1 (sVEGFR-1 or sFlt1; P=0.013), vascular endothelial 

growth factor-D (P=0.050), and Tie-2 (P=0.019). Possible correlations between angiogenic 

factors and the capillary density on OCT angiography parameters 

Placental growth factor was the only biological factor whose levels were correlated with both 

superficial and deep capillary plexus densities on (Spearman r = -0.89, P=0.03). The correlation 

revealed that the higher PlGF, the lower the capillary density. Importantly, this correlation was 

fully automated and performed with the built-in algorithm of the AngioVue device, warranting the 

comparability of values across subjects. 

In summary, the clinical response to aflibercept coupled to the angiogenic profile of MacTel 1 

eyes supports the implication of the placental growth factor/VEGFR-1 pathway in MacTel 1. This 



	

	 50 

study showed that intraocular levels of angiogenic factors (here, PlGF) may be related to the 

efficacy of anti-angiogenic treatments and serve as prognosis markers. Moreover, it 

demonstrated a relationship between morphologic parameters derived from multimodal imaging, 

and levels of certain angiogenic factors. 

A semi-automated algorithm calculating the areas of cystoid edema cavites on OCT sections 

was designed for this work, and the results showed a significant difference at 12 months after 

initiation of aflibercept therapy among the 8 study patients, compared to baseline. This analysis 

was finally removed from the final manuscript since it was considered redundant with the central 

macular thickness analysis by one of the Reviewers of Article 3b. Consequently, it was only 

employed to outline the contour of cystoid cavities in the Figures 1 and 2 of Article 3b. Its code 

sequence is provided in the Appendix 12. 
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[3c]	Application	of	fractal	analysis	to	the	imaging	of	radiation	maculopathy	
 

Radiation maculopathy presents similarities with MacTel 1 in that it manifests with retinal 

capillary telangiectasia in the macular area, leading to leakage and macular edema, as exposed 

in the Introduction to Project 3. However, due to the specific radiation-induced mechanisms 

causing radiation maculopathy, entire areas of capillary network are disrupted and the 

organization of this network is altered.  

The consequences of proton-beam therapy have not been assessed to date using the non-

invasive OCT angiography technique, allowing visualization of the different retinal plexuses 

forming the retinal vasculature. In this study, we investigated the spectrum of structural and 

microvascular alterations in radiation maculopathy after proton-beam therapy for uveal 

melanoma, and their respective influence on visual acuity, using OCT and OCT angiography, 

combined to an image processing tool. This tool was based on the fractal dimension (code in 

Appendix 13), a parameter that has been recently employed in several OCT angiography 

studies34–36 and that seems to conveniently provide a unique quantitative measure reflecting the 

degree of capillary network disorganization. 

Ninethy-three consecutive patients with radiation maculopathy, 12 months or more after 

proton-beam irradiation for uveal melanoma, and imaged with fluorescein angiography, OCT and 

OCT angiography were included. Clinical parameters potentially affecting visual acuity were 

recorded, including OCT-angiography-derived metrics: foveal avascular zone area, vascular 

density and local fractal dimension of the superficial (SCP) and deep capillary plexuses (DCP). 

An automated tool extracting the local fractal dimension of skeletonized OCT angiography 

images was developed on MatLab, based on the counting box method and the estimation of the 

fractal dimension over a limited range of box sizes, reflecting the partial fractal behavior of the 

perifoveal vascular network. Fractal dimension is particularly suitable to analyze the morphology 

of vascular networks in radiation maculopathy, a disease that is characterized by a progressive 

disorganization of the capillary network and a loss of its branching pattern, with complete 

disappearance of the network in extreme cases. 
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Thirty-five non-irradiated fellow eyes served as controls. The foveal avascular zone was 

larger, SCP/DCP capillary density and local fractal dimension were lower in the 35 irradiated 

versus 35 fellow eyes (P<0.0001). In the 93 irradiated study eyes, microvascular alterations 

graded on fluorescein angiography (minimally damaged/disrupted/disorganized) were correlated 

to foveal avascular zone area and SCP/DCP density on OCT angiography (P<0.01). 

By univariate analysis, worse visual acuity was associated to macular detachment at 

presentation (P=0.024), total macular irradiation (P=0.0008), higher CMT (P=0.019), higher 

absolute CMT variation (P<0.0001), cystoid edema (P=0.030), ellipsoid zone disruption 

(P=0.002), larger foveal avascular zone (P<0.0001), lower SCP (P=0.001) and DCP capillary 

density (P<0.0001), and lower SCP (P=0.009) and DCP local fractal dimension (P<0.0001). 

Two multivariate models with either capillary density or fractal dimension as covariate showed 

that younger age (P=0.014/0.017), ellipsoid zone disruption (P=0.034/0.019), larger foveal 

avascular zone (P=0.0006/0.002), and lower DCP density (P=0.008) or DCP fractal dimension 

(P=0.012), respectively, were associated with worse visual acuity. 

 

Visual acuity of eyes with radiation maculopathy is influenced by structural and microvascular 

factors identified with OCT angiography, including foveal avascular zone area and DCP integrity. 

Local fractal dimension is a useful quantitative imaging marker in radiation maculopathy 

assessing the level of disorganization of the perifoveal capillary network. 

Further studies are needed to validate fractal dimension, either local or global, and its relation 

to visual function, for the analysis of OCT angiography in retinal vascular disorders. 
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DISCUSSION	

The projects presented in this thesis followed a scientific strategy aimed at identifying imaging 

and/or biological parameters that can serve as biomarkers for the diagnosis, prognosis, 

therapeutic response or safety in a range of retinal diseases. The markers identified (or under 

progress) are summarized in Table 2. Custom algorithms were developed using the MatLab 

program to extract relevant quantitative parameters from OCT and OCT angiography imaging, 

and were applied serially to image datasets by batch processing. 

Encouraging results in different settings (tolerance to subretinal gene therapy in Project 1; 

translational exploration in CSCR and telangiectatic retinal disorders in Projects 2 and 3, 

respectively) suggest that the investigated biological and imaging parameters could provide 

potential biomarkers for the diagnosis, follow-up, prognosis, or safety assessment in retinal 

diseases. 

 
 Imaging markers Biological markers 

Project Marker Modality Marker 
category 

Marker Fluid/organ Marker 
category 

1 [LV-RPE65] Segmented 
retinal layer 
thickness in 
detached 
retina 

OCT Toxicity Circulating lentiviral RNA 
 

Serum Toxicity 

Neutralizing antibodies 
against LV-RPE65 
(in progress) 

Serum 

Integrated lentiviral DNA Organs 

2 [CSCR] Fluorescein 
expansion 
ratio 

FA Prognosis Deregulated pathways: 
glycolysis/gluconeogenesis, 
inflammation, alternative 
complement, cellular 
adhesion, biliary acid 
metabolism and 
gluco/mineralocorticoid  

Subretinal 
fluid 

Diagnosis/ 
mechanisms 

Subretinal fluid 
volume 

OCT Prognosis Markers of mineralocorticoid 
activation (in progress) 

Serum Diagnosis/ 
mechanisms 

Density of 
choriocapillaris 
flow voids 

OCT-A Diagnosis/ 
mechanisms 

 

3 
[Telangiectatic 
disorders] 

Local and 
global capillary 
density 

OCT-A Diagnosis/ 
mechanisms 

PlGF, VEGF and other 
angiogenic factors  

Aqueous 
humor 

Diagnosis/ 
mechanisms 

 Local fractal 
dimension 

OCT-A Diagnosis/ 
mechanisms/ 
Toxicity/ 
Prognosis 

PlGF, VEGF and other 
angiogenic factors 
(in progress) 

Aqueous 
humor 

Diagnosis/ 
mechanisms 

 
Table 2. Biological and imaging markers evaluated in Projects 1, 2 and 3 
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Importantly, several parameters were assessed, but not all candidates passed the testing 

process, as detailed in the Introduction (Figure 3). The markers discussed through Projects 1 to 

3, represent essentially markers that were successfully validated, reflecting a clear publication 

bias since the present thesis report is based on published articles. 

	
Image	processing:	the	critical	issue	of	repeatability	

 

The image processing tools developed for Projects 1, 2 and 3, their function and main 

characteristics are summarized in Table 3. 

A proportion of the image processing tools developed throughout Projects 1, 2 and 3, relied on 

fully automated processes. In these instances, the repeatability of the process is 100% since the 

same code is applied to each image. A residual variability is still present, which is due to the 

variations in image acquisition, although they were performed by the same operator (AM, in 

Project 1), or trained optometrists (Projects 2 and 3). These variations may result from acquisition 

artifacts, due to poor image fixation of visually impaired eyes, to different pigmentation of ocular 

structures, especially the RPE, that may alter the absorption spectrum of infrared OCT radiations 

by the retina and choroid. 

The nascent OCT angiography technology presents also several artifacts during acquisition 

(projection artifacts, eye movements), built-in image processing (segmentation defects, 

inappropriate binarization), image display (wrongful representation) and image analysis by the 

OCT angiography device (erroneous binarization yielding false density values).194 Noticeably, 

artifacts of OCT angiography are exacerbated in low-vision eyes, such as those irradiated for 

intraocular tumors. Say et al. showed recently that the quality of images (as represented by the 

signal strength index provided by the device) was correlated to the degree of visual impairment in 

these eyes.195 Therefore, in our study on irradiated eyes (Article 3c), we excluded all eyes with 

signal strength index < 40 in order to limit the influence of bad image quality, a potential 

confounder in the OCT angiography-derived metrics reflecting the integrity of capillary networks 

(capillary density and local fractal dimension). In the developed automated algorithms, a special 

care was taken to control for these artifacts, by assessing the test-retest reliability. For instance, 

repeated measures were performed by varying the binarization parameters (choriocapillaris flow 
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voids, Project 2c), or the obtained values were correlated to a subjective multi-observer clinical 

grading, after validation by Cohen’s kappa for qualitative data, or intraclass correlation coefficient 

for quantitative data (fractal analysis of retinal capillary plexuses in radiation maculopathy, Project 

3c). 

 
Project Function name Action Automated Batch 

processing 
Complete 

code 
3c intercapillary_area_iteration Intercapillary 

areas on 
OCTA 

Yes Yes Appendix 1 

3c MoveRename File 
displacement 
and renaming 

Yes Yes Appendix 2 

2c crop_octa Extraction of 
OCTA image 
from screen 
capture 

Yes Yes Appendix 3 

1 layer_png Extraction of 
thickness 
values from 
OCT thickness 
profile 

Semi Yes Appendix 4  

2a-2b leak_area Fluorescein 
leakage area 

Semi No Appendix 5 

2a srf_segment Subretinal fluid 
volume 
segmentation 

Semi Yes Appendix 6 

2c octa_voids_analysis Choriocapillaris 
flow void 
detection on 
OCTA 

Yes Yes Appendix 7 

3a vesseldensity_square Global capillary 
density on 
OCTA 

Semi No Appendix 8 

3a local_density Local capillary 
density on 
OCTA 

Semi No Appendix 9 

3a random_local_density2 Random 
distribution of 
circles over 
OCTA 

Yes No Appendix 10 

3a PIA_angiofluo_square Intercapillary 
areas on FA 

Semi No Appendix 11 

3b edema Cystoid space 
areas on OCT 

Semi No Appendix 12 

3c fractal_sector Local fractal 
dimension on 
OCTA 

Yes Yes Appendix 13 

  
Table 3. Main image processing tools developed on MatLab for Projects 1, 2, and 3. 
Complete code sequences are provided in the Appendices. 
OCT= optical coherence tomography; OCTA= optical coherence tomography angiography; FA= fluorescein angiography 

	
Another fraction of the processing tools developed here was based on semi-automated 

algorithms, which signifies that an observer intervention was necessary at one or several steps 

during the image processing. For instance, an observer was required to identify a specific region 

of interest (such as background intensity), or a pathologic feature (such as leakage point on 
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CSCR or telangiectasias in MacTel 1). These semi-automated processes allowed the program to 

adapt to inherently heterogenous clinical material, but at the cost of decreased repeatability. 

Therefore, validations of the processes were carried out on healthy control eyes (Projects 3a and 

3c), by comparing measurements with those obtained by built-in analytic softwares (estimates of 

subretinal fluid volumes derived from the Spectralis segmentation in Project 2a), or with an 

external validating procedure (segmentation by a different methodology, Project 1). 

	
	
[Project	1]	LV-RPE65	
	

In vivo imaging markers are essential to evaluate dynamically the retinal response to injected 

therapeutic agents. Indeed, most of existing preclinical studies of retinal gene therapy have 

analyzed the retinal structure at fixed, later time-points (usually 30 days). This follow-up schemes 

may have missed the transitory inflammatory response that may manifest an occult immune 

response with potential long-term consequences, such as elimination of the transgene and loss of 

efficacy. The second important aspect of this study as compared to previous tolerance studies 

was the similar assessment of the effects of the vehicle-treated eyes, allowing to characterize the 

effect of the subretinal injection per se. Using imaging and biological markers, we evidenced a 

partial ocular tolerance in term of retinal structure integrity, and a favorable systemic tolerance to 

LV-RPE65 subretinal administration without adjuvant anti-inflammatory prophylaxis in healthy 

non-human primates. Two types of local retinal complications were observed: 

1) outer retinal structural alterations on OCT, especially ONL and photoreceptor layer thinning, 

probably linked to the subretinal route of administration. 

2) a peri-vascular inflammatory reaction that may contribute to retinal alterations and may be 

controlled by co-administering an anti-inflammatory prophylaxis.  

 

Hurdles	for	gene	therapy	delivery	to	the	RPE	via	the	subretinal	route	
	

The subretinal route allows the specific delivery of therapeutic agents to the RPE, while 

limiting systemic distribution and potential side effects in other organs. However, performing 

iatrogenic retinal detachment, especially when involving the macula, is potentially harmful for 
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retinal cells, particularly photoreceptor, and even more in eyes with inherited retinal disorders 

eligible for future gene augmentation therapy.196 Numerous studies have shown the deterioration 

of photoreceptors after macula-off rhegmatogenous retinal detachment.197 Since one essential 

role of the RPE is to maintain photoreceptor outer segment metabolism, and that photoreceptor 

outer segments do reform in ~2 months in primates,198 a normal or subnormal outer retinal 

morphology is expected to recover within 2-3 months, as observed in our study using serial OCT 

segmentation and layer thickness extraction. However, this assessment is limitated by the poor 

sensitivity of SD-OCT for RPE analysis.  

The exact effect of subretinal delivery on photoreceptors is controverted, with groups having 

identified and reported deleterious effects of foveal detachments,89 while other reported no 

evident adverse reaction.199 To note, the comparison of these discrepant results is difficult, since 

treatments were administered with different gene therapy products (AAV2.hRPE65 for LCA,89 or 

AAV.REP1 to treat choroideremia by replacing the Rab Escort Protein 1199), different vehicles, 

and different ages (younger patients for the former study).89 Moreover, the latter study was 

performed several years later,199 possibly taking advantage of the experience gained and shared 

by other pioneer groups in injected a gene therapy vector solution subfoveally. 

 The subretinal route	 in our hands would require further optimization, as evidenced by the 

outer retinal alteration observed in Project 1. Several key parameters contributing to the injection 

procedure can be improved, including surgical technique (with or without vitrectomy), the injected 

volume and concentration of viral vector, the injection site (localization; single/multiple), 

detachment of the fovea or its prevention (for instance via the use of perfluorocarbone 

tamponade200), subretinal cannula, automated syringe controlling infusion pressure, or adjuvant 

neuroprotective agents. 

Finally, alternate approaches such as intravitreal delivery of viral vectors,196,201,202 or non-viral 

suprachoroidal electrotransfer,203 have been explored, that may allow to overcome the above-

mentioned limitations of the subretinal route, but their ability to transduce photoreceptors or RPE 

cells and the safety of these approaches are not fully established. 
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Safety	markers	in	retinal	gene	therapy	trials:	the	role	of	retinal	imaging	
	

In addition to functional efficacy markers, including visual acuity and various tools assessing 

retinal sensitivity (mentioned in the Introduction to Project 1), consensual markers of retinal safety 

after subretinal gene therapy are crucially needed to homogenize study results. Retinal layer 

segmentation based on a shared software would offer an objective tool to extract reproducible 

values, reflecting potential retinal damage or restoration. Indeed, in existing reports, different 

OCT treatment and custom segmentation techniques have been employed, limiting the 

comparability of results. For instance, Jacobson et al. (University of Pennsylvania) used a 

MatLab-based segmentation of retinal layers, with OCT scans acquired on the RTVue-100 OCT 

device (Optovue, Fremont, CA, USA), compared to a reference control group.79 On the other 

hand, Testa el al (Children Hospital of Philadelphia) used a Cirrus HD-OCT (Carl Zeiss, Dublin, 

CA, USA) and the built-in segmentation software to extract total retinal thickness value. Finally, 

Bainbridge et al. have assessed only the total retinal thickness at the macula, based on different 

devices, including both time-domain (at baseline in some patients) and spectral-domain OCT, 

and report qualitatively the integrity of the photoreceptor layer.  

We have used a custom-built method, and an external validation by additional image 

segmentation by a group not involved in the development of LV-RPE65 (Giessen University, 

Germany). This group has developed a device-independent OCT segmentation tool172 (using 

here the raw OCT data in .E2E file format from the Spectralis). Such tools, if adopted by groups 

involved in clinical and preclinical gene therapy evaluation, could prove relevant in increasing the 

comparability of results among different studies. 

 

Perspectives	
	

Further pre-clinical investigations in primates or other large animals are needed to ascertain 

the ocular tolerance of LV-RPE65, especially with the use of systemic corticosteroid prophylaxis. 

The investigation of the early and transient inflammatory response observed is currently ongoing 

with the search of neutralizing antibodies against capsid proteins of the lentiviral LV-RPE65 
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vector, in serum sampled at different time points from the non-human primates of Project 1, after 

gene therapy administration. 

The development and translation to human diseases of robust lentiviral vectors for gene 

therapy delivery to the retina will prove useful since there is an estimated 40-80% seroprevalence 

of AAV-specific antibodies in the general population,204 which is an obstacle to the efficacy of 

AAV-based gene transfer, especially after systemic administration.205 Clinical safety is a critical 

issue for novel therapies, especially when derived from pathogenic agents, and when 

administered in the central nervous system. 

 

[Project	2]	CSCR	
 

From	the	observation	of	subretinal	fluid	kinetics	to	its	molecular	characterization	
 

In the Articles 2a and 2b, we characterized the course of subretinal detachments during 

CSCR, including the time to resolution of acute detachments, and the rate of ulterior recurrences. 

Moreover, we investigated the multimodal imaging parameters influencing the time-course of 

subretinal fluid resolution and recurrence, and identified imaging markers presumed to be 

involved in the complex pathophysiology of CSCR, such as choroidal thickness and RPE 

alterations. 

In the Article 2c, we described a detailed patterns of blood flow alteration in the choriocapillaris 

of CSCR patients, and showed that it was related to the vasodilation of deeper choroidal vessels. 

This analysis provided a substrate for a putative mechanism linking choroidal vasodilation and 

RPE defects, the hallmarks of CSCR identified in studies 2a and 2b as key players in the course 

of the disease. This link could reside in the choriocapillaris, the thin innermost layer of the choroid 

where blood flow derives from large choroidal vessels (see Figure 1), that supplies the adjacent 

RPE. Local choriocapillaris non-perfusion could lay the ground for focal ischemic RPE damage, 

resulting in RPE leakage sites. 

Moreover, we showed that the degree of this choriocapillaris flow disturbance was linked to 

patient age (which has also been observed in healthy subjects185) and to the severity of CSCR 
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(acute, recurrent or chronic). Consistently, in acute cases, limited focal damage is suffered by the 

RPE, that preserves an efficient healing capacity; therefore, episodes last a few months until the 

leak resolves and the leakage site is sealed (by new intercellular junctions, in the hypothesis of 

intercellular adhesion defects in the RPE). However, in recurrent or chronic cases, the more 

extended ischemic damage to the RPE, due to more numerous choriocapillaris non-perfusion 

sites, would result in a delayed healing process, long-standing subretinal fluid, and chronic 

epitheliopathy, characterized on fluorescein angiography by multiple pin-point leakage sites. 

Finally, the scope of investigation progressed farther to reach the molecular level, with the 

exploration of the subretinal fluid composition from a CSCR patient in Article 2d. This analysis 

revealed pathways that were consistent with the above-mentioned hypothesis, especially the 

gluco- and mineralocorticoid system, and adhesion molecules. It also opens new insight in the 

pathophysiology of the disease. Particularly, decreased activation of the alternative complement 

pathway as compared to RRD, suggests that sublytic membrane attack complex may be 

defective in CSCR patients, resulting in decreased trans-RPE transport and subsequent inter-

RPE cell breakdown. The identification of gluco/neoglycogenesis by both metabolomics and 

proteomics stresses the major importance of retinal metabolism in the survival and function of 

photoreceptors, a subject actively explored by many teams. Specific proteins have also been 

identified and are currently being validated using other biologic samples from CSCR patients.  

Moreover, the results suggested potential molecular or cellular neuroprotective mechanisms 

activated in CSCR eyes, that prevent photoreceptor degeneration, and could be explored as 

neuroprotective adjuvant therapies in RRD, where photoreceptor degeneration occurs despite 

prompt surgical retinal reattachment. 

These analyses recognized biological compounds deregulated in CSCR eyes, suggesting 

candidate markers of disease activity that will require further investigation. These markers could 

be present in more accessible body fluids, such as tears or serum, which would have broad 

translational applications in the clinical setting. For instance, these markers could facilitate the 

diagnosis of complex clinical presentations between chronic CSCR and polypoidal choroidal 

vasculopathy, AMD, or inflammatory retinal or tumoral entities that may mimick CSCR 

manifestations (choroidal hemangioma, tuberculous uveitis, etc). Two projects are currently 
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ongoing, to investigate markers of MR activation in the serum of CSCR patients (collaboration 

with Min Zhao, Emilie Picard and Francine Behar-Cohen, INSERM, Paris; and Jérémie Canonica, 

Lausanne) and to investigate the proteome in tears from CSCR patients (collaboration with 

Natacha Turck, Genève). 

 

Perspectives:	future	imaging	and	biological	markers	in	CSCR	
 

The studies presented here were aimed at expanding the current understanding of CSCR 

pathophysiology. 

Regarding imaging markers, these results indicate that choroidal thickness or height of RPE 

defects may be used to predict the duration of episodes and the risk of recurrence. Choroidal flow 

voids are a powerful tool in assessing choroidal perfusion of the RPE and to foster the 

understanding of the disease, but may not have direct clinical applications. Future investigations 

should focus on novel imaging markers, that require a simple computational process and may be 

soon embedded in OCT devices. For instance, another parameter reflecting choroidal changes in 

CSCR is the choroidal vascularity index,206,207 that reflects the proportion of the choroidal tissue 

occupied by vessels. This ratio can be estimated by automated image segmentation and 

binarization processes. Choroidal vascularity index could become an imaging biomarker with 

diagnosis and prognosis value in CSCR and subtypes of the disease, that would better reflect 

choroidal thickening and vasodilation changes than choroidal thickness or choriocapillaris flow 

voids separately. 

Regarding biological markers, candidate pathways contributing to CSCR pathophysiology 

have been identified in Article 2d. Relevant molecules derived from these pathways should be 

investigated in more accessible body fluids, such as tears or serum, in order to fulfill the 

requirements for potential diagnosis or prognosis biomarkers. In particular, molecules related to 

MR pathway were identified, which is consistent with the pathophysiology hypothesis of MR over-

activation,208 and with recent genetic evidence of haplotypes of the MR gene (NR3C2) associated 

with CSCR.209 In serum of patients with essential hypertension or kidney disease, markers 

related to MR overactivation have been identified.210 However, these markers have not been 
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explored in CSCR patients. Among candidate molecules, the circulating protein lipocalin-2 (also 

named NGAL, Neutrophil gelatinase-associated lipocalin), which binds matrix metalloproteinase 9 

(MMP9) and modulates its stability, is a primary target of the aldosterone/MR pathway in the 

cardiovascular system, and plays a key role in MR-mediated cardiovascular fibrosis.211 Serum 

levels of Lipocalin-2 and its complex with MMP9 are currently being investigated in the serum of 

patients with CSCR, and could further confirm the involvement of the MR pathway in CSCR 

pathophysiology, and provide clinically applicable markers of CSCR activity. 

 

[Project	3]	Telangiectatic	retinal	disorders	
 

The	emergence	of	OCT	angiography	as	non-invasive	imaging	marker	of	retinal	diseases	
 

The results obtained in Articles 3a, 3b and 3c based on OCT angiography illustrate the 

strength of this non-invasive technique to gain a detailed insight into in vivo pathological 

processes, and extract relevant information regarding disease pathophysiology. 

Immediate after the first qualitative descriptions of retinal or choroidal features by OCT 

angiography in health and disease, quantitative tools emerged. These tools were particularly 

appropriate given the digitalized nature of the grayscale OCT angiography images. For instance, 

the first commercially available Angiovue RTx100 system (Optovue, Fremont, CA, USA), 

provides 304´304-pixel “en face” images extracted after layer-specific segmentation with 

maximal intensity projection of voxels from the raw volume scan. The first quantitative parameters 

derived from these scans and reported in the literature were vascular density, a ratio of 1 versus 

0 pixels after image binarization at different grayscale intensity thresholds (arbitrary; mean[image 

intensity] - 1´SD; mean[image intensity] - 2´SD; etc). Soon (early 2016), this ‘vascular density’ 

function was embedded in the built-in Angiovue software (AngioAnalytics), increasing the 

repeatability of this outcome, with the drawback that the manufacturer did not make public its 

protected algorithm, resulting in a paradoxical situation where abundant literature reports, 

although gaining reproducibility, do rely on an unknown calculation method. Before the 

embedding of this vascular density within the device, we designed our own algorithm to compute 
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vascular density from OCT angiography acquisitions, and have added a local density function to 

assess the vascular density in regions of interests around remarkable features, as exemplified in 

Article 3a with retinal vascular telangiectasias. 

Article 3c demonstrates how computerized image analysis can meet qualitative clinical 

observations by deriving complex parameters from OCT angiography reflecting the degree of 

disorganization of capillary networks, such as local fractal dimension. Interestingly, this dimension 

was correlated to a masked, qualitative grading by retina specialists, indicating the potential of 

this parameter. However, this correlation was not stronger than between the qualitative grading 

and capillary density, suggesting that local fractal dimension is a relevant endpoint that needs to 

be further optimized to outscore other quantitative parameters, and tested in many other retinal 

disorders, starting with the most frequent (retinal vein occlusions, diabetic retinopathy). 

 

PlGF,	VEGF	and	their	inhibition	in	retinal	telangiectatic	disorders	
  

Article 3b demonstrates how intraocular biological markers contribute to improve the 

mechanisms of retinal vascular disorders. Particularly, the ocular levels of angiogenic factors in 

MacTel 1 eyes, selected as phenotype of “pure” vascular disease of developmental origin, 

bridges preclinical findings in an animal model (that allowed the identification of the relevant 

marker, PlGF) with clinical evidence and therapeutic applications with the efficacy of aflibercept in 

treating this disorder. Moreover, an additional validation was brought by the correlation of PlGF 

levels with OCT angiography capillary density. This correlation is an illustration of the surrogate 

endpoint criteria exposed in the Introduction, since PlGF levels are connected both to a clinical 

“hard” endpoint (visual acuity recovery, macular thickness decrease) and to a putative 

mechanism (relationship with capillary network integrity, supported by OCT angiography findings 

and the preclinical evidence in PlGF-overexpressing rats33). 

This study highlighted the role of PlGF and the VEGFR-1 pathway in retinal vascular 

pathogenesis, but it did not rule out the contribution of VEGF. First, both VEGF and PlGF bind to 

VEGFR-1. Second, the conventional anti-VEGF agents bevacizumab and ranibizumab, that were 

employed before aflibercept, had a partial effect on macular edema. Then, the study is limited by 
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the small cohort size, and outlier values may have an important effect on the statistical 

comparisons performed (although the superior outliers on the [PlGF] and [VEGF-A] aqueous 

humor plots of MacTel 1 did not correspond to the same subject). 

The similarities between manifestations of MacTel 1 and radiation maculopathy suggested to 

carry out similar analysis in radiation maculopathy, where in addition we observed a favorable 

response to aflibercept. An enhanced analysis is currently ongoing with the exploration of 

angiogenic factors, coupled to inflammatory mediators (cytokines, etc) by multi-array 

immunoassay, in the low-volume aqueous humor samples retrieved from radiation maculopathy 

eyes. Moreover, possible correlations with imaging metrics will also be investigated in these eyes.  
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Conclusions	

The works performed in this thesis followed a “bench to bedside” strategy, investigating 

biological and imaging markers derived from preclinical, mechanistic or imaging observations, 

that were tested and validated on clinical situations with the perspective of applications as 

diagnosis, prognosis, monitoring or safety markers. 

In particular, the interest of coupling multimodal ocular imaging and biological markers has 

been established in Article 3b (MacTel 1), and its application to other conditions will require 

additional development. 

 

The aims stated in the Introduction have been at least partially met: 

1) Novel parameters have been developed for non-standard clinical situations lacking 

established endpoints, such as retinal gene therapy testing (Project 1), choriocapillaris 

imaging in CSCR (Project 2c) or fractal analysis in radiation maculopathy (Project 3c). 

2) Progresses were made in the understanding of retinal disorder mechanisms using imaging 

and molecular investigations (Projects 2 and 3) 

3) Progresses were made in the understanding of treatment effects, and in parameters 

guiding therapeutic decision (Project 1, 2a, 2d and 3b). 

4) New potential molecular therapeutic targets were identified (Projects 2d and 3b). 

5) Prognosis markers were identified (all projects, particularly 2a, 2b, 3a and 3c). 

 

Yet, several works remain under progress, as detailed in the specific Discussion of each 

Project, such as: 

• Project 1: 

o characterization of the ocular and systemic immune response to the LV-RPE65 

vector 

o tolerance assessment to LV-RPE65 with co-administration of systemic 

corticosteroids as adjuvant anti-inflammatory prophylaxis 

• Project 2: 

o investigate candidate serum markers of CSCR 
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o investigate new imaging parameters such as choroidal vascular index (ratio of 

hyper-refelective tissue to intraluminal hypo-reflective area on choroidal OCT 

scans) 

o investigate potential correlations between choroidal morphological parameters and 

biological parameters (especially serum markers), further elucidating disease 

mechanisms 

 

• Project 3: 

o explore the ocular angiogenic factor profile of radiation maculopathy eyes, and 

possible correlations with imaging markers 

o further assess the test-retest reliability and inter-operator repeatability of fully 

automated and semi-automated image processing algorithms, respectively 

 

This approach contributed to the development of dedicated clinical tools for orphan retinal 

diseases (MacTel 1, CSCR), or exceptional therapeutic situations (gene therapy for LCA, 

maculopathy post-irradiation for intraocular tumors). It also derives on larger, public-health scale 

perspectives, since these biological and imaging markers could also accelerate medical tests, 

especially in high workflow, low-medical staff clinical settings such as medical retina outpatient 

clinics, in remote areas or developing countries, via telemedicine. 

 

Finally, further validation and consolidation of image processing algorithms employed here 

(and detailed in the Appendices) will be required, and the most relevant algorithms should be 

made available to the research community, via this thesis manuscript and via future submissions 

to journals specialized in imaging methodology. 
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Evaluation of tolerance to lentiviral LV-RPE65 gene
therapy vector after subretinal delivery in
non-human primates

ALEXANDRE MATET, CORINNE KOSTIC, ALEXIS-PIERRE BEMELMANS, ALEXANDRE MOULIN,
SERGE G. ROSOLEN, SAMIA MARTIN, FULVIO MAVILIO, VAZRIK AMIRJANIANS, KNUT STIEGER,
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Several approaches have been developed for gene therapy in RPE65-related Leber
congenital amaurosis. To date, strategies that have reached the clinical stages rely
on adeno-associated viral vectors and two of them documented limited long-term
effect. We have developed a lentiviral-based strategy of RPE65 gene transfer that
efficiently restored protein expression and cone function in RPE65-deficient mice.
In this study, we evaluated the ocular and systemic tolerances of this lentiviral-
based therapy (LV-RPE65) on healthy nonhuman primates (NHPs), without adjuvant
systemic anti-inflammatory prophylaxis. For the first time, we describe the early
kinetics of retinal detachment at 2, 4, and 7 days after subretinal injection using
multimodal imaging in 5 NHPs. We revealed prolonged reattachment times in
LV-RPE65–injected eyes compared to vehicle-injected eyes. Low- (n 5 2) and
high-dose (n 5 2) LV-RPE65–injected eyes presented a reduction of the outer
nuclear and photoreceptor outer segment layer thickness in the macula, that was
more pronounced than in vehicle-injected eyes (n 5 4). All LV-RPE65–injected
eyes showed an initial perivascular reaction that resolved spontaneously within
14 days. Despite foveal structural changes, full-field electroretinography indicated
that the overall retinal function was preserved over time and immunohistochemistry
identified no difference in glial, microglial, or leucocyte ocular activation between
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low-dose, high-dose, and vehicle-injected eyes. Moreover, LV-RPE65–injected
animals did not show signs of vector shedding or extraocular targeting, confirming
the safe ocular restriction of the vector. Our results evidence a limited ocular toler-
ance to LV-RPE65 after subretinal injection without adjuvant anti-inflammatory pro-
phylaxis, with complications linked to this route of administration necessitating to
block this transient inflammatory event. (Translational Research 2017;188:40–57)

Abbreviations: NHP ¼ nonhuman primates; LE ¼ left eye; RE ¼ right eye; IOP ¼ intraocular pres-
sure; EZ ¼ ellipsoid zone; ONL ¼ outer nuclear layer; ERG ¼ electroretinogram

INTRODUCTION

Retinal dystrophies, especially those with childhood
onset, are a lifetime burden for affected individuals,
with no available treatments. Recently, retinal gene
therapy based on subtypes of adeno-associated virus
(AAV)1-6 or lentivirus-derived vectors7-10 has made
tremendous advances to correct several monogenic
diseases in rodent and large animal models providing
the ground to design first clinical trials and translate
this technology in humans.11 The first gene augmenta-
tion strategy in an inherited retinal disorder was devel-
oped clinically for patients with Leber congenital
amaurosis due to RPE65 deficiency.12 RPE65 is a
retinal pigment epithelium (RPE)–expressed enzyme
with isomerase activity, which plays a key role in the
visual cycle by recycling chromophores necessary
for the phototransduction.13-15 Three main clinical
trials initiated in the US16,17 and UK18 based on the
AAV2/2-vector approach demonstrated a limited
safety with partial, and in 2 trials transitory, visual
function restoration. In one trial, inflammation
induced by AAV2/2 vector at the highest dose required
redesigning of the vector using an AAV5 capsid.19 In
addition, ongoing trials are conducted in Israel
with the AAV2/2 vector developed by the group of
Hauswirth,20 and in France with the AAV2/4 vector.21

The major visual improvements were attested using

AT A GLANCE COMMENTARY

Matet A, et al.

Background

Leber congenital amaurosis, a severe and early-
onset form of retinitis pigmentosa is historically
the first eye disease to benefit from gene therapy,
with several groups worldwide developing AAV-
based gene replacement approaches for RPE65,
one of the causative genes. However, some clinical
trials showed limited safety and only partial recov-
ery which could be linked to the subretinal surgical
route, or to subtherapeutic protein levels. Simulta-
neously, our group has developed a HIV-1–derived
lentivirus-based strategy (LV-RPE65), using the
high transduction capability of this vector to target
epithelia such as the retinal pigment epithelium,
which expresses the RPE65 enzyme. LV-RPE65
can restore photoreceptor integrity and function,
as previously demonstrated by our group in 2 ro-
dent models of RPE65 deficiency. In this study,
we have pursued the translational development of
LV-RPE65, to evaluate the ocular and systemic
tolerance to LV-RPE65 after subretinal injection
in 5 nonhuman primates without antiinflammatory
prophylaxis.

Translational Significance

In the present study, the absence of systemic LV-
RPE65 vector particle shedding after subretinal in-
jection in body fluids, or of vector genome integra-
tion in various organs is promising for the ocular
use of lentiviral vector. Nevertheless, a transient
perivascular retinal reaction occurred at very early
stages (2 days) following vector administration,
and a thinning of the photoreceptor layer at the
macula level was observed in all groups, including
vehicle-treated animals. No other major ocular
adverse event was recorded, except in one eye
that inadvertently received intraocular doses due
to a leak into the vitreous cavity. Importantly, we

were not able to find any other preclinical study
in the literature reporting ocular and retinal moni-
toring at early time points after subretinal gene
therapy administration. Our report is thus the first
to give insight into these early events and may
contribute to elucidate several limitations of the
subretinal route approach. These observations
contribute to optimizing the translational process
of retinal gene therapy, from both the surgical
and the gene transfer perspectives, and highlight
the necessity to improve lentiviral vector tolerance
by antiinflammatory pretreatment.
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dark-adapted perimetry,22,23 that identified an
increased retinal sensitivity in the treated area of
certain patients. Functional magnetic resonance
imaging of the visual cortex showed contrast
discrimination enhancement, for a subset of
patients24 and mobility testing demonstrated the abil-
ity to better navigate after treatment in certain
patients.22,25 Differences in the effect of gene
therapy between these different trials, or between
treated patients, results probably from multiple
factors, including the timing of intervention during
disease course, surgical delivery techniques
(administered volume, flow rate, procedure), vector
designs, and patient genetic backgrounds. Moreover,
subjective parameters used to reveal the effect of
gene therapy such as visual acuity or retinal
sensitivity testing might be biased, despite efficient
viral transduction, because of cortical amblyopia
following long-standing visual loss in early childhood.
The major hurdle experienced in these trials was that

subretinal injection under the macula induced, in several
patients, retinal thinning and/or foveal morphologic
changes, which were not foreseeable and may have
contributed to the lack of central vision restoration.22,26

Because inclusion of control subjects receiving the buffer
solution subretinally was not planned in these studies for
obvious ethical reasons, it is not clear whether the
surgery by itself is deleterious or whether the vector
contributes to these unexpected retinal alterations.
In addition, despite improvements in visual sensitivity,

the degenerative rate of the treated eye remained similar
to the nontreated eye,22,23 indicating either an
unstoppable disease progression, inappropriate
treatment delivery (timing of treatment, surgical
techniques), or an insufficient vector efficacy.19 The
available amount of chromophore is determinant for
photoreceptor function and survival, and consequently
RPE65 expression levels are correlated to retinal function
and to the rate of retinal degeneration in animal models.
For instance, in the Rpe65R91W/R91Wmouse model, where
the amount of RPE65 is decreased by around 90%, elec-
troretinography showed a 3-log reduction in retinal sensi-
tivity at 1-month of age, as compared with wild-type
mice, which is correlated to the level of RPE65 protein.27

In human, no electroretinogram (ERG) responses were
observed after RPE65 gene transfer, whereas similar
doses in dogs deficient for the samegene led to clinical re-
sponses, such as recovery of retinal activity and vision-
guided mobility.21,28 To note, dogs injected with
suboptimal doses also showed improvement of visual
behavior without ERG amelioration.22,29 These
discrepancies between clinical observations and animal
studies raised concerns over viral vector efficacy in
humans. Taking into account the data generated by

Bainbridge et al. (2015), a 200-fold increase in gene
expression could be necessary in humans to reach similar
therapeutic effects as in canine models.19,22

In this context, the development of optimized vec-
tors is a necessary step to improve gene expression af-
ter gene transfer. We previously investigated the
efficacy of lentiviral vectors (LVs) for RPE65 gene
transfer in rodent models, and showed the rescue of
100% of cones in the treated area of Rpe65 knock-
out mice30 and the reactivation of cone cellular func-
tion during the course of degeneration in Rpe65R91W/

R91W mice,31 an effect not reported so far. To further
progress toward the clinical application of LVs for
RPE65 deficiency, we have evaluated a GMP (Good
Manufacturing Practice)–like production of an LV ex-
pressing the hRPE65 gene under the hRPE65 pro-
moter,30 injected subretinally into the eyes of
nonhuman primates (NHPs). No systemic adjuvant
anti-inflammatory prophylaxis was administered, con-
trary to other safety studies performed in large
animals,21,28,32-34 to detect potential side effects not
observed in rodents that may occur when translating
this gene therapy to primates.
The aim of this study was to evaluate the ocular and

systemic safety of this LV following subretinal adminis-
tration, in terms of retinal structure, retinal function, and
systemic biodistribution.

METHODS

Animals and study design. This safety study on 5
na€ıve female Macaca fascicularis (3–6 years old),
adhered to the ARVO Statement for the Use of
Animals in Ophthalmic and Vision Research and
obtained an institutional permission from the French
Ministry of Agriculture after evaluation by the local
ethical committee (2015062915001228vl). All pro-
cedures were performed in an approved user establish-
ment (agreement number 92-032-02), in compliance
with the European directive 2010/63/UE and French
regulations. Animals were socially housed, had
access to standard certified commercial primate food
(Altromin, Genestil, Royaucourt, France) and pro-
cessed municipal tap water, with food supplements
such as fresh fruits. Room temperature was main-
tained at 20"C–24"C, with 55 6 10% humidity and
12/12 light-dark cycle. Psychological and
environmental enrichment was provided. Animals
were regularly checked for clinical signs or other
changes by caretakers and examined by the
veterinary staff when needed.
To reduce the number of animals used in the study,

and according to existing reports indicating an
absence of systemic inflammatory reaction following

Translational Research
42 Matet et al October 2017

http://dx.doi.org/10.1016/j.trsl.2017.06.012


subretinal injection of TSSM, 3 NHPs received the LV
solution (LV-RPE65) in one eye and the vehicle
(TSSM) in the other eye. The fourth NHP received
LV-RPE65 only in one eye and the fifth NHP received
the vehicle only in one eye, this latter serving as
negative control for the systemic biodistribution study
(Table I). Two NHPs received a dose 1 of LV-RPE65
solution (2.8 3 105 IU in 100 mL; animals 1A and
1B), estimated to yield approximately one infectious
particle per RPE cell in the detached retinal area
and 2 other NHPs received LV-RPE65 at dose
2 5 10 3 dose 1 (2.8 3 106 IU in 100 mL; animals
2A and 2B). After the last clinical evaluation time
point corresponding to the date of scheduled death,
animals were sacrificed by intravenous injection of
sodium pentobarbital and eyes and other organs were
sampled.

Lentiviral vector production. The LV-RPE65 LV
solution used in this study is a GMP-like production of
a vector whose recombinant genome is similar to the
one evaluated previously in RPE65-deficient
mice.30,31,35 Briefly, the LV-RPE65 is an integrative,
third-generation, replication-defective, self-inactivating
human immunodeficiency virus (HIV)-1–derived LV,
with a mutated Woodchuck hepatitis virus
Posttranscriptional Regulatory Element (WPRE)
sequence devoid of promoter activities or open-reading
frames.36 It contains the R0.8 promoter (800 bp of the
human RPE65 promoter)28,37 which drives directly the
expression of the RPE65 cDNA (without introns). For
this study, we used the human RPE65 cDNA, while
the mouse RPE65 cDNA was used previously to
demonstrate vector efficacy in RPE65 mouse
models.30,31,35

The RPE65 LV (LV-RPE65) was produced by
transient transfection of suspended HEK293 T cells
in a serum-free media (customized F17 medium,
Invitrogen, Carlsbad, Calif), in a 10-L glass bioreactor

(Biostat B-DCU, Sartorius, G€ottingen, Germany).
Briefly, LV-RPE65 was produced by transient
4-plasmid transfection with polyethylenimine
(PEIpro, Polyplus-transfection, Illkirch-Graffenstaden,
France) as transfection reagent. To enhance viral
production, sodium butyrate was added 24 hours after
transfection at a final concentration of 10 mM. To
remove contaminating DNA a benzonase/Dnase
solution (50 U/mL) was added 24 hours after transfec-
tion in the culture media. The cell supernatant was
harvested 48-hour after transfection and filtered
through 20/3/0.45-mm filters to discard cell debris
and purified by following pre-GMP guidelines. The
downstream purification process included an ion
exchange chromatography, a concentration using a
tangential flow filtration in a hollow fiber with
750-kDa cutoff (GE Healthcare, Little Chalfont, UK)
and a final formulation in TSSM buffer (tromethamine
20 mM, NaCl 100 mM, sucrose 10 mg/mL, and
mannitol 10 mg/mL).

Subretinal administration of LV or vehicle. Surgical
procedures were performed after an overnight fasting
period under general anesthesia with tracheal intubation
and maintenance of spontaneous breathing. Anesthesia
was induced by intramuscular ketamine chlorhydrate
(100 mg/ml; 0.4-0.8 ml) and xylazine (20 mg/ml;
0.1-0.15 ml), followed by continuous intravenous
propofol infusion (10 mg/ml; 1 ml then 3-5 ml/h).
All surgeries were performed by an experienced

vitreoretinal surgeon (FBC) using a 3-port, sutureless
pars plana vitreoretinal surgery system with valved
25-gauge trocars (Constellation, Alcon Laboratories,
Inc, Fort Worth, Tex), after pupil dilation with tropica-
mide 1% and double povidone iodine disinfection of
periocular skin, eyelids, and conjunctiva. The infusion
line was placed inferotemporally, the left superior port
was used for the light fiber and the right superior port
for the injection cannula. A 41-gauge ‘De Juan’

Table I. Description of eyes receiving the LV-RPE65 lentiviral vector or the vehicle (TSSM), in 5 female Macaca
fascicularis

Monkey ID Eye Group Time of sacrifice Comments

1A RE TSSM 30 d after RE/LE injection
LE LV-RPE65 dose 1 Injected same day as RE

1B RE LV-RPE65 dose 1 30 d after RE injection
LE -

2A RE TSSM 90 d after LE injection
LE LV-RPE65 dose 2 Injected 30 d after RE

2B RE TSSM 90 d after LE injection
LE LV-RPE65 dose 2 Injected 30 d after RE (1 accidental intravitreal

dose 1 1 subretinal dose)
C RE TSSM 90 d after RE injection

LE -

Abbreviations: LE, left eye; RE, right eye.
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Cannula (Synergetics, Inc, O’Fallon, Mo) was used for
subretinal injections. To minimize dead volume, it was
connected via a custom low-caliber line to a 100-mL
Hamilton Syringe (Sigma-Aldrich, St. Louis, Mo). Sub-
retinal injections were performed at a site superior to the
macula and adjacent to the superior arcade to obtain a
macular detachment. No prophylactic systemic anti-
inflammatory treatment was administrated before or at
the time of the procedure. After injections, eyes
received a single application of dexamethasone/oxytet-
racycline ointment. In one case of intense intraocular
inflammation during the first postoperative week, anti-
inflammatory treatment by intravenous or intramuscular
methylprednisolone 1 mg/kg was administered daily
during 3 days.

Clinical evaluation and multimodal retinal imaging. At
each clinical evaluation time-point, anesthesia was
performed similarly as for surgical procedures.
Urine (#150 mL), venous blood (#150 mL), and tears
(#20–50 mL) were sampled for viral particle shedding
assays at days 0, 2, 4, 7, 14, and 28 in all animals, and
additionally at day 90 for animals 2A, 2B, and C.
Intraocular pressure (IOP) was measured using the iCare
rebound tonometer (Icare Finland Oy, Vantaa, Finland).
After pupil dilation with tropicamide 1%, the degree of
intraocular inflammation was assessed by a trained
ophthalmologist by grading the density of cells in the
anterior chamber and vitreous in a 1 3 1-mm focused
slit-lamp beam with 25 3 magnification: 0 (no cells),
11 (5–10 cells), 21 (10–25 cells), 31 (25–50 cells),
and 41 (.50 cells).
The fundus was assessed by indirect fundoscopy

and fundus color photograph with the Smartscope
camera (Optomed, Oy, Oulu, Finland). Optical
coherence tomography (OCT), infrared reflectance,
short-wavelength autofluorescence, and blue reflectance
imaging were performed on Spectralis (Heidelberg
Engineering, Heidelberg, Germany). If needed,
fluorescein and indocyanine green angiography were
additionally performed using Spectralis.

Optical coherence tomography analysis. Serial
horizontal and vertical 30-degrees OCT sections
acquired at the level of the fovea were processed using
the automated layer segmentation tool of the Spectralis
software (Heidelberg Eye Explorer, version 1.9.10.0) to
obtain the layer thickness profiles for the total
neurosensory retina (from internal limiting membrane
to RPE), the outer nuclear layer (ONL, from its
interface with the outer plexiform layer to the outer
limiting membrane, OLM), and the photoreceptor outer
segments–RPE complex (POS 1 RPE, from OLM to
RPE). In each scan, the mean thickness corresponding
to the detached area of the retina was extracted and
calculated using a custom algorithm on MATLAB

(version 2015b, MathWorks, Natick, Mass). At each
time point, the mean layer thickness was estimated
within the detached area by averaging the thickness
obtained from the horizontal and vertical OCT scans.
An additional segmentation of retinal layers was

performed using the custom-made DiOCTA software
for OCT raw data analysis as described previously,38

over an identical area within the detached retina in all
eyes. This 1-mm-diameter circular area was located
1.1 mm superior and 2.2 mm nasal to the fovea, using
as horizontal reference a straight line from the optic
disc center to the fovea (Supplementary Fig 1). The
distance between the injection site and this area was at
least 3 disc diameters.

Electrophysiology. The ERG recordings were per-
formed in all animals 1 week before the surgical proced-
ures (baseline), 16 days and 30 days after the procedure,
and additionally 90 days after the procedure in animals
2A, 2B, and C. Anesthesia with tracheal intubation and
spontaneous breathing was obtained by intramuscular
ketamine chlorhydrate and intravenous medetomidine
hydrochloride administrations. Animals were prepared
and recorded in a dim light room as previously
described.39,40 A 10.2.55 version Visiosystem (Siem
Bio-M"edicale, N̂ımes, France) was used to generate the
flash stimuli, as well as to record and analyze the ERG
responses. Binocular full-field ERGs were elicited with
2 photostimulators (source: achromatic LEDs) for
background conditions and flash stimulations
(maximum intensity: 1.9 log cds/m2). First, the cone
system was tested in photopic conditions against a
bright background (25 cd.m22) aimed at desensitizing
the rod system during 10 minutes. Photopic responses
were obtained with 9 decreasing intensities of a series
of 15 white LED bright flashes stimuli (from 1.90 log
cd.s.m22 to 20.80 log cd.s.m22) delivered at 1.3 Hz
(interstimuli interval of 769 ms) to determine the
‘‘Imax’’ intensity corresponding to the maximum b-wave
amplitude (V max) observed at the saturation point of
the luminance curve (maximum cone system
response).41,42 Following determination of the Imax at
each time point, the flicker ERG responses were
obtained with white flash stimuli of Imax intensity
delivered at 30 Hz during at least 15 seconds. Then the
light was switched off and the rod system tested in
scotopic conditions. After 20 minutes of dark
adaptation, scotopic responses were obtained in dark
conditions with an average of 5 dim light flashes
(intensity: 21.1 log cd.s.m22) delivered at 0.1 Hz
temporal frequency, corresponding to 10-second
interstimuli intervals. Two minutes after the last
scotopic flash, in the same scotopic conditions, the
combined rod-cone response was elicited with a unique
Imax white flash.
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Assessment of shedding and distribution of LV
particles. Shedding of lentiviral particles in body fluids
(urine, blood, and tears) after injection was evaluated
after RNA extraction of each fluid sample (NucleoSpin
RNAVirus Kit, Macherey-Nagel, D€uren, Germany) and
storage at 280"C. Lentiviral particles were quantified
by quantitative reverse transcriptase-polymerase chain
reaction (qRT-PCR) targeting specific sequences of
the lentiviral genome. Briefly, for each sample, 400 ng
RNA were subjected to DNase digestion and reverse
transcribed using SuperScript VILO cDNA synthesis
kit (Life Technologies, Carlsbad, Calif) according to
the manufacturer’s instructions. The targeted
transgene sequence was then amplified using iTaq
universel SYBR Green Supermix on a CFX384 wells
thermocycler (Biorad, Marnes-la-Coquette, France)
with the following primers: forward primer,
50-ATCCCTGTCACCTTTCATGG-3’; reverse primer,

50-TGGGAATAAATGGCGGTAAG-30 designed with
Primer3 version 2.3.7 (http://sourceforge.net/projects/
primer3). Samples and standard points were tested in
duplicate.
The possible integration of lentiviral genome was

assessed on genomic DNA extracted from flash frozen
organ biopsies using the DNeasy blood and tissue kit
(Qiagen, Hilden, Germany). DNA samples were stored
at 220"C and processed for quantitative PCR targeting
the human RPE65 mRNA sequence using the primer
pair described above.

Ocular immunohistochemistry study. Enucleated eyes
were fixed in 4% paraformaldehyde immediately af-
ter scheduled death procedures for 1 hour, then pre-
served in 1% paraformaldehyde, until they were
equilibrated overnight in sucrose 30% and embedded
in albumin from hen egg white (Fluka, Buchs,
Switzerland). Sixteen-mm cryosections were obtained

Fig 1. Course of progressive retinal reattachment after subretinal administration of vehicle or lentiviral vector
preparation. In 3 representative eyes receiving the vehicle (TSSM, A), the LV-RPE65 lentiviral vector at dose 1
(B) or dose 2 (C), the upper panel shows infrared reflectance images immediately (left) and 7 days (right) after
injection. Serial optical coherence tomography of the macula (green arrows) performed immediately and at
days 2, 4, and 7 after administration show a progressive retinal reattachement. From the vehicle-injected eye to
dose 1– and dose 2–injected eyes, there was an increasing reattachement delay and an increasing degree of early
outer retinal alterations. LE, left eye; RE, right eye.
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from the temporal periphery to the optic nerve head.
Immunohistochemistry was performed on macular
and extramacular sections containing the injected
area with antibodies directed against CD45
(#M0701, Dako, Zug, Switzerland), glial fibrillary
acid protein (GFAP, #G3893, Sigma, Buchs,
Switzerland), vimentin (#MA5-11883, Thermofischer
Rockford, Ill), Iba-1 (#019–19741, Wako, Neuss,
Germany), and M-Opsin (#AB5405, Chemicon,
Temecula, Calif) which were revealed with the
appropriate secondary antibodies coupled with

Alexa Fluor488 (Molecular Probes, Eugene, Ore).
Cryosections were also processed for hematoxylin-
eosin stain.

Organhistology. Organ biopsies from inferior eyelids,
right/left optic nerves, right/left geniculate bodies,
right/left visual cortex, heart, liver, right/left lung,
right/left ovary, right/left kidney, and right/left mandib-
ular lymph nodes were obtained after sacrifice and
transferred into formalin. After conventional tissue
processing, evaluation for macroscopic/microscopic
morphologic alterations and signs of inflammation

Fig 2. Assessment of ocular and retinal inflammation after LV-RPE65 subretinal injection. In (A) to (C) is dis-
played the Fundus blue reflectance imaging from the left eye of animal 1A, 2 days after the subretinal delivery
of dose 1 LV-RPE65. (A) shows an early vasculitis-like perivenular reaction with progressive fading by day 7
(B) and resolution by day 14 (C). Fluorescein angiography in (D) performed at day 4 after administration did
not reveal any active vasculitis. Anterior chamber cell count (E) showed a transient mild inflammation in
TSSM- and dose 1–injected eyes and a more intense reaction in dose 2–injected eyes that resolved progressively
over the course of follow-up. Similarly, vitreous cell count (F) showed a transient mild inflammation in TSSM- and
dose 1–injected eyes and a moderately intense inflammation in dose 2–injected eyes that also resolved progres-
sively over the course of follow-up. LE, left eye; RE, right eye.
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was performed by an experienced pathologist who was
masked to group assignment.

RESULTS

Subretinal administration of LV-RPE65 vector and
vehicle. A subretinal detachment of the macular area

was obtained in all the 8 injected eyes (TSSM: 4
eyes; LV-RPE65 dose 1: 2 eyes; and LV-RPE65 dose
2: 2 eyes). The mean detached surface was
119 6 4.2 mm2 among the 4 eyes injected with
LV-RPE65, showing good reproducibility for the
delivery process. In the left eye (LE) of animal 2B

Fig 3. Multimodal imaging following subretinal administration of TSSM in 4 control Macaca fascicularis eyes.
Infrared reflectance (IR) performed immediately after subretinal injection (day 0) showed the topography of the
subretinal bleb, and revealed variable degrees of fundus pigmentary changes at day 28 after injection. Similarly,
short-wavelength autofluorescence (SW-AF) and blue reflectance (BR) showed retinal pigment epithelium changes
related to the detached retinal area or the injection site. Noticeably, the eye C (RE) exhibited a perifoveal concentric
circular pattern in the 3 modalities, and the eyes C (RE), 1B (RE), and 2B (RE) showed a concentric hyporeflective
and hypoautofluorescent ring at the periphery of the detached retinal area. LE, left eye; RE, right eye.
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(LV-RPE65 dose 2), the first attempt resulted in a
retrohyaloidal injection with dispersion of the
lentiviral solution within the vitreous cavity, and
was followed by a second successful subretinal

injection resulting in a 121-mm2 bleb. OCT and
fundus infrared reflectance images showing
blebs immediately after injection are displayed in
Figs 1–3, respectively.

Fig 4. Multimodal imaging following subretinal administration of LV-RPE65 in 4 control Macaca fascicularis
eyes. Infrared reflectance (IR) performed immediately after subretinal injection (day 0) showed the topography
of the subretinal bleb and revealed mild fundus pigmentary changes at day 28 after injection. Similarly, short-
wavelength autofluorescence (SW-AF) and blue reflectance (BR) showed moderate retinal pigment epithelium
changes related to the detached retinal area or the injection site. Particularly, the 2A (RE) eye showed a concentric
peripheral ring similar to those observed in TSSM-injected animals (Fig 3). The 2 B (LE) eye that received an
additional intravitreal dose of LV-RPE65 presented a macular hyperautofluorescence suggestive of more advanced
alterations of the outer retina and retinal pigment epithelium. By day 28, BR imaging showed no residual signs of
the early, vasculitis-like reaction displayed in Fig 2. LE, left eye; RE, right eye.
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Systemic assessment. A moderate weight loss was
observed in 2 LV-RPE65–injected NHPs at the 30-day
time point (animal 1A: 20.34 kg, animal 2A:
20.52 kg) that had resolved by 90 days for the animal
that reached this time point (2A). Animal C who was
dosed subretinally with TSSM only also presented a
transitory weight loss (20.41 kg) at 30 days that had
resolved by 90 days. There were no unscheduled
deaths during the study period.

Clinical and imaging ocular observations. The evalua-
tion of subretinal blebs by serial OCTs during the first
postoperative week showed a progressive reattachment
that was completed at the fovea by day 4 in TSSM-
injected eyes, and by day 7, at the latest, in LV-RPE65
dose 1–injected eyes. LV-RPE65 dose 2–injected eyes
showed persistence of subretinal material at day 7, as
illustrated in Fig 1, B and C.
Two days after subretinal injection, biomicroscopy

revealed a moderate-to-intense anterior chamber
and vitreous cellular reaction, which slowly resolved
over the follow-up period. This reaction was
more intense in dose 2–injected eyes than in dose
1– and vehicle-injected eyes (Fig 2, E and F). In

particular, the LE of animal 2B which had received
an extra intravitreal dose of LV-RPE65 presented
initially an intense anterior chamber reaction (41),
requiring an intravenous dose of methylpredniso-
lone, followed by progressive resolution of the intra-
ocular reaction.
Surprisingly, all 4 eyes receiving LV-RPE65

presented an early vasculitis-like reaction with perive-
nular whitening and blood extravasation, suggestive of
frost-branch angiitis. There was no sign suggestive
of retinal necrosis, and the retinal signs subsided
progressively over 14 days (Fig 2). This reaction
was best recorded on fundus blue reflectance, indi-
cating its localization to the inner retina around
middle-sized retinal venules. Fluorescein and indoc-
yanine green angiography performed at day 2
(animals 2A and 2B) or day 4 (animals 1A and 1B)
did not show signs of active vasculitis, pointing to
the early and transitory timing of this phenomenon.
There were variable fundus pigmentary changes in

TSSM- and LV-RPE65–injected eyes, as illustrated in
Figs 3 and 4. A circular hyperpigmentation was
frequently visible at the periphery of the detached

Fig 5. Optical coherence tomography of the fovea after subretinal administration of the LV-RPE65 lentiviral vector
or the vehicle (TSSM). Horizontal optical coherence tomography scans at baseline (before subretinal administra-
tion), day 28, and day 90 (when available) showed minimal, reversible outer retinal changes with ellipsoid zone
hyporeflectivity in one TSSM-injected eye (C [RE]). There was mild outer retinal alterations by day 28 in eyes
receiving dose1LV-RPE65 (1A [LE], 1B [RE]), forwhich no imagingwas available byday 90due to earlier sacrifice
in the study design. Similarly, there were moderate changes with a granular appearance of the ellipsoid zone in one
dose 2 LV-RPE65–injected eye (2A [LE]), with recovery of ellipsoid zone integrity by day 90, but there was more
pronounced outer retinal alterationswith the presence of an hyperreflectivematerial in the other LV-RPE65–injected
eye (2B [LE]), that also received an accidental intravitreal dose of lentiviral vector. LE, left eye; RE, right eye.
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area, with a clear hyperpigmented ring in 3 TSSM-
injected and 1 LV-RPE65–injected eye, visible on
infrared and blue reflectance, and short-wavelength
autofluorescence. There was also hypo/hyperautofluor-

escent changes related to the injection site, and a pattern
formed by multiple concentric rings variably observed
around the fovea.
A transient decrease in IOP was observed in all eyes

after surgery, and was more pronounced in
LV-RPE65–injected eyes than TSSM-injected eyes,
probably related to the degree of postoperative intraoc-
ular inflammation. However, it was self-resolving with
mean IOP measurements of 10-mm Hg, 8-mm Hg,
and 11-mm Hg at day 28 in eyes dosed with
LV-RPE65 dose 1, dose 2, and TSSM, respectively.

Assessment of retinal layers on OCT. The qualitative
evaluation of retinal layers at the macula with serial
OCT showed outer retinal changes at day 28 in
LV-RPE65–injected eyes (Fig 5). The ellipsoid zone
(EZ) demonstrated an irregular aspect in eyes 1A
(LE), 1B (right eye [RE]), and 2A (LE), while the
hyperreflective material observed after bleb formation
(Fig 1) persisted in the LE of animal 2B, impairing
the visualization of outer retinal layers at the macula.
The ONL also showed a relative thinning in eyes
dosed with LV-RPE65. At the 90-day time point, eye
2A (LE) showed a partial restoration of EZ, and eye
2B (LE) showed a partial regression of the dense
hyperreflective material, and persistence of outer
retinal layer alterations. EZ disruption and ONL
thinning were also observed, but to a milder degree, in
eyes dosed with TSSM (Fig 5 shows OCTs from
animal C [RE]). For all groups but not for all animals,
accumulation of subretinal hyperreflective material
was observed at the bleb edge (not shown).
A quantitative assessment of retinal layer thickness

changes on OCT scans positioned at the fovea in
detached retinal areas is displayed in Fig 6. It showed
in LV-RPE65–injected eyes a transient, partially revers-
ible POS-RPE layer thinning. The ONL thickness was
also moderately affected. To a lesser degree, outer
retinal layer thicknesses in control TSSM-injected
eyes were also altered by the subretinal detachment,
and demonstrated similar trends with reversible outer
segment thinning and a moderate, persistent ONL thin-
ning in the detached area. A similar assessment was
performed for the inner retinal layers (from the internal
limiting membrane to the outer plexiform/inner nuclear
layer interface), that showed no relevant thickness
changes in TSSM-injected and LV-RPE65–injected
eyes.
An analysis of retinal layer thickness change was also

conducted over an identical location close to the macula
in all eyes,38 allowing a better intereyes comparability
of the results in terms of relative change. This analysis
showed a reversible decline in ONL thickness and a
relative, partial decrease in POS/RPE thickness in all

Fig 6. Changes in retinal layer thickness following subretinal admin-
istration of LV-RPE65 or the vehicle (TSSM). Retinal layer thick-
nesses were computed as the mean thickness within the detached
area, along one vertical and one horizontal axis through the fovea.
They are reported for 4 TSSM-injected control eyes (values pooled
as mean 6 SD, dark blue), and 4 LV-RPE65–injected eyes receiving
dose 1 (animals 1A left eye, and 1B right eye, pale blue) or dose 2 (an-
imals 2A left eye, and 2B left eye, mid-blue). (A) represents photore-
ceptor outer segment-retinal pigment epithelium thickness. An initial
thinning was observed in control eyes dosed with TSSM, and in eyes
receiving LV-RPE65 where it was more pronounced, with progressive
recovery of photoreceptor outer segment-retinal pigment epithelium
thickness over the follow-up. In the eye 2B (LE) that inadvertently
received an extra intravitreal high dose of LV-RPE65 during adminis-
tration procedure, a significant residual thinning persisted at day 90.
(B) Quantification of the outer nuclear layer thickness shows an initial
thinning effect and partial resolution in LV-RPE65–injected eyes eval-
uated at day 90. Control eyes receiving TSSM showed a milder outer
nuclear layer thinning, which remained stable until day 90. (C) Inner
retinal layers thickness, from the internal limiting membrane to the
interface of the inner nuclear/outer plexiform layers, did not show ma-
jor significant variation. Thickness of inner retinal layers was very
close to baseline values by days 28 and 90 in TSSM-injected and
LV-RPE65 injected eyes. LE, left eye; RE, right eye.
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LV-RPE65–injected eyes (Supplementary Fig 2). It also
confirmed that the inner retinal layer thickness was not
modified after LV-RPE65 injection.

Electroretinography. To evaluate the effects of subreti-
nal administration of either LV-RPE65 or TSSM on
retinal activity, we compared full-field ERG
recordings performed 14, 28, and 90 days after
injection with baseline measures acquired before
treatment, in each animal (Table II). Baseline
responses showed evident interindividual quantitative
variations of the a- and b-wave amplitudes. For
example, min-max values ranged from 40 to 108 mV
for the b-wave amplitude of the rod response or from
22 to 49 mV for the a-wave amplitude of the cone
response. We thus decided to evaluate intraindividual
variations at the different time points. Of the 4 TSSM-
injected eyes, 3 eyes maintained equivalent retinal
activity (Fig 7B). In the fourth TSSM-injected eye C
(RE), we observed over 40% decrease in response
amplitudes to all illumination conditions after
injection as compared to baseline, but no differences
in peak times. Absent or minor modifications of ERG
responses were noticed for the 2 LV-RPE65–injected
eyes 1B (RE; dose 1) and 2A (LE; dose 2; Fig 7, C
and D and Table II), whereas the 1A (LE) dose 1
showed significantly reduced amplitudes at the latest
time point by 40% or more, but without peak time
increase. The fourth eye injected with LV-RPE65 dose
2 (2B [LE]) showed 90 days post-injection both
reduced amplitude and increase in peak time in
scotopic conditions, which could be the manifestation
of retinal cellular suffering (Table I). We were not
able to identify exclusive inner retinal dysfunction in
LV-RPE65– or TSSM-injected eye following ERG
analysis of a- and b-wave amplitudes and peak times.

Biodistribution and organ toxicology. To optimize
quantitative PCR sensitivity for detecting circulating
lentiviral particles or integrated lentiviral genomes, we
designed a primer pair targeting specifically the lentivi-
ral transgene cassette. The forward primer is located on
RPE65 cDNA and the reverse primer on theWoodchuck
hepatitis virus Posttranscriptional Regulatory Element
sequence added in the vector, thereby avoiding putative
amplification of the endogenous RPE65 macaque gene.
This primer pair allowed to detect unequivocally 10
copies of target matrix DNA in the reaction mixture
(Supplementary Fig 3).

Circulating particles. To evaluate the extraocular
shedding of lentiviral particles after subretinal delivery,
qRT-PCRwas performed on lachrymal fluid, serum, and
urine collected at regular intervals (days 2, 4, 7, 14, 30,
and 90). Based on the sensitivity of the qPCR and the
amount of RNA extracted from the different fluids, we
calculated a detection threshold of 250 particles/ml

for serum, 60 particles/ml for lachrymal fluid, and
10 particles/ml for urine. No viral particle was
detected in any body fluid regardless the time points
or the animal being studied all quantification cycles
(Cq) being equivalent or above negative control
(Supplementary Fig 3).

Integrated lentiviral sequences in genomic
DNA. Despite the very limited shedding of the vector,
we prospected for extraocular genomic integration of
the LV. Biopsies from inferior eyelids, right/left optic
nerves, right/left geniculate bodies, right/left visual
cortex, heart, liver, right/left lung, right/left ovary, right/
left kidney, and right/left mandibular lymph nodes were
collected at the end of the experiment and genomic
DNAwas extracted for quantitative PCR of the integrated
therapeutic cassette. The threshold sensitivity of our pro-
cedurewas10copies in50ngofgenomicDNA, the lowest
detected point of the standard curve being 10 copies. This
limit of detection was estimated to be at 0.83 106 copies/
organ for heart (containing around 4.93 1014 diploid ge-
nomes), 13 106 copies/organ for lung (containing around
6.8 3 1014 diploid genomes), 2 3 106 copies/organ for
kidney (containing around 15.83 1014 diploid genomes),
12 3 106 copies/organ for liver (containing around 76.5
3 1014 diploid genomes), and brain (containing around
75.8 3 1014 diploid genomes). We did not detect any
integration of the recombinant lentiviral genome in any
samples tested showing the systemic safety of lentiviral
administration into the subretinal space.

Organ histology. No macroscopic or microscopic
morphologic alterations nor signs of unexpected inflam-
mation could be detected in biopsies sampled from
inferior eyelid, optic nerve, geniculate bodies, visual
cortex, mandibular lymph node, heart, lung, liver,
kidney, and ovary tissues in animals sacrificed at day
28 (1A-B) or day 90 (2A-B) after LV-RPE65
subretinal administration nor in the animal sacrificed
90 days after receiving TSSM only (C).

Ocular histologyand immunohistochemistry. After sac-
rifice at day 28 for dose 1 LV-RPE65–injected animals
and at day 90 for dose 2 LV-RPE65–injected animals,
eyes were processed for histologic and immunohisto-
chemical analysis. Conventional hematoxylin-eosin
stain showed normal ocular structures in all eyes and
revealed a mild choroidal lymphocytic infiltrate in
animal 1A (RE; TSSM), and a similar finding
associated to focal outer blood-retinal barrier
breakdown and mild vitritis in animal 2B (LE; LV-
RPE65 dose 2). To evidence remnants of
inflammatory cell migration, a retinal section
containing the region of subretinal injection (bleb)
was labeled for the CD45 leukocyte marker. No
differences in CD45-positive labeling were observed
between noninjected, TSSM-injected, or LV-RPE65–
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Table II. Retinal activity characterization using full field electroretinogram (ERG) recordings following subretinal injection

ID Eye Group Time

Photopic (cone responses) at i-max 0.4 log cds/m2
Scotopic (rod responses)

at 20.8 log cds/m2
Scotopic (mixed rod-cone responses)

at i-max 0.4 log cds/m2

a-wave b-wave

Ratio
b/a

Fl-wave b-wave a-wave b-wave

Ratio
b/a

Amp
(mV)

Peak
time (ms)

Amp
(mV)

Peak
time (ms)

Amp
(mV) Amp (mV)

Peak
time (ms) Amp (mV)

Peak
time (ms) Amp (mV)

Peak
time (ms)

C LE - Baseline 47 14 205 31 4.36 190 92 60 145 16 367 38 2.53
D15 34 14 137 30 4.03 123 54 62 100 17 243 39 2.43
D30 33 14 136 30 4.12 129 55 61 98 16 254 38 2.59
D90 22 14 134 29 6.09 128 61 61 105 17 285 38 2.71

1B LE - Baseline 29 14 126 27 4.34 105 51 56 104 16 251 36 2.41
D15 38 14 119 32 3.13 111 64 62 130 14 270 36 2.08
D30 30 13 127 30 4.23 140 57 59 132 14 298 34 2.26

C RE TSSM Baseline 49 14 213 30 4.35 186 93 60 147 16 382 38 2.60
D15 30 15 125* 30 4.17 94* 46* 64 97 17 214* 41 2.21
D30 22* 14 105* 30 4.77 96* 34* 60 79* 16 194* 39 2.46
D90 23* 15 107* 29 4.65 96* 42* 61 86* 17 224* 38 2.60

1A RE TSSM Baseline 32 14 153 29 4.78 109 54 60 119 17 287 40 2.41
D15 41 13 158 28 3.85 130 75 60 144 16 346 38 2.40
D30 22 15 122 29 5.55 69 44 58 109 17 240 41 2.20

2A RE TSSM Baseline 25 13 149 27 5.96 144 88 55 110 16 360 39 3.27
D15 35 14 150 29 4.29 120 84 57 107 16 332 39 3.10
D30 32 13 168 27 5.25 172 118 53 134 15 454 40 3.39
D133 29 13 137 27 4.72 131 79 53 97 15 299 40 3.08

2B RE TSSM Baseline 25 13 109 27 4.36 107 65 57 107 15 305 35 2.85
D15 38 12 116 32 3.05 148 64 60 138 13 320 35 2.32
D30 43 11 140 32 3.26 181 89 57 152 14 387 34 2.55
D133 29 13 112 28 3.86 101 60 61 104 16 266 38 2.56

1A LE Dose 1 Baseline 32 12 160 29 5.00 129 61 61 130 17 302 40 2.32
D15 28 14 112 28 4.00 166 53 62 102 16 230 39 2.25
D30 19* 15 91* 29 4.79 53* 27* 59 83 17 194 42 2.34

1B RE Dose 1 Baseline 22 14 97 27 4.41 84 40 56 91 16 212 35 2.33
D15 41 14 109 32 2.66 120 50 64 129 15 246 37 1.91
D30 39 13 110 31 2.82 140 50 59 138 15 288 35 2.09

2A LE Dose 2 Baseline 27 13 163 27 6.04 163 108 54 113 15 400 40 3.54
D22 22 13 111 28 5.05 105 73 55 91 16 305 40 3.35
D30 20 14 120 28 6.00 105 82 57 93 16 293 42 3.15
D90 16* 14 96* 28 6.00 93* 71 54 88 16 294 41 3.34

2B LE Dose 2 Baseline 36 13 139 27 3.86 151 83 57 129 15 365 35 2.83
D22 29 13 140 29 4.83 97 67 64 115 17 286 41 2.49
D30 38 14 123 32 3.24 120 54† 62† 131 16 318 38 2.43
D90 19* 14 93 29 4.89 68* 51† 63† 79† 17† 213† 40† 2.70

*. 40% decrease compare to baseline.
†decrease of amplitude coupled to mild increase of peak time.
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injected eyes (Supplementary Fig 4). The GFAP and
Vimentin glial markers labeling M€uller cells and
astrocytes did not show any difference between these
eyes (Supplementary Fig 4). Finally, the microglia
Iba-1 staining did not either demonstrate differences
in microglial activation or migration between these
groups 30 or 90 after injection (Supplementary Fig 4).

DISCUSSION

In this preclinical study, we assessed the ocular and
systemic safety after subretinal administration of an
LV for RPE65 gene replacement in healthy NHPs.
Considering that no systemic or periocular anti-
inflammatory agents were preventively administered
to the subretinally injected animals, subretinal injection
of an LV was well tolerated in low-dose injected
animals, but not in the high-dose injected animals who
developed a strong retinal and ocular inflammatory

reaction, that did not persist but induced seemingly irre-
versible structural alterations. This observation suggests
that the alterations observed at the fovea level could be
markedly reduced if the injection procedure and the
retina environment are well controlled. This moderate
tolerance has to be compared with previous preclinical
and clinical studies with AAV vectors, in which large
animals or patients all received periocular16,28,43 or
systemic18,33 anti-inflammatory therapy. An exception
was made for animal 2B which endured an accidental
intravitreous extra-injection and developed a marked,
but transient intraocular inflammation and who received
an intravenous anti-inflammatory treatment. This
animal developed a mild transient weight loss, but this
phenomenon was also observed in one TSSM-injected
animal and might be caused by repetitive anesthesia
imposed by the study design. Remarkably, no vector
shedding or inaccurate extraocular targeting was
demonstrated, showing the safe restriction of the vector

1B-RE baseline

1B-RE D30

1B-LE baseline

1B-LE D30

2A-RE baseline

2A-RE D30

2A-LE baseline

2A-LE D30

scotopic (mixed)

63 ms78
 μ

V

photopic

63 ms78
 μ

V

flicker

63 ms78
 μ

V

A Not injected

B TSSM

C Dose 1

D Dose 2

scotopic

63 ms78
 μ

V

15
 μ

V

38 ms

photopic OPs

Fig 7. Retinal activity evaluation 30 days after subretinal injection. ERG tracings obtained at baseline and 30 days
after injection in photopic and scotopic conditions. In photopic conditions, the Imax flash responsewas obtained by
15 stimuli delivered at 1.3 Hz against a 25 cd/m2 background (first column). The oscillatory potentials were ex-
tracted from the Imax photopic response (second column). A final 30-Hz flicker at Imax stimuli was recorded (third
column). After 20 minutes of dark adaptation, scotopic responses to 0.4 cd.s/m2 stimuli (average of 5 flashes) were
recorded in dark (fourth column). Finally, in similar scotopic conditions, a unique flash at Imax intensity was
applied to record the mixed rod-cone response (fifth column). The displayed tracings were obtained in (A) an un-
injected eye (1B [LE]), (B) a TSSM- injected eye (2A [RE]), (C) a dose 1 LV-injected eye (1B [RE]), and (D) a
dose 2 LV-injected eye (2A [LE]). All eyes maintained photopic and scotopic retinal activity 30 days after injec-
tion. LE, left eye; RE, right eye.
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in the eye. This observation is consistent with previous
reports suggesting a high systemic safety of nonhuman
LVs administered subretinally.44-47

In the present study, in contrast with previous reports
that did not focus on early events, animals were
followed at short intervals with multimodal imaging to
assess invivo theacute effects of subretinalLVadministra-
tion on retinal structures. Interestingly, the kinetics of sub-
retinal bleb detachment showed prolonged reattachment
times (by 3–4 days) for LV-RPE65–injected eyes as
compared with vehicle-injected eyes. This phenomenon
may be caused by a transient impairment of the RPE
pumping capacity during an acute phase corresponding
to thevector entry and integration intoRPEcells, the latter
process starting within 4 hours and reaching a plateau at
24–48 hours.48 Alternatively, the transient presence of
viral particles in the subretinal fluid could provoke an
osmolality imbalance that maintains the detachment
of the neurosensory retina from the RPE longer than in
control-injected eyes.Whether this prolongeddetachment
results fromthe alterationofRPEcell functions in reaction
to vector entry, from an inflammatory process, or from
an osmolality effect remains to be determined.
Noticeably, we observed an early perivascular reac-

tion, evidenced at day 2 and self-resolving within
14 days, consisting perivenular whitening at the level
of retinal venules within the detached area. There was
no angiographic vasculitis at day 2, suggesting that
severe blood-retinal barrier rupture did not occur or
occurred before this time point. Although a similar
reaction has not been reported by other groups, we
did not find previous reports of fundus examination
or blue-reflectance imaging, which best evidenced
the phenomenon, as early as day 2 after subretinal
delivery of viral vectors. To investigate its cause, we
searched for several inflammatory and glial markers
by immunohistochemistry but did not find overexpres-
sion of CD45 (lymphocytes), Iba-1 (microglia), GFAP
or vimentin (astrocytes and M€uller cells) in
LV-RPE65–injected as compared with vehicle-
injected eyes. This may result in part from the delayed
ex vivo evaluation at 1 and 3 months after administra-
tion. Nonetheless, these histologic data assess that this
transient reaction did not provoke a chronic modifica-
tion of the glial cells often observed after retinal
injuries.49,50

Importantly, the in vivo evaluation of retinal layer
thickness by serial OCT scans did not show any signif-
icant thinning of inner retinal layers, where the perivas-
cular reaction was detected.
While the perivascular phenomenon occurred in all

eyes receiving LV-RPE65, no significant ERG alter-
ations were observed in all the 4 animals, indicating
limited consequences on retinal function. Similarly,

ERG alterations observed in LV-RPE65–injected eyes
did not preferentially involve b-wave responses,
suggesting that the immediate post-injection vascu-
litis-like process did not result in specific inner retinal
cellular defects detectable by this analysis. Moreover,
no isolated b-wave modifications were observed,
suggesting they were rather caused by a-wave changes
originating from outer retinal variations rather than
from inner retinal damages.
Outer retinal alterations were also manifested on

multimodal imaging as hyper/hypopigmentation, and hy-
per/hypoautofluorescencemostly at the borders of the de-
tached areas. OCT also showed a partially reversible
thinning of outer retinal layers. Similarly to ERG
a-wave variations, these changes were more frequent
and more severe in LV-RPE65–injected eyes, but were
also observed to a variable and milder degree in
vehicle-injected eyes. Despite the limited number of
injected eyes (4 with TSSM, 2 with low-dose LV-RPE65,
and 2 with high-dose LV-RPE65), these observations
emphasize the limits of the subretinal route with current
injection methods and devices that do not prevent retinal
suffering, particularly at the POS/RPE interface, and
that lack reproducibility. The crescent-shaped pigmen-
tary and autofluorescent modifications visible on Figs 3
and 4 variably affected both vehicle- and lentivirus-
injected eyes. This imaging pattern points to a biological
effect of the retinal detachment rather than to an infec-
tious manifestation. Moreover, although restoring a
retinal function in the macular area should bring major
benefits to the patients, this area appears to be especially
vulnerable to the damaging effects of acute detachment,
as was already highlighted in one clinical study evalu-
ating AAV-based RPE65 gene therapy.26 In the present
study, 3 out of 4 animals presented at 1 or 3 months a par-
tial improvement of early macular changes visible on
OCT after LV-RPE65 administration. In contrast, animal
2B which received an extra intravitreal dose followed by
an intense intraocular inflammation presented a subfo-
veal hyperreflective deposit that had not resolved at the
3-month time point, showing the higher susceptibility
of the fovea for focal damage in case of an adverse event.
Among patients included in AAV-RPE65 gene therapy
clinical trials, structural damage of the fovea has been
reported, such as macular hole formation17 and foveal
thinning,22,23,26 To prevent these drawbacks, alternate
strategies have been advanced, such as minimizing
hydrodynamic stress during injection51,52 or performing
multiple perimacular detachments.26

Animal models of retinal detachment have shown that
detachment of the neurosensory retina from the RPE
leads to a glial reaction mediated by M€uller cells53,54

and microglia,55 and to photoreceptor damage with outer
segment shortening.56 Photoreceptor damage results from
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the activation of multiple pathways, including the alterna-
tive complement57 and RhoA pathways.58 Interestingly,
there is a decrease in glial markers overexpression59

and progressive restoration of POSs56 after lengthy
periods of reattachment (#5 months), which is consistent
with our findings. Recently, imaging studies using OCT
segmentation on patients with rhegmatogenous retinal
detachment also showed a re-increase in POS volume
after retinal reattachment.60 In LV-RPE65–injected eyes,
damages related to the induced retinal detachment may
be potentiated by the inflammation reaction to the viral
vector, explaining the less-pronounced photoreceptor
restoration as compared with control eyes. However,
multimodal imaging findings in the present study showed
a variability in retinal alterations after subretinal adminis-
tration of TSSM or the lentiviral solution, as reported in
patients who received subretinal gene therapy.22,26

Additional studies with increased number of vector-
injected eyes will be necessary to demonstrate in greater
detail the functional and structural effects of subfoveal
injections.
The blood-retinal barrier, by contributing to the intra-

ocular immune privilege, favors the systemic tolerance
of subretinally injected vectors. However, mechanical
alterations of the RPE induced by the detachment, and
the transient perivascular reaction observed in this study
may compromise the integrity of the outer and inner
blood-retinal barriers, respectively. Although the anal-
ysis of body fluids and organs did not indicate shedding
of viral particles, it may have elicited a subclinical,
low-grade immune reaction, which raises concerns
regarding possible vector reinjection.43,61 The
evaluation of the immune response against the
LV-RPE65 vector will be addressed in a future report.
Limitations of this study include the limited number

of NHPs due to ethical restrictions, and the fact that
one animal was treated after surgery with systemic
corticosteroids due to an intense intraocular inflamma-
tion. Additional experiments are needed to evaluate
the dose safety, to determine whether vitrectomy should
be performed systematically before subretinal injection,
whether the injection site should be located in a specific
area or sealed to reduce vitreal leakage of the vector, and
whether local or systemic corticosteroids should be
administered.
The current RPE65 clinical trials are proposing an

AAV-based gene transfer for gene replacement in RPE
cells. Despite positive effects in the first years following
vector administration, several long-term reports show
continuation of retinal degeneration, and loss of early
visual benefits several years after treatment22,23,62 One
hypothesis explaining this major drawback is the low
level of therapeutic gene expression obtained in these

trials, which is incompatible with the level required in
the human retina.22 Thus, the development of alternate
gene transfer tools could open new therapeutic perspec-
tives.19 Given the previously established high efficiency
of LVs to target RPE cells,30,31,63,64 this vector may be a
potential candidate for inherited retinal disorders due to
RPE65 deficiency, but also for other RPE-specific
diseases such as Best vitelliformmacular dystrophy, pro-
vided that its local tolerance is improved. This improve-
ment may be achieved by the co-administration of a
systemic adjuvant anti-inflammatory prophylaxis and/
or optimization of the vector delivery. The study herein
further supports the limited systemic dispersion of LVs
following subretinal administration. It also demonstrates
that further optimization of the retinal tolerance to the
LV-RPE65 LV and to its subretinal delivery technique
are crucial to render the vector eligible for gene transfer
in the human retina.
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APPENDIX

Supplementary Fig 1. Localization of the region of interest for segmentation of retinal layers over an identical
area within the detached retina in all injected eyes, using a custom algorithm. Heat map of the total retinal thick-
ness superimposed over the infrared reflectance image of the left eye of animal 1A, at day 30 after injection. The
green disc at the center of the circular grid represents the 1-mm diameter region of interest, located 1.1 mm su-
perior and 2.2mm nasal to the foveawith the axis between optic disc center and fovea used as horizontal reference.
A custom algorithm on the DiOCTA software was used to segment the retinal layers of this disc.
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Supplementary Fig 2. Segmentation of retinal layers at the level of a
1-mm diameter circular region of interest localized within the de-
tached area of all subretinally injected eyes. The region of interest is
described in Supplementary Fig 1. (A) The thickness of the photore-
ceptor outer segments/retinal pigment epithelium showed a moderate
decrease in TSSM-injected eyes and a more pronounced decrease in
LV-RPE65–injected eyes. In one eye (2A [LE]), there was a late re-
increase of outer segment thickness. (B) The thickness of the outer nu-
clear layer was stable in TSSM-injected eyes, with an increase in vari-
ation at the 12-week time point and showed a moderate decrease in all
LV-RPE65–injected eyes, followed by a late return to baseline thick-
ness in eyes followed up until 12-weeks. (C) The thickness of inner
retinal layers from the inner limiting membrane to the outer limit of
the outer plexiform layer was globally stable after injection of
TSSM, LV-RPE65 dose 1, or dose 2. OS, outer segment; RPE, retinal
pigment epithelium; RE, right eye; LE, left eye.
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Supplementary Fig 3. Quantitative PCR standard curve and serum samples from macaque 2A. (A) Standard
curve was established with the shuttle plasmid containing the RPE65 recombinant lentiviral genome. Open circles
represent 10-fold serial dilutions of plasmidDNA ranging from 108 to 10 copies (duplicates). Crosses represent the
negative control without DNA showing the absence of amplification (triplicate). Linear regression: r25 0.999. (B)
The same standard curve as in A (open circles, duplicates) and serum samples of macaque 2A (each cross repre-
sents one sample in duplicate, n5 6 postinjection samples1 1 baseline sample) were processed in the same exper-
iment. For all the samples tested (n5 91), either amplification did not reach the detection threshold or the Cq value
did not fall below 35.
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Supplementary Fig 4. Long-term evaluation of retinal reattachment using immunohistochemistry. (A–D) GFAP la-
beling (green) of the region of retinal detachment (detached) after injection of TSSM (A, animal C-RE), LV-RPE65
dose 1 (B, animal 1A-LE), or LV-RPE65 dose 2 (D, animal 2B-LE) is not different from labeling of retinal region not
targeted by injection (undetached; C, animal 2B-LE). (E–H) Iba-1 labeling (green) of microglial cells is also similar
between detached retina after injection of TSSM (F, animal C-RE) or after injection of LV-RPE65 dose 2 (H, animal
2A-LE) and undetached region of the same eye (respectively, E and G). (I–K) CD45 labeling (green) of leukocytes
(arrowheads) revealed few leukocytes localized close to the RPE layer in both TSSM (I, animal 1A-RE) or
LV-RPE65–injected eyes (J, animal 1B-RE, K, 1A-LE). A–D, I –K: DAPI counterstaining in blue; A–H: upper
vertical white bars localize the inner nuclear layer and lower vertical white bars localize the outer nuclear layer;
RPE, retinal pigment epithelium; GFAP, glial fibrillary acid protein.
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ACUTE CENTRAL SEROUS
CHORIORETINOPATHY
Factors Influencing Episode Duration

ALEJANDRA DARUICH, MD,* ALEXANDRE MATET, MD,* LAETITIA MARCHIONNO, OD,*
JEAN-DOMINIQUE DE AZEVEDO, OD,* AUDE AMBRESIN, MD,* IRMELA MANTEL, MD,*
FRANCINE BEHAR-COHEN, MD, PHD*†‡§

Purpose: To evaluate the influence of clinical and multimodal imaging parameters on the
duration of acute central serous chorioretinopathy (CSCR) episodes.

Methods: Consecutive patients with first, treatment-naïve central serous chorioretinop-
athy episodes presenting within 20 days of symptoms onset were prospectively included.
They were reevaluated 15 days to 20 days later, followed by monthly evaluation for 6
months. Subfoveal choroidal thickness (SFCT), fluorescein leakage intensity on fluorescein
angiography, elevation of retinal pigment epithelium (RPE) lesions at leakage sites, focal/
multifocal pattern of indocyanine green angiography (ICGA) at baseline, time-dependent
pattern of subretinal fluid (SRF) resorption on OCT using volume segmentation, history of
corticosteroid intake and mean blood pressure were evaluated using univariate (Log rank
test) and multivariate (Cox proportional hazard regression) survival analysis.

Results: Thirty-one patients were included (26 men, 5 women, mean age: 40.0 ± 8.9
years, range: 24–58), of which 26 (84%) had episode resolution by 6 months. Using uni-
variate analysis, episode duration was longer in cases with subfoveal choroidal thickness
$500 mm (P = 0.0002), retinal pigment epithelium elevation at leakage sites $50 mm (P =
0.033), and a peak in subretinal fluid observed during follow-up (P = 0.013), and there was
a near-significant association of intense fluorescein leakage (P = 0.074) with longer epi-
sodes. Using multivariate analysis, subfoveal choroidal thickness $500 mm (P = 0.017),
retinal pigment epithelium elevation at leakage sites $50 mm (P = 0.010) and patient age
$40 years (P = 0.010) were significantly and independently associated to longer episodes.
Indocyanine green angiography pattern, corticosteroid intake, and blood pressure did not
influence episode duration.

Conclusion: Older age, higher subfoveal choroidal thickness, and higher degree of
retinal pigment epithelium alteration at leakage sites are independent factors of longer
acute central serous chorioretinopathy episodes.

RETINA 0:1–11, 2016

Central serous chorioretinopathy (CSCR) is a cho-
rioretinal disorder characterized by serous retinal

detachments frequently involving the macula and usu-
ally associated with focal pigment epithelial detach-
ments (PED), choroidal hyperpermeability, and
increased choroidal thickness. Acute CSCR classically
affects middle-aged working male individuals, whose
working ability may be compromised by the associated
visual burden. Because serous retinal detachments
resolve spontaneously within six months in most acute
CSCR episodes,1–3 observation without treatment is
generally recommended as initial management.4 For
cases with persistent serous retinal detachment or

severe vision loss, several treatment options are avail-
able. Photocoagulation of extramacular leaking points
by direct argon2,3 or micropulse laser5,6 can reduce the
duration of single episodes. Half-dose or half-fluence
verteporfin photodynamic therapy (PDT) may contrib-
ute to shorten episode duration.7–12 Oral treatment by
mineralocorticoid-receptor (MR) antagonists has also
shown beneficial effects.4,13–18 However, the ideal
timing for these different interventions still remains
to be determined. A better understanding of factors
influencing episode duration would help to detect
and treat earlier cases at risk for persistence, before
the development of photoreceptor and RPE damage

1



because of long-lasting subretinal detachment.
Because choroidal vasodilation and leakage through
the RPE are key mechanisms leading to CSCR4 and
because most of subretinal fluid resorption depends on
the pumping capacity of RPE cells, several features
involved in choroid/RPE physiology may influence
acute episode duration, among which subfoveal cho-
roidal thickness, elevation of PED, intensity of RPE
leakage and choroidal hyperpermeability, initial sub-
retinal fluid volume, time-dependent fluid resorption
pattern, patient age, history of steroid intake, and arte-
rial blood pressure. Although these factors can be ac-
cessed on routine clinical examination and retinal
imaging, their influence on episode duration has not
been previously investigated.
The aim of this study was to evaluate the influence of

these ocular and systemic factors on the duration and
resolution of first, treatment-naïve, acute CSCR episodes.

Methods

Subjects

This observational, single-center, prospective study
was designed in accordance with the tenets of the
Declaration of Helsinki. Data collection and analysis
was approved by the Ethics Committee of the Swiss
Federal Department of Health (CER-VD no. 19/15). All
patients signed an informed consent. Consecutive
patients presenting at Jules-Gonin Eye Hospital
(Lausanne, Switzerland) with a first episode of acute,
unilateral, and treatment-naive CSCR from January 1,
2014 to October 31, 2015 were included. A CSCR
episode was defined as the association of visual
symptoms (vision impairment, metamorphopsia, mi-
cropsia, dyschromatopsia or central scotoma) in the
presence of subretinal fluid on spectral-domain optical
coherence tomography (SD-OCT) with a leaking site on

fluorescein angiography (FA) and choroidal vascular
hyperpermeability on indocyanine green angiography
(ICGA). Exclusion criteria were: initial presentation
later than 20 days after symptoms onset, follow-up
shorter than 6 months without resolution, spherical error
superior to 2 D, and presence of pigmentary changes on
fundoscopy or fundus autofluorescence modifications
suggestive of previous CSCR episodes. The follow-up
scheme for this observational study included a second
visit within 10 days to 20 days of the baseline visit,
followed by repeated monthly clinical evaluation for 6
months. Ocular and medical history, including history of
corticosteroid intake, ocular examination, arterial blood
pressure measured at the initial visit, and the time from
symptoms onset (vision loss, metamorphopsia, microp-
sia, dyschromatopsia, or central scotoma) to the first
visit, were recorded. Central serous chorioretinopathy
episode resolution was defined as the complete reab-
sorption of subretinal fluid (SRF) on SD-OCT images
acquired as described below. In case of nonresolution of
SRF at six months, a rescue therapy was proposed.
Laser photocoagulation was performed if the leaking
site was located more than 1,000 mm from the foveal
center. If laser was not possible, mineralocorticoid-
receptor antagonist therapy by oral eplerenone (25 mg
daily) or spironolactone (25 mg daily) was administered
in the absence of contraindications, and otherwise pho-
todynamic therapy was used.

Retinal Imaging

Imaging was performed after standard pupillary
dilation using tropicamide 0.5% drops with the Spec-
tralis (Heidelberg Engineering, Heidelberg, Germany).
At all visits, a 20° · 20° 97-sections SD-OCT macular
volume, a 30° enhanced-depth imaging (EDI) SD-OCT
horizontal scan through the fovea the “automatic real
time” averaging set at the maximal value of 100 images,
a 30° · 30° fundus infrared reflectance, and a 30° · 30°
fundus autofluorescence were acquired. Fluorescein
angiography and green indocyanine-green angiography
were performed at the baseline visit.
For each case, the site of maximum fluorescein

leakage on FA was identified by one observer (FBC).
The height of pigment epithelial defects at these sites,
consisting in PED or RPE bumps, was measured by
a single observer (AD) using the built-in Spectralis
software (Heidelberg Eye Explorer, version 1.9.10.0).
Elevation was defined as 0 mm when no RPE lesion
associated with the leakage site was observed.
The subfoveal choroidal thickness (SFCT) was

measured by the same observer on baseline
enhanced-depth imaging scans as the axial distance
from the RPE to the outer choroid/sclera interface. In
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cases where the interface was ambiguous, the senior
author (FBC) determined the SFCT. The maximal
height of subretinal detachment was measured simi-
larly as the axial distance between the RPE and the
outer aspect of photoreceptor outer segments.
The macular volume was automatically measured by

the software over an Early Treatment Diabetic Reti-
nopathy Study (ETDRS) grid centered on the macula.
Multifocal choroidal hyperpermeability was defined

as the presence of several hypercyanescent areas on
midphase indocyanine-green angiography (10–12 mi-
nutes after dye injection).

Fluorescein Expansion Ratio

The intensity of leakage at the previously identified
leakage sites on FA was estimated by quantifying the
relative expansion of hyperfluorescence from early
phase (40–60 seconds) to midphase (2–2.5 minutes).
Angiograms were exported as TIFF files and were
processed on Matlab using a semiautomated custom
algorithm adapted from the method described by Pryds
et al.19 The leakage site was indicated manually, and
the borders of the hyperfluorescent area were automat-
ically detected using the grayscale intensity threshold
of 0.75 · Imax, where Imax is the maximal fluores-
cence intensity at the leakage site. The ratio between
hyperfluorescent areas at midphase and early phase
was calculated to provide the fluorescein leakage ratio.

Subretinal Fluid Volume

The volume of subretinal fluid was calculated at each
timepoint using a custom-built algorithm on Matlab
(version 2015b; Mathworks, Natick, MA). Briefly, the
97 SD-OCT scans corresponding to the macular volume

were exported as PNG files, and the borders of the
serous retinal detachment were segmented on each scan
using an intensity-based method. After visual verifica-
tion of the segmentation, the volume was obtained
by trapezoidal integration, and a heat map of the
subretinal detachment was generated. The kinetics of
SRF resorption was then analyzed in each patient by
comparing SRF volumes at each timepoint.

Statistical Analyses

Survival analyses were performed using the
R software (version 3.1.3; R Foundation for Statistical
Computing, R Core Team, 2015, Vienna, Austria.

Fig. 1. Survival curve showing the time-dependent resolution rate of 31
acute episodes of central serous chorioretinopathy from the time of the
initial visit. All patients presented within 20 days after onset of symp-
toms. By 6 months, resolution was observed in 26 patients. The 95%
confidence interval is colored in gray.

Table 1. Clinical and Imaging Characteristics of 31
Patients With a First Episode of Acute, Treatment-Naive

Central Serous Chorioretinopathy

Subjects (male/female), N 31 (26/5)
Age, years 40.0 ± 8.9 (24.3–58.3)
Cases with CSCR episode
resolution by 6 months,
N (%)

26 (83.9)

Time to CSCR episode
resolution, days

83 ± 46 (21–180)

Time from symptoms onset
to first visit, days

9.0 ± 6.2 (0–20)

Type of RPE lesion at
leakage sites, N (%)
PED 13 (41.9)
REP bump 14 (45.2)
No lesion 4 (12.9)

RPE elevation at leakage
sites, mm

58.1 ± 53.3 (0–279)

Subfoveal choroidal
thickness, mm

479.9 ± 82.2 (302–619)

Fluorescein expansion ratio
on FA

2.8 ± 2.1 (1.0–9.4)

Multifocal choroidal
hyperpermeability on
ICGA, N (%)

13 (41.9)

Initial SRF volume, mL 0.92 ± 0.95 (0.03–4.27)
Observation of a peak in
SRF volume, N (%)

13 (41.9)

Time from first visit to SRF
peak observation, days

42.6 ± 18.2 (15–64)

Baseline visual acuity
logMAR (Snellen
equivalent)

0.10 ± 0.13 (0–0.53)
("20/25 [20/66–20/20])

Final visual acuity
logMAR (Snellen
equivalent)

0.03 ± 0.08 (0–0.30)
("20/21 [20/40–20/20])

Mean blood pressure, mmHg 110.9 ± 9.4 (92.5–136.5)
History of corticosteroid
intake, N (%)

11 (35.4)

Continuous values are reported as mean ± SD (range), where
appropriate.

CSCR, central serous chorioretinopathy; FA, fluorescein angi-
ography; ICGA, indocyanine green angiography; logMAR, loga-
rithm of the minimal angle of resolution; RPE, retinal pigment
epithelium; SRF, subretinal fluid.
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http://www.R-project.org/). The Kaplan–Meier method
with log-rank tests was used for univariate analyses,
and the Cox proportional hazard method for the multi-
variate analysis, with the “survival”20 package. Re-
sults were expressed in terms of hazard ratio and
adjusted hazard ratio, respectively. Parameters result-
ing in a P value #0.2 in the univariate analysis were
entered in the multivariate model, followed by step-
wise regression with the “MASS”21 package.
Survival curves were generated with the “ggplot”22

and “survminer” packages. For each investigated
parameter, a dichotomizing value was searched that
defined 2 groups with a significant difference in

episode resolution rate, under the condition that the
smallest group was formed by $11 patients (one-
third of the study population).
Agreement between segmentation of subretinal fluid

volume, maximal subretinal fluid height on SD-OCT,
and macular volume was estimated using Cohen’s
Kappa on R, with the “irr” package.23

Spearman correlation coefficients were used to
investigate association between variables on GraphPad
Prism (version 5.0f; GraphPad Software, La Jolla,
CA). The logarithm of the minimal angle of resolution
(LogMAR) was used to calculate visual acuity means.
P values #0.05 were considered significant.

Fig. 2. Spectrum of subfoveal
choroidal thickness in acute
central serous chorioretinop-
athy, visible on optical coher-
ence tomography scans (right)
passing through the fovea as
indicated by the green arrows
on infrared images (left): (A)
403 mm in a 37-year-old man,
(B) 469 mm in a 28-year-old
man, (C) 519 mm in a 38-year-
old man, and (D) 617 mm in
a 34-year-old-man.
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Results

Of 35 patients presenting with acute CSCR during
the study period, 31 fulfilled the inclusion criteria.
There were 26 men and 5 women, with a mean age
of 40.0 ± 8.9 years (median: 37.8 years, range: 24.3–
58.3 years). After 6 months of follow-up, CRSC
episodes were resolved in n = 26 patients (83.9%)
and persisted in n = 5 patients (16.1%). Among

resolved cases, the mean time from the initial visit
to resolution was 83 ± 46 days (median: 83 days,
range: 21–180 days). Four cases (12.9%) were
resolved after 1 month, 9 cases (29.0%) after 2
months, 16 cases (51.6%) after 3 months, 21 cases
(67.7%) after 4 months, and 23 cases (74.2%) after 5
months. A survival curve displaying the time-
dependent resolution rate of the 31 cases is dis-
played in Figure 1.

Fig. 3. Method to quantify
fluorescein leakage expansion
on fluorescein angiography
from early phase (40–60 sec-
onds) to midphase (2–2.5 mi-
nutes). A and B. Early phase
(A) and midphase (B) angio-
grams in a case with a very
weak leakage. The hyper-
fluorescent area corresponding
to pixels whose intensity is
comprised within 75% of the
maximal hyperfluorescence is
indicated by a green outline.
The fluorescein expansion ratio
was calculated as the ratio
between the hyperfluorescent
areas at midphase and early
phase and was 1.32. C and D.
Same method applied to early
phase (C) and midphase (D)
angiograms from a case with
intermediate ink-blot leakage
pattern, yielding a fluorescein
expansion ratio of 3.98. E and
F. Same method applied to
early (E) and midphase (F) an-
giograms from a case with
intense smokestack leakage
pattern, yielding a fluorescein
expansion ratio of 6.01.
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Clinical and imaging characteristics are summarized
in Table 1. Subfoveal choroidal thickness ranged from
302 mm to 619 mm (mean: 479.9 mm) (Figure 2), the
fluorescein expansion ratio ranged from 1.0 to 9.4
(mean: 2.8) (Figure 3), 13 patients had a PED, 14
had a RPE bump, and 4 had no RPE lesion at the
leakage site, and the corresponding RPE elevation
ranged from 0 mm to 279 mm (mean: 58.1 mm)
(Figure 4). When analyzing the kinetics of subretinal
fluid resorption using serial SRF volume segmentation
on SD-OCT, a peak in SRF volume (higher than the
initial value) was observed in n = 13 subjects during
follow-up (Figure 5), while n = 18 subjects presented
a progressive decrease in SRF volume from the initial
visit (Figure 6). The mean time from the first visit to
observed SRF volume peak was 42.6 days. A peak in

macular volume on SD-OCT was also detected at the
same timepoints in these subjects (kappa = 1.0, P ,
0.0001), but there was only a moderate agreement in
peak detection between subretinal fluid volume and
maximal height of subretinal detachment on
SD-OCT (kappa = 0.49, P = 0.0013).
Using univariate survival analysis, the duration of

CSCR episodes was longer in patients with SFCT
$500 mm (P = 0.0002), those with RPE elevation at
leakage sites higher than 50 mm (P = 0.033) and
those with a peak in subretinal fluid observed dur-
ing follow-up (P = 0.013). There was a near-
significant association of intense fluorescein leakage
(fluorescein expansion ratio $ 2) with longer epi-
sodes (P = 0.074). In contrast, patient age (P =
0.18), initial subretinal fluid volume (P = 0.12),

Fig. 4. Optical coherence
tomography of pigment epithe-
lial lesions (right) at leaking sites
on fluorescein angiograms (left)
in acute central serous chorior-
etinopathy. A and B. Pigment
epithelial bumps (yellow arrows)
with estimated height of 25 mm
in a 36-year-old man (A) and
41mm in a 28-year-old man (B).
C and D. Pigment epithelial de-
tachments (yellow arrows) with
estimated height of 54 mm in
a 39-year-old man(C) and 163
mm in a 52-year-old woman (D).
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focal/multifocal pattern of choroidal hyperperme-
ability on indocyanine-green angiography (P =
0.63), history of corticosteroid intake (P = 0.98), or
mean arterial blood pressure (P = 0.67) did not have
a significant effect on episode durations.
Variables with a significance level #0.2 were

selected for the Cox multivariate survival model, with
the assumption of proportional hazard. After stepwise
multivariate regression, SFCT ($500 mm, P = 0.017),
RPE elevation at leakage sites ($50 mm, P = 0.010),
and patient age ($40 years, P = 0.010) remained inde-
pendent significant contributors to longer duration of
CSCR episodes. Comparative survival curves are dis-
played in Figures 7 and 8 and detailed survival results
are reported in Table 2.
To confirm the robustness of these findings, we

repeated the same analyses with the time from
symptoms onset (as reported by the patient), instead
of the time from the first visit. This modification did

not affect the results nor the significance levels in both
the univariate and multivariate analyses.
To understand differences between univariate and

multivariate results, we investigated possible corre-
lations between variables. There were significant
correlations between initial subretinal fluid volume
and SFCT (r = 0.36, P = 0.046); between observation
of a peak in subretinal fluid and SFCT (r = 0.45, P =
0.010); between the fluorescein expansion ratio and
the observation of a peak in subretinal fluid (r = 0.39,
P = 0.036), the RPE elevation at leakage sites (r =
0.46, P = 0.026), and the initial subretinal fluid vol-
ume (r = 0.58, P = 0.001). There was a near-
significant trend between SFCT and fluorescein
expansion ratio (r = 0.33, P = 0.082). There was also
a near-significant, inverse correlation between
patient age and SFCT (r = 20.31, P = 0.09), pro-
viding a likely explanation for the nonsignificance of
age in the univariate analysis. However, both

Fig. 5. Follow-up of an acute episode of central serous chorioretinopathy in a 52-year-old woman using subretinal fluid volume segmentation on optical
coherence tomography. There was an initial increase in subretinal fluid from baseline (A–B) with a peak in subretinal fluid volume at Day 35 (C) and
subsequent decrease (D–E) until subretinal fluid resolution at Day 132 (not shown). Note the shape of a pigment epithelial detachment visible on the
segmented serous retinal detachment (same patient as Figure 4D).

Fig. 6. Follow-up of an acute
episode of central serous cho-
rioretinopathy in a 35-year-old
man using subretinal fluid vol-
ume segmentation on optical
coherence tomography. No
increase in subretinal fluid vol-
ume could be observed, with
a progressive decrease from
baseline (A) to all timepoints (B
and C) and resolution at Day 75
(not shown).
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parameters remained independent, consistently with
the results of the multivariate model.

Discussion

In acute CSCR, a serous retinal detachment of the
macula is generally not considered a threat for visual
function because visual acuity is not or mildly decreased
and recovers completely in most cases. But altered
quality of vision is a frequent complaint of patients
despite normal visual acuity levels and macular micro-
structure. Electrophysiology studies of acute CSCR
demonstrated that abnormal cone function observed
during an active episode persists after resoluton.24–27

Poorer recovery is associated with longer symptom
duration although the duration threshold before perma-
nent functional damage has not been clearly deter-

mined.28 This threshold would help to define the
optimal treatment timing for nonresolving cases.
In this study, we have analyzed the natural history

of acute, treatment-naive first episodes of CSCR and
have correlated the duration of subretinal fluid persis-
tence with clinically available parameters. We have
found that longer episode duration was independently
associated with higher SFCT, higher elevation of RPE
lesions at leakage sites, and older age.
Current hypotheses regarding the pathophysiology

of CSCR include choroidal vascular dilation manifest-
ing by choroidal thickening (or pachychoroid),29,30

possibly because of inappropriate activation of the
mineralocorticoid pathway,31,32 with concurrent RPE
alterations.33 However, the mechanisms involved in
SRF resolution or persistence are not fully understood.
Genetic studies of nonresolving CSCR cases have re-
ported an association with variants in the Complement
Factor H, ARMS 2 and Cadherin 5 genes,34–36 which

Fig. 7. Comparative survival curves showing the rate of subretinal detachment resolution over time about SFCT (A) and the height of RPE elevations at
leakage sites (B) on optical coherence tomography. The duration from initial visit to episode resolution was significantly longer for subfoveal choroidal
thickness $500 mm (A) and pigment epithelium elevation $50 mm (B) both in the univariate and multivariate analyses. P-values from the univariate
(log-rank test) and the multivariate analysis (Cox proportional hazard model, between parenthesis) are reported.

Fig. 8. Comparative survival curves showing the rate of subretinal detachment resolution over time about the observation of a peak in SRF on optical
coherence tomography (A) and patient age (B). The duration from initial visit to episode resolution was significantly longer for cases with an observed
peak in subretinal fluid volume in the univariate analysis only (A). Episodes were also longer for patients aged 40 years or older in the multivariate
analysis only (B). P-values from the univariate (log-rank test) and the multivariate analysis (Cox proportional hazard model, between parenthesis) are
reported. ns, nonsignificant contributor to the multivariate model.
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are expressed by RPE cells.37–39 These findings sug-
gest that RPE changes contribute to the evolution
toward nonresolving CSCR. They are consistent with
previous fluorescein angiography studies of CSCR40–42

demonstrating that SRF originates from an abnormal
passage from the choroid through the RPE, over-
whelming the pumping outflow capacity of RPE cells.
From this perspective, the association of longer episode
duration with higher SFCT and higher elevation of
RPE lesions at leakage sites are additional evidence
that the degree of choroidal and RPE dysfunction is
predictive of the final outcome.
Another interesting finding is the association of

episode duration with older age. In aged human
maculae, RPE cells increase in size and lose their
regular hexagonal shape.43 Studies of aging primate
eyes have shown that mitochondrial elongation is
observed within RPE cells located of the macular area,
an indicator of increased metabolic stress.44 In aged
mouse eyes, RPE cells undergo multinucleation
because of aborted mitosis, one of the mechanisms
of cell death, and the contact with photoreceptor outer
segments inhibits RPE cell proliferation.45 Altogether,
these observations indicate that the repair capacity of
the RPE decreases with aging, particularly in the mac-
ula. This supports the notion that older age is associ-
ated with longer CSCR episodes, which may
ultimately contribute to the chronic epitheliopathy fre-
quently seen in older CSCR patients.46

We are unaware of previous reports relating the
time-course of acute CSCR episodes to clinical and
multimodal imaging features. In a study of 27 eyes

with acute CSCR performed before the OCT era, Klein
et al1 related the time-course of the disease to baseline
and final fluorescein angiography and repeated fundus
examinations. The mean time of resolution was 6
months after symptoms onset, with a maximal
observed duration of 12 months. More recently,
Pryds et al19 have investigated the fluorescein leakage
rate based on early FA frames in cases with typical
smokestack leaks, using a method adapted in the
present study. They observed variable leakage rates,
a finding consistent with our results, but did not cor-
relate with other clinical characteristics. Yang et al47

have described the multimodal correlations between
RPE alterations including PED on SD-OCT, FA,
and indocyanine-green angiography in CSCR
patients but did not relate these findings to the dura-
tion of episodes.
The present study may have practical consequences

for the management of acute CSCR patients. Eighty-
four percent of consecutive patients demonstrated
spontaneous resolution of SRF within 6 months,
confirming that observation for up to 6 months is
an appropriate initial management. However, patients
with SFCT $500 mm, PED with elevation $50 mm,
or age $ 40 years may be identified and warned of
a higher risk of longer CSCR duration, with a subse-
quent need for a longer follow-up and/or earlier treat-
ment decision. Although they were not independent
risk factors, observation of a peak in SRF during
follow-up and to a lesser extent an intense leakage
on the baseline FA may also contribute to identify
clinically patients at risk of longer episodes. Further

Table 2. Factors Influencing the Duration of Acute, Treatment-Naive, First CSCR Episodes by Univariate and Multivariate
Survival Analysis

Univariate* Multivariate†

HR (95% CI) P aHR (95% CI) P

Ocular factors
SFCT $ 500 mm 0.19 (0.08–0.46) 0.0002 0.29 (0.10–0.80) 0.017
RPE elevation at leakage site $50 mm 2.46 (1.07–5.65) 0.033 0.26 (0.09–0.73) 0.010
Peak in subretinal volume observed
during follow-up

0.35 (0.16–0.80) 0.013 — —

Initial serous retinal detachment
volume $1 mL

1.88 (0.85–4.16) 0.12 — —

Fluorescein leakage ratio $2 on FA 2.22 (0.93–5.31) 0.074 — —
Multifocal choroidal hyperpermeability on
midphase ICGA

0.82 (0.37–1.82) 0.63 — —

Systemic factors
Age $40 years 1.71 (0.78–3.74) 0.18 0.23 (0.07–0.70) 0.010
History of corticosteroid intake 0.99 (0.44–2.22) 0.98 — —
Mean arterial blood pressure $110 mmHg 1.19 (0.54–2.61) 0.67 — —

*Log-Rank statistics.
†Cox proportional hazard model followed by stepwise multivariate regression.
aHR, adjusted hazard ratio; CI, confidence interval; FA, fluorescein angiography; HR, hazard ratio; ICGA, indocyanine green

angiography; RPE, retinal pigment epithelium; SFCT, subfoveal choroidal thickness.
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studies are required to evaluate whether longer dura-
tions of macular serous detachment are associated
with worse vision quality and higher risks of CSCR
recurrence.
Limitations of this work include the size of the

study population because of its prospective nature
and the iterative subretinal fluid follow-up that
prevented a continuous analysis of subretinal fluid
evolution. As a result, peaks in subretinal fluid
volume may have been missed, either between
follow-up timepoints, or before the initial visit. To
minimize this flaw, we excluded patients presenting
more than 20 days after symptoms onset and
densified the initial follow-up schedule. In addition,
we did not consider recently described imaging signs
in CSCR such as hyporeflective subretinal lucency,48

loculation of fluid in the posterior choroid,49 or pres-
ence of intraretinal hyperreflective foci.50 Finally,
SCFT were measured at a single time point at first
visit and therefore diurnal variations of SFCT were
not considered.
To summarize, we have identified clinical param-

eters that are significantly associated with longer
duration of first acute CSCR episodes. Further
functional analyses are required to determine
whether these factors could help select patients
who should benefit from earlier therapeutic inter-
ventions. These parameters could also be useful for
the design of future randomized studies of CSCR to
limit potential bias.

Key words: central serous chorioretinopathy, cho-
roid, retinal pigment epithelium, choroidal thickness,
optical coherence tomography, fluorescein angiography,
indocyanine green angiography, age factors, time factors,
steroids.
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RISK FACTORS FOR RECURRENCES
OF CENTRAL SEROUS
CHORIORETINOPATHY
ALEXANDRE MATET, MD,* ALEJANDRA DARUICH, MD,* MARTA ZOLA, MD,*
FRANCINE BEHAR-COHEN, MD, PHD*†

Purpose: To describe recurrence patterns and investigate candidate risk factors for
recurrences of central serous chorioretinopathy.

Methods: In 46 patients with acute central serous chorioretinopathy and follow-up .12
months after first episode resolution, parameters influencing recurrences were retrospec-
tively evaluated using a frailty Cox proportional hazard survival model. Covariates included
baseline systemic findings: age, gender, corticosteroid use, stress, shift work, sleep disor-
der, depression, allergy, cardiovascular risk; baseline optical coherence tomography find-
ings: subfoveal choroidal thickness, pigment epithelial detachment pattern (regular/bump/
irregular), number of subretinal hyperreflective foci at leakage site; baseline angiographic
findings: fluorescein leakage intensity (intense/moderate/subtle/absent), hyperpermeability
pattern on indocyanine-green angiography (focal/multifocal); and episode-related findings:
duration and treatment of previous episode.

Results: Twenty of 46 subjects (43%) presented $1 recurrences during a mean follow-
up of 29.9 ± 9.5 months (range, 15–54 months). Follow-up duration did not differ between
cases with or without recurrences (P = 0.3). Worse final visual acuity levels (logarithm of the
minimal angle of resolution) were associated with a higher number of episodes during
follow-up (P = 0.032, r = 0.28). In a univariate analysis, higher subfoveal choroidal thickness
(P = 0.021), nonintense fluorescein leakage (= moderate/subtle/absent, P = 0.033), multiple
subretinal hyperreflective foci (P = 0.026), and shift work (P , 0.0001) were significantly
associated with recurrences, with a near-significant influence of irregular pigment epithelial
detachment (P = 0.093). In a multivariate analysis, higher subfoveal choroidal thickness (P =
0.007), nonintense fluorescein leakage (P = 0.003) and shift work (P , 0.0001) remained
significant and independent risk factors for recurrences.

Conclusion: Multiple factors influence the risk of central serous chorioretinopathy
recurrence. These findings may contribute to identify patients at higher risk, who could
benefit from earlier or more intensive treatment.

RETINA 0:1–12, 2017

Central serous chorioretinopathy (CSCR) consists in
serous detachments of the neuroretina from the ret-

inal pigment epithelium (RPE), most frequently occur-
ring in middle-aged men.1–4 It is favored by several
widely agreed predisposing factors,5 such as corticoste-
roid use,6,7 psychological stress,8,9 depression,10–12 and
cardiovascular disease,13–15 or more recently advanced
factors such as pachychoroid,16–18 allergic disease,19

disturbed sleep,20–22 and shift work.21–23 An association
with Helicobacter pylori has also been postulated,24–26

and pregnancy is known to favor episodes.19,27,28 Other
factors have been suggested and remain disputed.
During an active episode, multimodal imaging

typically identifies one or multiple leakage sites of

varying intensity on fluorescein angiography (FA),
focal or multifocal choroidal vascular hyperperme-
ability on midphase indocyanine green angiography
(ICGA), and varying degrees of RPE abnormalities,
ranging from RPE bumps to regular or irregular
pigment epithelial detachments (PED).
Whilst acute episodes are usually self-resolving,
!20% to 50%29–31 of affected eyes may later present
one or several recurrences. Despite a remarkable resis-
tance of photoreceptors to serous detachments during
single CSCR episodes,32,33 repeated episodes and pro-
longed serous detachment lead to irreversible photore-
ceptor/RPE damage, and vision loss.34 Yet, little is
known about the underlying mechanisms triggering

1
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recurrences and leading to chronic forms of the dis-
ease. Whether recognized risk factors for CSCR or
anatomical changes in the choroid, RPE and retina
do also influence the recurrence rate of the disease
has not been comprehensively explored. Identifying
factors predisposing for CSCR recurrences would help
detect patients at higher risk of recurrence, potentially
needing preventive and/or more aggressive therapeutic
interventions.
This retrospective case series describes recurrence

patterns in CSCR patients, and investigates the
influence of a panel of candidate systemic and ocular
factors on the risk of recurrence.

Methods

Subjects

This observational, single-center, retrospective
study was designed in accordance with the tenets of
the Declaration of Helsinki. Data collection and
analysis have been approved by the Ethics Committee
of the Swiss Federal Department of Health (CER-VD
no. 19/15).
Patients presenting with an active episode of

CSCR at Jules-Gonin Eye Hospital from January
2012 to September 2015, followed by spontaneous
or treatment-induced subretinal fluid resolution, and
with a follow-up longer than 12 months after
resolution of the initial episode, were included.
Those presenting with fundus autofluorescence al-
terations suggestive of previous CSCR episodes, or
chronic disease, such as hyperautofluorescent areas,
possibly containing granular or confluent hypoauto-
fluorescence, were excluded. In addition, the follow-
up of patients who were maintained under oral
mineralocorticoid-receptor antagonist therapy as
prophylaxis after an episode resolution, was cen-
sored at the time of that resolution. Cases with

spherical equivalent .±2 D in the affected eye were
excluded. In case of bilateral involvement, only the
first eye affected by a recurrence was included in the
study.
Patient medical and ocular history, including patient

profession and specific risk factors detailed below,
baseline clinical and imaging parameters, the number
and chronology of recurrences, and the last available
best-corrected visual acuity were recorded.
Based on clinical decisions by the senior consultant

(F.B.-C.), patients with a first episode lasting .6
months, or with a recurrence lasting .2 months could
receive either laser photocoagulation of extramacular
leakage sites, or oral mineralocorticoid-receptor antag-
onist therapy.

Retinal Imaging

Imaging was performed after standard pupillary
dilation using tropicamide 0.5% drops with the Spec-
tralis (Heidelberg Engineering, Heidelberg, Germany),
and all visits occurred between 1 PM and 5 PM. A 20° ·
20° 97-sections map on spectral-domain optical coher-
ence tomography (SD-OCT), a 30° enhanced-depth
imaging SD-OCT horizontal scan through the fovea
with an “automatic real time” averaging of 100 images,
a 30° · 30° fundus infrared reflectance, and a 30° · 30°
fundus autofluorescence image were acquired. FA and
ICGA were performed at the baseline visit.
For each case, the degree of fluorescein leakage at

the main leakage site on FA from early (40–60 sec-
onds) to midphase (2–3 minutes) was graded as absent
(no leakage), subtle (faint fluorescence increase), mod-
erate (fluorescence increase without marked spatial
diffusion) or intense (strong fluorescence increase
and strong spatial diffusion). A quantitative assess-
ment of leakage intensity was also obtained by calcu-
lating the ratio of fluorescein expansion at the leakage
site between early and midphase angiograms, using
a semiautomated algorithm on Matlab (Version
R2015b; Mathworks, Natick, MA) as previously
described.35 Multifocal choroidal hyperpermeability
was defined as the presence of two or more hyper-
cyanescent areas on midphase ICGA (10–12 minutes
after dye injection). The most advanced RPE defect
observed within the subretinal detachment area on
SD-OCT was categorized by incremental severity as:
regular PED (curved elevation of the RPE with hypo-
reflective content), RPE bump (shallow irregular ele-
vation of the RPE with hyperreflective content), or
irregular PED (irregular elevation of the RPE with
hyporeflective content). The height of this RPE lesion
and its axial diameter on a horizontal SD-OCT scan
were measured, and the PED height/diameter ratio was
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calculated. Subjective gradings and measurements
were performed on masked images by two indepen-
dent observers (A.M., A.D.). In case of discrepancy
between the two raters, the image was adjudicated by
a senior retina specialist (F.B.-C.). The interrater
agreement was assessed using the weighted Cohen’s
kappa statistics.
The subfoveal choroidal thickness (SFCT) was

measured by two observers (A.M., A.D.) on baseline
enhanced-depth imaging SD-OCT horizontal scans, as
the axial distance from the RPE to the outer choroid/
sclera interface, using the built-in Spectralis software
(Heidelberg Eye Explorer, version 1.9.10.0). The
mean of the two measures of each scan was retained,
and the interrater agreement was assessed using the
intraclass correlation coefficient.
Subretinal hyperreflective foci on SD-OCT were

focal lesions with a reflectivity identical to the RPE
signal, located between the outer tip of photoreceptor
outer segments and the inner surface of the RPE, as
defined by Lee et al.36 Their number was determined
by two observers (A.M., A.D.) within a 1,500-mm area
centered by the leakage site on a corresponding hori-
zontal SD-OCT section, as reported by these authors,
and the mean number of foci was considered for anal-
ysis. The interrater agreement was assessed using
weighted Cohen’s kappa statistics.

Risk Factors of CSCR Recurrence

Clinical and imaging parameters related to the
pathophysiology of CSCR were evaluated as potential
risk factors: age at first episode, gender, type of RPE
alteration, number of subretinal hyperreflective foci at
the leakage site, SFCT, intensity of fluorescein leakage,
and pattern of choroidal hyperpermeability on ICGA.
Additionally, previously reported systemic risk factors
of CSCR were assessed: history of corticosteroid use
(oral, intranasal, inhalational, topical skin application,
intravenous, intramuscular), current or recent (#2
years) psychological stress (related to work: burden,
responsibilities, layoff; or to life changes: death,
divorce, familial strife), shift work (current or recent
(#2 years) professional activity starting before
7:00 AM or finishing after 7:00 PM, which includes even-
ing, night or early morning work), sleep disorder
(patient-reported sleep-onset difficulties or frequent
nocturnal awakening), history of depression, history
of allergic disease, and cardiovascular risk (hyperten-
sion, diabetes mellitus or hypercholesterolemia).

Statistical Analysis

A shared frailty survival model was used to assess
the effect of potential predictors on the risk of

recurrences, using the “frailtypack” package37,38 and
the R Software (Version 3.3.0, R Foundation for Sta-
tistical Computing, R Core Team, 2016, Vienna, Aus-
tria. http://www.R-project.org/). This model consists
in a survival analysis of recurrence times, based on
a Cox proportional hazard regression with an addi-
tional subject-specific random coefficient accounting
for the fact that several recurrences will occur within
single individuals. A series of univariate regressions,
and a multivariate regression with covariates reaching
P values #0.2 in the univariate analysis, were per-
formed as previously described.39 An additional anal-
ysis based on the first recurrences only was performed
by a conventional Cox proportional hazard survival
model on R, using the “survival” package,40 and was
used to plot survival curves using the “survminer”
package.
Agreement between raters by weighted Cohen’s

Kappa, or intraclass correlation coefficient, were esti-
mated using the R software with the “irr” package.41

Descriptive statistics, comparison of quantitative
parameters (Mann–Whitney test) and correlations
(Spearman) were performed on GraphPad Prism
(version 5.0f; GraphPad Software, La Jolla, CA). The
logarithm of the minimal angle of resolution (Log-
MAR) was used to calculate visual acuity means.
P values #0.05 were considered significant.

Results

Amongst 62 patients presenting with an active
episode of CSCR during the study period without
knowledge of previous episodes, 16 were excluded
(n = 5 for follow-up #12 months and n = 11 for
fundus autofluorescence alterations at the first visit
suggesting history of CSCR, including n = 6 with
hyperautofluorescent areas, n = 3 with hyperautofluor-
escent areas containing granular hypoautofluores-
cence, and n = 2 with confluent hypoautofluorescent
areas). Of the remaining 46 patients, 20 presented
CSCR recurrences (43%) during a mean follow-up
of 29.9 ± 9.5 months (range, 17–54 months). The
follow-up of 2 subjects with recurrences was censored
after resolution of the last episode, because they
received prolonged oral mineralocorticoid-receptor
antagonist therapy as prophylaxis after this episode.
Three subjects with history or high risk of fluorescein
allergy did not undergo FA or ICG.
Descriptive characteristics of nonrecurrent and

recurrent cases are reported in Table 1, and a schematic
chronology of episodes experienced by recurrent cases
is displayed in Figure 1. On SD-OCT analysis, an
excellent agreement was shown between observers
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for SFCT measures using enhanced-depth imaging (in-
traclass correlation coefficient = 0.98), and for PED
height/diameter ratios (intraclass correlation coeffi-
cient = 0.97), and a good agreement for the quantifi-
cation of subretinal hyperreflective foci (Cohen’s

kappa = 0.67). A good-to-excellent agreement was also
observed for the qualitative grading of PEDs, fluores-
cein leakage intensity and ICGA pattern (Cohen’s kappa
= 0.65, 0.84, and 0.86, respectively). A clinical illustra-
tion of subtle/moderate/intense fluorescein leakages,

Table 1. Clinical and Time-dependent Characteristics for 46 Patients With Central Serous Chorioretinopathy According to
the Observation of Recurrences During Follow-up

No Recurrence Recurrence

Subjects, N 26 20
Gender (male/female), N 21/5 18/2
Age at first episode, year (range) 43.3 ± 9.4 (28–56) 43.1 ± 7.7 (29–55)
Total follow-up duration, month
(range)

28.3 ± 9.2 (15–54) 31.9 ± 9.8 (17–52)

Episode duration, month 4.4 ± 3.7 4.8 ± 3.3
No. of episodes during follow-up,
per subject

1.0 ± 0.0 2.7 ± 0.9

Distribution of episode number:
1 episode, N 26 0
2 episodes, N 0 11
3 episodes, N 0 3
4 episodes, N 0 5
5 episodes, N 0 1

BCVA at presentation, LogMAR
(Snellen)

0.13 ± 0.14 (!20/27) 0.14 ± 0.13 (!20/28)

BCVA at the final visit, LogMAR
(Snellen)

0.03 ± 0.08 (!20/21) 0.12 ± 0.21 (!20/26)

Treatment required during one
episode or more, N

3 13

Laser photocoagulation, N 1 4
Oral MR antagonist, N 3 12
Prolonged MR antagonist after
episode resolution, N

0 2

Quantitative variables are expressed as mean ± SD.
BCVA, best-corrected visual acuity; MR, mineralocorticoid-receptor.

Fig. 1. Chronology of episodes
in 20 patients with recurrent
central serous chorioretinopathy.
Onset of episodes (red squares),
episode duration (blue seg-
ments), and total follow-up (gray
lines) are displayed. For clarity,
nonrecurrent cases were not
represented.
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regular PED/RPE bump/irregular PED, and focal/multi-
focal ICGA patterns are provided as Supplemental
Digital Content 1–3 (see Figures, http://links.lww.
com/IAE/A663; http://links.lww.com/IAE/A664; http://
links.lww.com/IAE/A665).
To assess the robustness of these gradings, multiple

correlations were performed (see Table, Supplemen-
tal Digital Content 4, http://links.lww.com/IAE/
A666), which revealed a significant correlation
between PED type (regular PED, RPE bump, irregular
PED) and PED height/diameter ratio (P = 0.027, r =
20.33), and between FA leakage intensity (none, sub-
tle, moderate, intense), and fluorescein leakage expan-
sion ratio (P = 0.0002, r = 0.54).
Follow-up duration ranged from 15 to 54 months

and did not differ between the nonrecurrent and
recurrent cases (P = 0.3). Eleven cases (24%) pre-
sented 1 recurrence, 3 cases (7%) 2 recurrences, 5
cases 3 recurrences (11%), and 1 case 4 recurrences
(2%), with a mean number of 1.8 ± 1.0 recurrences per
recurrent case. Among recurring patients, the mean
time from resolution of the initial episode to the
onset of the first recurrence was 7.3 ± 5.5 months
(range, 1–17 months), and the interepisode interval
decreased with subsequent recurrences: 6.0 months
between first and second recurrence, and 3.3 months
between second and third recurrence.
When considering the whole cohort, the mean

recurrence-free interval observed after resolution of
the first episode was 15.9 ± 12.4 months, and the
absolute frequency of recurrences was 0.81 per
patient-year. The risk of recurrence decreased with
time elapsed since the previous episode (hazard ratio
with 95% confidence interval: 0.86 (0.82–0.91), P ,
0.0001), indicating that the risk was highest immedi-
ately after a given episode and decreased as patients
remained recurrence-free.
The initial BCVA did not differ between recurrent

(LogMAR: 0.14, Snellen: !20/28) and nonrecurrent
cases (LogMAR: 0.13, Snellen: !20/27) (P = 0.6),
but the final BCVA was near-significantly worse in
recurrent (LogMAR: 0.12, Snellen: !20/26) than non-
recurrent cases (LogMAR: 0.03, Snellen: !20/21)
(P = 0.07). Using Spearman correlation, a higher num-
ber of recurrences was associated with worse visual
outcome, assessed by the LogMAR BCVA (P =
0.032, r = 0.28). Yet, there was no correlation between
the number of recurrences or the last LogMAR
BCVA, and the duration of follow-up (P = 0.09 and
P = 0.11, respectively), ensuring that the number of
observed recurrences was not a confounding factor
linked to different follow-up durations.
Imaging and systemic features evaluated as potential

risk factors are described in Table 2. Hazard ratios and

95% confidence intervals representing the risk of
CSCR recurrence associated with each of these param-
eters, obtained by uni- and multivariate analysis, are
reported in Table 3. In the univariate analysis, SFCT
(P = 0.021), number of subretinal hyperreflective foci
at the leakage site (P = 0.026), nonintense fluorescein
leakage (moderate, subtle, or absent; P = 0.033), and
shift work (P , 0.0001) were significantly associated
with an increased risk of recurrence. The univariate
analysis also suggested that presence of an irregular
PED may be associated with a higher risk of

Table 2. Imaging and Systemic Parameters in 46 Patients
With Central Serous Chorioretinopathy According to the

Observation of Recurrences During Follow-up

No
Recurrence Recurrence

Subjects, N 26 20
Imaging parameters at the first
episode
SFCT, mm 439 ± 88 498 ± 74

Degree of RPE alteration on
OCT, N
Regular PED 12 5
RPE bump 10 8
Irregular PED 4 7

PED height/diameter ratio 0.116 ±
0.067

0.134 ±
0.108

Subretinal hyperreflective foci
at leakage site on OCT

1.2 ± 1.2 1.9 ± 1.5

Fluorescein leakage intensity,
N
Intense 12 2
Moderate 2 6
Subtle 7 10
Absent 2 2
NA* 3 0

Specific fluorescein leakage
patterns
Ink-blot 0 3
Smokestack 4 0

Fluorescein leak expansion
ratio

3.6 ± 3.4 1.9 ± 1.3

Pattern of choroidal
hyperpermeability on ICGA,
N
Multifocal 7 11
Focal 16 9
NA* 3 0

Systemic risk factors
History of corticosteroid
use, N

9 9

Stress, N 15 13
Shift work, N 5 9
Sleep disorder, N 9 10
Depression, N 5 5
Allergic disease, N 8 10
Cardiovascular risk, N 4 2

Quantitative variables are expressed as mean ± SD.
*Patients presenting fluorescein allergy.
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recurrence (P = 0.093), although it did not reach sta-
tistical significance. In the multivariate analysis, SFCT
(P = 0.007), nonintense fluorescein leakage (P =
0.003) and shift work (P , 0.0001) were significantly
and independently associated with a higher risk of
recurrence. When the multivariate model was run
with fluorescein leakage intensity and PED type
substituted by fluorescein expansion ratio and PED
height/diameter ratio, SFCT (P = 0.006), fluorescein
expansion ratio (P = 0.020), and shift work (P =
0.0008) remained independent contributors.
Noticeably, follow-up duration did not influence the

risk of recurrence in the univariate analysis (P = 0.23)
strongly suggesting that the results were not biased by
the different follow-up durations among patients. To
confirm this finding, we repeated the multivariate anal-
ysis with the follow-up duration as additional covari-
ate, which did not alter the above-reported results and
their significance levels. Treatment of a given episode
by laser or mineralocorticoid-receptor antagonist did
not influence the risk of ulterior recurrence (P = 0.8).

To further confirm the robustness of these results,
and to provide a graphical illustration of the contribu-
tion of the three above-mentioned parameters to the
risk of recurrence, we performed a conventional Cox
proportional hazard survival analysis, based on the
disease-free interval following the initial episode, until
the onset of the first recurrence (in recurring cases) or
the end of follow-up (in nonrecurring cases). Higher
SCFT (Figure 2), nonintense fluorescein leakage (Fig-
ure 3) and shift work (Figure 4) were all significantly
associated with a higher risk of first recurrence in
a univariate (P = 0.021, P = 0.029 and P = 0.009,
respectively) and multivariate analysis (P = 0.005,
P = 0.016 and P = 0.0003, respectively).

Discussion

The exact link between acute, self-limited CSCR
associated with good visual recovery and chronic
forms of diffuse epitheliopathy leading to permanent
visual loss, remains uncertain. It is suspected that

Table 3. Factors Associated With Episode Recurrence in 46 Patients With Central Serous Chorioretinopathy

Univariate Multivariate

Hazard Ratio (95% CI) P Adjusted Hazard Ratio (95% CI) P

Patient- and episode-related
parameters
Age at the initial episode (per
10-year interval)

1.14 (0.83–1.58) 0.4

Gender (male vs female) 2.81 (0.80–9.89) 0.11 0.45 (0.08–2.40) 0.3
Total follow-up duration (per year) 1.27 (0.86–1.86) 0.23
Treatment required for previous
episode

0.88 (0.36–2.17) 0.8

Duration of previous episode
($6 vs ,6 months)

1.16 (0.51–2.64) 0.7

Imaging parameters at the first
episode
SFCT (per 100-mm) 1.75 (1.09–2.83) 0.021 1.92 (1.20–3.09) 0.007
RPE alteration on OCT (irregular
PED vs regular PED or RPE bump)

2.21 (0.88–5.59) 0.093 1.19 (0.56–2.55) 0.6

Subretinal hyperreflective foci at
leakage site on OCT ($2 vs #1
foci)

2.44 (1.11–5.34) 0.026 0.66 (0.23–1.85) 0.4

Fluorescein leakage pattern on FA
(intense vs moderate, subtle or
absent)

0.30 (0.10–0.91) 0.033 0.16 (0.05–0.53) 0.003

Choroidal hyperpermeability on
ICGA (multifocal vs focal or
absent)

1.58 (0.67–3.72) 0.3

Systemic risk factors
Corticosteroid use 1.56 (0.65–3.73) 0.3
Stress 2.00 (0.87–4.64) 0.10 1.70 (0.66–4.34) 0.3
Shift work 4.52 (2.25–9.07) ,0.0001 7.26 (2.78–18.98) ,0.0001
Sleep disorder 1.62 (0.67–3.96) 0.3
Depression 1.87 (0.73–4.80) 0.19 0.46 (0.15–1.36) 0.16
Allergic disease 1.84 (0.79–4.31) 0.16 1.51 (0.55–4.14) 0.4
Cardiovascular risk 0.80 (0.22–2.99) 0.9

CI, confidence interval.
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repeated and/or prolonged episodes of serous retinal
detachments may lead to diffuse RPE dysfunction,
which further contributes to incomplete subretinal
fluid reabsorption and irreversible photoreceptor dam-
age.42–44 Yet, whether patients at risk for chronic dis-
ease do have specific ocular or systemic characteristics
at baseline that distinguish them from patients experi-
encing only one acute episode has not been ques-
tioned. One way to explore this issue is to identify
risk factors for CSCR recurrences. In addition to local

anatomical and biological factors triggering acute RPE
barrier breakdown, endogenous or environmental fac-
tors such as genetic variations, stress, food regimen or
other lifestyle habits might favor the maintenance of
a pathologic state.
Recurrence rates of CSCR reported in the literature

vary from !20% to 50%,29–31 a wide range probably
because of the variable recording of asymptomatic ep-
isodes occurring outside the macula. In the present
study, 43% of patients presented at least one recurrent

Fig. 2. Rate of first recurrence
of central serous chorioretinop-
athy among 46 acute cases, with
respect to subfoveal choroidal
thickness. The disease-free
interval from resolution of the
initial episode was considered,
and the survival curve was
plotted after adjustment for
fluorescein leakage intensity and
shift work. Higher subfoveal
choroidal thickness was associ-
ated with a higher rate of first
recurrence (P = 0.005, multi-
variate Cox proportional hazard
analysis), and with a higher
global risk of recurrence (P =
0.007, multivariate shared frailty
model). Since fluorescein angi-
ography was not performed in 3
cases, 43 cases are displayed on
this adjusted curve.

Fig. 3. Rate of first recurrence
of central serous chorioretinop-
athy among 46 acute cases with
respect to fluorescein leakage
intensity. The disease-free inter-
val from resolution of the initial
episode was considered, and the
survival curve was plotted after
adjustment for subfoveal cho-
roidal thickness and shift work.
Nonintense fluorescein leakage
patterns (absent, subtle, or mod-
erate) were significantly associ-
ated with a higher rate of first
recurrence (P = 0.016, multi-
variate Cox proportional hazard
analysis), and significantly
associated with a higher global
risk of recurrence (P = 0.003,
multivariate shared frailty
model). Since fluorescein angi-
ography was not performed in 3
cases, 43 cases are displayed on
this adjusted curve.
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episode during follow-up. This relatively high ratio, at
the upper range of reported recurrence rates, could
result at least partly from the regular follow-up of
these patients in a dedicated CSCR outpatient clinic,
and their awareness of subtle symptoms suggestive of
CSCR recurrence.
Whilst risk factors for acute CSCR have been

extensively investigated and reported,2,5,45 those asso-
ciated with a higher risk of recurrence have been rarely
addressed in the literature. In a retrospective analysis of
73 CSCR patients (52% of whom presented $1 recur-
rence over a mean follow-up of 72 months), Fok et al46

identified that amongst gender, age, hypertension, pep-
tic ulcer, smoking, and history of psychiatric illness,
only the latter was associated with a higher rate of
recurrence. In this series, clinical or imaging character-
istics were not considered. In contrast, Lee et al36 have
retrospectively analyzed baseline imaging features in 62
patients (18% of whom presented $1 recurrence over
a mean follow-up of 17 months), and have identified
irregular PED and subretinal hyperreflective foci on
baseline SD-OCT as predictors of disease recurrence.

In the present study, we evaluated a combined panel
of systemic factors and baseline imaging parameters in
46 patients, 43% of whom presented $1 recurrence
over a mean follow-up of 29.9 months. We found that
SFCT, nonintense fluorescein leakage at baseline, and
history of shift work were independent predictors of
disease recurrence. In addition, a higher number of
subretinal hyperreflective foci around leakage sites at
baseline was associated with recurrences in the univar-
iate analysis, which also suggested a near-significant
association of irregular PED. These findings are con-
sistent with the previous observations by Lee et al.36

However, in our multivariate analysis, both parameters
did not remain independent contributors, which is pos-
sibly explained by the strong effect of the three main
contributing parameters. These results suggest that
subretinal hyperreflective foci, and to a lesser extent
irregular PED, may be risk markers rather than risk
factors of disease recurrence. In contrast, SFCT was
not mentioned in the assessment of the recurrence risk
by Lee et al,36 raising the possibility that SFCT was an
unseen confounding factor in their model.

Fig. 4. Rate of first recurrence of central serous chorioretinopathy among 46 acute cases with respect to shift work. The disease-free interval from
resolution of the initial episode was considered, and the survival curve was plotted after adjustment for subfoveal choroidal thickness and fluorescein
leakage intensity. Shift work was associated with a higher rate of first recurrence (P = 0.0003, multivariate Cox proportional hazard analysis), and with
a higher global risk of recurrence (P , 0.0001, multivariate shared frailty model). Since fluorescein angiography was not performed in 3 cases, 43 cases
are displayed on this adjusted curve.
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The type of fluorescein leak has not been previously
suspected as a potential predictor for recurrence. We
observed milder leakage at the first acute episode in
cases who developed later recurrences. There was an
ink-blot pattern in 3 of 20 recurring cases, and no
smokestack pattern; in contrast, there was a smokestack
pattern at this initial episode in 4 of 26 nonrecurrent
cases, and no ink-blot pattern. The exact meaning of
this observation is not clear. Interestingly, Bujarborua
et al47 analyzed how fluorescein fills the subretinal
space during leakage, and identified amongst 479
CSCR cases, 14% of smokestack leak, of which
70% occurred in first acute episode, 27% during acute
recurrent episodes, and only 3% at the chronic stage of
the disease. This suggests that an intense leak of
unbound fluorescein creating the smokestack effect,
occurs essentially at the early stage of acute CSCR.
On the other hand, Pryds et al48 have estimated the
flow of fluid leakage into the subretinal space of CSCR
eyes, and have demonstrated that the smokestack was
most likely because of bulk fluid flow from an under-
lying choroidal vessel through a RPE barrier break.
Together with our results, these observations sug-

gest that, in patients at risk for recurrences, the
choroid/RPE complex presents underlying pathogenic
features predisposing to repeated subretinal fluid
accumulation. We hypothesize that mechanical stress
exerted by a modified choroidal vasculature on the
RPE can induce a focal disruption in RPE cell
junctions leading to an acute episode, as suggested
by Dansingani et al in the recent description of
pachyvessels in CSCR.17 Subsequently, this RPE
lesion may either heal, or form a scar of lower inter-
cellular resistance that will not completely recover the
barrier properties of intact RPE. The resulting focal
RPE weaker resistance could favor recurrences, partic-
ularly if the underlying mechanical pressure from
altered choroidal vessels persists. Consistently, it has
been established that there is a focal hypoautofluores-
cence at the site of fluorescein leakage in CSCR eyes,
suggesting a focal RPE disruption.49 In a case series
evaluating mineralocorticoid-receptor antagonist ther-
apy in nonresolving CSCR (which included some of
the patients from the present study), we had noticed
that SFCT was higher in case of recurrent CSCR his-
tory, as compared with first episodes and to chronic
diffuse epitheliopathy,50 suggesting an association
between pachychoroid and recurrences. In addition,
we have previously observed that pachychoroid,
defined as SFCT .395 mm, was present in 50% of
CSCR patients’ relatives, suggesting that it could be an
inherited condition and could predispose to CSCR.18

The fact that elevated SFCT represents a risk factor for
recurrences favors this hypothesis. Interestingly, we

have reported that pachychoroid is associated with
longer duration of first acute episodes,35 confirming
a link between presence of choroidopathy and severity
of CSCR in a time-dependent manner. Investigators
have also observed a higher incidence of recurrences
in eyes of patients with bilateral CSCR, strengthening
the hypothesis that underlying risk factors may favor
recurrences.51

Remarkably, shift work has been recognized in the
present study as an independent risk factor for
recurrences. Two recent studies (including one from
our group on a different study population) have
demonstrated that shift work was significantly associ-
ated with the occurrence of CSCR, as compared with
control subjects.21,22 As extensively discussed by the
respective authors, shift work could induce CSCR
through disruption of the circadian hormonal clock
and dysregulation of cortisol and melatonin secretion.
In addition, circadian rhythm disruption induced by
exposure to artificial light at night in shift workers,
or by frequent jet lag, is now recognized as a major
cause of morbidity in multiple organ systems. Interest-
ingly, amongst conditions presumably linked to circa-
dian disruption,52 several have also been associated
with CSCR,5 such as hypertension, insomnia/sleep
disorders, peptic ulcer disease, depression, asthma or
allergy, further supporting the potential implication of
chronobiological factors in CSCR.
However, whether shift work is associated with

clinical subtypes of CSCR has not been previously
investigated. We hypothesize that biological clock
deregulation induced by environmental factors triggers
recurrences in individuals at risk, as those with
pachychoroid or residual RPE weakness following
a first CSCR episode.
In an attempt to link choroidal vasodilatation with

cortisol levels, several studies have evaluated diurnal
changes in SFCT in normal subjects with conflicting
results, reporting an elevation of SFCT either in the
morning,53–55 or in the evening.56 Other authors have
concluded that cortisol may not have an effect on the
choroid, since corticosteroid administration via differ-
ent routes did not increase SFCT.54,57,58 Conse-
quently, the interaction between circadian rhythm,
cortisol/melatonin levels and choroidal vasodilation,
if any, may involve more complex mechanisms. In
addition, elevation of morning peak serum cortisol
levels in CSCR patients remains controversial.59–62

The cortisol cycle may also be disrupted without
a detectable elevation in cortisol levels. In hormonal
systems regulated by time-dependent phenomena,
cyclical secretory patterns are more critical than levels
at a given time point, which are submitted to multiple
counterregulation loops. Moreover, it has been
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recently proposed that the biological clock modulates
the human cortisol response in a multiplicative fash-
ion.63 Exposure to stress at an unnatural phase of the
circadian cycle, as in shift work, would result in abnor-
mal cortisol regulation, providing a possible explana-
tion for the recurrent nature of CSCR.
Limitations of this study include its retrospective

nature, the limited sample size and follow-up duration,
because of strict inclusion/exclusion criteria and the
recent availability of standardized up-to-date imaging
modalities for all patients. Noteworthy, although the
shortest follow-up duration was 15 months, 16 of 20
(80%) recurring patients experienced at least 1 recur-
rence during this timeframe, and all patients experienced
1 recurrence or more within 29.9 months of the first
episode, the mean follow-up duration in the study. The
survival frailty approach partially compensated for the
variable and limited follow-up, by comparing episode-
free intervals in both recurring and nonrecurring cases.
In addition, by taking into consideration the unobserved
heterogeneity, this strategy identified efficiently signif-
icant covariates explaining the data variability.
A proportion of patients were treated during persist-

ing active episodes, mostly with oral mineralocorticoid-
receptor antagonists. However, treatments did not
influence the risk of recurrence in our analysis although
the number of treated episodes was limited. A decrease
in SFCT has been reported after mineralocorticoid-
receptor antagonist therapy,45 but also after spontane-
ous resolution of CSCR episodes.64 Whether such
SFCT decrease would reduce the risk of further epi-
sodes remains to be determined in a larger study. This
notion is consistent with recent findings by Herold
et al65 who observed 48% of recurrences over 1 year
after a 3-month course of oral spironolactone for non-
resolving CSCR. Also, quantitative evaluation and
qualitative grading of multimodal retinal imaging were
performed manually by investigators, but the degree of
interrater agreement was estimated for each parameter,
and a final adjudication was performed by a senior ret-
inal specialist in case of disagreement. Moreover, a pos-
itive correlation was found between the qualitative and
quantitative evaluations of certain parameters, such as
FA leak intensity or RPE lesion severity.
In summary, these results suggest that recurrences

of CSCR occur more frequently in patients presenting
thicker choroids, nonintense fluorescein leakage, or
with a history of shift work. Future studies are required
to evaluate the benefits of preventive intervention in
patients at risk, such as earlier or prolonged therapy,
and adaptation of occupational schedule.

Key words: central serous chorioretinopathy, cho-
roidal thickness, circadian rhythm, fluorescein angiog-

raphy, natural history, recurrences, retinal pigment
epithelium, risk factors, shift work, time factors.
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SUPPLEMENTAL DIGITAL CONTENT 4 (TABLE). 

Correlation matrix between imaging parameters at baseline among 46 patients with 

recurrent or non-recurrent central serous chorioretinopathy. 

 

 

P values 
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reported when 

P<0.05) 
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as regular 
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irregular 

PED) 
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as absent, 
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intense) 

Fluorescein 

leakage 

expansion 

ratio 

Subretinal 

hyperreflective 

foci (N.) 

Hyperpermeability 

pattern on ICGA 

(categorized as 

focal, multifocal) 

SFCT 0.7 0.17 0.9 1.0 0.8 0.9 

PED type - 0.027 

(r=-0.33) 

0.7 0.8 0.8 0.3 

PED height/ 

diameter ratio 

- - 0.8 0.4 0.4 0.9 

Fluorescein 

leakage 

intensity 

- - - 0.0002 

(r=0.54) 

0.8 0.5 

Fluorescein 

leakage 

expansion 

ratio 

- - - - 0.7 0.18 

Subretinal 

hyperreflective 

foci 

- - - - - 0.19 

 

SFCT= subfoveal choroidal thickness; PED= pigment epithelial detachment; RPE= retinal 

pigment epithelium 
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ABSTRACT 

 

PURPOSE: To investigate choriocapillaris flow void distribution on optical coherence 

tomography (OCT) angiography (OCTA) in central serous chorioretinopathy (CSCR), and its 

correlation to choroidal vessel morphology. 

 

METHODS: Fifty-three CSCR eyes (48 patients) and 34 healthy control eyes were 

retrospectively included. Exclusion criteria were refractive error >2D, previous laser or 

photodynamic therapy, low-quality OCTA or excessive shadowing artifacts. Choriocapillaris 

OCTA scans were processed by local-threshold binarization to identify flow voids, and 

extract their cumulative total area. The locations of the two largest voids in each eye were 

reported on the corresponding enhanced-depth imaging OCT (EDI-OCT) raster scan. 

Choriocapillaris thickness and diameter of underlying outer choroidal vessels were measured 

at flow voids and at adjacent “normal” outer choroidal vessels. 

 

RESULTS: There was 22 acute, 16 recurrent and 15 chronic CSCR eyes. Total flow void 

area was larger in CSCR than control eyes. In a univariate analysis, the total flow void area 

on OCTA increased with age (P=0.0002), duration since CSCR diagnosis (P=0.004) and 

more severe CSCR type (P<0.0001). In a multivariate analysis, age (P=0.023) and CSCR 

type (P=0.007) were the only independent contributors to total flow void area. Using EDI-

OCT, outer choroidal vessel diameter was higher (P<0.0001), and choriocapillaris was 

thinner (P<0.0001) at flow voids compared to adjacent sites, independently from eccentricity 

of sites from the fovea. 

 

CONCLUSIONS: Choriocapillaris flow voids colocalize with choriocapillaris thinning and 

deep choroidal vessel dilation in CSCR eyes. Age and CSCR severity influence 

choriocapillaris flow, a key contributor to CSCR pathophysiology, which has clinical and 

therapeutic consequences. 
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INTRODUCTION 

Central serous chorioretinopathy (CSCR) manifests with serous retinal detachments, that 

self-resolve in 80% of acute cases1 but may recur2–4 or persist,5,6 leading in chronic cases to 

permanent retinal pigment epithelium (RPE) damage.7,8 

Although leakage through the RPE is the direct cause of subretinal fluid accumulation,9,10 

as evidenced by fluorescein angiography, choroidal vasodilation and hyperpermeability are 

considered the primary underlying mechanisms in the disease pathophysiology.11 These 

changes have long been recognized on indocyanine green (ICG) angiography.12,13 

Subsequently, the morphology of choroidal vessels in CSCR was further explored by 

enhanced-depth imaging (EDI) optical coherence tomography (OCT), that identified an 

increase in choroidal thickness resulting from the dilation of  deep choroidal vessels,14 

termed “pachyvessels”.15 Recently, en face swept-source OCT further detailed the 

morphology of the thickened choroid in CSCR and the associated “pachychoroid-spectrum” 

disorders,15 and focal choriocapillaris thinning was revealed by choroidal layer segmentation. 

The advent of OCT angiography (OCTA) has allowed to visualize non-invasively the 

distribution of blood flow within the choriocapillaris, the only choroidal layer properly imaged 

by current OCTA technology,16 providing novel dynamic information on choroidal physiology. 

Moreover, choriocapillaris flow is not adequately visualized on ICG angiography. Multiple 

focal alterations in the choriocapillaris flow pattern of CSCR eyes have been recognized, and 

termed “foci of reduced flow”,17 “dark areas” or “dark spots,”18 although a proportion of these 

lesions may originate from shadowing artifacts by overlying structures, such as pigment 

epithelial detachments or subretinal hyperreflective material.18,19 Recently, Spaide has 

advanced that the vascular segments forming the choriocapillaris are below the current 

resolution of OCTA devices, whereas areas of absent flow signal in the choriocapillaris are 

resolvable on OCTA, appearing as hyporeflective spaces. The author demonstrated by 

means of image processing techniques, that their area follows a power law distribution in 

normal eyes, mostly influenced by age and the presence of hypertension.20 Yet, the pattern 

of choriocapillaris flow voids in CSCR eyes has not been investigated with similar processing 

tools, which has the potential to bring insight into choroidal changes occurring in CSCR, 

guide therapeutic strategies and monitor treatments effects with respect to choroidal 

perfusion. 

The aim of this study is to investigate the distribution of choriocapillaris flow voids in 

CSCR eyes imaged by OCTA, and its correlation to choroidal morphology. 

 

METHODS 

Study subjects 
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This observational, single-center, retrospective study was designed in accordance with 

the tenets of the Declaration of Helsinki. Data collection and analysis have been approved by 

the Ethics Committee of the Swiss Federal Department of Health (CER-VD n°19/15). 

Consecutive patients presenting with CSCR between September 2015 and March 2017, and 

who underwent OCTA imaging, were retrospectively included. Patients with refractive error > 

2D, history of laser or photodynamic therapy treatment, with low-quality OCTA images 

(signal strength index, SSI <50) or those with excessive shadowing artifacts, as detailed 

below, were excluded. In patients who underwent OCTA at several visits, the highest quality 

OCTA image of the choriocapillaris was selected. When possible, we selected a visit when 

subretinal detachment, a frequent cause of shadowing,18 had resolved. 

Subjects were categorized according to the clinical form of CSCR, as acute (first episode, 

within 12 months of symptom onset), recurrent (same criteria as acute, with history of 

previous episodes) or chronic CSCR (subretinal fluid lasting for 12 months or more). 

In addition, 34 eyes from 34 age-matched healthy control subjects imaged by OCTA were 

included. 

 

Image acquisition 

Subjects underwent spectral-domain optical coherence tomography (SD-OCT) on 

Spectralis (Heidelberg Engineering, Heidelberg, Germany). A 20´20° 97-section raster scan 

was acquired in enhanced-depth imaging (EDI) mode, enhancing the visualization of 

choroidal features, with automated real time (ART) averaging set at 16 images. 

The Angiovue RTx 100 (Optovue Inc., Fremont, CA) was used to acquire 3´3-mm OCTA 

images. The built-in AngioAnalytics software (v2016.1.0.26) was used to segment 

automatically the choriocapillaris, with the manufacturer’s parameter: a 28-µm-thick slab 

parallel to, and located 31 µm beneath the retinal pigment epithelium (RPE). The correct 

segmentation of the choriocapillaris was visually controlled in each patient. In addition to 

SSI<50, imaging exclusion criteria based on OCTA were: excessive motion artifacts, and 

excessive shadowing artifacts in the choriocapillaris by subretinal material, pigment epithelial 

or serous retinal detachments. These artifacts were differentiated from actual flow void 

lesions by visually comparing the corresponding ‘en face’ OCT scan acquired by the 

Angiovue device and detecting hyporeflective lesions in both the flow and the ‘en face’ 

signals. 

 

Image analysis 

A 3-step image analysis was performed to extract relevant parameters from the 

distribution of blood flow in the choriocapillaris and its relationship to choroidal morphology. 
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• First, OCTA images of the choriocapillaris were extracted as .jpg files using a 

screen capture tool, and their size was increased from 304´304 to 608´608 pixels in 

order to prevent any loss in image resolution. Images were processed with an 

automated custom algorithm developed on MatLab (Version 2017b, Matworks, 

Natick, MA), aimed at detecting choriocapillaris flow voids. This is an automated, 

batch-processing version of the method recently described by Spaide.21 Briefly, the 

algorithm used the local thresholding function (‘adaptthresh’) embedded in MatLab 

Image Processing Toolbox to detect flow voids, that manifest as hyporeflective 

(“dark”) spaces within the hyperreflective choriocapillaris flow signal (Figure 1). The 

algorithm provides a binarized image of the voids (Figure 2, Bottom Left), extracts a 

list of areas of all detected flow voids larger than 0.2´103 µm2 (corresponding to 4 

pixel2 in the original 304´304 scans), and computes the cumulative area of flow voids 

larger than 10,000 µm2 (Figure 2, Bottom Right), termed “total flow void area”, as 

proposed in the above-mentioned publication.21 

• Second, the localization of the three largest flow void lesions identified in each 

eye by the automated algorithm were labelled on the AngioAnalytics software using 

the horizontal/vertical lines, and the display was changed to the superficial plexus to 

localize the lesion with respect to retinal vessels. This image was recorded (Figure 3, 

Left), and the corresponding location was identified on the infrared fundus image 

acquired along the Spectralis OCT raster scan on the Heidelberg Eye Explorer 

software (version 1.9.10.0) (Figure 3, Right). Finally, the horizontal EDI SD-OCT 

section containing this lesion was identified from the dense 97 scans, and the lesion 

localization was reported on this section. Images of these sections were exported, 

with “overlays” displaying the sites of flow void, and overlays were deleted from the 

software (Supplemental Figure 1). All images were processed by the same operator 

(AM). 

• Third, measures of the choriocapillaris and deep choroidal vessels from 

Haller’s layer were carried out on these EDI SD-OCT scans where overlays were 

removed, on the Heidelberg Eye Explorer software, by an independent observer (AD) 

masked to the set of exported images with overlays labelling the sites of flow voids. 

The built-in caliper function was used after setting the scale to 1 µm:1 µm according 

to the manufacturer’s recommendations, and magnifying images at 300%. The 

observer identified the choriocapillaris borders as recently determined by the OCT 

nomenclature of the ‘‘IN•OCT Consensus’’,22 and all visible choroidal vessels from 

Haller’s layer, as the outermost vessels contacting with the sclera. The 

anteroposterior diameter of each vessel identified in Haller’s layer was measured, as 
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well as the thickness of the overlying choriocapillaris at the corresponding locations, 

resulting in ~6-8 measures per EDI SD-OCT section, that was exported with 

“overlays” (calipers and measurements) (Supplemental Figure 1). Finally, a dataset 

was created by the unmasked observer (AM) where choriocapillaris and deep 

choroidal vessel measurements were reported, along with the type of site (“Flow void” 

or “Normal”) and its eccentricity with respect to the fovea (750 µm, 750-1500 µm, 

>1500 µm). 

 

Statistical analyses 

Descriptive and comparative statistics were performed on GraphPad Prism (version 5.0f, 

GraphPad Software, La Jolla, CA). Quantitative continuous values were reported as mean ± 

standard deviation (SD). The distribution of flow void areas was represented by the total area 

and the number of flow void lesions larger than 10,000 µm2. The Mann-Whitney test for 

comparisons, and the Chi-square test for contingency analysis were used where appropriate. 

Univariate and multivariate analysis (including variable with P<0.3 in the univariate 

assessment) followed by stepwise forward regression were performed, using the ‘MASS’ 

package23 on the R Software (Version 3.3.0, R Foundation for Statistical Computing, R Core 

Team, 2016, Vienna, Austria. http://www.R-project.org). 

Measurements of choriocapillaris /choroidal vessel thickness were compared with the 

Kruskal-Wallis test on R and the ‘‘pgirmess’’ package for post-tests (Version 1.6.7, Patrick 

Giraudoux, 2017; https://CRAN.R-project.org/package=pgirmess). Plots were created using 

the ‘ggplot’ package24 on R. P values <0.05 were considered significant. 

 

 

RESULTS 

Fifty-three eyes from 48 subjects were included in the study (age: 47.6 ± 18.7 years; 39 

men and 9 women). Twenty-two eyes were classified as acute, 16 eyes as recurrent and 15 

eyes as chronic CSCR. Their clinical characteristics are detailed in Table 1. 

At the level of the choriocapillaris, a qualitative analysis of OCTA showed that flow void 

lesions were less frequent in healthy eyes from control age-matched individuals than in 

CSCR eyes, as illustrated in Figure 1. 

The analysis of choriocapillaris OCTA scans by a custom algorithm, that detects 

hyporeflective areas corresponding to flow void lesions (above a de-noising threshold of 

10,000 µm2), confirmed their differential distribution between healthy and CSCR eyes. CSCR 

eyes presented a higher total flow void area, and a higher number of flow void lesions as 

compared to healthy eyes (P=0.0004 and 0.003, respectively) (Table 2). 
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The total area of flow voids was significantly higher in chronic as compared to acute or 

recurrent CSCR eyes (P=0.0007 and 0.012, respectively) and there was a trend towards 

significance between acute and recurrent eyes (P=0.09). To further investigate the influence 

of CSCR type and other potential confounding clinical factors on the distribution of 

choriocapillaris flow voids, a uni- and multivariate analysis was performed (Table 3). In the 

univariate analysis, age (P=0.0002), duration since CSCR diagnosis (P=0.004) and CSCR 

type (categorized as acute, recurrent, chronic) (P<0.0001) had a significant influence on the 

total flow void area. In the multivariate analysis, age (P=0.023) and CSCR type (P=0.007) 

remained the only independent contributors to the total area of flow voids (R2=0.35). 

Finally, the two larger choriocapillaris flow void areas identified on each OCTA scan were 

reported on the corresponding location of Spectralis EDI SD-OCT horizontal scans, where 

the diameter of all visible deeper choroidal vessels and the thickness of the overlying 

choriocapillaris were measured by a masked observer. A total of 756 choroidal vessels were 

correctly visualized, corresponding to an average of 7.1 vessel per EDI scan. Using Kruskal-

Wallis test with multiple comparison post-tests, the diameter of deep choroidal vessels was 

higher (328±110 vs 234±91 µm, P<0.0001), and the choriocapillaris was significantly thinner 

(14±7 vs 34±29 µm, P<0.0001) at sites co-localizing with flow voids compared to non-flow-

void “normal” sites (Figure 4 and 5, respectively). Regarding the distribution of assessed 

choroidal vessels, those corresponding to flow voids were located more centrally than non-

flow-void sites (67 vs 37%, P<0.0001, Chi-Square test) in a 3´3-mm macular area. Given the 

morphology of the choroid on EDI SD-OCT, that is thickest at the foveal center, and thinner 

towards the periphery, we assessed whether eccentricity to the fovea could have influenced 

the results, by using the same method. A Kruskal-Wallis test with multiple comparison post-

tests showed that eccentricity was related to the diameter of deep choroidal vessels 

(P<0.0001), but not to choriocapillaris thickness (P=0.14) (Supplementary Figure 2). 

Multivariate regression was used to better assess the effect of these observations on the 

relationship between choroidal metrics and flow void sites. It showed that the diameter of 

large choroidal vessels was thicker at flow void sites (P<0.0001), independently from 

eccentricity (P<0.0001) (R2=0.53). No relevant multivariate model of choriocapillaris 

thickness based on colocalization with flow voids and eccentricity could be fitted (R2=0.07). 

 

DISCUSSION 

In the present study, we analyzed the distribution of flow voids in the choriocapillaris on 

OCTA, and found that the total area of flow voids was higher in CSCR eyes than age-

matched control eyes, and that among CSCR eyes it was higher in older subjects and in 

more chronic cases. Moreover, we assessed the morphology of choroidal vessels at flow 
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void sites and observed that the choriocapillaris was thinner, and deep choroidal vessels 

were thicker at these sites than at adjacent sites. 

In healthy eyes, flow voids in OCTA images of the choriocapillaris have been reported, 

and are likely to result from progressive occlusion of small segments of the interconnected 

choriocapillaris meshwork, at sub-lobular level, as suggested by their increased density with 

age.20 This observation is consistent with the canonical description of the segmental nature 

of the choroidal vasculature organized in lobular subunits by Hayreh.25 In CSCR, several 

groups have described choriocapillaris flow voids,17,18 in accordance with the present results, 

but there has been to date no report of their distribution and relationship with the morphology 

of the choriocapillaris and underlying large choroidal vessels. Moreover, the exact 

significance of these voids remains unclear. 

Spaide reported that factors related to more extended choriocapillaris flow voids in healthy 

eyes include age, and hypertension, and presence of late AMD or pseudodrusen in the fellow 

eye.20 In the present series of CSCR eyes, a similar effect of age was observed, but 

hypertension was not associated with more extended flow void areas, probably due to the 

low prevalence of hypertension in this younger cohort (Table 1). Of importance, more 

advanced CSCR chronicity was linked to more extended total flow void area, confirming that 

not only large choroidal vessels, or “pachyvessels”, are involved in CSCR but that decreased 

choriocapillaris perfusion could be a local consequence of these pachyvessels and interfere 

negatively with RPE homeostasis. 

Using ICG angiography combined to OCT, several authors had previously established that 

large dilated choroidal vessels localize within areas of increased choroidal vascular 

permeability.26–31 In addition, ICG angiography also identified areas of choriocapillaris non-

perfusion in CSCR during early frames,32 best visible in confocal video mode. However, the 

reliable imaging of this phenomenon on ICG angiography is limited by its low reproducibility 

depending on intravenous injection velocity, heart rate, image exposition, and patient fixation; 

by its invasiveness preventing repeated imaging; and finally, its low resolution compared to 

OCTA, that overcomes most of these limitations. 

A focally decreased or absent blood flow in the choriocapillaris is likely to result in focal 

RPE ischemia and alterations of RPE bidirectional transport functions. Mechanical stress 

directly applied on the RPE by pachyvessels could further alter cytoskeleton organization 

and polarization, enhancing transport dysfunction and ultimately favoring leakage of fluid 

from the choroid to the subretinal space, as observed on fluorescein angiography.10 Yet, by 

correlating OCTA from CSCR eyes to multimodal imaging findings, including fluorescein and 

ICG angiography, Feucht et al have established that choriocapillaris flow voids do not 

colocalize with fluorescein leakage sites.33 Consistently, there are numerous visible flow void 
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sites in CSCR (Figure 1), and yet there is usually one, and rarely two or more leakage sites 

in acute CSCR eyes. 

Given that the distribution of flow voids in normal eyes follows a power law,20 it cannot be 

represented and compared between different subjects by computing mean and standard 

deviation as in Gaussian or near-Gaussian distributions.34 Therefore, the cumulative area of 

hyporeflective spaces (above a threshold of 10,000 µm2 to reduce noise) has been proposed 

as a relevant parameter20 since it accounts for the total of all hyporeflective spaces without 

providing a distorted representation of the distribution as would the mean and standard 

deviation. 

The present work confirms the relevance of the algorithm employed to extract flow voids 

from OCTA scans, by showing that these lesions were significantly more extended in CSCR 

eyes than in age-matched control eyes. This external validation confirmed that flow voids 

participate indeed to pathological processes occurring in the choroid of CSCR eyes. 

Furthermore, we analyzed choroidal morphology at sites of flow voids by combining OCTA 

and EDI SD-OCT data, and observed that the choriocapillaris was thinner, and deep 

choroidal vessels were thicker at sites of flow voids. While eccentricity had no significant 

impact on choriocapillaris thickness within the assessed 3´3-mm macular area, deep 

choroidal vessels were thinner in the peripheral macula, but the relationship between deep 

vessel thickness and flow voids was independent from their localization. 

Altogether, these results provide a quantitative confirmation of the inner choroidal thinning 

that occurs in CSCR and colocalizes with enlarged deep choroidal vessels, as advanced 

previously by Yang et al using EDI-OCT,30 and by Dansingani et al using swept-source OCT 

choroidal thickness maps.15 Additionnaly, the present study demonstrates that 

choriocapillaris flow is altered at sites of choriocapillaris thinning. Whether thinning, resulting 

for instance from compression from inwardly displaced large choroidal vessels,15 induces 

flow decrease, or the converse, remains to be elucidated. Advancements in quantitative flow 

velocity detection by OCTA, in segmentation algorithm, and in artifact removal should 

contribute to further investigate in vivo choriocapillaris blood flow kinetics. 

This study has several limitations, including the limited size of the cohort resulting from 

strict exclusion criteria. One of the drawbacks of choriocapillaris imaging by OCTA is the 

frequency of shadowing artifacts, manifesting as hyporeflective areas resembling flow voids. 

Subretinal material, pigment epithelial or serous retinal detachments frequently cause “dark 

spots” within the choriocapillaris on OCTA.18 Here, we have reduced this flaw by visually 

reviewing all OCTA scans, selecting for each patient the available OCTA scan with the least 

artifacts, and by excluding those with evident shadowing artifacts. In addition to pigment 

epithelial detachments, a frequent cause of shadowing was the presence of serous retinal 

detachment, either due to the composition of the protein-rich subretinal fluid, or more likely, 
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to the shadowing effect provoked by elongated photoreceptor outer segments. We attempted 

to reduce these artifacts by selecting timepoints when subretinal fluid had resolved, or was 

inferiorly displaced beyond the 3´3-mm area imaged by OCTA. In addition, the adaptive 

thresholding method employed to detect hyporeflective spaces reduced the impact of 

artifacts, by detecting these lesions equally within darker areas due to shadowing. 

This study opens several perspectives for the better understanding of CSCR mechanisms, 

and ultimately the improvement of treatment alternatives. First, the possible variation of 

choriocapillaris flow voids during the course of the disease, suggested by the more extended 

lesions found in chronic than recurrent or acute cases in this cross-sectional analysis, should 

be investigated. In our view, this analysis is currently impeded by the excessive above-

mentioned artifacts, that may exceed the magnitude of choriocapillaris change over the 

course of a CSCR episode. Second, whether flow voids partially recover after episode 

resolution should also be assessed. Third, the dynamic consequences on choriocapillaris 

flow of photodynamic therapy, a common treatment strategy for non-resolving CSCR 

targeting choroidal hyperpermeability, and putatively leading to micro-occlusions in the 

choroidal vasculature, should be evaluated. Recently, Xu et al evidenced choriocapillaris flow 

modifications on OCTA after photodynamic therapy. Finally, given the complex, unique 

morphology of the choriocapillaris, its difficult accessibility by in vivo imaging, and the rarity of 

validated animal models of CSCR,35 computerized models reproducing the human 

choriocapillaris structure, such as the Ising model of magnetism recently proposed by 

Spaide,36 may contribute to evaluate its physiological properties and response to pathological 

dilation or compression by underlying vessels. 
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FIGURE CAPTIONS 

 

FIGURE 1. Optical coherence tomography angiography of the choriocapillaris in three cases 

of central serous chorioretinopathy and one healthy control eye. 

A. Healthy eye. B. Acute CSCR. C. Recurrent CSCR. D. Chronic CSCR. Hyporeflective flow 

void lesions were more numerous and extended in CSCR eyes than in the healthy eye, and 

the number and area of lesions increased with the severity of CSCR. 

 

FIGURE 2. Image processing algorithm extracting choriocapillaris flow voids from optical 

coherence tomography angiography images of the choriocapillaris. 

A. Original optical coherence tomography angiography scan of a 54-year old woman with 

central serous chorioretinopathy, after choriocapillaris segmentation and exportation from the 

Angiovue device, showing hyporeflective flow voids. B. Binarized image using local 

thresholding, resulting in the flow signal appearing white and flow voids apprearing black. C. 

Morphological opening and image inversion resulting in flow voids appearing white. D. 

Filtering of flow void lesions to compute the total area of voids larger than 10,000 µm2. 

 

FIGURE 3. Identification of the corresponding site of flow voids in the choriocapillaris and the 

superficial plexus. 

Screen capture showing the labelling of choriocapillaris flow voids by crossed lines tool (A) 

and identification of the corresponding location in the superficial plexus (B) on the Angiovue 

device, that was subsequently visually identified on the Spectralis infrared reflectance image 

with respect to retinal vessels. 

 

FIGURE 4. Analysis of deep choroidal vessel diameter at sites of flow voids and adjacent 

outer choroidal vessels. 

Plot showing that the anteroposterior diameter of deep choroidal vessels was higher at flow 

void sites than at other “normal” sites, on enhanced-depth imaging optical coherence 

tomography horizontal scans through flow voids identified on optical coherence tomography 

angiography. 

*** P<0.001 

 

FIGURE 5. Analysis of choriocapillaris thickness at sites of flow voids and adjacent outer 

choroidal vessels 

Plot showing that the choriocapillaris was thinner at flow void sites than at other “normal” 

sites, on enhanced-depth imaging optical coherence tomography horizontal scans through 

flow voids identified on optical coherence tomography angiography. 
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*** P<0.001 

 

SUPPLEMENTAL FIGURE 1. Exported images from EDI-OCT with overlays indicating the 

site of choriocapillaris flow void detected on OCTA (A), and the measurements of 

choriocapillaris and deep choroidal vessels by the masked observer (B). 

 

SUPPLEMENTARY FIGURE 2. Influence of eccentricity from the fovea on choriocapillaris 

and outer choroidal vessel thickness. 

A. Plot showing that eccentricity to the fovea had a significant effect on the diameter of deep 

choroidal vessels thickness within the 3´3-mm macular area evaluated. However, 

multivariate analysis showed that both parameters influenced the diameter of deep choroidal 

vessels independently. 

B. Plot showing that eccentricity to the fovea had no significant effect on choriocapillaris 

thickness within the 3´3-mm macular area evaluated. 

*** P<0.001 
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TABLE 1. Clinical characteristics of N patients with CSCR who underwent optical 

coherence tomography angiography imaging of the choriocapillaris 

 
 Acute CSCR 

(n=22 eyes) 
Recurrent CSCR 

(n=16 eyes) 
Chronic CSCR 

(n=15 eyes) 

Subjects, N. 20 15 13 

Age, year 41 ± 16 49 ± 16 57 ± 23 

Sex, N. (male/female) 17/3 13/2 9/4 

Axial length, mm 22.8 ± 0.8 23.8 ± 1.1 23.3 ± 1.1 

Hypertension, N. (%) 2 (10%) 2 (13%) 4 (31%) 

Duration since CSCR diagnosis, month 4.8 ± 3.0 18.4 ± 10.7 30.9 ± 11.9 

Subfoveal choroidal thickness, µm 463 ± 99 474 ± 103 448 ± 87 

Total flow void area, ´103 µm2 1800 ± 222 1900 ± 236 2234 ± 390 

Number of flow void lesions ≥ 10,000 µm2 95 ± 9  95 ± 7 101 ± 10 

 
Quantitative values are reported as mean ± standard deviation.  

CSCR= central serous chorioretinopathy 
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TABLE 2. Comparison of choriocapillaris flow voids on optical coherence tomography 

angiography scans between CSCR eyes and age-matched control eyes 

 
 CSR 

(n=53 eyes) 
Controls 

(n=34 eyes) P* 

Total flow void area, ´103 µm2 1953 ± 332 1698 ± 226 .0004 

Number of flow void lesions (≥ 10,000 µm2) 96.3 ± 8.8 91.1 + 6.7 .003 

 
The total area of flow voids refers to the cumulative areas of flow voids larger than 

10,000 µm2. 

* Mann-Whitney test 

CSCR= central serous chorioretinopathy 
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TABLE 3. Parameters influencing the total area of choriocapillaris flow voids on 

optical coherence tomography angiography scans of CSCR eyes. 

 
 Univariate Multivariate 

Parameter Estimate Standard 
error P* Estimate Standard 

error P† 

Age, year 13.1 3.2 .0002 8.2 3.5 .023 

Sex (male versus female) -196.0 119.6 .11 - - - 

Axial length, mm -21.6 45.2 .63 - - - 

Hypertension 141.6 127.2 .27 - - - 

Duration since CSCR 
diagnosis, month 9.3 3.1 .004 - - - 

Type of CSCR (acute, 
recurrent, chronic) 210.0 47.5 <0.0001 148.9 52.4 .007 

 
* Univariate linear regression 

† Multivariate linear regression followed by stepwise regression 

 

The total area of flow voids refers to the cumulative areas of flow voids larger than 

10,000 µm2. 

Multivariate analysis: R2=0.35 

CSCR= central serous chorioretinopathy 
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ABSTRACT 

Purpose: To evaluate the feasability of proteomics and metabolomics to investigate the molecular 

composition of subretinal fluid (SRF) in central serous chorioretinopathy (CSCR) and 

rhegmatogenous retinal detachment (RRD). 

Methods: SRF was obtained from one patient with severe non-resolving bullous CSCR requiring 

surgical subretinal fibrin removal, and two patients with long-standing RRD. Proteins were trypsin-

digested, labeled with Tandem-Mass-Tag and fractionated according to their pI for identification and 

quantification by tandem mass spectrometry. Independently, metabolites were extracted on cold 

methanol/ethanol, and identified by untargeted ultra-high-performance liquid chromatography and 

high-resolution mass spectrometry. Bioinformatics analyses were conducted. 

Results: In total, 291 proteins and 651 metabolites were identified in SRF samples. One-hundred 

twenty-eight proteins (77 down-regulated; 51 up-regulated) and 76 metabolites (43 down-regulated; 

33 up-regulated) differed in the SRF from CSCR compared to RRD. Protein and metabolites notably 

deregulated in CSCR were related to glycolysis/gluconeogenesis, inflammation (including serum 

amyloid P component, versican), alternative complement pathway (complement factor H and 

complement factor H-related protein), cellular adhesion, biliary acid metabolism (farnesoid X 

receptor/retinoid X receptor), and gluco- and mineralocorticoid systems (aldosterone, angiotensin and 

corticosteroid-binding globulin). 

Conclusions: Proteomics and metabolomics can be performed on SRF. A unique SRF sample from 

CSCR exhibited a distinct molecular profile compared to RRD. 

Translational relevance: This first comparative multi-omics analysis of SRF improved the 

understanding of CSCR and RRD pathophysiology. It identified pathways potentially involved in the 

better photoreceptor preservation in CSCR, suggesting neuroprotective targets that will require 

additional confirmation.  
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INTRODUCTION 

Central serous chorioretinopathy (CSCR) is characterized by serous detachments of the 

neurosensory retina, frequently affecting the macula, focal pigment epithelial detachments, increased 

choroidal thickness and choroidal vascular hyper-permeability. Severe CSCR can present as bullous 

exudative retinal detachment with persistence of subretinal material,1 that may exceptionally require 

surgery.2 During the procedure, subretinal fluid (SRF) can be collected, but to the best of our 

knowledge, the composition of SRF from a CSCR patient has never been analyzed. Mechanisms of 

SRF accumulation in CSCR are still uncertain. Several theories have been proposed to explain fluid 

entry from the choroid towards the subretinal space: dilated and hyper-permeable choroidal vessels 

favoring trans- or inter-retinal pigment epithelium (RPE) entry flow,3 changes in RPE cell polarity 

altering hydro-ionic pumping direction,4 uni- or multifocal rupture of the RPE barrier,5 or active 

reverse flow by unknown triggering mechanisms.6 

Although serous macular detachments form rapidly and last for 3-6 months in most cases,7 visual 

acuity is usually preserved, suggesting a good preservation of photoreceptors function and structure.8 

This differs strikingly with macula-off rhegmatogenous retinal detachment (RRD), in which 

detachments lasting more than 3-5 days lead to irreversible visual impairment.9 Mechanisms of 

photoreceptor cell death after RRD are multiple, triggered by oxidative and metabolic stress, 

complement alternative pathway activation, immune response and inflammation.10, 11 In RRD, SRF 

originates mainly from liquefied vitreous, which diffuses through a retinal tear under the neuroretina. 

In response to neuroretinal detachment, RPE cells proliferate and migrate into the subretinal space,12 

which may contribute to SRF accumulation. Whether SRF composition influences the differential 

photoreceptor survival and visual prognosis in different types of neuroretinal detachment is not 

known. 

The aim of this study was to investigate the molecular composition of subretinal fluid in CSCR 

and RRD using proteomics and metabolomics. We compared the SRF profile from one case with 

severe CSCR and two cases with chronic RRD. Due to the rarity of SRF samples from CSCR, we 

opted for an untargeted proteomic approach, with independent cross-assessment by metabolomics 

analysis.  
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PATIENTS AND METHODS 

Study subjects 

This study involving human subjects adhered to the tenets of the Declaration of Helsinki, and was 

approved by the local Ethics Committee of the Swiss Department of Health on research involving 

human subjects (CER-VD N°340/15 and CER-VD N°19/15). Patients signed an informed consent. A 

48-year-old male patient with persistent bullous CSCR underwent vitrectomy for sub-retinal fibrinous 

clot removal. Two patients aged 58 and 82 years, presenting macula-off RRD lasting more than 15 

days since central vision loss, underwent vitrectomy for RRD repair. In all cases, 23-Gauge trocars 

were inserted at the pars plana and SRF was collected using a back flush cannula connected to a 

syringe. The CSCR patient underwent multimodal retinal imaging at regular intervals, consisting in 

spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence, fluorescein and 

indocyanine green (ICG) angiography on Spectralis (Heidelberg Engineering, Heidelberg, Germany). 

 

Proteomic analysis 

The proteome of the SRF was compared between samples from the CSCR patient and the two 

patients with chronic RRD. The total protein concentration in each sample was determined using a 

Bradford protein assay (Protein assay Dye reagent concentrate, Biorad, US-CA) according to the 

manufacturer’s instructions. 

 

Sample preparation  

In order to reduce the impact of potential blood contamination during sample collection, 100 µg 

of SRF from the CSCR patient and 100 µg of SRF pooled from the two RRD patients (a 1:1 

volume/volume ratio) were filtered using a commercial resin according to the manufacturer’s 

recommendations (Proteome Purify 12 Human Serum Protein Immunodepletion Resin, R&D Systems, 

UK). The classical top-12 most abundant proteins in the serum were then depleted (alpha-1-Acid 

Glycoprotein, Alpha-1-Antitrypsin, alpha-2-Macroglobulin, Albumin, Apolipoprotein A-I, 

Apolipoprotein A-II, Fibrinogen, Haptoglobin, IgA, IgG, IgM, Transferrin). Using Bradford method, 
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the total protein concentration after depletion was estimated at 9.5 µg/mL in the CSCR sample and 9.6 

µg/mL in the pooled RRD samples. Subsequently, 5 µg of samples (CSCR and RRD) were reduced 

using 33ul of 6M urea (Merk, Germany) and 2ul of 50mM tris-(2-carboxyethyl)phosphine (TCEP, 

Sigma-Aldrich, US-MO). After incubation at 37°C during 1 hour, 1 µl of 400mM iodoacetamid 

(Sigma-Aldrich, US-MO) was added and samples were incubated for 30 minutes and 67 µl of 0.1M 

TEAB (Triethylammonium bicarbonate buffer, Sigma-Aldrich, US-MO) were added before trypsin (1 

µg/50 µg of proteins, porcine origin, Promega Corporation, US-WI) digestion overnight at 37°C. 

Samples were labeled with one of the 6 TMT reagents (Tandem Mass Tag; isobaric label reagent sets, 

ThermoFisher Scientific, US-IL) applying the Simultaneous Marker discovery And verification for the 

Rapid Translation of Exogeneous Reference material (SMARTER)-based approach,13 according to 

manufacturer’s instructions. Briefly, tag 128 was attributed to pooled SRFs (used as clinical controls) 

from RRD patients and tag 130 to the case study CSCR. Tags 126 and 127 were used to label vitreous 

pool of RRD patients and commercial tears (HMTEARS, Seralab, UK) both used as biological 

controls. Finally, the 2 remaining tags (129 and 131) were used as internal technical controls. The total 

quantity of each labeled sample (30 µg) was pooled and dried in a speed-vacuum. 

 

Off-gel electrophoresis (OGE) 

Previously dried samples were resuspended in 5% CAN and 0.1%FA and purified under 

Macrospin columns (Harvard Apparatus, US-MA). A 3100 OFFGEL Fractionator (Agilent 

technologies, US-CA) was then used to separate peptides according to their pI, as reported 

previously14 with a 13 cm IPG strip (immobiline Dry strip pH 3-10, 13 cm, GE Healthcare, UK) and 

12 OGE wells. The focusing parameters were 20Kvh, 800v, 50uA, 200mW and 100s. The hold 

parameters were 500V, 20uA and 50 mW. After overnight fractionation, microspin columns (Harvard 

Apparatus, US-MA) were performed according to manufacturer’s recommendations and the 12 

fractions were dried under speed-vacuum. 
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Mass spectrometry analysis 

For each fraction, 0.5 µg of sample was injected 4 times (final amount injected: 2µg) and then 

analyzed in gas-phase fractionation (GPF4) mode15 by tandem mass spectrometry (MS) (Liquid 

Chromatography(LC)-MS/MS) using a LTQ Orbitrap Velos Pro (Thermo Fisher instrument, US-CA) 

coupled to a nanoflow high pressure liquid chromatography (HPLC, nanoaquity system from Waters, 

US-MA). LC-MS/MS analyses were performed as described elsewhere.16 

 

Data analyses 

Peak lists and resulting files were searched against the UniProt-Swiss-Prot database (2014_10 

version Homo sapiens taxonomy) using Phenyx 2.6 software (Gene Bio, Geneva, Switzerland). 

Variable amino acid modifications were oxidized methionine, glutamine and asparagine deamidation 

and TMT®-labeled peptides amino terminus (+229.1629 Da if required). TMT®-labeled lysine (if 

concerned) and carbamidomethylation of cysteines were set as fixed modification.16 Trypsin was 

selected as the enzyme, with one potential missed cleavage. Only proteins matching two different and 

unique peptide sequences were selected for identification and quantification. A false discovery rate of 

1% was selected. Protein quantification was obtained from Mascat method in Easyprot (version 2.3) as 

statistical tools in order to calculate the proteins ratios between the CSCR SRF (tag 130) and the RRD 

SRFs (tag 128).17 Briefly, to obtain the ratio of a protein, Mascat computes the geometric mean of all 

peptide ratios linked to this protein. Proteins were considered as significantly different if the 130/128 

ratio were above 1.50 or below 0.67, with a p-value <0.05.18 For more details about quantification and 

statistical criteria, please refer to the previously reported methods.17, 18 The 12 proteins that were 

initially resin-depleted were removed from the final lists, if identified. 

 

Metabolomics analysis 

Similarly, independent untargeted metabolomics was performed to compare SRF metabolome in 

the CSCR patient with the two RRD patients. Metabolites were extracted from 50 µL of SRF samples 

using cold methanol/ethanol (1:1, v/v) in a 1:3 ratio.19 
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Untargeted ultra-high-performance liquid chromatography (UHPLC) – high-resolution mass 

spectrometry (HRMS) analysis 

For comparison of CSCR and RRD, two independent analyses were performed on two different 

days. These analyses were performed on UHPLC (UltiMate 3000 RSLCnano System, Thermo 

Scientific) hyphenated with HRMS (Q Exactive Plus MS, Thermo Scientific). The metabolites were 

separated by reversed phase chromatography on a Kinetex C18 (2.6µm, 50mm x 2.1mm I.D) column 

(Phenomenex, PA) using MeOH:H2O 0.1% formic acid solvent in a gradient elution mode with fixed 

flow rate at 0.3mL/min. Quality controls (i.e. representative pool of samples) and internal standards 

were used to assess the over-batch repeatability. Data acquisition was performed in full scan mode in 

both negative and positive polarities considering suitable tuning methods.19 Subsequently, MS/MS 

spectra were acquired in a data dependent acquisition mode. Resolutions were fixed at 70,000 and 

17,000 for full scan and MS/MS acquisitions, respectively. 

 

Chemometric analysis 

Raw UHPLC-HRMS data were converted to appropriate format to be processed by XCMS online 

software for peak detection, chromatogram alignment and isotope annotation.20 Pre-processed data 

were normalized by using sample-wise mean normalization as well as feature-wise pareto-scaling. The 

assessment of the metabolic patterns was driven by the use of unsupervised and supervised learning 

approaches, including prediction analysis for microarrays data mining (PAM) into the R software 

(Version 3.3.0, R Foundation for Statistical Computing, R Core Team, 2016, Vienna, Austria. 

http://www.R-project.org) and the ‘pamr’ package, as well as the online Metaboanalyst tool 

(http://www.metaboanalyst.ca/). PAM classifier gives the opportunity to keep only the subset of 

features that maximized the model performance in predicting class membership.21 

 

Metabolite identification 

Differential metabolites were confirmed based on their retention time and MS2 fragmentation 

pattern19 using open-access libraries, including the HMDB database (www.hmdb.ca), lipidmaps 

(www.lipidmaps.org), metlin (http://metlin.scripps.edu/index.php) and mzcloud (www.mzcloud.org).22 
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Biological process and pathway analysis 

The Panther software (Protein Analysis Through Evolutionary Relationships, version 10.0, 

release date April, 2015) was used to analyze the protein lists in order to generate the gene ontology 

categories (protein class).23 The overrepresentation of the pathways in which the differential proteins 

of the CSCR SRF compared to the RRD SRF are involved was performed with QIAGEN’s Ingenuity 

Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.com/ingenuity). 

Over-representation analysis on the metabolomics data was performed by Consensuspathdb 

(http://consensuspathdb.org) to obtain accurate insight into the underlying biology of differentially 

expressed metabolites exploiting the KEGG database. Enrichment set analysis was appreciated by 

4150 IDs for human species included in the KEGG library. Cytoscape software (Version 3.2.1, 

http://cytoscape.org) and the MetScape plugin (Version 3.1.2) were used to build the compound-gene 

metabolic network.24 From the set of genes obtained in the compound-gene network, gene ontology 

terms were integrated and functionally organized in a gene ontology network function using the 

ClueGO plugin (Version 2.2.5).25  

 

RESULTS 

Clinical history of the CSCR patient 

A 48-year old man was referred with right eye vision loss for three months. He reported steroid 

nasal spray use for allergic rhinitis, and no remarkable medical history. Best-corrected visual acuity of 

his right eye was decreased to 20/200. No ocular inflammation was observed, and intraocular pressure 

was normal. Fundus examination showed a posterior serous retinal detachment with multiple retinal 

folds and presence of focal subretinal yellowish material (Figure 1A). On fundus autofluorescence, 

extensive hyper-autofluorescent gravitational tracks contrasted with central hypo-autofluorescence due 

to subretinal material masking effect (Figure 1B, arrows). SD-OCT showed a serous retinal 

detachment with retinal folds, hyper-reflective material in the subretinal space (Figures 1C-D) and flat 

irregular pigment epithelial detachments (Figures 1C-D). Subfoveal choroidal thickness, using 

enhanced depth imaging SD-OCT was 548µm in the right eye and 661µm in the left eye, superior to 



 

 

9 

choroidal thickness reported in normal subjects.8 In the left eye a regular pigment epithelial 

detachment temporal to the fovea was observed on SD-OCT (Figure 1E). On fluorescein angiography, 

multiple leakage sites were observed in the right eye, temporal to the fovea and along the superior and 

inferior temporal vessels (Figures 1F-G), and pigment epithelial alterations, suggestive of previous 

CSCR episodes, were visible in the left eye (Figure 1K). On ICG angiography, choroidal hyper-

permeability was clearly observed in both eyes (Figures 1H-J). 

After a two-month observation period without any SRF resolution, this refractory CSCR patient 

with signs of chronic epitheliopathy was treated with the oral mineralocorticoid-receptor antagonist 

spironolactone (25mg/day for a week and then with 50mg/day) as previously reported.26-28 After three 

months, visual acuity had improved to 20/50. SRF and subretinal protein exudates decreased 

dramatically (Figures 2A-B), but a globular fibrous clot persisted just temporal to the fovea, 

preventing complete macular reattachment (Figure 2A, arrow). Pars-plana vitrectomy with retinotomy 

and subretinal clot removal was performed, and SRF was collected prior to clot removal. One month 

later, visual acuity had improved to 20/25, and the macular detachment had resolved without remnants 

of subretinal material (Figs 2 C-D). Visual acuity remained unchanged without CSCR recurrence over 

an additional 2-year follow-up. 

 

Subretinal fluid proteome  

The quantitative proteomics analysis identified 291 proteins in all SRF samples, among which 128 

were differentially regulated between the CSCR and RRD samples (See Supplementary Table 1 for the 

complete list of identified proteins). Seventy-seven proteins were down-regulated (<0.67) and 51 were 

up-regulated (>1.5) in CSCR compared to RRD (see Supplementary Table 2 for the list of up- and 

down-regulated proteins). Using gene ontology, these differentially regulated proteins were 

categorized as enzymes (41.5%, 55 proteins including complement factors, peptidases and protease 

inhibitors), receptors (15.4%, 32 proteins), cell adhesion molecules (15%, 29 proteins), 

defense/immunity proteins (8.9%, 19 proteins) and transporters (8.4%, 17 proteins) (Figure 3A). 

Among the 15 most up-regulated proteins in the CSCR sample (ratio>10), 10 were involved in 

glycolysis and gluconeogenesis: Fructose-bisphosphate aldolase A, Beta-enolase, Glycerol-3-
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phosphate dehydrogenase [NAD(+)], cytoplasmic L-lactate dehydrogenase A chain, 

Phosphoglucomutase-1, Alpha-enolase, Pyruvate kinase, Phosphoglycerate kinase-1, Triosephosphate 

isomerase and Glyceraldehyde-3-phosphate dehydrogenase. The most down-regulated proteins were 

mainly involved in cell adhesion or extracellular matrix interaction, including opticin, myocilin, 

calsyntenin-1, versican, metalloproteinase-2, osteopontin, neurexin-3, cell adhesion molecule 1 and 2 

and insulin-like growth factor-binding protein 7 (see Supplementary Table 2 for P-values). Among 

proteins involved in cell adhesion, galectin-3 binding protein was the only up-regulated molecule. 

The over-representation analysis of differentially regulated pathways is displayed in Figure 3B, 

and the corresponding up- and downregulated proteins within over-represented pathways are displayed 

in Table 1. The following pathways were over-represented in CSCR, as compared to RRD: 

• the immune and inflammatory response (acute phase response signaling, P=5.85E-19; 

complement system, P=1.49E-14), with a majority of down-regulated proteins in CSCR 

(68% and 60% respectively), 

• lipid transport and macrophage activation (liver X receptor/retinoid X receptor pathway, 

LXR/RXR, with 69% of down-regulated proteins in CSCR, P= 2.86E-18), 

• metabolism of biliary acids (farnesoid X receptor/retinoid X receptor pathway, 

FXR/RXR, with 75% of down-regulated proteins in CSCR, P=5.57E-17), 

• the glycolysis (P=1.16E-10) and gluconeogenesis (P=3.74E-7) pathways, in which all 

proteins were up-regulated in CSCR compared to RRD (Aldolase, fructose-bisphosphate 

A, enolase 1, 3, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase 1, 

pyruvate kinase, muscle, triosephosphate isomerase 1), 

• coagulation system (P=2.18E-6), 

• atherosclerosis signaling (P=1.1E-5; up-regulation of apolipoprotein B, C-III, lysozyme, 

paraoxonase 1 and down-regulation of apolipoprotein A-IV, retinol binding protein 3, 

serpin family A member 1), 

• IL-12 signaling (P=1.74E-5) 

• clathrin-mediated endocytosis (P=1.81E-5) 
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Subretinal fluid metabolome 

After matching against known metabolites in the HMDB database using the mass to charge ratio 

(m/z), the putative metabolite list was reduced to 651 single molecules. The supervised learning 

approach was successful in reconstructing sample classes, based on the differentially expressed 

metabolites between CSCR and RRD. Seventy-six metabolites were differentially regulated in the 

SRF sample from the CSCR patient, as compared to RRD, of which 43 were down-regulated and 33 

were up-regulated (see Supplemental Table 3 for a list of differentially regulated metabolites). 

Over-representation pathway analysis was performed on the deregulated metabolites (Figure 4A). 

It confirmed the proteomics results with the protein digestion and absorption pathway (P=3E-09) 

defined by approximately 20% coverage of inputted metabolites (specifically methionine, 

phenylalanine, valine, tyrosine, leucine, glutamine, arginine, isovalerylcarnitine and tyramine-o-

sulfate), which is in accordance with the peptidase and protease inhibitor activity differentially 

regulated within the enzyme in the proteomics analysis. 

Interestingly, additional pathways were also highlighted in CSCR compared to RRD samples, 

including: 

• the choline pathway, containing exclusively over-regulated metabolites, such as 

phosphatidylcholine (P-16:0/18:4) (FC=5.8, P=4E-5) and phosphatidylglycerol 

(18:0/18:1) (FC= 1.58, P =6E-3), with 18% metabolite coverage,  

• the aminoacyl tRNA biosynthesis, arginine biosynthesis and pantothenate/CoA 

biosynthesis pathways, determined exclusively by down-regulated metabolites, 

• the mineral absorption and ABC transporters pathways were mostly down-regulated, 

which is consistent with the reduced expression of transporter proteins in the

• phosphoric acid, also involved in ATP production, was the only up-regulated metabolite 

in the mineral absorption pathway (FC=4.22). 

The chemical sub-classification of metabolites deregulated in CSCR, as compared to RRD, was 

obtained from the HMDB library. The largest subgroup (30%) belonged to the amino acid/peptide 

subclass, confirming the over-representation pathway analysis (see Supplementary Figure 1 for a chart 
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of deregulated metabolites). Using this classification system, the next highly susceptible metabolite 

classes were phosphosphingolipids (12%), fatty acids/conjugates (7%) and fatty acid esters (6%), 

which demonstrated alterations in lipid metabolism, in agreement with the proteomic results showing 

deregulation of the LXR/RXR pathway. 

Finally, the pathway-based network was explored to create a compound-gene network on the 

MetScape software (Figure 4B), providing a comprehensive overview of the specific SRF metabolic 

signature in the CSCR sample. Among sub-networks, branch-chain amino acid degradation pathway, 

glycolysis and gluconeogenesis, steroid hormone biosynthesis and metabolism, and bile acid 

biosynthesis were remarkably deregulated, showing a high consistency with the proteomics results. 

 

DISCUSSION 

The present study reports the first proteomic and metabolomic investigation of SRF, to the best of 

our knowledge. Applied comparatively to CSCR and RRD, this approach provided unique molecular 

information, given the rarity of bullous variants of CSCR requiring subretinal surgery,1, 2 the difficulty 

of SRF collection, and the limited volume of SRF available. Although proteomics results were based 

on a single CSCR case, they were supported by an independent and orthogonal metabolomics analysis, 

and by the biological consistence with current understanding of CSCR pathophysiology. 

In addition to demonstrating the feasibility of multi-omics exploration of SRF, this study suggests 

that inflammatory and immune responses in the subretinal space are differentially regulated in CSCR 

and RRD. Regarding the complement pathway, the up-regulation of CFH confirms its involvement in 

CSCR pathogenesis. This finding is consistent with previous reports that genetic variants of CFH are 

associated to a higher risk of developing CSCR,29-31 and that other variants could protect from the 

disease.31 The up-regulation of CFH and CFH-related protein-1, and the decrease in complement 

factors B and 4B in the SRF of CSCR may indicate a lower activation of the alternative complement 

pathway, subsequent reduction of membrane attack complex and reduced photoreceptor cell death.32, 33 

Noticeably, the C4B genomic copy number is related to the risk of developing chronic CSCR, with 

absent C4B conferring a higher risk and presence of 3 copies decreasing this risk.34 On the other hand, 

the alternative complement pathway contributes to physiologic transport of ions and macromolecules 
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through pores formation such as C5b-8 and C5b-9.33 This mechanism involves CD59 protein, also 

found in our study as down-regulated. Impaired activation of this mechanism could result in fluid and 

macromolecule accumulation in the sub retinal space of patients with CSCR. 

Among proteins differentially regulated in the acute phase response signaling pathway, Serum 

amyloid P component (SAP or pentraxin-2) is of specific interest. SAP interacts with complement 

factors35 and inhibits the recruitment of pro-fibrotic macrophages.36 In addition, it protects from cell 

damage induced by histone H3,37 a potential mechanism contributing to photoreceptor cell death.38 

Regarding proteins related to gluco- and mineralocorticoid hormonal systems, the CSCR sample 

showed a moderate elevation of galectin-3, a biomarker linked to mineralocorticoid activation and 

vascular fibrosis,39, 40 and a reduction in cortisol binding globulin and angiotensin (Supplementary 

Table 2). In addition, the identification of the C21 steroid hormone biosynthesis metabolic subnetwork 

(Figure 4), which includes critical gluco- and mineralocorticoid molecules such as cortisol and 

aldosterone (both having 21 carbons), reflects the deregulation of steroid metabolism, as previously 

identified in CSCR patients.41, 42 This increase in C21 steroids and the reduced cortisol binding 

globulin in the SRF of CSCR could also modulate photoreceptor cell death and survival.43 

Clathrin-mediated endocytosis, one of the differentially regulated pathways between CSCR and 

RRD, could be an additional mechanism for controlling C5b-8 or C5b-9 levels at the RPE cell 

membrane, and regulating their lytic threshold.32 Interestingly, five out of seven proteins of the 

clathrin-mediated endocytosis pathway have functions in lipid transport and are involved in vascular 

diseases (apolipoprotein A-IV, retinol binding protein 3, serpin family A member 1, apolipoprotein B, 

C-III, paraoxonase 1). The LXR/RXR pathway, involved in lipid transport, also regulates macrophage-

mediated inflammatory response in atherosclerosis,44 and induces microglial activation in the 

subretinal space.45 Taken together, these results indicate that microglia/macrophage and lipid 

metabolism are differentially regulated during rhegmatogenous or serous retinal detachments, and are 

potentially involved in CSCR pathophysiology. 

The difference in glycolysis and gluconeogenesis pathways between CSCR and RRD is also 

emphasized by both proteomics and metabolomics approaches. Compared to RRD, all proteins 

involved in glycolysis and gluconeogenesis pathways were up-regulated in the SRF from CSCR, 
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which could point to differential neuronal survival mechanisms. Indeed, gluconeogenesis products 

contribute to protecting the retina against oxidative and nitrosative stress,46,47 and increased glucose 

levels may promote cone photoreceptor survival by stimulation of aerobic glycolysis.48 

The FXR pathway identified by proteomics analysis is directly linked to the bile acid pathway 

identified by metabolomics. Bile acids, increased in the SRF of CSCR as compared to RRD are potent 

anti-apoptotic components for photoreceptors in various models.49 For example, tauroursodeoxycholic 

acid (TUDCA) prevents photoreceptors cell death after experimental retinal detachment.50 Similarly, 

the pentothenate and CoA pathways have a protective effect against retinal degeneration, and were 

also activated in CSCR, pointing out another potential neuroprotective mechanism.51 

Proteins involved in cell migration and adhesion, essential to cellular movement, accounted for 

15% of the differentially regulated proteins in the SRF of CSCR, compared to RRD. Consistently, 

most proteins usually found in the vitreous52, 53 were less abundant in the SRF from CSCR, which is 

not expected to be contaminated by vitreous fluid, such as opticin,54 osteopontin55 and versican.56 

Proteins involved in retinal structure were also reduced in the SRF of CSCR as compared to RRD 

(such as contactin 1,57 SYNCAM and lumican58) which may be related to the better architecture 

preservation of the detached retina in CSCR. A clear reduction in the choline metabolic pathway, 

which intervenes in the photoreceptor outer segment/RPE microvilli interaction,59 may also be related 

to the better preservation of photoreceptor outer segments in CSCR as compared to RRD.60 

Finally, a recent proteomics analysis of intraretinal schisis fluid from two subjects with X-linked 

retinoschisis highlighted canonical pathways also identified in the present study, such as LXR/RXR 

activation, complement system and acute phase response signaling.61 Since chronic CSCR may also 

manifest with retinoschisis-like cavities,62 similar biochemical changes may occur in both diseases. 

These convergent results support the involvement of the identified pathways in a range of retinal 

disorders, and show the emerging potential of ocular proteomics. 

To summarize, this work demonstrated the feasibility and power of proteomics, combined to 

metabolomics, for the analysis of SRF. This approach opens perspectives for the comprehensive 

analysis of ocular biomarkers in retinal diseases, and for the screening of neuroprotective therapeutic 

targets. The main weakness of this study was the limited number of SRF samples analyzed. Although 
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results from proteomics and metabolomics were largely consistent with each other, and highlighted 

key molecular players in CSCR pathophysiology previously reported in the literature, they must be 

interpreted with caution Although the indication of subretinal surgical procedures in CSCR is 

exceptional, these translational results will require confirmation with additional samples. This first 

comparative molecular analysis of SRF in CSCR and RRD improved the understanding of both 

disorders, and identified pathways involved in the better photoreceptor preservation in CSCR. 
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Figure legends 

Figure 1: Retinal imaging findings in a 48-year old patient with severe fibrinous central serous 

chorioretinopathy. 

Right eye: (A) Multicolor fundus imaging showing a posterior serous retinal detachment with 

multiple folds and focal subretinal protein deposits. (B) Fundus autofluorescence showing a large 

hyper-autofluorescent area covering the posterior pole and extending towards the superior and inferior 

temporal vascular arcades, due to recent exudative detachment, with central autofluorescence masking 

due to protein deposits (arrows). (C-D) Spectral-Domain optical coherence tomography (SD-OCT) 

showing a serous retinal detachment with retinal folds, and hyperreflective material partially 

occupying the subretinal space. (F-G) Fluorescein angiography showing leakage sites, temporal to the 

fovea and along the superior and inferior temporal vessels. (H-I) Mid- and late phase indocyanine 

green  angiography (ICGA) showing choroidal vascular hyperpermeability. 

Left eye: (E) SD-OCT showing a serous pigment epithelial detachment temporal to the fovea. (J) 

Midphase ICGA angiography demonstrating choroidal hyperpermeability. (K) Fluorescein 

angiography showing multifocal retinal pigment epithelium alterations and progressive dye filling of 

the pigment epithelial detachment. 

 
Figure 2: Resolution of residual retinal detachment after surgical subretinal fibrin removeal in a 

48-year old patient with severe fibrinous central serous chorioretinopathy. 

(A) Three months after initiation of oral spironolactone, spectral-domain optical coherence 

tomography (SD-OCT) showed persistence of subretinal material preventing complete retinal 

reattachment, which prompted to perform vitrectomy with retinotomy and internal removal of a 

subretinal fibrin clot. 

(B) One month after the procedure, SD-OCT showed disappearance of the subretinal deposit and 

complete macular reattachment (arrow). 

Figure 3. Differential subretinal fluid proteome in central serous chorioretinopathy compared to 

rhegmatogenous retinal detachment. 
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(A) Circle chart of differentially regulated protein classes obtained with the Panther software. Some 

classes contain several subclasses (cell adhesion and extracellular matrix protein: cell adhesion 

molecule, cytoskeletal protein, extracellular matrix protein, structural protein, surfactant; enzyme: 

enzyme modulator, hydrolase, isomerase, kinase, lyase, oxidoreductase, phosphatase, protease, 

transferase; transporter: membrane traffic protein, transfer/carrier protein, transporter). Twenty-nine 

proteins from the list were not taken into account by Panther. 

(B) Protein pathways differentially represented using over-representation pathway analysis in CSCR 

subretinal fluid compared to RRD. The 10 most significant pathways provided by the Ingenuity 

Pathway Analysis software were selected based on right-tailed Fisher's exact test significance levels. 

Red and green bars represent up- and down-regulated proteins, respectively. The orange line 

represents the P-value corresponding to each pathway. 

CSCR= central serous chorioretinopathy; RRD= rhegmatogenous retinal detachment 

 
Figure 4. Differential metabolome of the central serous chorioretinopathy subretinal fluid 

compared to rhegmatogenous retinal detachment. 

(A) Over-representation pathway analysis of differentially represented metabolites in the CSCR 

subretinal fluid sample compared to RRD. A minimum of 2 metabolites per pathway and a significant 

association cut-off (P < 0.01 and q-value<0.05) were used. Red and green bars represent metabolites 

up- and down-regulated, respectively. The orange line represents the associated P-value corresponding 

to each pathway. 

(B) Compound-gene metabolic network in the CSCR sample compared to RRD. Major pathways 

altered in the network are outlined by dashed lines. 

CSCR= central serous chorioretinopathy; RRD= rhegmatogenous retinal detachment  
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Supplementary material 

 

Figure S1. Circle chart of chemical sub-class taxonomy for deregulated metabolites in the 

central serous chorioretinopathy subretinal fluid sample, compared to rhegmatogenous retinal 

detachment. 

Metabolites without sub-class taxonomy are assigned as non-attributed. 

 

Table S1. List of proteins identified in the subretinal fluid samples from central serous 

chorioretinopathy and rhegmatogenous retinal detachment. 

 

Table S2. List of proteins differentially expressed in the subretinal fluid from the central serous 

chorioretinopathy case, compared to rhegmatogenous retinal detachment. 

 

Table S3. List of discriminant metabolites obtained using the prediction analysis for 

microarrays (PAM) classification. 

The HMDB ID of each identified metabolite is proposed according to the characterization process 

based on mass accuracies, MS/MS library searching and in-silico fragmentation tool as described in 

the “metabolite identification” section. Compounds confirmed by the three criteria are notified in bold. 
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Table 1. Proteins identified in the subretinal fluid and differentially expressed in central 
serous chorioretinopathy compared to rhegmatogenous retinal detachment. 
	
	

	 Up-regulated	proteins	 Down-regulated	proteins	
Canonical	pathway	 Protein	 Ratio*	 Protein	 Ratio*	
Acute	phase	response	
signaling	 Amyloid P component, serum 4.42 Angiotensinogen	 0.51	

	 Complement component 3 1.93 Alpha-2-HS-glycoprotein	 0.59	

	 Complement component 4 3.18 Complement	component	9	 0.29	

	 Fibronectin 1 2.68 Complement	component	1r	 0.38	

	 Kallikrein B1 1.67 Complement	component	4B	 0.49	

	 Serpin family D member 1 2.58 Complement	factor	B	 0.45	

	   Hemopexin	 0.23	

	   Histidine-rich	glycoprotein	 0.31	

	   Inter-alpha-trypsin	inhibitor	 0.44	

	   Plasminogen	 0.36	

	   Retinol	binding	protein	3	 0.63	

	   Retinol	binding	protein	4	 0.64	

	   Serpin	family	A	member	1	 0.31	

LXR/RXR	and	FXR/RXR	
activations	 Apolipoprotein	B	 5.28	 Alpha-1-B	glycoprotein	 0.65	

	 Apolipoprotein	C-III	 3.79	 Angiotensinogen	 0.51	

	 Complement	component	3	 1.93	 Alpha-2-HS-glycoprotein	 0.59	

	 Lysozyme	 1.64	 Apolipoprotein	A-IV	 0.15	

	 Paraoxonase	1	 1.95	 Complement	component	9	 0.29	

	 	 	 Complement	component	4B	 0.49	

	 	 	
Group-specific	component	
(vitamin	D	binding	protein)	

0.21	

	 	 	 Fetuin	B	 0.36	

	 	 	 Hemopexin	 0.23	

	 	 	 Inter-alpha-trypsin	inhibitor	 0.44	

	 	 	 Retinol	binding	protein	4	 0.64	

	 	 	
Serpin	peptidase	inhibitor,	clade	
A	

0.31	

Complement	system	 Complement	component	3	 1.93	 Complement	component	7	 0.34	

	 Complement	component	4	 3.18	 Complement	component	9	 0.29	

	 Complement	component	8	 1.59	 Complement	component	1r	 0.38	

	 Complement	factor	H	 2.99	 Complement	component	4B	 0.49	

	 	 	 CD59	molecule	 0.43	

	 	 	 Complement	factor	B	 0.45	

Glycolysis	I	 Aldolase,	fructose-bisphosphate	A	 39.3   
	 Enolase	1	 12.68   
	 Enolase	3	 24.59   

	 Glyceraldehyde-3-phosphate	
dehydrogenase	

10.12   

	 Phosphoglycerate	kinase	1	 10.83   
	 Pyruvate	kinase,	muscle	 11.86   
	 Triosephosphate	isomerase	1	 10.41   

Gluconeogenesis Fructose-bisphosphate	aldolase	A	 39.3   
 Enolase	1	 12.68   



 Enolase	3	 24.59   

 
Glyceraldehyde-3-phosphate	
dehydrogenase	

10.12   

 Phosphoglycerate	kinase	1	 10.83   

Coagulation system Kallikrein	B1	 1.67 Plasminogen 0.36 
 Serpin	family	D	member	1	 2.58 Serpin family A member 1 0.31 
	 	 	 Serpin	family	C	member	1	 0.32	

Atherosclerosis	signaling	 Apolipoprotein	B	
Apolipoprotein	C-III	
Lysozyme	
Paraoxonase	1	
Heat	shock	protein	family	A	(only	for	
Clathrin	mediated	Endocytosis	
Signaling)	

5.28	
3.79	
1.64	
1.95	
5.62	

Apolipoprotein	A-IV	
Retinol	binding	protein	3	
Serpin	family	A	member	1	

0.15	
0.63	
0.31	

IL-12	Signaling	and	
Production	in	Macrophages	
	
	
	
Clathrin-mediated	
Endocytosis	Signaling	

	
Pathway analysis was performed using the ‘Ingenuity Pathway Analysis’ software. 
LXR/RXR, liver X receptor/retinoid X receptor; FXR/RXR, farnesoid X receptor/retinoid X 
receptor. 
 
* Ratio of subretinal fluid protein concentrations between central serous chorioretinopathy 
and rhegmatogenous retinal detachment samples. Only upregulated (>1.5) or downregulated 
(<0.67) proteins are reported. 
 
 



Supplementary Tables 1, 2 and 3 were not included in this thesis dissertation because their 
format did not allow it (lists of identified molecules in Excel data files). 
 
They are available upon request. 
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Macular Telangiectasia Type 1: Capillary
Density and Microvascular Abnormalities

Assessed by Optical Coherence Tomography
Angiography

ALEXANDRE MATET, ALEJANDRA DARUICH, ALI DIRANI, AUDE AMBRESIN, AND FRANCINE BEHAR-COHEN

! PURPOSE: To describe microvascular abnormalities
and capillary density in macular telangiectasia type 1
(MT1) using optical coherence tomography angiography
(OCTA), and correlate them with fluorescein angiog-
raphy (FA).
! DESIGN: Observational case series.
! METHODS: Seven patients with MT1 and 12 age-
matched controls were included. Focal microvascular
dilations were identified on 3 3 3 mm OCTA and
early-frame FA images. OCTA images were processed
to determine the global capillary density after subtraction
of larger vessels and cystoid edema cavities. Local capil-
lary densities were calculated inside 100-mm circles
around telangiectasias, projected over superficial (SCP)
and deep capillary plexuses (DCP). They were compared
to a random sample of 100-mm circles generated in each
OCTA image. FA images were processed to measure
mean perifoveal intercapillary areas (PIA), inversely
reflecting capillary density.
! RESULTS: In MT1 eyes, fewer telangiectasias were
identified with OCTA than with FA (P [ .016), exclu-
sively localized in the DCP (P [ .016). Rarefaction of
both capillary plexus and abnormal microvascular
morphology were better identified by OCTA than by
FA. The global capillary density on OCTA was signifi-
cantly lower in MT1 eyes than in fellow and control
eyes, respectively: SCP, 0.347 vs 0.513 (P [ .004)
and 0.560 (P [ .0005); DCP, 0.357 vs 0.682 (P [
.016) and 0.672 (P [ .0005). Capillary density was
significantly reduced around telangiectasias in both SCP
(P [ .021) and DCP (P [ .042). Capillary density of
the SCP correlated inversely with the mean PIA on FA
(r [ L0.94, P [ .017). LogMAR visual acuity was

inversely correlated with SCP (r [ L0.88, P [ .012)
and DCP capillary densities (r [ L0.79, P [ .048).
! CONCLUSIONS: OCTA confirmed that global and focal
capillary depletion is associated with MT1. (Am J
Ophthalmol 2016;167:18–30. ! 2016 Elsevier Inc. All
rights reserved.)

M ACULAR TELANGIECTASIA TYPE 1 (MT TYPE 1) IS

a congenital or developmental vascular disorder
affecting mostly male subjects and consisting of

focal, exudative dilations of perifoveal retinal capillaries.1

It is usually unilateral, may extend beyond the macula,
and therefore may be part of the larger spectrum of Coats
disease.2 Historically, the condition has been termed
‘‘miliary aneurysms’’ by Leber,3 ‘‘idiopathic juxtafoveal
telangiectasis’’ (group 1A-1B) by Gass and Blodi,1 ‘‘Type
1 aneurysmal telangiectasia’’ by Yannuzzi and associates,4

and finally MT type 1 in the recent classification by the
MacTel Study Group.5

In contrast with type 2 idiopathic macular telangiectasia
or ‘‘MacTel2,’’ in which telangiectasias develop along with
pathognomonic degenerative alterations of the retinal ar-
chitecture linked to Müller cell depletion,6,7 MT type 1
is primarily a vascular disease, complicated by macular
edema originating from the exudative telangiectasias.4

Fluorescein angiography (FA) allows the visualization of
telangiectasias, but its ability to image the fine perifoveal
capillaries at high resolution and to discriminate between
the superficial and deep capillary plexuses is limited. More-
over, these lesions and the surrounding perifoveal capil-
laries are visible exclusively during the early frames of the
sequence, since details are progressively submerged by dye
diffusion from telangiectasias.
Optical coherence tomography angiography (OCTA) is

a recent noninvasive imaging technology based on the
detection of flows that provides a representation of the
microvascular morphology. Absence of dye diffusion and
higher resolution help to overcome limitations of FA to im-
age the perifoveal capillary network.8,9 Moreover, the
segmentation of volumes acquired by OCTA produces a
separate visualization of the superficial and the deep
retinal capillary plexuses. To date, several groups have
employed OCTA to describe normal features of the
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macular microvasculature10–14 and to describe fine
alterations involving both plexuses in several vascular
disorders, such as retinal vein occlusion,15–17 diabetic
retinopathy,18–20 and MT type 2.21,22 Furthermore, the
recent adjunction of quantitative tools has expanded the
ability of OCTA to investigate highly detailed
abnormalities of the retinal microvasculature, such as
vessel density or non-flow areas.9,23

Imaging MT type 1 eyes with OCTA, we have described
the vascular abnormalities (‘‘telangiectasias’’) and their
vascular microenvironment. We used a quantitative anal-
ysis of OCTA images to compare the macular capillary
density of MT type 1 eyes with fellow eyes and with healthy
control eyes. We then correlated OCTA findings with FA
imaging.

METHODS

! SUBJECTS: This observational case series adhered to the
tenets of the Declaration of Helsinki and Swiss federal reg-
ulations and was approved by the local Ethics Committee
of the Swiss Department of Health (CER-VD no. 19/15).
The study was conducted from June 1 to October 1,
2015, at Jules-Gonin Eye Hospital, Lausanne, Switzerland.

Medical records, optical coherence tomography (OCT),
OCTA, FA, and indocyanine green angiography (ICGA)
images from 7 consecutive subjects presenting with MT
type 1 were retrospectively analyzed. The diagnosis of
MT type 1 was based on the presence of unilateral, exuda-
tive telangiectasia affecting the macular area, without any
clinical sign or history suggestive of vascular occlusion, pos-
terior segment inflammation, or other causes of secondary
macular telangiectasia. Exclusion criteria were age <18
years and spherical equivalent<"2 diopter (D) or>þ2 D.

Twelve eyes from 12 healthy subjects imaged by OCTA
were selected from the local OCTA database based on age
and sex to serve as a control group.

! IMAGEACQUISITIONAND SEGMENTATION: The instru-
ment used for en face OCT and OCTA images, Angiovue
RTx 100, is based on the AngioVue Imaging System
(Optovue, Inc, Fremont, California, USA) to obtain
amplitude decorrelation angiography images. This instru-
ment has an A-scan rate of 70 000 scans per second, using
a light source centered on 840 nm and a bandwidth of
50 nm. Each OCTA volume contains 304 3 304 A-scans
with 2 consecutive B-scans captured at each fixed position
before proceeding to the next sampling location. Split-
spectrum amplitude-decorrelation angiography (SSADA)
was used to extract the OCT angiography information.
Each OCTA volume is acquired in 3 seconds and 2 orthog-
onal OCTA volumes were acquired in order to perform
motion correction to minimize motion artifacts arising
from microsaccades and fixation changes. Angiography

information displayed is the average of the decorrelation
values when viewed perpendicularly through the thickness
being evaluated.
In order to obtain comparable 3 3 3-mm OCTA scans

between subjects, volumes were automatically segmented
by the software provided by the manufacturer to provide
images of the superficial plexus (3 mm below the inner
limiting membrane to 16 mm below the outer border of
the inner plexiform layer) and deep plexus (16–69 mm
below the outer border of the inner plexiform layer). We
controlled the correct segmentation for each patient before
reporting the data.
The central macular thickness was measured on the

Angiovue RTx 100 OCT in the central subfield of an Early
Treatment Diabetic Retinopathy Study (ETDRS) grid
centered on the fovea.
FA and ICGAwere performed on Spectralis (Heidelberg

Engineering, Heidelberg, Germany). Early frames (<_50 sec-
onds after dye injection) were acquired with a 30-degree
lens to visualize the macular microvasculature. Image qual-
ity was optimized using the ‘‘sharpen’’ tool of the Heidel-
berg Eye Explorer software (Version 1.9.10.0; Heidelberg
Engineering). Angiograms were rotated and cropped to
match the 3 3 3-mm OCTA scans centered on the fovea,
using ImageJ (Version 1.50c4, Wayne Rasband; National
Institutes of Health, Bethesda, Maryland, USA).

! IDENTIFICATION OF MICROVASCULAR ABNORMAL-
ITIES: OCTA images from normal and MT type 1 subjects
and FA and ICGA images from MT type 1 eyes were
presented randomly to 3 masked independent observers
(A.A., A.Da., F.B.C.) during separate sessions for each im-
aging modality. Lesions identified as microvascular abnor-
malities were labeled by each observer, and those labeled
by 2 observers or more were retained. The interobserver
reliability was assessed using a 2-way, mixed-model intra-
class correlation coefficient based on the number of lesions
identified per OCTA, FA, or ICGA image. Numbers of le-
sions in the deep and superficial capillary plexuses on
OCTA were compared using a Wilcoxon signed-rank
paired test.

! QUANTITATIVE DETERMINATION OF CAPILLARY
VESSEL DENSITY ONOPTICAL COHERENCE TOMOGRAPHY
ANGIOGRAPHY: The vascular densities of the capillary
network in the superficial and deep plexuses were assessed
by a custom semi-automated, intensity-based algorithm
on Matlab (Mathworks, Natick, Massachusetts, USA).
First, original grayscale OCTA images were processed

to detect pixels corresponding to vascular flow. In each
image (Figure 1, Top and Bottom left), a region of interest
(ROI) inside the foveal avascular zone that did not
include dark areas corresponding to intraretinal cystoid
cavities was manually outlined to define the background
intensity of the intervascular retinal tissue. Using the
threshold intensity Ithreshold ¼ Mean (ROI pixels) þ 2 3
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Standard Deviation (ROI pixels), a binary transform of the
OCTA image was performed, resulting in a ‘‘skeleton’’ of
the vascular network (Figure 1, Top and Bottom middle
left). In order to extract larger arterioles and venules
that appear brighter owing to their higher flow, another
binary transform was applied to the original OCTA im-
ages with a threshold set arbitrarily at 50% of the
maximum pixel intensity value (122.5 ¼ 0.5 3 255)
(Figure 1, Top middle right).

Second, pixels corresponding to the en face visualization
of cystoid edema were identified on OCTA images. These
areas appear slightly darker than the surrounding retinal
tissue that is detected by the SSADA algorithm, most
likely because of imperceptible retinal motion during
acquisition originating from arterial pulsations, breathing,
tremors, or microsaccades.24 Cystoid spaces were identified
using a low threshold intensity value of 5% (12.5¼ 0.05 3
255) (Figure 1, Bottom middle left).

The capillary network density was calculated over an
area defined by subtracting from the total OCTA binary
image the areas corresponding to larger vessels and cystoid
edema. A 12 3 89-pixel rectangle located in the lower left
corner and corresponding to the ‘‘Angioflow’’ sign
embedded in native OCTA images was also subtracted.
Over this final binary image, the total capillary network
density was defined as the ratio of 1-pixels to total pixels.
For graphical purposes, vessel density maps were produced

by plotting the local mean intensity values in a sliding 5 3
5-pixel square area (Figure 1, Top and Bottom right).
Total capillary vessel densities in the deep and superficial

plexuses were compared between affected and fellow eyes
of MT type 1 subjects and control eyes from healthy sub-
jects, using Mann-Whitney test and Wilcoxon signed-
rank paired test (for fellow eyes). Correlations of capillary
densities with multimodal imaging findings and visual acu-
ity were performed using the Spearman rank correlation
coefficients.

! QUANTITATIVE DETERMINATION OF LOCAL CAPIL-
LARY VESSEL DENSITY AROUND MICROVASCULAR
LESIONS ON OPTICAL COHERENCE TOMOGRAPHY ANGI-
OGRAPHY: In MT type 1 eyes a local capillary vessel
density was calculated inside 100-mm-radius circles
centered by each previously identified microvascular
lesion, using a semi-automated algorithm onMatlab. These
lesions were labeled manually on original OCTA images by
a single operator (A.M.) and local capillary densities were
computed automatically on the previously generated
binary images where cystoid edema and larger vessels
(and the ‘‘Angioflow’’ label) had been excluded. In each
plexus, these local densities were computed around the
microvascular lesions of both plexuses, whenever present.
In order to compare local densities to an analogous mea-

surement reflecting the average density of OCTA images,
a random distribution of 1000 local areas of similar size

FIGURE 1. Illustration of the semi-automated method to estimate capillary density and produce capillary density maps from optical
coherence tomography angiography images. Original optical coherence tomography angiography image of (Top left) the superficial
capillary plexus (Case 3) and (Bottom left) the deep capillary plexus (Case 5), with (Top and Bottom middle left) their respective
binary transform. (Top middle right) Extraction of large retinal vessels and (Bottom middle right) areas corresponding to cystoid
spaces were extracted from the binary images. (Top and Bottom right) Final capillary density maps after subtraction of larger vessels
and cystoid spaces.
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(100-mm-radius circles) was generated in each OCTA im-
age. Areas overlapping a 100-mm-radius local region
around a labeled microvascular lesion, another randomly
generated area, or a central disc of 0.250 mm2 (correspond-
ing to the area of the foveal avascular zone reported by
independent groups on OCTA14,25) were excluded
(Supplemental Figure 1, available at AJO.com). The distri-
butions of perilesional and randomly distributed local
densities were compared within each plexus by a Kruskal-
Wallis test and a multiple comparison post-test.

! QUANTITATIVE ESTIMATION OF CAPILLARY DENSITY
ONFLUORESCEINANGIOGRAPHY: To provide an estimate
of the capillary density on FA, a quantification of perifoveal
intercapillary areas was performed on Matlab by adapting a
method previously described in detail26 and applied to dig-
ital FA.27 Briefly, after manual outlining of the foveal avas-
cular zone border and automated intensity-based
skeletonization of the perifoveal microvasculature, interca-
pillary spaces were automatically detected and their areas
were measured over the 3 3 3-mm angiograms, which cor-
responds approximately to the perifoveal 5-degree region
reported in the original method26 (Figure 2). For each
angiogram, the mean perifoveal intercapillary area was
calculated and was considered an inverse estimate of capil-
lary density.

! STATISTICAL ANALYSES: Comparative tests and corre-
lation analyses were performed on GraphPad Prism
(Version 5.0f; GraphPad Software, San Diego, California,
USA). Intraclass correlation coefficients, Kruskal-Wallis
test, and post-tests were calculated on R software (Version
3.2.2; R Foundation for Statistical Computing, R Core
Team, 2015, Vienna, Austria; http://www.R-project.org/)
using the ‘‘irr’’ package (Version 0.84, 2012, M. Gamer,
J. Lemon, I. Fellows, P. Singh, http://CRAN.R-project.

org/package¼irr) and the ‘‘pgirmess’’ package (2015,
Version 1.6.3, P. Giraudoux, http://CRAN.R-project.org/
package¼pgirmess). Visual acuities were converted to the
logarithm of the minimal angle of resolution (logMAR)
for calculations. P values inferior to .05 were considered
statistically significant.

RESULTS

THERE WAS NO DIFFERENCE BETWEEN THE 7 PATIENTS

presenting MT type 1 and the 12 healthy controls in terms
of age (57.1 6 10.2 vs 57.8 6 6.9 years, P>.99) and sex (all
male subjects).

! IDENTIFICATION OF MICROVASCULAR ABNORMAL-
ITIES: In MT type 1 eyes imaged by OCTA, microvascular
abnormalities consisting of focal capillary dilations were
detected exclusively in the deep capillary plexus by the 3
independent observers. There was a mean of 6.9 (range,
2–14) lesions in the deep plexus and 0 lesions in the super-
ficial plexus (P¼ .016) (Table 1). Microvascular abnormal-
ities were not observed in fellow eyes of MT type 1 subjects
or in control healthy eyes.
On early-frame 3 3 3-mm FA images, a higher number

of lesions was identified by the 3 independent observers
(mean: 21.8, range, 6–54) than on OCTA (P ¼ .016).
Early-frame confocal ICGA was obtained in 5 MT type 1
subjects. Lesions suggestive of telangiectasia were observed
in all 5 subjects (mean: 13.2, range, 3–36), but their num-
ber was variably higher or lower than observed using
OCTA or FA, with no difference in mean number (P ¼
.13 and P ¼ .31, respectively).
The resulting intraclass correlation coefficient was 0.97

(95% confidence interval [CI]: 0.89–0.99) for OCTA,

FIGURE 2. Quantitative determination of perifoveal intercapillary areas to estimate capillary density on fluorescein angiograms.
(Left) A 3 3 3-mm section of an early-frame fluorescein angiogram in a 54-year-old man (Case 5) with macular telangiectasia
type 1. (Middle) Following skeletonization, perifoveal intercapillary areas were automatically identified and (Right) reported on
the fluorescein angiogram.
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TABLE 1. Clinical and Imaging Findings by Optical Coherence Tomography Angiography, Fluorescein Angiography, Indocyanine Green Angiography, and Optical Coherence
Tomography in 7 Patients With Macular Telangiectasia Type 1

Case, Sex

(Age, y)

OCTA - Superficial Capillary Plexus OCTA - Deep Capillary Plexus FA ICGA OCT

Best-Corrected

Visual Acuity

Abnormal

Microvascular

Lesions, n

Observed

Capillary

Density of

OCTA Image

Local

Capillary

Density in

Random

Regions

Observed

Perilesional

Capillary

Density

Abnormal

Microvascular

Lesions, n

Observed

Capillary Density

of OCTA Image

Local Capillary

Density in

Random Regions

Observed

Perilesional

Capillary Density

Abnormal

Microvascular

Lesions, n

Mean Perifoveal

Intercapillary

Area, 10"3 mm2

Abnormal

Microvascular

Lesions, n

Central

Macular

Thickness, mm LogMAR (Snellen)

1, M (52) 0 0.377 0.379 0.302 9 0.542 0.564 0.396 54 3.75 36 343 þ0.1 (20/25)

2, M (51) 0 0.380 0.374 0.291 5 0.318 0.332 0.0978 7 3.59 3 402 þ0.1 (20/25)

3, M (68) 0 0.378 0.390 0.280 14 0.527 0.549 0.412 32 3.64 NA 377 0.0 (20/20)

4, M (56) 0 0.212 0.204 0.162 2 0.230 0.234 0.153 6 NA 4 305 þ0.5 (20/63)

5, M (54) 0 0.306 0.309 0.372 7 0.206 0.214 0.281 12 3.79 17 304 þ0.2 (20/32)

6, M (74) 0 0.319 0.311 0.310 8 0.235 0.251 0.267 28 4.99 NA 342 þ0.2 (20/32)

7, M (45) 0 0.455 0.430 0.400 3 0.441 0.461 0.355 13 2.15 6 282 0.0 (20/20)

Mean 6 SD 0 0.347 6

0.077

0.349 6

0.149

0.302 6

0.076

6.9 6 4.1 0.357 6 0.145 0.372 6 0.232 0.280 6 0.170 21.8 6 17.4 3.65 6 0.90 13.2 6 13.9 326 6 40 þ0.16

P value P ¼ .021a P ¼ .042a

FA¼ fluorescein angiography; ICGA¼ indocyanine green angiography; LogMAR¼ logarithm of theminimal angle of resolution; OCT¼ optical coherence tomography; OCTA¼ optical coherence

tomography angiography.
aKruskal-Wallis test with multiple comparison post-tests.
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0.96 (95% CI: 0.81–0.99) for FA, and 0.99 (95% CI: 0.98–
1.00) for ICGA, indicating excellent consistency between
the 3 independent observers, with a greater agreement for
OCTA and ICGA than for FA. The detailed number of le-
sions identified by each observer is given in Supplemental
Table 1 (Supplemental Material available at AJO.com).

! QUALITATIVE DESCRIPTION OF CAPILLARY NETWORK
CHANGES: A qualitative visual assessment of OCTA im-
ages revealed a rarefied capillary network in the superficial
and deep plexuses. Enlarged capillary-free areas along

arterioles and exacerbated capillary loops were mostly
observed in the superficial plexus (Figures 3–5). In 5 out
of 7 patients, a proportion of focal microvascular
dilations suggestive of telangiectasias were located close
to a termination or branching of a venule or arteriole
(Cases 1–3 and 5–6, Figures 3–5). In addition, the foveal
avascular zone morphology was severely altered in
OCTA images of the superficial plexus, and showed an
abnormal capillary vessel crossing linearly this area in 4
out of 7 eyes (Cases 1–3 and 6, Figures 3–5). Similar
abnormal features were partly visible on early-frame FA,

FIGURE 3. Multimodal imaging in a 52-year-old man with macular telangiectasia type 1 (Case 1) showing severe alterations of the
perifoveal microvasculature. (Top left) Optical coherence tomography angiography of the superficial capillary plexus showed a rare-
fied capillary network with numerous patchy areas of severe capillary depletion (blue arrows), close to the localization of focal micro-
vascular dilations in the deep plexus (green circles). Exacerbated capillary loops (yellow arrows), enlarged capillary-free areas along
arterioles (orange arrows), and an abnormal capillary vessel crossing the foveal avascular zone (blue star) were also visible. (Top right)
The deep capillary plexus harbored a number of focal microvascular dilations (green circles), diffuse capillary depletion with focal
areas of severe depletion located in the vicinity of the microvascular dilations (blue arrows). Note that certain microvascular lesions
in the deep plexus were close to the termination of an arteriole/venule in the superficial plexus (orange star). (Bottom left) Early-frame
fluorescein angiography showed a higher number of telangiectasias than identified by optical coherence tomography angiography,
diffuse and focal capillary depletion, an abnormal capillary vessel crossing the foveal avascular zone, capillary loops, and enlarged
capillary-free areas along arterioles. (Bottom right) Early-frame indocyanine green angiography did not visualize details of the macular
microvasculature, except for focal telangiectasia, but their number was lower than on fluorescein angiography and was comparable to
optical coherence tomography angiography.

VOL. 167 23OCT ANGIOGRAPHY OF MACULAR TELANGIECTASIA TYPE 1

http://AJO.com


although it did not discriminate between superficial and
deep plexus alterations (Figures 3–5). In addition, the
definition of the perifoveal microvasculature on early FA
images was variable and qualitatively lower than on
OCTA. This discrepancy was caused by leakage from
telangiectasias (Case 3, Figure 5), fluorescein filling of
cystoid edema cavities (Case 2, Figure 4 and Cases 5–6,
Figure 5), or long-standing retinal pigment epithelium
alterations secondary to retinal edema and subretinal exu-
dates (Case 4, Figure 5).

! CAPILLARY VESSEL DENSITY: The capillary vessel den-
sity was estimated by a semi-automated method over the
entire OCTA images after subtraction of areas correspond-
ing to arterioles, venules, and cystoid edema spaces. The
capillary density of the superficial plexus was 0.347 6
0.077 in MT type 1 eyes, significantly lower than in corre-
sponding fellow eyes (0.513 6 0.080, P ¼.0041) and con-
trol eyes (0.560 6 0.065, P ¼.0005). No difference was
observed between MT type 1 fellow eyes and control eyes
(P¼ .22). Similarly, the capillary density of the deep plexus

FIGURE 4. Multimodal imaging in a 51-year-old man with macular telangiectasia type 1 (Case 2) showing mild alterations of the
perifoveal microvasculature. (Top left) Optical coherence tomography angiography of the superficial capillary plexus showed a
mild decrease in capillary network density with few focal areas of increased depletion (blue arrows), close to the localization of focal
microvascular dilations in the deep plexus (green circles). Capillary loops (yellow arrows), moderately enlarged capillary-free areas
along arterioles (orange arrows), and an abnormal capillary vessel crossing the foveal avascular zone (blue star) were also visible. (Top
right) The deep capillary plexus presented focal microvascular dilations (green circles), diffuse capillary depletion with a few focal
areas of more severe depletion located in the vicinity of the microvascular dilations (blue arrows). Note that certain microvascular
lesions in the deep plexus were close to the termination of an arteriole/venule in the superficial plexus (orange stars). (Bottom
left) Early-frame fluorescein angiography showed a comparable number of telangiectasias as identified by optical coherence tomogra-
phy angiography, mild diffuse and focal capillary depletion, an abnormal capillary vessel crossing the foveal avascular zone, a few capil-
lary loops, and moderately enlarged capillary-free areas along arterioles. (Bottom right) Early-frame indocyanine green angiography
did not visualize details of the macular microvasculature, except for 3 focal telangiectasia corresponding to lesions visible by both fluo-
rescein angiography and optical coherence tomography angiography.
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FIGURE 5. Fluorescein angiography and optical coherence tomography angiography with corresponding capillary density maps in 4
eyes with macular telangiectasia type 1 (Cases 3L6), 1 fellow eye of a macular telangiectasia type 1 patient (Case 1), and 1 healthy
control eye (Control 10). Each line displays the following images: (Left) early-frame fluorescein angiography; (Middle left) optical
coherence tomography angiography of the superficial capillary plexus, with green circles indicating the locations of microvascular le-
sions identified as telangiectasias in the deep plexus; (Middle) capillary density map of the superficial capillary plexus after subtraction
of areas corresponding to larger vessels and cystoid spaces; (Middle right) optical coherence tomography angiography of the deep capil-
lary plexus, with green circles surrounding these microvascular lesions identified as telangiectasias; (Right) capillary density map of
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was 0.357 6 0.145 in MT type 1 eyes, significantly lower
than in MT type 1 fellow eyes (0.682 6 0.054, P ¼ .016)
and control eyes (0.672 6 0.064, P¼ .0005). No difference
was observed between MT type 1 fellow eyes and control
eyes (P ¼ .83). Capillary density maps from 4 eyes with
MT type 1, 1 MT type 1 fellow eye, and 1 normal eye are
represented in Figure 5. Case-by-case capillary densities
are graphically reported in Figure 6; values from MT type
1 subjects are detailed in Table 1 and values from control
subjects are reported in Supplemental Table 2 (Supple-
mental Material available at AJO.com).

! LOCAL CAPILLARY VESSEL DENSITY AROUND MICRO-
VASCULAR ABNORMALITIES: Owing to the exclusive
localization of abnormalities in the deep plexus, their loca-
tions served as reference to assess the perilesional capillary
density in both the deep and superficial plexuses
(Figures 3–5). Among MT type 1 eyes, the mean
perilesional capillary vessel density inside 100-mm-radius
circles centered by the microvascular abnormalities
(Figures 3–5, green circles) was 0.302 6 0.076 in the
superficial plexus and 0.280 6 0.170 in the deep plexus.
In order to compare these measures against the capillary
density in each plexus, a random distribution of similar,
nonoverlapping circular areas was generated over OCTA
images, resulting in a mean of 124 areas per image
(range, 104–196). Capillary density values were
significantly lower in perilesional areas than in areas
randomly distributed within the OCTA images, and this
finding was observed in both superficial and deep plexuses
(P ¼ .021 and P ¼ .042, respectively) (Table 1).

! CORRELATION OF MULTIMODAL IMAGING PARAME-
TERS AND VISUAL ACUITY: Among the 7 MT type 1
eyes, morphologic parameters from OCTA, OCT, FA,
and visual acuity were evaluated for possible correlations.
Exhaustive results are reported in Table 2. Regarding the
microvascular density, there was an inverse correlation
(r ¼ "0.94) between the mean perifoveal intercapillary
area on FAand the superficial capillary plexus capillary den-
sity onOCTA(P¼ .017), but not with the deep plexus (P¼
.42). There was a positive correlation (r¼ 0.86) in the num-
ber of identified telangiectasias between OCTA and FA
(P ¼ .24). LogMAR best-corrected visual acuity showed
an inverse correlation with the capillary density of both su-
perficial (r ¼ "0.88) and deep plexuses (r ¼ "0.79) on
OCTA (P ¼ .012 and P ¼ .048, respectively), and did not
correlate with any other imaging parameter.

DISCUSSION

WITH OCTA, TELANGIECTASIC MICROANEURYSMS TYPICAL

of MT type 1 were identified as focal dilations of the micro-
vasculature. Although OCTA detected fewer lesions than
FA in each affected eye, OCTA showed that telangiecta-
sias were exclusively located in the deep capillary plexus.
Moreover, in MT type 1 eyes the density of the macular
capillary network was reduced in both superficial and
deep plexuses, as compared to fellow and healthy control
eyes, and the capillary network density of both plexuses
was the unique morphologic parameter correlated to the vi-
sual acuity of MT type 1 eyes. Finally, a focal decrease in
capillary density was observed adjacent to telangiectasia
in both plexuses as compared to other vascularized regions
of the macula.
In fellow eyes of MT type 1 subjects, OCTA imaging

showed no microvascular abnormalities, confirming the
observation made by Gass and Blodi and by Yannuzzi and
associates, who reported unilateral disease in 90%"95%
of cases.1,4 Although stereoscopic and digital FA initially
described telangiectasias as emerging from both the deep
and superficial networks,1,4 OCTA data presented here
tend to localize them preferentially in the deep plexus.
Abnormal capillary loops, detected in the superficial
plexus by OCTA and visible on early-frame FA, may pro-
duce dye leakage from incompetent vessels without the
typical aspect of aneurysmal lesions, which could explain
this discrepancy. Interestingly, early-frame confocal
ICGA clearly captured the macular telangiectasias, but,
in contrast to FA and OCTA, it failed to provide relevant
information on the surrounding microvasculature in MT
type 1 (Figures 3 and 4) or healthy eyes (Supplemental
Figure 2, available at AJO.com).
On OCTA, rarefaction of the capillary bed was system-

atically observed in eyes affected by MT type 1 but not in
fellow or control eyes. Similarly, on FA Gass and Blodi
identified ‘‘minimal evidence of capillary occlusion or
loss’’ in ‘‘most eyes,’’ whereas Yannuzzi and associates
observed ‘‘minimal, patchy nonperfusion or capillary
ischemia’’ in ‘‘some patients,’’ clearly pointing to the pres-
ence of focal ischemic areas in the macula. These alter-
ations of the macular microvasculature visualized on
OCTA and FA may range from mild (Case 2, Figure 4)
to severe (Case 1, Figure 3). OCTA images and capillary
density maps in Figure 5 illustrate quantitatively the pres-
ence of patchy capillary loss in the perifoveal

the deep capillary plexus after subtraction of areas corresponding to larger vessels and cystoid spaces. Telangiectasias were more
numerous on fluorescein angiography than on optical coherence tomography angiography, and were systematically located in the
deep capillary plexus. Both techniques showed a diffuse and focal capillary depletion with excessive capillary tortuosity, but optical
coherence tomography angiography also identified a relative decrease in capillary density inside the microenvironment of telangiec-
tasias (green circles), in both superficial and deep plexuses. There were no microvascular alterations in the fellow eye of Case 1 and in
the control healthy eye, and their capillary densities in both plexuses were higher than in affected eyes.

<
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microvasculature, involving both plexuses. In addition, the
inverse correlation between superficial capillary plexus
density on OCTA and mean perifoveal intercapillary
area on FA (Table 2) is consistent with the dominant
contribution of the superficial plexus to the FA signal.11

However, the deep plexus participates to the diffuse fluores-
cent backdrop on FA images classically attributed to
choroidal flow,11 and becomes more visible when occupied

by vascular abnormalities like telangiectasias. Finally, vi-
sual acuity was exclusively correlated, among all anatomic
parameters, with the capillary density of both plexuses on
OCTA, highlighting the relevance of OCTA for the clin-
ical evaluation of macular disorders.
Different investigators have previously suggested an

overlap between MT type 1 with extramacular extension
and adult-onset Coats disease.2,4,28 In a report by
Smithen and associates, 12 of 13 patients with adult-
onset Coats disease had also perimacular telangiectasias
with macular edema, and 11 of these patients presented
areas of capillary nonperfusion often adjacent to areas of
vascular abnormality and described as ‘‘a filigreelike
network of capillaries.’’28 The similarity of this description
with features of MT type 1 observed on OCTA strengthens
the hypothesis that retinal telangiectasias localize preferen-
tially in microenvironments where the capillary density is
reduced, as observed in the present study.
Telangiectasias could develop as a result of this focal

capillary loss, via an excess of proangiogenic factors, such
as vascular endothelial growth factor, secreted by surround-
ing hypoxic retinal cells. A similar mechanism of unbal-
anced capillary growth from the deep capillary plexus
owing to the lack of regulation by depleted Müller cells
in a hypoxic environment has been advanced recently by
Spaide and associates to explain the deep localization of
vascular telangiectasias observed by OCTA in MacTel2.21

Likewise, the repeated observation of an extra capillary
vessel across the foveal avascular zone points to an imbal-
ance in pro- or antiangiogenic factors in these MT type 1
patients. On the other hand, the decrease in capillary den-
sity may also occur secondarily to a local elevation in oxy-
gen tension owing to its excessive diffusion from focally
dilated capillaries. This is supported by the classical con-
cepts that excessive oxygen tension is a potent inhibitor
of retinal vessel growth, as long demonstrated in develop-
mental disorders such as retinopathy of prematurity.29,30

The effect of higher oxygen tension is also visible along
the walls of retinal arterioles, which are surrounded by a
local decrease in capillary density.31 Noticeably, this phe-
nomenon has been recently described on OCTA images
of normal eyes,10 and is exacerbated in MT type 1 eyes,
as reported in the present study. Although the absolute
vascular flow in a given vascular structure cannot yet be
accurately measured by current commercial OCTA de-
vices, it is indirectly reflected by the gray pixel value and
size of this structure on OCTA images, the SSADA algo-
rithm output being a nonlinear function of several param-
eters, including flow speed.32 Therefore, the elevated
brightness and caliber of microvascular lesions identified
as telangiectasias on OCTA likely suggest a focal elevation
in blood flow velocity. On the other hand, several telangi-
ectasias that appeared on FA and ICGAwere not visible on
OCTA (as in Case 1, Figure 3). Similarly, Spaide has re-
ported the variable detection of microaneurysms in dia-
betic retinopathy by OCTA and attributed this artifact to

FIGURE 6. Capillary vessel density in the superficial and deep
capillary plexus among macular telangiectasia type 1 subjects,
their fellow eyes, and control eyes from healthy subjects.
(Top) In the superficial capillary plexus, the mean capillary den-
sity was significantly lower in eyes affected by macular telangi-
ectasia type 1 than in their fellow eyes or control eyes. (Bottom)
In the deep capillary plexus, the mean capillary density was also
significantly lower in eyes affected by macular telangiectasia
type 1 than in their fellow eyes or control eyes. In both plexuses
there was no difference in capillary density between fellow eyes
and control eyes. MT [ macular telangiectasia. *P < .05;
**P < .01; ***P < .001.
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a slower flow than the OCTA device detection threshold
within some of the lesions.24 Here the number of lesions
detected by OCTA was in all cases inferior to those
observed by FA, but these counts were positively corre-
lated. Unless OCTA segmentation failed to include all le-
sions, the most likely explanation is that all eyes harbor a
subgroup of poorly perfused telangiectasias.

Several imaging technologies have been employed to
evaluate in vivo the density of capillary vessels in the mac-
ula of healthy eyes, since fluorescein injection is not ethi-
cally permitted in healthy subjects. Using a prototype
swept-source OCTA device, Kuehlewein and associates re-
ported a mean vessel density of 0.74 in the superficial
plexus and 0.72 in the deep plexus.33 These values are close
to or within the range of our observations in normal eyes
(0.47"0.65 and 0.57"0.81, respectively). This limited
disparity may be explained by the fact that their measure
was performed over a 500-mm annulus outside the foveal
avascular zone, whereas we have included this area to
take into account its variability and have averaged the
capillary density over the whole 3 3 3-mm field of
OCTA images.14,25 Using high-resolution, confocal adap-
tive optics–based FA, Pinhas and associates have deter-
mined that the relative vascular density of the superficial
plexus in a 800-mm circle around the fovea was 0.51
(converted to arbitrary units), within the range of our ob-
servations.34 Other investigators have also shown that
capillary densities obtained on a prototype speckle variance
OCTA device did not differ significantly from those

observed on histology of human donor eyes,35,36 but
similar comparisons need to be repeated using the
commercial OCTA system employed in the present study.
Furthermore, there is to date no standard quantitative

method to assess the vascular density on OCTA. Most
existing methods of vessel detection are based on pixel in-
tensity level after a binary transform. Native OCTA images
may also be first skeletonized, as proposed by Agemy and as-
sociates,37 but every additional step comes at the price of
losing information. Complex indices based on vessel
caliber, number of intersections, or intercapillary distances
have also been proposed,35,36 but they require extra
computational effort that will not fit easily into high-
workflow clinical settings. Regarding the region of interest
over which the density is assessed, several patterns have
been advanced, such as using the fields of an ETDRS
grid. In the present study we opted for a global density
encompassing the whole 3 3 3-mm images after subtract-
ing areas of cystoid edema and larger vessels, in order to
obtain comparable values among subjects, and limit the in-
fluence of macular edema on capillary density. Also, the
foveal avascular zone was not excluded from the region of
interest because its variations were part of the capillary
density changes observed in MT type 1 eyes. The concen-
tration of values among normal subjects illustrated by the
low standard deviation confirmed the relevance of this
approach (Figure 6 and Supplemental Table 2). It is also
supported by the correlation between the superficial capil-
lary plexus density in MT type 1 eyes with an estimate of

TABLE 2. Correlation Between Fluorescein Angiography, Optical Coherence Tomography Angiography, and Optical Coherence
Tomography Findings and Visual Acuity in Patients With Macular Telangiectasia Type 1

P Value (r)a

Abnormal

Microvascular

Lesions (OCTA), n

Superficial Plexus

Capillary Density

(OCTA)

Deep Plexus

Capillary Density

(OCTA)

Abnormal

Microvascular

Lesions (FA), n

Mean Perifoveal

Intercapillary Area

(FA), 10"3 mm2

Abnormal

Microvascular

Lesions (ICGA), n

Central

Macular

Thickness, mm

Superficial plexus

capillary density

(OCTA)

.84

Deep plexus capillary

density (OCTA)

.24 .14

Abnormal microvascular

lesions (FA), n

.024 (r ¼ 0.86) .56 .07

Mean perifoveal

intercapillary area (FA),

10"3 mm2

.36 .017 (r¼"0.94) .42 .66

Abnormal microvascular

lesions (ICGA), n

.23 .95 .68 .13 .42

Central macular

thickness, mm

.91 .78 .96 .66 .66 .68

Best-corrected visual

acuity, logMAR

.40 .012 (r¼"0.88) .048 (r¼"0.79) .24 .06 .68 .40

FA ¼ fluorescein angiography; ICGA ¼ indocyanine green angiography; LogMAR ¼ logarithm of the minimal angle of resolution; OCTA ¼
optical coherence tomography angiography.

aSpearman rank correlation.
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the capillary density extracted from early FA images
(Table 2). Future software embedded in OCTA devices
should provide quantitative tools that reproductively
extract vascular densities and other relevant information,
and provide refined measures after removal of confounding
areas such as intraretinal edema.38

Limitations of this study include the small number of
subjects related to the low prevalence of MT type 1, and
the absence of longitudinal follow-up of the vascular abnor-
malities detected on OCTA. Images have been interpreted
by multiple observers to maximize the discrimination of
true flow from artifacts, but this could not prevent smaller
or lower-flow telangiectasias from being missed by the
OCTA acquisition, as discussed above and elsewhere.24

To overcome this limitation owing to the variability in
low-flow structure detection, several acquisitions should
be performed on each eye and screened for these lesions.
Finally, early-frame FA/ICGA images were not available,
either for fellow eyes of MT type 1 subjects, because early
acquisitions were focused on the diseased eye (except for

Case 1, Figure 5), or for control subjects, because it was un-
ethical to inject them with dye (except for Control 10,
Figure 5, who presented a contralateral atypical choroidal
nevus requiring retinal imaging). We are unaware of previ-
ous reports quantitatively assessing the capillary density
changes of MT type 1 patients on OCTA, and could find
no reference to it in a computerized search on PubMed.
To summarize, OCTA noninvasively identified focal

capillary network abnormalities in better detail than FA
and showed a global reduction of capillary network density
in both superficial and deep plexuses of MT type 1 eyes,
which was correlated to visual acuity levels. Telangiecta-
sias were observed on OCTA exclusively in the deep capil-
lary plexus and were localized in a microenvironment
where the superficial and deep capillary densities were
lower than in other vascularized regions of the macula.
Whether this finding is a cause or consequence of the tel-
angiectasia formation and whether it is present in other
vascular disorders with macular telangiectasias remain to
be explored.
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SUPPLEMENTAL FIGURE 1. Method of random distribution of circular areas to compare the 
capillary density between perilesional areas and the whole 3´3-mm optical coherence 
tomography angiography image. (Left) Optical coherence tomography angiography of the 
deep capillary plexus (Case 7) with identification of telangiectasias and 100-µm radius 
circular perilesional areas. (Right) Random distribution of similar 100-µm radius circular 
areas over the whole image. 1,000 circular areas were randomly generated and only those 
that did not overlap with the perilesional areas (green), with a central 0.250-mm2 disc 
representing the foveal avascular zone and with each other were retained, yielding a total of 
121 areas (light gray). 
	

	

	

	

	

SUPPLEMENTAL FIGURE 2. Early-frame 3´3-mm indocyanine green angiography in (Left) 
the fellow eye of a 52-year-old man with macular telangiectasia type 1 (Case 1) and (Right) 
the healthy control eye of a 51-year-old man, visualizing poorly the foveal microvasculature. 
	

	 	



SUPPLEMENTAL TABLE 1. Total number of focal microvascular dilations identified by 3 
independent observers in the superficial and deep capillary plexuses on optical coherence 
tomography angiography, fluorescein and indocyanine-green angiography among 7 eyes 
with macular telangiectasia type 1. 
OCTA= optical coherence tomography angiography; FA= fluorescein angiography; ICG: 
indocyanine green angiography 
 

  

   Focal microvascular dilations, N.  

 Observer 1 Observer 2 Observer 3 

 OCTA 
superficial 

plexus 

OCTA 
deep 

plexus 

FA ICG OCTA 
superficial 

plexus 

OCTA 
deep 

plexus 

FA ICG OCTA 
superficial 

plexus 

OCTA 
deep 

plexus 

FA ICG 

Case 
1 

0 7 56 39 0 7 61 37 0 8 45 38 

Case 
2 

0 5 3 3 0 6 15 3 0 5 4 3 

Case 
3 

0 12 27 NA 0 13 47 NA 0 16 23 NA 

Case 
4 

0 3 2 7 0 3 12 4 0 2 3 3 

Case 
5 

0 7 10 19 0 7 13 18 0 7 13 16 

Case 
6 

0 6 29 NA 0 6 31 NA 0 8 24 NA 

Case 
7 

0 4 15 7 0 2 11 6 0 4 14 6 



SUPPLEMENTAL TABLE 2. Total capillary vessel densities in fellow eyes of subjects with 
macular telangiectasia type 1 and healthy control eyes on optical coherence tomography 
angiography. 
 

 
 
	

Case, sex (age, years) Group Superficial capillary plexus Deep capillary plexus 
1, M (68) MT type 1 fellow eye 0.602 0.6279 

2, M (56) MT type 1 fellow eye 0.4848 0.6398 

3, M (45) MT type 1 fellow eye 0.5155 0.7414 

4, M (51) MT type 1 fellow eye 0.4591 0.6553 

5, M (52) MT type 1 fellow eye 0.5498 0.6828 

6, M (54) MT type 1 fellow eye 0.3777 0.7713 

7, M (74) MT type 1 fellow eye 0.6003 0.6565 

C1, M (66) Control 0.536 0.8109 

C2, M (51) Control 0.492 0.7068 

C3, M (66) Control 0.6274 0.6836 

C4, M (52) Control 0.5263 0.6118 

C5, M (67) Control 0.4751 0.6375 

C6, M (50) Control 0.6222 0.6831 

C7, M (61) Control 0.5538 0.5775 

C8, M (54) Control 0.6482 0.6962 

C9, M (51) Control 0.5365 0.6636 

C10, M (65) Control 0.6504 0.6367 

C11, M (59) Control 0.5715 0.7434 

C12, M (52) Control 0.4743 0.6072 
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EFFICACY OF INTRAVITREAL
AFLIBERCEPT IN MACULAR
TELANGIECTASIA TYPE 1 IS LINKED TO
THE OCULAR ANGIOGENIC PROFILE
LAURA KOWALCZUK, PHD,* ALEXANDRE MATET, MD,* ALI DIRANI, MD,*
ALEJANDRA DARUICH, MD,* AUDE AMBRESIN, MD,* IRMELA MANTEL, MD,*
RICHARD F. SPAIDE, MD,† NATACHA TURCK, PHD,‡ FRANCINE BEHAR-COHEN, MD, PHD*

Purpose: To evaluate intravitreal aflibercept in macular telangiectasia Type 1 (MacTel 1)
patients and measure their ocular angiogenic profile.

Methods: Eight subjects with MacTel 1 refractory to bevacizumab, ranibizumab, or laser
therapy and switched to aflibercept were included. Best-corrected visual acuity, central
macular thickness, and cystic areas quantified on optical coherence tomography B-scans
were assessed during 12 months. Perifoveal capillary densities were measured on optical
coherence tomography angiography. Aqueous humor was sampled from six patients and
eight control subjects undergoing cataract extraction. Growth factors were quantified using
a multiarray immunoassay.

Results: Over 12 months, patients received 6.6 ± 1.4 (range, 5–8) intravitreal aflibercept
injections. Twelve months after switching to aflibercept, best-corrected visual acuity
increased by $5 letters in 5 of 8 patients, compared with preaflibercept levels. Mean
best-corrected visual acuity improved from 79.6 (!20/50) to 88.0 (!20/35) Early Treatment
Diabetic Retinopathy Study letters (P = 0.042), and central macular thickness decreased
from 434 ± 98 mm to 293 ± 59 mm (P = 0.014). Compared with control subjects, the profile
of angiogenic factors in MacTel 1 eyes revealed no difference in vascular endothelial
growth factor-A levels but significantly higher levels of placental growth factor (P =
0.029), soluble vascular endothelial growth factor receptor-1 (sFlt-1; P = 0.013), vascular
endothelial growth factor-D (P = 0.050), and Tie-2 (P = 0.019). Placental growth factor levels
inversely correlated with both superficial and deep capillary plexus densities on optical
coherence tomography angiography (P = 0.03).

Conclusion: The clinical response to aflibercept coupled to the angiogenic profile of MacTel
1 eyes support the implication of the placental growth factor/Flt-1 pathway in MacTel 1.

RETINA 0:1–12, 2016

“Idiopathic juxtafoveal telangiectasia” is a generic
term that encompasses different clinical entities

first classified by Gass and Oyakawa in 1982,1 then
by Gass and Blodi in 1993.2 In 2006, Yannuzzi et al3

proposed a simplified classification under the term
“idiopathic macular telangiectasia,” with 2 distinct
types: Type 1, “aneurysmal telangiectasia,” and Type
2, “perifoveal telangiectasia,” also known as MacTel.
These classifications are based on the clinical features
because no specific molecular signature or pathogenic
mechanisms have yet been identified.
Idiopathic macular telangiectasia Type 1 (MacTel 1)

is usually unilateral and affects mostly men of 40 years

to 50 years of age at presentation.1 Microvascular ec-
tasia and increased tortuosity of the macular capillary
network are visible on fundus examination, may
extend to the temporal side of the macula over an area
of 2 disk diameter or greater,1,2 and may be associated
to peripheral vascular changes.3 Telangiectasia fre-
quently causes macular edema with lipid exudates of
variable severity and subsequent vision loss. Location,
morphologic feature, and degree of leakage of the
microvascular ectasia and capillary nonperfusion are
best identified on fluorescein angiography.
Whether MacTel 1 is a milder, later, and more central

form of Coats disease is debated because both entities

1



associate vascular telangiectasia with aggressive exuda-
tion, unilateral involvement, and male predominance.3–5

To confirm the diagnosis of MacTel 1, disorders causing
secondary telangiectasia must be excluded, which
included retinal vein occlusion, diabetic retinopathy,
ocular ischemic syndrome, hypertensive retinopathy,
and more rarely posterior segment inflammation, radia-
tion maculopathy, sickle-cell maculopathy, or localized
retinal capillary hemangioma.
MacTel 1 is a rare disease, and there is no consensus

regarding treatment schemes. Laser photocoagulation
can be performed on accessible ischemic areas but
may also target leaky aneurysms. Intravitreal anti–
vascular endothelial growth factor (VEGF) therapy has
also been assessed, with inconstant results. Although
bevacizumab6,7 and ranibizumab8,9 showed some effi-
cacy in reducing macular edema and improving vision,
three case series reported that only a minority of patients
responded favorably to intravitreal bevacizumab.10–12

Recently, three groups reported that MacTel 1 patients
may be nonresponders or become refractory to bev-
acizumab13–15 or ranibizumab,15 including two case re-
ports describing a favorable response after switching to
intravitreal aflibercept.14,15 Aflibercept is a soluble decoy
receptor that associates an immunoglobulin backbone to
extracellular sequences of the VEGF receptors, VEGFR-
1 (also called Flt-1) and VEGFR-2. In contrast to specific
anti-VEGF antibodies such as bevacizumab and ranibi-
zumab, which bind to the VEGF-A isoform only, afli-
bercept also blocks another ligand of Flt-1, placental
growth factor (PlGF). Through its binding to Flt-1, PlGF

is suspected to enhance vascular permeability and to
amplify the effects of VEGF on pathologic angiogene-
sis.16 Also, PlGF has been implicated in the resistance to
anti-VEGF treatments in patients with malignant tu-
mors17,18 and various retinal diseases, including diabetic
macular edema.19,20 Aflibercept may overcome this
hurdle by neutralizing PlGF along with VEGF.21,22

Interestingly, in an adult rat model, the overexpression of
rat PlGF did not induce preretinal neovessels, as
observed when VEGF is overexpressed,23 but produced
retinal vessel abnormalization manifested by tortuosity,
dilation, and capillary aneurysms,24 suggesting a poten-
tial role of PlGF in the pathogenesis of aneurysmal
telangiectasia.
In this context, the aim of this study was to

retrospectively evaluate the effect of intravitreal
aflibercept therapy in patients with macular edema
caused by MacTel 1 and to correlate it to the profile of
angiogenic factors in aqueous humor.

Methods

Subjects

This retrospective interventional case series involv-
ing eight human subjects and eight healthy control
subjects adhered to the tenets of the Declaration of
Helsinki. The protocol was approved by the local
Ethics Committee of the Swiss Department of Health
on research involving human subjects (CER-VD N°
95/15 and 340/15) and by an Institutional Review
Board from the Western Institutional Review Board
(Puyallup, WA). All patients signed an informed con-
sent form before aqueous humor sampling. Six con-
secutive patients followed from December 2013 to
July 2015 at the Jules-Gonin Eye Hospital (Lausanne,
Switzerland) and two consecutive patients followed at
the Vitreous, Retina, Macula Consultants of New York
(New York, NY) were included in this study. Inclusion
criteria were as follows: 1) macular edema caused by
idiopathic MacTel 1 without medical or ophthalmo-
logic history suggesting secondary macular telangiec-
tasia and 2) persistence of macular edema after
a well-conducted treatment by retina specialists with
intravitreal bevacizumab (Avastin; Genentech, Inc,
South San Francisco, CA), ranibizumab (Lucentis; No-
vartis Pharma AG, Basel, Switzerland, and Genentech,
Inc), and/or laser photocoagulation, justifying a treat-
ment switch to intravitreal aflibercept (Eylea; Bayer,
Leverkusen, Germany).
Eight sex-matched and age-matched patients under-

going cataract surgery and having no history of diabetes
or retinal disease were included during the same period
as control subjects for aqueous humor sampling.
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Patient Treatment and Follow-up

After two initial monthly loading doses, patients
received intravitreal aflibercept on a pro re nata (as
needed) regimen. Decision for reinjection was made
by two retina specialists (R.F.S. or F.B.-C.), and
reinjections were performed at an interval of 4 weeks
or more. They were indicated in case of persistent or
recurrent macular edema manifesting by intraretinal
cysts and/or subretinal fluid.
At all visits, best-corrected visual acuity was

measured using an Early Treatment Diabetic Retinop-
athy Study chart, and serial spectral-domain optical
coherence tomography (SD-OCT) images on Spectra-
lis (Heidelberg Engineering, Heidelberg, Germany)
were obtained. Confocal fluorescein and indocyanine
green angiography on Spectralis had been performed
in all cases at presentation for the diagnosis of MacTel
1 and were repeated at the discretion of the treating
retina specialist. Images of OCT angiography (OCTA)
were acquired using the Angiovue RTx 100, based
on the AngioVue Imaging System (Optovue, Inc,
Freemont, CA).
Clinical charts were retrospectively reviewed, and

data were recorded at baseline (corresponding to the
last visit before the first intravitreal aflibercept injec-
tion), 1 month, and 3, 6, and 12 months after baseline.

Spectral-Domain Optical Coherence Tomography
Imaging and Quantification of Intraretinal
Cysts Area

At each time point, high-quality, 30° horizontal,
single, SD-OCT B-scans and 20° · 20° 97-section
horizontal grids were acquired using the follow-up
mode on Spectralis. The central macular thickness
(CMT) was automatically measured in the central sub-
field of an Early Treatment Diabetic Retinopathy
Study grid on the built-in software. For graphical pur-
poses, the boundaries of the cystoid edema regions
were outlined with a red contour and superimposed
over the original SD-OCT images, using a custom
semiautomated algorithm on Matlab (Version
R2015b; Mathworks, Natick, MA) detailed in the Sup-
plemental Digital Content 1 (see Figure, http://links.
lww.com/IAE/A563).

Optical Coherence Tomography Angiography
Imaging and Macular Capillary Density

The OCTA Angiovue RTx 100 instrument was used
to obtain amplitude decorrelation angiography images.
This instrument has an A-scan rate of 70,000 scans per
second, using a light source centered on 840 nm and
a bandwidth of 50 nm. Each OCTA volume contains

304 · 304 A-scans with 2 consecutive B-scans cap-
tured at each fixed position before proceeding to
the next sampling location. Split-spectrum amplitude-
decorrelation angiography was used to extract the
OCTA information. Each OCTA volume is acquired
in 3 seconds, and 2 orthogonal OCTA volumes are
acquired to perform motion correction. Angiography
information displayed is the average of the decorrelation
values when viewed perpendicularly through the
thickness being evaluated.
To obtain comparable 3 · 3-mm OCTA scans

between subjects, volumes were automatically seg-
mented by the built-in software to provide images
of the superficial plexus (3 mm below the inner
limiting membrane to 16 mm below the outer border
of the inner plexiform layer) and deep plexus
(16–69 mm below the outer border of the inner
plexiform layer). The correct segmentation for each
patient was controlled before reporting the capillary
densities calculated using the AngioVue software.

Aqueous Humor Sampling

At the time of an aflibercept intravitreal injection
indicated for macular edema, 50 mL to 150 mL of
aqueous humor were sampled by anterior chamber
tap before the injection, using a 30-gauge needle
and a 1-mL syringe, and immediately frozen at
280°C. Before aqueous humor sampling, a time
lapse of at least 7 weeks from the previous anti-
VEGF injection (ranibizumab, bevacizumab, or afli-
bercept) was observed in all patients. Given that
pharmacologic observations25–27 and mathematical
models28 have estimated the vitreous elimination
half-life (t1/2) of ranibizumab, bevacizumab, and
aflibercept to be, respectively, t1/2 = 3.2 days to
7.2 days, t1/2 = 4.9 days to 5.6 days, and t1/2 = 4.6
days to 4.8 days,25–28 aqueous sampling was per-
formed when no residual anti-VEGF drug remained
in the vitreous, after a clearance time of $7 · t1/2. In
the control group, the anterior chamber tap was per-
formed at the beginning of cataract surgery before
any fluid was injected into the anterior chamber.

Angiogenic Factor Levels in Aqueous Humors

Aqueous humor levels of soluble VEGFR-1 (sFlt-
1), PlGF, the tyrosine kinase receptor Tie-2 with
immunoglobulin-2 and EGF-like domains (Tie-2),
VEGF-A165, VEGF-C, VEGF-D, and basic fibro-
blast growth factor were measured, on the same
plate, using a multiarray high-sensitive immunoas-
say (V-PLex Angiogenesis Panel 1 Kit; Meso Scale
Discovery, Rockville, MD). This standardized kit
was used according to the manufacturer’s

AFLIBERCEPT FOR MACTEL TYPE 1 " KOWALCZUK ET AL 3

http://links.lww.com/IAE/A563
http://links.lww.com/IAE/A563


instructions. Standard curves for each angiogenic
factor were generated with the provided calibration
kit, and the samples were assayed in duplicate,
without dilution. Data acquisition and analysis were
performed with the Meso Scale reader (MSD Quick-
plex SQ-120; Meso Scale Diagnostics, Rockville,
MD) and its dedicated software (Discovery Bench-
mark Version 4.0.12). Detection thresholds for
all angiogenic factors were set between 1 pg/mL
and 20 pg/mL, and coefficients of variation were
inferior to 10%.

Statistical Analysis

Results were expressed as mean ± standard devia-
tion. Biologic and clinical analyses were carried out on
GraphPad Prism 5 (GraphPad Software, Inc, La Jolla,
CA). The nonparametric Mann–Whitney U test and
Wilcoxon paired test were used to compare data, when
applicable. Spearman correlation was used to evaluate
relationships between angiogenic factors levels and
clinical parameters. A 2-tailed P value of ,0.05 was
considered statistically significant.

Results

Patient Characteristics

Eight patients with MacTel 1 (7 men and 1
women) with a mean age of 63.0 ± 10.3 years
(range, 45–74 years) were included in this study.
Clinical characteristics, previous treatments, and
number of intravitreal aflibercept injections are re-
ported in Table 1. All patients had been previously
treated with extramacular and/or macular laser pho-
tocoagulation, combined with intravitreal anti-
VEGF therapy in seven patients. Four patients had

received bevacizumab, two patients had received
ranibizumab, and one patient had received sequen-
tially bevacizumab, ranibizumab, and dexametha-
sone implant. After an optimal treatment regimen
with these therapies, the patients had a mean CMT
of 434 ± 98 mm. Over the 12-month study period,
they received 6.6 ± 1.4 intravitreal aflibercept
injections (range, 5–8 injections).

Effect of Intravitreal Aflibercept Therapy

A clinical illustration of a patient refractory to
bevacizumab therapy and responsive to aflibercept
therapy is provided in Figure 1 (Case 4). Figure 2
shows the baseline and 12-month SD-OCT B-scans
and corresponding thickness maps from the 8 patients
included in this study, demonstrating the clinical
response to aflibercept treatment.
The anatomical and visual outcomes of intra-

vitreal aflibercept therapy by 12 months are sum-
marized in Table 2. The CMT decreased in all
patients, with a significant reduction from 434 ±
98 mm to 293 ± 59 mm (P = 0.014). The best-
corrected visual acuity improved in 7 of 8 patients
with a mean significant improvement from 79.6 ±
16.3 (!20/52) letters to 88.0 ± 11.2 (!20/35) Early
Treatment Diabetic Retinopathy Study letters (P =
0.042). There was an improvement by five or more
Early Treatment Diabetic Retinopathy Study letters
in five of eight patients. Both anatomical and visual
parameters improved progressively over time, as
illustrated in Figure 3. After 1 intravitreal afliber-
cept injection, a reduction in CMT was observed in
all patients, with a significant reduction as com-
pared with baseline (308.6 ± 32.9 mm; P = 0.016)
that was maintained over the 12-month follow-up.
By Month 6, visual acuity levels significantly

Table 1. Clinical Characteristics and Treatment History of 8 Patients With MacTel 1, Refractory to Previous Therapies and
Treated by Intravitreal Aflibercept During a 12-Month Period

Eye# Age, Years Sex

Treatments Received Before Aflibercept
CMT Before
Aflibercept

Initiation, mm

Intravitreal
Aflibercept

Injections Over
12 Months

Laser
Photocoagulation

Intravitreal Injections
(Number)

1 71 M Macular + extramacular Ranibizumab (8) 528 8
2 68 M Macular + extramacular Ranibizumab (1) 394 7
3 56 M Macular + extramacular Bevacizumab (10) 348 5
4 45 M Macular Bevacizumab (6) 396 5
5 54 M Macular (subthreshold) +

extramacular
None 595 7

6 74 M Macular + extramacular Bevacizumab (6) 393 8
7 72 F Macular + photodynamic

therapy
Bevacizumab (2) +
ranibizumab (2) +
dexamethasone (1)

508 8

8 64 M Macular Bevacizumab (5) 312 5
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Fig. 1. Differential effects of bevacizumab and aflibercept on macular edema in a 45-year-old patient with MacTel 1 (Case 4). A. Color fundus
photograph showing capillary dilations and hard exudates. B and C. Fluorescein angiography frames at 47 seconds (B) and 3.5 minutes (C) after dye
injection showing leaky microaneurysms. D–G. Horizontal optical coherence tomography B-scans of the macula acquired at different time points: At
initial presentation (D), 1 month after the last of 6 intravitreal bevacizumab injections administered over 7 months (E), and 1 month (F) and 12 months
(G) after the first intravitreal aflibercept injection. The patient received 5 intravitreal aflibercept injections over the 12-month follow-up. On each optical
coherence tomography image, intraretinal cystoid cavities were outlined by a red line using a semiautomated algorithm.
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improved (88.0 ± 11.3 letters [!20/35]; P = 0.02),
which was maintained at the 12-month time point.

Angiogenic Factor Levels in Aqueous Humor

The 8 individuals selected for the control group of
aqueous humor analysis were male with a mean age of
68 ± 12 years (range, 50–85 years), not significantly
different from the 6 subjects with MacTel 1 from
whom aqueous humor was sampled (Cases 1–6: mean
age, 61 ± 11 years; P = 0.40).
The profiles of angiogenic factors in the aqueous

humor of patients with MacTel 1, compared with
healthy control subjects, are represented in Figure 4.
There was no difference in VEGF-A levels (·1.3; P =
0.95) but significantly higher levels of sFlt-1 (·4.3;
P = 0.013), PlGF (·2.2; P = 0.029), and Tie-2
(·3.7; P = 0.019) and VEGF-D (·6.8; P = 0.049).
VEGF-C and basic fibroblast growth factor levels were
higher without reaching statistical significance. Mean
aqueous levels of angiogenic factors in affected and
control subjects are reported in the Table 3.

Correlations Between Imaging and
Biologic Parameters

The OCTA scans were analyzed to determine the
perifoveal capillary densities in the superficial and
deep capillary plexuses. Figure 5 provides an illus-
tration of multimodal imaging in 1 patient (Case 1),
with OCTA of the superficial and deep capillary
plexuses and the corresponding capillary density
maps.
An exhaustive account of the functional and

anatomical parameters and aqueous levels of angio-
genic factors is given in the Supplemental Digital
Content 2 (see Table 1, http://links.lww.com/IAE/
A564). When exploring possible correlations
between these parameters (see Table 2, Supple-
mental Digital Content 3, http://links.lww.com/
IAE/A565), we found a significant inverse correla-
tion between the perifoveal capillary density of
both superficial and deep capillary plexuses on
OCTA and aqueous levels of PlGF (P = 0.03;
r = 20.89).

Fig. 2. Clinical effect of afli-
bercept intravitreal therapy over
12 months in 8 patients with
MacTel 1. Optical coherence
tomography thickness maps and
horizontal B-scans through the
fovea at baseline A and 12
months after the initiation of
intravitreal aflibercept (B).
Central macular thickness and
the area of cystoid spaces on the
horizontal B-scans improved in
all patients. The regions identi-
fied by a semiautomated algo-
rithm as cystoid spaces were
outlined by a red contour.
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Discussion

In this case series of 8 patients with MacTel 1,
treatment with intravitreal aflibercept, that blocks both
VEGF-A and PlGF, showed significant anatomical and
functional effects on macular edema. Anatomical
improvement was observed after one intravitreal
injection of aflibercept in all cases, including those
incompletely responsive to other anti-VEGF therapies

that do not inhibit the PlGF-mediated Flt1 pathway.
These results are supported by measurements of higher
levels of PlGF, but not VEGF-A, in the aqueous
humor of patients with MacTel 1 compared with
healthy control subjects.
To date, there are 2 case reports on the effects of

intravitreal aflibercept in MacTel 1. Shibeeb et al14

described the complete resolution of macular edema
and visual improvement after 4 aflibercept injections
in 1 case of MacTel 1 refractory to 3 monthly
bevacizumab injections and to laser photocoagula-
tion. Recently, Kovach et al15 reported the beneficial
effect over 3 years of aflibercept therapy on macular
edema secondary to MacTel 1 in 1 patient previously
nonresponding to 6 monthly bevacizumab, 7
monthly ranibizumab, and 3 triamcinolone aceto-
nide injections. Before aflibercept became available
for retina indication, several investigators had eval-
uated intravitreal injections of bevacizumab and
ranibizumab in Type 1 and Type 2 idiopathic mac-
ular telangiectasia, with limited outcomes. Notice-
ably, the exact role of VEGF in the development
of primary telangiectasia is not clear, and intraocular
VEGF levels in Type 1 or Type 2 idiopathic macular
telangiectasia had not been reported before the pres-
ent study. Two case reports have suggested a favor-
able effect of intravitreal bevacizumab on MacTel 1,6,7

but these observations were not confirmed by 3 small
case series. Matsumoto and Yuzawa10 reported 4
patients with MacTel 1 who received 3 to 4 intravitreal
bevacizumab injections over a 6-month period. The
microaneurysms regressed in one of the four eyes,
but visual acuity did not improve in any of the
patients. Takayama et al11 reported 5 cases with
MacTel 1, treated with 2 to 3 intravitreal bevacizumab
over 1 year, among which only 1 eye showed a reduc-
tion in macular edema and an improvement in visual
acuity. Finally, Moon et al12 also reported 7 patients
with MacTel 1 treated with intravitreal bevacizumab
during 4 months. Although a significant decrease
in CMT was observed on SD-OCT, there was
no significant improvement in visual acuity. In idio-
pathic macular telangiectasia Type 2 (or MacTel),
several studies have demonstrated that anti-VEGF

Table 2. Functional and Anatomical Outcome of Intravitreal Aflibercept in 8 Patients With MacTel 1

Mean ± SD Baseline 12 Months P*

Best-corrected visual acuity, ETDRS
letter score (Snellen)

79.6 ± 16.3 (!20/52) 88.0 ± 11.2 (!20/35) 0.042

CMT, mm 434.3 ± 98.0 292.5 ± 58.6 0.014

Baseline values were recorded 1 month after the last administration of the previous intravitreal or laser treatment.
*Wilcoxon signed rank test.
ETDRS, Early Treatment Diabetic Retinopathy Study; SD, standard deviation.

Fig. 3. Anatomical and visual effect of intravitreal aflibercept therapy
in 8 patients with MacTel 1, over 12 months. A. Mean CMT. B. Best-
corrected visual acuity change (Early Treatment Diabetic Retinopathy
Study letter score). All parameters were assessed at baseline, 1 month,
3, 6, and 12 months. The inferior and superior dotted lines indicate the
standard deviation. Mean values were compared with baseline using
a Wilcoxon paired test (*P , 0.05; **P , 0.01).
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therapy by bevacizumab or ranibizumab did not
improve the visual acuity on the long term, although
it reduced leakage from telangiectasia in the nonproli-
ferative form of the disease.29–33

In Coats disease, which belongs to the same
spectrum of microvascular disorders as MacTel 1,5

anti-VEGF agents have become an effective adjunct
therapy in the management of retinal exudation.34–36

Their clinical efficacy is supported by elevated VEGF
levels in the subretinal fluid37 and aqueous humor38 of

eyes with Coats disease, as compared with control
eyes from age-matched patients with rhegmatogenous
retinal detachment or congenital cataract, respectively.
Moreover, immune localization of VEGF and VEGF
receptors were performed on enucleated eyes with
advanced Coats disease39 and showed that VEGF-A
was expressed in vascular endothelial cells and
macrophages and that VEGF-R2 (mediating angiogen-
esis after VEGF-A stimulation) was localized in
endothelial cells lining abnormal vessels, but not

Fig. 4. Angiogenic factors
profile in the aqueous humor
determined by a multiarray
high-sensitive immunoassay.
VEGF-A, sFlt-1, PlGF, Tie-2,
VEGF-D, VEGF-C, and basic
fibroblast growth factor (bFGF)
levels of male patients with
MacTel 1 (n = 6, black dots)
were compared with those of
healthy age-matched male con-
trol subjects undergoing cata-
ract extraction (n = 8, white
dots). The levels of Tie-2,
VEGF-C, and VEGF-D were
below the detection threshold in
some aqueous humor samples,
explaining the lower number of
represented values. Concen-
trations were compared between
affected and control subjects
using a Mann–Whitney U test.
*P , 0.05; ns, not significant.
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VEGF-R1/Flt1 (mediating vascular permeabilization
and cell migration and possibly modulating VEGF-
R2 activation16) or VEGF-R3 (signaling lymphangio-
genesis). In contrast to MacTel 1, these data indicate
that the VEGF-A–mediated VEGF-R2 pathway is spe-
cifically activated in Coats disease, supporting the bet-
ter response to bevacizumab or ranibizumab in Coats
disease than in MacTel 1. Similarly, PlGF was not
detected in 18 aqueous humors from patients with
wet age-related macular degeneration,40 supporting
the efficacy of bevacizumab in wet age-related macu-
lar degeneration.
In contrast, the higher efficacy of aflibercept over

specific anti-VEGF antibodies in patients with MacTel
1, previously reported14,15 and observed in our case

series, suggest that the PlGF-mediated VEGF-R1/Flt1-
pathway is involved in the pathophysiology of MacTel
1, leading to vascular abnormalities, such as telangi-
ectasias, microaneurysms, and vascular tortuosity.
This assumption is supported by the increased aqueous
humor levels of PlGF in MacTel 1 eyes as compared
with age-matched healthy control eyes.
In the healthy retina, the level of PlGF expression in

endothelial cells is 100-fold higher than the expression
of VEGF,41 and VEGF-R1/Flt-1 is the major VEGF
receptor expressed in endothelial cells and in peri-
cytes.42 In our previous experimental study, long-
lasting overexpression of rat PlGF in the rat eye
induced vascular tortuosity and aneurysmal dilation
of retinal capillaries, without neovascularization.24

Table 3. Angiogenic Factors Levels in Aqueous Humors of Healthy Control Subjects and Patients With MacTel 1,
Determined on a Multiarray Immunoassay

Concentrations, Mean ± SD Control Subjects, pg/mL MacTel 1, pg/mL
Fold Change, MacTel 1 vs.

Control Subjects P*

sFlt1 173.9 ± 71.17 755.9 ± 1050 ·4.3 0.013
PIGF 2.1 ± 1.06 4.5 ± 2.62 ·2.2 0.029
Tie-2 5.0 ± 3.73 18.7 ± 9.02 ·3.7 0.019
VEGF-A 140.9 ± 44.01 187.3 ± 209.7 ·1.3 0.950
VEGF-C 5.3 ± 5.63 13.2 ± 6.55 ·2.4 0.110
VEGF-D 0.4 ± 0.40 6.8 ± 7.14 ·17.4 0.049
bFGF 0.9 ± 0.65 3.9 ± 4.16 ·4.3 0.060

*Mann–Whitney test.
bFGF, basic fibroblast growth factor; ETDRS, Early Treatment Diabetic Retinopathy Study; SD, standard deviation; Tie-2, tyrosine

kinase with immunoglobulin-2 and EGF-like domains.

Fig. 5. Multimodal imaging in
a 71-year-old male patient with
MacTel 1 affecting his left eye
(Case 1). A. Color fundus pho-
tograph showing telangiectasic
microaneurysms and hard exu-
dates. B. Early-frame fluores-
cein angiogram (1 minute after
dye injection) and (C) identifi-
cation of the foveal avascular
zone area on a 3 · 3-mm OCTA
image. 3 · 3-mm OCTA images
of the superficial (D) and deep
(E) capillary plexus used to
assess the corresponding capil-
lary densities (F and G). The
deep plexus shows pronounced
capillary telangiectasis and mi-
croaneurysm formation in the
inferotemporal macula.
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Similarly, overactivation of the PlGF–VEGFR-1/Flt-1
pathway induced a substantial increase in the branch-
ing, tortuosity, and leakiness of vessels in different
organs of rodent models, including skin,43 and
branches of the aorta.44 Moreover, in MacTel 1 pa-
tients, macular edema results from vascular abnorm-
alization and leakage without true neovascularization,3

which is consistent with the nonelevated VEGF-A
levels measured in their aqueous humor. Along with
the telangiectasia, variably extended focal area of
decreased perfusion is a classical finding in MacTel
1.2,3 This observation was recently confirmed using
OCTA.45 Under these minimally ischemic conditions,
PlGF could be a major player in the development of
abnormal vessels, as shown here by the positive cor-
relation between aqueous PlGF levels and the exten-
sion of capillary loss in the superficial and deep
capillary plexus on OCTA. In addition, higher levels
of the sFlt-1, which binds with a high affinity to both
PlGF and VEGF-A,46 were measured in MacTel 1
eyes, as compared with control eyes, indicating a pos-
sible counterregulatory increase in sFlt-1 in response
to high PlGF levels. Levels of the soluble form of the
angiopoietin receptor Tie-2 were also higher in Mac-
Tel 1 eyes. Interestingly, the Flt-1/VEGF signaling,47

and the Ang-Tie2 signaling are involved in the loss of
pericytes,48 which could contribute to microaneurysm
formation.42

The role of VEGF-A has also been questioned in
other aneurysmal disorders affecting smaller or larger
vessels. For instance, in abdominal aortic aneurysm,
no significant difference in VEGF-A expression was
demonstrated between the aortic wall of pathologic
specimens and normal aortas from organ donors, but
the expression of VEGF-C and VEGF-D was signif-
icantly increased in the abluminal layer of the
aorta.49 Moreover, the difference in angiogenic factor
levels could affect the response to treatments, as in
colorectal cancer where high circulating levels of
VEGF-D are suspected to reduce the efficacy of bev-
acizumab therapy.50 Remarkably, VEGF-D levels,
but not VEGF-A levels, were significantly increased
in the aqueous humor of MacTel 1 patients, suggest-
ing that it may also contribute to abnormal retinal
vessel dilation and to resistance to intravitreal
bevacizumab.
A similar approach has been recently proposed by

Noma et al,51,52 who investigated the aqueous pro-
file of angiogenic factors in retinal vein occlusions
and found increased levels of VEGF-A, PlGF, and
sFlt-1 compared with control eyes. Noticeably,
microvascular remodeling causing secondary telan-
giectasia occur in retinal vein occlusions that may
be PlGF mediated. In contrast to MacTel 1, macular

edema caused by vein occlusions respond favorably
to bevacizumab,53,54 ranibizumab,55,56 or afliber-
cept57 therapy, which may be linked to the relative
elevation of both VEGF-A and PlGF in the ocular
media of these patients.
The present study has several limitations, including

the small sample size, because of the low prevalence
of MacTel 1. The only way to increase the statistical
power and significance would be to get more samples
from MacTel 1 patients, which requires an inordinate
amount of time and would hinder reporting of
a worthwhile treatment. In addition, the follow-up
duration was limited to 12 months, as a result of the
recent availability of aflibercept, and we did not report
the follow-up on OCTA for possible microvascular
changes with aflibercept therapy, also the result of the
recent availability of this imaging technology. Also,
other angiogenic or inflammatory factors could have
been assessed with the multiarray immunoassay
experiment, but we focused on the major angiogenic
factors and receptors of the VEGF family presumed to
be involved in retinal vascular diseases.
In conclusion, we found that MacTel 1 patients with

macular edema have higher aqueous humor levels of
PlGF, but not VEGF-A, as compared with sex-
matched and age-matched control subjects. Afliber-
cept, a neutralizer of both VEGF-A and PlGF, exerts
beneficial anatomical and functional effects in these
patients who did not show a good response to therapy
other than aflibercept. To elucidate this effect and the
observed angiogenic profile, a hypothesis suggesting
PlGF–VEGFR-1/Flt-1 pathway activation in MacTel 1
was generated, which best explained the data. These
results should be confirmed by larger prospective
studies.

Key words: aflibercept, macular telangiectasia,
retina.
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Supplemental Figure. Semi-automated method to detect intraretinal cysts on 
optical coherence tomography. (Top) original horizontal B-scan spectral-domain 
optical coherence tomography through the fovea; (Middle top) detection of 
hyporeflective spaces by binary transformation; (Middle bottom) identification of 
boundaries of hyporeflective spaces, outlined in red; (Bottom) final image with cyst 
boundaries outlined in red, superimposed over the original B-scan. 
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PURPOSE. To analyze microvascular and structural changes in radiation maculopathy and their
influence on visual acuity (VA), using optical coherence tomography (OCT) and OCT
angiography (OCTA).

METHODS. This was a retrospective analysis of consecutive patients with radiation
maculopathy, 12 months or more after proton-beam irradiation for uveal melanoma, imaged
with fluorescein angiography, OCT, and OCTA. Clinical parameters potentially affecting VA
were recorded, including OCTA-derived metrics: foveal avascular zone (FAZ) area, vascular
density, and local fractal dimension of the superficial (SCP) and deep capillary plexuses
(DCP). Nonirradiated fellow eyes served as controls.

RESULTS. Ninety-three patients were included. FAZ was larger, while SCP/DCP capillary density
and local fractal dimension were lower in the 35 irradiated than in the 35 fellow eyes (P <
0.0001). Microvascular alterations graded on fluorescein angiography (minimally damaged/
disrupted/disorganized) were correlated to FAZ area and SCP/DCP density on OCTA (P <
0.01). By univariate analysis, worse VA was associated to macular detachment at presentation
(P ¼ 0.024), total macular irradiation (P ¼ 0.0008), higher central macular thickness (CMT)
(P ¼ 0.019), higher absolute CMT variation (P < 0.0001), cystoid edema (P ¼ 0.030),
ellipsoid zone disruption (P ¼ 0.002), larger FAZ (P < 0.0001), lower SCP (P ¼ 0.001) and
DCP capillary density (P < 0.0001), and lower SCP (P ¼ 0.009) and DCP local fractal
dimension (P < 0.0001). Two multivariate models with either capillary density or fractal
dimension as covariate showed that younger age (P ¼ 0.014/0.017), ellipsoid zone disruption
(P ¼ 0.034/0.019), larger FAZ (P ¼ 0.0006/0.002), and lower DCP density (P ¼ 0.008) or
DCP fractal dimension (P ¼ 0.012), respectively, were associated with worse VA.

CONCLUSIONS. VA of eyes with radiation maculopathy is influenced by structural and
microvascular factors identified with OCTA, including FAZ area and DCP integrity.

Keywords: melanoma, optical coherence tomography, radiation damage, image analysis,
microcirculation

Radiation maculopathy is a devastating cause of visual
impairment in eyes irradiated for intraocular tumors,1 the

most frequent indication being uveal melanoma. Currently,
proton-beam therapy allows local tumor control and eye
preservation in most cases. Yet, for tumors close to or
involving the macula, visual acuity may be jeopardized by the
irradiation of the macular microvasculature, leading to the
development of radiation maculopathy. This delayed compli-
cation presents clinically with lipid exudates and hemorrhages
on fundus examination, cystoid macular edema or macular
thinning in end-stage disease on optical coherence tomogra-
phy (OCT), and exudative telangiectasia with disrupted
vascular network and nonperfusion areas on fluorescein
angiography (FA).2

OCT angiography (OCTA) is a recent noninvasive technique
visualizing the macular microvasculature via flow detection. Its
advantages over FA are its higher resolution and reproducibil-
ity,3,4 and its ability to segment capillary plexuses forming the
macular microvasculature and their alterations. Since macular

capillaries are the primary site of injury in radiation maculop-
athy, OCTA is a powerful tool to investigate these pathologic
changes. Moreover, the recent adjunction of quantitative tools
to OCTA provides access to retinal microcirculatory metrics,
such as foveal avascular zone (FAZ) dimensions,5,6 capillary
density,7,8 and capillary network fractal dimension,9 at the level
of both plexuses. Fractal dimension is a promising endpoint to
measure vascular network disorganization in OCTA images,
which has been used successfully in diabetic retinopathy10–12

and posterior uveitis.13

Ocular irradiation by I-125 plaque brachytherapy induces
microvascular changes detected by OCTA.14,15 However, the
consequences of proton-beam therapy, a major treatment
modality for uveal melanoma, have not been assessed by
OCTA. In this study, we investigated the spectrum of structural
and microvascular alterations in radiation maculopathy after
proton-beam therapy for uveal melanoma, and their respective
influence on visual acuity, using OCT and OCTA.
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METHODS

Study Subjects

This observational case series adhered to the tenets of the
Declaration of Helsinki and was approved by the local Ethics
Committee (CER-VD No. 2016-01861). Medical records, OCT,
OCTA, and FA images from consecutive subjects treated by
proton-beam irradiation for uveal melanoma, and presenting
with radiation maculopathy from August 2015 to July 2016,
were retrospectively analyzed. Clinical records included
systemic (sex, age, presence of hypertension or diabetes),
tumor-related (largest diameter, height, localization, and
presence of macular detachment at presentation), and
treatment-related data (degree of macular irradiation, time
since proton-beam therapy, and intravitreal anti–vascular
endothelial growth factor [VEGF] treatment). At our institu-
tion, plaque brachytherapy is performed for anteriorly located
choroidal tumors (located ‡4 mm from the macula) of limited
thickness ("5 mm). In these cases, macular irradiation is very
limited, and radiation maculopathy rarely develops. Therefore,
only proton-beam–irradiated patients were included, to analyze
the consequences of unavoidable macular irradiation. Proton-
beam therapy was administered according to an individualized
protocol established on the EyePlan software16 (v3.06c), after
implantation of tantalum clips.

Eyes with history of other retinal disease, those that had
received proton therapy less than 12 months earlier, with low-
quality OCTA acquisitions (signal strength index < 40) or with
severe motion artifacts, were excluded. When available,
multimodal imaging acquired in the fellow nonirradiated eye,
including OCTA, served as control.

Multimodal Imaging

B-mode, en face OCT and OCTA images were acquired on
Angiovue RTx 100 (Optovue, Inc., Fremont, CA, USA). The
correct automatic segmentation providing OCTA images of the
superficial and deep plexuses was visually controlled. Central
macular thickness (CMT) was measured on OCT volumes in
the central subfield of an adapted Early Treatment of Diabetic
Retinopathy Study (ETDRS) grid centered on the fovea.

FA was performed on Spectralis (Heidelberg Engineering,
Heidelberg, Germany). Early frames (20–30 seconds after dye
injection) were acquired with a 308 lens. A 20 3 208 97-section
B-mode OCT raster scan was acquired on Spectralis.

Capillary Network Density and Foveal Avascular
Zone

The mean vascular density of 3 3 3-mm OCTA images centered
on the fovea was obtained by using the built-in AngioAnalytics
software of the RTx 100 device (v2016.1.0.26), at the level of
the superficial and deep capillary plexuses.

The area of the FAZ was measured manually by two
independent observers on masked OCTA images of the
superficial capillary plexus, using ImageJ (v1.50c4, Wayne
Rasband; http://imagej.nih.gov/ij/; provided in the public
domain by the National Institutes of Health, Bethesda, MD,
USA). Capillary vessels surrounding the FAZ were outlined by
using the free contour function, to obtain the FAZ area in
square millimeter (pixel-to-millimeter scale, 304:3). The mean
from the two observers was retained.

Local Fractal Dimension

The local fractal dimension, based on the box-counting
method, was used to assess the degree of superficial and deep

plexus disorganization on 3 3 3-mm OCTA. This method relies
on the self-similarity of a vascular network at different scales. It
calculates the fractal dimension, Df, such that the number N of
boxes of increasing pixel size R needed to cover a fractal object
in the image follows a power-law: Df ¼ log(N)/log(R). For a
two-dimensional image, Df is between 1 and 2. If the object is
fractal over a limited range of box size R, this property is
reflected by the local fractal dimension, Dflocal ¼#d(log(N))/
d(log(R)), corresponding to the local slope of the Df function
for a given box size range. If the Dflocal function is constant
over a range of box sizes, then the image has a fractal behavior
over these R values.

The local fractal dimension was estimated from the
skeletonized 304 3 304-pixel .bmp image files exported by
the OCTA software, by using a custom algorithm adapted from
the ‘‘boxcount’’ program17 on Matlab (R2015b; MathWorks,
Inc., Natick, MA, USA). From preliminary assessments showing
that capillary networks on OCTA images presented a quasi-
fractal behavior for box sizes ranging from 23 to 25 (8 3 8 to 32
3 32 pixels), the local fractal dimension was calculated as the
mean value of the Dflocal function over 23-to-25-pixel boxes in
each OCTA image. Illustrations of the pixel grids used to
calculate the local fractal dimension of skeletonized OCTA
images are provided in Figures 1 and 2.

Grading of Abnormal Features

Early-frame 308 fluorescein angiograms and OCTA images of
the superficial and deep capillary plexuses were classified into
three categories after qualitative evaluation of the macular
microvasculature: minimally damaged (absent or minimal
alterations), disrupted (focal interruptions of the perifoveal
capillary ring), and disorganized (diffuse or multifocal capillary
depletion).

OCT raster scans acquired on Spectralis were used to assess
the presence of intraretinal cysts and ellipsoid zone disruption.

All OCT, FA, and OCTA gradings were performed by two
independent observers (AM, AD). In case of discrepancy,
images were adjudicated by the senior investigator (LZ).

Statistical Analyses

Analyses were performed on Prism (version 5.0f; GraphPad
Software, La Jolla, CA, USA), using the Wilcoxon test for paired
comparisons, Pearson coefficients for correlations, v2, or
Fisher’s test for contingency analysis, where appropriate.
Interobserver agreement was estimated with the weighted
Cohen’s j for FA, OCT, and OCTA gradings, and the intraclass
correlation coefficient (ICC) for FAZ measurements, using the
‘‘irr’’ package18 on R (v3.3.0 [2016]; R Foundation for Statistical
Computing, Vienna, Austria). Clinical factors potentially
influencing best-corrected visual acuity (BCVA) were investi-
gated by using uni- and multivariate linear regression followed
by stepwise forward regression, using the ‘‘MASS’’ package19

on R. Variables with significance level " .2 in the univariate
analysis, without strong correlation with each other (Pearson r
< 0.5), were computed into the multivariate model. The
logarithm of the minimal angle of resolution (logMAR) was
used for BCVA calculations. For descriptive purposes, BCVA
was categorized into discrete levels ("20/200, 20/125–20/50,
and ‡20/40). P values < 0.05 were considered significant.

RESULTS

Of 117 patients diagnosed with radiation maculopathy after
receiving proton-beam irradiation for uveal melanoma, 14 were
excluded owing to low OCTA image quality. The 93 included
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patients (50 women, 43 men; mean age: 61.4 6 12 years [33–
84 years]) presented a broad dispersion of BCVA levels in their
irradiated eye, from hand motion to 20/20. BCVA was "20/200
in 33 eyes (36%), between 20/125 and 20/50 in 41 eyes (44%),
and ‡20/40 in 19 eyes (20%). Mean duration since proton-
beam treatment was 3.8 6 2.7 years (range, 1–15 years).
According to treatment plans, all eyes received a collateral
macular irradiation ‡20 Gy, and 43 eyes (46%) with posteriorly
located melanomas received a full-dose macular irradiation.
Clinical characteristics according to BCVA levels and overall
descriptive characteristics are reported in Table 1 and
Supplementary Table 1, respectively.

OCTA examination of the fellow eye was available in 35
subjects. OCTA-derived indicators of the macular microvascu-
lature integrity in irradiated and nonirradiated fellow eyes are
reported in Table 2. The FAZ was larger in irradiated than in
fellow eyes (P < 0.0001). Similarly, capillary density and
capillary network local fractal dimension of the superficial and
deep plexuses were lower in irradiated than in nonirradiated
eyes (P < 0.0001).

There was substantial agreement between raters for the
qualitative grading of microvascular abnormalities on FA (j ¼
0.63) and OCTA (j¼0.66 and 0.65 for the superficial and deep
plexus, respectively). There was an excellent agreement for
the FAZ area (ICC¼ 0.99), and for the detection of intraretinal

cysts (j ¼ 0.94) and ellipsoid zone disruption on OCT (j ¼
0.86).

Figure 3 illustrates the spectrum of structural and micro-
vascular alterations observed in eyes with radiation maculop-
athy when using OCT, FA, and OCTA. The SCP and DCP imaged
by OCTA were graded as minimally damaged in 35 and 16 eyes,
disrupted in 42 and 47 eyes, and disorganized in 16 and 30
eyes, respectively. According to these categories, alterations
were more severe in the deep than the superficial plexus (P¼
0.003). In 34 eyes (37%), alterations in the deep plexus were
more severely graded than in the superficial plexus, while the
inverse occurred in only five cases (5%) (P < 0.0001).

OCT and OCTA findings according to BCVA levels are
reported in Table 3. Since CMT may be abnormally increased or
decreased in eyes with radiation maculopathy, depending on
the presence of macular edema or thinning, the absolute
change in CMT from the mean value observed in the 35
nonirradiated fellow eyes (261 lm) was considered as a clinical
variable in the analysis.

A correlation analysis between OCTA-derived parameters
revealed that qualitative grading (minimally damaged, disrupt-
ed, disorganized), vascular density, and local fractal dimension
were positively correlated with each other in the SCP and DCP,
and between both plexuses (P < 0.009). The correlation was
strongest between vascular density and local fractal dimension

FIGURE 1. Determination of the local fractal dimension in optical coherence tomography images of a 49-year-old woman with moderately severe
radiation maculopathy following proton-beam therapy for uveal melanoma. Best-corrected visual acuity was 20/30. The box-counting method was
applied to the superficial (top) and deep (bottom) capillary plexuses. Top and bottom left, Original optical coherence tomography angiography
images were skeletonized and superimposed with boxes of decreasing size: 32 pixels (top and bottom middle) and 16 pixels (top and bottom
right), and 8 pixels (not shown). The number N of 32-, 16-, and 8-pixel boxes required to cover the vascular network was counted, and the local
fractal dimension was estimated as the mean value of#d(log(N))/d(log(R)), where R is the box size in pixels. In this case, the local fractal dimension
was 1.879 and 1.880 in the superficial and deep plexus, respectively.
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within each capillary plexus (Pearson r¼ 0.79 and 0.74 in the
superficial and deep plexuses, respectively). CMT and CMT
absolute change on OCT were correlated to vascular density (P
< 0.022) and local fractal dimension (P < 0.0001) in the deep
plexus, but not the superficial plexus. The FAZ area was
correlated with all OCT- and OCTA-derived metrics (P < 0.015
and P < 0.009, respectively). Finally, the qualitative grading of

microvascular alteration on FA was correlated with CMT
absolute change (P < 0.0001) and all OCTA-derived metrics
(P <0.01), except local fractal dimension. The detailed
correlation matrix is reported in Table 4.

A series of uni- and multivariate analyses were conducted to
investigate the influence of clinical and imaging parameters on
BCVA. Results are reported in Table 5. Among clinical factors,

FIGURE 2. Determination of the local fractal dimension of optical coherence tomography images of a 70-year old man with severe radiation
maculopathy following proton-beam therapy for uveal melanoma. Best-corrected visual acuity was 20/100. The box-counting method was applied to
the superficial (top) and deep (bottom) capillary plexuses. Top and bottom left, Original optical coherence tomography angiography images were
skeletonized and superimposed with boxes of decreasing size: 32 pixels (top and bottom middle), 16 pixels (top and bottom right), and 8 pixels
(not shown). The number N of 32-, 16-, and 8-pixel boxes required to cover the vascular network was counted, and the local fractal dimension was
estimated as the mean value of#d(log(N))/d(log(R)), where R is the box size in pixels. In this case, the local fractal dimension was 1.862 and 1.862
in the superficial and the deep plexus, respectively, lower than in the less severe case shown in Figure 1.

TABLE 1. Clinical and Multimodal Imaging Characteristics According to the Final Visual Acuity in 93 Patients Who Underwent Proton-Beam Therapy
for Uveal Melanoma

Final BCVA, Snellen

"20/200 20/125–20/50 ‡20/40

(n ¼ 33) (n ¼ 41) (n ¼ 19)

Sex, male/female, No. 18/15 19/22 6/13
Age, y 55.7 6 11.4 65.4 6 10.3 62.5 6 13.1
Tumor height, mm 4.9 6 2.0 4.6 6 1.8 4.0 6 1.3
Tumor distance to the fovea, disc diameter 1.0 6 1.1 1.7 6 1.1 1.8 6 1.0
Macular detachment at presentation, No. (%) 26 (79) 25 (61) 7 (37)
Total macular irradiation, No. (%) 23 (70) 17 (41) 3 (16)
Time since irradiation, y 3.8 6 2.7 4.0 þ 3.2 3.2 6 1.2
Treatment by intravitreal anti-VEGF, No. (%) 9 (27) 18 (44) 7 (37)
Hypertension 13 (39%) 17 (41%) 6 (32%)
Diabetes 2 (6%) 4 (10%) 2 (11%)

Continuous quantitative values are reported as mean 6 standard deviation.
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the univariate analysis identified macular detachment at
presentation (P ¼ 0.024), tumor distance to the fovea (P ¼
0.001), and total macular irradiation (P¼ 0.0008) as associated
with worse BCVA levels, while older age was near significantly
associated with better BCVA levels (P¼0.068). Among imaging
factors, higher CMT (P¼ 0.019), higher absolute CMT change
(P < 0.0001), presence of intraretinal cystoid edema (P ¼
0.030) or ellipsoid zone disruption (P¼ 0.002), larger FAZ area
(P < 0.0001), lower superficial (P¼ 0.001) and deep capillary
density (P < 0.0001), and lower superficial (P ¼ 0.009) and
deep local fractal dimension (P < 0.0001) were all associated
with worse BCVA levels. Since vascular density and local fractal
dimension were strongly correlated in the superficial and deep
plexuses (Pearson r¼0.79 and 0.74, respectively; Table 4), and
therefore could not be entered simultaneously in a multivariate
model, two separate models were computed with either
vascular density or local fractal dimension as covariate. In the
first model, younger age (P¼0.014), presence of ellipsoid zone
disruption (P¼ 0.034), larger FAZ area (P¼ 0.0006), and lower
deep plexus vascular density (P¼ 0.008) were associated with
worse BCVA levels (adjusted R2 ¼ 0.44). The second model
yielded similar results, with younger age (P¼ 0.017), presence
of ellipsoid zone disruption (P ¼ 0.019), larger FAZ area (P ¼
0.002), and lower deep plexus local fractal dimension (P ¼
0.012) associated with worse BCVA levels (adjusted R2¼ 0.43).
In both models, neither tumor distance to the fovea nor total
macular irradiation had a significant influence on BCVA.

DISCUSSION

These results illustrate the variable alterations affecting the
macula and its vasculature after proton-beam therapy for uveal
melanoma, and how they influence visual function. All
investigated OCTA-derived metrics were altered in irradiated
eyes, as compared to fellow eyes. Visual acuity was indepen-
dently influenced by larger FAZ area, lower deep plexus
vascular density, and lower deep plexus local fractal dimen-
sion. Younger age and presence of ellipsoid zone disruption
were also independently associated with worse vision.
Moreover, tumor proximity to the fovea and total macular
irradiation had a negative influence on visual acuity in the
univariate, but not in the multivariate analysis, showing the
unpredictive course of radiation maculopathy with respect to
tumor- and treatment-related characteristics. Accordingly, Patel
et al.20 have reported that a proportion of eyes with uveal
melanoma involving the fovea maintain good vision despite
macular irradiation.

Signs of radiation maculopathy on fundus examination are
detected in up to 89% of eyes with uveal melanoma within 3
years of proton-beam treatment.21 Macular irradiation and

diabetes21 are recognized as risk factors for radiation macu-
lopathy. In uveal melanoma involving the fovea, smaller tumors
and better baseline BCVA are identified as independent factors
of better visual outcome.20

OCTA is particularly suitable to image microvascular
changes such as capillary nonperfusion, telangiectasia, and
FAZ alterations, hallmarks of radiation maculopathy.21–24

However, no study has yet evaluated OCTA changes after
proton-beam therapy, and their relationship with visual
function. After plaque brachytherapy, Veverka et al.15 describe
gradual alterations of the macular microvasculature on OCTA.
Shields et al.14 have reported a decreased capillary density in
both plexuses, as well as FAZ enlargement. Finally, Say et al.25

have reported decreased capillary density in irradiated eyes
without clinically patent maculopathy.

In the present study, we identified a relationship between
radiation-induced microvascular changes on OCTA and visual
function, using three different endpoints: FAZ area, automated
built-in vascular density, and custom local fractal dimension of
the vascular network. These endpoints reflect macular
capillary network disorganization and consistently showed
some degree of correlation with each other. The multivariate
analysis confirmed that FAZ, deep plexus capillary density, and
deep plexus local fractal dimension were associated with visual
acuity. Noticeably, an observer-dependent grading of capillary
network integrity was correlated to these morphologic
parameters, illustrating the relevance of a clinical grading
system based on OCTA in radiation maculopathy, as previously
proposed.15

Although no study has yet compared vascular changes on
OCTA following brachytherapy and proton-beam irradiation, a
qualitative comparison of our findings with the detailed
characteristics reported by Shields et al.14 shows a comparable
FAZ enlargement (1.12 vs. 1.25 mm2), after similar mean
duration since irradiation (45.1 vs. 46 months). Authors have
also reported vascular densities based on a custom method
before it became standardized in OCTA devices, which
prevents reliable comparison. Therefore, additional studies
evaluating both modalities with standardized OCTA metrics are
needed to compare their impact on retinal plexuses, and
potentially identify predictive biomarkers of treatment out-
come.

Interestingly, comparable results have been reported in
other disorders presenting perifoveal capillary dropout. FAZ
enlargement is related to worse vision in diabetic retinopathy
and retinal vein occlusions.26,27 Capillary density of both
plexuses is correlated to visual loss in diabetic retinopathy,28

branch retinal vein occlusion,29,30 and idiopathic macular
telangiectasia type 1 (MacTel1).31 In addition, several investi-
gators have shown that decreased perfusion is more frequent

TABLE 2. Comparison of Optical Coherence Tomography Angiography–Derived Metrics of the Parafoveal Microvasculature Between 35 Eyes
Treated With Proton-Beam Therapy for Uveal Melanoma, and Their Nonirradiated Fellow Eyes

OCTA Parameter Irradiated Eyes (n ¼ 35) Nonirradiated Fellow Eyes (n ¼ 35) P Value†

Foveal avascular zone area,* 3 10#3 mm2 1.373 6 1.84 (0.139–7.125) 0.266 6 0.113 (0.022–0.522) <0.0001

Capillary density

Superficial plexus 39.56 6 5.23 (29.89–51.17) 52.67 6 2.42 (48.87–58.19) <0.0001
Deep plexus 45.19 6 6.69 (23.43–58.41) 58.69 6 2.23 (52.83–62.75) <0.0001

Local fractal dimension

Superficial plexus 1.828 6 0.046 (1.715–1.896) 1.908 6 .007 (1.893–1.921) <0.0001
Deep plexus 1.819 6 0.099 (1.353–1.900) 1.902 6 .008 (1.885–1.924) <0.0001

Values are provided as mean 6 standard deviation (range).
* Measured at the level of the superficial capillary plexus.
† Wilcoxon paired signed-rank test.
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FIGURE 3. Spectrum of microvascular alterations in radiation maculopathy following proton-beam therapy for uveal melanoma visualized by
multimodal imaging. Color fundus photograph at tumor diagnosis showing its localization with respect to the macula (upper line). Optical
coherence tomography angiography of the superficial (second line) and deep (third line) capillary plexuses. Fluorescein angiogram 30 to 50
seconds after dye injection (fourth line) and horizontal foveal optical coherence tomography scan (lower line). Radiation maculopathy of variable
severity was diagnosed in three subjects: a 47-year old man with minimally damaged superficial and deep plexuses (left column, case 1), a 67-year
old man with disrupted superficial and deep plexuses (middle column, case 2), and a 63-year old woman with disorganized superficial and deep
plexuses (right column, case 3).
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in the deep than superficial plexus, in central or branch vein
occlusion,32–34 diabetic retinopathy,35 and MacTel1.36 In
resolved branch retinal vein occlusion, deep plexus non-
perfusion has recently been identified as a more critical
determinant of BCVA than superficial plexus nonperfusion.30

Noticeably, vascular and structural alterations of radiation
maculopathy present similarities with diabetic retinopathy,
retinal vein occlusion, or MacTel1, including macular edema,
microaneurysms, and capillary nonperfusion.

In the present study, OCTA revealed that the deep plexus of
irradiated eyes was more severely altered than the superficial
plexus. Consistently, Spaide36 has reported one case of
radiation maculopathy, using volume-rendering display, that
showed alterations of both plexuses in the irradiated area, and
adjacent areas of deep plexus nonperfusion colocalizing with
macular edema. A similar pattern is visible in Figure 3, case 3.
Whether deep plexus disruption is a cause or consequence of
macular edema is not elucidated. Deep plexus alterations may
impede the intake of interstitial fluid flow from the superficial
to the deep plexus, leading to intraretinal fluid accumulation.36

Deep plexus disruption could also result from tissue displace-
ment by cystoid edema cavities, but the possibility of small
interconnected capillaries forming this plexus to be stretched
by edema is unlikely.35,36 Finally, it could also result from
shadowing or edema-related signal artifacts.33,36,37 Here, the
causal relationship between edema formation and deep plexus
alteration was possibly indicated by the stronger correlation of
CMT (and CMT change) with deep plexus changes, assessed by
grading, vascular density, and local fractal dimension, than with
superficial plexus changes (see Table 4). Importantly, this
effect was controlled after statistical adjustment in the
multivariate analysis, indicating that deep plexus abnormalities
influence visual acuity independently from the presence of
edema.

Several hypotheses could explain the greater radiosensitiv-
ity of deep plexus than superficial plexus capillaries. Micro-
vascular radiation injury generates endothelial cell loss by
impairing cell division, leading to progressive capillary closure
and delayed-onset microangiopathy. This cytotoxic effect

results from ‘‘direct’’ DNA damage by radiation, which impairs
cell division, and ‘‘indirect’’ free radical generation, which in
turn induces DNA alterations.38 Although endothelial cell
turnover is slow,39 an increasing fraction of endothelial cell
population enters mitosis over the months following irradia-
tion, triggering foci of endothelial damage and leading to
microangiopathy.40 Radiation-induced injury to retinal capillar-
ies may also depend on other mechanisms than cell cycle
disruption. The smaller-caliber deep plexus capillaries are
more vulnerable to obturation by endothelial cell swelling,
than larger superficial capillaries. Consistently, smaller capil-
laries are more radiosensitive than larger ones.41 Another
possibility would be the different nature of endothelial cells in
the deep plexus, where capillaries form an interconnected,
short-segment meshwork drained by small vortices.42 In
addition, the deep plexus is mainly composed of capillaries,
unlike the superficial plexus formed by gradually smaller
arterioles, capillaries, and progressively larger venules. Finally,
deep plexus flow derives exclusively from the superficial
plexus, so that deep plexus endothelial cells may receive a
greater amount of downstream inflammatory or apoptotic
signaling molecules from the upstream part of the superficial
plexus after irradiation.

This study also identified younger age as an independent
factor of worse visual outcomes in radiation maculopathy.
Younger age has already been recognized as an independent
risk factor for radiation maculopathy after plaque brachyther-
apy,43 although this finding remains controversial.44 As detailed
above, radio-induced endothelial damage mostly results from
apoptosis during cell division. Yet, endothelial cells become
less proliferative with older age, undergoing fewer cellular
divisions over time and ultimately not proliferating, a state
called replicative senescence.45,46 This effect of aging may
explain the greater radiosensitivity of the macular microvascu-
lature in younger subjects.

Ellipsoid zone disruption, indicating photoreceptor damage,
was associated with worse visual outcomes after irradiation.
Consistently, photoreceptor damage may result from long-
standing macular edema, as observed here. Several factors not

TABLE 3. Optical Coherence Tomography and Optical Coherence Tomography Angiography Characteristics According to the Final Visual Acuity in
93 Patients Who Underwent Proton-Beam Therapy for Uveal Melanoma

Final BCVA, Snellen

"20/200 20/125–20/50 ‡20/40

(n ¼ 33) (n ¼ 41) (n ¼ 19)

Central macular thickness, lm 323 6 186 309 6 104 286 6 63
Central macular thickness absolute change,* lm 137 6 140 81 6 80 46 6 49
Intraretinal cysts, No. (%) 19 (58) 20 (49) 6 (32)
Ellipsoid zone disruption, No. (%) 27 (82) 26 (63) 7 (37)
Foveal avascular zone area,† mm2 2.038 6 1.953 0.697 6 0.730 0.470 6 0.505

SCP qualitative grading, No. (%)

Minimally damaged 6 (18) 16 (39) 13 (68)
Disrupted 13 (39) 23 (56) 6 (32)
Disorganized 14 (43) 2 (5) 0 (0)

DCP qualitative grading, No. (%)

Minimally damaged 2 (6) 3 (7) 11 (58)
Disrupted 7 (21) 32 (78) 8 (42)
Disorganized 24 (72) 6 (15) 0 (0)

SCP capillary density 37.0 6 3.8 39.0 6 4.8 42.8 6 6.0
DCP capillary density 42.6 6 6.7 44.8 6 5.5 49.8 6 4.9
SCP local fractal dimension 1.804 6 0.047 1.817 6 0.050 1.851 6 0.048
DCP local fractal dimension 1.790 6 0.106 1.827 6 0.055 1.856 6 0.042

Continuous quantitative values are reported as mean 6 standard deviation.
* Compared to a reference thickness of 261 lm, observed in 35 nonirradiated fellow eyes.
† Measured at the level of the superficial capillary plexus.
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influencing the visual outcome were also identified. Treatment
by anti-VEGF did not modify the visual outcome because at the
time of OCTA examination it had been administered mostly as
prophylaxis to reduce the risk of secondary neovascularization,
as previously reported.47 The few number of eyes that received
anti-VEGF because of macular edema had lower BCVA,
inducing a selection bias. Recent data suggest that prophylactic
bimonthly anti-VEGF therapy may contribute to vision reten-
tion after proton-beam therapy for tumors close to the
macula.48 Further studies are needed to address the exact
effect of anti-VEGF agents on radio-induced OCTA features.

In this report, local fractal dimension was used to assess
superficial and deep plexus disorganization in OCTA images.
Fractal dimension has previously been used to investigate the
retinal microvasculature in fundus49–52 or OCTA10,12,13 images.
By evaluating pattern repetition at different scales,53 fractal
dimension is particularly adapted to assess the integrity of
arborized vascular networks. However, the retinal vasculature
does not follow a perfect fractal behavior at all scales.
Therefore, the ‘‘local’’ fractal dimension, limiting the fractal
analysis to a given scale range, as illustrated in Figures 1 and 2,
may provide a reliable indicator of fractal behavior of the
macular capillary network on OCTA.

This study had limitations, including its retrospective design
and the use of the recent OCTA technology that lacks
consensual terminology54 and processing tools. Moreover,
artifacts in OCTA acquisition and interpretation may alter the
results, although low-quality images were discarded. Say et al.55

have provided a comprehensive list of potential artifacts in
OCTA imaging of irradiated eyes and shown that they were
more frequent in eyes with worse visual function.

Overall, these results identified structural and microvascular
factors contributing to the visual outcome of eyes with
radiation maculopathy. Although FA remains the gold standard
for the diagnosis and prognosis of radiation maculopathy,
OCTA-derived quantitative metrics may offer promising tools.
Future studies should evaluate the role of OCTA in predicting
treatment response in radiation maculopathy.
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TABLE 5. Factors Influencing Best-Corrected Visual Acuity in 93 Patients Who Underwent Proton-Beam Therapy for Uveal Melanoma, Assessed by
Univariate Analysis

Univariate

Multivariate

Model 1 With
Capillary Density

Model 2 With Local
Fractal Dimension

Coefficient
(Standard Error) P Value‡

Coefficient
(Standard Error) P Value§

Coefficient
(Standard Error) P Value§

Clinical parameters

Male sex 0.18 (0.12) 0.14 – – – –
Age, by 10-y intervals #0.09 (0.05) 0.068 #0.11 (0.04) 0.014 #0.11 (0.04) 0.017
Hypertension 0.06 (0.13) 0.63 – – – –
Diabetes #0.19 (0.22) 0.40 – – – –
Tumor height > 5 mm 0.17 (0.13) 0.18 – – – –
Tumor distance to fovea, DD #0.18 (0.05) 0.001 – – – –
Macular detachment at presentation 0.29 (0.13) 0.024 – – – –
Total macular irradiation 0.47 (0.13) 0.0008 – – – –
Time since irradiation, by 1-y intervals 0.02 (0.02) 0.38 – – – –

OCT and OCTA parameters

Central macular thickness, by 50 lm 0.05 (0.02) 0.019 – – – –
Central macular thickness absolute

change,* by 10-lm intervals
0.03 (0.01) <0.0001 – – – –

Intraretinal cysts 0.27 (0.12) 0.030 – – – –
Ellipsoid zone disruption 0.40 (0.12) 0.002 0.26 (0.12) 0.034 0.30 (0.12) 0.019
Foveal avascular zone area† 0.22 (0.04) <0.0001 0.13 (0.04) 0.0006 0.13 (0.04) 0.002
Capillary density, SCP #0.04 (0.01) 0.001 – – x x
Capillary density, DCP #0.04 (-0.01) <0.0001 #0.03 (0.01) 0.008 x x
Local fractal dimension, SCP #3.18 (1.19) 0.009 x x – –
Local fractal dimension, DCP #3.19 (0.72) <0.0001 x x #1.81 (0.71) 0.012

Visual outcome was represented by visual acuity converted to the logarithm of minimal angle of resolution. DD, disc diameter.
* Compared to a reference thickness of 261 lm, observed in 35 nonirradiated fellow eyes.
† Measured at the level of the superficial capillary plexus.
‡ Univariate linear regression, with best-corrected visual acuity as outcome (logarithm of the minimum angle of resolution).
§ Multivariate generalized linear model, with best-corrected visual acuity as outcome (logarithm of the minimum angle of resolution). Capillary

density and local fractal dimension of both plexuses were computed in two separate models owing to their strong correlation. Adjusted R2¼ 0.44
(model 1) and 0.43 (model 2).
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42. Bonnin S, Mané V, Couturier A, et al. New insight into the
macular deep vascular plexus imaged by optical coherence
tomography. Retina. 2015;35:2347–2352.

43. Krema H, Xu W, Payne D, Maria Vasquez L, Pavlin CJ, Simpson
R. Factors predictive of radiation retinopathy post 125Iodine
brachytherapy for uveal melanoma. Can J Ophthalmol. 2011;
46:158–163.

44. Aziz HA, Singh N, Bena J, Wilkinson A, Singh AD. Vision loss
following episcleral brachytherapy for uveal melanoma:
development of a vision prognostication tool. JAMA Oph-
thalmol. 2016;134:615–620.

45. Vasa M, Breitschopf K, Zeiher AM, Dimmeler S. Nitric oxide
activates telomerase and delays endothelial cell senescence.
Circ Res. 2000;87:540–542.

46. Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H,
Komuro I. Endothelial cell senescence in human atheroscle-
rosis. Circulation. 2002;105:1541–1544.

47. Mantel I, Schalenbourg A, Bergin C, Petrovic A, Weber DC,
Zografos L. Prophylactic use of bevacizumab to avoid anterior
segment neovascularization following proton therapy for
uveal melanoma. Am J Ophthalmol. 2014;158:693–701.e2.

48. Kim IK, Lane AM, Jain P, Awh C, Gragoudas ES. Ranibizumab
for the prevention of radiation complications in patients

treated with proton beam irradiation for choroidal melanoma.
Trans Am Ophthalmol Soc. 2016;114:T2.

49. Daxer A. Characterisation of the neovascularisation process in
diabetic retinopathy by means of fractal geometry: diagnostic
implications. Graefes Arch Clin Exp Ophthalmol. 1993;681–
686.

50. Thomas GN, Ong SY, Tham YC, et al. Measurement of macular
fractal dimension using a computer-assisted program. Invest
Ophthalmol Vis Sci. 2014;55:2237–2243.

51. Cheung N, Donaghue KC, Liew G, et al. Quantitative
assessment of early diabetic retinopathy using fractal analysis.
Diabetes Care. 2009;32:106–110.

52. Williams MA, McGowan AJ, Cardwell CR, et al. Retinal
microvascular network attenuation in Alzheimer’s disease.
Alzheimers Dement (Amst). 2015;1:229–235.

53. Mandelbrot B. How long is the coast of Britain: statistical self-
similarity and fractional dimension. Science. 1967;156:636–
638.

54. Fawzi AA. Consensus on optical coherence tomographic
angiography nomenclature. JAMA Ophthalmol. 2017;135:
377–378.

55. Say EAT, Ferenczy S, Magrath GN, Samara WA, Khoo CTL,
Shields CL. Image quality and artifacts on optical coherence
tomography angiography: comparison of pathologic and
paired fellow eyes in 65 patients with unilateral choroidal
melanoma treated with plaque radiotherapy [published
online ahead of print November 23, 2016]. Retina.
doi:10.1097/IAE.0000000000001414.

OCTA of Radiation Maculopathy IOVS j August 2017 j Vol. 58 j No. 10 j 3861

Downloaded From: http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/936407/ on 08/15/2017



SUPPLEMENTARY TABLE 1. Descriptive clinical and multimodal imaging 
characteristics in 93 patients who underwent proton-beam therapy for uveal 
melanoma. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
BCVA= best-corrected visual acuity; VEGF= vascular endothelial growth factor; 
 
Continuous quantitative values are reported as mean ± standard deviation [range]. 
	

Sex (male/female), N. 43/50 
Age, year 61.4±12.0 [33-85] 

Tumor height, mm 4.6±1.8 [1.7-10.2] 

Largest tumor diameter, mm 14.1±3.6 [6-23] 

Tumor distance to the fovea, disc diameter 1.5±1.1 [0-4.7] 
Extramacular localization, N. (%) 49 (53%) 
  Temporal, N. (%) 20 (22%) 
  Nasal, N. (%) 8 (9%) 
  Superior, N. (%) 16 (17%) 
  Inferior, N. (%) 4 (4%) 
Macular localization, N. (%) 44 (47%) 
  Involving the fovea, N. (%) 17 (18%) 
  Extrafoveal, N. (%) 28 (30%) 
Macular detachment at presentation, N. (%) 58 (62%) 
Total macular irradiation, N. (%) 43 (46%) 
Time since irradiation, year 3.8±2.7 [1-15] 
Treatment by intravitreal anti-VEGF, N. (%) 34 (37%) 
Hypertension 36 (39%) 
Diabetes 8 (9%) 
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APPENDICES	

Appendix	1:	MatLab	code	for	perifoveal	intercapillary	areas	on	OCT	angiography	
	
	
function intercapillary_area_iteration 
  
file_list=dir('*.bmp'); 
  
%Prepare csv file for mean IA collection 
cd('./-RESULTS') 
f_IA_RESULTS=fopen('RESULTS_IA_MEAN.csv','w'); 
fprintf(f_IA_RESULTS,'%s; %s; %s; %s; %s\n','Name','Mean IA','SD IA','Min IA','Max 
IA');  
  
%Return to working directory and process images 
cd('../') 
  
for i=1:length(file_list) 
    FileName=file_list(i).name; 
     
    %remove '_skel.bmp' at the end of FileName 
    PatientName=FileName(1:end-9); 
     
    %open image 
    [~,X]=fileparts(file_list(i).name);  
    A=imread(sprintf('%s.bmp',X)); 
     
%function intercapillary_area running on each OCTA image     
    B=im2bw(A); 
  
%filtering: 3 for SCP and 5 for DCP 
B2=bwareafilt(B,[3,inf]); 
B2a=bwmorph(B2,'dilate'); 
B2b=bwmorph(B2a,'bridge'); 
  
B3=1-B2b; 
B4=bwareaopen(B3,4); 
  
% IA=intercapillary areas / threshold for bwconncomp= 8 
CC=bwconncomp(B4,8); 
scale=size(B3,1)/3; 
IA=regionprops(CC,'area'); 
  
%result in 10^3 mm2 
IA2=struct2array(IA)/scale^2*1000; 
IA2=sort(IA2,'descend'); 
IA_mean=mean(IA2); 
IA_SD=std(IA2); 
IA_min=min(IA2); 
IA_max=max(IA2); 
  
%graphical representation of interpapillary areas 
numPixels = cellfun(@numel,CC.PixelIdxList); 
for i=1:size(numPixels,2) 
    [~,idx] = max(numPixels); 
    CC.PixelIdxList2{i}=CC.PixelIdxList{idx}; 
    numPixels(1,idx)=0; 
end 
  
CC.PixelIdxList=CC.PixelIdxList2; 
CC.NumObjects=size(numPixels,2); 
CC=rmfield(CC,'PixelIdxList2'); 
  
B4_a=bwareafilt(B4,[2000 100000]); 
B4_b=bwareafilt(B4,[1000 1999]); 
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B4_c=bwareafilt(B4,[400 999]); 
B4_d=bwareafilt(B4,[150 399]); 
B4_e=bwareafilt(B4,[0 149]); 
  
%necessary for color matrices 
B_zeros=zeros(size(B4)); 
  
%create color map in blue and orange shades / FAZ and large defects in dark 
%blue (like vessels) 
B4_e_color=cat(3,B_zeros,.3*B4_e,.7*B4_e); 
B4_d_color=cat(3,.2*B4_d,.6*B4_d,B4_d); 
B4_c_color=cat(3,B4_c,B4_c,.6*B4_c); 
B4_b_color=cat(3,B4_b,.8*B4_b,.6*B4_b); 
B4_a_color=cat(3,B4_a,.8*B4_a,B4_a); 
  
B4_color_final=B4_a_color+B4_b_color+B4_c_color+B4_d_color+B4_e_color; 
  
%add image of vessels - dark blue 
B_add=imadd(B4_color_final,double(cat(3,B_zeros,B_zeros,.5*(1-B4))));   
     
    %save image 
    cd('./-RESULTS/IMAGES/') 
    imwrite(B_add,sprintf('%s_IA.png',PatientName),'png'); 
  
    %save value of all IAs from the processed OCTA image in csv 
    cd('../Intercapillary_areas') 
    f_IA=fopen(sprintf('%s_IA.csv',PatientName),'w'); 
    for i=1:length(IA2) 
    fprintf(f_IA,'%.4f\n',IA2(i)); 
    end 
    fclose(f_IA); 
     
    %save IA mean and descriptive values 
    cd('../') 
    fprintf(f_IA_RESULTS,'%s; %.4f; %.4f; %.4f; %.4f\n',PatientName, IA_mean, 
IA_SD, IA_min, IA_max); 
     
    %return to working directory for next iteration 
    cd('../') 
end 
     
    fclose(f_IA_RESULTS); 
end  
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Appendix	2:	MatLab	code	for	file	moving	and	renaming	
	
	
function MoveRename 
  
%%CAUTION: removes file from source folder!!!  
  
folder_list=dir(); 
  
    %PROCESS ALL FILES in folder except initial destination files and 
    %HIDDEN FILES 
     
 %SUP 
for i=3:length(file_list) 
    patientName=folder_list(i).name; 
    movefile(sprintf('%s/Layer_0/0(1)-Enface.bmp',patientName),sprintf('-
SUP/%s_sup.bmp',patientName));  
end 
  
 %SUP_bin 
for i=11:length(folder_list) 
    patientName=folder_list(i).name; 
    movefile(sprintf('%s/Layer_0/3-Extracted_Vessel.bmp',patientName),sprintf('-
SUP_bin/%s_sup_bin.bmp',patientName));  
end 
  
%SUP_skel 
for i=11:length(folder_list) 
    patientName=folder_list(i).name; 
    movefile(sprintf('%s/Layer_0/1-Skeleton.bmp',patientName),sprintf('-
SUP_skel/%s_sup_skel.bmp',patientName));  
end 
  
  
 %DEEP 
for i=11:length(folder_list) 
    patientName=folder_list(i).name; 
    movefile(sprintf('%s/Layer_1/0(1)-Enface.bmp',patientName),sprintf('-
DEEP/%s_deep.bmp',patientName));  
end 
  
 %DEEP_bin 
for i=11:length(folder_list) 
    patientName=folder_list(i).name; 
    movefile(sprintf('%s/Layer_1/3-Extracted_Vessel.bmp',patientName),sprintf('-
DEEP_bin/%s_deep_bin.bmp',patientName));  
end 
  
%DEEP_skel 
for i=11:length(folder_list) 
    patientName=folder_list(i).name; 
    movefile(sprintf('%s/Layer_1/1-Skeleton.bmp',patientName),sprintf('-
DEEP_skel/%s_deep_skel.bmp',patientName));  
end 
  
%SECTOR DEFINITION 
for i=11:length(folder_list) 
    patientName=folder_list(i).name; 
    movefile(sprintf('%s/Layer_0/0(2)-SectorDefinition.bmp',patientName),sprintf('-
-SECTOR/%s_sector.bmp',patientName));  
end 
  
end 
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Appendix	3:	MatLab	code	for	extracting	OCT	angiography	images	from	Angiovue	
screen	captures	
	
	
function crop_octa 
file_list=dir('*.JPG'); 
  
for i=1:length(file_list) 
[~,X]=fileparts(file_list(i).name);  
A=imread(sprintf('%s.JPG',X)); 
  
B=imcrop(A,[422 130 598 598]); 
    
imwrite(B,sprintf('%s_crop.jpg',X),'jpg'); 
end 
end 
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Appendix	4:	MatLab	code	for	extracting	OCT	layer	thickness	quantitative	values	
in	injected	and	non-injected	areas	from	Spectralis	
 

function layer_png 
%note: sprintf to include variable inside a string 
  
%*********************** 
%VERTICAL SCANS 
%*********************** 
  
%VERTICAL SCANS: select first M3, then J0, J15, M1.  
  
h=msgbox({'Select VERTICAL scans: M3 then J0, J15, M1' ' ' 'In M3, select 3 points 
and 2 vertical lines:' '  left inferior curve corner' '  100µm scale' '  right 
superior curve corner' '  fovea line' '  bleb limit line' ' ' 'In J0, J15, M1, 
select 3 vertical lines:' '  left limit of curve' '  right limit of curve' 
'  fovea'}); 
  
%VERTICAL M3 
%manual designation of the file to be processed - extension can be modified 
[file,folder]=uigetfile('.png'); 
[Z,X]=fileparts(file);  
M3 = imread(sprintf('%s.png',X)); 
imshow(M3) 
  
%zero of y axis and left inferior corner 
[xa,ya]=ginput(1); 
%scale : 100 µm above ya 
[xb,yb]=ginput(1); 
%upper right corner 
[xc,yc]=ginput(1); 
%fovea line 
[xfovea_M3,yfovea_M3]=ginput(1); 
%bleb line 
[xbleb_M3,ybleb_M3]=ginput(1); 
  
L=abs(ya-yb); 
  
%VERTICAL J0 
J0 = imread(uigetfile('.png')); 
imshow(J0) 
  
%left vertical limit of curve 
[xa_J0,z]=ginput(1); 
%right vertical limit of curve 
[xc_J0,zz]=ginput(1); 
%fovea line 
[xfovea_J0,zzz]=ginput(1); 
  
%VERTICAL J15 
J15 = imread(uigetfile('.png')); 
imshow(J15) 
  
%left vertical limit of curve 
[xa_J15,z]=ginput(1); 
%right vertical limit of curve 
[xc_J15,zz]=ginput(1); 
%fovea line 
[xfovea_J15,zzz]=ginput(1); 
  
%VERTICAL M1 
M1 = imread(uigetfile('.png')); 
imshow(M1) 
  
%left vertical limit of curve 
[xa_M1,z]=ginput(1); 
%right vertical limit of curve 
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[xc_M1,zz]=ginput(1); 
%fovea line 
[xfovea_M1,zzz]=ginput(1); 
  
%defines the minimal left and right limits common to the 4 curves 
Xleft=min([xfovea_J0-xa_J0 xfovea_J15-xa_J15 xfovea_M1-xa_M1 xfovea_M3-xa]); 
Xright=min([xc_J0-xfovea_J0 xc_J15-xfovea_J15 xc_M1-xfovea_M1 xc-xfovea_M3]); 
  
J0_crop=imcrop(J0,[xfovea_J0-Xleft,yc,Xleft+Xright,abs(yc-ya-1)]); 
J15_crop=imcrop(J15,[xfovea_J15-Xleft,yc,Xleft+Xright,abs(yc-ya-1)]); 
M1_crop=imcrop(M1,[xfovea_M1-Xleft,yc,Xleft+Xright,abs(yc-ya-1)]); 
M3_crop=imcrop(M3,[xfovea_M3-Xleft,yc,Xleft+Xright,abs(yc-ya-1)]); 
  
%detection of logical curves 
%detection of J0 curve 
R_J0 = J0_crop(:,:,1) < 100; 
G_J0 = J0_crop(:,:,2) < 100; 
B_J0 = J0_crop(:,:,3) < 100; 
  
logical_J0 = R_J0 & G_J0 & B_J0; 
  
%detection of J15 curve 
R_J15 = J15_crop(:,:,1) < 100; 
G_J15 = J15_crop(:,:,2) < 100; 
B_J15 = J15_crop(:,:,3) < 100; 
  
logical_J15 = R_J15 & G_J15 & B_J15; 
  
%detection of M1 curve 
R_M1 = M1_crop(:,:,1) < 100; 
G_M1 = M1_crop(:,:,2) < 100; 
B_M1 = M1_crop(:,:,3) < 100; 
  
logical_M1 = R_M1 & G_M1 & B_M1; 
  
%detection of M3 curve 
R_M3 = M3_crop(:,:,1) < 100; 
G_M3 = M3_crop(:,:,2) < 100; 
B_M3 = M3_crop(:,:,3) < 100; 
  
logical_M3 = R_M3 & G_M3 & B_M3; 
  
%save logical curves 
imwrite(logical_J0, sprintf('%s_logical_J0 v.png',X),'png'); 
imwrite(logical_J15, sprintf('%s_logical_J15 v.png',X),'png'); 
imwrite(logical_M1, sprintf('%s_logical_M1 v.png',X),'png'); 
imwrite(logical_J0, sprintf('%s_logical_M3 v.png',X),'png'); 
  
A_vertical=[]; 
for x=1:(Xleft+Xright)-1 
y_J0=100/L*abs(abs(ya-yc)-find(logical_J0(:,x),1,'first')); 
y_J15=100/L*abs(abs(ya-yc)-find(logical_J15(:,x),1,'first')); 
y_M1=100/L*abs(abs(ya-yc)-find(logical_M1(:,x),1,'first')); 
y_M3=100/L*abs(abs(ya-yc)-find(logical_M3(:,x),1,'first')); 
a=[x,y_J0,y_J15,y_M1,y_M3]; 
%vertical concatenation with the growing (x rows, 2 column)-matrix 
A_vertical=[A_vertical;a]; 
end 
A_vertical; 
  
%define variables for x distances to shorten the formulae 
X_v=Xleft+Xright; 
X_bleb_v=Xleft+xbleb_M3-xfovea_M3; 
  
A_total_vertical=horzcat([1-X_bleb_v:X_v-X_bleb_v-1]',[1-Xleft:Xright-
1]',A_vertical); 
B_total_vertical=num2cell(A_total_vertical); 
  
% fprintf funtion to create .csv file (csvwrite does not handle cell arrays 
% combining text and numbers). %f for decimal figures (numbers), %s for 
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% string (text) and %c for single letters. Modified from guidelines 
% to produce a .csv file with ";" (semicolon) as separator (readable by 
% Excel) 
f_total=fopen(sprintf('%s_total_v.csv',X),'w'); 
for n=1:round(Xleft+Xright)-2 
fprintf(f_total,'%.2f; %.2f; %.2f; %.2f; %.2f; %.2f; 
%.2f\n',B_total_vertical{n,:}); 
end 
fclose(f_total); 
  
%*********************** 
%HORIZONTAL SCANS 
%*********************** 
  
%HORIZONTAL SCANS: select first M3, then J0, J15, M1. 
%SIDE: LEFT or RIGHT EYE? 
  
prompt = {'Right or left eye? Answer r or l'}; 
dlg_title = 'Side'; 
side = inputdlg(prompt); 
  
h=msgbox({'Select HORIZONTAL scans: M3 then J0, J15, M1' ' ' 'In M3, select 4 
vertical lines:' '  left curve limit' '  (100µm scale already defined)' '  right 
curve limit' '  fovea line' '  bleb limit line' ' ' 'In J0, J15, M1, select 3 
vertical lines:' '  left limit of curve' '  right limit of curve' '  fovea'}); 
  
%HORIZONTAL M3 
M3_h = imread(uigetfile('.png')); 
imshow(M3_h) 
  
%zero of y axis and left inferior corner 
[xa,z]=ginput(1); 
%100µm scale: already defined 
%upper right corner 
[xc,zz]=ginput(1); 
%fovea line 
[xfovea_M3_h,yfovea_M3_h]=ginput(1); 
%bleb line 
[xbleb_M3_h,ybleb_M3_h]=ginput(1); 
  
%HORIZONTAL J0 
J0_h = imread(uigetfile('.png')); 
imshow(J0_h) 
  
%left vertical limit of curve 
[xa_J0,z]=ginput(1); 
%right vertical limit of curve 
[xc_J0,zz]=ginput(1); 
%fovea line 
[xfovea_J0,zzz]=ginput(1); 
  
%HORIZONTAL J15 
J15_h = imread(uigetfile('.png')); 
imshow(J15_h) 
  
%left vertical limit of curve 
[xa_J15,z]=ginput(1); 
%right vertical limit of curve 
[xc_J15,zz]=ginput(1); 
%fovea line 
[xfovea_J15,zzz]=ginput(1); 
  
%HORIZONTAL M1 
M1_h = imread(uigetfile('.png')); 
imshow(M1_h) 
  
%left vertical limit of curve 
[xa_M1,z]=ginput(1); 
%right vertical limit of curve 
[xc_M1,zz]=ginput(1); 
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%fovea line 
[xfovea_M1,zzz]=ginput(1); 
  
%defines the minimal left and right limits common to the 4 curves 
Xleft_h=min([xfovea_J0-xa_J0 xfovea_J15-xa_J15 xfovea_M1-xa_M1 xfovea_M3_h-xa]); 
Xright_h=min([xc_J0-xfovea_J0 xc_J15-xfovea_J15 xc_M1-xfovea_M1 xc-xfovea_M3_h]); 
  
J0_h_crop=imcrop(J0_h,[xfovea_J0-Xleft_h,yc,Xleft_h+Xright_h,abs(yc-ya-1)]); 
J15_h_crop=imcrop(J15_h,[xfovea_J15-Xleft_h,yc,Xleft_h+Xright_h,abs(yc-ya-1)]); 
M1_h_crop=imcrop(M1_h,[xfovea_M1-Xleft_h,yc,Xleft_h+Xright_h,abs(yc-ya-1)]); 
M3_h_crop=imcrop(M3_h,[xfovea_M3_h-Xleft_h,yc,Xleft_h+Xright_h,abs(yc-ya-1)]); 
  
%detection of logical curves 
%detection of J0 curve 
R_J0_h = J0_h_crop(:,:,1) < 100; 
G_J0_h = J0_h_crop(:,:,2) < 100; 
B_J0_h = J0_h_crop(:,:,3) < 100; 
  
logical_J0_h = R_J0_h & G_J0_h & B_J0_h; 
  
%detection of J15 curve 
R_J15_h = J15_h_crop(:,:,1) < 100; 
G_J15_h = J15_h_crop(:,:,2) < 100; 
B_J15_h = J15_h_crop(:,:,3) < 100; 
  
logical_J15_h = R_J15_h & G_J15_h & B_J15_h; 
  
%detection of M1 curve 
R_M1_h = M1_h_crop(:,:,1) < 100; 
G_M1_h = M1_h_crop(:,:,2) < 100; 
B_M1_h = M1_h_crop(:,:,3) < 100; 
  
logical_M1_h = R_M1_h & G_M1_h & B_M1_h; 
  
%detection of M3 curve 
R_M3_h = M3_h_crop(:,:,1) < 100; 
G_M3_h = M3_h_crop(:,:,2) < 100; 
B_M3_h = M3_h_crop(:,:,3) < 100; 
  
logical_M3_h = R_M3_h & G_M3_h & B_M3_h; 
  
%save logical curves 
imwrite(logical_J0_h, sprintf('%s_logical_J0 h.png',X),'png'); 
imwrite(logical_J15_h, sprintf('%s_logical_J15 h.png',X),'png'); 
imwrite(logical_M1_h, sprintf('%s_logical_M1 h.png',X),'png'); 
imwrite(logical_M3_h, sprintf('%s_logical_M3 h.png',X),'png'); 
  
A_horizontal=[]; 
for x=1:(Xleft_h+Xright_h)-1 
y_J0_h=100/L*abs(abs(ya-yc)-find(logical_J0_h(:,x),1,'first')); 
y_J15_h=100/L*abs(abs(ya-yc)-find(logical_J15_h(:,x),1,'first')); 
y_M1_h=100/L*abs(abs(ya-yc)-find(logical_M1_h(:,x),1,'first')); 
y_M3_h=100/L*abs(abs(ya-yc)-find(logical_M3_h(:,x),1,'first')); 
a_h=[x,y_J0_h,y_J15_h,y_M1_h,y_M3_h]; 
%vertical concatenation with the growing (x rows, 2 column)-matrix 
A_horizontal=[A_horizontal;a_h]; 
end 
A_horizontal; 
  
%define variables for x distances to shorten the formulae 
X_h=Xleft_h+Xright_h; 
  
X_bleb_h=Xleft_h+xbleb_M3_h-xfovea_M3_h; 
  
A_total_horizontal=horzcat([1-X_bleb_h:X_h-X_bleb_h-1]',[1-Xleft_h:Xright_h-
1]',A_horizontal); 
B_total_horizontal=num2cell(A_total_horizontal); 
  
% fprintf funtion to create .csv file (csvwrite does not handle cell arrays 
% combining text and numbers). %f for decimal figures (numbers), %s for 
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% string (text) and %c for single letters. Modified from guidelines 
% to produce a .csv file with ";" (semicolon) as separator (readable by 
% Excel) 
f_total_h=fopen(sprintf('%s_total_h.csv',X),'w'); 
for n=1:round(Xleft_h+Xright_h)-2 
fprintf(f_total_h,'%.2f; %.2f; %.2f; %.2f; %.2f; %.2f; 
%.2f\n',B_total_horizontal{n,:}); 
end 
fclose(f_total_h); 
  
%*********************************** 
%FINAL STEP: CREATE TABLE WITH MEANS  
%*********************************** 
  
%FOR LEFT EYES 
if side{1}=='l' 
weight_in_v=(X_v-X_bleb_v)/(X_v-X_bleb_v+X_h-X_bleb_h); 
weight_in_h=(X_h-X_bleb_h)/(X_v-X_bleb_v+X_h-X_bleb_h); 
     
weight_out_v=X_bleb_v/(X_bleb_v+X_bleb_h); 
weight_out_h=X_bleb_h/(X_bleb_v+X_bleb_h); 
  
mean_out_v_J0 = mean(A_vertical(1:round(X_bleb_v)-1,2)); 
mean_out_v_J15= mean(A_vertical(1:round(X_bleb_v)-1,3));  
mean_out_v_M1 = mean(A_vertical(1:round(X_bleb_v)-1,4));   
mean_out_v_M3 = mean(A_vertical(1:round(X_bleb_v)-1,5)); 
  
mean_in_v_J0 = mean(A_vertical(round(X_bleb_v):round(X_v)-2,2)); 
mean_in_v_J15= mean(A_vertical(round(X_bleb_v):round(X_v)-2,3)); 
mean_in_v_M1 = mean(A_vertical(round(X_bleb_v):round(X_v)-2,4)); 
mean_in_v_M3 = mean(A_vertical(round(X_bleb_v):round(X_v)-2,5)); 
  
mean_out_h_J0 = mean(A_horizontal(1:round(X_bleb_h)-1,2)); 
mean_out_h_J15= mean(A_horizontal(1:round(X_bleb_h)-1,3)); 
mean_out_h_M1 = mean(A_horizontal(1:round(X_bleb_h)-1,4)); 
mean_out_h_M3 = mean(A_horizontal(1:round(X_bleb_h)-1,5)); 
  
mean_in_h_J0 = mean(A_horizontal(round(X_bleb_h):round(X_h)-2,2)); 
mean_in_h_J15= mean(A_horizontal(round(X_bleb_h):round(X_h)-2,3)); 
mean_in_h_M1 = mean(A_horizontal(round(X_bleb_h):round(X_h)-2,4)); 
mean_in_h_M3 = mean(A_horizontal(round(X_bleb_h):round(X_h)-2,5)); 
  
A_mean_v_h={sprintf('%s',X) 'outside_bleb_vertical' 'inside_bleb_vertical' 
'outside_bleb_horizontal' 'inside_bleb_horizontal' 'outside_bleb_weighted_mean' 
'inside_bleb_weighted_mean';'J0' mean_out_v_J0 mean_in_v_J0 mean_out_h_J0 
mean_in_h_J0 weight_out_v*mean_out_v_J0+weight_out_h*mean_out_h_J0 
weight_in_v*mean_in_v_J0+weight_in_h*mean_in_h_J0; 'J15' mean_out_v_J15 
mean_in_v_J15 mean_out_h_J15 mean_in_h_J15 
weight_out_v*mean_out_v_J15+weight_out_h*mean_out_h_J15 
weight_in_v*mean_in_v_J15+weight_in_h*mean_in_h_J15;'M1' mean_out_v_M1 mean_in_v_M1 
mean_out_h_M1 mean_in_h_M1 weight_out_v*mean_out_v_M1+weight_out_h*mean_out_h_M1 
weight_in_v*mean_in_v_M1+weight_in_h*mean_in_h_M1; 'M3' mean_out_v_M3 mean_in_v_M3 
mean_out_h_M3 mean_in_h_M3 weight_out_v*mean_out_v_M3+weight_out_h*mean_out_h_M3 
weight_in_v*mean_in_v_M3+weight_in_h*mean_in_h_M3}; 
  
%FOR RIGHT EYES 
elseif side{1}=='r'     
weight_in_v=(X_v-X_bleb_v)/(X_v-X_bleb_v+X_bleb_h); 
weight_in_h=X_bleb_h/(X_v-X_bleb_v+X_bleb_h); 
     
weight_out_v=X_bleb_v/(X_bleb_v+X_h-X_bleb_h); 
weight_out_h=(X_h-X_bleb_h)/(X_bleb_v+X_h-X_bleb_h); 
  
mean_out_v_J0 = mean(A_vertical(1:round(X_bleb_v)-1,2)); 
mean_out_v_J15= mean(A_vertical(1:round(X_bleb_v)-1,3));  
mean_out_v_M1 = mean(A_vertical(1:round(X_bleb_v)-1,4));   
mean_out_v_M3 = mean(A_vertical(1:round(X_bleb_v)-1,5)); 
  
mean_in_v_J0 = mean(A_vertical(round(X_bleb_v):round(X_v)-2,2)); 
mean_in_v_J15= mean(A_vertical(round(X_bleb_v):round(X_v)-2,3)); 
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mean_in_v_M1 = mean(A_vertical(round(X_bleb_v):round(X_v)-2,4)); 
mean_in_v_M3 = mean(A_vertical(round(X_bleb_v):round(X_v)-2,5)); 
  
mean_out_h_J0 = mean(A_horizontal(round(X_bleb_h):round(X_h)-2,2)); 
mean_out_h_J15= mean(A_horizontal(round(X_bleb_h):round(X_h)-2,3)); 
mean_out_h_M1 = mean(A_horizontal(round(X_bleb_h):round(X_h)-2,4)); 
mean_out_h_M3 = mean(A_horizontal(round(X_bleb_h):round(X_h)-2,5)); 
  
mean_in_h_J0 = mean(A_horizontal(1:round(X_bleb_h)-1,2)); 
mean_in_h_J15= mean(A_horizontal(1:round(X_bleb_h)-1,3)); 
mean_in_h_M1 = mean(A_horizontal(1:round(X_bleb_h)-1,4)); 
mean_in_h_M3 = mean(A_horizontal(1:round(X_bleb_h)-1,5)); 
  
A_mean_v_h={sprintf('%s',X) 'outside_bleb_vertical' 'inside_bleb_vertical' 
'outside_bleb_horizontal' 'inside_bleb_horizontal' 'outside_bleb_weighted_mean' 
'inside_bleb_weighted_mean';'J0' mean_out_v_J0 mean_in_v_J0 mean_out_h_J0 
mean_in_h_J0 weight_out_v*mean_out_v_J0+weight_out_h*mean_out_h_J0 
weight_in_v*mean_in_v_J0+weight_in_h*mean_in_h_J0; 'J15' mean_out_v_J15 
mean_in_v_J15 mean_out_h_J15 mean_in_h_J15 
weight_out_v*mean_out_v_J15+weight_out_h*mean_out_h_J15 
weight_in_v*mean_in_v_J15+weight_in_h*mean_in_h_J15;'M1' mean_out_v_M1 mean_in_v_M1 
mean_out_h_M1 mean_in_h_M1 weight_out_v*mean_out_v_M1+weight_out_h*mean_out_h_M1 
weight_in_v*mean_in_v_M1+weight_in_h*mean_in_h_M1; 'M3' mean_out_v_M3 mean_in_v_M3 
mean_out_h_M3 mean_in_h_M3 weight_out_v*mean_out_v_M3+weight_out_h*mean_out_h_M3 
weight_in_v*mean_in_v_M3+weight_in_h*mean_in_h_M3}; 
end 
  
%print final .csv file with mean values 
  
f_mean=fopen(sprintf('%s_mean_v_h.csv',X),'w'); 
fprintf(f_mean,'%s; %s; %s; %s; %s; %s; %s\n',A_mean_v_h{1,:}); 
fprintf(f_mean,'%s; %.2f; %.2f; %.2f; %.2f; %.2f; %.2f\n',A_mean_v_h{2,:}); 
fprintf(f_mean,'%s; %.2f; %.2f; %.2f; %.2f; %.2f; %.2f\n',A_mean_v_h{3,:}); 
fprintf(f_mean,'%s; %.2f; %.2f; %.2f; %.2f; %.2f; %.2f\n',A_mean_v_h{4,:}); 
fprintf(f_mean,'%s; %.2f; %.2f; %.2f; %.2f; %.2f; %.2f\n',A_mean_v_h{5,:}); 
fclose(f_mean); 
  
end 
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Appendix	5:	MatLab	code	for	computing	fluorescein	expansion	ratios	on	
fluorescein	angiography		
 
  

function leak_area 
  
[file,folder]=uigetfile('.tif'); 
[Z,W]=fileparts(file);  
A=imread(sprintf('%s.tif',W)); 
  
%conversion to gray 
B=rgb2gray(A); 
  
%identification of the central point in leakage zone 
imshow(B) 
[x0,y0]=ginput(1); 
  
%threshold determination 
intensity0=impixel(B,x0,y0); 
thresh=mean(intensity0/255*0.75); 
  
C=im2bw(B,thresh); 
imshow(C) 
  
mask=roipoly(C); 
leak_area=C.*mask; 
  
area_pixel=bwarea(leak_area) 
area_mm2=area_pixel*(200/9)^2/1000 
  
%extract contour 
area_contour= bwmorph(leak_area,'remove'); 
  
%green color for contour 
R=0.6; G=1; Blue=0.6; 
area_contour_green=cat(3,area_contour*R,area_contour*G,area_contour*Blue); 
  
%combine FA image and green contour and save tif 
B=im2double(B); 
B2=immultiply(B,area_contour); 
B3=imsubtract(B,B2); 
B4=cat(3,B3,B3,B3); 
h=imadd(B4,area_contour_green); 
imshow(h) 
imwrite(h,sprintf('%s_contour.tif',W),'tif'); 
  
%save data in .csv file 
f_angio=fopen(sprintf('%s_leak.csv',W),'w'); 
fprintf(f_angio,'%s; %s; %s\n','pixel^2 area leakage', '10^-3 mm^2 area 
leakage','intensity threshold'); 
fprintf(f_angio,'%.4f; %.4f; %.4f\n',area_pixel,area_mm2,thresh); 
fclose(f_angio); 
end 
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Appendix	6:	MatLab	code	for	segmenting	subretinal	fluid	volume	in	OCT	stacks	
	
	
function srf_segment 
%%ADJUSTABLE PARAMETERS: 
%%% - threshold ratio hyper/hyporeflective pixels (around 1.3) 
%%% - r cursor for record of radius (around r+8) 
%%% - coefficient defining oct_crop3 
  
%ask index number of initial file 
prompt = {'Index number of initial OCT file?'}; 
dlg_title = 'OCT number'; 
n_oct1 = inputdlg(prompt); 
n_oct1 = str2double(n_oct1); 
  
file_list=dir('*.png'); 
  
%identify reference point in a reference image (choosen close to the 
%beginning of the image list where SRD is small) 
oct_ref=imread(file_list(round(length(file_list)/6)).name); 
  
    oct_gray=rgb2gray(oct_ref); 
    oct_gray=oct_gray(:,:,1); 
    oct_crop=imcrop(oct_gray,[510,30,485,400]); 
    oct_crop2=im2double(oct_crop); 
    oct_crop3=oct_crop2-0.1; 
     
    %Ldiag, L1, L2, dimpad1 and dimpad2 will serve for all files - they have 
identical size 
    Ldiag=sqrt(size(oct_crop2,1)^2+size(oct_crop2,2)^2); 
     
    %for later crop and numerical integration 
    L1=size(oct_crop2,1)-1; 
    L2=size(oct_crop2,2)-1; 
     
    %preparer matrix for numerical integration 
    C=zeros(0,L2+1); 
     
    %create pad of '1s' around image to prevent border effect 
    dimpad1=round(Ldiag/4); 
    dimpad2=round(Ldiag/4); 
    oct_pad=padarray(oct_crop2,[dimpad1 dimpad2],1,'both'); 
    imshow(oct_pad) 
     
    [y0,x0_local]=ginput(1); 
  
    %ADJUSTABLE PARAMETERS 
    threshold_reflectivity=1.1; 
    angles=[0 3 5 10 15 20 25 30 40 50 60 80 90 100 120 130 135 140 145 150 160 165 
167 170 173 175 177 180 183 185 187 190 195 200 205 210 215 220 225 230 240 250 260 
265 270 275 280 285 290 300 310 320 340 345 350 355 357 360 3]; 
  
    %PROCESS ALL FILES 
for i=1:length(file_list) 
    [~,X]=fileparts(file_list(i).name);  
    oct=imread(sprintf('%s.png',X)); 
     
    %crop oct scan and remove possible borders due to rotation for follow-up 
alignment 
    oct_gray=rgb2gray(oct); 
    oct_gray=oct_gray(:,:,1); 
    oct_crop=imcrop(oct_gray,[510,30,485,400]); 
    oct_crop2=im2double(oct_crop); 
        
    %empirical correction factor for high intensity images - to homogeneize images 
(low mean image 
    %intensity mean to 20/255 = 0.08 
    oct_crop3=(0.08/mean2(oct_crop2))*oct_crop2; 
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    %subtraction to reduce noise 
    oct_crop3=oct_crop2-0.2; 
    oct_crop3(oct_crop3<0.05)=0; 
     
    %create pad 
    oct_pad=padarray(oct_crop3,[dimpad1 dimpad2],1,'both'); 
     
    %create convolution image for denoising and averaging 
    oct_conv20=1.5*conv2(oct_pad,ones(20)/400,'same'); 
    oct_conv20(oct_conv20<0.05)=0; 
    oct_conv20(oct_conv20>1)=1; 
  
    %code for reference point relocation deleted 
     
    %segment SRF (angular iterations) 
    A=zeros(0,2); 
    
    for theta=angles 
        B=zeros(0,1); 
         
    for r=3:round(min(x0_local,y0)-1); 
         
        roi0=imcrop(oct_conv20,[round(y0+r*sin(theta*2*pi/360)-
3),round(x0_local+r*cos(theta*2*pi/360)-3),4,4]); 
        roi13=imcrop(oct_conv20,[round(y0+(r+4)*sin(theta*2*pi/360)-
3),round(x0_local+(r+4)*cos(theta*2*pi/360)-3),4,4]); 
  
    b=mean2(roi13)/mean2(roi0); 
    B= vertcat(B,b); 
    end 
     
    if isempty(find(B>threshold_reflectivity))==1 
       B_min=A(find(angles==theta)-1,2); 
        
    else B_min=min(find(B>threshold_reflectivity)); 
    end 
     
    a=[theta,B_min+3]; 
    A=vertcat(A,a); 
    end 
     
    %create mask 
    SRF_1=round(y0+A(:,2).*sin(A(:,1)*2*pi/360)); 
    SRF_2=round(x0_local+A(:,2).*cos(A(:,1)*2*pi/360)); 
    SRF_mask=horzcat(SRF_1,SRF_2); 
     
    oct_mask=poly2mask(SRF_1,SRF_2,size(oct_pad,1),size(oct_pad,2)); 
    se = strel('disk',8); 
    oct_close = imclose(oct_mask,se); 
    oct_close=bwmorph(oct_close,'dilate'); 
    imshow(oct_mask) 
    imshow(oct_close) 
  
    %add red contour to oct image 
    oct_remove=bwmorph(oct_close,'remove'); 
    oct_remove=bwmorph(oct_remove,'dilate'); 
    R=1; G=0; B=0; 
    oct_remove_red=cat(3,R*oct_remove,G*oct_remove,B*oct_remove); 
    %combine OCT image and red contour 
    g=cat(3,oct_pad,oct_pad,oct_pad); 
    h=imadd(g,oct_remove_red); 
    h_crop=imcrop(h,[dimpad1+1 dimpad2+1 L2 L1]); 
     
    %crop file for volume calculation 
    oct_close_nopad=imcrop(oct_close,[dimpad1+1 dimpad2+1 L2 L1]); 
     
    %matrix for numerical integration // vertical oct scale: 51 pix=0.2mm 
    c=0.2/51*sum(oct_close_nopad,1); 
    C=vertcat(C,c); 
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    %save images 
    imwrite(oct_crop2,sprintf('oct_crop_%s.png',X),'png'); 
    imwrite(oct_pad,sprintf('oct_pad_%s.png',X),'png'); 
    imwrite(oct_mask,sprintf('oct_mask_%s.png',X),'png'); 
    imwrite(oct_close,sprintf('oct_close_%s.png',X),'png'); 
    imwrite(h_crop,sprintf('oct_contour_%s.png',X),'png'); 
  
end 
  
%numerical integration 
n_oct_sup=n_oct1-1; 
n_oct_inf=97-(n_oct1-1)-length(file_list); 
  
C_sup=zeros(n_oct_sup,L2+1); 
C_inf=zeros(n_oct_inf,L2+1); 
  
C_final=vertcat(C_sup,C,C_inf); 
  
%VOLUME INTEGRATION 
volume_srf=0.0111*trapz(0.0625*trapz(C_final)); 
  
%register value 
f_quantif=fopen('-volume_srf.csv','w'); 
fprintf(f_quantif,'%s; %s; %s\n','SRF VOLUME','Threshold reflectivity','Number of 
sections'); 
fprintf(f_quantif,'%.4f; %.4f; 
%.4f\n',volume_srf,threshold_reflectivity,length(file_list)); 
fclose(f_quantif); 
  
%heat map 
I2=mat2gray(C_final); 
I2=imresize(I2, [L2 L2]); 
  
N = 256; 
I2_N = round(N * (I2-min(I2(:)))/(max(I2(:))-min(I2(:)))); 
cmap = jet(N); % see also hot, etc. 
C_heatmap = ind2rgb(I2_N,cmap); 
imwrite(C_heatmap,'-heatmap.png'); 
  
%heat map with sliding mean (convolution) 
I3=conv2(I2,ones(5)/25,'same'); 
  
I3_N = round(N * (I3-min(I3(:)))/(max(I3(:))-min(I3(:)))); 
cmap = jet(N); % see also hot, etc. 
C_heatmap_conv = ind2rgb(I3_N,cmap); 
imwrite(C_heatmap_conv,'-heatmap_conv.png'); 
  
%save integration matrix and image 
dlmwrite('-integration_matrix.txt',C_final); 
imwrite(I2,'-integration_image.png'); 
end 
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Appendix	7:	MatLab	code	for	segmenting	choriocapillaris	flow	voids	on	OCT	
angiography	
	
	
function octa_voids_analysis 
  
%create mask to remove label in lower left corner 
mask=zeros(60); 
mask=padarray(mask, [548 0],1, 'pre'); 
mask=padarray(mask, [0 548],1, 'post'); 
  
%create .csv file to write results 
f_total=fopen('TOTAL_AREAS.csv','w'); 
fprintf(f_total,'%s; %s; %s\n','Image','Total_area','Number_voids'); 
  
file_list=dir('*.JPG'); 
  
for i=1:length(file_list) 
  
%open image 
[~,X]=fileparts(file_list(i).name);  
octa=imread(sprintf('%s.JPG',X)); 
     
octa=octa(:,:,1); 
octa=imresize(octa, [608 608]); 
T=adaptthresh(octa,'Statistic','median','ForegroundPolarity','dark'); 
  
octa_bin=imbinarize(octa,T); 
octa_bin_bridge=bwmorph(octa_bin,'bridge'); 
octa_bin_closed=bwmorph(octa_bin_bridge,'close'); 
octa_voids=1-octa_bin_closed; 
  
octa_voids_mask=octa_voids.*mask; 
  
%for illustration purposes: 
octa_bin_closed_mask=octa_bin_closed.*mask; 
octa_bin_mask=octa_bin.*mask; 
octa_neg_mask=(1-octa_bin).*mask; 
  
%for area calculations 
%filtering of voids>10'000 µm2 according to Spaide AJO 2016 
octa_voids_mask_filt=bwareafilt(im2bw(octa_voids_mask),[300 400000]); 
CC=bwconncomp(octa_voids_mask_filt); 
area_voids=regionprops(CC,'Area'); 
total_area=bwarea(octa_voids_mask_filt); 
  
%save images 
imwrite(octa_bin_mask,sprintf('%s_bin.png',X),'png'); 
imwrite(octa_neg_mask,sprintf('%s_neg.png',X),'png'); 
imwrite(octa_bin_closed_mask,sprintf('%s_bin_closed.png',X),'png'); 
imwrite(octa_voids_mask,sprintf('%s_voids.png',X),'png'); 
imwrite(octa_voids_mask_filt,sprintf('%s_voids_filt.png',X),'png'); 
  
%add total area value and number of filtered voids to the global .csv file 
fprintf(f_total,'%s; %.1f; %.1f\n',X,total_area,size(area_voids,1)); 
  
%save detailed areas in an image-specific .csv file 
area_voids_table=struct2table(area_voids); 
writetable(area_voids_table,sprintf('%s_areas.csv',X)); 
end 
fclose(f_total); 
end 
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Appendix	8:	MatLab	code	for	global	capillary	density	after	subtraction	of	large	
vessels	and	cystoid	spaces	on	OCT	angiography	
	
	
function vesseldensity_square 
  
%files opening: 
%%superficial plexus 
[file,folder]= uigetfile('.jpg'); 
[Z,X]=fileparts(file);  
S = imread(sprintf('%s.jpg',X)); 
  
%define mean of avascular area (FAZ) 
mask=roipoly(S); 
threshold=mean(S(mask))+2*std2(S(mask)); 
  
S2=rgb2gray(S); 
S3=logical(S2>threshold); 
S3=bwpropfilt(S3,'Area',[20 Inf]); 
S4=im2double(S3); 
colormap('jet'); 
  
%adjust the size of the sliding matrix 
slidingmean=conv2(S4,ones(5)/25,'same'); 
  
%code for heat map without using imagesc (pb with export) 
I=slidingmean; 
N = 256; 
I_N = round(N * (I-min(I(:)))/(max(I(:))-min(I(:)))); 
cmap = jet(N); % see also hot, etc. 
densitymap = ind2rgb(I_N,cmap); 
  
%save densitymap 
imwrite(densitymap,sprintf('%s_densitymap.tif',X),'tif'); 
  
%remove areas of cystic edema 
%%ADJUST O.O1 for controls (no detection of cysts) and 0.04 for patients 
%%%%%%%%%%%%ADJUST%%%%%%%%%%%% 
J=im2bw(S,0.04); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
J2=bwmorph(J,'majority'); 
J2=bwmorph(J2,'majority'); 
J2=bwmorph(J2,'majority'); 
J2=bwmorph(J2,'majority'); 
J2=bwmorph(J2,'majority'); 
J2=bwmorph(J2,'majority'); 
J2=bwmorph(J2,'majority'); 
J2=bwmorph(J2,'majority'); 
J3=bwareaopen(1-J2,70); 
  
%enlarge notext mask and remove text 
notext_mask2=ones(size(J)); 
notext_mask2(350:393,2:120)=0; 
J4=immultiply(J3,notext_mask2); 
  
imwrite(J4,sprintf('%s_cysts.tif',X),'tif'); 
  
%identification of large vessels 
%%%%%%%%%%%%ADJUST%%%%%%%%%%%% 
E=im2bw(S,0.5); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
F=bwareaopen(E,100); 
Fclose=bwmorph(F,'close'); 
Fclose2=bwmorph(Fclose,'thicken'); 
imwrite(Fclose2,sprintf('%s_large_vessels.tif',X),'tif'); 
  
%new figure without large vessels 
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S7=imsubtract(S3,Fclose2); 
slidingmean2=conv2(S7,ones(5)/25,'same'); 
  
%code for heat map without using imagesc (pb with export) 
I2=slidingmean; 
N = 256; 
I2_N = round(N * (I2-min(I2(:)))/(max(I2(:))-min(I2(:)))); 
cmap = jet(N); % see also hot, etc. 
densitymap2 = ind2rgb(I2_N,cmap); 
  
%save densitymap2 
imwrite(densitymap2,sprintf('%s_densitymap2.tif',X),'tif'); 
  
%measure of capillary density 
%remove edema cysts 
S8=immultiply(S7,1-J4); 
  
%small notext mask and remove text 
notext_mask=ones(size(S8)); 
notext_mask(369:384,12:89)=0; 
S9=immultiply(S8,notext_mask); 
  
%remove cysts 
S10=immultiply(S9,1-J4); 
  
%remove large vessels 
S11=immultiply(S10,1-Fclose2); 
  
%total area for density calculations 
total_area=immultiply(1-Fclose2,immultiply(1-J4,notext_mask)); 
  
%save images used for density calculation 
imwrite(total_area,sprintf('%s_total_area.tif',X),'tif'); 
imwrite(S11,sprintf('%s_vessel_density.tif',X),'tif'); 
  
%remove large vessels and cysts from density maps 
densitymap_novessels=densitymap.*repmat(1-Fclose2,[1,1,3]); 
densitymap_novessels_cysts=densitymap_novessels.*repmat(1-J4,[1,1,3]); 
  
%small notext mask and remove text 
notext_mask=ones(size(densitymap_novessels_cysts)); 
notext_mask(369:384,12:89,:)=0; 
densitymap_novessels_cysts_notext=densitymap_novessels_cysts.*notext_mask; 
imshow(densitymap_novessels_cysts_notext) 
  
imwrite(densitymap_novessels,sprintf('%s_densitymap_novessels.tif',X),'tif'); 
imwrite(densitymap_novessels_cysts,sprintf('%s_densitymap_novessels_cysts.tif',X),'
tif'); 
imwrite(densitymap_novessels_cysts_notext,sprintf('%s_densitymap_novessels_cysts_no
text.tif',X),'tif'); 
  
%mean intensity over ROI 
mean_density=sum(sum(S11))/sum(sum(total_area)) 
  
%save results 
f_quantif2=fopen(sprintf('density_%s.csv',X),'w'); 
fprintf(f_quantif2,'%s; %s; %s\n','vessel_density','Total_vessels','Total_area'); 
fprintf(f_quantif2,'%.4f; %.4f; 
%.4f\n',mean_density,sum(sum(S11)),sum(sum(total_area))); 
fclose(f_quantif2); 
  
end 
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Appendix	9:	MatLab	code	for	local	capillary	density	on	OCT	angiography	
	
	
function local_density 
  
%files opening: 
%%deep plexus 
[file,folder]= uigetfile('.jpg'); 
[Z,name_deep]=fileparts(file);  
D = imread(sprintf('%s.jpg',name_deep)); 
  
%%sup plexus: binary image 
[file,folder]= uigetfile('.tif'); 
[Z,name_sup]=fileparts(file);  
S = imread(sprintf('%s.tif',name_sup)); 
  
%%sup plexus: total area without cysts nor large vessels 
[file,folder]= uigetfile('.tif'); 
[Z,name_totalarea]=fileparts(file);  
V = imread(sprintf('%s.tif',name_totalarea)); 
  
min1=min([size(D,1),size(S,1),size(V,1)]); 
min2=min([size(D,2),size(S,2),size(V,2)]); 
min3=min([min1,min2]); 
D_crop=imcrop(D, [0 0 min3 min3]); 
S_crop=imcrop(S, [0 0 min3 min3]); 
V_crop=imcrop(V, [0 0 min3 min3]); 
  
imshow(D_crop) 
%ask n 
prompt = 'What is the number of abnormal microvascular lesions? ' 
n = input(prompt); 
  
local_density=[]; 
circles=zeros(min3,min3); 
circles=im2bw(circles); 
  
for i=1:n 
[a,b]=ginput(1); 
  
%definition of circular ROI: radius = 13.4 pixels = 100 microns 
X=[]; 
Y=[]; 
for j=0:360 
    xj=round(a+10*cosd(j)); 
    yj=round(b+10*sind(j)); 
X=[X,xj]; 
Y=[Y,yj]; 
end 
circ_ROI=poly2mask(X,Y,min3,min3); 
  
V_crop_bin=im2bw(V_crop); 
circ_ROI_novessels=immultiply(circ_ROI,V_crop_bin); 
S_crop_bin=im2bw(S_crop); 
C=immultiply(S_crop_bin,circ_ROI_novessels); 
sum_capillaries=sum(sum(C)); 
sum_ROI=sum(sum(circ_ROI_novessels)); 
density=sum_capillaries/sum_ROI; 
local_density=[local_density,density]; 
circles=imadd(circles,circ_ROI); 
circles=im2bw(circles); 
end 
local_density 
  
%save results 
f_quantif2=fopen(sprintf('density_%s.csv',name_deep),'w'); 
fprintf(f_quantif2,'%s\n','local_density'); 
for i=1:n 



	

	 XIX 

fprintf(f_quantif2,'%.4f\n',local_density(i)); 
end 
fclose(f_quantif2); 
  
imwrite(circles,sprintf('%s_circles.tif',name_deep),'tif'); 
  
end 
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Appendix	10:	MatLab	code	for	generation	of	randomly	distributed	circles	over	
OCT	angiography	images	
	
	
function random_local_density2 
  
%files opening: 
%%deep plexus 
[file,folder]= uigetfile('.jpg'); 
[Z,name_deep]=fileparts(file);  
D = imread(sprintf('%s.jpg',name_deep)); 
  
%%deep plexus: circles identified around telangiectasias 
[file,folder]= uigetfile('.tif'); 
[Z,name_regions]=fileparts(file);  
R = imread(sprintf('%s.tif',name_regions)); 
  
%%sup plexus: binary image 
[file,folder]= uigetfile('.tif'); 
[Z,name_sup]=fileparts(file);  
S = imread(sprintf('%s.tif',name_sup)); 
  
%%sup plexus: total area without cysts nor large vessels 
[file,folder]= uigetfile('.tif'); 
[Z,name_totalarea]=fileparts(file);  
V = imread(sprintf('%s.tif',name_totalarea)); 
  
min1=min([size(D,1),size(S,1),size(V,1)]); 
min2=min([size(D,2),size(S,2),size(V,2)]); 
min3=min([min1,min2]); 
D_crop=imcrop(D, [0 0 min3 min3]); 
S_crop=imcrop(S, [0 0 min3 min3]); 
V_crop=imcrop(V, [0 0 min3 min3]); 
R_crop=imcrop(R, [0 0 min3 min3]); 
  
local_density=[]; 
circles=zeros(min3,min3); 
circles=im2bw(circles); 
  
r=round(rand(1000,2)*min3); 
  
%definition of FAZ (area=0.252 mm2) to exclude this localisation. 
%Circle of radius = 282 microns = 37.83 pixels 
X=[]; 
Y=[]; 
for j=0:360 
    xj=round(min3/2+37.83*cosd(j)); 
    yj=round(min3/2+37.83*sind(j)); 
X=[X,xj]; 
Y=[Y,yj]; 
end 
  
FAZ=poly2mask(X,Y,min3,min3); 
R_crop_FAZ=imadd(R_crop,FAZ); 
R_crop_FAZ=im2bw(R_crop_FAZ); 
  
for i=1:1000 
%definition of circular ROI: radius = 13.4 pixels = 100 microns 
X=[]; 
Y=[]; 
for j=0:360 
    xj=round(r(i,1)+13.4*cosd(j)); 
    yj=round(r(i,2)+13.4*sind(j)); 
X=[X,xj]; 
Y=[Y,yj]; 
end 
circ_ROI=poly2mask(X,Y,min3,min3); 
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V_crop_bin=im2bw(V_crop); 
circ_ROI_novessels=immultiply(circ_ROI,V_crop_bin); 
S_crop_bin=im2bw(S_crop); 
C=immultiply(S_crop_bin,circ_ROI_novessels); 
sum_capillaries=sum(sum(C)); 
sum_ROI=sum(sum(circ_ROI_novessels)); 
density=sum_capillaries/sum_ROI; 
  
R_crop_FAZ_circles=imadd(R_crop_FAZ,circles); 
if sum(sum(immultiply(circ_ROI,R_crop_FAZ_circles)))==0 
local_density=[local_density,density]; 
circles=imadd(circles,circ_ROI); 
circles=im2bw(circles); 
end 
  
end 
  
n=size(local_density,2); 
  
%save results 
f_quantif2=fopen(sprintf('random_density_noregions_%s.csv',name_deep),'w'); 
fprintf(f_quantif2,'%s\n','local_density'); 
for i=1:n 
fprintf(f_quantif2,'%.4f\n',local_density(i)); 
end 
fclose(f_quantif2); 
  
imwrite(circles,sprintf('%s_random_circles_noregions.tif',name_deep),'tif'); 
  
end 
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Appendix	11:	MatLab	code	for	perifoveal	intercapillary	areas	on	fluorescein	
angiography	
	
	
function PIA_angiofluo_square 
  
%FA 3x3mmm  
[file,folder]= uigetfile('.tif'); 
[Z,title]=fileparts(file);  
A=imread(sprintf('%s.tif',title)); 
A=imresize(A,[1000 1000]); 
A2=rgb2gray(A); 
imshow(A2) 
%define FAZ edges 
h=imfreehand(); 
mask=createMask(h); 
  
%ex: polygon ROI: mask=roipoly(A2); 
  
B=im2bw(A2,0.23); 
B1=bwmorph(B,'thin'); 
B2=bwmorph(B1,'skel'); 
B3=bwmorph(B2,'skel'); 
B4=bwmorph(B3,'close'); 
B4=bwmorph(B4,'bridge'); 
B5=bwmorph(B4,'skel'); 
B5=bwmorph(B5,'skel'); 
B5=bwmorph(B5,'skel'); 
  
B6=1-B5; 
B7=bwmorph(B6,'erode'); 
B7noFAZ=B7.*(1-mask); 
  
% PIA=perifoveal intercapillary areas: 
CC=bwconncomp(B7noFAZ,8); 
scale=size(B7,1)/3000; 
PIA=regionprops(CC,'area'); 
  
%write csv PIA 
PIA2=struct2array(PIA); 
  
f_quantif=fopen(sprintf('%s_PIA.csv',title),'w'); 
for n=1:length(PIA2) 
fprintf(f_quantif,'%.4f\n',PIA2(n)/scale^2); 
end 
fclose(f_quantif); 
  
%overlay images 
R=.4; G=.4; B=.25; 
OVR=cat(3,R*B7noFAZ,G*B7noFAZ,B*B7noFAZ); 
  
A3=im2double(A); 
A_OVR=imadd(A3,OVR); 
  
%save images: 
imwrite(mask,sprintf('%s_FAZ.tif',title),'tif'); 
  
imwrite(B5,sprintf('%s_bin.tif',title),'tif'); 
imwrite(B7noFAZ,sprintf('%s_PIA.tif',title),'tif'); 
imwrite(A2_OVR,sprintf('%s_PIA_OVR.tif',title),'tif'); 
  
end 
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Appendix	12:	MatLab	code	for	cystoid	cavities	area	and	outlining	
	
	
function edema 
  
%chose OCT: initial, pre aflibercept 1, post aflibercept 1 or final 
[file,folder]= uigetfile('.tif'); 
[Z,X]=fileparts(file);  
oct = imread(sprintf('%s.tif',X)); 
imshow(oct) 
  
%scale: identify center, then upper right corner of scale (vertical and 
%horizontal) 
%scale: pixel/µm 
[x0,y0]=ginput(1); 
[xh,yv]=ginput(1); 
  
scale_v=abs(yv-y0)/200; 
scale_h=abs(xh-x0)/200; 
  
oct_crop=imcrop; 
imshow(oct_crop) 
  
%%%%%%ADUST%%%%%%% 
oct_BW=1-im2bw(oct_crop,0.24); 
%%%%%%%%%%%%%%%%%% 
oct_BW2=medfilt2(medfilt2(oct_BW)); 
oct_BW3=bwmorph(oct_BW2,'close'); 
oct_BW4=bwareaopen(oct_BW3,40); 
imshow(oct_BW4) 
mask=roipoly(oct_BW4); 
oct_cysts=oct_BW4.*mask; 
  
area_pixels=bwarea(oct_cysts); 
area_oct=bwarea(oct_cysts)/(scale_v*scale_h); 
  
%extract contour of cysts 
oct_remove= bwmorph(oct_cysts,'remove'); 
  
%red color for contour 
R=1; B=0; G=0; 
oct_remove_red=cat(3,R*oct_remove,B*oct_remove,G*oct_remove); 
  
%combine OCT image and red contour and save tif 
g=im2double(oct_crop); 
h=imadd(g,oct_remove_red); 
imshow(h) 
imwrite(h,sprintf('OCT_cysts_%s.tif',X),'tif'); 
  
%save data in .csv file 
f_oct=fopen(sprintf('%s_area.csv',X),'w'); 
fprintf(f_oct,'%s; %s; %s; %s\n','area_µm','area_pixels','scale_v','scale_h'); 
fprintf(f_oct,'%.2f; %.2f; %.4f; %.4f\n',area_oct,area_pixels,scale_v,scale_h); 
fclose(f_oct); 
  
area_oct 
end 
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Appendix	13:	MatLab	code	for	local	fractal	dimension	on	OCT	angiography	
	
This function contains a call to the publicly available ‘boxcount’ function by	F. Moisy (2008)* 
	
function fractal_sector 
  
% working directory: --SECTOR folder 
  
%create csv file 
f_fractal=fopen('RESULT_FRACTAL_SECTOR.csv','w'); 
fprintf(f_fractal,'%s; %s; %s; %s; %s; %s; %s; %s; %s; %s; %s; %s; %s; %s; %s; %s; 
%s; %s; 
%s\n','Name','lDf_scp_total','lDf_scp_grid','lDf_scp_frame','lDf_scp_center','lDf_s
cp_parafovea','lDf_scp_sup','lDf_scp_inf','lDf_scp_temp','lDf_scp_nas','lDf_dcp_tot
al','lDf_dcp_grid','lDf_dcp_frame','lDf_dcp_center','lDf_dcp_parafovea','lDf_dcp_su
p','lDf_dcp_inf','lDf_dcp_temp','lDf_dcp_nas'); 
  
file_list=dir('*.bmp'); 
  
for i=1:length(file_list) 
    FileName=file_list(i).name; 
  
    %remove '_sector.bmp' at the end of FileName 
    PatientName=FileName(1:end-11); 
     
    %open sector image 
    [~,X]=fileparts(file_list(i).name);  
    A=imread(sprintf('%s.bmp',X)); 
     
    %Extract blue color (sector grid) and obtain negative of sector 
    A_blue=A(:,:,3)-A(:,:,1); 
    A_sector=255-A_blue; 
     
    %binarize 
    A_sector=im2bw(A_sector); 
     
    %enlarge lines to separate sectors 
    A_sector=bwmorph(A_sector,'erode'); 
     
    %external frame outside sector and grid region 
    A_frame=bwpropfilt(A_sector,'Area',1); 
    A_grid=im2bw(A_sector-A_frame); 
     
    %center 
    A_center=bwpropfilt(A_sector,'Area',1,'smallest'); 
    A_umbo=bwpropfilt(im2bw(1-A_center),'Area',1,'smallest'); 
    A_center=im2bw(A_center+A_umbo); 
     
    %parafovea 
    A_parafovea=im2bw(A_sector-A_frame-A_center); 
     
    %separate quadrant sectors by Orientation: degrees between major axis 
    %and x-axis of region 
     
    %sup & inf 
    A_parafovea_sup_inf=bwpropfilt(A_parafovea,'Orientation',[-10 10]); 
     
    %SUP 
    %determine location of sup region: 
    upper_edge=find(sum(A_parafovea_sup_inf,2),1); 
    A_parafovea_sup_crop=imcrop(A_parafovea_sup_inf,[1 1 304 (upper_edge+120)]); 
    %add black croped inferior part: 
    black_inf=zeros(304-size(A_parafovea_sup_crop,1),304); 
    A_parafovea_sup=vertcat(A_parafovea_sup_crop,black_inf); 
    A_parafovea_sup=im2bw(A_parafovea_sup); 

																																																								
*	https://ch.mathworks.com/matlabcentral/fileexchange/13063-boxcount?focused=5083247&tab=example 
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    %INF 
    A_parafovea_inf_crop=imcrop(A_parafovea_sup_inf,[1 (upper_edge+120) 304 304-
(upper_edge+120)]); 
    black_sup=zeros(304-size(A_parafovea_inf_crop,1),304); 
    A_parafovea_inf=vertcat(black_sup,A_parafovea_inf_crop); 
    A_parafovea_inf=im2bw(A_parafovea_inf); 
  
    %temp & nasal:  
    A_parafovea_temp_nas=im2bw(bwpropfilt(A_parafovea,'Orientation',[60 120]) + 
bwpropfilt(A_parafovea,'Orientation',[-120 -60])); 
     
    %determine location of LEFT region on IMAGE (as appears on screen) 
    %(then attribution to temp or nasal) 
    left_edge=find(sum(A_parafovea_temp_nas,1),1); 
    A_parafovea_left_crop=imcrop(A_parafovea_temp_nas,[1 1 (left_edge+120) 304]); 
    %add black croped right part: 
    black_right=zeros(304,304-size(A_parafovea_left_crop,2)); 
    A_parafovea_left=horzcat(A_parafovea_left_crop,black_right); 
    A_parafovea_left=im2bw(A_parafovea_left); 
    
    %RIGHT region of IMAGE (as appears on screen) 
    A_parafovea_right_crop=imcrop(A_parafovea_temp_nas,[(left_edge+120) 1 304-
(left_edge+120) 304]); 
    black_left=zeros(304,304-size(A_parafovea_right_crop,2)); 
    A_parafovea_right=horzcat(black_left,A_parafovea_right_crop); 
    A_parafovea_right=im2bw(A_parafovea_right); 
     
    %distinguish OD & OS 
    LATERALITY_OS=strfind('PatientName','_OS'); 
    %OD 
    if isempty(LATERALITY_OS)  
    A_parafovea_temp=A_parafovea_left; 
    A_parafovea_nas=A_parafovea_right; 
     
    else 
    %OS 
    A_parafovea_temp=A_parafovea_right; 
    A_parafovea_nas=A_parafovea_left; 
    
    end 
     
    %save extracted sector images 
     
    %create folder and make it writeable 
    mkdir('../--RESULTS',sprintf('%s/',PatientName)); 
    fileattrib(sprintf('../--RESULTS/%s',PatientName),'+w'); 
     
    cd(sprintf('../--RESULTS/%s',PatientName)) 
     
    imwrite(A_grid,sprintf('%s_sector_grid.png',PatientName),'png'); 
    imwrite(A_frame,sprintf('%s_sector_frame.png',PatientName),'png'); 
    imwrite(A_parafovea,sprintf('%s_sector_parafovea.png',PatientName),'png'); 
    imwrite(A_center,sprintf('%s_sector_center.png',PatientName),'png'); 
    imwrite(A_parafovea_sup,sprintf('%s_sector_paraf_sup.png',PatientName),'png'); 
    imwrite(A_parafovea_inf,sprintf('%s_sector_paraf_inf.png',PatientName),'png'); 
    imwrite(A_parafovea_temp,sprintf('%s_sector_paraf_temp.png',PatientName),'png')
; 
    imwrite(A_parafovea_nas,sprintf('%s_sector_paraf_nas.png',PatientName),'png'); 
     
    %PROCESS OCTA IMAGES: 
    cd('../../-SUP_skel') 
    sup_skel=imread(sprintf('%s_sup_skel.bmp',PatientName)); 
     
    cd('../-DEEP_skel') 
    deep_skel=imread(sprintf('%s_deep_skel.bmp',PatientName)); 
    %Return to RESULTS/PatientName folder 
    cd(sprintf('../--RESULTS/%s',PatientName)) 
  
    %SCP: make binary & remove connected regions of ?2 pixels 
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    sup_skel=im2bw(sup_skel); 
    sup_skel_filt=bwareafilt(sup_skel,[3,inf]); 
     
    %DCP: make binary & remove connected regions of ?4 pixels (more noise) 
    deep_skel=im2bw(deep_skel); 
    deep_skel_filt=bwareafilt(deep_skel,[5,inf]); 
     
    %sector regions in SCP & DCP 
    %SCP 
    sup_skel_grid=immultiply(sup_skel_filt,A_grid); 
    sup_skel_frame=immultiply(sup_skel_filt,A_frame); 
    sup_skel_parafovea=immultiply(sup_skel_filt,A_parafovea); 
    sup_skel_center=immultiply(sup_skel_filt,A_center); 
    sup_skel_inf=immultiply(sup_skel_filt,A_parafovea_inf); 
    sup_skel_sup=immultiply(sup_skel_filt,A_parafovea_sup); 
    sup_skel_temp=immultiply(sup_skel_filt,A_parafovea_temp); 
    sup_skel_nas=immultiply(sup_skel_filt,A_parafovea_nas); 
    %DCP 
    deep_skel_grid=immultiply(deep_skel_filt,A_grid); 
    deep_skel_frame=immultiply(deep_skel_filt,A_frame); 
    deep_skel_parafovea=immultiply(deep_skel_filt,A_parafovea); 
    deep_skel_center=immultiply(deep_skel_filt,A_center); 
    deep_skel_inf=immultiply(deep_skel_filt,A_parafovea_inf); 
    deep_skel_sup=immultiply(deep_skel_filt,A_parafovea_sup); 
    deep_skel_temp=immultiply(deep_skel_filt,A_parafovea_temp); 
    deep_skel_nas=immultiply(deep_skel_filt,A_parafovea_nas); 
     
    %LOCAL FRACTAL DIMENSION lDf 
    %SCP 
    %3x3mm image 
    [n,r] = boxcount(sup_skel_filt,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_scp_total=mean(df(4:5)); 
    print(sprintf('%s_scp__plot_total',PatientName),'-dpng'); 
     
    %grid 
    [n,r] = boxcount(sup_skel_grid,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_scp_grid=mean(df(4:5)); 
    print(sprintf('%s_scp__plot_grid',PatientName),'-dpng'); 
  
    %frame 
    [n,r] = boxcount(sup_skel_frame,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_scp_frame=mean(df(4:5)); 
    print(sprintf('%s_scp__plot_frame',PatientName),'-dpng'); 
  
     
    %center 
    [n,r] = boxcount(sup_skel_center,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_scp_center=mean(df(4:5)); 
    print(sprintf('%s_scp__plot_center',PatientName),'-dpng'); 
  
    %parafovea 
    [n,r] = boxcount(sup_skel_parafovea,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_scp_parafovea=mean(df(4:5)); 
    print(sprintf('%s_scp__plot_parafovea',PatientName),'-dpng'); 
     
    %sup 
    [n,r] = boxcount(sup_skel_sup,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_scp_sup=mean(df(4:5)); 
    print(sprintf('%s_scp__plot_sup',PatientName),'-dpng'); 
    
    %inf 
    [n,r] = boxcount(sup_skel_inf,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_scp_inf=mean(df(4:5)); 
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    print(sprintf('%s_scp__plot_inf',PatientName),'-dpng'); 
  
    %temp 
    [n,r] = boxcount(sup_skel_temp,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_scp_temp=mean(df(4:5)); 
    print(sprintf('%s_scp__plot_temp',PatientName),'-dpng'); 
     
    %nasal 
    [n,r] = boxcount(sup_skel_nas,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_scp_nas=mean(df(4:5)); 
    print(sprintf('%s_scp__plot_nas',PatientName),'-dpng'); 
     
     
    %%%%DCP%%%% 
    %3x3mm image 
    [n,r] = boxcount(deep_skel_filt,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_dcp_total=mean(df(4:5)); 
    print(sprintf('%s_dcp__plot_total',PatientName),'-dpng'); 
     
    %grid 
    [n,r] = boxcount(deep_skel_grid,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_dcp_grid=mean(df(4:5)); 
    print(sprintf('%s_dcp__plot_grid',PatientName),'-dpng'); 
     
    %frame 
    [n,r] = boxcount(deep_skel_frame,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_dcp_frame=mean(df(4:5)); 
    print(sprintf('%s_dcp__plot_frame',PatientName),'-dpng'); 
     
    %center 
    [n,r] = boxcount(deep_skel_center,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_dcp_center=mean(df(4:5)); 
    print(sprintf('%s_dcp__plot_center',PatientName),'-dpng'); 
     
    %parafovea 
    [n,r] = boxcount(deep_skel_parafovea,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_dcp_parafovea=mean(df(4:5)); 
    print(sprintf('%s_dcp__plot_parafovea',PatientName),'-dpng'); 
     
    %sup 
    [n,r] = boxcount(deep_skel_sup,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_dcp_sup=mean(df(4:5)); 
    print(sprintf('%s_dcp__plot_sup',PatientName),'-dpng'); 
     
    %inf 
    [n,r] = boxcount(deep_skel_inf,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_dcp_inf=mean(df(4:5)); 
    print(sprintf('%s_dcp__plot_inf',PatientName),'-dpng'); 
     
    %temp 
    [n,r] = boxcount(deep_skel_temp,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_dcp_temp=mean(df(4:5)); 
    print(sprintf('%s_dcp__plot_temp',PatientName),'-dpng'); 
     
    %nasal 
    [n,r] = boxcount(deep_skel_nas,'slope'); 
    df = -diff(log(n))./diff(log(r)); 
    lDf_dcp_nas=mean(df(4:5)); 
    print(sprintf('%s_dcp__plot_nas',PatientName),'-dpng'); 
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    %%%SAVE IMAGES%%%% 
    imwrite(sup_skel_grid,sprintf('%s_scp_grid.png',PatientName),'png'); 
    imwrite(sup_skel_frame,sprintf('%s_scp_frame.png',PatientName),'png'); 
    imwrite(sup_skel_parafovea,sprintf('%s_scp_parafovea.png',PatientName),'png'); 
    imwrite(sup_skel_center,sprintf('%s_scp_center.png',PatientName),'png'); 
    imwrite(sup_skel_inf,sprintf('%s_scp_inf.png',PatientName),'png'); 
    imwrite(sup_skel_sup,sprintf('%s_scp_sup.png',PatientName),'png'); 
    imwrite(sup_skel_temp,sprintf('%s_scp_temp.png',PatientName),'png'); 
    imwrite(sup_skel_nas,sprintf('%s_scp_nas.png',PatientName),'png'); 
  
    imwrite(deep_skel_grid,sprintf('%s_dcp_grid.png',PatientName),'png'); 
    imwrite(deep_skel_frame,sprintf('%s_dcp_frame.png',PatientName),'png'); 
    imwrite(deep_skel_parafovea,sprintf('%s_dcp_parafovea.png',PatientName),'png'); 
    imwrite(deep_skel_center,sprintf('%s_dcp_center.png',PatientName),'png'); 
    imwrite(deep_skel_inf,sprintf('%s_dcp_inf.png',PatientName),'png'); 
    imwrite(deep_skel_sup,sprintf('%s_dcp_sup.png',PatientName),'png'); 
    imwrite(deep_skel_temp,sprintf('%s_dcp_temp.png',PatientName),'png'); 
    imwrite(deep_skel_nas,sprintf('%s_dcp_nas.png',PatientName),'png'); 
       
    cd('../../--SECTOR'); 
     
    %%%SAVE VALUES in csv%%% 
    fprintf(f_fractal,'%s; %.4f; %.4f; %.4f; %.4f; %.4f; %.4f; %.4f; %.4f; %.4f; 
%.4f; %.4f; %.4f; %.4f; %.4f; %.4f; %.4f; %.4f; %.4f\n',PatientName, lDf_scp_total, 
lDf_scp_grid, lDf_scp_frame, lDf_scp_center, lDf_scp_parafovea, lDf_scp_sup, 
lDf_scp_inf, lDf_scp_temp, lDf_scp_nas, lDf_dcp_total, lDf_dcp_grid, lDf_dcp_frame, 
lDf_dcp_center, lDf_dcp_parafovea, lDf_dcp_sup, lDf_dcp_inf, lDf_dcp_temp, 
lDf_dcp_nas); 
     
    end 
  
    fclose(f_fractal); 
  
    end 

	


