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A B S T R A C T

Concepts such as "neurodoping" have contributed to an expansion in the area of transcranial direct current
stimulation (tDCS) and its impact over physical performance in recent years. This umbrella review examines
meta-analyses to evaluate tDCS’s impact on exercise performance in healthy individuals. We identified 9 meta-
analyses that met our inclusion criteria, encompassing 50 crossover studies and 683 participants. Like previous
meta-analyses, we found a small but significant effect across individual studies (gz = 0.28, 95%CI [0.18, 0.39]).
However, we also found clear evidence of publication bias, low power and substantial variability in methodo-
logical decisions. The average effect became non-significant after accounting for publication bias (grm = 0.10,
95%CrI [− 0.04, 0.20], BF10 = 0.99), and a specification curve analysis showed that the final effect could range
from g = − 0.23 to g = 0.33, depending on decisions such as the formula used for estimating the effect size and
multiple additional analytic steps. Overall, our findings suggest that current evidence does not conclusively
support acute tDCS as an exercise performance enhancer.

1. Introduction

In the pursuit of optimizing performance, sport scientists explore
avenues for marginal gains, a trend exacerbated by the escalating
pressure on athletes to continually enhance their abilities. Non-invasive
brain stimulation has garnered significant interest across diverse
research domains due to its promising potential to enhance various as-
pects of human behavior and cognitive function (Polanía et al., 2018).
The primary techniques in non-invasive brain stimulation are trans-
cranial magnetic stimulation, which leverages electromagnetic induction
to produce localized electrical currents within the brain, effectively
modulating neuronal activity with high spatial precision; and trans-
cranial electrical stimulation, which uses low-intensity electrical currents
(typically around 1–2 mA) applied non-invasively to the scalp altering
purportedly cortical excitability and brain function by subtly influencing
neuronal networks (Reardon, 2016). Despite transcranial magnetic
stimulation’s superior spatial targeting capabilities, transcranial direct
current stimulation (tDCS)—a specific form of transcranial electric

stimulation—has recently gained widespread attention, especially
among athletes. The underlying premise behind tDCS usage is its po-
tential to elevate physical performance by stimulating specific brain
regions (e.g., motor or prefrontal cortex) engaged during exercise. While
the precise mechanisms through which tDCS may enhance physical
exercise performance remain elusive, the current hypothesis attributes
potential improvements to factors such as diminished pain perception,
heightened corticospinal excitability, and a reduction in perceived effort
during exercise (Angius et al., 2015).

This technique attracted significant attention following a seminal
study by Okano et al. (2013), which demonstrated that acute anodal
transcranial stimulation of the temporal cortex could enhance athletic
performance. In this study, 10 cyclists exhibited approximately a 4%
improvement in peak power during an incremental exercise test (p =

.043). After that, the increasing interest in this technique in recent years
is evident from the escalating number of primary studies (Holgado,
Zandonai, et al., 2019; Park et al., 2023; Valenzuela et al., 2018),
narrative reviews (Angius et al., 2018), systematic reviews (Machado
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et al.,2019), and meta-analyses (Holgado, Vadillo, et al., 2019b;
Machado et al., 2019; Maudrich et al., 2022) published in the last few
years. Although the focus of these studies and meta-analyses might vary
slightly, the main conclusions of the literature are that (1) tDCS has an
ergogenic effect, albeit possibly small; (2) tDCS might be more effective
in some exercise performance domains than others; (3) the level of
expertise of the population might be relevant (i.e., novice participants
might have more room for improvement); (4) little is known about the
long-term effect of the stimulation; (5) the effects may be modulated by
various factors (e.g., the area stimulated, the electrode placement, the
duration of stimulation, etc.); (6) To date, most sport science studies
have used only acute interventions. Despite being perceived as less
effective in modulating brain activity compared to other non-invasive
brain stimulation techniques (Ryan et al., 2023), tDCS remains the
most extensively utilized method in the field. This widespread use can be
attributed to several factors, including its simplicity, affordability, ease
of application, and minimal discomfort to participants. The rapid and
exponential advancement of this technique has driven the commer-
cialization of do-it-yourself devices in the last 5–10 years, and, at the
same time, it has raised concerns about potential ethical considerations,
as it could be seen as a form of brain-doping (Davis, (2013a); although
see (Holgado, Vadillo, et al., 2019a).

This umbrella review delves into the current landscape of acute tDCS
and its impact on exercise performance. The overarching objective is to
discern the validity of claims asserting tDCS as a beneficial ergogenic
aid, evaluating whether these assertions are substantiated by robust
evidence or merely represent a transient trend in the field. This review
offers a novel synthesis of the existing literature by systematically
analyzing previous meta-analyses alongside their constituent individual
studies.

2. Methods

2.1. Preregistration

The methods and planned analyses of this umbrella review were
preregistered on 29 December 2022 at PROSPERO (CRD42022384967)
and in the OSF repository: https://osf.io/73qsu/. All deviations from the
preregistered protocol and analysis plans are transparently identified in
the following sections.

2.2. Data and code avail ability

The data analyzed and the code used for the analysis in this study are
publicly available at the OSF repository: https://osf.io/73qsu/.

2.3. Literature search

We conducted a systematic literature search following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses guidelines
(last search in January 2023) in Medline, Web of Science and Scopus
using the following Boolean operators: ("physical exercise" OR "exercise
performance” OR "physical activity" OR sport) AND (tDCS OR tES OR
"brain stimulation" OR “transcranial stimulation”) AND (meta-analysis
OR metaanalysis OR “systematic review”). Additionally, we searched on
Google Scholar to identify unpublished meta-analyses meeting the in-
clusion criteria. Search was limited to papers published in English.

2.4. Inclusion and exclusion criteria

We followed the Participant-Intervention-Comparison-Outcome
process to select the meta-analyses included in this umbrella review:
(1) Participants: healthy participants of all ages and both sexes. (2)
Intervention: within- and between-participants studies investigating the
effects of tDCS on physical exercise performance. (3) Comparison:
anodal or cathodal stimulation vs. sham control. (4) Outcome: meta-

analyses and primary studies should report at least one measure of
physical exercise performance. Upon review, we observed that most of
the literature is composed of primary studies with within-participant
manipulations. We advance here that only 3 of the 53 studies that met
the inclusion criteria involved between-group designs (Cogiamanian
et al., 2007; Hendy et al., 2015; Hendy and Kidgell, 2013). For the sake
of simplicity, we decided a posteriori to restrict the analyses to the 50
studies with within-participant designs, although the conclusions were
not affected when the three between-group studies were included
(Supplementary Material 3).

2.5. Data extraction

The following data were extracted from each meta-analysis by DH
and RRC: (1) list of authors and year of publication from each primary
article included in the meta-analysis; (2) latest search date and publi-
cation date; (3) type and estimation method of effect size; (4) reported
final effect size; (5) method for dealing with dependence between effect
sizes; (6) type of exercise outcome and stimulation analyzed; (7) number
of included studies; (8) analysis of publication bias; and (9) protocol
registration. In addition, for our assessment of transparency and repro-
ducibility practices, we coded whether the meta-analysis reported
compliance with reporting guidelines, competing interests, search
limits, search terms, full search strategy, eligibility criteria, double
coding, use of methods to assess risk of bias in primary studies, dealing
with dependence between effect sizes and the combination of between-
and within-participant designs, outlier identification, statistical model,
estimation method of the heterogeneity variance, software, and code
and data availability.

At the primary study level, DH, DS, MAV, and RRC extracted the
following information from the studies included in the meta-analyses in
duplicated: (1) list of authors and year of publication; (2) pooled number
of participants for the stimulation and sham group; (3) sample charac-
teristics; (4) type of exercise test; (5) exercise category; (6) exercise
outcome assessed; (7) study design; (8) target brain area, electrode
montage, stimulation duration and intensity, electrode surface, number
of sessions, and concurrence of the stimulation; (10) t or F value; and
(11) means and standard deviations for each condition (when we could
not extract exact means and standard deviations but graphic information
was available, we estimated the values from the graphs using the soft-
ware WebPlotDigitizer (Rohatgi, 2022). Based on these data, we iden-
tified 50 primary studies that met the criteria of the present umbrella
review. Moreover, the effect sizes were only extracted for the compari-
sons of interest. Therefore, effect sizes comparing conditions with and
without supplementation (e.g., caffeine) or assessing the impact of other
factors than tDCS (e.g., mental fatigue) were excluded.

2.6. Statistical analysis

2.6.1. Graph analysis
To explore the overlap in primary studies across the reviewed meta-

analyses, we created a bipartite network graph (with meta-analyses and
primary studies as two different categories of nodes) using the igraph R
package (Csárdi and Nepusz, 2006). To analyze the centrality and
closeness of the nodes, we converted the two-mode network into two
one-mode networks and, for meta-analyses, we used the tnet R package
(Opsahl, 2009) to calculate the sum of weights on ties originating from a
node as centrality score and the normalized closeness score for nodes
(dividing raw closeness score by N − 1). Whereas the centrality score
represents a measure of the involvement of the node (individual
meta-analysis) in the network, it does not take into account the global
structure of the network. For example, a highly connected node might
not be in a position to reach others quickly (i.e., closeness). Therefore,
we chose to include both measures: the higher the centrality score and
the lower the closeness score, the more central the meta-analysis in the
network (i.e., more connected and shorter path length between two
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nodes).

2.6.2. Effect size
Given that most of the primary studies adopted a study design in

which the physical performance of the same sample of participants was
compared after acute tDCS vs. a sham condition (within-participant
designs contrasting posttest performance), we opted for a Cohen’s dz,
which we preferentially estimated from t and F values (dz = t/√n or dz =

√F/√n). If those values were not available (note that with F value we
mean the statistic for the main effect of stimulation in a repeated mea-
sures ANOVA with only two tDCS conditions), we used the following
formula as a standardized mean difference-based effect size:

dz =
Mdiff

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S2
1 + S2

2 − 2 × r × S1 × S2

√ ; (1)

where Mdiff represents the difference of means, S1 and S2 the standard
deviations of the contrasted conditions, and r the repeated-measures
correlation. Its variance was estimated as:

Vdz =
1
n

+
d2
z

2n
(2)

Note that this decision was taken considering that the intra-
individual difference score is the most natural unit of analysis in this
type of research, which aims to prove the causal effect of acute tDCS
using the participant themself as a control for other background vari-
ables (for a more detailed discussion, see (Lakens, 2013). Therefore, we
excluded a minority of three studies with between-group designs (see
Inclusion and exclusion criteria) and estimated dz in the remaining
studies. We estimated repeated-measures correlations from t values and
F values from one-way repeated measures ANOVA (i.e., F= √t) to reach
an overall repeated-measures correlation that could be imputed in
studies that did not report any of both statistics. Overall, we could
extract 44 correlations from 26 studies (mean of 1.7 correlations per
study, 1–6) and, subsequently, we obtained a meta-analytic Pearson’s r
of .846, 95%CI [.76, .93]. For studies in which means and standard
deviations could not be extracted, dz was calculated directly from the t
value and the number of participants: dz = t/√n. Additionally, we
provide a transformation of that effect into common language effect (CL;
Ruscio and Mullen, 2012; i.e., the probability that a randomly sampled
score from the treatment condition is greater than another score
sampled from the control condition).

Although the main analyses reported in our umbrella review were
based on studies with within-participant designs, all the analyses were
repeated including the three studies that implemented interventions
between groups (Supplementary Material 1). To combine effects across
within and between-participant designs, we used drm and ds formulas for
within- and between-participant designs, respectively:

drm = dz ×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(1 − r)

√
(3)

and

ds =
Mdiff

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

√ (4)

whose variance were estimated as

Vdrm = Vdz × 2(1 − r) (5)

and

Vds =
n1 + n2

n1 ×n2
+

d2
s

2(n1 + n2)
(6)

All estimates and their variance were corrected for small-sample
bias:

J = 1 −
3

4df − 1
(7)

g = J × d (8)

Vg = J2 × Vd. (9)

2.6.3. Meta-analysis and heterogeneity
We implemented multilevel meta-analytic models using the robust

variance estimation approach (RVE; Hedges et al., 2010), which deals
with a correlated structure of outcomes from the same primary study.
We used the RVE method using the robumeta R package (Fisher and
Tipton, 2015). The usual heterogeneity indexes, τ2 and I2, were
computed.

2.6.4. Outlier detection and moderator analysis
We assessed whether the observed heterogeneity could be due to the

presence of outliers and moderating variables. We fitted a multilevel
model with the rma.mv function of metafor (Viechtbauer, 2010) and
estimated the studentized residuals. Studies with studentized residuals
higher than 2 were identified as outliers. In addition, as already planned
in the registration of this study, we examined the influence of the
following moderators: (1) target brain area (motor, prefrontal, or tem-
poral cortex); (2) stimulation duration (in min; continuous variable); (3)
stimulation intensity (in mA; continuous variable); (4) concurrence of
the stimulation with the exercise task (online, offline or offline-online);
(5) type of outcome (endurance or strength exercise); and (6) muscle
involved (whole body vs. isolated).1 Moreover, we investigated the role
of further moderators (not included in the registered protocol): (1) year
of publication (continuous variable); (2) age of the sample (in years;
continuous variable); (3) training status (untrained vs. trained); (4)
stimulation polarity (cathodal vs. anodal); (5) electrode montage (single
vs. bicephalic vs. high definition, HD); (6) electrode surface (in mm;
continuous variable); (7) return location (extracephalic vs. cephalic);
and (8) number of sessions (continuous variable).

2.6.5. Statistical power and publication bias
To estimate the power of individual studies, we took as reference an

approximation of our final uncorrected effect (gz = 0.30), and found out
the number of participants needed to reach specific power thresholds,
assuming a one-tailed t-test and an alpha of .05. To test for publication
bias, we relied on two types of methods, based either on funnel plot
asymmetry (FAT) or selection models. Among the first category is the
inclusion of the effect-size precision estimate as a moderator in the
multilevel model to test whether there is a general relationship between
the observed effect sizes and their precision (i.e., funnel plot asymmetry;
Egger et al., 1997). Within this procedure, the intercept of the
meta-regressive model would be taken as the best estimate of the un-
derlying effect (i.e., the estimated effect when the sampling error is
zero), a method that has been proposed to follow a conditional pro-
cedure (precision-effect test–precision-effect estimate with standard error,
PET–PEESE; Stanley and Doucouliagos, 2014). The logic of PET-PEESE
can be extended to multilevel models (Fernández-Castilla et al., 2021;
Friese et al., 2017; Rodgers and Pustejovsky, 2020). We conducted FAT
and PET-PEESE with Fisher’s z for being a variance-stabilizing trans-
formation for the effect size and preventing the artifactual dependence
between Cohen’s d and its precision estimate (Pustejovsky and Rodgers,
2019). For the Fisher’s z transformation, we converted dz into drm
(Lakens, 2013), and then drm into Fisher’s z (Borenstein et al., 2021)

Within the second type, selection models (Vevea and Hedges, 1995)

1 Our combined analysis with within- or between-participant designs (using
grm and gs as estimates of the effect size, respectively) showed no difference
between the effects of both study designs, βwithin vs. between = − 0.10, p = .714.
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assume that the probability of publication depends on the p value. In our
meta-analysis, we used a three-parameter selection model (3PSM) with a
one-tailed p-value cutpoint of .025, selecting only significant studies. A
way to account for dependence among effect sizes with this model is to
combine all the effect sizes coming from the same sample generating an
average estimate for each study, and conduct the classic methods on
these aggregates (Rodgers and Pustejovsky, 2020). We used the MAd
package in R (del Re and Hoyt, 2014) to generate within-study aggre-
gates, while we carried out 3PSM with the weightr package (Coburn and
Vevea, 2019)

Finally, we conducted a robust Bayesian meta-analysis (RoBMA;
Bartoš et al., 2023) that yields one single model-averaged estimate after
simultaneously applying (1) meta-regressive models for the relationship
between effect sizes and their standard errors (PET–PEESE) and (2) se-
lection models that estimate relative publication probabilities (selection
model). RoBMA makes inferences guided mostly by those models that
predict the observed data best. Based on the reviewed meta-analyses
that reflect a prior belief of a substantial effect of tDCS on exercise
performance, we selected a normal distribution centered at 0.30 and
with one standard deviation as the prior of the effect in the alternative
hypothesis. For the effect belonging to the null hypothesis, we assumed a
normal distribution centered at 0 an equal standard deviation. As with
the FAT and PET-PEESE method and 3PSM, RoBMA was conducted with
a Fisher’s transformation of dz and within-study aggregates.

To reduce the impact of heterogeneity on the output of publication-
bias analyses, we drew out known heterogeneity due to outliers and
moderators (stimulation intensity and polarity) in all the methods. Thus,
we excluded outlying studies and outcomes coming from cathodal tDCS
(which represented a minority) and added stimulation intensity as a
continuous moderator (re-centered at 0). In the case of RoBMA, we first
fitted a univariate meta-analysis with the aggregates and stimulation
intensity as a moderator, from which the raw residuals plus the intercept
of that model served as the input for RoBMA.

2.6.6. Specification curve
Finally, we conducted an exploratory specification curve analysis

(Simonsohn et al., 2020) with all the primary studies. In the specifica-
tion curve, we estimated the final effect size and its significance for a
total of 32 possible combinations of four analytic decision levels: (a)
how to deal with within-study dependence (no strategy or assuming
within-effects independence, an RVE multilevel model, and fitting a
univariate model with aggregate effect sizes); (b) the identification and
exclusion or not of outlying studies; (c) the inclusion or not of influential
moderators to adjust the outcome (that is, type of control group and
baseline difference); and (d) the strategies to assess and correct the final
outcome for publication bias (PET-PEESE, 3PSM, and no correction).
Although all meta-analyses estimated the effect size following the gs
formula, we conducted the specification-curve analysis adopting three
formulas of the effect size for comparative purposes: grm, gs, and gz. The
analysis led to 96 different combinations of specifications, as 3PSM
cannot be conducted with a multilevel model. Six models did not
converge properly (all of them with 3PSM, and gs or gz), which led to a
total of 90 outcomes.

3. Results

In a systematic literature search (last search in January 2023), a total
of 9 meta-analyses (Alix-Fages et al., 2019; Alves-Lobão et al., 2022;
Chinzara et al., 2022; Holgado et al., 2019b; Hu et al., 2022; Kaushalya
et al., 2022; Lattari et al., 2018; Machado et al., 2019; Maudrich et al.,
2022) meeting the inclusion criteria were selected from among 1145
records. In addition, among the 70 primary studies in the meta-analyses,
50 were included in our umbrella review as they assessed the effects of
tDCS on physical exercise performance in healthy participants compared
to a condition of sham control (see Supplementary Material 1 for
exclusion reasons). Included primary studies involved a total of 683

participants. We extracted 101 effect sizes from them, a mean of two
outcomes per study (range 1–6). Most of the primary studies used offline
tDCS (45), only anodal stimulation (42), only one session (48), and
young samples of participants (48; between 16.1 and 33 years old). The
studies applied tDCS over the primary motor cortex (36), prefrontal
cortex (11), temporal cortex (6), or the cerebellum (1) to investigate its
benefits on strength and endurance exercise performance.

3.1. Overlapping and variation in study sampling

To explore the overlap in primary studies across the reviewed meta-
analyses, we created a bipartite network graph (with meta-analyses and
primary studies as two different categories of nodes). The graphical
visualization of the connections between the meta-analyses and primary
studies (Fig. 1) showed a large overlap in a significant portion of the
meta-analyses (6 out of 9). After converting the two-mode network into
two one-mode networks, the average centrality score (53.2, 95%CI
[40.5, 65.8]) and the normalized closeness scores (1.14, 95%CI [0.96,
1.33]) of this group differ from the indices of the other three remaining
meta-analyses (10, 35, 37; centrality score: 11, 24, and 10; normalized
closeness score: 0.40, 0.62, and 0.39), as evidence of this distancing
from the central group (Table 1). The separation of these meta-analyses
could be due to divergences in the inclusion criteria they used, especially
regarding the selection of participants. While most of the meta-analyses
only required that participants should be healthy adults, the works by
Alves-Lobão et al. (2022) and Maudrich et al. (2022) constrained their
reviews to studies with samples of athletes. Hu et al. (2022), on the
contrary, selected tDCS interventions with untrained adults.
Alves-Lobão et al. (2022) additionally restricted their search to articles
from 2009 onwards (also, the specific inclusion criteria of this
meta-analysis might be partly responsible of its atypically higher
outcome, g = 1.44; vs. the overall effect in the rest of meta-analyses, g =
0.27). Finally, these meta-analyses are among the most recent and,
therefore, included recent articles that earlier reviews missed due to a
temporal reason. Other divergences in the age criteria of participants
(some meta-analyses included older adults; Alix-Fages et al., 2019;
Chinzara et al., 2022), stimulation polarity (some meta-analyses
included cathodal stimulation; Alix-Fages et al., 2019; Alves-Lobão
et al., 2022; Chinzara et al., 2022; Machado et al., 2019), and the in-
clusion of only endurance and sprint performance during cycling and
running tasks in Kaushalya et al., 2022 had less impact on the overlap of
meta-analyses.2 At the primary study level, although the reviewed
meta-analyses included an average of 15 primary studies (4–34), a large
proportion of primary studies only appeared in one meta-analysis (19
out of 50). This denotes that the central group of reviews was built from
sharing few primary studies (only 20 primary studies appeared at least
in three reviews).

3.2. Transparency and reproducibility practices

Before analyzing the results of meta-analyses quantitatively, we
explored their transparency and reproducibility practices
(López-Nicolás et al., 2022). Most of the meta-analyses included state-
ments of compliance with reporting guidelines (8 out of 9; Fig. 2), were
free of competing interests (8), indicated the search limits (8), the search
terms used (9), the full search strategy (exact terms and the Boolean
connectors; 9), the eligibility criteria (9), described in details the
collection process of study characteristics (9), methods to assess risk of
bias in included studies (9), stated the statistical model assumed for the
synthesis process (9), and identified the software used to carry out the

2 The fact that only two studies were conducted with older adults and that all
cathodal tDCS interventions were applied in studies that also used anodal tDCS
meant that the divergences of criterias in age and type of intervention did not
result in differences in study samples.
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analyses (9).3 However, few meta-analyses preregistered their protocols
(2; Alves-Lobão et al., 2022; Machado et al., 2019) and, although some
of them used a double coding strategy (5), none reported a measure of
inter-coder agreement. Two meta-analyses based their quantitative
synthesis on unstandardized mean differences (Hu et al., 2022; Machado
et al., 2019), combining measures from a different scale, while the
remaining meta-analyses used Cohen’s d as the estimate of the effect
size. Despite the disparity of formulas proposed for calculating Cohen’s
d depending on the error term used for standardization (Lakens, 2013),

only two meta-analyses specified the formula in the article (Kaushalya
et al., 2022) or in the scripts of analyses (Holgado, Vadillo, et al.,
2019b). Most of the meta-analyses did not report how they dealt with
correlated structures of effects (i.e., multiple outcomes from the same
sample; 2) and how they combined effect sizes from between- and
within-participant designs (1 out of 7). They also failed to describe
sensitivity analyses to assess the effect of outliers (2), state the estima-
tion method of the heterogeneity variance (1), assess the impact of
publication bias (4); and make available their scripts of analyses when R
packages were used (1 out of 3). Finally, even when most of the
meta-analyses reported some raw data in the paper (8), in most of the
cases this report was in the article itself and not in a machine-readable
format (1).

3.3. Overall effect of tDCS on exercise performance

The seven meta-analyses that evaluated the effect of tDCS using
standardized effect sizes (i.e., Hu et al., 2022; Machado et al., 2019) used
unstandardized mean differences) showed on average an effect of 0.44
(0.22–1.44). However, among these meta-analyses, the extremely
disparate value of the review by Alves-Lobão and collaborators (2022; g
= 1.44) makes this work an outlier. Excluding this meta-analysis, the
average meta-analytic effect was reduced substantially: g = 0.27
(0.22–0.34). This outcome is similar in magnitude to the overall effect
obtained in our own meta-analysis using a multilevel model with all
primary studies included from the nine meta-analyses. We observed an
overall effect of gz = 0.28, 95%CI [0.18, 0.39], p < .0001, CL = .58, and
moderate heterogeneity, I2 = 55.63% (Fig. 3A).

Since multiple decisions could produce variability between the
reviewed meta-analyses and ours (e.g., the way the individual effect
sizes were estimated or the strategy adopted to deal with the

Fig. 1. Network graph of the reviewed meta-analyses. Meta-analysis nodes are represented by letters (A–I), while the included primary studies are depicted by
numerical nodes (1–49).

Table 1
Results of network analyses.

Meta-analysis Centrality score Closeness score

Alix-Fages et al. (2019) 66 1.35
Alves-Lobão et al. (2022) 11 0.40
Chinzara et al. (2022) 78 1.50
Holgado et al. (2019) 66 1.35
Hu et al. (2022) 24 0.62
Kaushalya et al., 2022 31 0.85
Lattari et al. (2018) 35 0.87
Machado et al. (2019) 43 0.96
Maudrich et al. (2022) 10 0.39

3 Note that most of the reviewed meta-analyses (6) used Review Manager
(Cochrane Collaboration, Oxford, UK; Alix-Fages et al., 2019; Hu et al., 2022;
Lattari et al., 2018; Machado et al., 2019; Maudrich et al., 2022; Kaushalya
et al., 2022), while three reviews relied on R packages (Alves-Lobão et al.,
2022; Chinzara et al., 2022; Holgado, Vadillo, et al., 2019b). We restricted the
assessment of code availability and the report of the effect-size formula in the
code to these three latter meta-analyses.
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Fig. 2. Percentage of meta-analyses according to their transparency and reproducibility practices.

Fig. 3. (A) Overall effect of the model with the individual effects of all the included primary studies. The final effect and its confidence interval are represented by the
location and the width of the diamond, while the horizontal line depicts the prediction interval. Filled circles are the individual effects, while the black ones represent
outlier studies. (B) Relationship between the reported effect sizes of the reviewed meta-analyses and the effect sizes estimated in our reanalysis. The dashed diagonal
indicates the perfect match between the two estimates.
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dependence generated by the inclusion of several outcomes from the
same sample), we re-estimated the overall effect of each meta-analysis
with the same original samples of primary studies, excluding primary
studies that did not meet our inclusion criteria this time. On average, the
seven reported standardized effects departed 0.23 gs units from their
corresponding re-estimated effects (0.05 after excluding Alves-Lobão
and collaborators (2022; Fig. 3B).

3.4. Outliers and moderating variables

The moderate heterogeneity observed in our multilevel meta-
analysis with all primary studies (I2 = 56.46%) might be due to the
presence of outliers or other sources of variability, such as moderating
variables. Five outlying studies were detected (Flood et al., 2017; Kamali
et al., 2019; Lattari, Campos, et al., 2020; Lattari, Rosa Filho, et al.,
2020; Park et al., 2023) as they contributed with extremely large effect
sizes (i.e., gz < − 0.8 or > 2; see dark points in Fig. 3A). After excluding
those studies, heterogeneity reduced substantially (I2 = 34.08%) while
the overall effect size remained significant, gz = 0.26, 95%CI [0.17,
0.36], p < .0001, CL = .57. In addition, two factors explained part of the
between-studies variability: stimulation polarity and intensity (Table 2).
While anodal tDCS showed a positive effect on exercise performance, gz
= 0.28, 95%CI [0.19, 0.38], p < .0001, cathodal tDCS did not have a
significant impact, gz = 0.03, 95%CI [− 0.19, 0.25], p = .713 (Fig. 4A).
This result was supported by a numerical trend toward a greater
improvement in performance with anodal stimulation compared to
cathodal stimulation in studies where the two tDCS protocols were
applied to the same sample: gz, anodal vs. cathodal = 0.39, 95%CI [− 0.08,
0.86], p = .081. For stimulation intensity, higher mA produced a higher
effect, p = .021 (Fig. 4B).

3.5. Power analysis and publication bias

The mean number of participants per study was 13 participants, a
sample size that would largely stand with insufficient statistical power
(< 80%) to test in a one-tailed contrast for a target effect such as the
observed effect in our comprehensive meta-analysis (approximated to gz
= 0.30 for the sake of simplicity). For an effect of that size, most of the
studies achieved a power of less than 40% (48 out of 50; Fig. 5A) and
only one study reached a power larger than 50% (Holgado, Zandonai,
et al., 2019; 54%). One of the reasons for this limitation could have been
the grounding of the primary studies’ power analysis on the outcomes of

other studies with disproportionately large effects (e.g., Cogiamanian
et al., 2007; Tanaka et al., 2009; Vitor-Costa et al., 2015). Thus, in a
closer examination of the accumulation of evidence in this literature, it
can be observed that the average final effect of the published
meta-analyses and the effects of individual studies have become
increasingly closer to the effect observed in our meta-analysis over the
years (Fig. 5B). However, this evidence has not been translated to proper
power analyses in the primary studies. The studies that performed power
analyses to estimate their sample sizes (20 out of 50) have selected
increasingly larger target outcomes over time and, whereas
meta-analyses and accumulated evidence suggested an uncorrected ef-
fect size of 0.30, primary studies have based their estimation on larger
effect sizes (approximated to gz = 0.80, on average). In addition to
reducing the likelihood of observing a significant effect if the effect truly
exists, low statistical power also reduces the likelihood that a statisti-
cally significant result reflects a true effect (Button et al., 2013). When a
small study observed a significant and large effect, it is more probable
that the result did not represent a true effect and that its estimated
magnitude was inflated.

Complementarily, we assessed publication bias after taking into ac-
count the identified sources of heterogeneity (i.e., outliers and moder-
ators). We tested for FAT with a multilevel model that included standard
error as an additional moderator. Our FAT model showed a numerical
trend of standard error to explain part of the remaining heterogeneity (β
= 0.62, p = .056; Table 3) and the adjusted effect of tDCS on exercise
performance became non-significant, Fisher’s z= − 0.04, 95%CI [− 0.18,
0.10], p = .539, CL = .48 (Fig. 5C). In contrast, 3PSM did not detect
significant evidence of publication bias, χ2(1) = 1.00, p = .317, and the
publication-bias corrected effect was significant, gz = 0.21, 95%CI [0.04,
0.37], p = .017, CL = .56. However, when we applied robust Bayesian
meta-analysis to integrate both publication bias assessment approaches
into a single model-averaged estimate, the model suggested moderate
evidence of publication bias, BFpb = 3.10, and inconclusive evidence of a
positive effect, BF10 = 0.99, for a posterior mean estimate of Fisher’s z=
0.05, 95%CrI [− 0.02, 0.10], CL = .53.

3.6. Influence of analytical decisions

The differences in the multiple analytic steps the meta-analyses
adopted could largely influence their outcomes. The meta-analyses
differed, for example, in the approach used to deal with the within-
effects dependence, whether they addressed (or not) outlying studies,
the use (or not) of influential moderators and methods for assessing
publication bias to adjust the final effect. To examine the impact of all
these decisions on the meta-analytic outcome, we conducted an
exploratory (non-preregistered) specification curve analysis (Simonsohn
et al., 2020) with all the primary studies. In the specification curve, we
estimated the final effect size and its significance for a total of 32
possible combinations of four analytic decision levels: (a) how to deal
with within-study dependence; (b) the identification and exclusion or
not of outlying studies; (c) the inclusion or not of influential moderators
to adjust the outcome; and (d) the strategies to assess and correct the
final outcome for publication bias. The analysis revealed that the final
effect could vary greatly depending on the effect size formula used and
analytic decisions (from performance impairment, g = − 0.23, to per-
formance enhancement, g = 0.33; Fig. 6). Common specifications in the
reviewed meta-analyses, such as not dealing with within-study depen-
dence using univariate models (8 out of 9), not identifying outliers (7),
or not correcting for publication bias (5) led to higher effects and more
likely to be significant. In general, the uncorrected effect of tDCS was
larger when the formula used was gz instead of grm or gs because gz takes
into account the correlation between repeated measures (i.e., higher
between-measure correlation leads to a decrease in the standard devi-
ation of the difference score used to standardize and a subsequent in-
crease of d for the same difference score). Therefore, our specification
curve analysis highlighted the large impact of analytic decisions on the

Table 2
Results of moderator analyses.

Moderator Test

Year β = 0.02, p = .211
Age β = − 0.001, p = .828
Training status (untrained vs. trained) β = − 0.12, p = .236
Target brain area (prefrontal, temporal, and motor

cortex)
βprefrontal vs. motor = − 0.03, p =

.829
βtemporal vs. motor = − 0.13, p =

.405
βprefrontal vs. temporal = 0.10, p =

.590
Stimulation polarity (cathodal vs. anodal) β = − 0.26, p = .049
Stimulation duration β = 0.01, p = .335
Stimulation intensity β = 0.30, p = .034
tDCS montage (single, bicephalic, and HD) βHD vs. bicephalic = − 0.18, p =

.588
βsingle vs. bicephalic = − 0.26, p =

.128
βHD vs. single = 0.08, p = .798

Electrode surface (in mm) β = 0.006, p = .411
Return location (extracephalic vs. cephalic) β = − 0.16, p = .074
Concurrence with the task (online vs. offline) β = − 0.13, p = .430
Number of sessions β = 0.04, p = .425
Type of outcome (strength vs. endurance) β = − 0.18, p = .069
Muscle involved (whole body vs. isolated muscle) β = 0.18, p = .055
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final effect and that most of the meta-analyses opted for specifications
that tend to find more positive outcomes.

4. Discussion

Within this umbrella review, we scrutinized the assertion that acute
tDCS holds a potential ergogenic impact on exercise performance.
Through a comprehensive re-analysis of 9 meta-analyses, comprising 50
individual studies, encompassing 101 effect sizes, and involving 683
participants, there was no conclusive evidence to support the hypothesis
that transcranial brain stimulation results in discernible physical per-
formance benefits in healthy adults. Our findings underscore the notion
that the accelerated proliferation of studies and meta-analyses in this
domain in recent years lacks the corresponding rigor and substantive
evidence needed to conclusively support the purported ergogenic effects
on exercise performance. We have identified that the inconclusive evi-
dence stems from both theoretical and methodological factors, a clari-
fication of which is provided below.

From a theoretical point of view, the rapid advancement of this brain

Fig. 4. (A) Difference between the effects of anodal and cathodal tDCS on exercise performance. The final effect and its confidence interval are represented by the
location and the width of the diamond, respectively. (B) Increase in the effect of tDCS with higher stimulation intensity. The dashed line denotes the trend estimated
by the model. In both panels, filled circles are the individual effects, while the black ones represent outlier studies.

Fig. 5. (A) Sample size distribution of the included primary studies and the achieved statistical power for an effect of gz = 0.30 and a one-tailed test. (B) Evolution of
the average final effect from primary studies (estimated by our multilevel meta-analyses over the years), the average final effect of the published meta-analyses, and
the reference effects used by primary studies to conduct power analyses. (C) Funnel plot of the individual effects. The altitude of the solid funnel denotes the un-
adjusted effect, while the altitude of the dashed funnel denotes the adjusted one. Filled circles represent the individual effects.

Table 3
Results of methods of publication bias.

Method Publication bias
test

Corrected effect

FAT and PET-
PEESE

β = 0.64, p = .056 Fisher’s z = − 0.04, 95%CI [− 0.18, 0.10],
p = .539 (or
gz = − 0.08, 95%CI [− 0.37, 0.20], CL =

.48)
3PSM χ2(1) = 1.00, p =

.317
gz = 0.21, 95%CI [0.04, 0.37], p = .017,
CL = .56

RoBMA BFpb = 3.10 Fisher’s z = 0.05, 95%CrI [− 0.02, 0.10],
BF10 = 0.99 (or
grm = 0.10, 95%CrI [− 0.04, 0.20], CL =

.53)
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stimulation technology has brought the concept of “brain-doping” to the
forefront of discussions (Davis, 2013b; Holgado, Vadillo, et al., 2019a;
Reardon, 2016). Nevertheless, the mechanisms underlying the pur-
ported effects remain unclear, with much of the impact ascribed merely
to tDCS influencing the brain. A critical issue with this assertion lies in
its foundational assumption that specific brain areas play a fundamental
role in exercise performance. Although it might seem intuitive, the ex-
istence of a specific brain region responsible for regulating effort, task
execution, or the perception of effort is not conclusively established yet,
and the evidence remains unclear (Holgado and Sanabria, 2021; Rob-
ertson and Marino, 2016; Schmit and Brisswalter, 2020). The majority of
primary studies in this field have utilized acute motor cortex stimulation
to enhance performance with the foundational premise that this form of
stimulation holds the potential to heighten corticospinal excitability,
thereby amplifying the neural drive to muscles (Angius et al., 2015).
This enhancement, in turn, is anticipated to optimize the ability for force
generation while concurrently postponing the onset of fatigue or
reducing pain perception (Flood et al., 2017). In contrast, other multiple
studies chose the prefrontal cortex as the stimulation site (Angius et al.,
2019; Holgado, Zandonai, et al., 2019). Certain models propose that the
prefrontal cortex serves as a regulatory framework that consolidates
information encountered during physical activity, both centrally and
peripherally, exercising top-down control (Robertson and Marino,
2015). The prefrontal cortex is suggested to integrate afferent signals
from the anterior cingulate cortex and the orbitofrontal cortex, associ-
ated with motivational and emotional processing (Pollatos et al., 2007).
Nevertheless, the potential implications for performance remain un-
certain when considering whether merely augmenting excitability or
inhibiting pain in a typical state can have a discernible impact
(Abdelmoula et al., 2016). Another aspect that has so far eluded
extensive discussion in the literature, yet could bear notable signifi-
cance, pertains to the participant’s condition. Conventionally, stimula-
tion is administered during periods of rest, before exercise when fatigue
is absent or there is no sensation of pain. An intriguing possibility ari-
ses—could stimulation exert a more substantial effect post-exercise?

This consideration speculates on the prospect of stimulation serving as
an excitability mechanism for accelerated recovery, potentially enabling
individuals to perform more promptly following physical exertion (or
during exhaustive exercise).

Given the inconclusive nature and divergent outcomes associated
with tDCS, there has been a proliferation of alternative approaches
proposed to enhance its efficacy. Many unanswered questions persist,
including considerations about the optimal timing of stimulation, the
participant’s cognitive state, and the most effective intensity. Criticism
within this technique arises, as doubts are cast on the effectiveness of
acute single-electrode stimulation. The uncertainty lies in how the
electrical current disperses across the entire skull (Vöröslakos et al.,
2018). To overcome this constraint, the utilization of HD-tDCS has been
suggested as a means to enhance focus during stimulation. This
approach aligns with the principles of traditional tDCS but employs
additional electrodes with reduced sizes and precise placements to
intricately target specific brain regions. However, exploration of this
avenue in the literature remains limited, with only four studies included
in our umbrella review employing this montage. Notably, our moderator
analysis did not show that the montage impacted the overall effect.
Likewise, insights from related fields suggest that conducting stimula-
tion concurrently with task performance, known as online stimulation,
might enhance its effects, benefiting on the brain’s increased suscepti-
bility during task engagement (Hill et al., 2019; Mishra and Thrasher,
2022). Logic suggests that synchronizing tDCS with ongoing task per-
formance, could stimulate the neural circuits involved in the specific
motor or cognitive functions being exercised more effectively
(Kunaratnam et al., 2022). In other words, when the brain is actually
engaged in the target task is when one might expect an effect (Karok and
Witney, 2013). Nevertheless, within the scope of this comprehensive
analysis, only five primary studies have explored this particular aspect
and, once again, our moderator analysis did not indicate any discernible
influence from this factor. Another frequently discussed issue is the
variability in individual responses to non-invasive brain stimulation
(López-Alonso et al., 2014), suggesting that both the dose and intensity

Fig. 6. Specification curve of meta-analytic models. The summary effect size of the target studies (and its 95%CI) varied across the multiple combinations of analytic
decisions. Empty circles represent the effects resulting from models without publication-bias adjustment, whereas filled circles show the corrected summary effect.
Light-gray shades distinguish non-significant results from significant ones.
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of stimulation should be tailored to each individual (Evans et al., 2020).
While this highlights the potential need for personalized approaches,
there is also a call for more robust and comprehensive data to under-
stand these variations better with non-invasive brain stimulation tech-
niques (Wilson and St George, 2016). Indeed, a systematic review of
studies utilizing transcranial magnetic stimulation to assess changes in
cortical excitability found no consistent differences in stimulation pa-
rameters or population characteristics between studies that reported
significant effects and those that did not (Klees-Themens and Théoret,
2023). This suggests that the observed variability might not solely be
attributable to differences in dose or population, underscoring the ne-
cessity for more refined and standardized methodologies to accurately
determine the factors influencing individual responses to non-invasive
brain stimulation.

From a methodological perspective, we first delve into our explor-
atory analysis of the transparency and reproducibility practices of the
meta-analyses included in this umbrella review and their potential
impact on the results (López-Nicolás et al., 2022). Although the decision
concerning how the effect size is estimated might have an enormous
impact on the results and conclusions of meta-analyses, only 2 of 9
meta-analyses included the specific formula used to calculate the effect
size (Holgado, Vadillo, et al., 2019b; Kaushalya et al., 2022). This issue
was also underscored in the amalgamation of effect sizes without ac-
counting for study design distinctions, such as between- versus
within-participant designs. Moreover, many meta-analyses incorporated
multiple outcomes from the same sample, yet they did not specify how
correlated structures from the same participants were addressed or how
diverse outcomes were synthesized. Our specification curve analysis
emphasizes that meta-analyses involve methodological choices that can
significantly impact the ultimate results. By exploring various model
specifications, we can gather insights into the robustness of our findings.
The chosen decision can lead to a wide-ranging summary effect, ranging
from indicating a negative impact of tDCS on exercise performance to
suggesting a positive effect. However, most of the previous
meta-analyses chose specifications for data preprocessing and analyses
that are more prone to find a positive effect (i.e., lack of assessment of
publication bias, no consideration of the influence of outliers and
moderator studies to account for heterogeneity and conduct analyses of
publication bias after removing these sources of variability, failure to
deal with dependence between effect sizes from the same sample, and
the use of a between-groups formula of the effect size for
within-participant designs). It is evident that the conclusions drawn
from these meta-analyses are constrained by these methodological
considerations.

Furthermore, it is important to note that while meta-analyses might
offer a valuable approach to addressing the issue of low statistical
power, they should not be taken as the ultimate answer to the debate.
The effectiveness of meta-analyses in overcoming the limitations of in-
dividual studies heavily relies on the quality of the reports incorporated
into the analysis. Indeed, a well-designed, adequately powered, and
thoroughly researched individual study holds the potential to provide
more insightful and reliable information to determine the causal role of
tDCS under specific conditions than the collective body of meta-analyses
published so far. However, our power analysis has unveiled a concerning
trend within the individual studies encompassed by our umbrella re-
view. On average, these studies demonstrated less than 40% statistical
power to detect the purported summary effect size (approximated to gz =

0.30). This issue can be attributed to various factors. Notably, a mere 20
out of the 50 studies included in our review conducted a power analysis
(or any other justification, refer to Supplementary Material 3). More-
over, many of them selected extreme effect sizes (e.g., Cogiamanian
et al., 2007; Tanaka et al., 2009; Vitor-Costa et al., 2015) as a reference
for their power analysis, even when for some cases reviews and
meta-analyses suggesting a substantially smaller effect (e.g., (Lattari
et al., 2018) were available by that moment. Another noteworthy issue
we identified is the misapplication of effect types. Some primary studies

utilized metrics like η2 or Cohen’s d to determine sample size, despite
their experimental designs not aligning well with such measures. This
mismatch suggests a potential source of inconsistency in the reported
power and, consequently, the reliability of the findings.

In summary, our findings underscore that the current body of evi-
dence from both individual studies and meta-analyses exploring the
impact of tDCS on exercise performance does not conclusively sub-
stantiate the notion that tDCS holds the potential to enhance exercise
performance outcomes. In the most optimistic scenario, the estimated
effect stands at gz = 0.28 (CL = .58; i.e., the probability that a randomly
sampled score from the tDCS condition is greater than the sham condi-
tion is 8% above the chance level), a value that undergoes substantial
reduction upon adjusting for publication bias. However, the inherent
low power to detect this effect across all primary studies included in this
review raises skepticism about the practical utility of tDCS. While the
field has witnessed a surge of interest in recent years, it remains chal-
lenging to unequivocally affirm its usefulness. To address this uncer-
tainty, it is imperative to develop more refined hypotheses and
methodologies for future investigations in this domain. Future research
could investigate the potential benefits of multiple tDCS sessions in
athletic settings, its systematic application during exercise, and its use as
a post-exercise recovery tool. These are promising areas for further
development.
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