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Abstract. We propose a new class of dividend payment strategies for which one can
easily control an infinite-time-horizon ruin probability constraint for an insurance com-
pany. When the risk process evolves as a spectrally negative Lévy process, we investigate
analytical properties of these strategies and propose two numerical methods for finding
explicit expressions for the optimal parameters. Numerical experiments show that the
performance of these strategies is outstanding and, in some cases, even comparable to
the overall-unconstrained optimal dividend strategy to maximize expected aggregate
discounted dividend payments, despite the ruin constraint.

1. Introduction

Consider an insurance company whose surplus process evolves according to a spectrally-
negative Lévy process. We assume that this process satisfies the safety loading condition,
reflecting the idea that, in expectation, the company charges more premiums than the
amount of claims to be paid. Under this assumption, however, the process also possesses
the unrealistic property that, with probability one, it will diverge to infinity. One way to
avoid this issue is to consider dividend payments to shareholders. Since the introduction
of this idea in the seminal work of De Finetti (1957), there has been a lot of research
activity on establishing optimal strategies for distributing dividends under various objec-
tive functions and constraints. For instance, it was established that for the maximization
of the expected sum of discounted dividend payments until ruin a band strategy is often
optimal (see e.g., Gerber (1969), Loeffen (2008), Azcue and Muler (2005) and Avram
et al. (2015) as well as Avanzi (2009) and Albrecher and Thonhauser (2009) for surveys).
While band strategies maximize expected aggregate dividend payments for a rather gen-
eral set of assumptions, they also lead to the undesirable property that, with probability
one, the surplus process will eventually become negative, i.e., the company will get ru-
ined. Hence, while the introduction of dividend payments makes the model more realistic,
the optimal solution is typically unacceptable in practice. In response to this, a growing
body of literature examined the trade-off between profitability and safety (avoiding or
delaying ruin). Thonhauser and Albrecher (2007) and Loeffen and Renaud (2010) exam-
ined the dividend problem with a penalty for early ruin, see also Liang and Young (2012).
For a discrete-time model, Hipp (2003) was the first to approach the optimal dividend
problem under a ruin constraint, which turns out challenging in view of the resulting
time-inconsistency of the stochastic control problem. Grandits (2015) studied the prob-
lem of optimizing dividend payments in finite time with a constraint on the probability
of ruin for the case of the diffusion, providing a solution in terms of a complicated set
of differential equations. Similarly, Hernandez et al. (2018) provided a solution to the
case where the constraint is a bound on the Laplace transform of the time of ruin, under
the assumption that the density of the Lévy measure is completely monotone. Recently,
Strini and Thonhauser (2023) used a game-theoretic approach to reformulate the idea of
optimality and provided a solution to the case of the diffusion.
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Rather than directly addressing the control problem of maximizing expected discounted
dividend payments under a ruin constraint whose general solution seems out of reach,
Hipp (2018, 2020) started to study particular candidate strategies with an intuitive struc-
ture that allow a balancing of profitability and safety with a bottom-up approach, see also
Hipp (2019). The contribution of the present paper is a considerable extension and deep-
ening of the latter approach. We define a sort of corridor dividend strategies for which,
using scale functions and fluctuation theory, the ruin probability can be easily controlled
and at the same time the expected dividend payments can be maximized locally. While
we do not prove optimality of such strategies for the general dividend problem under a
ruin constraint, the numerical illustrations at the end of the manuscript show that this
kind of strategies perform exceptionally well, sometimes even leading to comparable ef-
ficiency to the best overall un-constrained (band) strategy, but respecting the pre-given
ruin constraint. In order to make the numerical optimization of the involved parameters
work, we implement and adapt two numerical schemes to the present problem: a recursive
approach inspired by Newtonian optimization techniques and an evolutionary algorithm.
The resulting optimized strategies can serve as new benchmarks for both intuition and
numerics for the general problem of maximizing dividends under a ruin constraint. For
instance, when we apply corridor strategies to the diffusion case and finite time horizon
problem studied in Grandits (2015) and pay the remaining surplus as a final dividend
lump sum at the end of the time horizon as done in that paper, the optimal corridor
strategy in fact outperforms the numerical solution given in Grandits (2015) for the same
problem, cf. Section 6. We also show that linear barrier strategies whose slope and inter-
cept is optimized for a given initial capital level perform surprisingly well, and for certain
model parameter values outperform the corridor strategies of this paper by a small mar-
gin, but for other parameter values are strongly dominated by our corridor strategies. An
attractive feature of corridor strategies is indeed that they are broadly applicable across
models and represent very competitive performance across the entire parameter range.

The rest of the paper is organized as follows: in Section 2 we establish the basic as-
sumptions for the surplus model and introduce some notation. Section 3 introduces the
corridor payment strategies and derives formulas to compute the value associated with
them. Section 4 examines analytical properties of the value function associated with the
strategies. Since the value function eventually needs to be evaluated and optimal param-
eters need to be determined, Section 5 introduces several numerical techniques that can
be used for this purpose. Section 6 presents the numerical results for a selected number
of surplus processes commonly studied in the literature. Finally, Section 7 concludes and
provides some directions for future research.

2. The model

Consider a spectrally negative Lévy risk process (Ct)t≥0 for the surplus process of an
insurance portfolio with initial surplus level C0 = u. In the following we will formulate
the results first for the general case and then go into more detail for two special cases of
interest, namely the case of a diffusion approximation

(1) Ct = u+ µt+ σBt, t ≥ 0,

where µ > 0 is a constant drift, σ > 0 and (Bt)t≥0 denotes a standard Brownian motion,
and the Cramér-Lundberg process

(2) Ct = u+ c t−
Nt∑
i=1

Xi, t ≥ 0,
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where (Nt)t≥0 is a homogeneous Poisson process with rate λ > 0, Xi are the individual
claim sizes modelled by i.i.d. random variables with cumulative distribution function FX
and finite mean, and c > λE(Xi) is the premium collected per time unit. Denote by
τ := inf{t ≥ 0 : Ct < 0} the time of the ruin, by ψ(u) := P(τ <∞) the ruin probability
of this risk process and by

φ(u) = 1− ψ(u)

the corresponding survival probability. Let κ(θ) := logEeθ(C1−C0) denote the Laplace
exponent of the Lévy process, which has the form

κ(θ) = −aθ +
1

2
σ2θ2 +

∫
(−∞,0)

(eθx − 1− θx1{x>−1})Π(dx)

with Π the Lévy measure and Φδ = ψ−1(δ) > 0 (see for instance Kyprianou (2014)). The
various results obtained throughout the manuscript will be expressed in terms of the scale
function of C, which for x ≥ 0 and any δ ≥ 0 is defined as the function Wδ(x) satisfying
the identity ∫ ∞

0

e−θxWδ(x) dx =
1

κ(θ)− δ
, θ > Φδ.

We also define Wδ(x) = 0 whenever x < 0. Assuming that κ′(0) is finite, it is then
well-known that

φ(u) = κ′(0)W0(u)

(see e.g. Kyprianou (2014) or (Asmussen and Albrecher, 2010, Ch.IX)). For the sake of
convenience, we will assume that Π accepts a continuous density, so that Π(dx) = fΠ(x)dx
and that this density is sufficiently smooth to ensure that Wδ ∈ C2(0,∞).

Dividends are now paid out according to a strategy D = (Dt)t≥0, where Dt represents
the aggregate dividends up to time t. The surplus process after dividends is given by

CD
t = Ct −Dt

and the expected value of the aggregate discounted dividend payments until ruin are
given by

V D(u) = E

(∫ τD

0

e−δtdDt

)
where

τD := inf{t > 0 : CD
t < 0}

is the time of the ruin of the resulting surplus process with dividends.

Consider now the following dividend payment strategy: For a fixed n ∈ N, there is a
sequence of surplus levels a1, a2, a3, . . . , an. Assume for the moment that u < a1. When
the risk process reaches ai (i = 1, . . . , n) for the first time (which we denote by τi), there
is a lump sum dividend payment of ai − bi down to a barrier level bi. Then continuous
dividend payments start according to a horizontal barrier strategy with barrier bi until
the surplus process goes below the lower limit li ≤ bi for the first time (denoted by
τ di ≥ τi), at which point the barrier in bi is dissolved. Dividend payments only continue
later in case the surplus process reaches the level ai+1 > li before ruin, which happens
at time τi+1, given that τi+1 < τD. In that case the next lump sum ai+1 − bi+1 is paid,
followed by dividends according to a horizontal barrier strategy at bi+1 until the process
goes below li+1 etc. Once the last dividend barrier bn is dissolved, the surplus process
survives according to the classical survival probability (without dividends) with initial
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surplus level CD
τdn

. Note that this formulation of the strategy includes the case of a pure

lump sum payment (in case bi = li and infinite variation) as well as the case of a pure
‘horizontal dividend corridor’ without a lump sum payment at the beginning (ai = bi),
and we will be looking for the optimal values of 0 ≤ li ≤ bi ≤ ai, i = 1, . . . , n. Figure 1
depicts a sample path of such a strategy for a Cramér-Lundberg process, in which ruin
occurs before a3 is reached.

Figure 1. A sample path for a Cramér-Lundberg process with a dividend
strategy as described above

For a fixed set of levels, we may allow u > a1 by making a lump-sum payment down
to b1 and proceed as described above.

3. Some results

Denote by φD(u) := P(τD = ∞) the survival probability of the resulting risk process,
and recall that φ(u) is the classical survival probability of the risk process without any
dividend payments.

Theorem 3.1. For u ≤ a1, we have

φD(u) = κ′(0)W0(u)
n∏
k=1

A(ak, bk, lk)(3)

with

A(ak, bk, lk) :=
E(W0(CD

τdk
))

W0(ak)
.

Note that CD
τdk

is the surplus value at the time of the first undershoot of level lk after

paying dividends at barrier bk, which occurs at the stopping time τ dk . We naturally have
φ(x) = 0 for x < 0, i.e. if the undershoot at the time of dissolving the k-th corridor leads
to a negative surplus value, the company is ruined.

Proof. A simple iterative application of the strong Markov property of C gives

φD(u) =
φ(u)

φ(a1)

(
n−1∏
k=1

P(τk+1 < τD|τk < τD)

)
E(φ(CD

τdn
)),
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which, using the strong Markov property again, can also be expressed as

φD(u) =
φ(u)

φ(a1)

(
n−1∏
k=1

E(φ(CD
τdk

))

φ(ak+1)

)
E(φ(CD

τdn
))

= φ(u)
n∏
k=1

E(φ(CD
τdk

))

φ(ak)
.

Note that φ(u)/φ(a1) = W0(u)/W0(a1) is the probability that the surplus process Ct
reaches surplus level a1 before ruin, when starting at a lower surplus level u < a1. We
can hence rewrite the above expression with scale functions as

φD(u) = κ′(0)W0(u)
n∏
k=1

E(W0(CD
τdk

))

W0(ak)
,

establishing the result. �

While simple, Equation (3) expresses the probability of ruin implicitly in terms of
expectations. We would like to obtain more formulas expressions for A, for which we
make use of the concept of Gerber-Shiu measures (c.f. (Kyprianou, 2014, Ch.X)). Recall
the Gerber-Shiu measure of the process, Kδ, which for any ω : R2 → [0,∞) such that
ω(0, ·) = 0, allows us to write

(4) E(e−δτω(−Cτ , Cτ−)) =

∫
(0,∞)2

ω(y, z)Kδ(dy, dz)

with Cτ being the severity of ruin and Cτ− the surplus just before ruin. An explicit
expression for Kδ can be given in terms of the Lévy measure and the scale function of
the process, i.e.,

(5) Kδ(dy, dz) = (e−ΦδzWδ(u)−Wδ(u− z))fΠ(−y − z)dydz.

Similarly, the discounted probability of ruin by creeping can be computed through the
formula

(6) E(e−δτ1{Cτ=Cτ−=0}) =
σ2

2
(W ′

δ(u)− ΦδWδ(u)) ,

where the right-hand side is understood as zero whenever σ = 0. Expectations of dis-
counted penalties of the form ψ(u) := E(e−δτg(Cτ )) can therefore be evaluated through
equations (5) and (6) for any function g. This is almost what we need, however, to
obtain an explicit form for A, we need to compute this expectation assuming dividends
have been paid according to a barrier strategy. Denoting by Cb

τ the severity of ruin after
dividends have been paid according to a barrier strategy at level b, this means that we
require to compute expectations of the form ψ(u; b) := E(e−δτg(Cb

τ )). Luckily, this can
be easily computed through the dividends-penalty identity (cf. Gerber et al. (2006)),

(7) ψ(u; b) = ψ(u)− Wδ(u)

W ′
δ(b)

ψ′(b).

Using all these equations, we can reach an explicit expression for the function A(a, b, l).

Proposition 3.2. The function A(a, b, l) can be written as

A(a, b,l) =
σ2

2

W0(l)

W0(a)

(
W ′

0(b− l)− W0(b− l)W ′′
0 (b− l)

W ′
0(b− l)

)
+

∫ l

0

∫ ∞
0

W0(l − y)

W0(a)

(
W0(b− l)W ′

0(b− l − z)

W ′
0(b− l)

−W0(b− l − z)

)
fΠ(−y − z)dzdy.



6 H. ALBRECHER, B. GARCIA FLORES, AND C. HIPP

Proof. Observe that CD
τdk
− lk is equal in distribution to the severity of ruin after dividends

have been paid according to a barrier strategy at level bk − lk of a process with initial
capital bk− lk, so Equations (5), (6) and (7) fully characterize its distribution. Hence, by
setting g = W0 in the definition of ψ and combining (5), (6) and (7) one obtains

A(a, b,l) =
σ2

2

W0(l)

W0(a)

(
W ′

0(b− l)− W0(b− l)W ′′
0 (b− l)

W ′
0(b− l)

)
+

∫ l

0

∫ ∞
0

W0(l − y)

W0(a)

(
W0(b− l)W ′

0(b− l − z)

W ′
0(b− l)

−W0(b− l − z)

)
fΠ(−y − z)dzdy,

where we have omitted the dependence on the index k for simplicity of exposition. �

Let us now turn to the expected value of the sum of the discounted dividend payments.
Recall from classical risk theory that the expected discounted dividend payments accord-
ing to a horizontal dividend barrier strategy at b when starting at an initial surplus level
u < b is simply given by Wδ(u)/W ′

δ(b). This quantity will be a building block of our more
complex dividend payment strategy in this paper.

Theorem 3.3. For u ≤ a1, the value function V D(u) of the expected discounted dividend
payments can be written as

V D(u) = Wδ(u)
n∑
k=1

B(ak, bk, lk)
k−1∏
i=1

G(ai, bi, li)(8)

with

B(a, b, l) =
a− b+Wδ(b− l)/W ′

δ(b− l)
Wδ(a)

and

G(a, b,l) =
σ2

2

Wδ(l)

Wδ(a)

(
W ′
δ(b− l)−

Wδ(b− l)W ′′
δ (b− l)

W ′
δ(b− l)

)
+

∫ l

0

∫ ∞
0

Wδ(l − y)

Wδ(a)

(
Wδ(b− l)W ′

δ(b− l − z)

W ′
δ(b− l)

−Wδ(b− l − z)

)
fΠ(−y − z)dzdy.

Proof. Consider the scenario in which the (k − 1)-th corridor has just been dissolved.
Once we reach ak, there will be a lump sum payment ak−bk and then dividend payments
will start according to a horizontal barrier strategy at barrier bk until the k-th corridor is
dissolved. Denote by Dk the expected present value of all dividend payments at the k-th
corridor. By construction of the dividend payment strategy, Dk can also be viewed as
the expected discounted dividends according to a barrier strategy collected until ruin in
a risk model with initial surplus level bk− lk and also barrier level bk− lk, since the event
of ruin in that model will exactly correspond to CD undershooting lk for the first time.
Correspondingly, Dk = Wδ(bk − lk)/W ′

δ(bk − lk). Using the strong Markov property, we
can write

(9) V D(u) =
Wδ(u)

Wδ(a1)

[
(a1 − b1) +D1 + E(e−δ(τ2−τ1)1{τ2<τD})

[
(a2 − b2) +D2

+ E(e−δ(τ3−τ2)1{τ3<τD})
[
(a3 − b3) +D3 + · · ·

]]]
,

so that we obtain

V D(u) =
Wδ(u)

Wδ(a1)

n∑
k=1

(
ak − bk +

Wδ(bk − lk)
W ′
δ(bk − lk)

) k∏
i=2

E(e−δ(τi−τi−1)1{τi<τD}),(10)



DIVIDEND CORRIDORS AND A RUIN CONSTRAINT 7

with the usual convention
∏1

i=2 · = 1. By the strong Markov property, τ di−1 − τi−1 can
be seen as the time to ruin of a process with initial surplus bi − li which pays dividends
according to a barrier strategy at level bi − li. Moreover, on 1{τi<τD} and given CD

τdi−1
,

τ di−1 − τi−1 is independent of τi − τ di−1, and due to

E
(
e−δ(τi−τ

d
i−1)1{τi<τD} | C

D
τdi−1

)
=
Wδ

(
CD
τdi−1

)
Wδ(ai)

,

we obtain

E(e−δ(τi−τi−1)1{τi<τD}) = E

e−δ(τdi−1−τi−1)
Wδ

(
CD
τdi−1

)
Wδ(ai)

1{τi<τD}

 .

Hence, (10) can be rewritten as

V D(u) = Wδ(u)
n∑
k=1

B(ak, bk, lk)
k−1∏
i=1

G(ai, bi, li)

with

B(a, b, l) =
a− b+Wδ(b− l)/W ′

δ(b− l)
Wδ(a)

and

G(ai, bi, li) =
1

Wδ(ai)
E
(
e−δ(τ

d
i −τi)Wδ

(
CD
τdi

)
1{τi+1<τD}

)
.

As in the computation of the explicit formula for A, we can use the Gerber-Shiu measure
and the dividends-penalty identity to give an explicit form for G, thus obtaining

G(a, b,l) =
σ2

2

Wδ(l)

Wδ(a)

(
W ′
δ(b− l)−

Wδ(b− l)W ′′
δ (b− l)

W ′
δ(b− l)

)
+

∫ l

0

∫ ∞
0

Wδ(l − y)

Wδ(a)

(
Wδ(b− l)W ′

δ(b− l − z)

W ′
δ(b− l)

−Wδ(b− l − z)

)
fΠ(−y − z)dzdy.

as desired. �

A few comments are in order: Equation (8) shows that we can express V D in a recursive
way as follows: define the sequence cD1 , . . . , c

D
n by

cDn = B(an, bn, ln)

and, for 1 ≤ j ≤ n− 1,

cDj = B(aj, bj, lj) + cDj+1G(aj, bj, lj).

With these definitions, we have, for any 1 ≤ j ≤ n− 1,

(11) V D(u) = Wδ(u)

j−1∑
k=1

B(ak, bk, lk)
k−1∏
i=1

G(ai, bi, li) +Wδ(u)cDj

j−1∏
i=1

G(ai, bi, li).

In particular, V D(u) = Wδ(u)cD1 . The advantage of defining the cDj+1’s in this way is that,

once cDj+1 is known, cDj depends only on aj, bj and lj, a fact that can be exploited in a
constrained optimization setting (cf. Section 6).
Now, while the expressions for A and G are explicit, they are rather complicated. One
reason for this is found by examining the proof of the previous theorem. Observe that,
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while computing G, one encounters the expectation E(e−δ(τi−τi−1)1{τi<τD}). Rewriting this
as

E(e−δ(τi−τi−1)1{τi<τD}) = E(e−δ(τ
d
i−1−τi−1) · e−δ(τi−τdi−1)1{τi<τD}),(12)

we see that a reason for the involved expressions is that, in general, the two product terms
in (12) are not independent. Exceptions are the diffusion case and the Cramér-Lundberg
model with exponential claims, where a decomposition into a product of two expectations
is feasible, which significantly simplifies the analysis. To that end, note that for general
spectrally negative Lévy processes, a formula for the joint Laplace transform of τ dk − τk
and CD

τdk
for any k = 1, . . . , n is available:

E(e
−δ(τdk−τk)−θ(lk−CD

τd
k

)
) = Zδ(bk − lk, θ) +Wδ(bk − lk)

Wδ(bk − lk) (κ(θ)− δ)− θZδ(bk − lk, θ)
W ′
δ(bk − lk)

,

(13)

where Zδ(x, θ) denotes the second scale function defined by

Zδ(x, θ) = e−θx
(

1− (κ(θ)− δ)
∫ x

0

e−θyWδ(y)dy

)
, x ≥ 0

(see Ivanovs and Palmowski (2012)). For θ = 0, one obtains the familiar simpler version

Zδ(x, 0) = 1 + δ

∫ x

0

Wδ(y)dy, x ≥ 0,

which was for instance used in (Kyprianou, 2014, Ch.8.2). Formula (13) originally goes
back to Avram et al. (2004). For the concrete form used here, see (Albrecher et al., 2016,
Eq.25). In particular,

E(e−δ(τ
d
k−τk)) = Zδ(bk − lk, 0)− δ (Wδ(bk − lk))2

W ′
δ(bk − lk)

= 1 + δ

∫ bk−lk

0

Wδ(y)dy − δ (Wδ(bk − lk))2

W ′
δ(bk − lk)

,(14)

which can now help to simplify the form of G, see below.
The formulas presented so far assume u ≤ a1. However, by the description of the strategy
given at the end of Section 2, in the case u > a1, one can simply replace a1 by u in (3)
and (8) to obtain the formulas for φD and V D.

3.1. The diffusion case. Let us now look at the special case of a diffusion approximation

Ct = u+ µt+ σBt, t ≥ 0

in more detail, where µ > 0 is a constant drift, σ > 0 is the volatility and (Bt)t≥0

denotes a standard Brownian motion. In this case CD
τdk

= lk (deterministically), so that

(3) simplifies to

φD(u) = κ′(0)W0(u)
n∏
k=1

W0(lk)

W0(ak)
.(15)

It is well-known that the Laplace exponent for this diffusion case is simply given by

κ(θ) = θµ+
1

2
θ2σ2,

and correspondingly the (first) scale function is

(16) Wδ(x) =
1√

µ2 + 2δσ2
(eθ1x − eθ2x), x ≥ 0,
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where θ1 ≥ 0 and θ2 < 0 are the two roots of the quadratic equation

(17)
1

2
σ2z2 + µz − δ = 0.

See e.g. Kyprianou (2014) for details. With the resulting

W0(u) = (1− e−(2µ/σ2)u)/µ

and κ′(0) = µ we hence obtain the survival probability

φD(u) = (1− e−(2µ/σ2)u)
n∏
k=1

1− e−(2µ/σ2)lk

1− e−(2µ/σ2)ak
.(18)

For numerical purposes later on, we note that in view of (3), in the diffusion case

A(a, l) =
1− e−(2µ/σ2)l

1− e−(2µ/σ2)a

(note that A(a, b, l) does not depend on b here, so that we suppress it in the notation).
For the expected discounted dividends, we note that we are in one of the exceptions where
we can factor (13) as

E(e−δ(τi−τi−1)1{τi<τD}) = E(e−δ(τ
d
i−1−τi−1)) · E(e−δ(τi−τ

d
i−1)1{τi<τD}),

which helps seeing that G and B are given by

G(a, b, l) =
σ2

2

Wδ(l)

Wδ(a)

(
W ′
δ(b− l)−

Wδ(b− l)W ′′
δ (b− l)

W ′
δ(b− l)

)
,

B(a, b, l) =
a− b+Wδ(b− l)/W ′

δ(b− l)
Wδ(a)

.

Equivalently, combining (14) and (16) we obtain after algebraic manipulations,

G(a, b, l) =
(θ1 − θ2)(eθ1l − eθ2l)e(θ1+θ2)b

(eθ1a − eθ2a)(θ1eθ1b+θ2l − θ2eθ2b+θ1l)
,

and

B(a, b, l) =
√
µ2 + 2δσ2

a− b+ (eθ1(b−l) − eθ2(b−l))/(θ1e
θ1(b−l) − θ2e

θ2(b−l))

eθ1a − eθ2a
.

3.2. The Cramér-Lundberg model with exponential claims. Consider now the
Cramér-Lundberg model (2) with a homogeneous Poisson process of intensity λ > 0 and
exponential claims with parameter α > 0. In that case, we have

κ(θ) = cθ − λθ

θ + α

and (under the positive saftely loading condition c > λ/α) the scale function is given by

(19) Wδ(x) =
(α + Φδ)e

Φδx − (α−Rδ)e
−Rδx

c(Φδ +Rδ)
, x ≥ 0,

where Φδ ≥ 0 and −Rδ < 0 are the two roots of the quadratic equation

(20) cρ2 + (cα− λ− δ)ρ− αδ = 0,

see e.g. Albrecher et al. (2016). As an immediate consequence we have

W0(u) =
α− (α−R0)e−R0u

cR0

=
α− λ

c
e−(α−λ/c)u

cα− λ
, u ≥ 0,
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and with κ′(0) = c− λ/α the classical formula

φ(u) = 1− λ

αc
e−(α−λ/c)u.

For our dividend model, observe that

E(W0(CD
τdk

)) =

∫ lk

0

(
α− λ

c
e−(α−λ/c)(lk−y)

cα− λ

)
α e−αy dy

=
α− αe(λ/c−α)lk

cα− λ
,

(21)

which leads to the survival probability

φD(u) =

(
1− λ

αc
e−(α−λ/c)u

) n∏
k=1

1− e−(α−λ/c)lk

1− λ
αc
e−(α−λ/c)ak

.(22)

For numerical purposes later on, we note that in view of (3) in this case

A(a, l) =
1− e−(α−λ/c)l

1− λ
αc
e−(α−λ/c)a

.

Due to the lack-of-memory property of the exponential distribution, we can again decom-
pose (13) as a product

E(e−δ(τi−τi−1)1{τi<τD}) = E(e−δ(τ
d
i−1−τi−1)) · E(e−δ(τi−τ

d
i−1)1{τi<τD}),

and, after some algebra, obtain

G(a, b, l) =
αλ(Φδ −Rδ)

(
el(α+Φδ) − el(α+Rδ)

)
eb(Φδ+Rδ)−l(α+Φδ+Rδ)

c (eaΦδ(α + Φδ)− eaRδ(α +Rδ)) (Φδ(α + Φδ)eΦδ(b−l) −Rδ(α +Rδ)eRδ(b−l))
.

In addition,

B(a, b, l) =
c(Φδ +Rδ)((α + Φδ)(1 + Φδ(a− b))eΦδ(b−l) − (α +Rδ)(1 +Rδ(a− b))eRδ(b−l))

(Φδ(α + Φδ)eΦδ(b−l) +Rδ(α−Rδ)e−Rδ(b−l))((α + Φδ)eΦδa − (α−Rδ)e−Rδa)
.

4. Properties of the strategy with optimal parameters

Let Dn denote the family of dividend strategies with n corridors as defined in Section
2. Observe that Dn can naturally be identified with the set

{(ā, b̄, l̄) ∈ Rn
+ × Rn

+ × Rn
+ | lk ≤ bk ≤ ak, and lk < ak+1, k = 1, . . . , n},

where, for convenience, we set an+1 =∞.
For a given initial surplus u ≥ 0 and survival constraint 0 ≤ ϕ < 1, let

(23) V ∗n,ϕ(u) = sup
{
V D(u) | D ∈ Dn, φ

D(u) ≥ ϕ
}
,

where we define V ∗n,ϕ(u) = 0 whenever the set is empty, e.g., whenever ϕ > φ(u). If clear
from the context, we will drop the dependence of V ∗n,ϕ on ϕ and simply write V ∗n in (23).

In the following, for a strategy D ∈ Dn we will denote by aDi , b
D
i , l

D
i , i = 1, . . . , n the

levels of D.
We immediately observe that, by continuity of the functions involved, V ∗n,ϕ is locally
bounded and on the set ϕ < φ(u), V ∗n,ϕ(u) is left-continuous as a function of ϕ for fixed

u. Hence, for each u > 0, there exists a strategy D ∈ Dn such that V ∗n (u) = V D(u)
and φD(u) = ϕ, so the inequality on the right-hand side of (23) could be replaced by an
equality. However, in terms of continuity, a stronger result holds.
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Proposition 4.1. The mapping (u, ϕ) 7→ V ∗n,ϕ(u) is continuous on the set

S = {(u, ϕ) ∈ R2 | u > 0, 0 ≤ ϕ < φ(u)}.
Proof. Define f : R+×Dn → [0, 1) and F : R+×Dn → R+×R3n by f(u, ā, b̄, l̄) = φD(u)
and

F (u, ā, b̄, l̄) = (u, a1, . . . , an−1, b̄, l̄, f(u, ā, b̄, l̄)).

The D in the definition of f is the strategy associated with (ā, b̄, l̄). Now, recall that W0

is a continuous bijection, so by Equation (3), it follows that F is a one-to-one continuous
open function. Let T ⊂ R+ × R3n−1 × [0, 1) be the image of F and define Ṽ : T 7→ R+

as Ṽ (u, z, ϕ) = V D(u), where (u,D) = F−1(u, z, ϕ). From Equation (8), we see that Ṽ
is continuous and, moreover, for (u, ϕ) ∈ S, we have

(24) V ∗n,ϕ(u) = sup
{
Ṽ (u, z, ϕ) | (u, z, ϕ) ∈ T

}
.

The set on the right hand side of (24) is not empty as φD(u)→ φ(u) whenever the levels
of the strategy go to infinity. It is then clear from this last equation and the continuity
of Ṽ , that V ∗n,· is jointly continuous in (u, ϕ). �

Next, we see that in terms of the number of bands, it is better to allow as many bands
as possible.

Proposition 4.2. For every n ∈ N and φ(u) > ϕ, we have V ∗n (u) ≤ V ∗n+1(u).

Remark 4.3. This proposition is necessary since, in general, Dn 6⊂ Dn+1. Indeed, in
order to see an n-corridor strategy D ∈ Dn as an (n+1)-corridor strategy, one is required
to introduce a new corridor somewhere (equivalent to including the three remaining pa-

rameters to go from R3n
+ to R3(n+1)

+ ) and by doing this, one could end up changing the
probability of ruin. Note, however, that for Lévy processes with unbounded variation,
one can still identify Dn with a subset Dn+1 by introducing the “empty corridor” at the
end (that is, the corridor for which an+1 = bn+1 = ln+1), so Proposition 4.2 is immediate
in this case. In the case of bounded variation, one cannot just add more corridors without
care, as adding a new corridor to a previously defined strategy, whether empty or not,
strictly decreases the survival probability. So in order to increase the probability to the
minimal level, the previous corridors have to be shrunk or “moved vertically up” – thus
potentially decreasing the amount of dividends being paid.

Proof. Given n ∈ N, let D ∈ Dn be such that V ∗n (u) = VD(u). By continuity of the
scale functions and its derivatives, for a given ε > 0, there exists an ε > 0 such that
V ∗n (u) ≤ V D(u) + ε, where D is strategy with surplus levels aDk = aDnk , bDk = bDnk , lDk =
lDnk , k = 1, . . . , n− 1 and remaining surplus levels equal to a∗n + ε, b∗n + ε and l∗n + ε. Now,

since φD(u) > φDn(u) ≥ φmin and A(l + 1, l + 1, l)→ 1 as l→∞, we can find l̃ > aDn + ε

such that A(l̃ + 1, l̃ + 1, l̃) > φDn(u)/φD(u) and l̃ > lDn . Letting D′ ∈ Dn+1 denote the
dividend strategy with the same first n corridors equal to those of D and extra corridor
composed by the levels an+1 = bn+1 = l̃+1 and ln+1 = l̃, we clearly have V D(u) ≤ V D′(u).
Hence, V ∗n (u) ≤ Vn+1(u) + ε ≤ V ∗n+1(u) + ε and, in particular, V ∗n (u) ≤ V ∗n+1(u) + ε. Since
the value of V ∗n+1(u) is independent of ε > 0, we can let ε ↓ 0 in the previous inequality,
proving the proposition. �

Remark 4.4. The cases considered in Section 6 seem to indicate that the inequality in
Proposition 4.2 is in fact strict, so one is in principle always obliged to add more bands
to improve the amount of dividends being paid.

Proposition 4.5. There exists ϑ∗ ≥ 0 and D ∈ Dn such that aD1 = ϑ∗ and V ∗n (u) =
V D(u) for all u ≥ a∗n. In particular, V ∗′n (u) = 1 for u ≥ a∗n.
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In other terms, the meaning of this proposition is that the strategies maximizing the
value function can eventually be taken to be “constant”, in the sense that for high values
of the initial capital, all but their first levels can be taken to be the same.

Proof. Notice that (see, e.g., Equation (3.15) in Avram et al. (2007))

lim
x→∞

Wδ(x)

W ′
δ(x)

=
1

Φ(δ)
,

so there exists x∗ > 0 and c > 0 such that Wδ(x) ≤ cW ′
δ(x) for all x ≥ x∗.

Let b∗1, l
∗
1 and a∗k, b

∗
k, l
∗
k, k = 2, . . . , n be a set of points that maximize the value of the

function T given by

T (l1, b1, l2, b2, . . . , an) = −b1 +
Wδ(b1 − l1)

W ′
δ(b1 − l1)

+
n∑
k=2

B(ak, bk, lk)
k−1∏
j=1

G(aj, bj, lj)

subject to the constraints l1 ≤ b1, lk ≤ bk ≤ ak, lk ≤ ak+1 and

H(b1, l1)
n∏
k=2

A(ak, bk, lk) ≥ ϕ,

where H is given by H(b, l) = W0(1)A(1, b, l). Let M be this maximal value. We claim
that we can take ϑ∗ = max(b∗1, x

∗, c−M) and D be given by aD1 = ϑ∗ and remaining levels
given by the a∗k, b

∗
k, l
∗
k in the same ordering. Indeed, clearly D ∈ Dn and by definition

aD1 = ϑ∗. Now, let u ≥ ϑ∗ and D′ ∈ Dn be such that φD
′
(u) ≥ ϕ. We need to show that

V D′(u) ≤ V D(u). We can assume at the outset that u ≤ aD
′

1 , since otherwise we can
replace aD

′
1 by u, obtaining the same value for the strategy. Now, notice that

V D′(u) =
Wδ(u)

Wδ(aD
′

1 )
(aD

′

1 + C)

and

V D(u) = u+M,

where C = T (lD
′

1 , bD
′

1 , lD
′

2 , bD
′

2 , . . . , aD
′

n ). Consider the mapping x 7→ (x+M)/Wδ(x). This
function has derivative given by

Wδ(x)−W ′
δ(x)(x+M)

Wδ(x)2
.

Hence, for x ≥ ϑ∗, we have

Wδ(x)−W ′
δ(x)(x+M) ≤ W ′

δ(x)(c−M − x) ≤ 0,

implying that the mapping is decreasing on [ϑ∗,∞). Since ϑ∗ ≤ u ≤ aD
′

1 , we obtain

V D′(u) =
Wδ(u)

Wδ(aD
′

1 )
(aD

′

1 + C) ≤ Wδ(u)

Wδ(aD
′

1 )
(aD

′

1 +M) ≤ Wδ(u)

Wδ(u)
(u+M) = V D(u),

finishing the proof. �

We observed before that for each u > 0 such that φ(u) > ϕ, there exists a strategy D
such that V ∗n (u) = V D(u). However, as stated in the proof of the previous proposition, if
in this case we have aD1 ≤ u, then any other strategy D′ which has bD1 ≤ aD

′
1 ≤ u and the

remaining levels the same as D will also satisfy V ∗n (u) = V D′(u) and so for large values
of initial surplus, there will not be a unique strategy. Moreover, this might even be the
case for aD1 > u. Therefore, in the following, we will rely on the following assumption.
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Assumption. For each u > 0, there is a unique strategy D ∈ Dn satisfying aD1 ≥ u,
φD(u) = ϕ and V ∗n (u) = V D(u). This strategy will be denoted by D∗n(u) and its levels by
a∗n,k, b

∗
n,k, l

∗
n,k.

With this notation, we have the following:

Proposition 4.6. Assume V ∗n < V ∗n+1 for every n ∈ N. Then, the function D∗n is
continuous on (φ−1(ϕ),∞).

Proof. Given u > φ−1(ϕ), let (um)m≥0 be a sequence in (φ−1(ϕ),∞) converging to u.
Without loss of generality, we may assume that there exists an α > 0 such that φ(u−α) >
ϕ, and the entire sequence is contained in an interval [u − α, u + α]. In the notation of
the proof of Proposition 4.1, let

E = ([u− α, u+ α]× R3n) ∩ F−1(R+ × R3n−1 × {ϕ}).

Observe that E is simply the set of pairs (v,D), where v ∈ [u − α, u + α] and D is a
strategy such that φD(v) = ϕ. The description given in the previous equation simply
shows that E is closed and, by construction, the pairs (um, D

∗
n(um)) belong to E. We

claim that, further than that, there exists an M > 0 such that the ball BM in R3n+1 of
radius M centred in the origin contains the pairs (um, D

∗
n(um)), m ≥ 0, thus showing that

these pairs are contained in the compact set K = E ∩ BM . Arguing by contradiction,
suppose this is not the case. Since the um’s are clearly bounded, there has to exist at
least one coordinate of D∗n(um) that is not bounded. By the description of Dn, it follows
that there has to exist at least one k such (a∗n,k(um))m≥0 is unbounded. Let

JU = {k ∈ {1, . . . , n} | (a∗n,k(um))m≥0 is unbounded}

be the set of indices producing unbounded sequences of the a’s and JB = {1, . . . , n} \JU .
Observe that if k ∈ JB, then also (b∗n,k(um))m≥0 and (l∗n,k(um))m≥0 are bounded. By
passing to a subsequence if necessary, we can assume that

• If k ∈ JU , then a∗n,k(um)→∞ as m→∞.
• If k ∈ JB, then there exist ak, bk and lk such that a∗n,k(um) → ak, b

∗
n,k(um) → bk

and l∗n,k(um)→ lk.

Now, since

B(a∗n,k(um), b∗n,k(um), l∗n,k(um)) ≤
a∗n,k(um)

Wδ(a∗n,k(um))
+

Wδ(b
∗
n,k(um)− l∗n,k(um))

Wδ(a∗n,k(um))W ′
δ(b
∗
n,k(um)− l∗n,k(um))

,

and

lim
m→∞

a∗n,k(um)

Wδ(a∗n,k(um))
= 0 and lim

m→∞

Wδ(b
∗
n,k(um)− l∗n,k(um))

Wδ(a∗n,k(um))W ′
δ(b
∗
n,k(um)− l∗n,k(um))

= 0,

then B(a∗n,k(um), b∗n,k(um), l∗n,k(um)) → 0 as m → ∞. The first limit is zero because

lim
m→∞

e−Φ(δ)xWδ(x) = 1. For the second we have two cases: the sequence ((b∗n,k(um) −
l∗n,k(um)) is bounded or unbounded. If it is bounded, the quotient

Wδ(b
∗
n,k(um)− l∗n,k(um))/W ′

δ(b
∗
n,k(um)− l∗n,k(um))

is bounded by continuity and strict positivity of W ′
δ, which implies that the limit is zero.

If it is unbounded, we simply notice that Wδ(a
∗
n,k(um))/Wδ(b

∗
n,k(um)− l∗n,k(um)) ≤ 1 and

since W ′
δ diverges to infinity, the limit is again zero. Since G is bounded by 1, we see

that, on the one hand

lim
m→∞

V ∗n (um) = V ∗n (u),
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while on the other,

lim
m→∞

V ∗n (um) = lim
m→∞

Wδ(u)
n∑
k=1

B(a∗n,k(um), b∗n,k(um), l∗n,k(um))
k−1∏
i=1

G(a∗n,i(um), b∗n,i(um), l∗n,i(um))

≤ Wδ(u)
n∑

k∈JB

B(ak, bk, lk)
k−1∏
i=1
i∈JB

G(ai, bi, li).

It is not hard to see that, if p is the cardinality of JB, then p ≤ n− 1 and the ak’s, bk’s
and lk’s form a strategy D ∈ Dp with φD(u) ≥ ϕ. Therefore, V ∗n (u) ≤ V ∗p (u), which is
clearly a contradiction to the hypothesis of the proposition. Thus, there exists an M > 0
such that | D∗n(um) |≤M and D∗n(um) ∈ K for every m ≥ 0.
Continuity of D∗n is readily proven: if the D∗n were not continuous at u, we would be able
to find an ε > 0 and a subsequence, which we can assume to be the original sequence,
such that | D∗n(um)−D∗n(u) |> ε. By compactness of K, there would exist a subsequence
(umr)r≥0 such that ((umr , D

∗
n(umr)))r≥0 converged to a point in K, say (v,D). Since

umr → u, we have v = u and, moreover,

V ∗n (u) = lim
r→∞

V ∗n (umr) = lim
r→∞

V D∗n(umr )(umr) = V D(u).

Since φD(u) = ϕ, uniqueness of the strategies would imply that D = D∗n(u), which would
not be possible for large enough r according to the choice of (um)m≥0. Hence, D is
continuous. �

The argument to show boundedness of D∗n in the previous proof is simply a formal-
ization of the intuitive idea that the best strategy cannot have arbitrarily high lev-
els/corridors, as this would imply longer waiting times between dividend payments.

Remark 4.7. In line with the stochastic control literature, we close this section with an
(informal) discussion on a potential dynamic-programming formulation of the strategy.
Observe first that from the results in Section 6.1, for a finite number of corridors, the
multi-corridor strategies are not necessarily optimal, so any optimality result could at
most be achieved in the limit. Now, while in general, due to time-inconsistency, a dynamic
programming principle cannot be formulated for control problems with ruin probability
considerations, in the current setting there is some evidence pointing to a weaker version
of this to indeed hold: in the case of the diffusion, from Equations (3) and (8), we obtain

(25) a∗n,i+1(u, ϕ) = a∗n−1,i(u1, ϕ1), i = 1, . . . , n− 1,

and similarly for the b∗n,i+1’s and l∗n,i+1’s, where u1 = l∗n,1(u, ϕ), ϕ1 = ϕW0(a∗n,1(u, ϕ))/W0(u)
and the second argument now refers to the survival probability under consideration. The
meaning of (25) is that, with the knowledge of a∗n,1(u), b∗n,1(u) and l∗n,1(u), one could
determine the remaining levels of the best n-corridor strategy with survival probability ϕ
by now considering instead the best (n− 1)-corridor strategy with initial surplus u1 and
ϕ1. Furthermore, iterating (25), we obtain

(26) a∗n,i+1(u, ϕ) = a∗n−i,1(ui, ϕi), i = 1, . . . , n− 1,

where, recursively, we have ui = l∗n−i+1,1(ui−1) and ϕi = ϕi−1W0(a∗n−i+1,1(ui−1))/W0(ui−1),
i = 2, . . . , n. The recursive nature of these equations hints towards the existence of a
type of dynamic programming principle leading the value of V ∗n,ϕ. Indeed, observe that
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Equation (25) is, in a way, equivalent to the equation

(27) V ∗n,ϕ(u) = max
D∈Dn

Eu

[∫ τD∧τd1

0

e−δt dDt + e−δ(τ
D∧τd1 )V ∗n−1

(
CD
τD∧τd1

,
W0(aD1 )

W0(u)
ϕ

)]
,

and Equation (26) could then be phrased as

V ∗n,ϕ(u) = max
D∈Dn

Eu

[∫ τD∧τdi

0

e−δt dDt + e−δ(τ
D∧τdi )V ∗n−i

(
CD
τD∧τdi

,
W0(aD1 ) · · ·W0(aDi )

W0(u) · · ·W0(lDi−1)
ϕ

)]
.

(28)

In both cases one needs to be able to keep track of the survival probability to account
for “how much probability has been consumed” and one cannot just plug in arbitrary
stopping times, allowing for a classical a dynamic programming principle. For example,
we have

V ∗n,ϕ(u) = max
D∈Dn

Eu

[∫ τD∧τ1

0

e−δt dDt + e−δ(τ
D∧τ1)V ∗n−1

(
CD
τD∧τ1−,

W0(aD1 )

W0(u)
ϕ

)]

= max
D∈Dn

Eu
[
e−δ(τ

D∧τ1)V ∗n−1

(
CD
τD∧τ1−,

W0(aD1 )

W0(u)
ϕ

)]
,

where the difference is that one now has to account for the value of the process just before
the lump-sum payment at a1, i.e., CD

τD∧τ1−.
These equations, however, suggest the idea of a dynamic programming principle being
satisfied locally as follows: for any stopping time τ with τ di−1 ≤ τ ≤ τi for i ∈ {1, . . . , n}
(and τ d0 = 0), we have

V ∗n,ϕ(u) = max
D∈Dn

Eu

[∫ τD∧τ

0

e−δt dDt + e−δ(τ
D∧τ)V ∗n−i

(
CD
τD∧τ−,

W0(aD1 ) · · ·W0(CD
τD∧τ−)

W0(u) · · ·W0(lDi−1)
ϕ

)]
,

while for τi < τ ≤ τ di ,

V ∗n,ϕ(u) = max
D∈Dn

Eu

[∫ τD∧τ

0

e−δt dDt + e−δ(τ
D∧τ)V ∗n−i

(
CD
τD∧τ ,

W0(aD1 ) · · ·W0(aDi )

W0(u) · · ·W0(lDi−1)
ϕ

)]
.

Observe, further, that the numerical results from Section 6 suggest that, for n large
enough, a∗n,k = b∗n,k for small k, so one does not need to consider the lump sum payment.
If one could further justify the exchange of the expectation with the limit, then one would
obtain an even stronger formula for lim

n→∞
V ∗n seen as a function of two parameters.

Although intuitive, we do not attempt to formalize this approach here, as it is beyond
the scope of the present paper.

5. Optimization of barrier levels

From the previous considerations, we know that for each n ∈ N there exists a strategy
D∗ ∈ Dn such that V ∗n (u) = V D∗(u). We are now interested in identifying this strategy,
which is equivalent to finding surplus values ak, bk, lk, k = 1, . . . , n, which maximize
V D(u) subject to the constraint φD(u) ≥ ϕ. Recall that the objective function and the
constraint are of the form

V D(u) = Wδ(u)
n∑
k=1

B(ak, bk, lk)
k−1∏
i=1

G(ai, bi, li)
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and

φD(u) = κ′(0)W0(u)
n∏
k=1

A(ak, bk, lk),

respectively. We will pursue two different approaches in the sequel.

5.1. A gradient-inspired method. Despite the possibly high-dimensional nature of
this optimization problem, the particular structure of the above equations makes a clas-
sical Lagrange method look feasible. In what follows, we fix n ∈ N.
It is clear that the constraint is “adversarial” to the objective function, meaning that
the surplus values that maximize V will at the same time minimize φD. Given that the
constraint is imposed in terms of an inequality, it follows that the optimal strategy D∗

will as well satisfy φD
∗
(u) = φmin. Using this observation, we consider hence the function

L(a1, . . . , an, b1, . . . , bn, l1, . . . , ln,Λ) = V (u)− Λ(φD(u)− φmin).

The normal equations then turn out to be1

Wδ(u)DiB(am, bm, lm)
m−1∏
j=1

G(aj, bj, lj)

+Wδ(u)
n∑

k=m+1

B(ak, bk, lk)DiG(am, bm, lm)
k−1∏
j=1
j 6=m

G(aj, bj, lj)

− Λκ′(0)W0(u)DiA(am, bm, lm)
n∏
k=1
k 6=m

A(ak, bk, lk) = 0, m = 1, . . . , n, i = 1, 2, 3

κ′(0)W0(u)
n∏
k=1

A(ak, bk, lk)− φmin = 0.

(29)

Despite the relatively easy form of these equations, even for the simplest cases no ex-
act solution can be provided in terms of elementary functions. The following example
illustrates this point:

Example 5.1. Let us consider n = 1, i.e. there is only one level a, at which a lump sum
is paid down to a barrier b ≤ a, and after that dividend payments at this barrier take
place until the barrier is dissolved when the surplus value undershoots l. Recalling the
formulas for W and A in the diffusion case, the equations

W ′′
δ (b− l) = 0, κ′(0)W0(u)A(a, l) = φmin

allow us to write a and b in terms of l, obtaining

b = l − log(θ2
1)− log(θ2

2)

θ1 − θ2

,

a = −σ
2

2µ

(
log

(
φmin

κ′(0)W0(u)
+ e−(2µ/σ2)l − 1

)
− log

(
φmin

κ′(0)W0(u)

))
.

Equations (29) reduce into

Aa(a, l)

Al(a, l)
=
Ba(a, b, l)

Bl(a, b, l)
,

1Here DiA designs the partial derivative of A with respect to its i-th argument and similarly DiB
and DiG. We interchangeably use the notation Aa, Ab and Al to denote the partial derivatives of A.
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so, by letting c = 2µ/σ2 and d = φminκ
′(0)−1W0(u)−1, we obtain

(30) (d− 1)ecl
(
1− ρ

(
d− 1 + e−cl

)α)
+

(
γ − l − 1

c
log
(
d− 1 + e−cl

)) (
θ1 − θ2ρ

(
d− 1 + e−cl

)α)
= 0

with

α = (θ1 − θ2)/c, ρ = d−α, ξ =
log(θ2

2)− log(θ2
1)

θ1 − θ2

, γ =
1

c
log(d) +

Wδ(ξ)

W ′
δ(ξ)

+ ξ.

By making the change of variable y = e−cl, after some algebraic manipulations, (30)
becomes

(d− 1) (1− ρ (d− 1 + y)α)+y

(
γ +

1

c
log

(
y

d− 1 + y

))
(θ1 − θ2ρ (d− 1 + y)α) = 0.

While easily solved by a numerical optimizer, the solution cannot be expressed in terms
of elementary functions. �

The last equation in the previous example accepts two possible solutions for y, although
only one making l ≤ b ≤ a. Situations like this arise similarly for a higher number of
corridors. While for small n this might be something easy to deal with, for large n this
issue might introduce a complexity problem in the numerical solution of the equations
resulting from (29). These considerations motivate pursuing different alternatives for
obtaining the optimal corridor levels, one of which we explain now.
In what follows we will focus only in the case of the diffusion. Hence, A does not depend
on its second argument and we actually have A(a, l) = W0(l)/W0(a). Motivated by the
constraint φD(u) = ϕ, for fixed ak, we introduce the change of variable sk = A(ak, lk) =
W0(lk)/W0(ak), so that lk = W−1

0 (skW0(ak)), k = 1, . . . , n. The constraint can now
be phrased in terms of the sk’s, where we have κ′(0)W0(u)

∏
k sk = ϕ. Assume for the

moment that the optimal sk’s are known, which we denote by s∗n,1, . . . , s
∗
n,n in accordance

with the notation of Section 4. Since an, bn and ln appear only as arguments of B in the
the last term of the sum in (8), the optimal levels of the last corridor, a∗n,n, b

∗
n,n and l∗n,n,

should also maximize the mapping

(a, b, l) 7→ B(a, b, l)

subject to the constraint s∗n,n = W0(l)/W0(a). Since the inverse of W0 can be explicitly
computed from the formula given in Section 3.1, this is a two-dimensional optimization
problem, which can be easily solved by standard optimization techniques. Assume we
have found the optimal levels for the last corridor and, motivated by (11), let cn =
B(a∗n,n, b

∗
n,n, l

∗
n,n). We can move backwards one step and repeat a similar procedure by

observing that an−1, bn−1 and ln−1 appear only in the last two terms of the sum in (8)
so, after dividing by a common factor, we notice that a∗n,n−1, b

∗
n,n−1 and l∗n,n−1 should

maximize the mapping
(a, b, l) 7→ B(a, b, l) + cnG(a, b, l)

subject to the constraint s∗n,n−1 = W0(l)/W0(a). We can then set

cn−1 = B(a∗n,n−1, b
∗
n,n−1, l

∗
n,n−1) + cnG(a∗n,n−1, b

∗
n,n−1, l

∗
n,n−1)

and repeat. Since V ∗n (u) = Wδ(u)c1, we observe that by proceeding in this fashion, the
optimal strategy can be obtained as a result of n consecutive 2-dimensional problems.
Having described an approach to finding the a∗n,k’s, b

∗
n,k’s and l∗n,k’s given the s∗n,k’s, we

are only left with the question of finding the appropriate s∗n,k’s. Since the sequential
optimization part is relatively fast for a given set of the sk’s, optimal or not, we can use a
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greedy method to solve this last issue. The overall procedure is summarized in Algorithm
1.

Input : Loops L, increment r, optimization function P .
Output: Approximation to optimal levels a∗n,k, b

∗
n,k and l∗n,k, k = 1, . . . , n.

1 begin
2 initialize({(sk) | k = 1, . . . , n});
3 (c1, . . . , cn) := computeC(s1, . . . , sn);
4 l := 1;
5 while l < L do
6 for (m1,m2) in {1, . . . , n}2 do
7 m := min(m1,m2);
8 s̃k := sk, k 6= m1,m2;
9 s̃m1 := rsm1 ;

10 s̃m2 := sm2/r;

11 ãn, b̃n := P (B, s̃n);

12 l̃n := W−1
0 (s̃nW0(ãn));

13 c̃n := B(ãn, b̃n, l̃n);
14 for j := n− 1 to m do

15 ãj, b̃j := P (B + c̃j+1G, s̃j);

16 l̃j := W−1
0 (s̃jW0(ãj));

17 c̃j := B(ãj, b̃j, l̃j) + c̃j+1G(ãj, b̃j, l̃j);
18 end
19 if c̃m > cm then
20 sk = s̃k, k = 1, . . . , n;
21 (c1, . . . , cn) := computeC(s1, . . . , sn);
22 end
23 end
24 l = l + 1;
25 end
26 a∗n,n, b

∗
n,n := P (B, sn);

27 l∗n,n := W−1
0 (snW0(a∗n,n));

28 for j := n− 1 to 1 do
29 a∗n,j, b

∗
n,j := P (B + cj+1G, sj);

30 l∗n,j := W−1
0 (sjW0(a∗n,j));

31 end
32 V = c1;
33 end

Algorithm 1: Corridor level optimization algorithm

The idea of the algorithm is to start with an arbitrary set of levels s1, . . . , sn satisfying
the constraint κ′(0)Wδ(u)

∏
k sk = ϕ and the value of the ck’s associated with them (Lines

2 and 3). Once these initial values are set, the algorithm iterates through all couples
(m1,m2) of indices m1 and m2 in the set {1, . . . , n}. The idea is to alter the values of sm1

and sm2 in a multiplicative way so that the constraint is still satisfied, obtaining a new set
of s-levels, which we denote by s̃1, . . . , s̃n (Lines 8 to 10). If after computing the optimal
corridor levels associated with the s̃k’s (Lines 11 to 18) we observe that the alteration
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leads to an improvement in V D(u), we discard the current s-levels and replace them by
their tilded versions, moving to the next iteration. Observe that for m = min(m1,m2)
one can already notice an improvement if c̃m > cm, so it is not necessary to check every
value. Once the overall procedure has been repeated L times, we compute the corridor
levels associated with the latest version of the sk’s, which are an approximation to the
optimal levels a∗n,k, b

∗
n,k and l∗n,k, k = 1, . . . , n.

The optimization function P appearing in Lines 11, 15, 26 and 29 is to be understood as
any procedure that maximizes the function given in the first argument subject to A being
equal to the second argument of P . As explicit formulas are available for the inverse of
W0, we can replace the third arguments of B and G, and let P be any unconstrained
maximization algorithm.
A few comments are in order: while the algorithm can be used for any value of n,
the complexity of its main iterating procedure scales quadratically with the number of
corridors. Combined with the optimization procedure, this will typically lead to an
excessive computation time. To address this issue, one can restrict the set of couples
(m1,m2) that are considered for improvement. This, however, requires a good set of initial
values for the sk’s. A rule of thumb used during the implementation was to compute the
optimal s∗n,k’s for a small n and for computing the optimal levels for, say, N > n corridors,
initialize the sk’s as sk = s∗n,k, k = 1, . . . , n and sk = 1, k = n+1, . . . , N . For these initial
values, one would restrict m1 to the set {1, . . . , n} and m2 to the set {n + 1, . . . , N}.
Conversely, one could initialize the sk’s as sN−n+k = s∗n,k, k = 1, . . . , n and sk = 1,
k = 1, . . . , N−n, and restrict m1 to the set {1, . . . , N−n} and m2 to {N−n+1, . . . , N}.
While both approaches yielded similar results, the latter performed slightly better, with
exceptionally good results obtained by taking N = n + 1 and repeating the procedure
several times (see also Section 6.2 for further insights into the initialization procedure).

Remark 5.2. Recall from (25) and (26) that

a∗n,i+1(u, ϕ) = a∗n−i,1(ui, ϕi), i = 1, . . . , n− 1

where ui = l∗n−i+1,1(ui−1) and ϕi = ϕi−1W0(a∗n−i+1,1(ui−1))/W0(ui−1), i = 2, . . . , n. The
meaning of these equations is that, to solve the overall optimization problem, we “only”
need to learn to determine the optimal first corridor of any strategy. While it might seem
that this leads to a more efficient optimization algorithm, the use of (25) and (26) makes
implicit use of full knowledge of the functions a∗i,1, b∗i,1 and l∗i,1 for each i = 1, . . . , n− 1 at
all values u and ϕ, which seems infeasible to numerically achieve for a large amount of
corridors2. One could still use this idea by optimizing over the values of ϕ1, . . . , ϕn−1, un−1,
and determining the remaining quantities by using the optimality properties of a∗n,i, b

∗
n,i

and l∗n,i. However, this leads precisely to the implementation described in Algorithm 1.

The considerations described so far work equally well for the case of the Cramér-
Lundberg model with exponential claims, as evidenced by the results in Section 3.2. For
more general processes, we lose the ability of expressing l purely in terms of a, as A usually
depends on its second argument. If we want to keep the advantage of transforming the
constrained optimization problem into a sequence of n unconstrained ones, we can shift
the focus by observing that A can be written in the form A(a, b, l) = I(b, l)/W0(a) for
some function I. Hence, for 0 < s < 1 we can write a = W−1

0 (I(b, l)/s) and then replace
the first argument in B and G by this function. The limitation here is that the inverse
of W0 is in general not readily available even if explicit formulas for W0 exist, so that
further methods need to be used in this case. We explain another one in the next section.

2Recall that there are no explicit solutions for these functions, so this needs to be done numerically.
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5.2. An evolutionary strategy. Evolutionary strategies (ES) have been applied with
some success in reinsurance problems where the evaluation of the function to optimize is
only possible through numerical procedures due to the non-existence of explicit algebraic
expressions, see e.g. Salcedo-Sanz et al. (2014) and Román et al. (2018). Within the
context of optimization of dividend strategies, ES were recently systematically used in
Albrecher and Garcia Flores (2023) for tackling the classical (un-constrained) version of
the current problem, and we refer to there for a broader discussion of the corresponding
algorithms and background. In this work, we explore a suitably adapted strategy for our
purposes as well as a penalized version of the algorithm.
As outlined in Albrecher and Garcia Flores (2023), basic ES’s are designed for uncon-
strained search spaces, so in order to enforce the survival probability condition, some
adaptations are needed to the way V D(u) and φD(u) are evaluated. We begin by iden-
tifying the current set of strategies of the form (8) as a subset of Rn × Rn × Rn in the
natural way. A point (a, b, l) ∈ Rn × Rn × Rn satisfies the constraints on our dividend
problem if and only if:

(i) For every k = 1, . . . , n, 0 ≤ lk ≤ bk ≤ ak,
(ii) For every k = 1, . . . , n− 1, ak ≤ ak+1 and

(iii) φD(u) = κ′(0)W0(u)
∏n

k=1 A(ak, bk, lk) = ϕ.

Here a = (a1, . . . , an), b = (b1, . . . , bn) and l = (l1, . . . , ln). Now, mutations occur co-
ordinate by coordinate by adding a normally distributed error to recombinations of the
parental population. If we want to maintain this procedure, then, whenever ak − lk is
small, constraint (i) will be violated with high probability after this addition, which re-
stricts the way in which mutations can be carried out. As for problems with high values
for n and ϕ, ak − lk will be small, and additive mutations of this way are infeasible.
We begin by assuming that A does not depend on b, which as explained in the previ-
ous section, happens in the case of the diffusion and the Cramér-Lundberg model with
exponential jumps. Thus, by strict monotonicity of W0, for every a > 0, the mapping
l 7→ A(a, l) is strictly increasing. With this in mind, we can use constraint (iii) to come
around the limitation from the previous paragraph. Indeed, by defining the changes of
variable in the l-space

q1 = A(a1, l1)

and for k = 1, . . . , n− 1

qk+1 = qkA(ak+1, lk+1),

the previous set of constraints is converted to

(i’) For every k = 1, . . . , n− 1, qk+1 ≤ qk and q1 < 1,
(ii’) For every k = 1, . . . , n− 1, ak ≤ ak+1 and
(iii’) qn = κ′(0)−1W0(u)−1ϕ.

Denoting the product κ′(0)−1W0(u)−1ϕ by d, we see that these changes of variable allow
us to convert condition (iii) into a univariate condition, making clear the reduction to a
search in a 3n− 1 dimensional space. Constraint (i’) can be summarized by the chain of
inequalities d = qn < qn−1 < · · · < q1 < 1. For high values of ϕ, the value of d will be
close to 1, so, once again, with high probability, any addition of a normally distributed
error to the parameters qk will make them not satisfy constraint (i’). Hence, we apply
the final transformation

yk = Φ−1

(
qk − d
1− d

)
with Φ the c.d.f. of the normal distribution. With the latter, we see that the only
constraints in yk and ak are
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(i”) For every k = 1, . . . , n− 2, yk+1 ≤ yk,
(ii”) For every k = 1, . . . , n− 1, ak ≤ ak+1.

The new set of constraints (i”) and (ii”) can easily be handled by sorting the values within
the vector and is handled by the ES, similarly to Albrecher and Garcia Flores (2023).
One should keep in mind that this approach is only viable when A does not depend on
its second argument. While one can still use strict monotonicity of W0 to theoretically
argue that the map a 7→ A(a, b, l) is invertible for each fixed b and l, and proceed in a
similar manner, in this situation one often runs into the problem that the inverse of W0

cannot be explicitly identified, thus limiting the applicability of the approach. In these
cases, we suggest a more straightforward procedure applying a penalty function to the
value function. More specifically, an adaptive penalty function is used in the algorithm,
as e.g. described in Michalewicz and Schoenauer (1996). Then, (8) is replaced by the
function

(31) Ṽ (u) = V (u)− ξt1{φD(u)<ϕ},

where 1{φD(u)<ϕ} denotes the indicator function of the set {φD(u) < ϕ} and ξt is a
parameter that depends on the generation t. This parameter is initially chosen larger
than the overall optimal strategy, so that levels ak, bk, lk for which φD(u) < ϕ produce a
negative value. Moreover, it is updated for every generation according to the rule

ξt+1 =


c1ξt if best candidate satisfies φD(u) > ϕ for k generations,

c2ξt if best candidate satisfies φD(u) < ϕ for k generations,

ξt otherwise,

where c1 < 1, c2 > 1 and k are predetermined parameters. We require c1c2 6= 1 to avoid
circularity.
While the optimal set of levels satisfies φD(u) = ϕ, we cannot replace the indicator
function in (31) by 1{φD(u)=ϕ}, since, by the nature of the algorithm, with probability

zero the new candidates will be in the set {φD(u) = ϕ}, so that using this indicator
function would instead produce the overall best strategy of the form (8) without regard
to survival probability.

6. Numerical Results

We examine the performance of the strategy for four Lévy processes: the diffusion, the
Cramér-Lundberg model with exponential and Erlang claims, as well as the perturbed
Cramér-Lundberg model with exponential claims. More specifically, for the diffusion
model

Ct = u+ µt+ σBt, t ≥ 0,

we consider µ = 1, σ = 1, ϕ = 0.95 and δ = 0.03 as well as µ = 0.04, σ =
√

0.02, ϕ = 0.95
and δ = 0.02. For the case of the Cramér-Lundberg process

Ct = u+ c t−
Nt∑
i=1

Xi, t ≥ 0,

we choose Xi ∼ Exp(1000), a Poisson intensity λ = 5 × 105, c = 501, δ = 0.03 and
ϕ = 0.95; as well as Xi ∼ Erlang(2, 1), a Poisson intensity λ = 10, c = 21.4, δ = 0.03 and
ϕ = 0.1. Finally, for the perturbed Cramér-Lundberg process,

Ct = u+ µt+ σBt −
Nt∑
i=1

Xi, , t ≥ 0,
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we consider µ = 1, σ = 1, ϕ = 0.7, Xi ∼ Exp(2), a Poisson intensity λ = 1 and δ = 0.03.
While the concrete choice of parameters for the perturbed Cramér-Lundberg process and
the first set of parameters for the diffusion is somewhat arbitrary, the second set for the
diffusion was chosen in accordance with the parameters used in Grandits (2015). The
Cramér-Lundberg process with exponential claims is chosen with a high Poisson intensity
λ and a small expectation in such a way that it approximates the diffusion case with µ = 1
and σ = 1. The parameter choice for the Cramér-Lundberg process with Erlang claims
is taken from Azcue and Muler (2005), for which the overall (unconstrained) optimal
dividend strategy is known to be a two-band strategy (as opposed to a barrier strategy
like in the other three cases). The relevant quantities for the diffusion and Cramér-
Lundberg process with exponential claims are evaluated through the formulas obtained
in Section 3.1 and 3.2, while the formulas for the Cramér-Lundberg process with Erlang
claims and perturbed Cramér-Lundberg process are obtained through the more general
formulas from earlier in Section 3. The results are shown in Figures 2–7. In all these cases,
and for each relevant u, there was only one optimal strategy D making V ∗n (u) = V D(u),
which allows us to present the information in terms of the functions a∗n,k, b

∗
n,k and l∗n,k as

in Figures 5, 6 and 7. The results in Figure 5 are shown only in the case of the diffusion,
since the resulting plots for the other processes are similar and we decided to omit them
for the sake of brevity.
We start by observing that the performance of the strategy seems to depend rather
strongly on the type of process and the concrete parameters. The values for different
n converge rather fast and uniformly to a limiting function limn→∞ V

∗
n , which is why

we only display the results for small n. In Figure 2b, we see that even for values of
u close to φ−1(0.95) ≈ 1.497866, the process achieves about 90% of the value of the
unconstrained optimal strategy (which for the diffusion is a barrier strategy). This is
quite remarkable, given that the optimal barrier strategy has a survival probability of
zero. Figure 3 shows the corresponding plots for the second set of parameters in the
diffusion case. Here the convergence to the solution for large n is slower, and only about
80% of the unconstrained optimal value is achieved, which is nevertheless still noteworthy.
Recall that this figure shows the results obtained for the parameters that were also used
in the numerical experiments of Grandits (2015) who considered the optimal dividend
problem up to a finite time horizon T with a ruin probability constraint and a potential
lump sum payout of the remaining surplus at T . Within the current framework one
can not directly compare the results from Figure 3 to those obtained in that paper, but
a small adaptation adding a lump sum dividend payment at T makes the comparison
possible: using D∗n, we can compute

(32) Vn(u, T ) = E
(∫ τ∧T

0

e−δtdD∗t + e−δ(τ∧T )CD∗

τ∧T

)
where τ = inf{t > 0 : CD∗ < 0} and D∗ is the stochastic process associated with using
the strategy represented by D∗n(u). For n = 10, T = 10 and u = 1, we computed the
expectation in (32) through MC simulation using a sample of 100,000 simulations and
approximating the diffusion through a random walk with drift and a step size of 10−5

time units. These simulations provide an approximating value of 1.158832, which is in
fact considerably higher than the value 0.20879 reported in Grandits (2015).
Figure 4 shows that for the Cramér-Lundberg process with Erlang claims, the perfor-
mance is similar. Recall from Proposition 4.5 that for any n ≥ 1, limu→∞ V

∗
n (u)/V̄ (u) = 1,

where V̄ denotes the unconstrained optimal value function. Figures 5, 6 and 7 show
the evolution of the optimal strategies D∗n as a function of u and n for the diffusion and
Cramér-Lundberg process with exponential claims, respectively. Due to the imposition



DIVIDEND CORRIDORS AND A RUIN CONSTRAINT 23

(a) V ∗n as a function of initial surplus. (b) V ∗n relative to the best strategy.

Figure 2. V ∗n (u) for n = 1, 2, 3, 4 and 5 in absolute terms (left), and
relative to the unconstrained optimal dividend strategy (that is also given
on the left) for the diffusion with parameters µ = 1, σ = 1, ϕ = 0.95 and
δ = 0.03 (right).

(a) V ∗n as a function of initial surplus. (b) V ∗n relative to the best strategy.

Figure 3. V ∗n (u) for n = 1, 2, 3, 4 and 5 in absolute terms (left) and
relative to the unconstrained optimal dividend strategy (that is also given
on the left) for the diffusion with parameters µ = 0.04, σ =

√
0.02, ϕ = 0.95

and δ = 0.02 (right).

aD1 ≥ u made before Proposition 4.6 to ensure uniqueness of the strategies, for values of
u large enough we will have a∗n,1(u) = u, which is reflected in all the plots of Figure 5.
Moreover, the conclusion of Proposition 4.5 can be traced in Figures 5b and 5c, where,
again, for large enough u, all levels but a∗n,1 become constant. Finally, it seems that we
have the general trends a∗n+1,k ≤ a∗n,k and b∗n+1,k ≤ b∗n,k for k ≤ n, as well as a∗n,k ≤ a∗n,k+1,
b∗n,k ≤ b∗n,k+1 and l∗n,k ≤ l∗n,k+1, which simply means that a∗n,k and b∗n,k are decreasing in n,
but increasing in k, while l∗n,k is only increasing in k as shown in Figures 6 and 7. While
this can not be proven explicitly with the current means, it is somewhat intuitive, at least
for the last observation: after a corridor a∗n,k, b

∗
n,k and l∗n,k, it seems optimal to wait for a

level higher than a∗n,k to start the new corridor a∗n+1,k, for if a∗n+1,k ≤ a∗n,k we could have
exchanged the order of the corridors, which would imply paying dividends earlier and
hence on average increasing the amount of dividends paid without changing the overall
survival probability.
Finally, we would like to comment two further details about the implementation: first,



24 H. ALBRECHER, B. GARCIA FLORES, AND C. HIPP

(a) V ∗n as a function of initial surplus. (b) V ∗n relative to the best strategy.

Figure 4. V ∗n (u) for n = 1, 2, 3, 4 and 5 in absolute terms (left), and
relative to the unconstrained optimal dividend strategy (that is also given
on the left) for the Cramér-Lundberg process with Erlang claims (right).

all processes except the diffusion exhibited local maxima around the points where bk = lk
for some index k. Hence, for these particular cases, the algorithms described in Section
5 were not applied exactly as described there but with the extra condition that lk < rbk
for some 0 < r < 1, generally r ≈ 0.95, which seemed to produce more adequate results.
Second, while the gradient equations derived at the beginning of Section 5 are hard to
deal with, they produce an interesting equation:

Wδ(bn − ln) = 0.

Combined with the form of B, one can then deduce that the optimal distance between
b∗n,n and l∗n,n equals the barrier level of the optimal barrier strategy with initial capital
a∗n,n− l∗n,n (which in most cases equals the overall unconstrained dividend strategy). This
observation was used, for example, to solve the first step in Algorithm 1 or as another
check for convergence of the ES.

6.1. Comparison with other strategies. While the results above show that, for cer-
tain sets of parameters, the strategy has a particularly strong performance (relative to
the best unconstrained strategy), it is interesting to compare its performance to other
dividend strategies studied in the literature. Despite the existing literature addressing
the trade-off between dividend optimization and long-term safety of the company, a large
part of the optimality research is focused on delaying ruin rather than avoiding it (cf.
Thonhauser and Albrecher (2007), Loeffen and Renaud (2010), Hernandez et al. (2018)),
as in this case time-consistency still holds. Nevertheless, we now want to compare it with
strategies that aim to optimize the value of the strategy at time t = 0 subject to a con-
straint on the probability of ruin at that time, ignoring their non-optimality at a future
date (i.e., we will only work with strategies that can be understood in a precommitment
sense). Concretely, we will compare the multi-corridor strategy against linear dividend
strategies as well as the refraction strategies developed in Strini and Thonhauser (2023).
Recall that a linear dividend strategy is one that pays all incoming surplus as dividends
whenever the process is above a pre-determined fixed increasing line b(t) = b0(u) + b1(u)t
(linear in time t) and does not pay dividends otherwise. The feature that has not been
considered in earlier literature on the topic (like Albrecher et al. (2005, 2007)) is that
for each initial u the barrier is optimized with respect to the value function and sur-
vival constraint (and then kept for the realization of the entire surplus process in time).
While more general reflection/refraction strategies have been developed (cf. Albrecher
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(a) a∗n,1 as function of initial surplus. (b) a∗5,k as function of initial surplus.

(c) Comparison of levels for n = 1, 2.

Figure 5. Plot of the change of the optimal levels a∗n,k, b
∗
n,k, l

∗
n,k for differ-

ent n’s and k’s as a function of initial surplus for diffusion with parameters
µ = 1, σ = 1, ϕ = 0.95 and δ = 0.03.

and Kainhofer (2002); Albrecher and Hartinger (2007); Lin and Sendova (2008)), we re-
strict the comparison to these two strategies here.
The formulas for the computation of the ruin probability and the expected value of
doiscounted dividend strategies under a linear barrier can already be found in Gerber
(1981) for the case of a diffusion approximation and the Cramér-Lundberg process with
exponential claims. Since in Strini and Thonhauser (2023) only the case of a diffusion
approximation is considered, we restrict ourselves to that case here. Figure 8 displays
the plots of these strategies together with the best unconstrained strategy for different
sets of parameters. The slope and intercept of the linear dividend barrier were chosen in
such a way that the survival constraint is met and the value function is maximized (for
each initial capital u, the best parameters b0(u), b1(u) are determined numerically, so that
the plotting of the figure is quite time-intensive). For the strategy developed in Strini
and Thonhauser (2023), the parameters where chosen to satisfy the survival constraint.
Notice, however, that in their strategy the dividend payment rate needs to be bounded
by some level Lmax < µ, as otherwise the survival constraint cannot be satisfied. In all
cases, this bound was chosen to represent 95% of the drift µ. One observes that in all
cases the strategy in Strini and Thonhauser (2023) is outperformed by the other two
strategies, which is no surprise as that strategy was built with other considerations in
mind. The comparison of the best linear strategy and the best multi-corridor strategy
is more subtle. For example, for the parameters in Figure 8a, the linear strategy very
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Figure 6. Plot of the change of the optimal levels a∗n,k, b
∗
n,k, l

∗
n,k for dif-

ferent n’s and k’s as a function of k for the Cramér-Lundberg process with
exponential claims and initial surplus u = 2.

slightly outperforms the multi-corridor strategy for low values of initial capital u and vice
versa for large values of u. In any case, both strategies perform surprisingly well, to an
extent that one can hardly differentiate the plots from the optimal unconstrained strat-
egy (the largest difference is of the order of 10−2, decreasing with u). For the parameters
in Figure 8b, once again the strategies perform very similarly (with a little advantage
for the linear barrier strategy of the order 10−2), though slightly worse than the optimal
unconstrained strategy. Finally, for the parameters of Figure 8c, it can be seen that the
multi-corridor strategy strongly outperforms the best linear strategy.

This pattern is in fact similar for other choices of parameters. In general, the multi-
corridor strategy performs considerably better than the linear strategy whenever the drift
is small in comparison to the volatility of the process, together with a not-so-restrictive
constraint on the survival probability (which often cannot be enforced for small values
of initial capital, precisely because µ/σ2 is small). In the other cases, the linear strategy
performs better than the multi-corridor strategy, but that difference is usually very small.
Considering that the comparisons where made using only 5 corridors, one can expect that
difference to decrease further by letting the number of corridors grow.

6.2. Asymptotic behaviour of barrier levels. We will restrict ourselves now to the
case of the diffusion and fix the parameters to µ = 0.04, σ =

√
0.02, ϕ = 0.95, δ = 0.02

and initial surplus u = 2. Figure 9 displays the optimal barrier levels for large values of
n (80, 100, and 150) computed by means of Algorithm 1. Together with Figures 6 and 7,
the results show a sort of common behavior both at the “middle” levels as well as in the
last barriers. Figure 10 displays the distances between a∗n,k, b

∗
n,k and l∗n,k for n = 30 and

n = 80 for the last 30 bands, as well as the distances between a∗n,n and a∗n,k, with a shift
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Figure 7. Plot of the change of the optimal levels a∗n,k, b
∗
n,k, l

∗
n,k for differ-

ent n’s and k’s as a function of k for the perturbed CL process with initial
surplus u = 2.

in the indices of n = 80 to match the last bands. We notice that except for small values
of k, the distances are extremely close (one even does not see the difference visually).

These observations suggest that the distances between the barrier levels converge in
the final barriers. Explicitly, the results suggest that the limits

lim
n→∞

a∗n,n−M+1 − l∗n,n−M+1,

lim
n→∞

b∗n,n−M+1 − l∗n,n−M+1,

lim
n→∞

a∗n,n − a∗n,n−M+1,

(33)

exist for M ∈ N (and that in turn several other limits pertaining to the distances among
the levels also exist, e.g., the existence of lim

n→∞
a∗n,n−M+2 − a∗n,n−M+1). In the following,

we assume that the limits in (33) indeed exist and denote them by ζM , ηM and νM
respectively.
In fact, from the Lagrange equations it was observed already earlier that b∗n,n− l∗n,n should
always equal the (surplus-independent) optimal barrier level for the diffusion, giving the
exact value for η1. Motivated by this, we use the Lagrange equations to deduce further
properties of ζM , ηM and νM .
Recall the normal equations (29), as well as the definitions of A, B and G, here specialized
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(a) µ = 2.0, σ2 = 1.0, δ = 0.1,
φ(u) = 0.5 and Lmax = 1.9.

(b) µ = 0.04, σ2 = 0.02, δ = 0.02,
φ(u) = 0.95 and Lmax = 0.038.

(c) µ = 0.1, σ2 = 1.0, δ = 0.1,
φ(u) = 0.172 and Lmax = 0.095.

Figure 8. Value functions for the best multi-corridor, the best linear and
the best strategy in the sense of Strini and Thonhauser (2023) (referred
as ST) against the optimal (unconstrained) strategy for various parameter
sets.

for the diffusion:

A(a, l) = W0(l)/W0(a),

B(a, b, l) =
a− b+Wδ(b− l)/W ′

δ(b− l)
Wδ(a)

,

G(a, b, l) =
σ2

2

Wδ(l)

Wδ(a)

(
W ′
δ(b− l)−

Wδ(b− l)W ′′
δ (b− l)

W ′
δ(b− l)

)
.

For m = n we obtain, from (29) (with i = 1 and i = 3),

D1B(a∗n,n, b
∗
n,n, l

∗
n,n)

D3B(a∗n,n, b
∗
n,n, l

∗
n,n)
−
D1A(a∗n,n, , l

∗
n,n)

D2A(a∗n,n, l
∗
n,n)

= 0

Using the explicit forms of A and B we obtain

−Wδ(a
∗
n,n) +W ′

δ(a
∗
n,n)

(
a∗n,n − b∗n,n + Wδ(η1)

Wδ′(η1)

)
Wδ(a∗n,n)

+
W0(l∗n,n)W ′

0(a∗n,n)

W ′
0(l∗n,n)W0(a∗n,n)

= 0.
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Figure 9. Plot of the change of the optimal levels a∗n,k, b
∗
n,k, l

∗
n,k for large

n’s and k’s as a function of k for the diffusion with parameters µ = 0.04,
σ =
√

0.02, ϕ = 0.95, δ = 0.02 and initial surplus u = 2.

If we assume that a∗n,n →∞ as n→∞, we obtain

(34) −1 + θ1

(
ζ1 − η1 +

Wδ(η1)

W ′
δ(η1)

)
+ e−2µζ1/σ2

= 0.

This is an implicit equation for ζ1 which can be easily (numerically) solved given the value
of η1. While the derivation of this equation relied on the (somewhat mild) assumptions
made along the way, the value obtained from solving (34) is indeed pleasantly close
to the value obtained after computing a∗80,80 − l∗80,80 with the previous numerical means
(1.137077040 against 1.137077050).
Following this line of thought, one could try to obtain simpler equations for ζM , ηM and
νM for M ≥ 1. Indeed, assuming that (29) is always satisfied, we obtain for (r, s) ∈
{(1, 1), (3, 2)} and for m = n−M + 1,
(35)

Λκ′(0)W0(u)ϕ =

Wδ(u)DrBn−M+1

∏n−M
j=1 Gj +Wδ(u)DrGn−M+1

∑n
k=n−M+2Bk

∏k−1
j=1

j 6=n−M+1

Gj

DsAn−M+1An−M+1

with

Bk = B(a∗n,k, b
∗
n,k, l

∗
n,k),

DrBk = DrB(a∗n,k, b
∗
n,k, l

∗
n,k)
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(a) Differences a∗n,k − l∗n,k and b∗n,k − l∗n,k for n = 30 and n = 80.

(b) Differences a∗n,n − a∗n,k for n = 30 and n = 80.

Figure 10. Plot of the differences between the optimal levels of the last
bands. For n = 80, there is a shift by of 50 to match the indices with those
of n = 30.

and similarly for A and G. Plugging (35) in (29) with m = n −M , we obtain, after
cancellation of common factors,

DrBn−M +DrGn−M

n∑
k=n−M+1

Bk

k−1∏
j=n−M+1

Gj−

DsAn−MAn−M+1

DsAn−M+1An−M

(
DrBn−M+1Gn−M +DrGn−M+1Gn−M

n∑
k=n−M+2

Bk

k−1∏
j=n−M+2

Gj

)
= 0.

(36)
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Now, observe that the left hand side of (36) converges to zero as n→∞. However, after
multiplication by Wδ(a

∗
n,n), we can take the limit, obtaining a new set of equations:

B̃1(ζM+1, ηM+1, νM+1) + G̃1(ζM+1, ηM+1)
M∑
k=1

B̃(ζk, ηk, νk)
M∏

j=k+1

G̃(ζj, ηj)

− e−2µ(νM+1−νM )/σ2

B̃1(ζM , ηM , νM)G̃1(ζM+1, ηM+1)

− e−2µ(νM+1−νM )/σ2

G̃1(ζM , ηM)G̃(ζM+1, ηM+1)
M−1∑
k=1

B̃(ζk, ηk, νk)
M−1∏
j=k+1

G̃(ζj, ηj) = 0,

(37)

B̃2(ηM+1, νM+1) + G̃2(ζM+1, ηM+1)
M∑
k=1

B̃(ζk, ηk, νk)
M∏

j=k+1

G̃(ζj, ηj) = 0(38)

B̃3(ηM+1, νM+1) + G̃3(ζM+1, ηM+1)
M∑
k=1

B̃(ζk, ηk, νk)
M∏

j=k+1

G̃(ζj, ηj)

− e−2µ(ζM+1+νM+1−ζM−νM )/σ2

B̃3(ηM , νM)G̃1(ζM+1, ηM+1)

− e−2µ(ζM+1+νM+1−ζM−νM )/σ2

G̃3(ζM , ηM)G̃(ζM+1, ηM+1)
M−1∑
k=1

B̃(ζk, ηk, νk)
M−1∏
j=k+1

G̃(ζj, ηj) = 0

(39)

with

B̃(ζ, η, ν) = eθ1ν
(
ζ − η +

Wδ(η)

W ′
δ(η)

)
,

B̃1(ζ, η, ν) = eθ1ν − θ1B̃(ζ, η, ν),

B̃2(η, ν) = −eθ1νWδ(η)W ′′
δ (η)

W ′
δ(η)2

,

B̃3(η, ν) = −B̃2(η, ν)− eθ1ν

and

G̃(ζ, η) =
σ2

2
e−θ1ζ

(
W ′
δ(η)− Wδ(η)W ′′

δ (η)

W ′
δ(η)

)
,

G̃1(ζ, η, ) = −θ1G̃(η, ν),

G̃2(ζ, η) =
σ2

2
e−θ1ζ

(
Wδ(η)W ′′

δ (η)2

W ′
δ(η)2

− Wδ(η)W ′′′
δ (η)

W ′
δ(η)

)
,

G̃3(ζ, η) = θ1G̃(η, ν)− G̃2(η, ν).

These functions can be obtained from Wδ, B, G and their derivatives. Hence, we have

B̃(ζ, η, ν) = lim
x→∞

Wδ(x+ ν)B(x, x+ η − ζ, x− ζ)

and similarly for B̃1, B̃2 and B̃3 using D1B, D2B and D3B respectively. Likewise, we
have

G̃(ζ, η) = lim
x→∞

G(x+ ζ, x+ η, x)

and similarly for G̃1, G̃2 and G̃3.
Observe that Equations (37) to (39) represent an improvement over the Lagrange equa-
tions as by taking the limit we reduce the dimensionality of the problem by eliminating
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the Lagrange multiplier. Moreover, these equations allow for a truly recursive algorithm
since they show that the values of ζM+1, ηM+1 and νM+1 depend only on the previous
values, and ζ1 and η1 can be obtained independently from the equations displayed before.
Derivation of (37), (38) and (39) relied on the fact that the gradient equations (29) are
always satisfied, which will happen if and only if the optimal strategy is in the interior
of Dn. However, as seen by the numerical examples considered before, this is in general
not the case as, for example, with the current parameters, one has a∗n,1 = b∗n,1 for n large
enough. This will be reflected in a way that there will exist a minimal M1 such (37) to
(39) will not have a “sensitive” solution (e.g., they will only have a solution with negative
values). Numerical experiments for the diffusion show, however, that for M ≥ M1 one
can simply assume ηM = ζM and replace (37) and (38) by the equation obtained after
adding their left hand sides (which can be derived from a Lagrange equation after assum-
ing a∗n,n−M+1 = b∗n,n−M+1), thus obtaining a system of two equations with two unknowns.
Curiously enough, the case of the diffusion also shows that there might exist a (minimal)
M2 ≥ M1 such that ηM = ζM = ηM2 for all M ≥ M2. In this case, one is only left
with Equation (39) to obtain the successive values of νM , which produces the “linear”
behavior observed for the “middle” barriers in Figure 10. Figure 11 shows the results of
comparing the results from this procedure with the differences between barrier levels for
n = 80, where one observes that for these parameters one has M1 = 10 and M2 = 19.

(a) Comparison between a∗80,81−M − l∗80,81−M
and ζM for M = 1, . . . , 30.

(b) Comparison between b∗80,81−M − l∗80,81−M
and ηM for M = 1, . . . , 30.

(c) Comparison between a∗80,80 − a∗80,81−M and
νM for M = 1, . . . , 30.

Figure 11. Comparison between the limits in (33) and the distances be-
tween barrier levels for n = 80.
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Now, while the divergence of a∗n,n to infinity implies that a limit strategy does not
exist, it might still be useful to compute the values of ζk, ηk and νk for k = 1, . . . ,M for a
large M : as explained before (cf. Section 5), for large n, the algorithms have difficulties
finding the optimal levels unless an appropriate set of values is provided for initialization.
Since the previous figures indicate that convergence of the limits happens relatively fast,
one might want to use the following pseudo-algorithm (Algorithm 2) to approximate the
values of a∗n,k, b

∗
n,k, l

∗
n,k, k = 1, . . . , n for large n. The idea is to suppose that k is large

Input : Large n and M < n such that the problem with k := M − n barriers
can easily be solved (for example, k = 30).

Output: Approximation to optimal levels a∗n,k, b
∗
n,k and l∗n,k, k = 1, . . . , n.

1 begin
2 (ζ1, η1, ν1, . . . , ζM , ηM , νM) := computeLimits(M);
3 initialize({(ak, bk, lk) | k = 1, . . . , n−M});
4 initialize(an);
5 for j := n−M + 1 to n do
6 aj := an − νn−j+1;
7 bj := aj − ζn−j+1 + ηn−j+1;
8 lj := aj − ζn−j+1;
9 end

10 while not convergence do
11 improve({(ak, bk, lk) | k = 1, . . . , n−M});
12 improve(an);
13 for j := n−M + 1 to n do
14 aj := an − νn−j+1;
15 bj := aj − ζn−j+1 + ηn−j+1;
16 lj := aj − ζn−j+1;
17 end
18 end
19 end

Algorithm 2: Corridor level optimization pseudo-algorithm

enough so that convergence of the limits in (33) is already achieved (or close enough
to be achieved) and hence one only needs to optimize over 3k + 1 variables instead of
3n. Moreover, the constraint on the survival probability might be used to find a suitable
value for an and hence the initialize and improve functions on Lines 4 and 12 can be
thought as determined by this condition. This pseudo-algorithm is not restricted to work
only with the barrier levels but can be adapted to the step-wise survival probabilities
instead (the s∗n,k’s described in Section 5).

7. Conclusions and further remarks

In this paper we proposed a new kind of dividend strategies which naturally general-
ize classical barrier strategies, but have the advantage of being adjusted to control for
survival probability. While the performance of these strategies turns out to be process-
and parameter-dependent, their nature has an easy interpretation and – as observed in
the illustrations – typically only a few parameters are needed to reach a remarkable re-
sulting survival probability while not losing much efficiency. It is rather surprising that
for a small number of corridors, the performance of these strategies turns out to be
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typically outstanding, and, as opposed to linear dividend strategies (which sometimes
lead to slightly better results), this performance is consistent across the parameter space.
Correspondingly, corridor strategies can serve as benchmarks for further studies of the
constrained optimization problem.

Much like in the passage from barrier to band strategies, one can think of a fur-
ther generalization of the strategies proposed here: given sequences of surplus levels
a1, a2, a3, . . . , an and l1, l2, l3, . . . , ln with ln ≤ min(an, an+1) and stopping times τk as de-
fined in Section 2, at time τk, one can proceed to pay dividends according to an r-band
strategy up until the time when the process controlled in this way reaches the lower limit
lk. It is easy to see that in this case the formula for V is similar to (9), but Dk is re-
placed by the relevant value. We could go yet one step further and allow the number
of bands at each corridor to vary, however, since locally in the time interval [τk, τ

d
k ] the

process behaves exactly like a controlled process for a normal band strategy, it seems a
priori better to keep the number of bands constant and equal to the number of bands of
the band strategy that produces the overall best dividend-payment strategy. Since the
dimensionality and complexity of the formulas for this generalization increases greatly
with the number of bands considered, we preferred in the present paper to adhere to the
simpler case of barrier strategies in each corridor. A further difficulty arises when trying
to generalize the results of Section 4, as it is well known that for general band strategies,
the value function is not necessarily continuous.
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