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Abstract The paper shows how the Bohmian approach to quantum physics can be
applied to develop a clear and coherent ontology of non-perturbative quantum grav-
ity. We suggest retaining discrete objects as the primitive ontology also when it comes
to a quantum theory of space-time and therefore focus on loop quantum gravity. We
conceive atoms of space, represented in terms of nodes linked by edges in a graph,
as the primitive ontology of the theory and show how a non-local law in which a
universal and stationary wave-function figures can provide an order of configurations
of such atoms of space such that the classical space-time of general relativity is ap-
proximated. Although there is as yet no fully worked out physical theory of quantum
gravity, we regard the Bohmian approach as setting up a standard that proposals for
a serious ontology in this field should meet and as opening up a route for fruitful
physical and mathematical investigations.

Keywords Bohmian mechanics · Loop quantum gravity · Emergence of
space-time · Non-local law · Primitive ontology · Wheeler-DeWitt equation

1 The Motivation for Bohmian Mechanics

Basing itself on the ontology that Bohmian mechanics provides for quantum mechan-
ics, this paper seeks to set out a proposal for a Bohmian approach to quantum gravity.
We focus on loop quantum gravity, since our intention is to try out a primitive ontol-
ogy of discrete beables also when it comes to a quantum theory of space-time. We
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start with recalling the motivation for Bohmian mechanics and its central features
(this section), then sketch out how a Bohmian theory of loop quantum gravity can
look like (Sect. 2) and finally put this theory into the larger framework of a Bohmian
approach to physics in general (Sect. 3). Although there is as yet no fully worked out
physical theory of quantum gravity, we consider the Bohmian approach as setting up
a standard that any proposal for a serious ontology in this field should meet. That stan-
dard consists notably in (a) implementing a distinction between what are supposed to
be elements of physical reality and what is their mathematical representation, so that
the ontological commitments of the theory become clear, and (b) establishing a link
between the ontological commitments of the theory and observable phenomena—in
this case, a classical space-time.

Bohmian mechanics (BM) is a primitive ontology approach to quantum mechan-
ics (QM) (see [2, 18], on the notion of a primitive ontology): an ontology of matter
distributed in three-dimensional space is admitted as the referent of the textbook for-
malism of QM, and a law for the temporal development of the distribution of matter
is formulated. The motivation for doing so is to obtain an ontology that can account
for the existence of measurement outcomes—and, in general, the existence of the
macroscopic objects with which we are familiar before doing science.

BM puts forward an ontology of point-like particles that are localized in three-
dimensional space. The quantum mechanical wave-function does not contain the in-
formation about the position of the particles, that is, the information about the actual
particle configuration. The job of the wave-function and its temporal development
according to the Schrödinger equation is to fix the velocity of the particles given their
position. The law of BM hence is the Schrödinger equation for the temporal devel-
opment of the wave-function and an equation, known as the guiding equation, that
applies the wave-function to particle positions as initial conditions in order to obtain
a velocity field for the particles:

i�
∂Ψt

∂t
= ĤΨt , (1)

dQ

dt
= vΨt (Q). (2)

In (2), Q denotes the spatial configuration of N particles in three-dimensional space
and Ψt the wave-function of that configuration at time t . More precisely, Q stands for
the configuration of all the particles at time t , and Ψt is the universal wave-function.
BM thus has a straightforward application to the universe as a whole.

This theory goes back to a suggestion by Louis de Broglie [13]. It was later worked
out by David Bohm [7] and cast in an elegant manner by John Bell (see in particular
[4], Chap. 17). In the following, we rely on its contemporary version as set out in
[16]. If one assumes that the initial particle configuration of the actual world is a
typical configuration in a precise mathematical sense, one can derive the quantum
mechanical probability calculus for measurement outcomes (Born’s rule) from BM
(see [16], Chap. 2).

The ontology of BM thus is the same as the ontology of classical mechanics:
particles moving on definite trajectories in three-dimensional space. By contrast to
classical mechanics, however, BM is a first order theory: given the position of the
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particles, the law fixes their velocity. The quantum mechanical features of the world
are taken into account by applying to this ontology of classical objects a non-local
law: the guiding equation (2) makes the velocity of any particle depending on, strictly
speaking, the positions of all the other particles. This is the reply that BM gives to
the question of what the ontological significance of the entanglement of the wave-
function in configuration space is. But there are no superpositions of values of prop-
erties in the world. The only property that the particles have is position. Since they
always have a definite position, they also have always a definite value of the temporal
derivative of position, that is, velocity. Given that any measurement outcome consists
in something having a certain position at a certain time (such as, e.g., a pointer point-
ing either upwards or downwards), BM reproduces on this basis—plus the above
mentioned typicality assumption about the initial particle configuration—the predic-
tions of textbook QM for measurement outcomes. In a nutshell, BM grounds the
predictions of textbook QM in an ontology of classical particles and a non-classical
law.

Since the motivation for BM is to solve the notorious measurement problem
by recognizing measurement outcomes—and, in general, localized macroscopic
objects—without changing the formalism of textbook QM (the Schrödinger equa-
tion and the Born rule), the ontological commitment of the theory is in the first place
the one to particles being localized in three-dimensional space. It contradicts that
motivation to conceive BM as being committed in the first place to the existence of
a universal wave-function in a high-dimensional space [1] or to regard it as a theory
that is committed to the existence of the wave-function and that poses particles in
addition to the wave-function, thus provoking the objection that the postulate of the
latter is redundant (see [8] for that objection, and [9] for a Bohmian reply to it).

The wave-function cannot be a physical entity existing in three-dimensional space
in addition to the particles, pushing them to move on certain trajectories. If it is a field,
it is a field on configuration space by contrast to a field in physical space. However,
a causal connection between the mathematical space on which the wave-function is
defined (i.e. configuration space) and physical space, with an entity belonging to the
former space influencing the motion of entities existing in the latter space, would be
mysterious. As mentioned above, the role of the wave-function is to fix the velocity of
the particles given their position. That is to say, its function is that of a law that yields
a temporal development of something given initial conditions, the initial conditions
consisting here in a configuration of particles in three-dimensional space (see [16],
Chap. 12).

Hence, whether and in what sense the wave-function has an ontological signifi-
cance in BM depends on which metaphysical stance one adopts with respect to laws.
Thus, for instance, on Humeanism applied to BM, the Bohmian law (2) with the
universal wave-function figuring in it merely is the description of the distribution of
the particle positions in the whole of space-time (the Humean mosaic) that achieves
the best balance between simplicity and empirical content (see [26], as well as [9],
Sect. 5, and [17], Sect. 3). On dispositionalism applied to BM, the universal wave-
function refers to or represents a holistic and dispositional property of the configu-
ration of all the particles in the universe at any time t that fixes the temporal devel-
opment of the configuration, manifesting itself in the velocity of each particle at t
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(see [6], pp. 77–80, and [17], Sects. 4–5). On primitivism about laws, over and above
an initial configuration of particles, there is a fact in each possible world that a cer-
tain law holds in this world, with a certain universal wave-function figuring in that
law (see notably [24] for primitivism about laws).

None of these stances is committed to admitting the universal wave-function in
configuration space as belonging to the ontology of BM. Even on primitivism, what
determines the trajectories of the particles is not the law qua abstract entity (if abstract
entities exist at all), but the law qua instantiated in a world. However, on disposition-
alism and on primitivism, by contrast to Humeanism, the universal wave-function
has an ontological significance: it refers to or represents something that exists in the
universe (a dispositional property, a fact) over and above the particle positions.

BM thus sets up a standard for a serious ontology of physics by providing, in the
case of QM, a primitive ontology of matter distributed in three-dimensional space
and a law for the temporal development of the primitive ontology. That standard
concerns not only QM, but carries on to quantum field theory (QFT) and quantum
gravity (QG). There is nothing in these latter theories given the current state of the
art that allows to solve or to dispel the notorious measurement problem of QM—that
is, the problem of how QM can account for measurement outcomes and in general
the classical features of the world with which we are familiar (see, e.g., [3] as regards
QFT). To mention just one example in order to illustrate why such a standard is
needed, consider what one of the most distinguished researchers in non-perturbative
QG says about the ontology of this theory:

A weave [. . . ] is one of many quantum states that have a certain macroscopic
property, and a very peculiar one, since it is a single element of the spin network
basis. There is no reason for the physical state of space not to be in a generic
state, and the generic quantum state that has this macroscopic property is not
a weave state: it is a quantum superposition of weave states. Therefore it is
reasonable to expect that at small scale, space is a quantum superposition of
weave states.
Therefore the picture of physical space suggested by LQG (loop quantum grav-
ity) is not truly that of a small scale lattice, or as a T-shirt. Rather, it is a quantum
probabilistic cloud of lattices.
([29], p. 271)

Whatever the world may be, it certainly cannot be a probabilistic cloud of lattices. In
the first place, probabilities always are probabilities for something, there cannot be
probabilities simpliciter in the world; when it comes to cosmological models of QG,
there obviously is no question of probabilities for observations made by an observer
that stands outside the system, since the system in this case is the whole universe.
Moreover, a lattice is a means of representation; the question hence is what in the
world the lattices employed in loop QG represent or refer to. In brief, ignoring the
mentioned standard when it comes to the ontology of QG leads to proposals of which
it is difficult to see what sense they could make. Let us therefore investigate whether
and how a Bohmian approach can set up a standard for serious ontology also in the
domain of QG.
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2 Bohmian Loop Quantum Gravity

There are some sketches of Bohmian approaches to quantum gravity and quantum
cosmology in the literature (e.g. [10, 11, 20, 22, 23, 31, 35, 38]). The most elaborate
of these approaches from a foundational point of view is the one of Goldstein and
Teufel [19] (reprinted in [16], Chap. 11). These authors exploit the ADM formula-
tion of Hamiltonian general relativity theory, which consists in casting the dynamics
of general relativity (GR) in terms of the evolution of a 3-manifold (throughout the
text this term will be considered synonymous with “3-surface”) in coordinate time
τ . This is done by foliating general relativistic space-time by means of space-like
Cauchy 3-surfaces and by providing the Hamiltonian equations of motion for the
canonical variables which, in this case, are the Riemannian 3-metrics h defined on
each 3-surface together with the conjugate momenta depending on their extrinsic cur-
vature. By quantizing the theory in this form—according to a procedure put forward
first by Dirac [14], the dynamics results encoded in a set of constraints over the phys-
ically allowed quantum gravitational wave-functions. Leaving aside the so-called dif-
feomorphism constraints, which just select all wave-functions Ψ (h) that are invariant
under smooth surface deformations (3-diffeomorphisms), the relevant dynamics for
a canonical theory of quantum gravity is given by the Wheeler-DeWitt equation:

ĤΨ (h) = 0, (3)

where Ĥ is the Hamiltonian operator defined in the physical Hilbert space of the
theory.

In order to cast this theory in a Bohmian framework, Goldstein and Teufel choose
the components hab of a 3-metric as the primitive ontology, thus fixing the configu-
ration space of their Bohmian theory of QG to be the space Riem(Σ) of Riemannian
3-metrics on a 3-manifold Σ . They then propose the following guiding equation for
the primitive ontology:

dhab

dτ
= N(τ)Gabcd Im

[
Ψ (h)−1 δΨ (h)

δhcd

]
, (4)

where Im[. . . ] represents the imaginary part of the formula in parentheses, Gabcd is
the “metric” defined over Riem(Σ), and N(τ) is the lapse function which, roughly
speaking, encodes information on how to “pile up” the different h(τ ) to obtain a
general relativistic 4-metric.

There are at least four important points in Goldstein’s and Teufel’s proposal that
we would like to highlight. The first one is that this theory is background indepen-
dent in a general relativistic sense: it is not formulated on a background space-time.
Instead, it treats the metrical-gravitational degrees of freedom as dynamical features.
Secondly, although the Wheeler-DeWitt equation (3) is timeless in the sense that it
does not depend on any time parameter—be it physical or just mathematical, the
guiding equation (4) generates a non-trivial dynamics for the primitive ontology. The
third point is that, contrary to common expectations, in this quantum theory of grav-
ity, there is nothing discrete about space or space-time: the primitive ontology is given
by (components of) continuous 3-metrics, and the space-time obtained from the dy-
namical evolution equation (4) is continuous at all scales. Finally, the procedure of
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gluing of 3-surfaces encoded in (4) depends on the specification of a lapse function
N(τ). This means that (4) in principle selects a privileged foliation of space-time
and, hence, fixes a distinguished decomposition of the 4-geometry into an assembly
of 3-geometries. Consequently, this Bohmian theory of QG is committed to more
space-time structure than admitted in GR for which, simply speaking, the only phys-
ically relevant geometrical structure is the 4-geometry of space-time. One possibility
to avoid this consequence would be to show that, in some way, the theory deals just
with wave-functions that generate, through (4), a dynamics which does not depend
on N(τ); however, it is difficult to see how this idea could be implemented.

In contrast to the approach that Goldstein and Teufel take, we think that there is a
good (Bohmian) motivation to retain the commitment to a primitive ontology of dis-
crete objects also when it comes to quantum gravity. In putting forward an ontology
of particles for QM, BM subscribes to a primitive ontology of discrete objects. In the
same vein, when moving from QM to QFT, in what is known as Bell-type Bohmian
QFT, the primitive ontology of particles—and thus discrete entities—is maintained
so that a theory is set out in which the empirical predictions of textbook QFT are
grounded in an ontology of particles (see [4], Chap. 19, and [16], Chaps. 9–10; see
furthermore [36] for an overview of the state of the art in Bohmian QFT). Hence,
when passing from QFT to QG in a Bohmian spirit, there is a prima facie good mo-
tivation to try out a primitive ontology of discrete objects also when it comes to QG.
However, there obviously is no longer a question of an ontology of particles mov-
ing in a background space in QG. If the quantum regime is applied to space-time
itself and if the framework of a primitive ontology of discrete objects is carried on
from BM and Bell-type Bohmian QFT to QG, this means that one has to develop a
primitive ontology of discrete objects for space-time itself. Such a commitment can
be boosted by several arguments from physics—as, for example, the argument for
the finiteness of black hole entropy (see, e.g., [34], thesis 2)—suggesting that there
is some kind of discrete structure underlying general relativistic space-time. In any
case, given that the situation in QG is currently open, we take it to be worthwhile to
consider a primitive ontology of discrete entities also in the domain of QG.

Of course, in a Bohmian context, the motivation for committing oneself to a prim-
itive ontology of discrete objects cannot derive from operators and discrete spectra of
eigenvalues of operators. The Bohmians emphasize with good reason that one can-
not go from operators to ontology, but that ontology has to come first and that the
deduction of empirical predictions by means of introducing operators or observables
has to be done on the basis of the ontology (see notably [12]). The motivation for a
primitive ontology of discrete objects thus has rather to be situated in the context of
the venerable tradition of atomism in Western thought and its tremendous success in
classical physics, as well as chemistry and molecular biology.

When trying out a primitive ontology of discrete objects for QG, it is reasonable to
focus on loop quantum gravity (LQG), for this approach is committed to the view that
space-time is discrete at the fundamental level. It usually subscribes to this commit-
ment for reasons that the Bohmians reject, namely the discrete spectra of the volume
and area operators defined on the Hilbert space of gravitational states. However, this
fact does not rule out the possibility to develop a clear ontology for LQG in Bohmian
terms. Moreover, it is of a genuine interest of its own right to explore a Bohmian
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approach to LQG, since LQG is the best candidate for a theory of non-perturbative
QG given the current state of the art. Indeed, there are good reasons to expect that a
full theoretical development of LQG will deliver a genuine general relativistic quan-
tum theory; this expectation is strengthened by the recent results that indicate that the
formalism of LQG is derivable from GR both through a straightforward canonical
quantization and via a covariant quantization on a lattice (historically, one of the first
works highlighting the compatibility between a canonical and a covariant dynamics
for LQG is [27]). Nonetheless, many details have still to be filled in—the full specifi-
cation of a physical Hilbert space of the theory, in the first place, and a lot of technical
difficulties have to be addressed (see [29] for the standard textbook in LQG).

Given these open physical issues and given the fact that no work at all has been
done as yet on a Bohmian approach to LQG, we have to limit ourselves in this section
to sketching out how the central features of the Bohmian approach can be applied to
LQG—that is, a primitive ontology and a law for the primitive ontology. In what
follows, we will restrict ourselves to the case of pure gravity; that is to say, we will
not take matter into consideration.

Since LQG is intended to be a straightforward quantum theoretical version of GR,
it is a background independent theory (see [32] for an argument why a theory of QG
should be background independent, and see [5, 28] for a philosophical discussion
of background independence). The—at the present stage just kinematical but, hope-
fully, also physical—Hilbert space of quantum gravitational states of LQG admits a
countable basis formed by states called spin networks. By specifying an embedding
in a 3-manifold, a given spin network gains a spatial representation in terms of a
nodes/edges-structure, namely, a graph. Each node and edge in a graph is labelled or
“colored” by a representation of the SU(2) group, hence spin network. The important
point is that it does not matter how a spin network is embedded in a 3-manifold. This
means that the physical information encoded in the corresponding labelled graph is
not affected by arbitrary smooth deformations of the 3-manifold. In short, we will
refer to spin networks as equivalence classes of graphs under 3-diffeomorphisms.

The most common interpretation of spin networks is the geometric one which
exploits the fact that the labeling of nodes and edges in a graph represents contribu-
tions to eigenvalues, respectively, of volume and area operators defined on the Hilbert
space of gravitational states (see [30], and [29], pp. 269–270, where it is made clear
that this is not an initial assumption, but a consequence of the theory). LQG thus
is committed to fundamental discrete structures underlying a classical smooth 3-
geometry (this justifies the talk of “weave states” often found in the literature). This
commitment suggests that the complete theory has to describe the spatial geometry as
being made up of discrete (perhaps Planck-sized) extensions of space that are small
enough to be “smoothed out” when looked at from a large-scale perspective. Even
though this geometrical interpretation of gravitational states in LQG is not the only
possible one (see e.g. [37], Sect. 11.1, for some alternative accounts), it is the one
that admits the most straightforward ontological reading.

Hence, in a Bohmian version of this theory—let us call it Bohmian loop quantum
gravity or BLQG, the objects that are introduced as the primitive ontology of the the-
ory have to meet three requirements: (1) they cannot be local beables in the standard
sense, that is, objects localized in space-time, such as unextended particles occupy-
ing a position (see [4], Chap. 7, for the notion of local beables). (2) They have to be
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discrete. (3) They have to approximate a smooth 3-geometry when grouped together
in a suitable way. In other words, it has to be possible to derive a smooth 3-geometry
by suitably coarse-graining a configuration of such objects.

Therefore, if we want to retain a commitment to Bohmian “particles”—i.e. dis-
crete fundamental beables—in a background independent context, we need to switch
to a view of particles as partless objects, that is, mereological atoms. In this way,
we give up a characterization of these objects in terms of a position in space while
retaining their discreteness and their fundamentality. If we consider a 3-space as a
mereological whole, then the commitment to atomism implies that this whole cannot
be divided in smaller and smaller regions ad libitum. Instead, the process of division
comes to an end when a mereological atom is reached. Let us therefore pose ele-
mentary extensions of space—atoms of space so to speak—as the primitive ontology
of BLQG. These atoms are not localized in space. They rather are localizations of
space. In this manner, we seek to extend the classical notion of local beables to the
quantum-gravitational regime.

Let us now turn to configurations of these fundamental objects. In order to obtain
a configuration, we have to introduce a certain fundamental relation in which atoms
of space have to stand. Since we seek to recover the metrical-gravitational field from
configurations of atoms of space, this relation should not be a metrical one from the
outset; it should be prior to any metrical characterization. Let us therefore consider
a set X of N atoms of space and let us introduce a contiguity relation1 C ⊂ X × X
such that it is:

– Irreflexive: ∀x ∈X¬C(x, x).
– Symmetric: ∀x, y ∈X (C(x, y) ≡ C(y, x)).
– Serial: ∀x ∈ X∃y ∈XC(x, y).

From the ordered couple (X ,C) a topological space X can be constructed such that
its points are the elements of X , and each subset {x, y} ⊂ X for which C(x, y) holds
is identified with the unit interval [0,1]. If we let two elements in E = {{x, y} ⊂
X |C(x, y)} be “glued” together if and only if they have (at least) one point in com-
mon, then the topology defined over X turns out to be the graph topology, which
means that X can be pictorially represented as a finite graph ΓX = (X ,E) with X the
set of nodes, and E the set of edges. The coloring of the graph is then mathematically
represented by a suitably defined function that assigns a label (e.g. a representation
of the SU(2) group) to each element of the graph.

We can then define in X an approximation function kN to a “target” smooth
3-manifold M as a function kN : X −→ M depending on the number N of atoms
of space such that, in the “continuum” limit N −→ ∞ it becomes a homeomorphism
(this is just a heuristic sketch: see [33], especially Sects. 2 and 4, for a mathemati-
cally rigorous articulation of this approximation procedure). By the same token, all
the large-scale metrical quantities should be recoverable as results of the same limit-
ing procedure on appropriately defined approximation functions (which, in general,

1Perhaps, it would be better to call it “companionship” relation, since the word “contiguity” might mistak-
enly suggest that such a relation bears some spatial connotation.
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Fig. 1 An extremely simple
2-dimensional
nodes/edges-structure
representing a “bubbly” space.
The physical characterization of
each bubble is encoded in the
coloring of the correspondent
node, while the information
about “how much” two bubbles
touch each other is conveyed by
the coloring of the edges (in
general, there can be more than
one) linking them. Of course, in
three dimensions, graphs do not
have be planar

would depend also on the coloring of a graph). Of course, implementing such an ap-
proximation is in general a highly non-trivial task (for example, for some X, it might
be impossible to define continuum approximation functions), but it is not a desperate
one. Moreover, fulfilling this task can be easily given a concrete physical meaning.
Simply speaking, in fact, for a sufficiently large number of atoms of space, the small-
scale picture of BLQG is that of a cluster of “bubbles” touching each other. Such a
picture can be compactly expressed in terms of a graph where a node represents a
bubble (its color representing its “size”) and the colored edges connecting two nodes
represent “how much” the corresponding bubbles touch each other (see Fig. 1).

Not surprisingly, this procedure closely resembles the introduction of a weave
state in LQG, but an important point has to be clarified in this respect. In fact, LQG
conflates under the designation “weave state” two quite distinct concepts, namely,
(a) the properly intended quantum state |X〉 (belonging to the Hilbert space) and
(b) its pictorial representation ΓX (belonging to the configuration space of graphs),
but it only accords full physical dignity to the former. The Bohmian reading, instead,
turns the tables by regarding ΓX as standing for a concrete configuration of concrete
entities which are the physical referents of the formalism.

Moreover, in standard LQG, a generic quantum gravitational state is considered
to be a superposition of weave states, thus giving rise to the ontological confusion
expressed in the quotation from Rovelli in the previous section. The Bohmian ap-
proach provides ontological clarity for LQG by maintaining that there are no super-
posed states of anything existing in nature. Superpositions enter into the calculation
of probabilities for measurement outcomes, but they do not belong to the ontology of
the theory. The central ontological claim of BLQG is that there is exactly one config-
uration of atoms of space. Consequently, BLQG does not face a principled problem
in recovering the classical space-time of GR from configurations of atoms of space,
since the ontology of the theory is classical from the outset, although space is dis-
crete at the fundamental level according to this theory. By contrast, if one admits



10 Found Phys (2014) 44:1–18

superpositions of such configurations as the ontology of LQG, then it is entirely mys-
terious how such superpositions could disappear in order to give rise to the classical
space-time of GR. This is, of course, the way in which the notorious measurement
problem of QM strikes LQG, if one does not take care to start with a primitive on-
tology of the theory. Furthermore, as we have seen, BLQG provides the possibility
for giving a clear physical sense to the claim that a universal configuration of atoms
of space “weaves up” a large scale smooth 3-geometry, and, in the same manner, it
provides a (yet-to-be implemented) conceptually straightforward mechanism for the
appearance of physical metrical quantities at large scales resulting from an underlying
non-metrical regime.

However, the claim that atoms of space bear no metrical properties while extended
space does so may sound odd. But consider the following analogy: it is perfectly
possible for a lump of matter to instantiate a certain property, say having a particular
shape, while the material atoms (the particles) that compose it do not have a shape;
grouping these material atoms together in a suitable manner makes it that the resulting
object (the lump) has a certain shape. The same reasoning applies to atoms of space
and the regions they form: grouping the atoms of space together in a suitable manner
as represented by nodes and edges on a graph makes it possible for the configuration
to instantiate metrical properties, while the individual atoms of space are connected
only by a contiguity relation.

Having obtained a clear ontological characterization of the universal configuration
X in BLQG, we can now turn to supplying a guiding equation for its dynamics.
Before doing so, let us recall that, since LQG is derived from a canonical quantization
of GR, its dynamics is constrained by the Wheeler-DeWitt equation, which, in the
present context, reads as follows:

ĤΨΓ = 0. (5)

The subscript Γ of the (universal) wave-function means that it is defined over the
configuration space of graphs. With this clarification in place, we can introduce the
following—tentative—guiding equation for BLQG:

Ẋ ∝ F(ΨΓ ,DΨΓ ,X), (6)

The Ẋ represents the evolution of a configuration of atoms of space X with respect
to a coordinate time τ—that is, a mathematical index that labels configurations—and
F is a function of X, of the wave-function and of DΨΓ , that is, a suitably defined
first-order derivative of such a wave-function. As a Bohmian law, (6) should show the
same mathematical form of (2) and (4), namely:

Ẋ ∝ jΨΓ

ρΨΓ
. (7)

This means that in BLQG, as in any other Bohmian theory, the dynamical develop-
ment of a configuration of atoms X is related through a suitably defined coupling con-
stant to the ratio between the probability current jΨΓ = Im[Ψ ∗

Γ DΨΓ ] and the prob-
ability density ρΨΓ = Ψ ∗

Γ ΨΓ = |ΨΓ |2. However, at the present stage, the theoretical
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developments of both LQG and BLQG make it difficult to be more explicit about (6)
because we do not have at hand a clear mathematical characterization of quantum-
gravitational wave functions and, most importantly, of the configuration space SΓ of
the theory. For example, we do not have any clue of what topology SΓ should have: if
this space turns out to be discrete, then “topology” might not even be the right word.
Moreover, if SΓ is discrete, then (6) and (7) might have to be replaced by stochastic
equations or, perhaps, the dynamical evolution should be considered as taking place
in discrete steps, that is, τ could be a discrete parameter. This lack of implementation,
then, prevents us from accomplishing the mathematical task of constructing proba-
bility densities and currents for BLQG, and hence specify (6). Nonetheless, we can
already sketch out how the dynamics of such a theory should work.

First of all, as in the case of QM, the dynamics of BLQG shifts the physical ac-
cent from the Hilbert space of universal gravitational states to the space of universal
configurations of the elementary objects of the theory—in this case, atoms of space
arranged through a contiguity relation, instead of particles occupying a position in a
background space. Secondly, in this context, the universal wave-function retains, mu-
tatis mutandis, the twofold meaning of the quantum mechanical one. More precisely,
if ΨΓ is a solution of (5), |ΨΓ |2 provides a probability distribution over all the actu-
alisable configurations of atoms of space at a certain dynamical stage τ—contrary to
the odd standard interpretation which takes it to be the probability distribution of out-
comes for an experiment performed on the entire universe “from the outside”. Such
a probability distribution does not depend on coordinate time, so it is the same for
all τ ’s. On the other hand, F singles out a unique path in the configuration space
corresponding to the dynamical evolution described by (6). This latter equation is a
non-local law exactly as (2) because all the space atoms in a configuration are entan-
gled together by the wave-function.

Before clarifying what non-locality means in the present context, let us spell out
in more detail what Eq. (6) is supposed to do. Simply speaking, the guiding equation
should encode a set of simple rules that can be illustrated in terms of “local moves” on
graphs (expansions or contractions by means of additions or subtractions of nodes and
edges). By applying and reiterating such moves on a “starting” graph, we generate a
structure made up by a “pile” of graphs and, at the same time, we “propagate” the
coloring of the starting graph throughout the structure. Such a structure does not only
display labelled nodes and edges, but also “faces” which encode information on how
the contiguity relation changes from one graph to the subsequent one (see Fig. 2).

In the standard theory, such a structure is called “spinfoam”, and the covariant
dynamics of LQG is in fact a sum-over-spinfoams in the following sense. Given an
initial configuration state |Xi〉 and a final one |Xf 〉, the theory considers all the pos-
sible spinfoams, that is, all dynamically possible paths connecting the initial and the
final configuration, assigns a probability amplitude to each path, and then calculates
the total state transition amplitude Wif as a sum over all possible paths (see e.g. [29],
Sect. 9.1).

In contrast to the above mentioned dynamical descriptions, in BLQG the dynamics
encoded in (6) describes exactly one actual path in configuration space leading from
the initial to the final configuration, which is fully determined once the initial config-
uration is plugged into Eq. (6). Provided that (5) and (6) are really compatible, BLQG
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Fig. 2 Particular of a spinfoam.
The dynamics expands the lower
node to three contiguous nodes
when moving to the subsequent
upper configuration. As a result,
the upper and the lower parts of
the configuration are linked by
three “faces”. Such a structure is
commonly called a vertex of the
spinfoam

then grounds the probability amplitudes of the standard theory by taking them to ex-
press our ignorance of the final state in the configuration space given our ignorance
of the initial configuration of atoms of space. In other words, BLQG adds to standard
LQG a parameter—namely that there always is exactly one actual and uniquely la-
belled configuration of atoms of space X—and provides a guiding equation for this
actual configuration. In this manner, exactly one evolution path in the configuration
space is singled out, and the dynamics of the theory acquires a clear ontological sig-
nificance, namely to describe the actual evolution of the initial configuration of atoms
of space.

In fact, the dynamics as given by (6) deals with configurations as a whole and,
hence, without specifying the entire initial configuration, we cannot predict with cer-
tainty how a proper part of such configuration will evolve, because the dynamics of
BLQG is non-local. As in BM, so also in BLQG, the dynamical evolution of any
proper part of a configuration depends on all the other parts. To be more precise, in
BM the non-locality resides in the fact that, at each instant, the velocity of a given
particle assigned by (2) depends, strictly speaking, on the positions of all the other
particles, however far apart in space they may be. Of course, in BLQG, (6) does not
assign velocities to the atoms of space in a configuration and is not concerned with
“trajectories” of atoms of space—or, indeed, an identity of individual atoms from one
configuration to the next one—but, rather, assigns to each atom a move such that a
transition from one configuration to the next one is achieved. In this context, to say
that the dynamics is non-local means that, for each configuration, the move assigned
to a given atom depends on the way in which all the atoms are arranged, even those
not contiguous with the atom considered.

Moreover, given that (6) provides a dynamics for the primitive ontology, BLQG
has the means to describe a physical process that involves change, namely, change in
the instantiation patterns of the contiguity relation from one configuration to the sub-
sequent one, as encoded in the change of labeling between configurations. In other
words, since BLQG postulates two laws—the Wheeler-DeWitt equation (5) and the
guiding equation (6), the fact that the wave-function figuring in (5) is stationary does
not create a problem for BLQG to take change into account. Hence, BLQG is in the
position to restore a familiar dynamical picture in which the classical space-time of
GR is approximated by a stack of universal configurations {Xi} whose ordering is
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given by (6). The above mentioned evolution can be conceived as a series of config-
urations (the Xi ’s) that are “interlaced” by means of faces according to the guiding
equation (6) in order to form a classical space-time. The specific configurations that
are involved in this dynamical process are “selected” by ΨΓ according to (5): The mi-
croscopic dynamics is linked to the macroscopic classical one by the fact that, once
we apply the dynamical law to a configuration which is typical for a wave-function
compatible with (5), we generate an evolution that, at large scale, resembles the 3 + 1
evolution of Hamiltonian GR. This means that each configuration approximates a
smooth 3-manifold and (6) “piles up” such “quasi” 3-manifolds, thus approximating
a foliation of a 4-manifold.

If this view proves sound, then it will be possible to recover a classical picture of a
globally hyperbolic space-time which admits a (in general, non-unique) global time
function (as, for example, in the Friedmann-Lemaître-Robertson-Walker model of
GR). In such a case, there would be a clear sense in which, at a classical level, a weak
temporal ordering supervenes on the fundamental ordering established by (6): in this
respect, BLQG is some sort of “discrete cousin” of Goldstein’s and Teufel’s BQG.
It is important to note that, although the above dynamical picture is far from being
physically implemented, it points to a conceptually clear direction that physicists
can follow in seeking a concrete physical mechanism for the appearance of general
relativistic space-time from the underlying quantum gravitational regime.

The sketch of BLQG that we have drawn in this section comes with a series of pro-
visos, which can be summarized in the following conditional: if a definite theory of
LQG shows the features we have mentioned (in particular the “geometrical weaves”
interpretation on which much of our reasoning was based) and if it is possible to
implement a guiding equation (6)—be it deterministic (as we have tacitly assumed
so far) or stochastic—that is compatible with the dynamics of standard LQG, then
the account of configurations of atoms of space developed in this section provides a
primitive ontology for this theory. Of course, it might turn out that LQG will develop
in a totally different way or that, eventually, it will prove itself to be a theoretical
dead end. While we have to wait for the further theoretical development of LQG,
we nonetheless claim already at this stage that we have shown a way how to formu-
late a clear ontology of this theory, avoiding the confusions that are unfortunately
widespread even in the best physical literature (cf. the quotation from Rovelli at the
end of the previous section).

3 Bohmian Quantum Gravity Within the Bohmian Approach to Physics

As the presentation in the preceding section makes clear, the structure of a Bohmian
ontology for QG is the same as in the case of QM: one poses a primitive ontology,
consisting in an initial configuration of beables, and a law for the transition from one
such configuration to another one. The primitive ontology is classical in the sense that
it simply exists—there are no superpositions of possible configurations of beables,
just one actual configuration. What distinguishes the ontology of a quantum theory
from the ontology of a classical theory is situated exclusively in the law of the devel-
opment of the configuration of beables: that law is non-local in that it applies only to
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the configuration as a whole. It cannot be separated into factors that provide for a de-
velopment of each element of the configuration taken individually (the only way to do
so is by means of approximation procedures like the one that yields effective wave-
functions). In a nutshell, the theory poses classical objects and a non-classical law
for their development. Probabilities then enter into the theory as in classical statisti-
cal mechanics: we need probabilities only because of our—principled—ignorance of
what the actual initial configuration of beables is.

When moving from QM via QFT to QG in a Bohmian approach, more stress is
laid on the configuration of the beables and on what fixes its development than on
the individual beables. In Bohmian QM, it would be wrong-headed to conceive what
is represented by the wave-function as generating the temporal development of the
particles. As in Newtonian mechanics, the particles move anyway (or are at rest),
and the role of what the wave-function stands for is only to fix the form of their
temporal development—in other words, to fix what the trajectories of the particles
are like, but not to generate the fact that there are trajectories at all. In Bell’s pro-
posal for a Bohmian QFT, the particles (the local beables) lose ontological weight
so to speak, since the particle number no longer is an invariant (see [4], Chap. 19,
and [16], Chap. 10): what fixes the temporal development of the particle configu-
ration is such that it includes stochastic events of particle creation and annihilation.
Consequently, the particles (the local beables) no longer have an identity in time in-
dependently of what fixes the temporal development of the configuration. In BLQG,
the individual atoms of space have even less ontological significance, a space-time is
built up through the guiding equation (6) applied to universal configurations of such
atoms of space. More precisely, if we regard the universal wave-function as encod-
ing information about all the actualisable graphs in a possible world selected by (5)
(which in the standard interpretation is taken to be a static quantum superposition
of gravitational states), then (6) establishes an actualization ordering of the universal
configurations of such atoms of space. Consequently, there is nothing that connects
the individual atoms of space in different configurations apart from what is supplied
by what the universal and stationary wave-function stands for.

As explained in Sect. 1, the Bohmian approach consists in providing a primitive
ontology for a physical theory and a law for the development of the elements of
the primitive ontology. In any Bohmian quantum theory, the wave-function is not a
physical entity in addition to and on a par with the elements of the primitive ontology,
but falls on the side of the law: its job is to fix the development of the elements of
the primitive ontology, given an initial configuration of these elements. However, this
does not imply that the wave-function does not have an ontological significance. Only
if one adopts a Humean attitude to laws, the ontology is exhausted by the primitive
ontology, the law (and whatever figures in it) being merely an economical description
of the total arrangement of the elements of the primitive ontology in a world.

By contrast, if one grounds laws in properties of the elements of the primitive
ontology, then our proposal for BLQG results in the following ontology: the initial
configuration of atoms of space instantiates a holistic and dispositional property that
manifests itself in the transition from one configuration to the subsequent one. That
property is represented by the universal wave-function, and it grounds the law of
the development of the configurations. The fact that the universal wave-function is
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stationary means that the instantiation of that holistic and dispositional property is
the same for any configuration of atoms of space in a world—in other words, that
property does not change when moving from an initial configuration to subsequent
ones.

In the same vein, on primitivism about laws, over and above there being an initial
configuration of atoms of space, there is the fact instantiated in any world of BLQG
that a certain law holds in this world, with a certain universal and stationary wave-
function figuring in that law. Given the fact that a certain law is instantiated and the
initial configuration of atoms of space, a development towards certain subsequent
configurations of atoms of space ensues. Hence, in any Bohmian quantum theory
including QG, the Bohmian framework of a primitive ontology and a law for the
development of the elements of the primitive ontology allows for these elements to
instantiate a property or a fact that grounds the law and that is represented by the
wave-function, although it is an inaccurate description that has led to much confusion
in the literature to present the Bohmian theory as being committed to the existence of
the wave-function over and above the existence of the primitive ontology.

There is a well-known tension between any Bohmian quantum theory and rela-
tivity physics (see [25] for a precise examination of the tension between quantum
non-locality and relativity physics in general). In the case of BLQG, this tension
consists in the fact that, as the theory was formulated in the previous section, the
transition from an initial configuration of atoms of space to subsequent ones such
that the ordering of these configurations through the guiding equation (6) approxi-
mates the space-time of GR singles out a preferred foliation of space-time by means
of 3-surfaces, as in the proposal for BQG by Goldstein and Teufel. To illustrate this
issue, consider a top-down analysis of the dynamics of the theory. We thus have a
classical space-time as a block of atoms of space, and all these atoms can in turn
be grouped into distinct configurations piled together according to (6). BLQG then
selects a privileged form of carrying out this task. The reason is the ontological com-
mitment of BLQG to exactly one actual initial configuration of atoms of space and
exactly one path from an initial to a final configuration that is selected by the guiding
equation (6), which is a non-local law, always taking one entire configuration to a
subsequent entire configuration. Consequently, there is a fact of the matter which of
these entire configurations are connected by the law (6) in any world of BLQG.

Thus, it may turn out that the ontological clarity of the Bohmian approach to any
quantum theory comes at the price of being committed to more geometrical structure
of space-time than is admitted in relativity physics—with, however, it being possi-
ble that this additional structure is provided for by the universal wave-function (for
a suggestion in that sense, see [15]). In other words, it may be the case that the
Bohmian approach is committed to maintaining that when considered from a quan-
tum perspective, one of the main tenets of relativistic theories, viz. the absence of a
privileged space-time foliation, proves to be an epistemic instead of an ontic affair.
This means that we cannot have knowledge of the additional quantum-geometrical
structure involved because we cannot know the initial configuration of the elements
of the primitive ontology (the initial configuration of atoms of space in BLQG). How-
ever, endorsing a privileged quantum foliation of space-time is compatible with all
the empirical results of GR. If one rejects that commitment, then one has to do better
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and to show how one can formulate a clear ontology for a quantum theory of matter
and space-time that pays heed to quantum non-locality without subscribing to a priv-
ileged foliation of space-time. In any case, it is not an admissible attitude to refuse
to enter into the business of setting out a clear ontology for quantum physics because
doing so may bring out a tension between quantum physics and relativity physics.

Our proposal for a Bohmian theory of LQG provides a precise sense in which
space-time is emergent and in which it is not emergent (see [21] for a philosophical
discussion of the claim of the emergence of space-time in QG): space-time is emer-
gent in that it is built up from a series of configurations of atoms of space and two
laws, namely, (5) that selects all the actualizable configurations in a possible world
and (6) that provides for a dynamics of the transition from one such configuration
to subsequent ones. But space-time emerges from concrete physical entities, namely
atoms of space whose initial configuration approximates a classical 3-dimensional
space. It is thus much more precise to talk in terms of the approximation of the space-
time of GR by configurations of elements of the primitive ontology of BLQG ordered
by a certain law than to use the expression “emergence of space-time”. There is no
problem in BLQG how a quantum configuration can lead to a classical space-time,
since according to the Bohmian approach, the objects of the theory are in any case
classical in that there always is exactly one actual configuration of the elements of the
primitive ontology (instead of superpositions) and all what is specific for a quantum
theory is contained in the law that applies to these configurations. Due to its onto-
logical precision, the Bohmian approach to QG does not contain any unclear—and
unintelligible—claims that confuse means of mathematical representation with the
ontology of a physical theory in suggesting that space-time could emerge from non-
spatial entities such as a wave-function in configuration space, algebraic relations
among operators, etc.

In conclusion, whatever the truth of the matter may be, as in the non-relativistic
case, so also in the case of QG, the Bohmian approach sets a standard that any pro-
posal for a serious ontology in this field should meet, distinguishing between the
ontology of a physical theory and the means of its mathematical representation as
well as providing a link from the fundamental ontology to classical phenomena (such
as the classical space-time of GR).
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