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Many seabirds congregate in large colonies for breeding, a time when they are central
place foragers. An influential idea in seabird ecology posits that competition during
breeding results in an area of reduced prey availability around colonies, a phenomenon
known as Ashmole’s halo, and that this limits colony size. This idea has gained empirical
support, including the finding that species coexisting within a colony might be able
to do so by foraging on a single prey species but at different distances. Here, we
provide a comprehensive mathematical model for central place foragers exploiting a
single prey in a two-dimensional environment, where the prey distribution is the result
of intrinsic birth and death, movement in space, and mortality due to foraging birds
(we also consider a variant tailored toward colonial social insects). Bird predation at
different distances occurs according to an ideal free foraging distribution that maximizes
prey delivery under flight and search costs. We fully characterize the birds’ ideal free
distribution and the prey distribution it generates. Our results show that prey depletion
halos around breeding colonies are a robust phenomenon and that the birds’ ideal free
distribution is sensitive to prey movement. Furthermore, coexistence of several seabird
species on a single prey easily emerges through behavioral niche partitioning whenever
trait differences between species entail trade-offs between efficiently exploiting a scarce
prey close to the colony and a more abundant prey far away. Such behavioral-based
coexistence-inducing mechanism should generalize to other habitat and diet choice
scenarios.

Ashmole’s halo | seabirds | predator-prey | ideal free distribution | social insects

Seabirds breed in very large colonies (1–4), and various mechanisms have been proposed
to explain the limits to colony size. The most influential one is due to Ashmole (5),
who hypothesized that colony size is regulated through negative density-dependence
acting during the breeding season. He reasoned that during breeding, seabirds only
forage in a restricted neighborhood of the colony because time intervals between visits
to the nest cannot be too long and energetic costs for foraging trips cannot be too high
if prey is to be delivered at a sufficiently high rate to nestlings. This area-restricted
foraging process should lead to a zone of prey depletion around large colonies, a
phenomenon later dubbed Ashmole’s halo (6), and this depletion ultimately limits
colony size.

While Ashmole’s hypothesis has received strong empirical support (6–13), to date no
mathematical model exists that analyzes how individual behavioral decisions of central
place foragers about their foraging trips, the demography of these central place foragers
and of their prey, jointly determine colony size and prey depletion halos. Existing
models of central place foragers incorporate some of these aspects while neglecting
others. Assuming that foragers distribute their foraging trips according to the ideal
free distribution in a two-dimensional environment, Dukas and Edelstein-Keshet (14)
derive the shape of this distribution, but without incorporating prey dynamics. Thus, a
corresponding prey depletion halo is not characterized. Gaston et al. (15), again assuming
that foragers adopt an ideal free distribution, derive the shape of prey depletion halos
as they result from the energy requirements of different seabirds. However, the shape
of the ideal free distribution is not characterized, precluding an understanding of the
interdependence of predator behavior and prey depletion patterns. Last, Weber et al. (13)
study the emergence of a prey depletion halo given an empirically observed forager
distribution, which again does not inform us about the interdependence of foragers and
the distribution of their prey distributions. Formalizing a model for central place foragers
based on an explicit description of prey population dynamics, the behavioral choice of
predators about their foraging grounds, and their demography is necessary to determine
the robustness and shape of prey depletion halos. Additionally, this allows to understand
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how these halos are coupled to the forager’s ideal free distribution
and how both prey depletion halos and foraging distributions
jointly determine the forager’s equilibrium colony size.

For seabirds, the interaction between central place foragers
and prey depletion halos is even more complex, since it is
common for colonies to consist of several different species. This
raises the question of what allows these species to coexist (16),
and how prey depletion halos form from their joint foraging
effort. A recent study conducted on Ascension Island (13), the
place of Ashmole’s original research, found that different species
of seabirds preferentially forage at different distances from the
breeding colony. Brown boobies (Sula leucogaster) forage closest
to the island, masked boobies (Sula dactylatra) at intermediate
distances, and Ascension frigatebirds (Fregata aquila) the furthest
away. These authors also provide evidence that these species
all feed on flying fish, primarily tropical two-winged flying fish
(Exocoetus volitans).

These findings suggest that different bird species can coexist
by partitioning foraging space, even if this space is inhabited by
only a single prey species. This idea is somewhat perplexing since
the area close to the colony should be preferred by all species as
foraging therein comes at the lowest costs, both in terms of time
and energy expenditure. This means that central place foragers
coexisting on a single prey species form a community with
shared preferences (17). To understand under what conditions
a pattern as observed in ref. 13 can indeed result from the joint
interaction of several predator species, each adopting the ideal free
distribution, and a single prey species, is sufficiently complex to
again require a mathematical model. Such a formal analysis seems
particularly interesting, given that the bulk of classical ecological
coexistence theory is premised on individuals having distinct
preferences, where species are optimal and prefer a different part
of niche space (18, 19) (see refs. 20–22, for textbook treatments),
despite indications that shared preference might be the more
common scenario (17, 23).

We here present a comprehensive mathematical model de-
scribing a population of central place foragers feeding on single
prey species in a two-dimensional environment. Our goal is to
understand how individual behavioral foraging decisions together
with predator and prey dynamics jointly determine the forager’s
ideal free distribution, its equilibrium population size, and the
prey’s equilibrium distribution in the vicinity of the colony
(a variant of the model tailored toward colonial social insects
is considered in Box 1). In the full model, we allow for an
arbitrary number of predator species that differ in their foraging
traits under the assumption that these cannot be optimized
simultaneously but are coupled by trade-offs. For instance, in
seabirds, species that are efficient flyers, and thereby incur low
energetic costs from long distances foraging trips, might be
poor at catching fish and vice versa. We aim at characterizing
the conditions under which different species can coexist, in
particular, whether coexistence is achieved by species partitioning
the foraging area around the colony despite having a shared
preference for foraging close to the colony. Our model is strongly
inspired by the biology of seabirds breeding in large colonies on
isolated island, and we therefore cast our model in terms of
birds and fish, though our model is not meant to be an accurate
description of any particular seabird population.

Model

Biological Assumptions. We consider a population of birds
breeding on an isolated island. The number of successfully raised

offspring depends on the amount of prey they catch by foraging
in the surrounding ocean and that they are able to deliver back to
their nestlings. The waters surrounding the island are assumed to
be homogeneous and harbor a single prey species. Any two points
at equal distance z from the island are assumed to be visited with
equal probability by foraging birds. As a result, the distribution
of prey is radially symmetric around the island. We denote by
R(z) the equilibrium prey density at distance z from the island.

A foraging trip starts with birds flying from the island in
a random direction to a point at distance z, where they start
foraging. Individuals forage at a given location until they catch
a prey, that is, individuals are single prey loaders (we consider
multiple prey loaders in SI Appendix, Rate of Energy Delivery by
Birds). After a successful catch, birds fly back to the island to
deliver the prey to their nest. If birds fly with speed v, then it
takes a flying time of Tf(z) = 2z/v time units to travel both
directions.

The rate at which birds foraging at a point at distance z catch
prey is aR(z), where a denotes the capture efficiency. The time it
takes a bird to successfully catch a prey item at distance z is then
exponentially distributed with mean Ts(R(z)) = 1/(aR(z)),
referred to as search time. If birds can extract on average b energy
units from a single prey and if cf and cs denote the energy costs
per time unit flying and searching, respectively, then

B(R(z), z) = b− cfTf(z)− csTs(R(z)), [1]

gives the net energy content of a prey item from distance z.
In SI Appendix, Rate of Energy Delivery by Birds, we show that
with the above assumptions, the rate at which birds deliver prey
to the nest is given by

f (R(z), z) =
aR(z)

1 + aR(z)Tf(z)
, [2]

which we recognize as Holling’s type-II functional response (24).
The net rate of energy delivery resulting from foraging at distance
z, referred to as payoff and denoted Π(z), equals the product of
the prey delivery rate and the net energy content per prey, and
thus is

Π(z) = f (R(z), z)B(R(z), z). [3]

Hence, payoff at distance z depends on prey density at that
distance, both through the functional response and the net energy
content.

We assume that there are no prey on the island (i.e., R(0) =
0). Away from the island, equilibrium prey density R(z) at
distance z depends on three processes. First, prey regrows at
rate g(R(z)), given by the difference between birth and death
that cannot be attributed to predation by birds breeding on the
island. Second, prey move homogeneously in space at rate m
(formally, we assume a reaction–diffusion process for the prey;
see SI Appendix,Reaction–Diffusion Process for the Prey for details).
Third, prey density is reduced due to mortality from foraging
birds. Death through predation at distance z depends on how
often an area at that distance is visited by birds, which, in turn,
depends on the total number of birds and the probability that
birds visit an area at distance z. In the absence of bird predation,
prey have the same equilibrium density R∗ everywhere around
the island.

The probability of birds foraging at a certain distance is
assumed to be an individual decision variable, which thus reflects
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the birds’ choice. We denote by p(z) the probability density that
an individual forages at distance z ∈ R+ (i.e.,

∫
∞

0 p(z) dz = 1)
at a behavioral equilibrium. Our central behavioral assumption
is that this equilibrium strategy is an ideal free distribution
determined by the payoff given by Eq. 3. Thus, individuals
are able to distribute themselves “freely” over the different
foraging distances, such that their payoff from each distance
where foraging occurs is the same and at least as high as at
distances not visited (25, 26). In a population consisting of N
birds, the number of individuals foraging at distance z from the
island is given by p(z)N . Hence, p(z) can also be interpreted
as the proportion of individuals foraging at distance z. As birds
are assumed to fly with equal probability in all directions, the
density of birds foraging at a specific point at that distance
equals the proportion of birds foraging at distance z, multiplied
with the bird’s population size, and divided by the circumference
of the circle with radius z, p(z)N/(2�z). The rate of prey
depletion at that point is the product of this density and the
functional response.

Finally, we assume that the average payoff

Π̄ =
∫
∞

0
p(z)Π(z) dz, [4]

to an individual at the ideal free distribution determines the
number of successfully raised offspring. The average payoff thus
affects the birds’ population size and hence the number of
competitors at any given distance. Without loss of generality,
we assume that this payoff is converted into offspring with an
efficiency equal to one.

Equilibrium Conditions for Prey, Bird Behavior, and Demogra-
phy. According to our assumptions, the equilibrium prey density
R(z), the ideal free distribution p(z), and the equilibrium
abundance N of birds are determined by the following coupled
system of equations.

First, prey density at distance z reaches an equilibrium when
its renewal is balanced by predation due to foraging birds at that
distance. This is the case when

G(R(z), z)− f (R(z), z)
p(z)N
2�z

= 0, [5]

where the second term on the left-hand side is the rate of prey
removal at distance z, and

G(R(z)) = g(R(z)) + m
(

d2R(z)
dz2 +

1
z

dR(z)
dz

)
, [6]

is the prey renewal rate at that distance. The first term on the
right-hand side of Eq. 6 describes the prey’s growth rate. The
second term in Eq. 6 describes movement (or “diffusion”), which
is proportional to the movement rate m and depends on the first
and second derivatives of the prey density with respect to distance
z (see SI Appendix, Reaction–Diffusion Process for the Prey for why
this is so).

Second, the distribution of foraging distances p(z), as it
results from the bird’s behavior, is characterized as an ideal free
distribution and thus by the fact that, given individuals in the
population follow this behavior, the payoff to all individuals must
be identical at all distances where they forage, and must be at least
as high as the payoff individuals would obtain at distances where
they do not forage. Thus,

Π(z) =� for all z ∈ R+ with p(z) > 0 [7a]
Π(z) ≤� for all z ∈ R+ with p(z) = 0, [7b]

where � is the constant payoff obtained from visited foraging
distances (the interval of foraging distances satisfying Eq. 7a is
the support of the ideal free distribution). Note that, while the
payoff given by Eq. 7 does not depend explicitly on p(z) (recall
Eqs. 1–3), a dependence enters through Eq. 5 as the payoff
depends on the equilibrium prey density R(z), which depends
on the ideal free distribution expressed by all other individuals
in the population. At the ideal free distribution characterized by
Eq. 7, the payoff obtained from foraging at any visited distance
is no less than the payoff obtained from foraging at any possible
distance (i.e., Π(y) ≤ Π(z) for all y ∈ R+ and all z ∈ R+ with
p(z) > 0). This implies that when individuals in the population
behave according to the ideal free distribution, no individual
has an incentive to unilaterally change behavior and the ideal
free distribution is equivalent to a Nash equilibrium (26, 27).
This makes the ideal free distribution a fundamentally relevant
behavioral equilibrium concept.

Third, the forager population is at its demographic equilibrium
N when the number of successfully raised off-spring is balanced
by death, that is, when the average payoff equals the death rate
�, which is here assumed to be constant,

Π̄ = �. [8]

The birth rate as given by the average payoff depends on
N indirectly through the dependence of the equilibrium prey
density R(z) on N (Eq. 5). Note that Eq. 7 implies Π̄ = �,
and therefore, due to Eq. 8, we have Π(z) = � for all z with
p(z) > 0.

The coupled system of Eqs. 5–8 characterizes the prey
equilibrium R(z), the birds’ behavioral equilibrium p(z) and
their equilibrium abundance N . In the following section, we
derive explicit expressions for this joint equilibrium.

Analysis

Single Bird Species: Prey Halo and Ideal Free Bird Distribution.
We start by observing that the flying time Tf = 2z/v monoton-
ically increases with distance z. As a consequence, when holding
R(z) fixed, the functional response f (R(z), z) (Eq. 2), and
therefore the payoff Π(z) (Eq. 3), decrease with z and eventually
becomes negative as z becomes large. Hence, a distance zmax exists
where the payoff satisfies

f (R∗, zmax)B(R∗, zmax) = �. [9]

Given that R∗ is the equilibrium prey density in the absence of
predation, zmax is the distance from which onward prey is left
unconsumed, p(z) = 0 for z ≥ zmax, and from which onward
the prey remains at R∗. Solving this equation for zmax, using
Eqs. 1 and 2, gives

zmax =
v
(
abR∗ − � − cs

)
2aR∗(� + cf)

. [10]

Solving Eq. 7 for R(z), Eq. 5 for p(z), using the equality
f (R(z), z) = �/B(R(z), z)) (owing to Π(z) = �) and the
normalization

∫ zmax
0 p(z) dz = 1, we obtain
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A B

Fig. 1. Equilibrium prey density R(z) (hatched lines, Left y-axes) and ideal free distribution p(z) (proportion of birds feeding at distance z, solid lines, Right
y-axes), as a function of distance z from the island under logistic prey growth (g(R(z)) = R(z)(r− �R(z)), where r is the intrinsic per-capita growth rate and � the
sensitivity to competition), which describes the density-dependent dynamics of a self-renewing prey species. (A) Results under the assumption that birds have
reached their demographic equilibrium for four different values of the movement rate m. For the parameters given below, in the order of increasing values
of the movement rate m, the equilibrium colony size N equals 288 858, 307 085, 334 427, and 361 768. Note that the shape of the prey depletion halo, given by
R(z), is independent of m (cf. Eq. 11). At distances z > zmax, the prey density is at its equilibrium in the absence of predation, R∗ = r/� = 500. (B) Results for four
different fixed population sizes N. Prey depletion halos become more pronounced and birds fly further with increasing population size. To avoid overloading
the figure, horizontal lines indicating the prey density R∗ at distances z > zmax have been omitted. Parameter values: r = 0.02, � = 0.00004, b = 1, cf = 0.2,
cs = 0.5, a = 0.01, and v = 70, (A) � = 0.05, (B) m = 0.

R(z) =


0 for z = 0

� + cs

a
(
b−

2z
v

(cf + �)
) for 0 < z < zmax

R∗ for z ≥ zmax

, [11]

and

p(z) =


2�z
N

B(R(z), z)G(R(z), z)
�

for 0 ≤ z < zmax

0 for z ≥ zmax

,

[12]

where

N =
2�
�

∫ zmax

0
zB(R(z), z)G(R(z), z) dz. [13]

Eqs. 11–13 provide an explicit representation of the joint
equilibrium for prey, bird behavior, and demography, since
Eq. 11 provides an explicit expression for R(z), which, in turn,
determines p(z) and N . Fig. 1A illustrates the shape of R(z) and
p(z) as a function of distance z from the island. Note, that the
fact that we can jointly characterize the equilibrium distribution
of prey, bird behavior, and demography does not hinge on our
specific mechanistic assumptions arising from seabird ecology
(i.e., the details on the right-hand sides of Eqs. 1, 2, and 6)
but holds more generally whenever predators adopt an ideal free
distribution along a continuous resource axis.

The following conclusions can be drawn. First, Eq. 11 shows
that the equilibrium prey density R(z) monotonically increases
with z, and eventually reaches the equilibrium in the absence
of consumption, R∗. This is a prey depletion halo, a generic
feature of our model. The shape of the halo depends only on
the biology of the bird species and thus neither on the details
of prey renewal nor movement. This remarkable property has
its counterpart in standard predator–prey theory, where the prey
equilibrium density only depends on properties of the predator
as long as the predator’s functional response is independent of
its own density (e.g., ref. 28, pp. 159). Second, the extent of

the prey depletion halo, as given by zmax (Eq. 10), increases
with the birds’ flying speed v, the prey’s energy content b, and
the maximum prey density R∗, and decreases with flying and
search costs, cs and cf, respectively. Third, the distribution of
foraging distances p(z) starts at p(0) = 0, and in the absence of
movement (m = 0) has a tail-end that continuously approaches
zero (for an example, see the blue curve in Fig. 1A). Increasing
the prey movement rate increases the tail-end of the ideal free
distribution (Fig. 1A). Hence, higher prey movement results in
birds exploiting distances further away from the island more
heavily. This is because prey diffusion results in a net movement
of prey from distances with higher density to distances with lower
density. Fourth, equilibrium colony size N , as given by Eq. 13,
increases with the prey’s net energy content B(R(z), z) and its
renewal rate G(R(z), z). Since G(R(z), z) is linearly increasing
in the movement rate m, so is the birds’ equilibrium population
size, as given in the legend of Fig. 1.

Single Bird Species at Fixed Population Size. In the above anal-
ysis, we assumed that the bird population is at its demographic
equilibrium, emphasizing the fact that the area restricted foraging
during breeding indeed sets the limit to colony size as hypothe-
sized by Ashmole (5). However, many seabird populations are not
at this equilibrium, for instance, due to human disturbances (29)
or limited nesting sites. In this section, we extend our analysis
to the case that the bird population size is fixed for a number
N that is not equal to the demographic equilibrium. This allows
us to make predictions about the extent of prey depletion halos
depending on current population size. In this case, the mean
payoff � has to fulfill the constraint Π̄ = � (since Π(z) = � for
all z, see Eq. 7a), where � is an unknown quantity. Replacing �
with � in the expression for the maximum flying distance zmax
given by Eqs. 4 and10with zmax as upper boundary in the integral
can be solved for �. This results in an implicit equation for � that
can then be solved numerically given a population size. Once the
value of � is obtained, Eq. 11 (again, after replacing � with �) and
Eq. 12 provide an explicit solution for the ideal free distribution
p(z) and the equilibrium prey density R(z). The result is shown
in Fig. 1B for four different population sizes N . This figure
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shows that the maximum flying distance roughly doubles with
each ten-fold increase in population size (for the population sizes
200, 2,000, 20,000, and 200,000 the corresponding values of
zmax are 9.2, 20.6, 47.1, and 109.0). This result is in qualitative
agreement with the empirically determined distributions shown
in figure 2b in ref. 4 for two species of murres (Uria spp.) when
taking from that study the distances up to where 95% of the
foraging trips occur.

The payoff � at the ideal free distribution for the above
population sizes are 1.83, 0.99, 0.41, and 0.08, respectively. This
exemplifies Ashmole’s idea (5) that the rate of prey delivery to
nestlings decreases with increasing population size, as supported
by several empirical studies (8, 12, 30–33).

Note, that for fixed N , the equilibrium prey density curve
R(z) is no longer independent of the movement rate m. This is
illustrated in SI Appendix, Fig. SI4. Higher values of m result in
a shorter maximal flying distance and higher prey abundance at
each distance z. This is in qualitative agreement with simulation
results (13, their Fig. 3B).

Multiple Bird Species and Behavioral Niche Partitioning. In the
above analysis, we considered a single bird species. However,
many seabirds breed in mixed colonies, which raises the question
of how these species can coexist despite all foraging in the
same surrounding waters (16)? A possible answer comes from
the following empirical studies. On Ascension Island, it has
been observed that two species of boobies and frigate birds
utilize different distances from the breeding colony (13). Brown
boobies (S. leucogaster) forage closer to the colony than its less
heavy relative, the Masked booby (S. dactylatra). The Ascension
frigatebird (F. aquila), having a much lower wing-loading (body
weight/wing area) than both boobies, forages even further from
the colony. Similarly, Razorbills (Alca torda) and Common
guillemots (Uria aalge), breeding in a mixed colony on the Isle
of May, Scotland, differ in the distribution of their foraging trips
(34). Razorbills, having a lower wing-loading than Common
guillemots, fly on average larger distances. These studies suggest
that coexistence may be the result of spatial niche segregation,
with some species foraging primarily near the colony while others
venture farther away, and that phenotypic differences determine
which species occupies each foraging zone.

Here, we formalize this idea by assuming that birds are
characterized by a quantitative trait x (x ∈ R) that can affect
their capture efficiency a, their flying speed v, and their flying and
search costs, cf and cs, respectively, to which we refer collectively
as foraging components. Different species have different trait
values x and therefore differ in their foraging components
(but we assume that they have the same death rate �), while
individuals of the same species share the same trait value x. A
natural assumption is then that the performance in different
tasks is subject to trade-offs. For instance, a morphology allowing
for a high flying speed v might be less efficient at foraging
by plunge-diving and therefore would be coupled to a lower
capture efficiency a. For the Alcidae (auks), a group of seabirds
catching prey by wing-propelled diving, it has been proposed that
smaller wings, resulting in a high wing-loading, increase flight
costs cf but make for better divers (35, 36), resulting in higher
capture efficiency a. This trade-off has been confirmed in a study
showing that Razorbills are poorer divers compared to Common
guillemots (34).

In the following, we show that such trade-offs indeed allow for
the coexistence of multiple seabird species through a partitioning
of the waters surrounding the colony into distinct circular

A

B

Fig. 2. Minimum prey density R(x, z) in (A) and ideal free distribution p(x, z)
(proportion of birds feeding at distance z) in (B) as a function of distance z
from the island for four different trait values x. The lowest minimum prey
density curve is shown as a thick line. Due to competitive exclusion, bird
species differing in their trait value x only forage at distances where they
reduce prey density to a lower value than the other species, resulting in
the multispecies ideal free distribution shown in (B) and a multispecies prey
depletion halo, given by the composite thick line in (A). Gray vertical lines,
connecting panel (A and B), are drawn at the z-values where species identity
changes. The ideal free distribution is shown for two values of the movement
rate; solid lines correspond tom = 0 and hatched lines tom = 0.8. Form = 0,
the equilibrium population size for the four bird species equal, presented in
order of decreasing x-values, 8,087, 29 531, 51 422, and 192 356. For m = 0.8
the population sizes, following the same order, equal 9,941, 32 278, 54 907,
and 262 241. Parameter values as in Fig. 1A, except that the values for a and v
are now trait dependent according to the functions a(x) = a0 + a1x and
v(x) = v0/(1 + v1x), respectively, with a0 = 0.01, a1 = 0.01, v0 = 70,
and v1 = 0.5.

foraging zones. In this analysis, we assume that each bird species
reaches its demographic equilibrium (as in Single Bird Species:
Prey Halo and Ideal Free Bird Distribution).

In order to indicate that the foraging components can differ
with x, we henceforth write these as functions of x, for instance,
a(x). Similarly, we add the argument x to the payoff function
(Eq. 3, Π(x, z)), the maximum flying distance (Eq. 10, zmax(x)),
the ideal free distribution (Eq. 12, p(x, z)), and the equilibrium
bird population size (Eq. 13, N (x)) to indicate that these
functions depend on the birds’ phenotype.

To investigate how trait differences allow for coexistence,
we start by observing that for a species with trait value x a
corresponding prey density curve R(x, z) exists at which the
birds’ population growth rate equals zero (i.e., the value R(x, z)
solving Π(x, z) = �, given by the middle line of the right-
hand side of Eq. 11 for 0 ≤ z < zmax(x)). Henceforth,
we refer to R(x, z) as the minimum prey density curve for a
species with trait value x. Fig. 2A shows such curves for four
trait values x under the assumption that capture efficiency and
flying speed are negatively correlated (a(x) is a monotonically
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increasing function while v(x) is a monotonically decreasing
function in x). This figure shows that for any two species,
their minimum prey density curves intersect exactly once. For
illustration, let us focus on two species, say, those characterized
by x1 = 3 (henceforth called species 1, blue curve) and x2 = 1
(henceforth called species 2, orange curve). Upon examination of
the minimum prey density curves corresponding to species 1 and
2, denoted R(x1, z) and R(x2, z), respectively, we can draw the
following conclusions. First, in the interval between the island
(z = 0) and the point where the two minimum prey density
curves intersect, species 1 at its equilibrium depletes prey to a
lower density compared to species 2. We denote the distance
to this intersection point with z1, which in our example is
approximately 40 (and satisfies R(x1, z1) = R(x2, z1)). Second,
in the interval between z1 ≈ 40 and the maximum flying
distance of species 2, zmax(x2), the situation reverses. Here,
species 2 at its equilibrium depletes prey to a lower density
than species 1. In short, R(x1, z) < R(x2, z) for z ∈ [0, z1)
and R(x1, z) > R(x2, z) for z ∈ (z1, zmax(x2)]. The fact that
R(x1, z) < R(x2, z) in the interval [0, z1) implies that the payoff
from foraging at these distances to species 2 is lower than the
death rate (Π(x2, z) < �). Then, according to Eq. 7b, species 2
does not utilize this interval (p(x2, z) = 0 for z ∈ [0, z1)). The
reverse is true for the interval (z1, zmax(x2)]. Here, Π(x1, z) < �
so that species 1 does not utilize this interval (p(x1, z) = 0).
In conclusion, we find a partitioning of the surrounding of the
colony where species 1 only exploits distances close to the island
and species 2 only exploits distances further away from the island
(see SI Appendix, Properties of Minimum Prey Density Curves for
more details).

In other words, the species with the trait value inducing the
lowest minimum prey density at a certain distance z excludes
species with other trait values from foraging at that distance.
Our preceding argument shows that for two species to be able to
coexist, it is a necessary (and sufficient) requirement that the cor-
responding minimum prey density curves R(x, z) intersect with
each other. This argument, which is developed more formally in
SI Appendix, Mutual Exclusive Foraging and Prey Depletion Halo,
echoes the resource-ratio rule of community ecology. It states that
if multiple species compete for a single limiting resource, here the
resource at distance z, then whichever species can survive at the
lowest equilibrium resource level outcompetes all others (37, 38),
resulting in competitive exclusion (39).

More generally, in SI Appendix, Properties of Minimum Prey
Density Curves, we show that any two minimum prey density
curves R(x, z) intersect at most once. From this follows, that two
curves R(x, z) intersect with each other if and only if the values of
the minimum prey density curves at distance z = 0 (R(x, 0)) and
the maximum flying distance zmax(x) have the same ordering.
For our example above, Fig. 2 shows that R(x1, 0) < R(x2, 0)
and zmax(x1) < zmax(x2). Thus, the trade-off between foraging
components induces a trade-off in the efficiency to forage at
short and long distances from the colony. Species 1, having a
higher capture efficiency, is more efficient at exploiting prey
close to the colony, resulting in a lower minimum prey density at
z = 0, at the cost of having a shorter maximum traveling distance,
while for species 2, having a higher flying speed, the situation
is reversed.

In SI Appendix, Mutual Exclusive Foraging and Prey Depletion
Halo, we show that the above arguments generalize to any finite
community X = {x1, x2, ..., xn} with n > 2 bird species (Fig. 2
shows it for n = 4). Thus, whenever we have coexistence
of a set of species, they forage in mutually exclusive distance
intervals around the island (until a distance is reached beyond

Table 1. The four foraging components capture effi-
ciency a, flying speed v, flight costs cf and search costs
cs allow for six different pairwise combinations
Coexistence a & v a & cf a & cs v & cf v & cs cf & cs

Possible X X X X
Not possible X X

For each combination, we determine whether a negative correlation between the foraging
components has the potential to mediate coexistence of species with different trait values
x. See SI Appendix, Trade-Offs for details.

which no individual forages), each species occupying exactly one
interval. In each interval, the prey distribution is determined
by the foraging components, and thus the trait value x, of
the species occupying that interval according to Eq. 11. The
corresponding ideal free distribution and abundance of that
species are fully characterized analytically and given by analogues
of Eqs. 12 and 13, where the ideal free distributions of each
species ranges over an interval that depends on the trait values
of all other species in the community (SI Appendix, Eqs. B14–
B16). The result is a multispecies prey depletion halo, as shown
in Fig. 2A, and a multispecies ideal free distribution, as shown
in Fig. 2B. Hence, our main finding is that, in the presence of
trade-offs between foraging components, multiple bird species
can coexist on a single prey species by partitioning the area
around the colony into discrete distance intervals, a form of
behavioral niche partitioning. Just as in the single-species case,
prey movement does not affect the equilibrium prey distribution.
As a consequence, prey movement does not affect the partitioning
of distances of coexisting bird species. However, just as in the
single species case, prey movement results in a shift of the ideal
free distribution of each species toward higher distances due
to a net movement of prey toward distances with lower prey
density (Fig. 2B).

Fig. 2 is based on the assumption that capture efficiency a(x)
and flying speed v(x) are negatively correlated. In SI Appendix,
Trade-Offs, we determine for all possible pairwise trade-offs
between foraging components whether they have the potential
to induce a trade-off between R(0, x) and zmax(x), which is the
prerequisite for species coexistence (allowing for more than two
foraging components to vary with x does not result in qualitative
new results). The result is summarized in Table 1. Two different
outcomes occur. First, a trade-off between foraging components
does not induce a trade-off in the efficiency to forage at different
distances. This case is illustrated in SI Appendix, Fig. SI5. Second,
whether a trade-off between foraging components induces a
trade-off between R(0, x) and zmax(x) depends on parameter
and trait values. Fig. 2 shows an example where indeed four
species can coexist, while SI Appendix, Fig. SI6 shows an example
where coexistence is possible for some species but not for
others.

The results in Table 1 can be understood as follows. Foraging
comes with two costs (Eq. 1), namely costs associated with flying
(cf2z/v) and costs associated with searching for prey (cs/(aR(z)).
Flight costs increase and search costs decrease with distance z
from the island. The latter is a consequence of the prey depletion
halo around the island. Different species can coexist if they are
specialized to forage on different distances from the island by
either experiencing low costs when foraging on depleted prey
close to the island (high a or low cs) at the prize of higher costs
when foraging on less depleted prey further away from the island
(low v or high cf) or vice versa (high v or low cf at the prize of
low a or high cs).
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Box 1.

Group versus individual foragers

The results so far were derived under the assumption that selection acts to maximize individual payoff. For highly related social
insects, however, it can be appropriate to assume that there is no conflict between group members and selection acts to maximize
colony payoff. Here, we consider a central-place foraging model for such foraging groups, where we search for the behavioral
strategy p(z) that maximizes the net per-capita rate of energy delivery of group members. Our results are based on non-self-
renewing resources, such as nectar in flowers. The equilibrium behavioral strategy p(z) maximizing group payoff is derived in
SI Appendix, Group Foraging, using all biological assumptions of the individual foraging model, except that i) all individuals express the
same behavioral strategy, ii) group size is N fixed, and iii) movement of resources is absent (m = 0).

Fig. 3. Equilibrium resource density R(z) (hatched lines, Left y-axis) and proportion p(z) of individuals foraging at distance z (solid lines, Right y-
axes) as a function of distance z from the colony for individual (in blue) and group foragers (in orange) under constant resource renewal (chemostat
dynamics; g(R(z)) = bR − dRR(z), where bR and dR, are the constant resource renewal and per-capita death rate, respectively). For the used
parameters, equilibrium population size of individual foragers equals N = 36,859, and this value is used as a parameter for group foragers. Hence,
given equal population size, group foragers use distances close to the colony less intensively and instead utilize a larger area around the colony
(zmax = 152 for group foragers vs. zmax = 125 for individual foragers). Note that the two curves for R(z) and for p(z) intersect with each other at
the same value (z = 112). This is because the resource equilibrium density at distance z is a direct consequence of the number of individuals foraging
at that distance. Parameters for chemostat dynamics: bR = 0.4 and dR = 0.0008. All other parameters as in Fig. 1.

Fig. 4. Payoff Π(z) for group (in orange) and individual (in blue) foragers. As a result of the ideal free distribution, individual foragers have an identical
payoff at all distances (equal to � = 0.05, up to zmax = 125). In contrast, group foragers underexploit resources at short distances and overexploit
resources at large distances (Fig. 3). As a result, individual payoff is monotonically decreasing with distance z (up to zmax = 152). The two payoff curves
Π(z) intersect with each other at the same distance as the equilibrium resource curves (z = 112, cf. Fig. 3), because payoff is a direct consequence of
resource abundance. Parameters as in Fig. 3.

We find that at the group foraging equilibrium, the maximum travel distance is larger and the distribution of travel distances is
more skewed toward large distances compared to the equilibrium for individual foragers (Fig. 3). Thus, group foragers exploit
regions close to the colony less intensely and instead use a larger foraging area. As a result, group foragers do not equalize payoff
from different distances but distribute themselves such that payoffs at short distances exceed payoffs at long distances (Fig. 4),
generalizing results from two-patch models (14, 40, 41) and a simulation study (42). This can be explained by the avoidance of
kin competition at distances close to the colony, where travel costs are lowest. By exploiting resources at large distances, group
foragers decrease competition for relatives foraging close to the colony. The increase in payoff due to this decrease in competition
more than outweighs the decrease in payoff suffered by individuals from increased competition far away from the colony and by
individuals foraging further away than the maximum travel distance of individual foragers. This results in higher average payoff
under group foraging (Π̄ = 0.096 compared to Π̄ = 0.05 under individual foraging). Thus, group foragers exploit resources more
efficiently. Both these trends, decreases in payoff with distance and higher average payoff, are expected to be robust outcomes
under group foraging, since they are both direct consequences of the reduced competition entailed by maximizing group payoff.
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Discussion

Inspired by the evidence provided by Weber et al. (13) for i) a prey
depletion halo around the seabird colony on Ascension Island and
ii) the spatial partitioning of the feeding grounds surrounding
the colony between coexisting seabirds, we here present a
comprehensive mathematical model studying the ideal free
distribution of foraging trips of central place foragers exploiting
a single prey species in a two-dimensional environment. By
analytically solving the joint equilibrium of the prey distribution,
the behavior of the forager and its demography, we show that a
prey depletion halo is a robust outcome of central place foraging.
Its shape, given by Eq. 11 and illustrated in Figs. 1 and 2, is
robust in the sense that it is independent of the specifics of the
prey population dynamics, including its movement rate, as all
parameters in Eq. 11 describe properties of the forager.

Our full model includes an arbitrary number of species, where,
due to species-specific morphological and physiological trait
values, individuals can differ in flying speed, capture efficiency,
travel, and search costs. We show that coexistence is a robust
outcome that emerges whenever species differences result in some
species experiencing lower costs when foraging on a prey at low
density close to the breeding colony, while others experience
lower costs when flying long distances to forage on a prey at
high density. A qualitatively similar result has been found in
a model describing the foraging behavior of solitary bees (43),
assuming that species vary along a trade-off of low flight costs and
efficient resource use. We want to stress that, in contrast to that
study, coexistence in our model occurs in the presence of a single
biological prey species. As explained above, the key to understand
this coexistence is that for different species the same prey—but
at different distances from the colony—comes with different
costs. The result is a multispecies ideal free distribution (Fig. 2B)
and a multispecies prey depletion halo (Fig. 2A), where no two
bird species forage at the same distance. Instead, different species
exploit mutually exclusive circular zones around the island.

The behavioral sorting of species into mutually exclusive
foraging zones occurs despite the fact that, in principle, the area
close to the colony would be preferred by all species. It is in this
vicinity that catching prey comes at the lowest travel costs, both in
terms of the time needed to reach the foraging area and the energy
investment to do so. Thus, a community of coexisting species that
are central place foragers, all feeding on the same prey species,
is an example of a community with shared preferences. This is
significant since theory in community ecology is dominated by
models with distinct preferences, despite indications that shared
preference might be the more common scenario (17, 23). With
distinct preferences, each species performs best in a different
part of the niche space, regardless in which community they
occur. In our model, where all species perform best close to the
island in the absence of competing species, it is in the presence
of competitors that deplete prey to such low values that the
immediate surrounding of the colony is not sufficiently profitable
to be used by species that are less efficient foragers. Thus, for each
species, the fundamental niche consists of the circular area around
the colony that is limited by the species-specific maximum flying
distance. However, in the presence of competitors, the realized
niche of each species consists of the circular zone around the
island where that species is able to deplete the prey to a lower
density than any other species.

A consequence of the fact that coexistence results from be-
havioral niche partitioning is that the conditions for coexistence
are relatively mild compared to models where coexistence is only
mediated by trait differences without linked behavioral differ-
ences. A corresponding result has been found in a model where

consumers compete for two resources and where individuals can
choose to either attack or ignore a prey item, depending on their
expected energy gain from doing so, which depends both on their
phenotype and on the abundance of resources as determined by
the competitors (44). In that model, optimal diet choice greatly
enlarges the set of pairs of trait values that allow for coexistence.
Furthermore, coexistence in our model is generally not a transient
phenomenon if one allows for evolutionary change in the trait val-
ues x that characterize the different species. This can be seen from
Fig. 2. Changes in the trait value x of the four coexisting species
change the pattern of intersections of the minimum prey density
curves only quantitatively but not qualitatively. Thus, coexistence
does not easily break down under evolutionary change. In fact, the
opposite is likely to be true. An input of individuals with different
trait values, either by mutation or immigration, can readily
increase diversity (see SI Appendix, Fig. SI6 for an example).

Weber et al. (13) report the distribution of seabirds both
as the proportion of time birds spend foraging at different
distances from the island (their figure 2a) and as density (their
figure 2b). The first corresponds to the ideal free distribution,
as shown in Fig. 2B. Obviously, their distribution markedly
differs from ours. For several reasons, this is not surprising.
First, our derivation assumes that foragers are “ideal,” that is,
they have complete information about both their environment
and their own abilities. This is certainly not true for natural
systems, where individuals have to build up this information
through constant probing [as documented in the Northern
gannet (Morus bassanus), 45]. Second, intraspecific phenotypic
variation occurring in natural populations, both within (46)
and between the sexes (47), causes that different individuals
of the same species differ in their foraging decisions, while in
our model all individuals of a species are identical. Even for a
monomorphic species, it has been documented that the sexes can
differ in their foraging decisions (48). Third, Weber et al. (13,
their table S1) show that, for their investigated seabird species,
small differences in diet composition do occur, and Ascension
frigatebirds to some extent forage by kleptoparasitism, both
complications not present in our model. Fourth, Weber et al. (13)
suggest that the prey depletion halo around Ascension Island
expands during the breeding season. Hence, their system is not
at equilibrium, while our analysis indeed assumes that the system
has equilibrated. In SI Appendix, The Single Species Ideal Free
Distribution Expressed As Density, we present results showing
how the ideal free distribution of foraging birds translates into
bird densities at different distances. In this analysis, we consider
three different functions for the prey growth rate, including one
where we extend our model to the case that the prey’s growth
rate depends directly on distance from the island, describing a
gradient due to distance-dependent primary productivity. We
show that the shape of the distribution of bird densities is
both quantitatively and qualitatively sensitive to the specifics of
the growth function, and empirical predictions thus seem only
possible given knowledge of empirical details.

It is noteworthy that our model is agnostic as to whether
the ideal free distribution is composed of individuals that
all distribute their foraging trips according to the ideal free
distribution (mixed strategy) or of individuals that each utilize a
single distance and that the frequency distribution of individuals
utilizing the different distances follows the ideal free distribution
(mixture of pure strategies). This pure-mixed strategy equivalence
occurs since what determines energy intake at a given distance is
the realized density of individuals at that distance, and that at the
ideal free distribution, the net energy gain is the same at all visited
distances. A review of foraging strategies in seabirds (49) reports
that individual specialization has been documented in 87% of
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the studies investigating this phenomenon, suggesting that the
ideal free distribution is more likely the result of a mixture of
pure strategies. In the absence of diffusion, our model should
also be agnostic as to whether prey individuals move in response
to predation. This is because the equilibrium prey density R(z)
can be seen as the product of the total prey population size times
the proportion that reproduces at distance z. This proportion,
in turn, can be interpreted as an ideal free distribution for prey
reproducing at different distances from the island when payoff
at distance z is taken to be the per-capita growth rate at that
distance that equalizes at all distances. Hence, we suggest that
our results can also be read as characterizing the joint predator–
prey behavioral and demographic equilibrium.

Finally, we want to emphasize that our results are obtained
under the assumption that birds act as individual payoff max-
imizers. Central place foragers that are selected to maximize
group payoff, such as colonies of social insects consisting of
highly related individuals, do not follow an ideal free distribution
(Fig. 4). Instead, Fig. 3 shows that colony payoff is maximized
by increasing maximum travel distance and simultaneously
underexploiting the vicinity of the colony.

Conclusion

In his influential study of seabirds on Ascension Island, Ash-
mole (5) proposed that seabirds breeding in large colonies locally

reduce their prey, generating a prey depletion halo around the
colony. Strong evidence for such halos has been provided by
Weber et al. (13), a study that further suggests that coexistence of
seabirds is made possible by individual foraging decisions result-
ing in a spatial segregation into different circular zones around
the colony. Our model, which is based on features shared by
many seabirds breeding in large colonies without incorporating
the details of any specific colony, shows that prey depletion
halos are a robust outcome, suggesting they should generally
be associated with central place foraging and extend beyond
seabird ecology. We also show that trait-mediated behavioral
niche partitioning results in robust coexistence. We suggest that
this process facilitates species coexistence compared to standard
theory based on trait-mediated niche partitioning as developed in
the wake of MacArthur’s seminal work (18). Our trait-dependent
multispecies ideal free distribution–a Nash equilibrium of a
population game–is not limited to central place foragers, and
holds for other predator–prey systems whenever predators adopt
an ideal free distribution along a continuous resource axis and
the functional response does not depend on predator density.
Our results show that behavioral niche partitioning may thus
play a more general role in ecology as a coexistence-promoting
mechanism.

Data, Materials, and Software Availability. There are no data underlying
this work.
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Supporting Information Text

Model components

Throughout this Supporting Information, our notation makes explicit that each bird is characterized by a quantitative trait x ∈ R

and is part of a community consisting of n different species whose trait values are collected in the set X = {x1, x2, . . . , xn}.

Rate of energy delivery by birds. We here derive the payoff function given by Eq. (3) in the main text. Payoff is defined as the net
rate of energy delivery to its nest by an individual foraging at distance z. A foraging trip consists of two activities, flying from
the island to a foraging area at distance z and back, and searching for prey at that distance. We here assume that birds fly back
to the island after catching nL prey items, that is, they are nL-prey loaders. All results in the main text are for single-prey loaders
(nL = 1). We here show that this does not restrict the generality of the model. The time it takes an individual with trait value x
to fly from the island to distance z and back is Tf(x, z) = 2z/v(x). According to our assumptions (Section Biological assumptions
in the main text), birds catch prey at rate a(x)R(z), where a(x) is the capture efficiency of an individual with trait value x
and R(z) the equilibrium prey density at distance z. Then, the average time for an individual to successfully catch nL prey
items when foraging at distance z equals Ts(x, z) = nL/(a(x)R(z)). This follows from the rule for compounding exponential
distributions, since the mean waiting time for a single catch is exponentially distributed with mean 1/(a(x)R(z)).

The total time per foraging trip is thus Tf(x, z) + Ts(x, z) and let E(x, z) be the net amount of energy gained during such a
foraging trip. The net energy gain per time unit is then

Π(x, z) =
E(x, z)

Tf(x, z) + Ts(x, z)
. [A1]

Furthermore, each prey item contains on average b energy units. The net amount of energy gained during a foraging trip is then
given by

E(x, z) = ba(x)R(z)Ts(x, z)− cf(x)Tf(x, z)− cs(x)Ts(x, z), [A2]

where cf(x) and cs(x) are the energy costs per time unit spend flying and foraging, respectively. Substituting the expression for
E(x, z), Tf(x, z) and Ts(x, z) into Eq. (A1), we obtain

Π(x, z) =
a(x)R(z)

(
b− cf(x)Tf(x, z)/nL − cs(x)Ts(x, z)/nL

)
1 + a(x)R(z)Tf(x, z)/nL

. [A3]

This can be rewritten as
Π(x, z) = f (x, R(z), z)B(R(z), z), [A4]

where

f (x, R(z), z) =
a(x)R(z)

1 + a(x)R(z)Tf(x, z)/nL
[A5]

is the functional response of an individual foraging at distance z, and

B(R(z), z) = b− cf(x)
Tf(x, z)

nL
− cs(x)

Ts(x, z)
nL

[A6]

is the net energy content of a prey item from that distance. For nL = 1 and dropping the explicit dependence on the trait x in all
functions results in Eq. (3) in the main text. Note that nL > 1 does not qualitatively affect the functional form of the model, since
it scales the flying and search times equally.

Reaction-diffusion process for the prey. We here derive Eq. (5) of the main text. We assume that the prey follows a radially
symmetric reaction-diffusion process with homogeneous diffusion, and ignore reflecting boundary effects of the island, which is
assumed to be a single point in space where the prey density is assumed to be zero. We then assume that the partial differential
equation describing the dynamics of the density of prey R(t, z) at time t is defined for all z ∈ (0, ∞) according to

∂R(t, z)
∂t

=
m
z

∂

∂z

(
z

∂R(t, z)
∂z

)
︸ ︷︷ ︸

diffusion

− F(R(t, z), z, t)︸ ︷︷ ︸
reaction

. [A7]

The first term on the right-hand side represents diffusion, occurring at rate m, to which we refer in the main text as movement
rate. The second term represents reaction, which is some function of prey density, possibly distance from the island and time.
Eq. (A7) corresponds to the two-dimensional reaction-diffusion process given by Eq. (40) in Chapter 9 in ref. (1). But since the
process is radially symmetric, it is written here in polar coordinates using Eq. (61) in Chapter 9 in ref. (1). The reaction term
F(R(t, z), z, t) is detailed below. Note that for a reaction term F(z) that is independent of prey density and time, representing
fixed consumption, Eq. (A7) is equivalent to the consumption-dispersion model given by Eq. (5) in ref. (2).
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At equilibrium, R(t, z) = R(z) and thus ∂R(t, z)/∂t = 0 and ∂nR(t, z)/∂zn = dnR(z)/ dzn. Next, let us assume that the
reaction term at such an equilibrium is given by

F(R(t, z), z, t) = g(R(z))− ∑
x∈X

f (x, R(z), z)
p(x, z)N(x)

2πz
. [A8]

The right-hand side is time-independent and the sum of a density-dependent prey growth rate g(R(z)) at distance z and the
depletion rate f (x, R(z), z)p(x, z)N(x)/(2πz) due to birds foraging at distance z, summed over all bird species with trait values
in X = {x1, x2, . . . , xn}. Here, p(x, z)N(x)/(2πz) is the density of individuals with trait value x at distance z. The denominator
2πz accounts for the fact that individuals foraging at distance z distribute themselves randomly over the circumferences of the
circle centered at the island and N(x) is the number of individuals for the species with trait value x. Hence, at equilibrium,
Eq. (A7) can be written as

0 = g(R(z)) + m
(

d2R(z)
dz2 +

1
z

dR(z)
dz

)
− ∑

x∈X
f (x, R(z), z)

p(x, z)N(x)
2πz

. [A9]

Let us define

G(R(z), z) = g(R(z)) + m
(

d2R(z)
dz2 +

1
z

dR(z)
dz

)
[A10]

as the endogenous rate of change of prey density at distance z, called renewal rate in the main text. Assuming that the bird
community consists of only a single species (X = {x}), so that the argument x can be dropped in all relevant functions, and
substituting G(R(z, z) into Eq. (A9), we obtain Eq. (5) in the main text.

In the absence of consumption, the last term on the right-hand side of Eq. (A9) equals zero. We assume that the resulting
equilibrium prey density is homogeneous over space and denote it as R∗. This satisfies Eq. (A9) with g(R∗) = 0.

Multi-species equilibrium and coexistence

We here generalize the single species equilibrium conditions given by Eqs. (11)–(13) in the main text to a community of
interacting species.

Equilibrium conditions for prey, bird behavior and demography for n coexisting bird species. According to our assumptions,
the equilibrium prey density R(z), the ideal free distribution p(x, z) of a species with trait value x, and the equilibrium
abundance N(x) of birds with that trait value in a community X = {x1, x2, ..., xn} are determined by the following coupled
system of equations, which generalizes the equilibrium of the single species model of the main text (Section Equilibrium conditions
for prey, bird behavior and demography) to n species.

First, the prey at distance z at equilibrium balances renewal and consumption,

G(R(z), z)− ∑
x∈X

f (x, R(z), z)
p(x, z)N(x)

2πz
= 0. [B1]

Here, the renewal function G(R(z), z) is given by Eq. (A10) while prey consumption is obtained from the assumption that the
N(x) birds of the species with trait value x are distributed according to the ideal free distribution p(x, z), and that at distance z
the p(x, z)N(x) birds are homogeneously distributed over the circumference of the circle centered at the island with radius z.

Second, the ideal free distribution p(x, z) for each x ∈ X is characterized by the fact that the payoff obtained by individuals
with trait value x ∈ X is identical at all distances where these individuals forage. Furthermore, the payoff at distances where
individuals forage is at least as high as the payoff that would be obtained at distances where individuals do not forage. Thus,
for each x ∈ X we have

Π(x, z) =β(x) for all z ∈ R+ with p(x, z) > 0 [B2a]

Π(x, z) ≤β(x) for all z ∈ R+ with p(x, z) = 0. [B2b]

Here, β(x) is the constant payoff obtained at visited foraging distances to an individual with trait value x (the set of foraging
distances satisfying Eq. (B2a) is the support of the ideal free distribution). While the payoffs given by Eq. (B2) do not depend
explicitly on p(x, z) (just as in the single species case), the dependence enters through Eq. (B1) as the payoff depends on the
equilibrium prey density R(z), which depends on the ideal free distribution. At the ideal free distribution of the multispecies
community characterized by Eq. (B2), for each individual with trait value x and each x ∈ X , we have

Π(x, y) ≤ Π(x, z) for all z ∈ R+ with p(x, z) > 0 and all y ∈ R+. [B3]

This implies that no individual of any species has an incentive to unilaterally change behavior given all other individuals
behaving according to the ideal free distribution of their species. Thus, the multi-species ideal free distribution is a multi-species
Nash equilibrium.
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Third, the species with trait value x ∈ X is at its demographic equilibrium N(x) when the number of successfully raised
offspring balances deaths,

Π̄(x) = µ. [B4]

Here,

Π̄(x) =
∫ zmax(x)

z=0
p(x, z)Π(z)dz [B5]

is the mean payoff, which we equate to mean fecundity of an individual with trait value x. Furthermore, zmax(x) is the maximum
traveling distance of such an individual, as given by Eq. (10) in the main part. Here too, the dependence of the birth rate, given
by the average payoff, depends on N(x) indirectly through the dependence of the equilibrium prey density on N(x) (Eq. B1).

The coupled system of equations Eq. (B1)–Eq. (B4) characterizes the prey equilibrium R(z), the behavioral equilibrium p(x, z)
and the equilibrium bird abundance N(x).

Properties of minimum prey density curves. To determine the prey equilibrium and the behavioral and demographic equilibrium
for multiple bird species, we introduce the concept of minimum prey density curves R(x, z). These curves denote the prey density
at which a bird population characterized by trait value x has a zero growth rate (i.e., the value R(x, z) solving Π(x, z) = µ).
They are given by the middle line of the right-hand side of Eq. (11) in the main text with domain [0, zmax(x)) for the species
with trait value x. Hence,

R(x, z) =
µ + cs(x)

a(x)
(

b− 2z
v(x)

(cf(x) + µ)

) . [B6]

We start by presenting two properties of these curves. First, for two species with trait values x1 6= x2 the graphs of the
minimum prey densities R(x1, z) and R(x2, z) intersect at most once. To see this, set

R(x1, z) = R(x2, z), [B7]

which, owing to Eq. (B6), is given by

µ + cs(x1)

a(x1)

(
b− 2z

v(x1)
(cf(x1) + µ)

) =
µ + cs(x2)

a(x2)

(
b− 2z

v(x2)
(cf(x2) + µ)

) . [B8]

This equality defines a linear equation in z, which can have at most one solution. The value of z satisfying the equality is the
intersection point of the two minimum prey density curves, which may lie beyond zmax(x1) or zmax(x2).

Second, R(x, z) is convex in z in the interval [0, zmax(x)). This can be seen from the second derivative of Eq. (B6) with respect
to z, which is given by

∂2R(x, z)
∂z2 =

2v(x)(µ + cf(x))2(µ + cs(x))
a(x)(bv(x)− z(µ + cf(x)))3 . [B9]

The right-hand side is positive for z < bv(x)/(µ + cf(x)). This is true for z < zmax as long as zmax(x) < bv(x)/(µ + cf(x)) holds,
which is indeed the case, as the following shows. From writing Eq. (10) in the main text as

zmax(x) =
v(x)

(
a(x)bR∗ − µ− cs(x)

)
2a(x)R∗(µ + cf(x))

=
bv(x)

2(µ + cf(x))

(
1− R(x, 0)

R∗

)
, [B10]

where

R(x, 0) =
µ + cs(x)

a(x)b
, [B11]

it follows that zmax(x) < bv(x)/(µ + cf(x)), because the term in parentheses on the right-hand side of Eq. (B10) is less than 1.
Thus, ∂2R(x, z)/∂z2 > 0 and the function R(x, z) is convex in z for z < zmax(x).

Mutual exclusive foraging and prey depletion halo. We have now all concepts in place to determine the joint equilibrium
conditions for prey, bird behavior and demography in a community of species with trait values in X . Let us first focus
on two species, say species 1 with trait value x1 and species 2 with trait value x2. Assume that R(x1, 0) < R(x2, 0) and
zmax(x1) < zmax(x2) (as an example, consider x1 = 3.5 and x2 = 2 with the parameters as in Fig. SI6). Then, given that the
curves R(x1, z) and R(x2, z) are convex, the above ordering implies that they intersect exactly once, say, at the distance z = z1.
Given the assumption R(x1, 0) < R(x2, 0), species 1 at its equilibrium depletes prey to a lower density in the interval (0, z1) and
thereby competitively excludes species 2 (recall that no prey exist at distance z = 0). By contrast, species 2 at its equilibrium
depletes prey to a lower density in the interval (z1, zmax(x2)) and thereby competitively excludes species 1. In conclusion,
the interval (0, zmax(x2)) of utilized foraging distances can be partitioned into two mutually exclusive sub-intervals, such that
(0, zmax(x2)) = (0, z1) ∪ z1 ∪ (z1, zmax(x2)). If, however, R(x1, 0) < R(x2, 0) and zmax(x1) > zmax(x2), then species 1 excludes
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species 2 over the whole interval (0, zmax(x1)) of utilized foraging distances (as is the case for x1 = 0.5 and x2 = 0.3 in Fig. SI6).
In summary, starting with a community X = {x1, x2}, either the two species coexist by occupying two mutually exclusive
distance intervals, or they mutually exclude each other with one species going extinct.

Suppose now that two species coexist and that we add a third species with trait value x3 (X = {x1, x2, x3}) and that, in addition
to the above ordering R(x1, 0) < R(x2, 0) and zmax(x1) < zmax(x2), we have, say, R(x2, 0) < R(x3, 0) and zmax(x2) < zmax(x3)
(as an example, consider x1 = 3.5, x2 = 2 and x3 = 1 with parameters as in Fig. SI6). Since "is greater than" (>) is a transitive
relation on the real numbers, we then also have R(x1, 0) < R(x3, 0) and zmax(x1) < zmax(x3). Due to the convexity of R(x1, z),
R(x2, z) and R(x3, z), it follows that (i) the curves R(x2, z) and R(x3, z) intersect exactly once, say at z2, and (ii) the intersection
points z1 (of R(x1, z) and R(x2, z)) and z2 have the ordering z1 < z2. Thus, the interval of utilized foraging distances can now be
partitioned into three mutually exclusive distance intervals (0, zmax(x3)) = (0, z1) ∪ z1 ∪ (z1, z2) ∪ z2 ∪ (z2, zmax(x3)). In each of
these intervals, a different species has the lowest minimum prey density. Hence, starting with a community X = {x1, x2, x3},
either the three species coexist by occupying three mutually exclusive bands (Fig. SI6 for x1 = 3.5, x2 = 2 and x3 = 1), or two
species coexist on mutually exclusive bands (Fig. SI6 for x1 = 3.5, x2 = 2 and x3 = 0.5), or only one species persists (Fig. SI6 for
x1 = 1, x2 = 0.5 and x3 = 0.3).

By induction, this argument generalizes to a community X = {x1, x2, ..., xn}. Suppose, the ordering of the maximum flying
distances of the n species, say, zmax(x1) < zmax(x2) < ... < zmax(xn) matches the ordering of their minimum prey density curves
at distance z = 0, R(x1, 0) < R(x2, 0) < ... < R(xn, 0) (i.e., a larger maximum flying distance implies a higher minimum prey
density at distance z = 0). Then, the interval (0, zmax(xn)) of utilized foraging distances can be partitioned into the n distance
intervals (0, z1), (zi−1, zi) for i ∈ {2, . . . , n− 1} and (zn−1, zmax(xn)), where zi (i ∈ {1, . . . , n− 1}) is obtained by solving the
linear equation

R(xi, zi) = R(xi+1, zi) [B12]

for zi using Eq. (B6). These intervals fulfill

(0, zmax(xn)) = (0, z1) ∪ z1 ∪ (z1, z2) ∪ z2 ∪ ...∪ zn−1 ∪ (zn−1, zmax(xn)) [B13a]

and
(zi−1, zi) ∩ (zj−1, zj) = ∅ for i, j ∈ {1, n} and i 6= j, [B13b]

where z0 = 0 and zn = zmax(xn). Thus, the intervals are mutually exclusive and each is occupied by the species that at its
equilibrium depletes prey to the lowest density in that interval. Accordingly, the equilibrium prey curve equals

R(z) =


0 for z = 0

R(xi, z) for i ∈ {1, . . . , n− 1} and zi−1 < z ≤ zi
R(xn, z) for zn−1 < z < zmax(xn)

R∗ for z ≥ zmax(xn).

[B14]

The behavioral strategy for the species with trait value xi is obtained by solving (A9) for p(xi, z) after setting p(xj, z) = 0 for
j 6= i and using the equality f (xi, R(xi, z), z) = µ/B(R(xi, z), z)) and the normalization

∫ zi
zi−1

p(xi, z)dz = 1. This results in

p(xi, z) =



0 for z = 0
2πz

N(xi)

B(R(xi, z), z)G(R(xi, z), z)
µ

for i ∈ {1, . . . , n− 1} and zi−1 < z ≤ zi

2πz
N(xn)

B(R(xn, z), z)G(R(xn, z), z)
µ

for zn−1 < z < zmax(xn)

0 for z ≥ zmax(xn)

[B15]

where
N(xi) =

2π

µ

∫ zi

zi−1

zB(R(xi, z), z)G(R(xi, z), z)dz [B16]

denotes the equilibrium population size of species i (compare Eq. 13 in the main text). Eqs. (B14)–(B15) provide an equilibrium
prey curve and ideal free distribution (satisfying

∫ zi
zi−1

p(xi, z)dz = 1), since the system of equations Eqs. (B1)–(B2) is satisfied.
Together, Eqs. (B14)–(B16) provide an explicit representation of the joint equilibrium for prey, bird behavior and demography
for n coexisting bird species. The salient feature is that a single bird species occupies a given interval, and no two species can
coexist within the same interval.

Trade-offs

Each species is characterized by a quantitative trait value x ∈ R that determines the value of the four foraging components,
capture efficiency a(x), flying speed v(x), flight costs cf(x), and search costs cs(x). In SI Appendix Mutual exclusive foraging and
prey depletion halo, we established that for two species with trait values x1 and x2 to be able to coexist due to behavioral niche
partitioning, it is necessary and sufficient that the graphs of the minimum prey density curves intersect at some distance z that lies
within the maximum flying distance of both species. This is the case if and only if R(x1, 0) < R(x2, 0) and zmax(x1) < zmax(x2)
(or vice versa). In other words, the species that at its equilibrium depletes the prey to a lower density close to the island also has
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a lower maximum flying distance. This can be interpreted as a trade-off between a species’ ability to use a rare prey in the
absence of travel costs (close to the island) and an abundant prey in the presence of significant travel costs (resulting in a higher
maximum travel distance). Here, we investigate for which pairs of foraging components such a trade-off emerges, which is
what we present in Table 1 in the main text. We do this in two steps. First, in the next section, we establish how each foraging
component affects R(x1, 0) and zmax(x). After that, we ask how changing the trait value x affects R(x1, 0) and zmax(x). To
answer this second questions, we make use of the results from the first step. Assuming that more than two foraging components
depend on x does not lead to qualitatively new results.

Effects of foraging components on the prey depletion halo. From Eqs. (10)–(11) we see that two characteristics of the prey
depletion halo, R(x, 0) and zmax(x), can be written explicitly in terms of trait values as

R(x, 0) =
µ + cs(x)
a(x)(b(x)

and zmax =
v
(
a(x)bR∗ − µ− cs(x)

)
2a(x)R∗(µ + cf(x))

. [C1]

The derivatives of these two quantities with respect to capture efficiency a(x) are

dR(x, 0)
da(x)

= − cs(x) + µ

ba(x)2 < 0 [C2a]

dzmax

da(x)
=

v(x)(cs(x) + µ)

R∗a(x)2(cf(x) + µ)
> 0. [C2b]

Thus, increasing a(x) lowers the minimum prey density curve R(x, z) at all distances z.
The derivatives with respect to flying speed v(x) are

dR(x, 0)
dv(x)

= 0 [C3a]

dzmax

dv(x)
=

bR∗a(x)− cs(x)− µ

R∗a(x)(cf(x) + µ)
> 0. [C3b]

From Eqs. (1)–(3) follows that the numerator on the right-hand side of Eq. (C3b) can be interpreted as the per-capita growth rate
of a species foraging at z = 0 and in the absence of competition such that the prey density is given by R∗. For a population to
be able to persist, this quantity has to be positive. Thus, increasing v(x) lowers the minimum prey density curve R(x, z) at all
distances z > 0.

The derivatives with respect to flying cost cf(x) are

dR(x, 0)
dcf(x)

= 0 [C4a]

dzmax

dcf(x)
= − v(x)(bR∗a(x)− cs(x)− µ)

R∗a(x)(cf(x) + µ)2 < 0. [C4b]

Thus, increasing cf(x) raises the minimum prey density curve R(x, z) at all distances z > 0.
Finally, the derivatives with respect to search cost cs(x) are

dR(x, 0)
dcs(x)

=
1

ba(x))
> 0 [C5a]

dzmax

dcs(x)
= − v(x)

R∗a(x)(cf(x) + µ)
< 0. [C5b]

Thus, increasing cf(x) raises the minimum prey density curve R(x, z) at all distances z.

Trade-off pairs. In the following calculations, we omit the argument x from any foraging component that is not assumed to
depend on x. Primes denote derivatives with respect to x.

For the quantitative trait x to have the potential to impose a trade-off between R(0, x) and zmax(x), we assume that x
maps to the considered foraging components such that the effect of increasing x decreases R(0, x) and zmax(x) through one
foraging component and increases R(0, x) and zmax(x) through the other foraging component. Changing x indeed induces a
trade-off if an increase in x decreases R(0, x) and zmax(x) (increased competitiveness close to the island at the cost of decreased
competitiveness far way from the island), or vice versa.
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Trade-off between capture efficiency a(x) and flight speed v(x). Based on Eqs. (C2) and (C3), to impose a trade-off we assume

a′(x) > 0 and v′(x) < 0. [C6]

For the derivatives, we find

dR(x, 0)
dx

= − a′(x)(cs + µ)

ba(x)2 < 0, [C7a]

dzmax(x)
dx

=
a′(x)v(x)(cs + µ) + a(x)v′(x)(bR∗a(x)− cs − µ)

R∗a(x)2(cf + µ)
. [C7b]

For a trade-off to exist, the right-hand side of Eq. (C7b) has to be negative. This is equivalent to

− a′(x)
v′(x)

v(x)
a(x)

>
bR∗a(x)− cs − µ

cs + µ
. [C8]

Due to Eq. (C6), the function v(x) is invertible and differentiable with derivative 1/v′(x). With this, we can rewrite the last
inequality as

− da(x)
dv(x)

v(x)
a(x)

>
bR∗a(x)− cs − µ

cs + µ
. [C9]

The left-hand side of this inequality gives the slope of the parametric curve that plots a(x) and v(x) as a function of x, to which
we refer as trade-off curve, weighted by the inverse ratio of the two foraging components. Note, that, due to Eq. (C6), this
trade-off curve has a negative slope. The left-hand side of inequality (C9) is known as the elasticity of the trade-off curve (the
percentage change in a(x) with percentage change in v(x); see e.g. p. 171-4 in ref. (3)).

Trade-off between capture efficiency a(x) and flight costs cf(x). Based on Eqs. (C2) and (C4), to impose a trade-off we assume

a′(x) > 0 and c′f(x) > 0. [C10]

For the derivatives we find

∂R(x, 0)
∂x

= − a′(x)(cs + µ)

ba(x)2 < 0, [C11a]

dzmax(x)
dx

=
v
(
a′(x)(cs + µ)(cf(x) + µ)− a(x)c′f(x)(bR∗a(x)− cs − µ)

)
R∗a(x)2(cf(x) + µ)

. [C11b]

For a trade-off to exist, the right-hand side of Eq. (C11b) has to be negative. Factoring out a′(x)/c′f(x) = da(x)/ dcf(x), this is
equivalent to

bR∗a(x)− cs(x)− µ

cs(x) + µ
>

da(x)
dcf(x)

cf(x) + µ

a(x)
. [C12]

Trade-off between capture efficiency a(x) and search costs cs(x). In this case, solving Eq. (B8) for z shows that different minimum
prey density curves do not intersect with each other (as in Fig. SI5b). Thus, for a given set of species X , the species x
corresponding to the lowest minimum prey density curve excludes all other species and coexistence is impossible.

Trade-off between flight speed v(x) and flight costs cf(x). In this case, solving Eq. (B8) for z shows that different minimum prey
density functions always intersect with each other at z = 0 (as in Fig. SI5a). Thus, for a given set of species X , the species x
corresponding to the lowest minimum prey density curve excludes all other species and coexistence is impossible.

Trade-off between flight speed v(x) and search costs cs(x). Based on Eqs. (C2) and (C5), to impose a trade-off we assume

v′(x) > 0 and c′s(x) > 0. [C13]

For the derivatives we find

∂R(x, 0)
∂x

=
c′s(x)

ba
> 0, [C14a]

dzmax(x)
dx

=
v′(x)(bR∗a− cs(x)− µ)− v(x)c′s(x)

aR∗(cf + µ)
. [C14b]

For a trade-off to exist, the right-hand side of Eq. (C14b) has to be positive. Factoring out v′(x)/c′s(x) = dv(x)/ dcs(x), this is
equivalent to

dv(x)
dcs(x)

bR∗a− cs(x)− µ

v(x)
> 1. [C15]
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Trade-off between flight costs cf(x) and search costs cs(x). Based on Eqs. (C4) and (C5), to impose a trade-off we assume

c′f(x) > 0 and c′s(x) < 0. [C16]

For the derivatives we find

∂R(x, 0)
∂x

=
c′s(x)

ba
> 0, [C17a]

dzmax(x)
dx

= − v
(
c′f(x)(bR∗a− cs(x)− µ) + c′s(x)(cf(x) + µ)

)
aR∗(µ + cf(x))2 . [C17b]

A trade-off exists if Eq. (C17b) is positive. Factoring out c′f(x)/c′s(x) = dcf(x)/ dcs(x), this is equivalent to

− dcf(x)
dcs(x)

bR∗a− cs(x)− µ

cf(x) + µ
> 1. [C18]

The single species ideal free distribution expressed as density

In their Fig. 2B, Weber et al. (2) present the empirically determined distributions of foraging birds around Ascension Island –
when expressed as densities. We here present results from our model about how the density of birds (number of birds/area)
foraging at distance z from the island changes with distance. We do this for the case of a single bird species and thus drop the
argument x from all quantities.

The density of birds at distance z is given by

n(z) =
p(z)N
2πz

, [D1]

which, from Eqs. (12)–(13), can be written as

n(z) =
B(R(z), z)G(R(z), z)

µ
. [D2]

The shape of this function depends on the shape of the prey renewal rate G(R(z), z), which is equal to the prey growth rate
g(R(z)) in the absence of prey movement (m = 0, Eq. 6). To illustrate how different biological assumptions about the prey’s
growth rate affect the density of birds feeding at a given distance, we consider three different growth functions.

Logistic growth. Logistic growth describes the density-dependent dynamics of a self-renewing prey and can be written as

g(R(z)) = R(z)(r− αR(z)), [D3]

where r is the intrinsic per-capita growth rate and α the sensitivity to competition. The right-hand side of Eq. (D3) is a quadratic
function in R(z), representing a parabola that is open to the bottom, intersects with the x-axis at R(z) = 0 and R(z) = r/α. The
growth rate of the prey population increases with population density as more individuals can produce more offspring, but this
is counteracted by increased negative density dependence. These two opposing forces cause that the growth rate is maximal
when the prey density equals half the equilibrium density, R(z) = r/(2α). We discuss the effect of logistic prey dynamics on the
density of birds after we introduced the next growth function.

Maturation dynamics. Logistic growth describes a population of identical individuals. As an alternative, we now derive a growth
function when the prey population is stage-structured, with birds feeding on adults that result from maturation of juveniles. We
assume that juveniles, with density J(z) at distance z, are produced by adults, with density R(z) at distance z, at a per-capita
birth rate bR and die at a per-capita death rate dJ . Juveniles mature into adults at a density-dependent per-capita maturation
rate mJ/(k J + J(z)), where mJ denotes the maximum maturation rate and k J the density of juveniles at which maturation is
half-maximal. Adults move at rate m, while juveniles are assumed to be too small to show significant movement. Finally, adults
die from causes other than predation by birds at a per-capita death rate dR. Then, at equilibrium the density of juvenile and
adult prey fulfill

0 =bRR(z)− dJ J(z)− mJ J(z)
k J + J(z)

[D4]

0 =g(R(z), J(z)) + m
(

d2R(z)
dz2 +

1
z

dR(z)
dz

)
− f (R(z), z)

p(x, z)N(x)
2πz

, [D5]

where

g(R(z), J(z)) =
mJ J(z)

k J + J(z)
− dRR(z). [D6]
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Solving Eq. (D4), a quadratic function in J(z), we find that the relevant root for J(z) is

J(z) =
1

2dJ

(
bRR(z) +

√
(dJk J + mJ)2 + bR

(
2(dJk J −mJ)R(z) + bRR(z)2

)
−mJ − dJk J

)
, [D7]

which, on substituting into Eq. (D6), results in the growth rate of adult prey taking the form

g(R(z)) =
1
2

(
mJ + dJk J + (bR − 2dR)R(z)−

√
(dJk J + mJ)2 + bR

(
2(dJk J −mJ)R(z) + bRR(z)2

))
. [D8]

We refer to this growth function as the maturation model. In short, this function describes the growth rate of an adult prey
population at distance z at equilibrium as it results from maturation of juveniles.

Now recall (Eq. SI1) that bird density n(z) is the product of prey renewal G(R(z), z) and the net energy value B(R(z), z)
per prey item. These quantities are shown in Fig. SI1 as a function of z for three different values of the search costs cs. Note
that Fig. SI1 assumes m = 0 so that G(R(z), z) = g(R(z), z) (cf. Eq. 6). To understand the shape of the renewal function,
shown in the fourth row of Fig. SI1), we start by investigating it as a function of R. This is shown in Fig. SI2 for four different
parameter combinations. Using symbolic calculation, it can be shown that Eq. (D8) is an unimodal function of R that passes
through zero at R = 0 and R = (mJ(bR − dR)− dJdRk J)/(dR(bR − dR)), which is the equilibrium density for adult prey in the
absence of predation by birds. Furthermore, for bR = 2dR (Fig. SI2b), this function has its maximum at half the equilibrium
density. Numerical calculations show that the position of the maximum increases if bR is decreased relative to dR (Fig. SI2a) and
decreases if bR is increased relative to dR (Fig. SI2c,d). The reason that g(R) decreases when R passes a certain threshold is that
the prey population becomes maturation limited — more adults producing offspring results in stronger density dependence
among juveniles, and this slows down maturation. This effect becomes more pronounced as bR increases relative to dR. Hence,
the larger bR relative to dR, the larger the interval of R-values for which g(R(z)) decreases. This observation translates to the
shape of g(R(z)) when plotted as a function of distance z. Panels (c) and (d) in the fourth row of Fig. SI1, corresponding to the
leftward-shifts of the maximum growth rate (due to bR > 2dR) shown in panels (c) and (d) of Fig. SI2, show a monotonic decline
in the growth rate, simply because the prey equilibrium density at the island, R(0), shown in the top row of Fig. SI1, exceeds
the R-value where the growth function has its maximum. In contrast, for bR ≤ 2dR (column (a) and (b) in Fig. SI1), whether
the function g(R(z)) is unimodal in z depends on the search costs cs. Lower search costs result in a more pronounced prey
depletion halo (lower value of R(0), see first row in Fig. SI1), and g(R(z)) is hump-shaped (blue and orange line in Fig. SI1(a)
and blue line in (b)) if the value of R(0) is lower than the value of R where g(R) has a maximum (Fig. SI2) and monotonically
decreasing otherwise.

The shape of the graphs for n(z) (third row in Fig. SI1) closely follows those for g(R(z)), and are only modified slightly by
the change of the net energy value B(R(z), z) (fifth row in Fig. SI1) with distance from the island. In the absence of search
costs (cs = 0, blue lines), B(R(z), z) decreases with z due to increasing flight costs. If cs is sufficiently high, however, B(R(z), z)
increases with distance. This is because the time to catch a prey item decreases with increased prey density, so that the costs
spend on catching prey decrease with z.

The logistic growth function described by Eq. (D3) is very similar to the curve shown in Fig. SI2(b), as both curves are
symmetric around the R-value that is equal to half the equilibrium density in the absence of predation. As a consequence,
the graphs in column (b) in Fig. SI1 are virtually indistinguishable from those that would result from logistic growth. Hence,
qualitatively logistic growth can be interpreted as a special case of our maturation model that results when bR = 2dR.

Logistic growth with productivity gradient. Eq. (D3) assumes that the parameters r and α do not depend on the distance from
the island. This assumption approximates the situation around isolated volcanic islands, where the sea floor drops sharply
with increasing distance from the island so that the surrounding waters can be considered approximately homogeneous. This
assumption is less appropriate for colonies where the surrounding sea shows a gradient in primary productivity with increasing
z. Such productivity gradients can easily be incorporated in our model. To do this, we extend the logistic growth model (Eq. D3)
to

g(R(z), z) = R(z)(r(z)− αR(z)), [D9]

where
r(z) = rmax − (rmax − rmin)

z
kr + z

. [D10]

This function for r(z) is monotonically decreasing in z, starting at rmax for z = 0 and approaching rmin as z goes to infinity. The
parameter kr denotes the distance at which the intrinsic growth rate has dropped by 1/2(rmax − rmin).

In Eq. (D9), the growth function depends directly on z. This generalization of the model does not affect the equilibrium
prey density and the ideal free distribution, as given by Eqs. (11) and (12), respectively, since these results do not hinge on
the functional form of G(R(z), z). But we need to recalculate the maximum flying distance. To do this, we replace R∗ with
R∗ = r(zmax)/α in Eq. (9). With this change, Eq. (9) becomes a quadratic equation in zmax, and we find that the relevant root
equals

zmax =
−γ +

√
γ2 − 8armin(cf + µ)krv(α(cs + µ)− abrmax)

4armin(cf + µ)
[D11]
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with
γ = 2akrrmax(cf + µ) + vα(cs + µ)− abrminv. [D12]

Figure SI3 shows, for m = 0 such that G(R(z), z) = g(R(z), z), three examples of how productivity gradients can affect the
distribution of bird densities. The panels in the first row show the equilibrium prey density r(z)/α at distance z for productivity
gradients of increasing strength. Productivity gradients cause prey renewal g(R(z), z) (fifth row) to drop sharply close to the
island. Depending on the strength of the productivity gradient, this decrease continues until the maximum flying distance
(green line in column (b), and all lines in column (c)) or peaks at an intermediate distance. Note, that g(R(z), z) also varies with
the search costs cs, as this affects prey abundance R(z). The peak at intermediate distances under a weak productivity gradient
(and under low search costs and an intermediate productivity gradient) results from g(R(z), z), when viewed as a function of R,
having a maximum at an intermediate prey density, just as under the maturation and logistic growth models. The shape of
the graphs for n(z) (fourth row) again closely follows those for g(R(z), z), and is only modified slightly by the slope of the net
energy content B(R(z), z) (sixth row) per prey, just as under the maturation and logistic prey models.

Conclusion. Our exploration of the effect of three different functions for the growth rate g(R(z)) on the density of birds n(z)
foraging at distance z, shows that n(z) is highly sensitive to details of the prey growth rate. The monotonic and initially steep
decline of bird density with increasing distance from the island reported in Fig. 1A in Weber et al. (2) is predicted by our model
only under sufficiently strong productivity gradients (Fig. SI3c). In the absence of a productivity gradient, a monotonic decline
is only expected when the prey depletion halo is sufficiently shallow so that the equilibrium prey density at the island is higher
than the value where the prey growth rate is maximal. For the growth functions analyzed here, this constellation is more likely
under the maturation model than under the logistic model and in the presence of high search costs (Fig. SI1c,d). Note that,
maybe somewhat surprisingly, the shape of the distribution of bird densities also depends on the bird’s trait values, as it is these
that determine the depth of the prey depletion halo.

It is important to point out that Weber et al. (2), when modeling whether the birds breeding on Ascension Island can cause
the observed prey depletion halo, assume that the fish population has a uniform distribution at the beginning of the season and
becomes increasingly depleted as the breeding season proceeds (the halo expands), with no regrowth of the fish stock during the
season. Our model does not allow for such seasonality, and all our results are derived under the assumption that the system is
at equilibrium. To conclude, we show that the distribution of the density of foraging birds can take a variety of forms, including
dome-shaped and monotonically declining, and accurate predictions would require detailed knowledge of empirical details of
the prey renewal dynamics.

Group foraging

We here derive the model of group foraging presented in Box 1. Thus, we keep all assumptions of the foraging process the same
as under the model for individual foraging, except that (i) all individuals express the same behavioral strategy, (ii) population
(group) size N is fixed, and (iii) resources show no movement (m = 0). Since we consider groups consisting of a single species,
we henceforth omit the argument x from all variables.

We know from the expression for the payoff Π(z) (eq. A3) that payoff must eventually decrease and even become negative as
z becomes large. Hence, a distance zmax exists beyond which payoff is negative, and distances beyond this point will never be
visited in any behavioral equilibrium. Accordingly, we can write the expected payoff to an individual with behavioral strategy
p : [0, zmax]→ R+ under group foraging as

Π̄(zmax, p) =
∫ zmax

0
p(z)Π(z)dz [E1]

subject to the constraint that ∫ zmax

0
p(z)dz = 1, [E2]

and where
Π(z) = f (R(z), z)B(R(z), z) [E3]

is the payoff from foraging at distance z. Eq. (E1) is the net rate of energy delivery of an individual under group foraging and
can equivalently be interpreted as the foraging group’s average per-capita energy delivery. Here, B(R(z), z) and f (R(z), z) are
defined as in Eqs. (1) and (2) in the main text. Furthermore, analogous to Eq. (5) in the absence of movement (m = 0), the
equilibrium prey density R(z) at distance z satisfies

g(R(z)) = f (R(z), z)
p(z)N
2πz

. [E4]

Thus, the mean payoff defined by Eq. (E1) is equivalent to that defined by Eq. (4) in the main text.
The behavior p in Eqs. (E1) and (E4), however, does not yet represent an equilibrium. To find the equilibrium, we have to

maximize the payoff Π̄(p) with respect to p and the maximum foraging distance zmax under the integral constraints given by
Eq. (E2). To solve this optimization problem, we follow standard optimization techniques using calculus of variations (e.g. 4, 5).
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We note that our problem is equivalent to an optimal control problem with a free boundary point and an integral constraint
(e.g., Section 2.8 and 3.1 in ref. (4)). Accordingly, we construct the Lagrangian function

L(p, zmax) =
∫ zmax

0
p(z)Π(z)dz− λ

(∫ zmax

0
p(z)dz− 1

)
, [E5]

where λ is the Lagrange multiplier associated to the integral constraint. The necessary first-order conditions for the function p
and the distance zmax to maximize payoff are

∂L(p, zmax)

∂p(z)
= Π(z) + p(z)

∂Π(z)
∂R(z)

∂R(z)
∂p(z)

− λ = 0 for all z ∈ [0, zmax] [E6a]

∂L(p, zmax)

∂zmax
= Π(zmax)− λ = 0 [E6b]

(a special case of ref. (4), Eqs. 2.8.17 and 2.8.20 with a Lagrangian function given by their Eq. 3.1.4). Note, that for simplicity
of presentation, in the second term on the right-hand side of Eq. (E6a) we omit writing the functions explicitly in terms of
the arguments with respect to which partial derivatives are taken. The first term in this derivative, Π(z), describes the payoff
gain to an individual from increasing its tendency to forage at distance z and is thus a benefit. The second term describes the
change in payoff that results from increased prey depletion at a distance z that comes with an increased tendency to forage
at that distance. The Lagrange multiplier λ can be interpreted as the payoff that is lost at equilibrium if the constraint could
be loosened infinitesimally (e.g., 5). Eq. (E6a) says that the gain from foraging at distance z must be balanced by the cost of
increasing competition from foraging at z and the cost this entails. Finally, note that by comparing Eq. (E6b) and Eq. (E5) it
follows that p(zmax) = 0.

Eqs. (E6a)–(E6b) show that a candidate equilibrium density p(z) at z has to satisfy

p(z) = F(p(z), λ, z) [E7]

with

F(p(z), λ, z) =
λ−Π(z)
∂Π(z)
∂R(z)

∂R(z)
∂p(z)

, [E8]

where
∂Π(z)
∂R(z)

=
a (b + (cs − cf)Tf(z))

(1 + aTf(z)R(z))2 , [E9a]

∂R(z)
∂p(z)

=
N f (z)

2πz dg(R(z))
dR(z) − Np(z) ∂ f (z)

∂R(z)

. [E9b]

The last equality is obtained by implicit differentiation of Eq. (E4) and where ∂ f (z)/∂R(z) depends on p(z) owing to Eq. (E4).
The argument p(z) in F(p(z), λ, z) emphasizes that the density p(z) in Eq. (E7) is defined only implicitly. But this density can be
solved by finding the solution p(z) satisfying Eq. (E7) if λ is known, which in turn can be obtained by solving∫ zmax

0
F(p(z), λ, z)dz = 0 and Π(zmax) = λ [E10]

for λ and zmax.
In conclusion, once the nature of the prey’s growth rate g(R(z)) is specified, the system of equations given by Eqs. (E7)–(E10)

in combination with Eqs. (E3)–(E4) allows us to compute the candidate behavioral equilibrium (p, zmax), consisting of a foraging
distribution and a maximal foraging distance, fulfilling Eq. (E7). To ascertain that this is indeed a maximum, one would need to
evaluate second-order or sufficiency conditions for a local or global maximum. The literature on control theory does not provide
any simple recipe to check any such conditions in the context of free boundary point optimal control problems (e.g., 6, Theorem
13, p. 145), and our problem is furthermore compounded with an integral constraint. Hence, we argue somewhat heuristically
that the equilibria identified numerically in Fig. 3 in the main text are indeed maxima. For this, we note that, because there is no
prey at z = 0 and because payoff decrease with distance z in an environment without competitors, the optimal solution has to
be a function p : [0, zmax]→ R+ with zmax > 0 and p(z) > 0 for all z ∈ (0, zmax]. Second, in the numerical analysis underlying
Fig. 3, we find a single positive solution p(z) for each z ∈ (0, zmax] satisfying Eq. 3. This thus has to characterize a maximum.
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Fig. SI1. Equilibrium prey density curve R(z) (first row), proportion of birds p(z) (second row), bird density n(z) (third row), prey renewal rate G(R(z), z) (fourth row), and net
energy content B(R(z), z) (fifth row) as a function of distance z from the island under the maturation model for the four different growth functions g(R) shown in Fig. SI2 (in
columns). Note that the panels within the first and last row are identical to each other, since neither the equilibrium prey density nor the net energy content depend on g(R(z))
(Eqs. 11 and 1, respectively). Parameter values: m = 0, b = 1, cf = 0.2, a = 0.0024, v = 80, µ = 0.4.
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Fig. SI2. Growth rate g(R) of adult prey as a function of adult density R for four parameter combinations of the maturation model (Eq. D8). Parameters are chosen such that
the equilibrium density of adult prey in the absence of predation by birds equals 500 and the maximum growth rate equals 5. (a) bR = 1.5dR : The maximum growth rate occurs
for a density that lies above 250. (b) bR = 2dR : The maximum growth rate occurs at a density of 250. In the interval (0, 500) the function g(R) is symmetric. The shape of this
function is very similar to that of the logistic growth function given by Eq. (D3) given parameters that fulfill the same constraints (equilibrium at 500 and maximum growth rate
of 5). (c) bR = 4dR: The maximum growth rate occurs for a density that lies below 250. (d) bR = 10dR: The maximum growth rate is shifted to an even lower density. The
consequences of these different growth function for the distribution of bird densities are shown in Fig. SI1.
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Fig. SI3. The effect of productivity gradients is illustrated under logistic prey dynamics for three parameter combinations determining the intrinsic growth rate r(z) as given by
Eq. (D10) (in columns, parameters: rmax = 0.02 and (a) rmin = 0.3rmax, kr = 30, (b) rmin = 0.2rmax, kr = 20, and (c) rmin = 0.1rmax, kr = 10) and three values of the search
costs cs (colored lines). The top row shows the equilibrium prey density R∗ = r(z)/α in the absence of predation by birds, showing that the prey productivity gradient becomes
steeper and more pronounced from left to right. The second row shows the equilibrium prey density R(z) in the presence of predation by birds, that is, the prey depletion halo.
Curves for R(z) of the same color are identical across the three columns but are cut off at different distances, since the maximum flying distance zmax (Eq. D11) decreases with
the severity of the productivity gradient. The third row shows the birds’ ideal free distribution p(z). The fourth row shows the density of birds n(z) foraging at distance z. The
pattern shown in the fourth row can be understood based on the fifth (showing g(R(z), z)) and sixth (showing B(R(z), z)) row. Curves for B(R(z), z) of the same color are
identical across the three columns but are cut off at different distances, as for R(z). Parameter values as in Fig. 1 but for m = 0 and cs as indicated by the color code.
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Fig. SI4. Equilibrium prey density R(z) (hatched lines, left y-axis) and ideal free distribution p(z) (proportion of birds feeding at distance z, solid lines, right y-axes) as function
of distance z from the island for five different movement rates m and a fixed bird population size of 200000 individuals under logistic prey dynamics. In contrast to the results
of bird populations at demographic equilibrium, as shown in Fig. 1(a), the maximum flying distance decreases with increasing m and prey halos become less pronounced.
Parameter values as in Fig. 1.
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Fig. SI5. Minimum prey density R(x, z) as a function of distance z for four different trait values x, assuming that (a) flying speed v(x) and flight costs cf(x) and (b) capture
efficiency a(x) and search costs cs(x) are trait-dependent. In the first case, all minimum prey density curves intersect at z = 0 while they never intersect in the second case. In
both cases, coexistence of different species is impossible and the species with the lowest minimum prey density curve excludes all others (x = 0 in (a) and x = 10 in (b)). The
functions a(x) and v(x) are as described in the legend of Fig. 2. For flying and search costs, we use cf(x) = cf0/(1 + cf1x) and cs(x) = cs0/(1 + cs1x), respectively, with
parameters cf0 = 0.2, cfb = 0.01, cs0 = 0.4 and cs1 = 0.1. Other parameter values as in Fig. 1(a).
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Fig. SI6. Minimum prey density R(x, z) as a function of distance z for five different trait values, assuming that capture efficiency a and flying speed v are determined by the trait
value x. This illustrates that, for certain parameters, not all minimum prey density curves intersect at z-values less than zmax. The following sequence of community assembly
could be envisaged. A community consisting of a species with x = 0.3 is replaced by an immigrant (or mutant) with x = 0.5, which in turn is replaced by a new species with
x = 1. However, a further species with x = 2 does not replace the species with x = 1 but coexist with it (where the species with x = 1 is restricted to a small interval at a
large distance from the island. Upon the arrival of a species with x = 3.5, a community of three coexisting species has emerged. Parameter values as in Fig. 1(a) except for
α = 0.001. As a result, R∗ = 100, which makes condition Eq. (C9), specifying when a trade-off between v and a results in a trade-off between R(x, 0) and zmax(x), more
restrictive.
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