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Abstract

In the framework of the extended classical risk model with constant force of
real interest ¢ we investigate, when it is suitable to represent the probability
of collective survival U(z,t) of an insurance company with initial capital z
and time horizon ¢ as a gamma series. Moreover we derive exact analytical
solutions for exponentially distributed claim sizes and integer values of \/i,
where A is the risk parameter. As a by-product we observe that numerical
procedures for estimating U(z,t) are very accurate.
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1 Introduction

Let {N(t) : t € R, } denote the random process that counts the claims of an in-
surance portfolio of a company and assume that N(¢) is a homogeneous Poisson
process with intensity A. Let further {X, : n € N} be a sequence of independent
identically distributed positive random variables with density function f(z) repre-
senting the sizes of the successive claims. If we allow for a constant inflation force
§, then the nth claim is not equal to X,, as in the classical case but rather e’ 7» X,,,
where T, (n € N) denotes the moment of occurrence of the nth claim. In a time
interval [t,t + dt] the company receives the premium c(t)dt, where c(t) = ce®t and
¢ = ¢(0) > 0 is the premium density at t = 0. In addition to the premium income,
the company also receives interest of its reserves with a constant interest force 1 (for
§ =1 = 0 we have the classical risk model). If we introduce the purely discontinuous
measure €’ * Xy, dV; which puts a weight equal to e’ 7» X, at times T, (n € N), then
the value of the reserve at time ¢, denoted by Z(t), satisfies

dZ(t) = ce®tdt + Z(t) - idt — e*' Xy, dN,
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(see for example DELBAEN AND HAEZENDONCK [3]). For general background in
ruin theory we refer to BUHLMANN [2] and GERBER [4].
We are now interested in the probability that the company survives through time ¢

U(z,t) =Pr{Z(s) >0V 0<s<t|Z(0) =z},

where £ > 0 denotes the initial reserve of the company. Correspondingly the prob-
ability of ruin is defined by ¥(z,t) =1 — U(z, t).

For an infinite time horizon (i.e. ¢ = co) SUNDT AND TEUGELS [12, 13] have stud-
ied equations for U(z,oc) and derived approximations and bounds using Laplace
transformation with respect to z. For arbitrary ¢ the following integro-differential
equation for the probability of survival U(z,t) within the finite time interval [0, t]
and initial capital z for any claim size density function f € C'! can be derived:

ou  oU

(c-l—ix)%—E—)\U—l—)\/ozU(m—y,t)f(y)dy=0 (1)

with initial condition U(z,0) = 1, where i = i—d denotes the real (constant) interest
force and is assumed to be positive. Equation (1) is a generalization of a fundamen-
tal result of SEAL [9], see e.g. [5]. In the case of exponential claim size distributions
KNEsSL AND PETERS [5] studied this equation by Laplace transformation with re-
spect to ¢t and obtained explicit expressions for the Laplace transform of the survival
probability. Furthermore the asymptotic behavior of U(z,t) was analysed for i = 0
in [5] and for ¢ > 0 in [6]. For ¢ = 0 and exponentially distributed claims PERvVOZ-
VANSKY [8] derived an exact explicit expression for U(z,t) by inverting the Laplace
transform using complex analysis techniques.

The idea of representing U(x,t) as a series of incomplete gamma functions goes
back to TAYLOR [14], who considered the case of i = 0. In this paper we study the
possibility of generalizing this approach to arbitrary ¢ > 0. In Section 2 we derive a
recurrence relation for the coefficients of the gamma series for a large class of claim
size distributions. This relation is then analysed in Section 3 for the exponential case.
For integer values of \/i we obtain simple exact expressions for U(z,t). Furthermore
we show that for arbitrary values of A\/i in the case of an infinite time horizon the
gamma series representation leads to a well-known explicit expression for U(z, c0).

2 A gamma series expansion for U(z,t)

We look for a solution of (1) of the form

Uz, t) =ap(t) + Z a,(t)P(n, azx), (2)



where the notation

_y(mar) 1 /‘”“ nol —y
P(n,azx) = T~ () J, y" e Vdy, a>0,n>0 (3)

is chosen according to [1] (the parameter « could of course be omitted w.l.o.g., but
will turn out to be useful later on). The existence of such a solution will be discussed
later. Suppose that the claim distribution function F'(x) can also be expressed as a
series of the same incomplete gamma functions

=" fuP(n,ay) (4)

(which is e.g. the case if F(y) agrees on (0, 00) with an entire function B(-) with the
property |B*)(0)| < K* for some constant K > 0 and all k£ > 1 (cf. [14])). Now we
make use of the fact that for positive and integral n the incomplete gamma function
can be written as

n—1

P(n,az) =1—e Z ' (5)
— -
j=0
and thus it can easily be verified that
P
W:Q(P(n—l,aaﬁ)—P(n,a@), n=123,... (6)
x

with the definition P(0, az) = 1. Furthermore

oP n
OP(nar) (o)™ (o7)

oz (n—1)! n!

)n—l

= n(P(n, ax) — P(n+1, cm:)). (7)

If we now substitute (2),(4), (6) and (7) into (1), we obtain:

céan(t)a(P(n— 1,az) — P(n, oz:L')) —i—iian(t)n(P(n, ) —P(n+1,ax)) -
= al(t) +§;a;(t)P(n ax) + Aao(t) +/\Zan (n, az)
_ )\/0 [ao(t) +gan(t)P(n alz —y } [an dP(n, ay)] 8)
Equating the coefficients of P(1, ozac)_, P(2,az),... yields:
(1) = (ah(t) + Aao(0) Q



and for n € N

1
an1(t) = —((A+ac— in)an(t) + @, (t) +i (n — Dan1(t) — Malt) + £}a), (10)
where the sequence {a(t) * £}, = ao(t)fn + a1(t) fn1 + ... + an_1f1 (n € N) is the
convolution of the two sequences a(t) = ag(t),a:(t), etc. and £ = fi, fo, etc.
By setting = 0 in (2) the series can be started with

ao(t) = U(0,1). (11)

If the representation of the claim size distribution function F'(y) as a series of in-
complete gamma functions contains only finitely many terms (that is f, = 0 for
n > N), then (10) simplifies to the difference equation

(1) = é (0 e — iman(t) + (1) + i (n — Danoa (1) -
i (f) — . — AfNa,n,N(t)) (12)
In the special case of an exponential claim size distribution f(z) = ae *# we have
N =1, f; =1 and thus we get the second-order linear recursion formula
tnia () = é (Ot ae— ima(t) + () + (i (n—1) = Naa().  (13)

Remark: If we look at the limit ¢ — oo, the above equations simplify, as all terms
with derivatives w.r.t. ¢ vanish. This leads to the representation

U(.T, OO) = a'O(OO) + Z an(OO)P(nv Oz.T), (14)
where
0,0(00) = U(07 OO):
ai(00) = Zao(c0),
n41(00) = = (()\ +ac—in)a,(00) +i(n —1)a,_1(00) — AMa(oo) * f}n)

(15)

and the infinite-time survival probability U(0, co) with initial capital 0 is a function
of ¢, A\, a and 7 only.
For the exponential claim size distribution recurrence (15) again simplifies to

a1 (00) = i (3 +ae— injaq(00) + (in— i~ Nay(00)).  (16)



3 Analysis of the recurrence relation

Formula (12) enables us to investigate the existence of simple explicit solutions of (1)
of certain type by appropriate choice of the involved parameters. Let us concentrate
on the case of an exponential claim size distribution, i.e. equation (13), first:

3.1 Some exact solutions for exponentially distributed claims

Theorem 1. Let the claim size distribution be exponential with parameter o and
let the parameters A, i be chosen such that

A= ki (keN). (17)

Then the finite-time survival probability is given by

U(x,t) = ag(t +Zan (n, ax) (18)

and there is a simple algorithm to calculate a,(t), n > 0 in this case.
Moreover, (17) is also a necessary condition for a finite-sum representation of U(zx, t)

of type (18).

Proof: The only possibility for the coefficients a,(t) to vanish in (13) on from a
certain index ny, is that i(ng — 1) — A = 0 holds (considering the fact that 0 <
ag(t) = U(0,t) <1 and the second order of the recurrence). This simple observation
restricts the representation of U(z,t) in the form (2) with finitely many terms to
the parameter choice A = ki (k € N).

Furthermore, one can indeed derive an explicit solution for (1) for every k£ € N : For
a fixed £ € N we have to show that aj1(t) = 0 (because then ay;;(t) =0V j > 1).
This condition leads to the homogeneous linear differential equation

k+1

Y eiaf(t) =0 (19)

with constant coefficients ¢; € R, where agj ) (t) denotes the j-th derivative of ag(t).
One can inductively show that ¢; > 0 for j > 1 and ¢y = 0. Now let us assume that
all the roots of the characteristic equation of (19), which we denote by —R; (j =
0...k+1), are pairwise distinct (which is only a technical restriction). Then ay(t)
is of the form

k+1

ao(t) =U(0,t) = Ag+ Y Aje it (20)

From ¢; > 0 for j > 1 it follows that R; > 0, if R; € R, as it should be.
In order to obtain the coefficients A; one now has to calculate a;(t), 7 = 1,... ,k
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using (20) and (13). Then by inserting those into (2) we can derive a linear system
of equations for A; by equating the coefficients of 2™ in U(z,0) = 1. This inho-
mogeneous system contains exactly k£ 4+ 1 equations for k£ + 1 variables and thus we
can easily calculate the desired coefficients A; and we finally arrive at (18) as the
solution of (1) for exponentially distributed claims and A = ki (k € N), where a,(?)
are determined by (13) and (20). O
This procedure can easily be implemented in a computer program.

Remark: From the recurrence structure of (10) and (12), respectively, it follows
that the exponential claim size distribution together with above choice of the corre-
sponding parameters is the only one among all the claim size distributions of type
(4) that enables a finite-sum-representation of type (2) for its solution U(x,t).

Examples: (a) In the case A =i (i.e. k = 1) KNESSL AND PETERS [5] derived the
exact solution

Ulz,t)=1— —

—ax _ —(iHac)t
oo (1—e ) (21)

by means of Laplace transformation w.r.t. ¢. Using the gamma series approach
above we obtain the same result rather easily, with only one iteration step.

(b) As another illustrating example of the above method we give the explicit solution
of (1) for f(z) = ae *® and A = 21 (see also Fig. 1):

Uz, t) = bo(t) + (1 _ e“”)bl (1) + (1 e ozxe_‘”)bz(t)

with
a’c®D + e’R“’(iQac + D (iac+i?) — i3> + e’R”( —ifac+?+ D (iac+ 12)>
bo(t) =
o(?) D (2 +2iac+2i?) ’
i(?Dac—e‘th(—4i2—iac+Dac)—e‘R2t<4i2+iac+Dac))
bi(t) =
1) D(@?c?+2iac+24?) ’
2 (e—le(Qac+37;+D)—2D+e—R2t(—2ac—3z‘+D))
bo(t) = —
2(1) D(2c2+2iac+2:2)
where
R, — 2ac+23i—D’ R, — 2ac+23i+D’



Figure 1: U(z,t) forc=21,A=1,a=1,i=0.5

and D = /i (dac+1).
A

(c) By fixing A and taking i = 7, k — 0o, one can study the limit behavior of
U(z,t) for i — 0 using analytic solutions. For example, from (18) and (20) it is
easily seen that the asymptotic behavior of U(z,t) for large ¢ is determined by the
(in absolute value) smallest negative root —R;, of the characteristic equation of (19),
where R, decreases with decreasing force of real interest 7. This in general means
that for smaller interest rates it takes larger values of ¢ = T so that U(zx,t), t > T
is practically identical to U(z,T), in agreement with the results of KNESSL AND
PETERS [6]. For given parameters and a specified error bound we can use our exact
formula for U(x,t) to explicitly calculate 7.

(d) In [6] some estimates for U(zx,t) for discrete values of ¢ in the presence of con-
stant real interest force i and exponential claim size distribution were calculated
by numerical inversion of the Laplace transform of U(z,t) via truncation of the
Bromwich contour integral along the imaginary axis at a given point and then cal-
culating the truncated integral and estimating the thereby produced error. Another
application of our exact analytical formulae is the possibility of checking this nu-
merical procedure. Figure 2 shows the exact solution (solid line) and the numerical
estimates of [6] (crosses) for the probability of ruin with initial capital z = 10 and
c=2,A=a=1,7 = 0.1. Figure 3 depicts the exact function and the discrete
numerical estimates for a qualitatively different region of parameter choice, namely
A=2c=1,a=1,i=0.1 (cf. [6]). Both graphs show that the performance of the
numerical procedure described above is very satisfactory.



1-Uudo.

0.0006 {
0.0005 {
0.0004 {
0.0003 {
0.0002 {

0.0001

t

Figure 2: Numerical and analytical results for ¢(10,¢) for ¢ > A/«
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Figure 3: Numerical and analytical results for ¢(10,¢) for ¢ < A/«



(e) DELBAEN AND HAEZENDONCK |[3] derived upper bounds for U(z,t) (denoted
DH-bounds for short) by virtue of martingale methods. In the case of an exponential
claim size distribution we can use our exact solutions to test the sharpness of these
bounds. A direct qualitative comparison of the exact solution and the DH-bound
based on their known analytical expressions is a very time-consuming task due to the
complex structure of the exact solution. Thus we confine ourselves to a quantitative
comparison here: Figure 4 and 5 illustrate the empirical observation that the DH-
bound is about three to ten times the exact value of ¥ (u,t) for typical choices of
the parameter values (the factor getting smaller as ¢ decreases).

1-U(10,t) 1-U(10.t)
0.002 + | - o ) o —
0.001 _— 0.002 1 ////
e -
Figure 4: Exact solution (solid line) Figure 5: Exact solution (solid line)
and DH-bound (dashed line) of 1(10, t) and DH-bound (dashed line) of ¢(10, t)
forc=16,a=1,A=1,:=0.1 forc=16,a=1,A=1,1=0.025

3.2 Infinite time horizon

The question now arises, whether something can be said about the convergence of (2)
in general (i.e. A # ki). If the coefficients a,(t) are bounded, then the convergence
of the series can be shown by elementary techniques. For some general tools for
investigating the asymptotic behavior of linear recurrences we refer to KOOMAN [7].
However, studying the asymptotic behavior of (13) seems very difficult.

If we restrict ourselves to the infinite time horizon case, then the corresponding
linear recurrence (16) can be solved:

For that purpose, consider the generating function



where we use a,, := a,(00) for short. From (16) one then derives that

[e.e] o0 o0
acz Uni 2"t = Z(A +ac—in)a,2" T + Z(z(n —1) = Nap_i12" %
n=1 n=1 n=1

With a little bit of calculations we find that

At ac ajac  apac

1
i(z—1)A'(2) + A(z);{/\ +ac— Az — ac} = ag . R

Using the fact that a; = &ao, it is straightforward to find that A(z) satisfies the
first order non-homogeneous differential equation

iz?A'(2) + (ac — A2) A(z) — agac = 0.

The homogeneous equation has the solution
Ap(z) = 2% exp (%) .
1z
Put
A2) = C(:) A2
and determine the function C(z) in order to solve the non-homogeneous equation.
Here some care is needed. Clearly for z # 0 we find that
aoaf A 2

C'(z) = ——27 7 "exp (—%).

) 12

For some constant KX we have that

.\ 2 Lac
Ak —ag () [T et ar) 2 e (2
A(z) = (K ag (ac) /0 e 't dt) Z'i exp (zz) .

Since A(0) = ayo, it is necessary that

S

This means that

or even better



An expansion now gives the explicit expression

i = a0 AA = i) ... (A= (n — 1)i)(ac) ™ = agn! (W> (L) n>1 (22)

n acC

It can easily be checked that this expression solves (16). Moreover, the reason why
there remains only a finite number of non-zero a,, for integral \/i becomes clear (cf.
(18) for t = 00).

Introducing expression (22) in (14) leads to

T AN
U(x,oo)zao—i—aoé/ e <1+zy> dy
0

Cc

which can be rewritten in terms of incomplete gamma functions in the form

A
Al 1\ ac A A
U(,ﬁE,OO) :a0+a0_. (L> ei [P <_7%) T (_a%‘i_ax)] 3 (23)
7 ac 7 1 7 1

where T'(a,z) = [ e~"t*~" dt.

Now, one can calculate ay = U(0, c0) by taking the limit £ — oo in (23) (recall that
lim U(z,00) = 1) and we finally arrive at the pleasant formula

T—00

[(2,% + az)

1’ 1

[(2,80) + £ (2¢) gmacsi

17 4 i

U(x,00)=1-— (24)

which was already given in SEGERDAHL [11, 10] and proved in various other ways
in the literature (cf. [5],[12]).

4 Conclusion

We showed that using a gamma series expansion, simple exact solutions can be
obtained for the time-dependent probability of survival U(x,t) for exponentially
distributed claim sizes in the presence of a constant interest force and certain model
parameter relations. We used our result to test numerical techniques for calculat-
ing U(z,t). Moreover we proved that such a gamma series expansion leads to an
explicit expression for the infinite time survival probability for arbitrary choices of
the parameters.

As this method leads to a recursion based on U(0,¢) and this term is sometimes eas-
ier to calculate than U(z,t) (especially in connection with Laplace transforms w.r.t.
x), this approach might also be useful in other related problems in ruin theory.
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