
Received: 26 December 2022 Revised: 2 May 2023 Accepted: 14 May 2023 Published on: 6 June 2023

DOI: 10.1002/mrm.29720

R E S E A R C H A R T I C L E

Cellular Exchange Imaging (CEXI): Evaluation of a
diffusion model including water exchange in cells using
numerical phantoms of permeable spheres

Rémy Gardier1 Juan Luis Villarreal Haro1 Erick J. Canales-Rodríguez1

Ileana O. Jelescu2,3 Gabriel Girard1,4 Jonathan Rafael-Patiño1,2

Jean-Philippe Thiran1,2,5

1Signal Processing Laboratory (LTS5),
École Polytechnique Fédérale de
Lausanne (EPFL), Lausanne, Switzerland
2Radiology Department, Centre
Hospitalier Universitaire Vaudois (CHUV)
and University of Lausanne (UNIL)
(CHUV-UNIL), Lausanne, Switzerland
3School of Biology and Medicine,
University of Lausanne (UNIL),
Lausanne, Switzerland
4Department of Computer Science,
Université de Sherbrooke, Sherbrooke,
Canada
5CIBM Center for Biomedical Imaging,
Lausanne, Switzerland

Correspondence
Rémy Gardier, Signal Processing
Laboratory (LTS5), Station 11, 1015
Lausanne, Switzerland.
Email: remy.gardier@epfl.ch

Funding information
Schweizerischer Nationalfonds zur
Förderung der Wissenschaftlichen
Forschung, Grant/Award Numbers:
205320_175974, 205320_204097,
PZ00P2_185814

Purpose: Biophysical models of diffusion MRI have been developed to
characterize microstructure in various tissues, but existing models are not suit-
able for tissue composed of permeable spherical cells. In this study we introduce
Cellular Exchange Imaging (CEXI), a model tailored for permeable spherical
cells, and compares its performance to a related Ball & Sphere (BS) model that
neglects permeability.
Methods: We generated DW-MRI signals using Monte-Carlo simulations with
a PGSE sequence in numerical substrates made of spherical cells and their extra-
cellular space for a range of membrane permeability. From these signals, the
properties of the substrates were inferred using both BS and CEXI models.
Results: CEXI outperformed the impermeable model by providing more sta-
ble estimates cell size and intracellular volume fraction that were diffusion
time-independent. Notably, CEXI accurately estimated the exchange time for
low to moderate permeability levels previously reported in other studies (𝜅 <
25 𝜇m∕s). However, in highly permeable substrates (𝜅 = 50 𝜇m∕s), the esti-
mated parameters were less stable, particularly the diffusion coefficients.
Conclusion: This study highlights the importance of modeling the exchange
time to accurately quantify microstructure properties in permeable cellular sub-
strates. Future studies should evaluate CEXI in clinical applications such as
lymph nodes, investigate exchange time as a potential biomarker of tumor sever-
ity, and develop more appropriate tissue models that account for anisotropic
diffusion and highly permeable membranes.
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1 INTRODUCTION

Over the last decades, diffusion-weighted magnetic
resonance imaging (DW-MRI) has been used to charac-
terize tissue microstructure, particularly with biophysical
models of healthy white matter,1-7 healthy gray matter8-10

and tumors.11-15 These models group the biological enti-
ties into compartments with similar contributions to
the diffusion signal and differ essentially by the number
of geometric features, compartments, and the targeted
microstructure features.

One of the challenges of biophysical models is their
specificity to one particular tissue, which requires rethink-
ing the optimal model and assumptions that best cap-
ture its features. For example, blood displacement inside
the tumor vessels16-19 induces anisotropic diffusion, which
usually is not accounted for in the healthy white matter.

An important assumption of most biophysical mod-
els is negligible water exchange between compartments,
which might not be valid in unmyelinated tissue,9,20,21 urg-
ing for specific models that include the water exchange
between the intracellular and extracellular compartments,
for example to model gray matter9,10 or cancerous tis-
sue.11,22-24 The biophysical models that neglect the effect
of water exchange on the signal employ acquisition
sequences with short diffusion time,8,11,16,25 while the ones
that account for exchange either use non-Pulsed Gradient
Spin Echo (PGSE) gradient sequences13,14,24,26 or are based
on the Kärger model of exchange.9,10,12,27,28

During the development of complex tissue models,
their evaluation and validation in controlled environ-
ments helps identifying the best microstructure model
and designing the optimal DW-MRI acquisition proto-
col. In this context, Monte-Carlo Diffusion Simulations
(MCDS)29-32 can be used to simulate the diffusion sig-
nals in complex substrates with known ground truth and
without assuming an analytical equation, thus eliminat-
ing the comparison bias across different models. Moreover,
realistic substrates29,33-36 can be designed to study vari-
ous microstructure parameters, including the membrane
permeability,30 in a controlled manner.

In this work, the performances of compartment mod-
els excluding and including water exchange between
compartments were studied employing MCDS in packed
spheres with finite membrane permeability. More specif-
ically, the work focused on the influence of nonneg-
ligible membrane permeability on microstructure esti-
mation (i.e., the cell sizes, extracellular and intracel-
lular diffusion coefficients and volume fractions) with
a two-compartment model neglecting exchange terms
(Impermeable Ball & Sphere37) and a newly proposed Cel-
lular Exchange Imaging (CEXI) model that accounts for
exchange (Permeable Ball & Sphere).

2 METHODS

Employing MCDS in numerical substrates with water
exchange across cell membranes, we investigated the
effects of permeability on microstructure estimation by
compartment-based models. Section 2.1 details the simu-
lation framework, the choice of the simulation parameters,
and the numerical substrate. Next, Section 2.2 compares
the diffusion regime of impermeable and permeable tis-
sue. Finally, Section 2.3 describes the two-compartment
models evaluated in this simulation framework.

2.1 Monte-Carlo simulations

2.1.1 Simulations in permeable substrates

To simulate diffusion in permeable tissue,30,38 we extended
the MCDC Simulator.29 In nonexchanging media, the
diffusion process inside different biological structures is
assumed to contribute independently to the DW-MRI sig-
nal. Consequently, the intracellular and extracellular sig-
nals are usually generated individually and summed to
produce the total signal. In permeable substrates, some
particles cross the membrane, which requires implement-
ing multiple-diffusivity features to generate intracellular
and extracellular signals simultaneously (see Data S1 for
derivations). To minimize the boundary effects, we used
a large voxel size and periodic boundary conditions when
a particle crossed the voxel boundary.29 After simulating
the particles’ trajectories, we generated the DW-MRI sig-
nals with a Graphics Processing Unit implementation for
a PGSE sequence.

2.1.2 Lymph nodes imaging

The application that motivates this study is the discrimi-
nation of healthy from cancerous lymph nodes using non-
invasive imaging. Several studies investigated the potential
of dMRI to replace invasive procedures such as biopsy for
lymph node metastases diagnosis, particularly the appar-
ent diffusion coefficient (ADC) in breast,39,40 neck,41 and
colorectal42 cancer, or more advanced biophysical models
for benign and malignant tumor discrimination in lymph
nodes.17

Figure 1 shows a Hematoxylin & Eosin (HE) stained
slide of a colorectal cancer lymph node metastasis scanned
using a 3DHistech Pannoramic P1000 digital slide scan-
ner (at 20×). This tissue was fixed in 4% formalin and
embedded in paraffin, following standard diagnostic pro-
tocols. Healthy lymph nodes (Figure 1, left magnification)
are homogeneous tissues composed of round lymphocytes
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GARDIER et al. 1627

F I G U R E 1 Lymph node histology and numerical substrate. Image of a Hematoxylin & Eosin stained slide of a colorectal cancer lymph
node metastasis and a numerical substrate (Table 1) with a mean radius R ≃ 3𝜇m. The histogram shows the radii distribution of the cells in
the substrates. The solid red and dashed lines show the mean and the standard deviation of R, respectively.

that are known to be permeable.43-45 We measured using
QuPath46 a cell area of 56 ± 24𝜇m2, corresponding to a
radius from 3 to 5𝜇m in perfectly spherical cells, similar
to previously reported values.17 In tumors (Figure 1, right
magnification), the tissue is more heterogeneous with the
presence of blood vessels and conjunctive tissue, with
mean cell area of 225 ± 102𝜇m2, corresponding to cell radii
from 6 to 10 𝜇m.

The present work focuses on membrane permeabil-
ity in spherical cells to capture the effect of exchange on
microstructure estimation. Our substrates are isotropic,
but a previous study17 showed that the biophysical model
that accounts for anisotropic diffusion had better results in
lymph node discrimination. However, we decided to focus
on the effect of exchange, and future work will combine
exchange and anisotropic diffusion to better capture the
complexity of lymph nodes’ microstructure.

2.1.3 Numerical substrates design

In addition to the rules of the particles’ dynamic, MCDS
required a numerical substrate into which the particles dif-
fuse. As motivated in Section 2.1.2, we focus on numerical
substrates made of packed spheres with finite membrane
permeability.

We settled the substrates as isotropic voxels of
side-length 100𝜇m, filled with randomly placed spheres.

These spheres had their radii normally distributed around
a mean radius Rs equal to {2; 3; 4; 5; 8}𝜇m with a standard
deviation of 1% of the radius. For all substrates, the intra-
cellular volume fraction (ICVF) reached 0.65, correspond-
ing to the value reported in malignant lymph nodes.17

Because the spheres in each substrate had different
sizes, the apparent mean cell radius was weighted by
the cell size distribution within the voxel. In the case of
small cells, the apparent mean radius tends to Rsmall =(
<R7

>

<R3
>

) 1
4 at long diffusion times while, in the narrow-pulse

approximation, the apparent mean radius becomes RNP =(
<R5

>

<R3
>

) 1
2 .10 Table 1 summarizes the structural properties

of the numerical substrates used in the experiments, and
Figure 1 shows illustrative examples of the substrate S2.

In addition to the structural properties, particles’ tra-
jectories depend on the biological properties of the sub-
strates, which are the intracellular Di,0 and extracellular
De,0 diffusion coefficients and the membrane permeabil-
ity 𝜅. We chose their ranges in the simulations based on
previously reported values for tumors47 (Table 1).

2.1.4 Sensitivity and reliability analysis
of MCDS in permeable substrates

The first experiment aimed to evaluate the reliability and
repeatability of the simulated signals with the substrates’
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1628 GARDIER et al.

T A B L E 1 Parameters of the Monte-Carlo diffusion simulations.

Substrate parameters

S1 S2 S3 S4 S5

Voxel side length (𝜇m) 100

ICVF 0.65

Rs (𝜇m) 2 3 4 5 8

Rmean (𝜇m) 1.9 3.0 4.0 5.0 8.1

Rsmall (𝜇m) 2.2 3.1 4.1 5.1 8.3

RNP (𝜇m) 2.1 3.1 4.0 5.1 8.2

Simulation parameters

De,0
(
𝝁m2∕ms

)
Di,0

(
𝝁m2∕ms

)
𝜿

(
𝝁m∕s

)
𝝆

(
part∕𝝁m3)

𝜹t(𝝁s)

1, 2 1, 2 0, 10, 25, 50 0.5 5

PGSE sequence parameters

𝚫(ms) 𝜹(ms) TE(ms) b
(
ms∕𝝁m2) N

12, 20, 30, 40 4.5 50 1, 2.5, 4, 5.5, 7 24

Notes: The experiments are detailed in Section 2. The voxel side length and the intracellular volume fraction (ICVF) are the same for all substrates. Rs is the

desired mean cell radius of the sphere populations, Rmean is the effective mean cell radius, Rsmall =
(
<R7

>

<R3
>

) 1
4 and RNP =

(
<R5

>

<R3
>

) 1
2 .

biological properties (i.e., the permeability 𝜅, the intracel-
lular Di,0 and the extracellular De,0 diffusion coefficients)
described in the Section 2.1.3. We performed this sensi-
tivity analysis with the substrate having a mean cell size
of 2𝜇m (Table 1, S1), and we fixed the maximal parti-
cle density to 𝜌 = 2𝜇m−3, that is, 2 millions of particles.
The membrane permeability 𝜅 ranged from 0 to 50𝜇m∕s,
while we set the intracellular Di,0 and extracellular De,0
diffusion coefficients to 1 or 2𝜇m2∕ms. For all combi-
nations of these parameters, we calculated with boot-
strapping the normalized mean square error (NMSEs) of
the DW-MRI signals generated with the PGSE sequence
(Table 1) in 24 uniformly distributed orientations on the
unit sphere.

2.2 From impermeable to permeable
tissue

2.2.1 Structural disorder in impermeable
substrates

The apparent intracellular/extracellular diffusivities
and kurtosis in impermeable tissue have distinct
time-dependency. In the intracellular space, the water
molecules are confined in the cells, and the apparent
intracellular diffusivity ADCin(t) tends to 0. Conversely,

the water molecules of the extracellular space encounter
obstacles but are free to diffuse. Therefore, the extracellu-
lar diffusivity ADCex(t) converges to a nonzero long-time
limit. Simultaneously, the kurtosis AKCex(t) converges to
zero, with a rate characterizing the mesoscopic disorder
of the tissue.48,49 In our substrates, the structural-disorder
theory predicts that the impermeable ADCex(t) and
AKCex(t) converge following ∝ t−1 (three-dimensional
diffusion within short-range disorder represented by
random spheres). Therefore, we fitted the equations
ADCex(t) = ADC∞ + AD∕t and AKCex(t) = AKC∞ + AK∕t
to the ADCex(t) and AKCex(t) calculated from the
diffusion propagator (estimated from the spins tra-
jectories in the media) for three substrates (Table 1
S1, S3, S5) and two extracellular diffusion coefficients
De,0 = {1, 2}𝜇m2∕ms. We chose those values according to
simulation experiments of previous studies.8,10,12,50,51

Because tracking the particles’ relative position in the
substrate is possible with MCDS, we independently cal-
culated the intracellular and extracellular diffusion coef-
ficients and kurtosis. To this end, we assigned a particle
to a compartment at initialization for the entire simu-
lation. In permeable substrates, the particles cross the
cell membranes and therefore, the intracellular and extra-
cellular water interact, especially for high permeability
values and long diffusion times. In this regime, interpret-
ing the model parameters, like the diffusivities, is more
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GARDIER et al. 1629

challenging since they are defined for water molecules
residing inside the same compartment during the experi-
mental time. Therefore, in the presence of exchange, we
focused on the time-dependency of the ADC(t) and the
AKC(t) (Section 2.2.2).

2.2.2 Kärger assumptions validity
in permeable substrates

The Kärger model of exchange is valid under two assump-
tions,27 under which water diffuses in the barrier-limited
regime. First, the diffusion inside each compartment is
Gaussian, meaning the diffusion time is long enough
for the particles to explore the compartment. This
implies a time-independent diffusion coefficient. The
second assumption links these characteristic times to
membrane permeability by requiring slow exchange
between the compartments, that is, the exchange time
must be longer than the characteristic times of the
compartments.

We determined the range of validity of the Kärger
model using a time-dependency analysis of the ADC(t)
and the AKC(t) of the same substrates as presented
in Section 2.2.1 (Table 1, S1, S3, S5) for different per-
meability values (𝜅 = {0, 10, 25, 50}𝜇m∕s), spanning the
parameter range considered in this work. From their
time-dependencies, we quantified the effect of per-
meability on the estimated ADC(t) and AKC(t) for
each experiment. Ultimately, we used these observa-
tions to discuss the validity of the model’s assumptions
(Section 4.2).

2.2.3 Diffusion regime in the presence
of exchange

In impermeable tissue, the tissue structure governs the dif-
fusion dynamics. In the presence of exchange, the tissue
structure and the exchange compete, producing different
effects on the signal.10 At a fixed diffusion encoding, that
is, b-value, the evolution of the signal with the diffusion
time is different whether the water exchange through the
membrane or the restriction due to structure dominates. If
the diffusion is barrier-limited, the Kärger model predicts
a decreasing signal with the diffusion time.27,33 Conversely,
the signal increases if the restriction dictates the diffusion
dynamics.8,52

To determine which effect dictates diffusion in our
experiments, we generated DW-MRI signals with the
PGSE sequence of Table 1 for the same parameters of the
previous experiment (Section 2.2.2).

Di(Δ, 𝛿,Rs) =
2

𝛿
2Di,s

(
Δ − 𝛿

3

)

⎡
⎢⎢⎢⎢⎢⎣

∞∑
m=1

𝛼
−4
m

𝛼
2
mR2

s − 2

⎡
⎢⎢⎢⎢⎢⎢⎣

2𝛿 −

2 + e−𝛼2
mDi,s(Δ−𝛿) − 2e−𝛼2

mDi,s𝛿

− 2e−𝛼2
mDi,sΔ + e−𝛼2

mDi,s(Δ+𝛿)

𝛼
2
mDi,s

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

. (1)

2.3 Compartmentalized models
of microstructure

From Section 2.2, we identified the different diffu-
sion regimes in our set of parameters. In this section,
we describe two models of tumor microstructure: one
designed for impermeable cellular tissue (Section 2.3.1)
and one for permeable tissue (Section 2.3.2).

2.3.1 Ball & Sphere diffusion: an
impermeable model of tumors

Under the assumption of impermeable membranes, the
extracellular and intracellular compartments were mod-
eled independently. Diffusion inside the compartments
was assumed to follow analytical equations that depended
on their geometry.37 We modeled the intracellular com-
partment as an impermeable sphere of radius Rs and
intrinsic diffusivity Di,s

52 having an apparent intracellular
diffusion coefficient given by Equation 1, where 𝛼m is the
mth root of (𝛼Rs) J 3

2
(s𝛼Rs) = J 5

2
(𝛼Rs) with Jn(x) the Bessel

function of the first kind, and extracellular diffusion with
Gaussian isotropic diffusion of diffusivity De. Their respec-
tive volume fractions weighted the contribution of each
compartment to the signal: SBALL&SPHERE = (1 − fi)e−bDe +
fie−bDi . This model had four parameters: the diffusion coef-
ficients Di,s, De, the cell size Rs and the intracellular volume
fraction fi.

2.3.2 CEXI: a permeable model
for spherical tumors

The model described in Section 2.3.1 is valid in imper-
meable substrates only. Conversely, our CEXI model is
a two-compartment model that includes exchange based
on the Kärger model27 between an intracellular com-
partment that models spherical cells and an extracellular
space. Similarly to the impermeable model, we modeled
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1630 GARDIER et al.

the cells with a spherical compartment of radius Rs and
intra-diffusivity Di,s.

We assumed Gaussian and isotropic diffusion in
the extracellular space with a diffusivity De. The water
exchange rates from the intracellular to extracellular com-
partments ki and from extracellular to intracellular ke sat-
isfied the spin conservation relation kifi = ke(1 − fi), where
fi is the intracellular volume fraction. In spherical cells,
the exchange rate ki and the membrane permeability 𝜅
are linked by the relation ki = (1 − fi)(3𝜅∕Rs).33 Within this
framework, the magnetization of the extracellular Me and
the intracellular Mi compartments follow the differential
equations28

{ dMe
dt
= −(q2De + ke)Me + kiMi,

dMi
dt
= keMe − (q2Di,C(t) + ki)Mi,

(2)

with the initial conditions Me|t=0 = (1 − fi) and Mi|t=0 = fi,
q2 was the wavenumber of the PGSE sequence and Di,C(t)
the time-dependent intracellular diffusivity. Ultimately,
the signal was the weighted sum of these magnetizations
SCEXI = (1 − fi)Me + fiMi. With this formulation, CEXI had
five parameters: the intracellular Di,s and extracellular De
diffusion coefficients, the membrane permeability 𝜅, the
intracellular signal fraction fi and the cell radius Rs.

Under Kärger assumptions, Equations (2) have an
analytical solution.9,12 However, the time-dependency of
the intracellular diffusivity in large cells might invali-
date this model. To guarantee the intracellular ADCin fol-
lows Equation (1) at the diffusion times, we integrated
Equations (2) for each diffusion time separately with a
constant Di,C(Δ) = Di(Δ). This approach allowed us to
consider the time dependency of intracellular diffusivity
empirically.

We acknowledge that the Kärger formulation is tech-
nically invalid in the case of time-dependent diffusion
in one compartment, and our approach constituted an
approximation similarly to previous studies.9,12,33 This
approximation was supported by the previous experiments
(Section 3.2, Figure 4), where we showed that the ADCex(t)
in impermeable tissue converged quickly to its long-time
limit to a value nearly independent of the cell size, con-
versely to the intracellular diffusivity, which converged
more slowly to its long-time limit.

2.3.3 Performance in permeable tissue

In this last experiment, we compared the performance of
the impermeable Ball & Sphere model to the CEXI model.
Because the numerical substrates of this work were made
of spheres only, we did not include three-compartment
models such as VERDICT16 nor gray matter models that
account for neurites.8-10

From the simulations described in Section 2.1, we
selected the subset having an extracellular diffusivity of
2𝜇m2∕ms. We generated the DW-MRI signals with the
PGSE sequence described in Table 1. From the noise-free
signals, we generated using the DIPY software library53 30
corrupted signals with Rician noise with a signal-to-noise
(SNR) ratio of 30 and 80.

We fitted the models for all Δ simultaneously and
accounted for the noise54 with the constrained least
squares implementation of the python optimization
library LEVMAR.55 We constrained the signal frac-
tions to sum up to 1. We imposed boundaries on
the value of the parameters to avoid unrealistic esti-
mations: R ∈ [0.1, 20]𝜇m, ICVF ∈ [0.1, 0.9], (Di, De) ∈
[0.01, 3]𝜇m2∕ms, and 𝜅 ∈ [0,∞[𝜇m∕s. We performed 10
optimizations with random initialization and selected the
estimation that minimized the cost function.

We compared the models based on their estimates of
the mean cell radius R, intracellular volume fraction ICVF
and extracellular De and intracellular Di diffusion coeffi-
cients. We calculated the ground truth values of the intra-
cellular volume fraction ICVF and the volume-weighted
mean cell radius R from the substrates (Table 1). In
Section 2.2, we showed that the apparent extracellular dif-
fusion coefficient ADCex(Δ) deviated significantly from
De,0 due to the obstacles encountered by the particles.
Therefore, we considered as ground truth the De calculated
from the propagator of the extracellular compartment at
the longest diffusion time in the impermeable substrates
(i.e., De = ADCex(t = Δmax, 𝜅 = 0)).

3 RESULTS

3.1 Influence of the substrate
properties and the simulation parameters
on the Monte-Carlo simulated DW-MRI
signals

Figure 2 shows the evolution of the bootstrapped NMSE
on the DW-MRI signals. For the given diffusion coef-
ficients (Figure 2A), the NMSE increased with b and,
at large b (b > 4ms∕𝜇m2), the error became also depen-
dent on Δ and 𝜅. At fixed (b = 2.5ms∕𝜇m2

,Δ = 40 ms)
(Figure 2B), the diffusion coefficients had a distinct effect
on the error. Indeed, the NMSE was dependent on De,0
(colors) while it seemed independent on Di,0 (symbols).
Figure 2C shows the decreasing rate of the NMSE with
the particle density used in the simulations. Even with
a particle density of 0.5𝜇m−3, the maximal error reached
with the largest b, the longest Δ and the most permeable
membrane remained under 1%with the chosen simulation
parameters.
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GARDIER et al. 1631

F I G U R E 2 Normalized mean squared error on the signal. Normalised mean squared error (NMSE) on the signal with the permeability
𝜅 from bootstrapping for all pairs of b and diffusion time Δ (A), for all diffusion coefficients Δ (B) and different particle density (C). (A) The
NMSE is shown for De,0 = 1𝜇m2∕ms and Di,0 = 2𝜇m2∕ms. The error increased with 𝜅 for all b - Δ pairs, and its range for different Δ
broadened as b increased. (B) The NMSE is shown for the pair (b = 2.5ms𝜇∕m2

,Δ = 40 ms), for different De,0 (color) and Di,0 (symbol). The
error increased with De,0 but seemed independent on Di,0. (C) The NMSE is plotted against the particle density used in the simulations for
different permeability levels (color). Simulations with a faster permeability had a larger NMSE for all particle densities. The

√
NMSE with

the chosen simulation parameters never exceeded 1%.

3.2 Mesoscopic disorder:
time-dependency of ADCex(t) and the
AKCex(t) in impermeable tissue

Figure 3 shows the time-dependency of the extra-cellular
diffusion coefficient ADCex(t) and kurtosis AKCex(t) of
the impermeable substrates S1, S3, and S5, and the fit-
ted parameters are summarized in Table 2. The rate of
convergence of the ADCex(t) depended on the cell size
(symbols). In contrast, the long-time limits (ADC∞ and
AKC∞ in Table 2) depended on the genuine extra-cellular
diffusion coefficient De,0 (colors; Figure 3A and Table 2,
D∞). Conversely, the AKCex(t) showed a convergence

rate that depended more on De,0 than the cell size
(Figure 3D).

Figure 3B–D shows the ADCex(t) and AKCex(t) against
t−1, respectively, and the MSE is reported in Table 2.

3.3 Kärger model: time-dependency
of ADC(t) and the AKC(t) in permeable
tissue

Figure 4 shows the evolution of extracellular ADCex(t) and
intracellular ADCin(t) diffusion coefficients of the imper-
meable substrates S1, S3, and S5 along each other (A)
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1632 GARDIER et al.

F I G U R E 3 Extracellular ADCex(t) and AKCex(t) time-dependency in impermeable substrates. Time-dependency of the ADCex(t) (A, B,
C) and the AKCex(t) (D, E) of the extracellular compartment of the substrate S1 (circle), S3 (diamond) and S5 (square) (Table 1) without
exchange calculated from the propagator, for different extracellular diffusion coefficient (color). (A) The ADCex was dependent on the
extracellular diffusion coefficient but independent of the cell size. (D) Conversely, the time-dependency of the AKCex strongly depended on
the extracellular diffusion coefficient and the cell size. (B, C) and E show the ADCex(t) and AKCex(t) against t−1 as predicted by the
structural-disorder theory,48,49 respectively. The white symbols show the fit of the corresponding function to the data. Because t−1 is decaying
function of t, we fitted the equation in the decaying phase of the ADCex(t) and AKCex(t). The black crosses in A and D show the first point of
the fitting.

T A B L E 2 Results of the mesoscopic disorder fit.

Simulations ADCex = ADC∞ + AD∕t AKCex = AKC∞ + AK∕t

R De,0 AD ADC∞ MSED AK AKC∞ MSEK

2 1 0.00012 0.67 0.0002 1.25 0.003 0.0012

2 2 0.00012 1.33 0.0004 0.49 0.008 0.0001

4 1 0.00027 0.67 0.0005 3.84 0.013 0.0002

4 2 0.00011 1.34 0.0007 0.72 0.005 0.0020

8 1 0.00107 0.68 0.0003 5.21 0.113 0.0040

8 2 0.00144 1.35 0.0004 6.17 0.029 0.0027

Notes: Parameters of the curves shown in Figure 3. The cell size R is in 𝜇m, the extracellular diffusion coefficient De,0 and the parameters ADC∞, MSED are
in 𝜇m2∕ms, the parameter AD is in 𝜇m2 and the parameter AK is in ms.

and their derivatives (B). As pointed out in Section 3.2,
the ADCex(t)’s converged quickly to the same long-time
limit. Conversely, the convergence rate of the intracellu-
lar ADCin(t)’s depended on the cell size of the substrates.

The difference in decaying rate was confirmed by a large
derivative of the intracellular diffusion coefficient for a
longer diffusion time, in comparison to the extracellular
ADCex(t) (Figure 4B).
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GARDIER et al. 1633

F I G U R E 4 Extracellular ADCex(t) and intracellular ADCin(t) time-dependency in impermeable substrates. (A) Time-dependency and
(B) derivatives of the extracellular ADCex(t) (diamond) and intracellular ADCin(t) (circle) of the substrate S1 (red), S3 (green) and S5 (blue)
(Table 1) without exchange calculated from the propagator. The intracellular Di,0 and extracellular De,0 diffusion coefficient were equal to
1𝜇m2∕ms. (A) The ADCex(t) converged faster than the ADCin(t) to its long-time limit. (B) Consequently, the rate of change 𝜕ADCex∕𝜕t
approached zero at short diffusion time, while the 𝜕ADCin∕𝜕t might not be negligible in our range of diffusion time.

F I G U R E 5 ADC(t) and ADK(t) time-dependency in permeable substrates. Time-dependency of the ADC(t) (A) and AKC(t) (B) in the
three substrates S1 (circle), S3(diamond) and S5 (square) (Table 1) for an increasing permeability (color). The intracellular Di,0 and
extracellular De,0 diffusion coefficient were equal to 1𝜇m2∕ms. (A) As the permeability increased, the ADC(t) converged faster to its
long-time limit. (B) Simultaneously, the AKC(t) reached its maximum value and, therefore, its decaying regime for a shorter diffusion time,
except for the impermeable substrates and the permeable cells with the biggest radii where AKC(t) always grew.

Figure 5 shows the results of the time-dependency
analysis of the ADC(t) and the AKC(t) in impermeable and
permeable substrates. In larger cells (symbols), the ADC(t)
converged to its long-time limit slowly (Figure 5A). This
long-time limit of the ADC(t) increased for an increasing
permeability (colors).

In impermeable substrates, the AKC(t) increased over
the range of simulated time (Figure 5B). As soon as
the membranes were permeable, the AKC(t) exhibited
a time dependency that could be split into two phases.
The AKC(t) increased to a peak value before decreas-
ing to its long-time limit. This peak’s location and
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1634 GARDIER et al.

intensity depended on the cell size and the membrane’s
permeability.

3.4 Diffusion regime: Barrier-limited
or structure-limited?

Figure 6 shows the evolution of the signal with the diffu-
sion time at a fixed b value. In the case of impermeable
membranes (red), the signal increased with the diffusion
time for all substrates and b values (symbols), as expected
from restriction. Each substrate had a different diffusion
regime as soon as the membranes were permeable. In
the smallest spheres S1 (Figure 6A), the signals of all b
decreased with the diffusion time for all non-zero perme-
ability values 𝜅 (colors), an exchange-dominated regime.
In contrast, the signals of the largest spheres S5 (Figure 6C)
increased for all b and 𝜅, a restriction-dominated regime.
Finally, the signal of the substrate S3 exhibited an inter-
mediate regime (Figure 6B). At moderate permeability
𝜅 < 25𝜇m∕s, the signal increased with the diffusion time,
while at the largest permeability, it increased at a short
diffusion time before decreasing (Figure 6 blue, purple
lines).

3.5 Microstructure model estimates
in permeable tissue

Figure 7 shows the substrate cell sizes R (A, E), intracel-
lular volume fractions ICVF (B, F), extracellular De (C, G)

and intracellular Di (D, H) diffusion coefficients estimated
by the impermeable Ball & Sphere and CEXI models, and
the CEXI estimate of the permeability (I). The markers
and the bars are the means and variances of the estimates,
respectively.

On the one hand, the impermeable Ball & Sphere
model (Figure 7A-D) estimated the cell size, intra-
cellular volume fraction and extracellular diffusion
coefficient of all impermeable substrates accurately,
except for the largest spheres (purple). At larger per-
meability, the impermeable Ball & Sphere model
overestimated the cell size and underestimated the
intracellular volume fraction more. Also, the estimated
extracellular diffusivity decreased and stabilized at a
smaller value. Finally, the impermeable Ball & Sphere
model could not consistently estimate the intracellular
diffusivity.

On the other hand, the CEXI model (Figure 7D–H)
estimates of the cell size were consistent for all perme-
ability values. CEXI slightly underestimated the small
cell sizes (Figure 7, red, yellow, green) and overesti-
mated the largest cell size (purple). Similarly, CEXI pro-
vided stable estimates of the intracellular volume frac-
tion and extracellular diffusion coefficient in the small
cell sizes from low to moderate permeability levels (𝜅 ≤
25𝜇m∕s). CEXI tended to overestimate the true extra-
cellular diffusion coefficient at increasing permeability,
and the results were not accurate for permeability 𝜅 ≥

25𝜇m∕s. Finally, CEXI provided stable estimates of the
intracellular diffusivity Di in the substrates with a cell size
R > 3𝜇m.

F I G U R E 6 Evolution of the DW-MRI signal with the diffusion time at fixed b-value in permeable substrates. The plots show the
evolution of the DW-MRI signal with the diffusion time at fixed b-value (symbols) for different permeability (color) in the substrates S1 (A),
S3 (B) and S5(C) (Table 1). (A) In substrate S1, the signal decayed with the diffusion time for all b if the membranes were permeable.
(C) Conversely, the signal increased for all b and permeability in the substrate S5. (B) In the substrate S3 having an intermediate cell size, the
signal increased at slow permeability (𝜅 ≤ 10𝜇m∕s) but reached a plateau and started decreasing at faster permeability.

 15222594, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29720 by B

cu L
ausanne, W

iley O
nline L

ibrary on [09/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GARDIER et al. 1635

F I G U R E 7 Model estimates. The plots show the estimates of the impermeable Ball & Sphere (A–D) and CEXI (E-I) models from 30
DW-MRI signals with an signal-to-noise ratio of 80. The estimates of the cell size (A, E), the intracellular volume fraction (B, F), the
extracellular (C, G) and intracellular (D, H) diffusion coefficients are plotted against the permeability. The CEXI permeability estimate is
plotted against the cell size (I). The color encodes the cell size (A-H) or the permeability (I), and the black lines show the ground truths of the
substrate parameters. The symbols and the bars show the estimates’ mean and variance, respectively.

In addition to these four parameters, CEXI estimated
the exchange time 𝜏ex and, therefore, the permeability
𝜅 between the intracellular and extracellular compart-
ments (Figure 7I). For all ground truth permeability val-
ues (color), the mean and the variance of the estimated
permeability 𝜅 increased with the cell size and the true
permeability. At moderate permeability 𝜅 ≤ 25𝜇ms and in
the small cell size R < 4𝜇m, CEXI estimated the perme-
ability accurately. For all parameters, a lower SNR led to
a larger variance but comparable results (See Figures 7
and Figure S1 for the results with an SNR of 80 and 30,
respectively).

4 DISCUSSION

4.1 Validation of the MCDS’s
in permeable tissue

This work investigated through realistic MCDS’s the
effect of membrane permeability 𝜅 on the estimation of
microstructure model parameters in a model of permeable
spheres. To perform simulations in permeable substrates,
we extended the open-source MCDC diffusion simulator29

following previous studies.30,38

4.1.1 Repeatability of the signal generation

The permeability 𝜅 was identified as the first important
substrate parameter that determined the choice of simula-
tion parameters, to guarantee the repeatability of the simu-
lation and a small NMSE, especially at a high b-value. The
increase in the NMSE with 𝜅 was faster at high b, and the
NMSE range for different diffusion timesΔ broadened as b
increased. This suggests that the particle density required
for the simulations was more dependent on b and 𝜅 thanΔ.
In parallel, the extracellular diffusion coefficient De,0 was
shown to play a major role in signal generation, which
confirmed that both intracellular and extracellular signals
must be simulated simultaneously. Despite the increase in
the NMSE with 𝜅 and b, the small error (

√
NMSE < 1%)

of the signals validated the choice of the simulation param-
eters (Table 1) of the experiments.

4.1.2 Is the simulated signal consistent?

Simultaneously, a time-dependency analysis of the appar-
ent diffusivity and kurtosis in impermeable substrates val-
idated the correct implementation of the simulations by
comparing to theoretically expected trends.
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1636 GARDIER et al.

In the intracellular space, the ADCin(t) of the particles
confined inside the cells converged to 0 at a rate dependent
on the cell size. In the extracellular space, the diffusion
coefficient ADCex(t) converged quickly to its long-time
limit both in small and large spheres. Interestingly, this
long-time limit depended on the packing density of the
substrate rather than the cell size. The convergence rate
of the ADCex(t) and the kurtosis ADKex(t) were consis-
tent with the power-law of t−1 predicted by structural
disorder in a 3D environment of spheres (short-range 3D
disorder)48,49 in the long time limit.

4.1.3 Diffusion regime in tissues
of different permeability and cell sizes

In permeable substrates, the physical interpretation of the
ADCin(t) and the ADCex(t) became ambiguous, and we
focused our attention on the total ADC(t) and AKC(t). At
larger permeability values, the mixing rate of the com-
partments increased, and the ADC(t) converged faster.
Similarly, the time dependency of the AKC(t) depended on
the permeability. As the permeability increased, the peak-
ing time of the AKC(t) shifted to shorter diffusion times,
coherently with previous work.25,56

Permeability added another degree of freedom to the
diffusion regime, which modulated the DW-MRI signal.
Following recent work,10 we showed that the effects of
exchange and restriction competed in the signal dynamic.
For the cell sizes investigated in this work, the extremes
had a clear but distinct diffusion regime. The water
exchange dominated the diffusion dynamic in small
spheres, while the restriction dominated in substrates
with large spheres. Interestingly, the intermediate cell size
exhibited a shift of diffusion dynamic at higher perme-
ability between exchange and structure. The permeability
at which this shift occurred (𝜅 = 25𝜇m∕s) corresponds
to the minimal permeability value for which the AKC(t)
reached its peak in the range of diffusion time of the PGSE
sequence, independently of the b-value. In other words,
the diffusion time at which the diffusion regime shifted
from restriction-dominated to exchange-dominated cor-
responded to the maximal value of the kurtosis AKC(t).
Therefore, it should be possible to determine the min-
imal diffusion time to enter the exchange-dominated
diffusion regime from kurtosis measurements at multi-
ple diffusion times. This provides a way to choose the
parameters of the PGSE sequence in experiments, espe-
cially the minimal diffusion time, to become sensitive
to the microstructure feature of most interest. How-
ever, we noted that, experimentally, the range of achiev-
able diffusion times might also depend on hardware
limitations.

4.2 Compartmentalized models
in permeable substrates of tumors

The last experiment compared the impermeable Ball &
Sphere model to our CEXI model, which included the
water exchange. Previous studies demonstrated that esti-
mating the substrate’s properties with compartmentalized
models is a challenging ill-posed problem. The low sen-
sitivity of these models to the compartment diffusivities
was highlighted in white matter13,57 and, more recently in
gray matter.8-10 Additionally, the size of the axons in white
matter49 or the cells in gray matter10,50,58 was shown to be
overestimated. This experiment showed the impact of per-
meability on the estimated model parameters, including
the mean cell radius R, extracellular De and intracellular
Di diffusion coefficients and intracellular volume fraction
ICVF.

4.2.1 Cell size and intracellular volume
fraction estimation

The impermeable Ball & Sphere model accurately esti-
mated the substrates parameters in the impermeable sub-
strates, except for Di. It overestimated and underestimated
the cell size R and the intracellular volume fraction ICVF
as permeability increased, respectively.10,50 This opposite
evolution indicated how the models developed for imper-
meable tissues compensated for water exchange. Because
the cell size limited the distance traveled by the particles in
impermeable cells, the increase in diffusion distance due
to permeability was compensated by either decreasing the
proportion of the intracellular signal via a smaller ICVF or
increasing the maximal distance via a larger R. This dete-
rioration of the estimates was more significant for smaller
cells, which is coherent with the observation that diffu-
sion enters the exchange-dominated regime at a shorter
diffusion time.

On the other hand, this effect was attenuated with
the CEXI model, thanks to the exchange time capturing
most of the exchange effect. At moderate permeability (𝜅 <
25𝜇m∕s), CEXI disentangled the effect of exchange and
restriction from the DW-MRI signals, providing more sta-
ble estimates of ICVF and R with the cell size and the
permeability than the impermeable Ball & Sphere model
over this range of permeability. When diffusion was dom-
inated by exchange, i.e. in the small cells R < 5𝜇m, the
mean cell size and the intracellular volume fraction were
better estimated. When diffusion was not dominated by
the exchange yet (R > 5𝜇m), the ADC(t) was strongly
time-dependent, and the CEXI model assumptions were
not valid. Consequently, the intracellular volume fraction
estimates were less stable as a function of permeability.
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GARDIER et al. 1637

4.2.2 Sensitivity to the compartment
diffusivity variations

The compartment diffusivities were arguably the most dif-
ficult parameters to estimate due to the degeneracy of
the solution6,57 and the low sensitivity of the models to
the intracellular diffusion coefficient.13 In white matter,
the intracellular diffusion coefficient was often consid-
ered faster than the extracellular diffusion coefficient.59-61

Still, recent studies in gray matter suggested contradictory
conclusions on which compartment had the fastest dif-
fusivity (De > Di in ex vivo10 or De < Di in in vivo9). In
our experiments, the impermeable model highlighted this
degeneracy of the solution through unstable or estimates
of the diffusivities.

Conversely, the CEXI model showed sensitivity to De
and Di changes with a limited impact on the estimates
R and ICVF, supporting that the contribution of each
compartment to the total signal could be disentangled by
including an exchange parameter in the model. At mod-
erate permeability (𝜅 ≤ 25𝜇m∕s) and in the larger spheres
(R > 3𝜇m), CEXI was sensitive to the variations of the
intracellular diffusion coefficient. In the small spheres
(R < 3𝜇m), however, the cells were too small for CEXI to
be sensitive to Di. Indeed, diffusion inside the intracellular
compartment reached the Gaussian diffusion limit before
the shortest diffusion time, irrespective of the true Di.

4.2.3 Permeability estimate

In the previous section, we identified exchange-dominated
and restriction-dominated regimes. We determined that
the transition between those regimes occurred for the sub-
strates of cell size around 4–5 𝜇m. In smaller cells, the
exchange dominates; therefore, we should be sensitive to
membrane permeability. The accurate estimation of the
permeability with CEXI in this range of cell sizes con-
firmed this observation. At moderate permeability (𝜅 ≤
25𝜇m∕s), CEXI estimated the permeability accurately with
a small variance. The best estimates were obtained for sub-
strates in the transition regime, that is, cells of size 4–5 𝜇m.
In larger cells, the estimates’ variance was too large to be
reliable.

4.3 Recommendations

In Sections 4.1 and 4.2, we showed the importance of prob-
ing tissue in the correct diffusion time frame. In permeable
tissue, diffusion translates from a restriction-dominated
to an exchange-dominated regime at a long enough diffu-
sion time. To find a good range of diffusion times for the

tissue under consideration, a preliminary time-
dependency analysis of the apparent diffusion coeffi-
cient ADC(t) and kurtosis AKC(t) might be insightful.
Indeed, we showed that diffusion moves from the
restriction-dominated to the exchange-dominated regime
at the peak value of the AKC(t). Our CEXI model pro-
vided more robust estimates in this exchange-dominated
regime than the impermeable Ball & Sphere model in
permeable substrates. In the largest cells or at high per-
meability values, estimation remained challenging even
with CEXI. In the first case, diffusion was dominated
by structure and not exchange. In the second case, the
exchange was too fast. This finding suggested that future
models should be developed by generalizing the assump-
tions behind the Kärger model to accurately estimate the
microstructure parameters in highly permeable tissue.
These observations show that the PGSE sequence is suit-
able for a specific exchange time. Alternative sequences,
such as double-diffusion encoding62,63 or stimulated echo
sequence,12 might be better adapted for tissue with a
longer exchange time. On the other hand, oscillatory gra-
dient spin echo sequence11 showed promising results in
tissue with shorter exchange time.

4.4 Toward lymph nodes imaging

Based on previous conclusions and histology data, we
could design a protocol for real DW-MRI data acquisi-
tions on lymph nodes. The lymphocyte radius is around
3-5 𝜇m, so the molecular diffusion in the lymphocytes
should already be in the exchange regime at a diffusion
time of about 30 ms We could determine the lymphocyte
permeability by comparing acquisitions to the simula-
tions. In the example of malignant lymph nodes shown
in Figure 1, the cells are bigger with a radius around 6-10
𝜇m. Hence, diffusion will be in the restriction-dominated
regime for a diffusion time under 30 ms. We plan to
acquire data with a longer diffusion time until we reach
the exchange-dominated regime. We expect this thresh-
old diffusion time to be correlated with cancerous tissue.
Future work will combine membrane permeability and
anisotropic diffusion to capture better the complexity of
lymph node microstructure17 and, consequently, deter-
mine if a model with more compartments is needed.28

5 CONCLUSION

This work showed, using simulations in numerical sub-
strates of packed spheres, that the water exchange
between the intracellular and extracellular spaces can-
not be neglected in permeable tissues when diffusion is
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1638 GARDIER et al.

in the exchange-dominated regime. The time-dependency
of the kurtosis and the signal could be used to iden-
tify the dominating diffusion regime and, ultimately, the
most relevant biophysical model and the experimental
parameters of the imaging protocol best suited to esti-
mate its parameters. Additionally, the inherent bias in
the estimates of the compartmentalized models for imper-
meable tissue was amplified in permeable tissue, even
for very low permeability values. As an alternative, a
two-compartment model of permeable tumors consider-
ing the water exchange between spherical cells and the
extracellular space was evaluated, allowing us to simulta-
neously estimate the exchange time and cell size. Despite
the improved performance compared to the impermeable
model in the regime from low to moderate permeability
levels, some limitations were found in highly permeable
substrates, suggesting the need for a more general model of
permeable tissue that accounts for the non-Gaussian dif-
fusion in the compartments and the time-dependency of
the diffusion coefficients.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.
Figure S1. BALL&Sphere impermeable - Signal fitting.
The plots show the fitting of the BALL&Sphere model to
the simulated signals with the diffusion time for different
b (symbols), permeability (color) and cell size (columns).
Figure S2. CEXI - Signal fitting. The plots show the fitting
of the CEXI model to the simulated signals with the dif-
fusion time for different b (symbols), permeability (color)
and cell size (columns).
Figure S3. Model estimates. The plots show the estimates
of the Ball & Sphere (A-D) and CEXI (E-H) models from
30 DW-MRI signals with a SNR of 30.
Figure S4. BIC of model estimates. BIC of the imperme-
able Ball & Sphere model and CEXI for with increasing
permeability, at different SNR.
Figure S5. Ball & Sphere estimates - Low ICVF - Noiseless.
The plots show the estimates of the Ball & Sphere model in
substrates with an ICVF of 0.2 from on noiseless signals.
Figure S6. Ball & Sphere estimates - Low ICVF - Noisy.
The plots show the estimates of the Ball & Sphere model
in substrates with an ICVF of 0.2 from 30 DW-MRI signals
with a SNR of 30.
Figure S7. CEXI estimates - Low ICVF - Noiseless. The
plots show the estimates of the CEXI model in substrates
with an ICVF of 0.2 from on noiseless signals.
Figure S8. CEXI estimates - Low ICVF - Noisy. The plots
show the estimates of the CEXI model in substrates with
an ICVF of 0.2 from 30 DW-MRI signals with a SNR of 30.
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