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The mammalian mitochondrial genome (mtDNA) is multicopy and its copy number 
(mtCN) varies widely across tissues, in development and in disease. Here, we system-
atically catalog this variation by assaying mtCN in 52 human tissues across 952 donors 
(10,499 samples from the Genotype- Tissue Expression project) and 20 murine tissues 
using qPCR, capturing 50-  and 200- fold variation, respectively. We also estimate per 
cell mtCN across 173 human cell lines from the Cancer Cell Line Encyclopedia using 
whole- genome sequencing data and observe >50- fold variation. We then leverage the 
vast amount of genomics data available for these repositories to credential our resource 
and uncover mtDNA- related biology. Using already existing proteomics data, we show 
that variation in mtCN can be predicted by variation in TFAM, histone, and mito-
chondrial ribosome protein abundance. We also integrate mtCN estimates with the 
CRISPR gene dependency measurements to find that cell lines with high mtCN are 
resistant to loss of GPX4, a glutathione phospholipid hydroperoxidase. Our resource 
captures variation in mtCN across mammalian tissues and should be broadly useful to 
the research community.

mtDNA | TFAM | histone | mitochondrial ribosome | GPX4

The mammalian mitochondrial genome (mtDNA) is polyploid, unlike the nuclear genome 
which is normally present in two copies in all mononucleated somatic cells. The mtDNA 
copy number (mtCN) varies >1,000- fold across cell types, ranging from ~100 in blood, to 
~7,000 in heart (1), and over 100,000 in murine unfertilized eggs (2). The extent of mtCN 
variation, however, remains unknown as measurements have been limited to only a few tissues 
across isolated studies. Broader catalogs of mtCN could serve as valuable resources for under-
standing mtDNA biology, its age- associated decline, and contributions to disease.

Here, we catalog mtCN in a wide range of human and murine tissues and cell lines for 
which vast amounts of other multiomic measurements are already available. We illustrate 
how mtCN can be integrated with these datasets to recover both known and new biology.

Results and Discussion

We determined absolute mtCN per diploid nuclear genome by qPCR in 10,449 human 
donor- tissue pairs, representing 52 tissues across 952 donors from the Genotype- Tissue 
Expression (GTEx) project. We observed ~50- fold variation in median mtCN across 
tissues and >200- fold interindividual variation in mtCN within a tissue (Fig. 1A and 
Datasets S1–S4). The latter could arise from differences in genetic background, age, disease, 
and technical factors such as sampling heterogeneity. Our relative ranks match published 
estimates, for example, 11 human tissues common to our study and Wachsmuth et al. (3) 
have concordant relative rank order by mtCN.

Next, we measured relative mtCN in 20 tissues of the commonly used C57BL/6J mouse 
strain by qPCR. We observed ~200- fold variation in mtCN across tissues (Fig. 1B and 
Datasets S1–S4). In tissues where we measured mtCN in both species, the relative order 
of tissues ranked by mtCN in human vs. mouse is highly concordant (Fig. 1C), and as 
expected, mitochondria- rich tissues such as the heart, muscle, and liver have higher mtCN 
relative to other tissues. Heart, muscle, liver, kidney, and spleen mtCN also previously 
showed descending order in mice (4).

We also calculated mtCN in 173 human cancer cell lines across 20 lineages from the 
Cancer Cell Line Encyclopedia (CCLE) using whole- genome sequencing coverage (5) of 
the mitochondrial versus nuclear genome (Fig. 2A and Datasets S1–S4). MtCN varies up 
to 54- fold across all cell lines and up to 23- fold within a lineage (ovary).

We leveraged the joint availability of our mtCN estimates and published tandem mass 
tag (TMT) proteomics in CCLE (6) to identify proteins whose abundance can explain 
variation in mtCN. We transformed our mtCN estimates and the TMT data for each of 
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the 5,153 proteins detected in all 173 CCLE cell lines into per-
centile ranks (PRs) and performed stepwise linear regression with-
out manual preselection of any features, adding parameters until 
their coefficient’s P value exceeded 0.00001 (SI Appendix, Extended 
Methods). This yielded a three- parameter model: PR(mtCN) = 
0.49*PR(TFAM) − 0.43*PR(HIST1H2BA) + 0.32*PR(MRPS27) 
+ 0.31 (Fig. 2B).

The key takeaway from this linear regression is that the abun-
dance of TFAM, histone, and mitochondrial ribosomal protein 
are predictive of mtCN. The relationship with TFAM is encour-
aging and well- founded in known biology: This factor is a mito-
chondrial HMG- box protein that packages mtDNA, is key for 
its replication, and is known to be limiting for mtCN (7). The 
inverse relationship with a histone protein makes biological sense 
as we know that per cell mtCN is highly correlated to cell size (8) 
but histone concentration anticorrelates with cell size (9). The 
protein from the small subunit of the mitochondrial ribosome 
could be predictive of mtCN because more mtDNA could lead 
to higher mt- rRNA expression, which stabilizes the mitochondrial 
ribosome and limits the degradation of its protein subunits (10).

Although we trained our model on cancer cell lines, it gener-
alizes in vivo and explains some of the variation in mtCN across 
human and murine tissues in Fig. 1. In the subset of 94 
donor- tissue pairs in GTEx for which mtCN and proteomic meas-
urements of TFAM, HIST1H2BA, and MRPS27 are available 
(11), our model’s predictions are significantly correlated with the 
observed mtCN percentile (Spearman ρ = 0.46, P = 0.03; Fig. 2 

C, Left). We also applied our model to predict mtCN percentiles 
of murine tissues using published SILAC proteomics (12). 
Although HIST1H2BA and MRPS27 were not captured and 
hence replaced in the model with representative and highly cor-
related family members (HIST1H2BM and MRPS23), the model 
still robustly predicted mtCN percentiles that were highly con-
cordant with our measured estimates (Spearman ρ = 0.87,  
P = 1e- 6; Fig. 2 C, Right).

We also correlated our mtCN estimates with genome- wide 
CRISPR dependency Chronos scores (higher scores indicate 
tolerance to gene knockout) across CCLE for each of 17,928 
gene knockouts (13). We found that high mtCN correlated 
most strongly with tolerance to loss of GPX4 (rank #1, Fig. 2D 
and Datasets S1–S4). This correlation is observed across all 139 
cell lines with joint mtCN and gene dependency data, is par-
ticularly strong in the hematopoietic/lymphoid lineage, and is 
also preserved in the lung lineage, for which joint data were 
available for the most cell lines (Fig. 2E). Consistent with 
GPX4 being a selenoprotein and an essential output of seleno-
cysteine metabolism (14), “Selenocysteine Synthesis” scored as 
the most significant pathway in enrichment analysis of the top 
100 genes whose loss is tolerated in cells with high mtCN 
(Datasets S1–S4). GPX4 is a mitochondrial and cytosolic glu-
tathione phospholipid hydroperoxidase commonly linked to 
protection against lipid peroxidation and ferroptosis. We pre-
viously showed that GPX4 loss impairs cell fitness in the face 
of mtDNA depletion (15).

A

B C

Fig. 1.   MtDNA copy number variation across human and murine tissues. (A) Absolute mtDNA copy number (mtCN) per diploid nuclear genome measured by qPCR 
in 10,449 human donor- tissue pairs from GTEx. (B) mtCN measured by qPCR in 20 murine tissues and normalized to the tissue with the lowest mtCN. Error bars 
represent SE from biological replicates (n = 3 kidney, n = 4 all other tissues). (C) Scatter plot of human and murine mtCNs for tissues common across “A” and “B.”
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Currently, the mechanisms underlying variation in mtCN 
across organs, why mtCN declines in aging, and how it contributes 
to disease is unknown. Integrating our catalogs of mtCN with 
other multiomic measurements and chemical- genetic screens may 
provide insight into these important questions.

Methods

Human and murine mtCNs were determined by qPCR using the ratio of a mito-
chondrial vs nuclear DNA amplicon. Mean mtCN for CCLE cell lines was calculated 
from whole- genome sequencing (5) as (mitochondrial genome coverage) × 2/
(nuclear genome coverage). Stepwise linear regression was performed using 
mtCN percentile ranks (dependent variable) and percentile rank- transformed 
levels of all 5,153 proteins detected across all 173 cell lines (6) (independent 
variables). Coefficients were added until their P value > 0.00001, yielding 
a model with three proteins (F- statistic = 44.85, 170 degrees of freedom,  
P = 2.2e- 16). To predict mtCN percentiles in human and murine tissues using this 

model, published TMT (11) and SILAC proteomics (12) were used, respectively. 
See SI Appendix for detailed methods.

Data, Materials, and Software Availability. Data plotted in the figures is in 
Datasets S1–S4. Code for the stepwise linear regression is deposited here: https://
github.com/MoothaLab/2024_mtCN_stepwise_regression (16). All other data 
are included in the manuscript and/or supporting information.
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Fig. 2.   MtDNA copy number analysis across cancer 
cell lines integrated with protein expression and 
gene dependency scores. (A) mtCN calculated from 
whole- genome sequencing coverage in 173 cell 
lines from the CCLE. All estimates are divided by that 
of the cell line with the lowest mtCN. (B) Scatter plot 
of mtCN calculated in A (converted to percentile) 
vs. mtCN percentiles predicted by a stepwise 
linear regression model. (C) MtCN percentiles were 
predicted in all 21 human and 19 murine tissues for 
which protein levels were available. Scatter plots 
of the measured mtCN from Fig.  1 (converted to 
percentile) vs. mtCN percentiles predicted by the 
stepwise linear regression model in (B). Error bars 
represent SD around the mean mtCN percentile 
across all donors for each tissue. (D) Spearman 
correlation between mtCN and Chronos scores of 
17,928 gene knockouts across all 139 CCLE cell lines 
with joint data. (E) Scatter plots of GPX4 Chronos 
score vs. mtCN rank across lineages and within the 
two lineages with a significant correlation.
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