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Summary 

 

In view of the constant environmental assaults that the skin must endure, the delicate balance of an 

eloquent sequence of epidermal gene expression and repression, that is required for appropriate 

differentiation and proliferation of keratinocytes, might easily become derailed in the absence of 

robust stabilizing mechanisms. The presence of a local neuroendocrine system is thereby important to 

coordinate a response towards irritations. In fact, the expression of several neurohormones, 

neurotransmitters, and neuropeptides, including pro-opiomelanocortin derivatives, such as β-

endorphin and Met5
-Enkephalin has been shown in skin, as well as expression of the -opioid 

receptor (DOR). However, there is currently a lack of understanding of the molecular mechanisms by 

which their signalling modulates keratinocyte function. 

 

The present work demonstrates that DOR signalling specifically activates the ERK 1/2 MAPK 

pathway in human keratinocyte cell lines. This activation inhibits cell proliferation, resulting in 

decreased epidermal thickness in an organotypic skin model. Furthermore, DOR expression markedly 

delays induction of keratin intermediate filament Keratin 10 (KRT 10) and KRT 1 during in vitro 

differentiation, and abolishes the induction of KRT 10 in the organotypic skin model. This is 

accompanied by deregulation of involucrin (IVL), loricrin (LOR), and filaggrin (FLG), illustrated by a 

markedly reduced induction of their expression upon initiation of differentiation in vitro. 

Additionally, POU2F3 was identified as a transcription factor mediating the DOR induced regulation 

of keratinocyte differentiation related genes. It was revealed that DOR-mediated ERK-dependent 

downregulation of this factor affects key aspects of keratinocyte function.  

 

However, it is evident that additional triggers influence the functionality of the DOR itself. Calcium at 

concentrations above 0.1 mM and cell-cell contact both enhance the presence of receptor molecules on 

the keratinocytes cell surface. Keratinocytes with internalized receptor do not respond to DOR ligands 

in the same way as keratinocytes with a functional membrane localized receptor. 



Summary/Résumé  

10 

This work suggests that upon specific extrinsic or intrinsic impulses, keratinocytes are able to respond 

via the neuro-epidermal opioidergic system. This response must be spatially and temporarily 

controlled in order to avoid an imbalance of epidermal homeostasis and delayed wound healing, as 

observed in the DOR knock-out mouse model of Bigliardi-Qi et al., 2006. Understanding this highly 

complex process substantiates the development of better treatments for pathological skin conditions. 

Complementing previous studies in DOR-deficient mice, these data suggest that DOR activation in 

human keratinocytes significantly influences epidermal morphogenesis and homeostasis, and might 

have a major impact during the wound healing process.  
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Résumé 

 

Au regard des agressions environnementales constantes que la peau doit endurer, l’équilibre fragile 

entre l’expression et la répression des gènes épidermiques, nécessaire à la différentiation et la 

prolifération des kératinocytes, pourrait facilement être perturbé en l’absence des mécanismes de 

stabilisation robustes. La présence d’un système neuroendocrinien local est donc importante afin de 

coordonner une réponse aux éventuelles irritations. En effet, l’expression de plusieurs neurohormones, 

des neurotransmetteurs et des neuropeptides, y compris des dérivés pro-opiomélanocortine comme la 

-endorphine et Met5-enképhaline, ainsi que l’expression du récepteur -opioïde (DOR) a été 

démontré dans la peau. Cependant, les mécanismes moléculaires par lesquels ils modulent la fonction 

des kératinocytes sont mal connus. 

Le présent travail démontre que la voie de signalisation DOR active spécifiquement la voie  ERK 1/2 

MAPK dans les lignées cellulaires de kératinocytes humains, inhibant la prolifération des cellules et 

entraîne une diminution de l’épaisseur épidermique dans un modèle organotypique de peau. De plus, 

l’expression de DOR retarde nettement l’induction de la kératine 10 (KRT 10) et la kératine 1 (KRT 1) 

dans une modèle 2D de différentiation in vitro, et supprime l’induction de KRT 10 dans un modèle 

organotypique de peau. Ceci est accompagné de la dérégulation de l’involucrine (IVL), la loricrine 

(LOR) et la filaggrin (FLG), résultant en une induction nettement réduite de leur expression lors de 

l’initiation de la différentiation in vitro.  

De plus, POU2F3 a été identifié comme un facteur de transcription régulant les gènes de 

différentiation des kératinocytes modulés par DOR. Il a été démontré que la régulation négative de 

POU2F3 via la voie DOR-ERK affecte les principaux aspects de la fonction des kératinocytes.  

Toutefois, il est évident que des facteurs supplémentaires influencent la fonctionnalité de la voie DOR 

elle-même. Le calcium et le contact cellule-cellule augmentent la quantité des récepteurs à la surface 

cellulaire des kératinocytes. Les kératinocytes dont les récepteurs sont internalisés ne répondent pas de 

la même manière que ceux possédant des récepteurs fonctionnels localisée à la membrane. 
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Ce travail suggère que lors de signaux intrinsèques ou extrinsèques spécifiques, les kératinocytes sont 

capable de répondre via le système opioïdergique neuro-epidermique. Cette réponse doit être 

spatialement et temporairement contrôlée afin d’éviter un déséquilibre de l’homéostasie épidermique 

et un retard de cicatrisation. La compréhension de ce processus très complexe pourrait permettre à 

terme le développement de meilleurs traitements des affections cutanées pathologiques. En 

complément des études précédentes sur des souris DOR-déficientes, ces données suggèrent que 

l’activation de DOR dans les kératinocytes humains influence la morphogenèse et l’homéostasie de 

l’épiderme, et pourrait jouer un rôle lors du processus de cicatrisation. 

 

 



 

 

 
 

CHAPTER I 

GENERAL 
INTRODUCTION 
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I.1. THE HUMAN SKIN 
 

I.1.1. The Structure and Function of the Human Skin 
 
The skin is the largest and one of the most diverse organs of the human body. It helps us 

sensing external effects while at the same time protecting us from them. Pathogens, 

mechanical, chemical, osmotic, and thermal assaults as well as ultraviolet (UV) radiation need 

to be controlled. Serving as a protective barrier keeping stressors out and essential body fluids 

in, the skin has its major function in the interface between the organism and the environment 

(Baroni et al., 2012; Elias, 2005; Menon and Kligman, 2009; Tsuruta et al., 2002; Valacchi et 

al., 2012). Additionally, skin carries out many biological synthetic processes, including 

formation of vitamin D under the influence of UVB radiation and synthesis of cytokines and 

growth factors. But skin is equally the target of a variety of hormones. Its complex structure 

and biological functions are associated with various ailments, including developmental 

defects, autoimmune disorders, allergies, and cancer (Gray's Anatomy - 39th Edition 2005). 

The skin is organized in three layers, the uppermost epidermis, underneath the dermis, 

followed by the hypodermis. Several specialized structures such as nerve fibres, free nerve 

endings, mechanoreceptors, hair follicles, sebaceous or sweat glands, blood and lymphatic 

vessels are embedded within, as illustrated in Figure 1. 

Figure 1 - Structure of human skin 

Adapted from Human Anatomy Models, IDS. Ltd 
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I.1.1.1. The Epidermis 
 
The epidermis is a continuously self-renewing, stratified squamous epithelium and the main 

cell type present are keratinocytes. They are equipped with numerous receptors receiving 

signals from cytokines like tumour necrosis factor alpha (TNF) (Coffey, Jr. et al., 1987; 

Pillai et al., 1989; Staiano-Coico et al., 1990; Trefzer et al., 1991), transforming growth factor 

beta (TGF) (Choi and Fuchs, 1990; Kane et al., 1991; Mansbridge and Hanawalt, 1988; 

Partridge et al., 1989; Pelton et al., 1989), interleukin 1 (IL-1) (Blanton et al., 1989; Hauser et 

al., 1986; Kupper et al., 1986), neuromediators like calcitonin-gene related peptide (CGRP) 

(Takahashi et al., 1993) or opioids (Bigliardi et al., 1998; Bigliardi-Qi et al., 1999; Cheng et 

al., 2008; Nissen and Kragballe, 1997; Schauer et al., 1994), and growth factors like 

epidermal growth factor (EGF) (Barrandon and Green, 1987; Green et al., 1987; Green and 

Couchman, 1985; Pittelkow et al., 1993; Rheinwald and Green, 1977). Keratinocytes undergo 

a highly reproducible terminal differentiation program resulting in the formation of four 

distinct layers, which provide the protective barrier, crucial for survival. The innermost layer 

is the basal layer, followed by the spinous, granular and the outermost cornified layer 

(McGrath et al., 2004). 

The result of keratinocyte differentiation is the expression of a unique array of keratin 

intermediate filament (IF) differentiation markers in each compartment (Figure 2), which may 

reflect the different structure and metabolic requirements of cells in each layer. Keratins 

represent the largest group of intermediate filament proteins and are differentially expressed 

as pairs of type I and type II intermediate filaments. They mainly function to maintain cell and 

tissue integrity (Koster and Roop, 2004a). 
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Figure 2 - Structure of the epidermis 

The epidermis is composed of several cell layers. Resting on the basement membrane is the stratum basale, 
consisting of proliferating, transient-amplifying cells. The basal layer stratifies to give rise to differentiated cell 
layers of the stratum spinosum, stratum granulosum and the stratum corneum. SPRs, small proline-rich proteins 
Adapted from (Fuchs and Raghavan, 2002). 
 

Epidermal growth and proliferation need to be balanced carefully and are regulated in time 

and space by the process of homeostasis. This process assures that the number of epidermal 

cells remains constant. Therefore, new cells generated by each cell division has to exactly 

compensate the number of cells lost by differentiation and desquamation (Blanpain and 

Fuchs, 2009). Basal cells attach to an underlying basement membrane that is rich in 

extracellular matrix (ECM) proteins, including collagen type IV, nidogen, perlecan, and large 

laminins like laminin 5, the main ECM ligand of the epidermal basement membrane. The 

attachment depends on two types of cell-junction adhesion complexes, hemidesmosomes and 

focal adhesions (Watt, 2002). Hemidesmosomes contain a transmembrane core, including 

64 integrins and type XVII collagen that connect intracellular to the keratin IF network, via 

the linker proteins plectin and dystonin (BP230). The integrins and collagen XVII connect to 

extracellular matrix proteins laminin-332 and laminin-331. Further, anchoring fibrils, mainly 

constituted of collagen VII, extend from the basal membrane zone into the dermis and by 

forming a loop, they reattach back onto the basal membrane. This structure provides the 

mechanical strength needed for the epidermal-dermal anchoring. On the other side, focal 
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adhesions contain 31 integrins, which connect to the actin and microtubule networks of the 

keratinocytes. During wound healing theses proteins regulate migration and attachment of the 

keratinocytes to the underlying extracellular matrix to enable the re-epithelialisation. Genetic 

alterations of hemidesmosomal components result in several types of blistering disorders of 

the skin (Christiano and Uitto, 1996; Nagy and McGrath, 2010) and are likely to be involved 

in the development and progression of certain cancers (Hashmi and Marinkovich, 2011). 

Basal cells as well as keratinocytes from the upper layers also have to adhere to one another. 

Intercellular adhesion is mediated by three types of intercellular junctions: the desmosome, 

adherens junctions, and tight junctions (Yuki et al., 2007). All types of intercellular junctions 

are essential for epithelial sheet formation and tissue integrity. During terminal differentiation, 

as the sheets migrate upwards towards the skin surface, epidermal cells must constantly 

change their intercellular interactions. On the other side, during wound healing, epidermal 

cells transiently downregulate intercellular adhesion, accompanied with an increase in cell 

proliferation to facilitate the re-epithelialisation process (Garrod et al., 2005; Thomason et al., 

2012). 

Adherens junctions are composed of a transmembrane core of E-cadherin, whose ectodomain 

binds Calcium (Ca2+) to mediate transcadherin interactions between neighbouring cells. 

Intracellular E-cadherin binds to -catenin and p120-catenin (p120ctn). These molecules then 

associate with an array of actin regulatory proteins, including Rho-GTPase and -catenin that 

in turn interacts with vasodilator-stimulated phosphoprotein (VASP), formins, ajuba, and -

actinin. This cascade of interacting regulatory proteins influences the actin-myosin network to 

coordinate cell-cell adhesion and migration (Perez-Moreno et al., 2003) (Figure 3A). 

Desmosome structures consist mainly of heterophilic interactions between transmembrane 

glycoproteins that belong to the desmocollin and desmoglein subfamily of cadherins. As 

illustrated in Figure 3B, the desmosomal cadherins desmocolin and desmoglein are connected 
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to intermediate filaments through a protein complex consisting of plakoglobin, desmoplakin 

and plakophilin (Schmidt and Koch, 2007). This connection provides a cohesive integrated 

mechanical framework across and within stacks of keratinocytes. Cell-cell junction-associated 

proteins connect structure and signalling molecules, so that intercellular junctions function to 

integrate a number of cellular processes, ranging from cytoskeletal dynamics to proliferation, 

transcription, and differentiation (Garrod, 1996; Muller et al., 2008). The cadherins may 

thereby act as a membrane trap for -catenin, p120ctn or plakoglobin, increasing their 

degradation at the membrane and augmenting the turnover of cytosolic molecules. This 

process prevents their nuclear translocation, therefore regulating the transcriptional activities 

of -catenin, p120ctn and plakoglobin (Daniel, 2007; Maher et al., 2009; McCrea et al., 2009; 

Zhurinsky et al., 2000). 

 
Figure 3 - Adherens junctions and desmosomes in the epidermis 

Simplified models of (A) an adherens junction and (B) a desmosome, which highlights some of the main protein 
- protein interactions found in these structures. Adherens junctions and desmosomes mediate cell - cell contact 
between all cells of the epidermis and are present in all metabolically active cell layers. The adherens junctions 
form a bridge between the actin cytoskeleton of neighbouring cells. By contrast, desmosomes associate with the 
keratin filament cytoskeleton of cells. p120ctn, adherens junction protein p120, p120-catenin; VASP, 
vasodilator-stimulated phosphoprotein. Adapted from (Fuchs and Raghavan, 2002). 
 

In addition to keratinocytes, the epidermis contains melanocytes, Langerhans cells and Merkel 

cells. Melanocytes produce melanin, the main natural pigment of the skin that is then 

transferred to keratinocytes. Melanin not only influences the colour of skin, but also protects 

the deeper layers from UV radiation (Bessou-Touya et al., 1998) and acts as scavenger of free 
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radicals (Menter et al., 1998). Langerhans cells are mobile dendritic, antigen presenting cells, 

present in all stratified epithelia. They become mature after contact with antigens (Romani et 

al., 2012). Finally, Merkel cells are pressure-detecting mechanoreceptors (Boulais and Misery, 

2008). 

 

I.1.1.2. The Dermis 
 
The dermis is a supportive and elastic connective tissue, principally constituted by fibroblasts 

and fibrous molecules that compose the ECM. Embedded into this matrix are blood vessels, 

nerves, lymphatics, and skin appendages. As the epidermis is non-vascularized, it receives its 

nutrients from the underlying dermis and this epithelial-mesenchymal interaction is essential 

for normal tissue maintenance and during wound healing. 

The dermis undergoes continuous turnover involving ECM production and degradation, 

synthesized and organized by fibroblasts. Fibroblasts are mesenchymal cells of varied origins 

and comprise a heterogeneous population of cells defined according to their location within 

the dermis. Two subpopulations of fibroblasts reside in the two distinct dermal layers: the 

papillary and reticular dermis (Sorrell and Caplan, 2004). Different populations of fibroblasts 

are associated with hair follicles but additional subpopulations of dermal fibroblasts might 

exist as well (Gharzi et al., 2003; Jahoda et al., 1991; Millar, 2002; Nolte et al., 2008; Sorrell 

and Caplan, 2009). 

An important characteristic of fibroblasts is that, through mechanical stress, inflammation or 

TGFβ1 stimulation, they acquire a new differentiation state and become myofibroblasts 

(Vaughan et al., 2000). Myofibroblasts, in response to monocyte/macrophage derived factors, 

produce a provisional wound matrix, that is enriched in foetal-like fibronectin and hyaluronan 

(Gailit and Clark, 1994; Juhlin, 1997; Singer and Clark, 1999). These cells also provide the 

motive force to contract the wound (Sappino et al., 1990). At present, it is well accepted that 
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the differentiation of fibroblasts into myofibroblasts represents a key event during skin wound 

repair (Li and Wang, 2011). 

 

I.1.1.3. The Hypodermis 
 
The hypodermis is a layer of loosely arranged connective tissue of variable thickness 

representing the deepest part of the skin. It is often composed of adipocytes, organised in 

lobules, separated by connective tissue. It plays an important role in thermoregulation, acts as 

shock absorber, and constitutes a store of metabolic energy (Hayward and Keatinge, 1981). 

 

I.1.2. Epidermal Homeostasis and Differentiation 
 
The physiological process that maintains a constant number of cells in self-renewing organs is 

called tissue homeostasis. Skin stem cells have an unlimited capacity to self-renew and are the 

main components of the epidermal homeostasis. They reside in different compartments, the 

bulge region of the hair follicle, sebaceous glands, and in the basal layer of interfollicular 

epidermis. One model for epidermal homeostasis suggests that stem cells from the basal layer 

divide asymmetrically with the mitotic spindle positioned parallel to the basement membrane, 

produce cells with either transient proliferative capacity and cells that remain stem cells 

(Figure 4) (Blanpain and Fuchs, 2009). Transient amplifying cells might then undergo a 

number of divisions residing in the basal layer, before they execute the program of terminal 

differentiation, migrate upwards, and slough from the surface, so that throughout life in 

humans the epidermis replenishes itself every four weeks (Fuchs, 2007; Potten, 1981). 

Another model proposed that stem cells in the basal layer give rise directly to differentiating 

cells without the step of a transient amplifying cell (Clayton et al., 2007). The cell division is 

hereby the crucial step. Oriented, asymmetric cell divisions control the polarity of the cells 

and the modification of cellular adhesion with its neighbouring cells, as well as attachment to 
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the underlying basement membrane (Lechler and Fuchs, 2005; Poulson and Lechler, 2010). 

 
Figure 4 - Stem Cell division during adult homeostasis in mouse tail skin. 

During epidermal homeostasis in the adult mouse tail skin, asymmetric cell divisions occur with the plane of 
division parallel to the basal membrane, such that only one daughter cell inherits a cell fate determinant, such as 
Numb, and remains a stem cell (step 1), whereas the other becomes transient amplifying, committed to terminal 
differentiation, and probably undergoes delamination to reach the spinous layers (step 2). Combined lineage 
tracing experiments and mathematical modelling suggest that epidermal tail homeostasis in mice does not require 
the existence of transient amplifying cells. Therefore, the second model proposes perpendicular cell division 
giving rise to a stem cell and a directly differentiating keratinocyte through lost of contact with the basement 
membrane (Blanpain and Fuchs, 2009; Clayton et al., 2007). Figure adapted from (Blanpain and Fuchs, 2009). 
 

Any imbalance between proliferation and differentiation might result in a thinning of the skin 

and loss of protection, in case of too little proliferation, whereas too much proliferation is a 

characteristic of hyperproliferative disorders like psoriasis and cancer (Bernard et al., 1985; 

Cangkrama et al., 2013; Demehri et al., 2009; Descargues et al., 2008; Ferone et al., 2012; 

Guttman-Yassky et al., 2009; Li et al., 2012; Mansbridge et al., 1984; Marinari et al., 2009; 

Neumüller and Knoblich, 2009). Additionally, during a wounding situation the epidermis 

must sense when to activate keratinocytes for proliferation and migration and to stop, once the 

wound is healed (Arwert et al., 2012; Chong et al., 2009; Florin et al., 2006; Frank et al., 

1996; Li et al., 2010; Natarajan et al., 2006; Thelu et al., 2002). 

When keratinocytes withdraw from the cell cycle and start to differentiate they exit the basal 

layer and switch off the expression of genes encoding the IF keratin 5 (KRT 5) and KRT 14. 

Entering the spinous layer, cells switch on the expression of KRT 10 and KRT 1 to form a 

more robust IF network. This change in keratin expression was discovered more than 30 years 



General introduction  Chapter I 

22 

ago and is widely accepted as most reliable indication that a keratinocyte has undergone a 

commitment to terminal differentiation (Fuchs and Green, 1980). 

As keratinocytes differentiate further, they start to express involucrin (IVL). This protein is 

one of the key players in early-cornified envelope assembly and its expression initiates in the 

upper spinous layer. Intrachain head-to-head and head-to-tail cross-linking of IVL and 

additional structure proteins is enabled by the activity of transglutaminase 1 (TG1). Active 

TG1 generates -glutamyl -lysine crosslinks, to create an indestructible proteinaceous 

scaffold along the entire inner cell membrane, to hold keratin microfibriles. As spinous cells 

further progress towards the granular layer, they start producing keratohyalin granules, packed 

with the histidine-rich protein profilaggrin or cystine-rich loricrin (LOR), which are then 

further processed to bundle keratin IFs, in order to generate keratin macrofibrillar cables. The 

process is accompanied by the synthesis of keratinisation-specific lipids, which are 

synthesised and accumulated in the trans-Golgi apparatus and bud off as cytoplasmic lamellar 

bodies. Continuing the differentiation processes, keratinocytes start to express proteins such 

as small proline-rich proteins (SPRs), late cornified envelope proteins, hornerin, repetin, and 

cornulin, resulting in a reinforcement of the cornified envelope structure. During the late steps 

of differentiation, ceramides from the lamellar bodies are attached to the cross-linked protein 

scaffold by ester-bond formation, and cellular organelles, including the nucleus, are destroyed. 

Once terminal differentiation is completed, keratinocytes exist as dead corneocytes that are 

sandwiched by lipid lamellae on the outside and filled with an indestructible fibrous mass of 

keratins that is encased by the cornified envelope (Kalinin et al., 2002). 

The morphological changes associated with differentiation and stratification have been 

studied extensively, but the molecular mechanisms that regulate these processes are only 

partially understood. Mouse genetic studies have identified multiple signalling pathways 

involved (Blanpain and Fuchs, 2009). These pathways include Notch, mitogen-activated 
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protein kinases (MAPK), and nuclear factor-B (NF-B). Transcription factors such as p63, 

the AP-1 and AP-2 family of proteins, the CCAAT/enhancer-binding protein (C/EBP), 

interferon regulatory factor 6 (IRF6), grainyhead-like 3 (GRHL3), Kruppel-like factor 4 

(KLF4), and peroxisome proliferator-activated receptor (PPAR) proteins have been shown to 

be involved as well (Dai and Segre, 2004). The interplay between these pathways is complex 

and new members are constantly joining the network.  

One of the key regulatory transcription factors in epidermis is p63, playing an important role 

during embryonic development, but is also, together with the Notch pathway, controlling the 

switch from the basal to the spinous cell type in adults. Gain- and loss-of-function studies 

have shown that p63 is required for initiation of the stratification process and to maintain the 

renewal potential of different epithelial stem cells (Candi et al., 2006; Koster et al., 2004; 

Koster and Roop, 2004b). The canonical Notch pathway is crucial during the early switch 

from basal to spinous cells (Rangarajan et al., 2001). The Notch signalling interferes with the 

expression of transcription factors like C/EBP, which in turn associate with the AP-2 family 

of transcription factors influencing the commitment to terminal differentiation (Wang et al., 

2008). An additional important signalling mechanism involved in the commitment to terminal 

differentiation is Ca2+ signalling. In the mature epidermis an increasing gradient of 

extracellular Ca2+ concentration is present from the basal to the cornified layer (Menon et al., 

1985; Menon et al., 1992). Studies have demonstrated that the increase in Ca2+ is required for 

keratinocyte terminal differentiation and active barrier formation (Elias et al., 2002; Yuspa et 

al., 1989). When terminal differentiation of keratinocytes is induced in vitro, other than by 

increasing extracellular Ca2+ concentration, an increase of intracellular Ca2+ is still observed. 

Signalling mechanisms activating the release of Ca2+ from intracellular stores are suggested to 

be involved in this process (Li et al., 1996; Sharpe et al., 1989; Sharpe et al., 1993) and one of 

the signalling pathways being induced by an increase of Ca2+ concentration in keratinocytes is 
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Notch (Okuyama et al., 2004).  

Another influential factor on epidermal stratification and differentiation is inhibitor of NF-B 

kinase-alpha (IKK). Acting independently of NF-B, IKK influences the commitment to 

terminal differentiation, as mice lacking this gene have a hyperplastic epidermis with 

proliferating cells not only in the basal but also in the spinous layer, while the granular and 

cornified layers are absent (Hu et al., 2001; Takeda et al., 1999). 

Additionally, it has been shown that retinoblastoma protein (Rb) deficient keratinocytes re-

enter the cell cycle after commitment to differentiation in vitro and mice deficient of 

epidermal Rb expression show an aberrant co-expression of KRT 5 and KRT 10. This 

indicates the importance of Rb in epidermal proliferation and differentiation (Balsitis et al., 

2003; Ruiz et al., 2004). 

Yet another important transcription factor, c-Myc, has been shown to be expressed in basal 

proliferating keratinocytes, indicating a function in the regulation of proliferation of basal 

cells (Bull et al., 2001). But, an increased expression in cultured keratinocytes in vitro 

promotes terminal differentiation and causes a reduction in growth (Gandarillas and Watt, 

1997). Myc induces differentiation and loss of cell polarization in a Miz1-dependent manner. 

Miz1 (Myc-interacting zinc finger protein 1; Zbtb17) is a zinc-finger transcription factor and 

has been shown to be bound and regulated by Myc (Peukert et al., 1997; Schneider et al., 

1997). Miz1 is involved in the upregulation of cell cycle inhibitor p21cip1 in response to UV 

irradiation (Herold et al., 2002) and is critical for its repression during skin tumorgenesis 

(Honnemann et al., 2012). In addition, regulation of cell adhesion is a major function of the 

Myc-Miz1 complex in skin and suggests that this may contribute to Myc-induced exit from 

the epidermal stem cell compartment towards a transient-amplifying and afterwards 

differentiating keratinocyte stage (Gebhardt et al., 2006). Miz1 binds and stimulates the 

expression of genes in the absence of Myc, therefore activation of Myc and its interaction 
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with Miz1 indirectly leads to the repression of these genes. 

 

 
Figure 5 – Transcription factors regulating keratinocyte differentiation 

A range of transcription factors (TFs) regulating stem cell maintenance in basal layer keratinocytes and 
differentiation of interfollicular epidermis are represented in this figure. Basal keratinocytes need to maintain a 
stem cell pool as well as proliferate in order to give rise to transient amplifying cells and initiate progression 
towards terminal differentiation. The balance between the two splice variants of p63, TAp63 and ΔNp63, 
determines the proliferative state of the keratinocyte. c-Myc drives stem cells towards transient amplifying cells 
and the Id family of proteins influences proliferation, by interfering with the DNA binding of transcription 
factors that lead cells towards differentiation. mOvol1 is required for the exit from proliferation and direct 
commitment to differentiation. POU domain TFs are involved in the repression of basal-specific keratins and 
activation of early and late stage differentiation genes. Klf4 has been shown to be involved in the expression of 
structural protein components of the cornified envelope, Dlx3 influences the transcription of terminal 
differentiation markers, and FOXN1 stimulates the expression of early differentiation markers but suppresses 
late stage markers. Adapted from (Dai and Segre, 2004). 
 

Furthermore, POU2F1 (Oct-1), POU3F1 (Tst-1/Oct-6/SCIP), and POU2F3 (Oct-11/Skn-

1/Epoc-1), members of the octamer-binding POU transcription factor family of proteins, have 

been shown to be involved in epidermal differentiation. Overexpression of POU2F3 in 

keratinocytes facilitates differentiation and ablation of both POU2F3 and POU3F1 in mice 

leads to ectopic expression of KRT 14 in spinous cells (Andersen et al., 1997b). 

Complexity is further added to the signalling network by the action of microRNAs (miRNAs) 

that fine-tune the signalling (Hildebrand et al., 2011; Yi et al., 2006) as well as by epigenetic 

mechanisms (Mulder et al., 2012). 
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I.1.3. The Neuro – Endocrine – Cutaneous Interaction 
 
Neurocutaneous interactions are capable of influencing a variety of physiological and 

pathophysiological functions including wound healing, cell growth, inflammation, immunity, 

and pruritus. All epidermal cells (keratinocytes, melanocytes, Langerhans cells, and Merkel 

cells) express sensor proteins and neuropeptides regulating the neuro-immuno-cutaneous 

system (Boulais and Misery, 2008). Skin cells secrete numerous neuropeptides such as 

opioids, substance P (SP), CGRP, vasoactive intestinal polypeptide (VIP), acetylcholine 

(ACh), catecholamines, endocannabinoids, endothelin (ET) or nerve growth factor (NGF) and 

are therefore capable of modulating, activating or inhibiting sensory neurons located within 

epidermal cells. Corresponding receptors can be found either directly on skin cells, on 

embedded immune cells or sensory and autonomic nerves, what makes it difficult to 

distinguish whether the receptors facilitate inter-keratinocyte signalling, immune cell-

keratinocyte interaction or keratinocyte-neuron signalling or all at once (Lumpkin and 

Caterina, 2007). 

Sensory nerves send many primary afferent fibres to all layers of the skin and build up a three-

dimensional network (Roosterman et al., 2006). They pass through the dermis and penetrate 

the basement membrane to innervate epidermal cells or remain as free endings. Unmyelinated 

C fibres, with free-branching endings in close contact to keratinocytes, can be found up to the 

granular layer. In -opioid receptor (MOR) knock-out (KO) mice and chronic pruritic skin, 

changes in the structure of these fibres could be observed (Bigliardi-Qi et al., 2005; Bigliardi-

Qi et al., 2007). These nerve fibres are clearly involved in somatosensation however, the 

terminals are relatively sparse. The skin can detect patterns at a very fine and smaller scale, 

which suggests that nerve terminals receive help from epidermal sensors (Denda et al., 2007; 

Gopinath et al., 2005; Johansson et al., 1999; Krimm et al., 2006; Provitera et al., 2007). 

Therefore, the epidermis can be considered as a sensory organ.  
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In addition, after different stimuli including heat, lipopolysaccharides (LPS), thermal mud 

baths, and UVB radiation (Slominski et al., 2000) human skin can produce pro-

opiomelanocortin (POMC), the precursor of endorphins, which is able to modify the pain 

threshold and modulate different activities of the immune system (Brazzini et al., 2003). 

Conversely, the brain can affect cutaneous functions in an efferent manner to stimulate the 

target tissues; for example during neurogenic inflammation (Saraceno et al., 2006). Hence, the 

brain-epidermis connection is multi-directional and leads, according to Boulais and Misery, to 

the integrated neuro-immuno-cutaneous system (NICS), a common language shared by 

sensory neurones, keratinocytes, melanocytes, Langerhans cells, and Merkel cells, with the 

neuromediators as their words (Boulais and Misery, 2008). 

It is currently understood that SP plays a key role in pain sensitisation (Misery et al., 1999) 

and leads to mast cell degranulation (Toyoda et al., 2002). POMC and derivatives are 

immunomodulators and neurotrophins like NGF are mitogenic proteins, which also stimulate 

nerve fibre sprouting, regulate neuropeptide synthesis, and probably contribute to psoriasis 

(Pincelli et al., 1994). The catecholamines act as inflammatory factors. ACh, CGRP, VIP, and 

neuropeptide Y (NPY) seem to have different functions, depending on the skin 

microenvironment. Therefore, the NICS acts locally, at the level of the neurogenic 

inflammation, but it is also considered to affect the whole organism via endocrine and 

neurocrine pathways. 

Furthermore, the transient receptor potential cation channel subfamily V (TRPV) family and 

purinergic receptors are also thought to participate in many cutaneous phenomena. They have 

been shown to be involved in cell growth, differentiation, neuronal regeneration, wound 

healing, inflammation, and yet more (Boulais and Misery, 2008; Burnstock, 2006). 

Keratinocytes express receptors like TRPV1, TRPV3, and TRPV4 (Dhaka et al., 2006). 

TRPV channels enable them to sense thermal and noxious stimuli and perhaps osmotic 
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variation. The stimulation of these receptors is followed by the release of neuropeptides like 

SP, which then act as neurotransmitters on target cells or modulators of epidermal functions 

as mentioned before. 

The ability of keratinocytes to interact with neurones has been demonstrated in vitro. In co-

culture models, keratinocytes exhibit a strong trophic effect towards sensory neurones and 

close contact could be detected between the two cell types (Chateau et al., 2007; Chateau and 

Misery, 2004; Ulmann et al., 2009). The mechanism involved in signal transduction from 

keratinocytes to sensory neurones remains unclear. One hypothesis is that the signal goes 

through a paracrine adenosine tri-phosphate (ATP) signal, activating the purinergic receptors 

P2X2, P2X3, and P2Y2. It has been shown that ATP-activated cells can increase their 

intracellular Ca2+ concentration, producing a Ca2+ wave that is able to propagate to 

neighbouring cells. The ATP-dependent Ca2+ waves, so produced by keratinocytes, can 

induce an increase in intracellular Ca2+ concentration, not only in adjacent keratinocytes but 

also in sensory neurones (Koizumi et al., 2004). 

Figure 6 - The skin neuro-endocrine 
system 

The skin neuro-endocrine system 
follows the algorithms of classical 
neuro-endocrine or endocrine systems 
of the human body. It serves as a 
mediator for signal exchange between 
body internal processes and the 
environment. Skin cells are subjected 
to neurohormonal regulation and 
produce and secrete neuro-peptides, 
biogenic amines, melatonin, opioids, 
cannabinoids, acetylcholine, steroids, 
secosteroids as well as growth factors 
and cytokines themselve. Immune 
cells are as well part of the skin neuro-
endocrine system. Histological image 
from (Gray's Anatomy - 39th Edition 
2005) and signalling scheme adapted 
from (Slominski et al., 2012). 

 

Another putative pathway of communication from keratinocytes to neurones is implicated by 

the presence of substances like NGF or the inflammatory cytokine interleukins, IL-1 and IL-
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8, subsequent to receptor activation. These mediators are released upon activation of the 

keratinocytes by neuropeptides like SP, CGRP, VIP, galanin, and probably other proteins 

expressed by keratinocytes themselves (Dallos et al., 2006). Hence, the activation of one 

keratinocyte can lead to the activation of neighbouring cells in a paracrine manner, and finally 

to the depolarisation of nerve terminals. 

Moreover the opioid system is present and functional in mouse and human skin. The 

expression of -opioid (DOR), -opioid (MOR), and -opioid receptors (KOR) on mRNA 

level has been shown in human epidermal keratinocytes, fibroblasts and melanocytes 

(Bigliardi et al., 1998; Bigliardi et al., 2009; Bigliardi-Qi et al., 2006; Kauser et al., 2003; 

Kauser et al., 2004; Tominaga et al., 2007; Wintzen et al., 2001). Compared to human brain 

tissue the amount of both MOR and DOR is low in skin cells. Keratinocytes express 1000 

times less MOR and 2000 times less DOR, fibroblasts approximately 20 000 times less MOR 

and 1500 times less DOR mRNA than brain (Bigliardi et al., 2009).  

 
 
 
 

Figure 7 - relative MOR and DOR mRNA expression in 
primary cultured skin cells 

qRT-PCR of mRNA isolated from fibroblasts, melanocytes 
and keratinocytes, compared to human brain mRNA extracts. 
Value of brain DOR is normalized to 100 000. Adapted from 
(Bigliardi et al., 2009) 
 

Nevertheless, the functional activity of the -endorphin/MOR system in skin melanocytes was 

demonstrated by Kauser et al.(Kauser et al., 2003; Kauser et al., 2004; Kauser et al., 2005; 

Tobin and Kauser, 2005) and alterations of -endorphin expression were observed in 

pathological human skin by Slominski et al. (Slominski et al., 1993; Slominski et al., 2004). 

The treatment of epidermal melanocytes with -endorphin results in increased melanogenesis 

and proliferation. Yet, skin organ culture experiments showed functional activity of the 
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endogenous -endorphin/MOR system in epidermal keratinocytes as well through 

downregulation of MOR protein expression, upregulation of TGF- receptor type II and 

KRT16 expression upon prolonged incubation with -endorphin (Bigliardi-Qi et al., 2000). 

KRT16 is not expressed in normal human skin but appears in regenerating epithelial cells of 

the epidermis during wound healing, which led to first hypothesis of opioid receptor 

involvement in wound healing. In vitro a stimulatory effect on migration of keratinocytes by 

addition of morphine could be demonstrated (Bigliardi et al., 2002), indicating as well the 

functionality of the opioid receptor system in skin cells. Possibly activated by opioids to 

regulate migration could be the mitogen-activated protein kinase (MAPKs) extracellular 

signal-regulated kinase 1 and 2 (ERK 1/2) pathway, the protein kinase C (PKC) or the 

phosphoinositide 3-kinase (PI3K) pathway (Chernyavsky et al., 2005; Eisinger and Ammer, 

2008a; Fitsialos et al., 2007; Heiss et al., 2009; Matsubayashi et al., 2004; Ranzato et al., 

2009; Sharma et al., 2003a). These pathways were shown to be involved in either primary 

keratinocyte migration in vitro or migration and proliferation during wound healing (Sharma 

et al., 2003b; Watson et al., 2009). Any alteration in the rate of migration of these cells would 

change the time available for cell maturation and might be regulated by both synthesis and 

processing of the keratin filaments, which in turn influence the re-epithelialisation and 

remodelling process in wound healing. 

One phenotype of DOR and MOR KO mice is a significant atrophy of the epidermis 

(Bigliardi-Qi et al., 2007). Additionally, DOR KO mice show a higher expression of KRT 10 

than wild type mice and a significant wound healing delay of about two days as well. The 

wound margin of these mice exhibits epidermal hypertrophy at day three (Bigliardi-Qi et al., 

2006). These observed phenotypes in DOR KO mice indicate a role for DOR in keratinocyte 

migration and differentiation and therefore an involvement in skin homeostasis and wound 

healing.  
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I.2. THE OPIOID RECEPTOR SYSTEM 
 

I.2.1. The Opioid Ligands – Endogenous and Exogenous 
 
The term “opioid” describes all compounds with morphine-like action. It does not distinguish 

between different chemical structures, that include alkaloids as well as peptides, nor if the 

molecule originates from endogenous or exogenous sources. Morphine itself has a long 

history of application for therapeutic purposes and the pleasurable subjective effects. 

Researchers were always eager to understand its mechanisms of action in human. 

In the 1960s and ‘70s the brain was recognized as the main target for morphine induced 

analgesia (Mayer and Liebeskind, 1974; Pert and Yaksh, 1974; Pert and Yaksh, 1975; Tsou 

and Jang, 1964) and further analysis lead then to the identification of several endogenously 

produced opioid compounds. Until now, ten endogenous opioids have been identified, which 

can be grouped into six different families of compounds, the endorphins (Doneen et al., 1977; 

Li et al., 1976), enkephalins (Hughes et al., 1975), dynorphins (Goldstein et al., 1979), 

nociceptin (Meunier et al., 1995; Mollereau et al., 1994; Reinscheid et al., 1995), 

endomorphins (Hackler et al., 1997; Zadina et al., 1997), and morphiceptin (Chang et al., 

1981), according to their receptor selectivity and structure. They are transcribed from only 

three different genes and generated by subsequent processing of the common precursor 

proteins pro-opiomelanocortin (POMC), pro-enkephalin (PENK), and pro-dynorphin (PDYN) 

(Feng et al., 2012). Cloning of these genes revealed that PENK contains both Met5
-

enkephalin and Leu5
-enkephalin transcripts (Comb et al., 1982; Gubler et al., 1982; Noda et 

al., 1982), the second precursor PDYN the dynorphin peptides (Goldstein et al., 1979; 

Kakidani et al., 1982), and POMC contains -endorphin as well as adrenocorticotropin 

(ACTH) and melanocyte-stimulating hormones (MSH) (Chretien et al., 1979; Nakanishi et al., 

1979). The sequence of Met5
-enkephalin is also embedded in POMC but the protein is not 

transcribed from this gene (Feng et al., 2012; Li and Chung, 1976). For endomorphin a 
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precursor has not yet been identified (Terskiy et al., 2007). Other peptides with morphine-like 

activity have been generated by proteolytic fragmentation of the milk protein casein and were 

termed β-casomorphins (Brantl et al., 1979; Chang et al., 1981) or from the blood protein 

haemoglobin, called hemorphins (Brantl et al., 1986; Nyberg et al., 1997). Additionally, MOR 

(dermorphin) and DOR (deltorphin) selective peptides have been isolated from frog skin 

(Broccardo et al., 1981; Erspamer et al., 1989). 

The knowledge of the structure and the unique properties of each endogenous opioid gave rise 

to the development of numerous exogenous opioids, in order to enhance the analgesic 

potencies and to reduce the side effects in clinical applications (Ballet et al., 2008). One of the 

most potent DOR agonists developed is SNC80, a highly selective non-peptide δ-opioid 

agonist, 2000 fold more selective over μ-opioid receptors than δ-opioid receptors. Because 

SNC80 is producing convulsions at high doses, it is not used medically but it is a useful drug 

in scientific research. Furthermore naltrindole, a highly selective non-peptide δ-opioid 

antagonist, has been developed. Naltrindole has a 223 and 346 fold greater activity at DOR 

than at MOR and KOR. With the discovery of additional functions of the opioid receptors, 

other clinical applications than analgesia came into focus, so that now the development of 

highly receptor specific agonists is more important, in order to tap the full potential of opioids 

in clinic. 

 

I.2.2. General Introduction into the Family of Opioid Receptors 
 
In 1973, the laboratories of Simon, Snyder, and Terenius independently reported the 

biochemical discovery of opioid receptors, by utilizing radioligand binding assays. They were 

found to be integral membrane proteins primarily located in neurons (Pert and Snyder, 1973; 

Simon et al., 1973; Terenius, 1973). A few years later, due to their heterogeneous properties, 

the three “classical” types of opioid receptors were named  (MOR),  (KOR) and  (DOR) 
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(Martin et al., 1976). Molecular cloning confirmed the three receptors in 1992 and 1993 (Chen 

et al., 1993; Evans et al., 1992; Kieffer et al., 1992; Yasuda et al., 1993). The forth receptor, 

the nociceptin receptors, was discovered in 1994 using a degenerate PCR based on sequences 

of the known opioid receptors, to clone a novel receptor from a human brainstem cDNA 

library (Mollereau et al., 1994). All four opioid receptors differ in their affinity for various 

endogenous opioid ligands and in their cellular distribution. Their signalling regulates a 

variety of physiological functions, including pain control, locomotion, emotional tone, 

diuresis, thermoregulation, and reward (Kieffer and Gavériaux-Ruff, 2002). MOR also 

mediates the pain-relieving effects of some of the clinically most effective drugs. However, 

drugs acting on DOR also exhibit strong analgesic activity without abuse liability (Rapaka 

and Porreca, 1991), a property considered as a hallmark of MOR agonists (Contet et al., 

2004). 

Opioid receptors are mainly found in the central and peripheral nervous systems and the 

functional and biochemical characterization focused extensively on the neuronal system in the 

last three decades. However, in peripheral tissue, such as skin (Salemi et al., 2005), cornea, 

and the cochlea (Wenk and Honda, 1999), the presence of opioid receptors was identified and 

additionally in T, B, and monocyte cell lines (Gavériaux et al., 1995). Functional activity of 

DOR could be demonstrated in peripheral tissue such as heart, gastrointestinal tract, and the 

immune system. Involvement of opioids in cell differentiation and proliferation (Caballero-

Hernandez et al., 2005; Hahn et al., 2010) as well as cytokine production (Bessler et al., 1990) 

makes them an interesting target in skin research and a good study model for the neuro-

cutaneous system. 

As the field of opioid receptor research develops and the functional network of opioid 

mediated signalling is deciphered, a major goal of the opioid research remains the rational 

design of more efficient therapeutic drugs targeting specific functions with minimal 
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deleterious side-effects. 

 

I.2.3. The Opioid Receptor Functions in Human 
 

I.2.3.1. Ionic Homeostasis 
 
Opioids were shown to be involved in the regulation of ionic homeostasis under normoxic and 

hypoxic/ischemic conditions. The maintenance of ionic gradients is essential to the function 

of neurons and other cell types, such as keratinocytes. Opioids can for example interfere with 

ionic homeostasis, by influencing the Ca2+ ion flux in cells in two different ways. They can 

either induce an elevation of intracellular Ca2+ (Spencer et al., 1997; Thorlin et al., 1998; 

Wang et al., 1993) or lead to an inhibition of Ca2+ entry (Chao et al., 2007a; Komai and 

McDowell, 2007; Piros et al., 1996; Rola et al., 2008). The classical coupling of the receptors 

to Gi/o subtype of G proteins leads to an inhibition of voltage-operated Ca2+ channels in the 

plasma membrane and adenylyl cyclase activity, and therefore prevents an elevation of Ca2+ 

in the cell. Nevertheless, elevation of intracellular Ca2+ due to mobilisation of Ca2+ from 

intracellular stores has been shown in different neuronal and other cell systems like SH-SY5Y 

human neuroblastoma (Connor and Henderson, 1996), NG108-15 mouse neuroglial (Jin et al., 

1994; Okajima et al., 1993), neuro2a (Spencer et al., 1997), and CHO-DOR (Yeo et al., 2001) 

cells. This is often a result of the synergy of opioid receptor signalling with other Ca2+ release 

signalling pathways, mainly the Gq-coupled receptor-activated inositol phosphate (IP3) 

pathway (Samways and Henderson, 2006). The direct cellular environment is therefore a 

deciding force for the opioid mediated effect on Ca2+ homeostasis. 

Potassium (K+) and Sodium (Na+) ion homeostasis across the plasma membrane is also 

regulated by opioid signalling. The activation of inwardly rectifying K+ channels by the 

classical Gi/o signalling enhances the electrochemical gradient by increasing the intracellular 

concentration of K+, inhibiting membrane depolarization and therefore neuronal excitation. 
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Additionally, the work from D. Chao et al. demonstrated how important this mechanism could 

be under hypoxia/ischemia conditions for example during a stroke, cardiac ischemia or 

hypoxic encephalopathy. The activation of DOR greatly attenuates hypoxia/ischemia induced 

increase in extracellular K+ and the decrease in extracellular Na+. DOR maintains the ionic 

homeostasis by regulating Na+ and K+ ionic flux during such severe environmental stress and 

therefore protects the neuronal cells from its deleterious effect (Chao et al., 2007b; Chao et al., 

2012; Kang et al., 2009). 

 

I.2.3.2. Opioid mediated impact on cell proliferation and differentiation 
 
That opioids influence cell proliferation is accepted but depending on the cell system 

examined, the results can be different. For example, the activation of DOR but not MOR in 

CHO cells resulted in a potentiation of foetal calf serum- (FCS) or growth-factor-stimulated 

growth. Inability of MOR to potentiate CHO proliferation suggested a divergence in effector 

molecules regulated by MOR and DOR and a difference in their ability to activate the MAPK 

or similar protein kinase signalling pathways, which promote proliferation (Law et al., 1997). 

A.I. Persson et al. showed that β-endorphin and selective MOR and DOR agonists stimulate 

proliferation of isolated rat adult hippocampal progenitors (AHPs). Incubation with β-

endorphin for 48 hours increased the number of AHPs found in mitosis, the total DNA 

content, and the expression of proliferating cell nuclear antigen (PCNA), and could be 

antagonized by naloxone. Proliferation was mediated through phosphorylation of ERK 1/2 

and depended on phosphatidylinositol 3-kinase and both intra- and extracellular Ca2+ (Persson 

et al., 2003). A stimulation of proliferation by -endorphin has as well been shown for human 

melanocytes (Kauser et al., 2003; Kauser et al., 2004). An inhibition of astrocyte proliferation 

by MOR signalling has been shown by M. Miyatake et al., who reported that morphine and 

[D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO) inhibit EGF-stimulated ERK activation 
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and cell proliferation (Miyatake et al., 2009). In contrast, KOR activation resulted in activated 

ERK and proliferation via an EGF receptor transactivation-mediated mechanism (McLennan 

et al., 2008). At clinically relevant concentrations, morphine stimulated human umbilical 

arterial endothelial cells (HUAEC) proliferation in a MAPK dependent manner (Leo et al., 

2009). Furthermore, it was shown that rat lymphocytes induce proliferation after exposure to 

non-peptidic synthetic opioids (Caballero-Hernandez et al., 2005). In contrast, multipotent 

neural stem cells from embryonic mouse brain were promoted to differentiate upon activation 

of DOR by the synthetic agonist SNC 80 (Narita et al., 2006). 

The opioid mediated influence on cell proliferation and differentiation needs to be validated in 

additional cell systems and the molecular mechanisms need to be further analysed in order to 

understand the capability of opioids in these processes. 

 

I.2.3.3. Analgesia 
 
The reaction to acute traumas results in the release of endogenous opioids and an increase of 

opioid blood levels. This counteracts the deleterious stimulus and pain. In animal models it 

has been shown that muscle injury, fixed-pressure haemorrhagic shock, and LPS 

administration elevates the circulating levels of β-endorphin and that the MOR is the opioid 

receptor mediating this stress-induced analgesia (Molina, 2002). In human, clinical studies 

demonstrated an increase of β-endorphin levels after oral (Troullos et al., 1997), 

gynaecological, and abdominal surgeries (Kho et al., 1993; Ozarda et al., 2002). Opioids 

regulate the nociceptive information by blocking neurotransmitter release and signal 

transmission in nerve fibres and are therefore widely used in treatment of severe pain 

conditions. Using KO mouse models, the MOR was identified as central mediator of 

analgesia. In MOR KO mice morphine analgesia was abolished or strongly reduced in models 

for thermal (Kieffer and Gavériaux-Ruff, 2002; Sora et al., 1997), mechanical (Fuchs et al., 
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1999), chemical (Sora et al., 1999), and inflammatory (Qiu et al., 2000) pain (Gavériaux-Ruff 

and Kieffer, 2002). Heat pain behaviour is produced by the activity of the TRPV1 positive 

nociceptors and can be blocked by MOR selective agonists. In contrast, mechanical pain is 

generated by the activity of different populations of neurons (myelinated and unmyelinated 

nonpeptidergic nociceptors) and can selectively be blocked by DOR agonists (Scherrer et al., 

2009). In DOR KO mice, DOR agonist mediated analgesia was either abolished, reduced or 

unchanged, depending on the nociceptive assay and route of administration applied (Zhu et 

al., 1999). KOR receptors are involved in the regulation of chemical visceral pain (Simonin et 

al., 1998). The distinct opioid receptors are expressed in different subsets of peripheral nerves 

and facilitate the discriminative regulation of different pain stimuli. Additionally, it was 

reported that DOR agonists enhance the analgesic potency and efficacy of MOR agonists 

(Ananthan, 2006) and so the interaction of the receptors adds another facet of pain modulation 

by opioid receptors. 

An important molecule to mediate the downstream effects of opioid induced analgesia is -

arrestin. Several studies using -arrestin KO mice confirmed the involvement in opioid-

receptor mediated analgesia and tolerance/dependence (Bohn et al., 1999; Bohn et al., 2000; 

Bohn et al., 2002; Bohn et al., 2003).  

 

I.2.3.4. Addiction 
 
The improper use of opioids can lead to a drug addiction. The drugs directly or indirectly 

affect various transmitter systems, notably dopaminergic and glutamatergic neurons (Cunha-

Oliveira et al., 2008; Lalumiere and Kalivas, 2008), which results in neuronal dysfunction and 

neurotoxicity. The behavioural pattern of addiction includes compulsive drug-seeking, 

persistent abuse of substances despite the often irreparable consequences for physical health 

and social exclusion, and the high probability of relapse even after a prolonged drug-free 
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period (Ivanov et al., 2006). The activation of endogenous opioid peptides, in particular the 

MOR and KOR agonists, has been attributed to be relevant in the neurochemical mechanisms 

of opioid reward, dependence, and vulnerability to addiction. Opioid abuse leads to opioid 

tolerance in the nervous system. Receptor tolerance and adaptation involve complex 

mechanisms of receptor regulation, including desensitisation and internalisation. The 

upregualtion of cAMP/protein kinase A (PKA) and cAMP response element-binding (CREB) 

as well as MAPK signalling in opioid-sensitive neurons are involved in the processes of 

tolerance and withdrawal. Further, these signalling processes modify the gene expression 

profile of the affected neurons, possibly changing the synaptical plasticity during the cycles of 

intoxication and withdrawal and might be responsible for long-lasting alterations (Christie, 

2008; Przewlocki, 2004). Also, opioid addiction may negatively influence immune function, 

so that it predisposes an individual to opportunistic infections, such as hepatitis, bacterial 

pneumonia, tuberculosis, abscesses, central nervous system infections, endocarditis, and 

AIDS (Feng et al., 2012; Korolenko et al., 2007; Ordaz-Sanchez et al., 2003; Quaglio et al., 

2003). 

 

I.2.3.5. Immune function 
 
Acute and chronic opioid administration is known to have inhibitory effects on the humoral 

and cellular immune response. Opioids act thereby like cytokines directly on the immune 

cells, but their actions are complicated and often indirect. The presence of DOR, MOR, KOR, 

and non-classical opioid-like receptors on cells of the immune system has been shown 

pharmacologically. In vitro, the phagocytic activity of non-elicited macrophages is inhibited 

by agonists of DOR, MOR, and KOR and this can be reversed with the appropriate selective 

antagonist (Szabo et al., 1993). Opioid signalling suppresses multiple components of the 

immune defence response, including the activity of natural killer cells (Carr et al., 1993), 
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neutrophil complement and immunoglobulin receptor expression (Menzebach et al., 2003; 

Welters et al., 2000), chemokine-induced chemotaxis (Grimm et al., 1998), and phagocytosis 

(Welters et al., 2000). Studies in mice models reported the decrease of natural killer cell 

cytotoxicity and interferon-gamma mRNA levels after acute morphine administration 

accompanied by an increase of the mortality rate of mice with herpes simplex virus infections 

(Jamali et al., 2007; Jamali et al., 2012). DOR agonist DPDPE triggers monocyte adhesion 

and the agonist SNC 80 stimulated rat thymic and human leucocyte chemotaxis. Furthermore, 

it was suggested that KOR activation induces an anti-inflammatory response through the 

downregulation of chemokine, cytokine and chemokine receptor expression, while MOR 

promotes a proinflammatory response (Finley et al., 2008). The overall response in vivo is 

likely to be result of the central nervous system and hypothalamic-pituitary-adrenal axis, 

which illustrates the complexity of the opioid mediated modification of the immune function 

(McCarthy et al., 2001).  

 

I.2.3.6. Additional opioid receptor functions 
 
In hibernating animals the circulating levels of opioids increase dramatically, which is 

considered as a “hibernation induction trigger” (Bruce et al., 1987; Bruce et al., 1996; Cui et 

al., 1996; Feng et al., 2012; Nurnberger et al., 1991; Ye and Cai, 1995). During hibernation 

the energy stores of the animals are depleted and intracellular acidosis and hypoxia can be 

observed similar to ischemic conditions. The activity of DOR could thereby have a protective 

role for the peripheral and central nervous system to prevent stress induced cell damage as 

well as to mediate analgesia and respiratory depression during the hibernation state 

(Borlongan et al., 2004; Borlongan et al., 2009). 
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Respiratory depression is one of the negative side effects of opioid receptor activation. MOR 

stimulation thereby strongly affects the rate and depth of breathing and the respiratory 

responsiveness towards CO2 and hypoxia. It increases the upper airway resistance, and 

reduces pulmonary compliance, which can result in a complete apnoea. DOR has less 

pronounced effects and KOR activation has no effect on respiration. The regulation of 

respiratory functions is mediated by direct action on respiratory control centres in the brain 

(Feng et al., 2012; Mutolo et al., 2007; Pattinson, 2008). 

 

Opioid signalling is as well involved in emotional response. DOR receptors act as natural 

inhibitors of stress and anxiety. Rodent models showed that DOR can produce antidepressant 

and anxiolytic effects (Saitoh et al., 2005). An increased expression of brain-derived 

neurotrophic factor (BDNF) mRNA was reported after DOR agonist administration. Also, 

central acting KOR was shown to upregulate BDNF mRNA, an effect seen with most 

clinically used anti-depressants. This indicates an antidepressant-like effect for both DOR and 

KOR signalling (Zhang et al., 2006a; Zhang et al., 2007). 

 

In accord, opioid agonists showed stimulatory effects on feeding in rodents, while antagonists 

inhibit food intake and weight gain in ob/ob mice (Marczak et al., 2009). The stimulation of 

MOR preferentially increases the intake of high fat diet. KOR KO mice fed with high-energy 

diet gain less body weight and fat mass compared to the wild type mice and show an 

attenuation of triglyceride synthesis in the liver (Czyzyk et al., 2010). 

 

The opioid receptor system is present in the heart and in sympathetic nerve fibres and 

ganglion cells (Steele et al., 1996; Weihe et al., 1983). Endogenous opioid ligands like β-

endorphin (Forman et al., 1989), enkephalins (Barron et al., 1992; Lang et al., 1983; Weihe et 
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al., 1983; Weihe et al., 1985), and dynorphins (Spampinato and Goldstein, 1983; Weihe et al., 

1985) are produced, stored, and released from myocardial cells. Upon stress, such as 

ischemia, the myocardial opioid levels are increased (Eliasson et al., 1998; Peart et al., 2005). 

Both DOR and KOR have been shown to mediate cardioprotection. KOR mediates the 

ameliorating effects of myocardial ischemia preconditioning on infarct and arrhythmia, 

whereas DOR mediates the effects only on infarct (Wang et al., 2001). Thereby, the opioid 

mediated regulation of PKC, NO synthesis, and ATP-sensitive K+ channels participates in the 

cardioprotective mechanisms (Lishmanov et al., 2007; Maslov et al., 2009). 

 

I.2.4. The Delta Opioid Receptor 
 
The existence of multiple DOR subtypes was proposed since the early 1970s. The molecular 

basis of its pharmacological diversity has therefore long remained a matter of debate (Zaki et 

al., 1996). In 1992, gene cloning led to the isolation of a single mouse oprd1 gene, encoding 

for only one DOR protein (Evans et al., 1992; Kieffer et al., 1992). The human homolog was 

identified two years later (Knapp et al., 1994). The coding region of oprd1 consists of three 

exons separated by two introns and generates only one mRNA variant (NM_000911.3). 

Nevertheless, transcript variants have been described in conjunction with malignancy, where 

due to atypical mRNA processing in human melanoma and neuroblastoma cells, a receptor 

lacking the third cytoplasmic loop is generated. A possible consequence might be an effect on 

signal-response coupling and that could be involved in tumour genesis (Mayer et al., 2000). 

The primary amino acid structure allocates the receptor into the family of rhodopsin-like G 

protein-coupled receptors (GPCR). The three-dimensional (3D) structure, as seen in Figure 8, 

is characterised by seven hydrophobic transmembrane domains (TM) connected by alternating 

intracellular (IL) and extracellular (EL) loops. 
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Figure 8 - Structure of DOR 

(A) Schematic structure of DOR (http://www.opioid.umn.edu). 
From Martin-Kleiner et al., 2006. (B) 3D Structure of DOR 
bound to naltrindole. The overall structure of DOR exhibits a 
typical seven-pass transmembrane architecture common to other 
GPCRs. Adapted from Granier et al., 2012. 
EL, Extracellular loop; IL, intracellular loop; TM, 
transmembrane domain. 

 

The amino (N) terminal part is located at the extracellular side, whereas the carboxyl (C) tail 

is located in the cytoplasm. Asparagine residues in the N-terminal part are glycosylated and 

mutations of these residues decrease the steady-state level of the receptor at the cell surface 

(Markkanen and Petäjä-Repo, 2008). The regions spanning TM domains 5-7 are responsible 

for DOR-selective binding of ligands (Chaturvedi et al., 2001). The first and the third IL and 

TM domain 5, together with the C-terminal end of the receptor, are responsible for the 

specific G protein-coupled intracellular signalling (Figure 8). In contrast to MOR, DOR can 
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efficiently stimulate phospholipase C (PLC) by interaction with G16 protein (Chan et al., 

2003). DOR is a highly dynamic ligand recognition protein. It has multiple active 

conformations, reflecting different binding modes in the ligand binding pocket (Befort et al., 

1996). The ligand-receptor-complex determines a multitude of physiological cellular 

responses. Receptor activation and subsequent regulations are strongly drug dependent and 

show that the receptor by itself does not determine the final response (Kieffer and Evans, 

2009). 

Previously, the expression of the DOR in skin has been demonstrated in cultured skin cells 

and animal models only on mRNA level by Bigliardi-Qi et al. and others (Salemi et al., 2005; 

Weihe et al., 1983; Zagon et al., 1996). Our laboratory now confirmed the presence of DOR 

mRNA in human skin by in situ hybridization using paraffin-embedded normal human 

corporal skin sections. The positive chromogenic in situ hybridization (CISH) signal was 

found in the epidermis and displays a gradually expression of DOR mRNA. Most 

prominently, the signal was detected in the upper part of stratum granulosum and to a lesser 

extends in stratum spinosum of human epidermis (Mei Bigliardi-Qi, unpublished data). 

However, it was evident that not all keratinocytes express the same amount of DOR, so that 

some areas in the granular layer showed a more intense staining pattern than other areas. 

 

I.2.5. The Delta Opioid Receptor Mediated Signalling 
 
As mentioned previously, DOR-deficient mice show alterations in skin differentiation, a delay 

in wound healing (Bigliardi-Qi et al., 2006), and exhibit enhanced inflammatory pain 

(Gavériaux-Ruff et al., 2008). Studies suggested similar signalling pathways induced by 

opioids in neuronal cells and in non-neuronal systems (Lasukova et al., 2009; Wang et al., 

2003). Therefore, second messengers like cyclic adenosine monophosphate (cAMP), 

intracellular Ca2+, and second messenger-induced kinases are likely to be involved in opioid 
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mediated skin cell regulation. 

Upon activation of DOR the physiological response is predominantly mediated through the 

Gi/o subtype of G proteins. Agonist binding modifies the helical packing of the receptor, and a 

rearrangement in the positioning of TM domains 3, 6, and 7 has been proposed to drive the 

transition between inactive and active conformations of the receptor (Decaillot et al., 2003). 

Modification of the intracellular structure leads to its interaction with the heterotrimeric G 

protein (composed of ,  andsubunit). The GPCR acts as a guanine nucleotide 

exchange factor, catalysing the exchange of guanosine-diphosphate (GDP) for guanosine-

triphosphate (GTP) on G and induces the dissociation of G and G subunits from each 

other. Subsequently, intracellular effectors and pathways are modulated (Ritter and Hall, 

2009), including inhibition of some types of adenylyl cyclases and Ca2+ channels, and 

stimulation of PLC and K+ channels (Law et al., 2000). In addition, activation of DOR has 

been linked to the regulation of MAPKs ERK 1/2 and p38, as well as to signalling cascades 

stimulated by Akt, Cdc 42, Rac, receptor tyrosine kinases (RTKs), signal transducer and 

activator of transcription 3 (STAT3), and Src (Archer-Lahlou et al., 2009; Eisinger and 

Ammer, 2008a; Eisinger and Ammer, 2008b; Kam et al., 2003; Lo and Wong, 2004; Shahabi 

et al., 2006). The inhibition of adenylyl cyclases directly downregulates the cAMP level and 

therefore influences PKA activity and downstream factors, like Rap1. This can result in an 

interaction of Rap1 and B-Raf, stimulating the activation of ERK (Dugan et al., 1999). At the 

same time, the coupling of the Gβγ subunit with PLC initiates phosphoinositide hydrolysis 

and IP3 receptor activation, which in turn leads to a release of Ca2+ from intracellular stores 

and a subsequent stimulation of Ca2+/calmodulin-dependent kinase. Following, Rap1 is 

activated and stimulates integrin function (Belcheva and Coscia, 2002; Kinashi, 2005; 

Sahyoun et al., 1991). This in turn transactivates, via a PKC dependent mechanism, RTKs like 

the EGFR, initiating the ERK signalling pathway (Belcheva et al., 2001; Eisinger and Ammer, 
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2008a; Eisinger and Ammer, 2008b; Wang et al., 2009). These mechanisms are simplified 

illustrated in Figure 9A. 

The initial step terminating G protein-mediated signalling is phosphorylation of Serine 363, 

Threonine 361 and Threonine 358 through association of GPCR kinases (GRKs) with agonist-

bound receptor (Claing et al., 2002; Guo et al., 2000). The recruitment of -arrestin 1 and 2 to 

the C-terminal tail and third intracellular loop of phosphorylated receptors is then facilitated 

(Cen et al., 2001), which results in uncoupling from the G protein and desensitization. -

arrestins interact with clathrin and the clathrin adaptor complex AP2 to drive receptor 

internalization into endosomes. Once internalized, receptors are targeted to specialized 

intracellular compartments, where they are dephosphorylated and recycled back to the plasma 

membrane or processed towards the lysosomal degradation pathway (Claing et al., 2002) 

 
Figure 9 - Crosstalk between opioid receptor and ERK cascade 

Crosstalk between opioid receptor and ERK cascade through G protein and -arrestin pathway. Irrespective of 
the specificity of different cell lines (for example, different cells may have different kinase isoforms), opioid 
receptor, can crosstalk with ERK 1/2 through two pathways, the (A) G protein dependent and the (B) receptor 
internalization induced by -arrestin dependent. In the former pathway, ERK 1/2 activation may be variable 
because of the cell type specific different responses to PKA activation. Adapted from (Bian et al., 2012). 
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Additionally, recruitment of arrestins to activated receptors can also lead to the initiation of 

arrestin-mediated signalling pathways, for example the MAPK ERK 1/2 signalling cascade. -

arrestin 2 acts as a scaffold that binds all the component kinases of the module, which 

activates ERK 1 and ERK 2 (Raf, MEK, ERK) (Figure 9B) (Lefkowitz and Shenoy, 2005). 

Signalling studies showed that receptor activation and subsequent regulation like 

phosphorylation and internalisation are strongly agonist-dependent (Marie et al., 2008; Okura 

et al., 2003), leading to a high heterogeneity of the signalling as a consequence of the divers 

cellular environment of the receptor. Many G proteins exist and their expression differs 

between cell types. The variable combination of G protein subunits and the high number of 

possible G protein-associated signalling pathways has expanded dramatically (Marinissen and 

Gutkind, 2001). Each cell has highly interconnected cytoplasmatic signalling routes that 

might lead to temporally distinct patterns. Altogether, this shows that DOR mediated 

signalling is very complex and that the receptors are highly dynamic proteins. The final 

cellular response to DOR activation will most probably be a result after the integration of a 

complex network of biochemical responses.  

 

I.2.6. The Receptor Oligomerisation 
 
DOR is able to form both homo- and heterodimers. Hetero-oligomers with MOR show altered 

pharmacological behaviour to highly selective agonists for each receptor as well as higher 

affinity and efficiency of interaction with Gz over Gi (Fan et al., 2005; George et al., 2000). 

Heterodimerisation of MOR and DOR only occurs at the cell surface and requires receptor-G 

protein interaction (Law et al., 2005). Furthermore, it leads to a constitutive recruitment of -

arrestin 2 to the receptor complex, influencing the dynamics of ERK 1/2 signalling (Rozenfeld 

and Devi, 2007). 

In addition, DOR can also form heterodimers with other GPCRs. Coexpression with 2A-
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adrenergic receptors promotes DOR-mediated neurite outgrowth, suggesting that the presence 

of inactive 2A-adrenergic receptors can enhance DOR-mediated signalling (Rios et al., 2004). 

On the other side, interaction with the sensory neuron-specific receptor-4 (SNSR-4) inhibits 

the signalling of DOR (Breit et al., 2006). Finally, oligomerisation with different chemokine 

receptors like CCR5 (Suzuki et al., 2002) could be demonstrated. The CXCR2 antagonist 

SB225002 enhances the function of DOR agonists only in the presence of CXCR2 (Parenty et 

al., 2008) and interaction of CXCR4 appears to lock both receptors in an inactive 

conformation (Pello et al., 2008). 

 

Formation of homo- or heterodimers may result in a new receptor conformation especially in 

the intracellular domains of the receptor. The consequence is that regulatory patterns of DOR 

trafficking and signalling become more subtle, including receptor localization, internalization, 

ligand-binding properties, and downstream signalling (Bian et al., 2012). Oligomerisation 

adds a level of complexity to DOR function and is a mechanism by which the products of a 

limited number of receptor genes may give rise to a greater diversity of signalling units with 

unique properties. Numerous questions surrounding opioid receptor homo-oligomerisation 

and hetero-oligomerisation remain, and their answers hold the potential to diversify the 

understanding of opioid system biology. 
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I.3. THE ERK MAP KINASE SIGNALLING PATHWAY  
 

The family of mitogen-activated protein kinases (MAPK) signalling pathways consist of four 

distinct cascades named after their MAPK component: the extracellular signal-regulated 

kinase 1 and 2 (ERK 1/2); c-Jun N-terminal kinase 1 to 3 (JNK 1-3); p38 MAPK α, β, γ, and δ 

(p38 α-δ); and ERK 5. The MAPK signalling cascades are evolutionary conserved, 

intracellular signal transduction pathways activated by various extracellular stimuli and 

intracellular processes regulating cellular functions such as growth, proliferation, 

differentiation, mobility, survival, and apoptosis. Each of the cascades is composed of three to 

five levels of MAP4K, MAP3K, MAPKK, MAPK, and MAPKAPK. The MAP3K, MAPKK, 

and MAPK constitute the core cascade. 

The ERK signalling pathway was the first one of the MAPK cascades to be defined (Ray and 

Sturgill, 1988; Sturgill et al., 1988). This pathway is commonly initiated at membrane 

receptors (RTKs; GPCRs; ion channels, and others). Upon activation through recruitment of 

adaptor proteins and exchange factors the activation of a small GTP-binding protein (e.g. Ras, 

Rap) is induced. The signal is then transmitted to the MAP3K tier of the cascade (mainly Raf1 

and B-Raf) and further to the MAPKKs MAPK/ERK kinase 1 (MEK 1) and MEK 2. These 

two kinases are composed of a large regulatory N-terminal domain containing a nuclear 

export signal (NES), followed by a catalytic kinase domain and a shorter C-terminal region. 

MEK 1/2 are activated through serine phosphorylation and then further phosphorylate and 

activate their only known substrate, native ERK 1 and 2 at Threonine 202 and Tyrosine 204. 

With that step the cascade has reached the MAPK level and will then spread to numerous 

target molecules including the MAPKAPK components (90 kDa ribosomal S6 kinases, RSKs; 

MAPK-interacting kinases, MNKs; mitogen- and stress-activated kinases, MSKs) and many 

more substrates. Most of these substrates are phosphorylated in the nucleus by ERK 

molecules that translocate upon stimulation. In addition, ERK interacts with substrates of 
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cytoskeletal elements (Klemke et al., 1997) and cellular organelles such as mitochondria 

(Alonso et al., 2004; Poderoso et al., 2008; Tamura et al., 2004), and the Golgi apparatus 

(Shaul and Seger, 2006) (Figure 10). 

 
Figure 10 - ERK distribution within the various compartments of the cell 

The activation of the ERK 1/2 cascade results in a significant translocation of ERK molecules into the nucleus, 
which is mediated by importin 7. In addition, due to interaction with specific scaffold proteins ERK is located to 
cellular organelles such as Golgi apparatus, endosomes, mitochondria, cell membrane, and cytoskeletal elements. 
In each of these organelles, ERK 1/2 can either regulate intrinsic activities or direct ERK signals to nearby 
cytoplasmic substrates. NPC, nuclear pore complex; RTK, receptor tyrosine kinase; Adapted from (Wortzel and 
Seger, 2011). 
 

With over 200 possible targets the signal specificity has to be fine tuned in order to induce 

distinct physiological processes. The currently known mechanisms determining the signal 

specificity can be categorized into five types: 

1) Duration and strength of the signal 

This model is mainly based on the observed EGF and NGF mediated signalling in PC12 cells. 

Both factors induce strong ERK 1/2 activation but result in distinct cellular responses. EGF 

causes a transient activation peaking at 15 minutes and decreasing back to basal level after 

40 min, which enhances proliferation of the cells. On the other side NGF induces a sustained 

activation resulting in neuronal differentiation of these cells. Dependent on the signal length 
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the activity of regulatory proteins could be altered and different cellular processes might be 

induced by immediate early genes (Mansour et al., 1994; Nguyen et al., 1993; Traverse et al., 

1994). 

2) Interaction with scaffold proteins 

Scaffolding proteins facilitate the interaction of components of different levels of the 

signalling cascade by forming a multi-protein complex and bringing them into close 

proximity. They can protect components from inactivating phosphatases (Perlson et al., 2005), 

recruit substrates or direct the signal to specific upstream or downstream targets. Like that, 

scaffolds influence the kinetics of induction of the signalling cascade, modify the strength and 

duration of the ERK activation, allow better interaction between signalling components, 

regulate the localization of the cascade, and modify crosstalk with other signalling pathways 

(Shaul and Seger, 2007; Wortzel and Seger, 2011). The most important scaffold protein 

during ERK signalling upon GPCR stimulation is β-arrestin. It interacts with ERK, as well as 

MEK 1 and Raf1 in the membrane by irreversible binding and prevents ERK from 

translocation to the nucleus, resulting in preferential phosphorylation of cytoplasmic 

substrates (Luttrell et al., 2001; Pierce et al., 2001; Tohgo et al., 2002). During GPCR 

mediated ERK activation most ERK molecules will still translocate to the nucleus, suggesting 

that β-arrestin interacts only with a small portion of ERK molecules and other cascades for 

ERK activation are acting in parallel (Chuderland and Seger, 2005). 

3) Compartmentalization of the signalling components in cell organelles or cellular 

regions 

The localization of components of the ERK signalling cascade depends largely on their 

interaction with regulatory proteins. In resting cells molecules are localized to the cytoplasm 

mainly because of interaction with anchor and the above mentioned scaffold proteins. Upon 

stimulation, Rafs interact with the activated Ras and are therefore recruited to the plasma 
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membrane, and to membranes of other compartments. Most of the proteins of the following 

MAPK signalling levels, MEK 1/2, ERK 1/2, and RSKs are released from their cytoplasmic 

anchor allowing translocation into the nucleus or other organelles. This translocation of 

activated ERK enables regulation of transcription in the nucleus or mitochondria as well as 

regulation of mitotic Golgi fragmentation (Shaul and Seger, 2006; Wortzel and Seger, 2011). 

Localization to the outer surface of organelles or cytoskeleton molecules directs the 

phosphorylation of specialized substrates without significant nuclear translocation of ERK 

resulting in distinct cellular responses under varying conditions. Therefore, the signalling in 

one cellular compartment may have a different outcome from a similar signalling event in 

another localisation.  

4) Cross-talk and interplay with other signalling pathways 

The ERK signalling cascade is a central signal transduction pathway but other signalling 

pathways active at the same time might modulate the outcome. Phosphorylation and 

dephosphorylation processes by enzymes that are not part of the ERK cascade can affect the 

kinetics, strength, and the localization of the signal. In addition many of the signals from other 

pathways are likely to converge at downstream targets of the ERK cascade, such as 

transcription factors and inhibitors (Raman and Cobb, 2003). 

5) Multiple components and isoforms in each level of the cascade 

On the level of the MAP3Ks different proteins, including Rafs, MEKK1, Cot, and Mos, may 

be involved in the activation of the cascade under different conditions. The MAPKK level is 

less diverse but it has been demonstrated that MEK 1 and MEK 2 have distinct functions 

during cell cycle progression (Liu et al., 2004) and an alternative splice form MEK1b is 

specifically active during regulation of mitotic Golgi fragmentation (Shaul et al., 2009). 

Further downstream, the MAPKs ERK 1 and ERK 2 are expressed in essentially all cells and 

tissues, whereby ERK 2 is the predominant isoform. Knock-out mice models showed that 
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ERK 2 can substitute most functions of ERK 1 but ERK 2 knock-out mice die early in 

development indicating that ERK 1 is not able to compensate ERK 2 (Shaul and Seger, 2007). 

Additionally, ERK 1 has an alternative splice form termed ERK 1c that possesses unique 

functions that are not observed with any other ERK (Aebersold et al., 2004; Yung et al., 

2000).  

 

About half of the identified ERK 1/2 substrates are nuclear proteins, of which the main group 

consisting of transcription factors, mostly regulating immediate early genes. For example, the 

nuclear ETS domain-containing Elk1 transcription factor induces the expression c-Fos, which 

is an important immediate early gene involved in proper progression of proliferation and 

differentiation (Eferl and Wagner, 2003; Treisman, 1996). Other immediate early genes such 

as c-Myc and Fra1 (Murphy et al., 2004) are activated as well. Further, immediate or late 

genes like members of the nuclear receptor family, including the oestrogen receptor (Kato et 

al., 1995), PPARγ (Hu et al., 1996), retinoic X receptor alpha (RXRα) (Solomon et al., 2001), 

and the glucocorticoid receptor (GR) (Krstic et al., 1997) have to be mentioned as ERK 

signalling target genes as well, although mostly suppression of transcription has been reported 

for these genes. One of the main transcription repressors regulated by ERK 1/2 is Ets2 

repressor factor (Erf1), which suppresses transcription in many resting cells and is exported 

from the nucleus after phosphorylation by ERK which thereby alleviates its suppression of 

transcription (Plotnikov et al., 2011). For keratinocytes Gazel et al. identified Elk1, Elk4, and 

forkhead box D3 (FOXD3) as the principle targets of the ERK pathway while sharing the 

signalling targets forkhead box D1 (FOXD1), aryl hydrocarbon receptor nuclear translocator 

(ARNT), and upstream stimulatory factor 1 (USF1) with the p38 pathway (Gazel et al., 2008). 

Beside its well-known regulation of transcription factors, it was shown that ERK 2 can 

directly regulate gene expression by activity-independent binding to promoter regions of 
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certain genes (Hu et al., 2009). 

Another important effect, even if ERK has only an accessory role (Plotnikov et al., 2011), is 

the influence of the ERK cascade on chromatin remodelling by regulating for example histone 

deacetylase 4 (HDAC4) (Zhou et al., 2000), the chromatin-arranging proteins histone H3 and 

HMG-14 (Brami-Cherrier et al., 2009; Soloaga et al., 2003), or the PolyADP-ribose 

polymerase 1 (PARP1) (Cohen-Armon et al., 2007).  

Despite many other signalling pathways the ERK 1/2 MAPK pathway has been demonstrated 

to be active in epidermis and cultured keratinocytes in vitro. It plays a key role in regulating 

keratinocyte proliferation, differentiation, and survival (Eckert et al., 2002; Johansen et al., 

2003). ERKs are activated in Psoriasis and are involved in epidermal hyperproliferation and 

skin inflammation (Hobbs et al., 2004; Takahashi et al., 2002) and can regulate the migration 

of epithelial sheets during wound healing (Matsubayashi et al., 2004) as well as the response 

to mechanical stretching in the epidermis (Yano et al., 2004). The study by Gazel et al. 

identified the ERK pathway as positive regulator of the RNA splicing machinery and nuclear 

envelope components, while it suppresses the steroid synthesis and mitochondrial energy 

production in keratinocytes. Along with the p38 pathway it is involved in promotion of 

epidermal differentiation and the repression of genes that antagonize wound repair, 

inflammation, and immune response (Gazel et al., 2008). 
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I.4. THE TRANSCRIPTION FACTOR POU2F3 
 
POU domain transcription factors belong to a family of transcription factors with a 

homeodomain. Most of the POU proteins bind to a specific octamer DNA motif, 5’-

ATGCAAAT-3’ regulating promoter-dependent and cell type-specific pathways during 

development and cellular differentiation (Ryan and Rosenfeld, 1997). POU domain proteins 

contain a bipartite DNA-binding domain consisting of a POU-specific segment, which is 

characterized by four α-helices surrounding a hydrophobic core and a POU homeodomain 

consisting of a helix-turn-helix structure with three α-helices. A flexible linker that enables the 

protein to adopt various monomer configurations on DNA divides the two domains. The 

regions outside the POU domain are divergent and contain the transactivation domains. A 

region with significant similarity to the canonical sterile α motif/pointed domain was 

suggested to function essentially as a protein-protein interaction interface (Cabral et al., 2003) 

(Figure 11). 

POU interacting proteins can be classified into four classes: DNA-binding transcriptional 

activators, coregulators, basal factors, and replication factors (Andersen and Rosenfeld, 2001; 

Herr and Cleary, 1995). Despite their DNA-binding ability POU domain proteins have also 

been shown to regulate transcription through protein-protein contacts, in a DNA binding-

independent manner (Sugihara et al., 2001). POU factors can be modified by phosphorylation 

leading to modification of binding to the DNA (Segil et al., 1991). The expression of several 

POU domain genes has been described in epidermis, namely oct-1, oct-6, and pou2f3. 

POU2F3, also known as Oct-11, Epoc-1 or Skn-1, is highly homologous to the POU domain 

of Oct-1 (POU2F1) and Oct-2 (POU2F2) and therefore belongs to the class-II POU domain 

proteins as classified by He et al. (He et al., 1989) and Spaniol et al. (Spaniol et al., 1996). It 

was first isolated in 1990 in a screen for novel POU domain genes expressed during 

spermatogenesis (Goldsborough et al., 1990) and three years later characterized in the mouse 
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by Goldsborough et al. (Goldsborough et al., 1993). In the same year Andersen et al. 

(Andersen et al., 1993) and Yukawa et al. (Yukawa et al., 1993) independently cloned the 

cDNA of POU2F3 and characterized its expression pattern in rat and mouse. Analysis of the 

expression during mouse development by Andersen et al. revealed a biphasic pattern of 

expression with a signal at embryonic day 7.5 that disappeared between day 9.5 and 12.5 and 

reappeared on day 14.5. In situ hybridisation of rat embryos gave an intense signal only at 

embryonic day 17 in epidermal structures throughout the embryo, with no specific detection 

in any other region. In adult rat skin POU2F3 is expressed in suprabasal cells of the epidermis 

and in cortex cells of the hair follicle. In contrast to these results Yukawa et al. showed the 

expression in basal epidermal cells and in some cellular components of the hair follicle but 

not in suprabasal layers of the epidermis. Additionally, they found not only POU2F3 

expression in mouse skin but also in thymus, stomach, and testis. Furthermore, Faus et al. 

(Faus et al., 1994) detected as well POU2F3 RNA hybridisation in the basal rather than 

suprabasal epidermal layer of human neonatal skin, while in 2003, a fourth group 

investigating human POU2F3 function, detected mRNA presence only in the suprabasal 

epidermal layers (Cabral et al., 2003). The expression pattern remained controversial although 

immunohistochemical analysis of mouse tissue showed the expression of the protein 

throughout all epidermal layers with the highest expression in the suprabasal layers (Andersen 

et al., 1997b) so that Andersen et al. suggested in their final conclusion, that the expression is 

not restricted to a specific epidermal layer but clearly overlaps with the expression of specific 

markers of differentiating keratinocytes. 

Alternatively spliced transcript variants encoding multiple isoforms have been observed for 

the pou2f3 gene. Variant 2, Skn-1i differs in the 5' UTR, lacking a portion of the 5' coding 

region, and uses an alternate start codon, compared to variant 1, Skn-1a. The encoded isoform 

2 is longer and has a distinct N-terminus. 
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Figure 11 - Genomic organization of the human POU2F3 gene 

The transcription start site for POU2F3 isoform 1 is indicated by an arrow. Exons are represented as boxes, 
introns are numbered, and the stop codon is labelled as TGA. The POU-specific domain (POU-S), the POU-
homeodomain (POU-HD), and the pointed-like domain (PLD) and the corresponding amino acid residues are 
represented. 
 

Skn-1a is predicted to encode a 54 kD protein that binds the promoter region and regulates the 

expression of KRT 10 (Andersen et al., 1993), SPRR2A (Fischer et al., 1996), IVL (Welter et 

al., 1996), human papillomavirus (HPV) 1A (Andersen et al., 1997a), HPV 16, and HPV 18 

(Yukawa et al., 1996). The divergent N-terminus of Skn-1i modifies the transactivation ability 

of POU2F3. Its N-terminus might alternate the conformation, possibly through the formation 

of intramolecular complexes and blockage of the function of the helices involved in protein-

DNA interaction. Skn-1i transcript and protein are expressed at much lower level than Skn-1a 

(Andersen et al., 1997a). It has been speculated that the isoforms have different activating and 

inhibiting functions in keratinocyte differentiation and proliferation. Another splice variant 

induced specifically in normal human epidermal keratinocytes by high Ca2+, a trigger for 

keratinocyte differentiation, supports this hypothesis (Nakajima et al., 2008). 

A correlation of POU2F3 activity, increased KRT 10 expression, and PKC activation was 

seen and a reporter gene assay indicated direct binding of POU2F3 on the KRT 10 promoter 

(Andersen et al., 1993; Andersen et al., 1997b). A second differentiation related gene, 

SPRR2A a member of the small proline-rich family of cornified envelope precursor proteins, 

was shown to be upregulated by direct binding of POU2F3 to the regulatory promoter 

sequence (Fischer et al., 1996). On the other side, the keratinocyte differentiation related 
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genes encoding IVL and profilaggrin are downregulated by POU2F3. Competition 

experiments with ΔNp63, an essential factor for epidermal morphogenesis, showed 

antagonizing effects of POU2F3 and ΔNp63 on KRT 14 and KRT 10 expression (Lena et al., 

2010). The interaction with protein complexes like AP-1 (Jang et al., 2000; Welter et al., 

1996), Ets (Kahle et al., 2005), Ese-1 (Cabral et al., 2003), and CBP/p300 (Sugihara et al., 

2001) enables to target several epidermal genes at once and multiple mechanism of regulation.  

POU2F3 knock-out mice did not reveal a distinct phenotype. Mice did not exhibit any failure 

in epidermal terminal differentiation after analysing the morphology and the expression of 

KRT 14, KRT 1, KRT 10, and filaggrin (FLG). LOR expression was slightly changed with 

POU2F3 KO mice having more superficial expression of LOR and the layer of LOR positive 

cells appearing thinner, while the mRNA levels are unchanged. These results indicate that 

POU2F3 is not essential for terminal differentiation of epidermal keratinocytes and that there 

are compensatory mechanisms and molecules that orchestrate epidermal stratification 

(Andersen et al., 1997b). Another study by Hildesheim et al. (Hildesheim et al., 2001) 

concluded that POU2F3 primarily promotes keratinocyte proliferation and subsequently 

influences stratification by increasing the number of cells inducing differentiation genes and 

committing to terminal differentiation. 

Nevertheless, the POU2F3 KO mouse model revealed faster wound closure of KO mice 

compared to wild type mice using meshed skin graft or simple incisional wounding 

techniques. POU2F3 is expressed at low level at the suprabasal cells of the migratory wound 

front. Therefore, Andersen et al. hypothesized that this downregulation facilitates the 

phenotype change of wound front keratinocytes to a KRT14 and SPR-1 positive post-mitotic 

activated cell phenotype (Andersen et al., 1997b). In POU2F3 KO mice this upregulation is 

enhanced and might explain the faster wound closure. 

Additionally, POU2F3 is a candidate tumour suppressor protein. Aberrant promoter 
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methylation of this gene may play a role in cervical cancer (Abercrombie et al., 1960; Zhang 

et al., 2006b). 
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Determining the molecular mechanism of -opioid receptor (DOR) mediated influence 

on skin homeostasis and wound healing 

 

The skin is our largest body organ and must bear a burden of constant environmental assaults while 

maintaining epidermal integrity and homeostasis. Tissue injury is one of the most severe disruptive 

incidents skin encounters and requires an orchestrated interaction between immune cells, 

keratinocytes, fibroblasts, and endothelial cells in order to restore the homeostasis. The local 

neuroendocrine system will thereby act to activate cellular messengers, to coordinate responses to the 

changing environment. The opioidergic system is part of this cutaneous communication network and 

could thereby influence cellular functions. Currently, there is a lack of knowledge how the opioid 

receptor signalling accomplishes these tasks. 

 

Furthermore, local applications of opioids are used for treatment of inflammatory pain conditions such 

as burns, skin grafts, and chronic wounds. In order to tap the full potential as well as for safe and 

effective clinical applications of such treatments, we need to understand the molecular mechanisms 

through which they alter keratinocyte functions. 

 

The present work is based on previous in vivo observations in DOR-deficient mice (Bigliardi-Qi et al., 

2006). These mice exhibit markedly increased expression of KRT 10, alongside an atrophic epidermis, 

suggesting to a role of the DOR during stratification and skin homeostasis. Accompanying a delay in 

re-epithelisation during the wound healing process, the wound margins showed an epidermal 

hypertrophy of activated, KRT 6 positive keratinocytes. 

 

The present work was aiming to investigate the underlying mechanisms that could explain the aberrant 

epidermal phenotypes and delayed wound healing in mice lacking the DOR. The study describes the 

molecular consequences of DOR activation in keratinocytes and uncovers downstream effectors 

influencing the expression of keratinocyte differentiation related genes. Using standard in vitro 
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overexpression systems and keratinocyte differentiation models, as well as organotypic skin models, 

we addressed the role of DOR in gene regulation and its influence on epidermal morphogenesis. 



62 

 



 

 
 

CHAPTER III 

RESULTS 
 
 
 
  



Results  Chapter III 

64 

III.1. The cell membrane localisation of the DOR in cultured 
primary, HaCaT, and N/TERT-1 keratinocytes is Calcium 
dependent 

 

Although functionality of opioid receptors under standard keratinocyte culture conditions has 

been shown before (Bigliardi et al., 2002; Nissen et al., 1997), the expression pattern in vivo 

suggests a refinement of these conditions in order to perform suitable in vitro studies. 

Under standard keratinocyte culture conditions in keratinocyte growth medium (K-SFM), 

supplemented with bovine pituitary extract (BPE) and epidermal growth factor (EGF), at a 

basal Calcium (Ca2+) concentration of 0.09 mM, cells (primary keratinocytes, HaCaT, 

N/TERT-1) are round and more separated from each other than in medium with a higher Ca2+ 

concentration of 1.2 mM. Colonies spread out more and cells adhere less tight to each other in 

low Ca2+. The formation of Ca2+ dependent desmosomal cell-cell junctions reduces 

dramatically, in order to achieve culture conditions for fast expansion of keratinocytes, 

without induction of differentiation due to contact inhibition in tightly adherent colonies. The 

overexpression of a green fluorescent protein (GFP) tagged DOR in HaCaT and primary 

keratinocytes revealed distinct localisation of the receptor under these two different culture 

conditions (Figure 12). In high Ca2+, DOR favours membrane localisation, whereas under low 

Ca2+, the receptor is internalised and often accumulates at the perinuclear region (Figure 12). 

This effect is solely due to the Ca2+ concentration and not differentiation dependent. Although 

primary keratinocytes start to induce differentiation markers like KRT 10 under 1.2 mM Ca2+ 

culture conditions, however, HaCaT cells are not differentiating under these conditions, but 

show the same distribution pattern. 
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Figure 12 - DOR-GFP 
expression in primary 
keratinocytes and the 

HaCaT cell line 

HaCaT cells and primary 
keratinocytes (NHEK) were 
grown for 5 days in 0.09 mM 
or in 1.2 mM Ca2+ medium (K-
SFM, BPE, EGF) and then 
fixed in 4% formaldehyde. 
Cells were subjected to 
immunocytochemistry using 
anti-GFP in order to visualize 
DOR. Nuclei were 
counterstained with Hoechst 
dye. Fluorescence images were 
taken with a Zeiss AxioImager 
Z1 microscope equipped with 
a Plan-Neofluar 40x/1.30 NA 
oil-immersion lens. 

 

The localisation changes are reversible in both directions. The keratinocyte cell line N/TERT-

1 is routinely cultured under medium Ca2+ concentrations of 0.4 mM, which leads to a 

membrane localisation of DOR-GFP. If the cells are then shifted to 0.09 mM low Ca2+ 

medium overnight a loss of Ca2+ dependent desmosomal structures and the internalisation of 

DOR-GFP can be observed (Column 1 of Figure 13). Re-addition of Ca2+ to a concentration 

of 1.2 mM, results in gradually re-establishment of desmosomal structures and prior to that, in 

DOR membrane re-localisation. Already after 15 min in high Ca2+, the DOR distribution 

pattern indicates that DOR is undergoing intracellular redistribution. One hour after addition 

of Ca2+ (Column 3 of Figure 13), DOR has mainly located back into the membrane, whereas 

desmoplakin, used as the marker for desmosomal structure formation, only partially re-

localised. Only after eight hours of incubation, a re-formation of mature desmosomes can be 

observed (Column 4 of Figure 13). Cells constantly cultured in high Ca2+ without Ca2+ switch 

display fully mature desmosomes and stable DOR membrane expression (Column 5 of Figure 

13) and might reflect more closely the situation in vivo. These findings suggest that Ca2+ 

dependent cell-cell adhesion influences the DOR concentration in the membrane and through 

that, possibly the functionality of DOR in cultured keratinocytes. 
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Figure 13 - Calcium influences DOR subcellular localisation 

N/TERT-1 cells overexpressing DOR-GFP were cultured until 90% confluence in 0.4 mM Ca2+ medium. 
Overnight they were incubated in 0.09 mM Ca2+ medium. Morphology change and nearly complete loss of 
desmosomal junctions can be observed while DOR is internalised. Medium was then changed to 1.2 mM Ca2+ 
medium and cells were fixed after indicated time points in 4% paraformaldehyde. In order to visualize cell-cell-
junction assembly and DOR localisation immunocytochemistry was performed using anti-GFP and anti-
desmoplakin antibodies. Nuclei were visualized using Hoechst dye. Fluorescence image stacks were obtained at 
0.1 m intervals in Z-section with an Olympus FV1000 microscope and an UPLFLN 40x/1.3 NA oil-immersion 
lens (Olympus, Tokyo, Japan). 
 
 

III.2. Internalised DOR-GFP protein is localised in different 
subcellular compartments 

 
Further, it was of interest in which subcellular compartment the receptor is localised upon low 

Ca2+ mediated internalisation. Several studies from the group of Ulla E. Petäjä-Repo and M. 

Bouvier suggested, that the endoplasmic reticulum (ER) plays an important role in receptor 

maturation and cell-surface localisation (Markkanen et al., 2008; Petäjä-Repo et al., 2000b; 

Petäjä-Repo et al., 2001b; Tuusa et al., 2007; Tuusa et al., 2010b). Petäjä-Repo et al. 

estimated that only 40% of the DOR precursor proteins are converted to the mature form and 

eventually reach the cell surface. The other fraction is retained in the ER and subjected to 

proteasomal degradation (Petäjä-Repo et al., 2000a; Petäjä-Repo et al., 2001a). Therefore, 

immunocytochemical staining of DOR-GFP overexpressing keratinocytes with a calnexin 
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antibody was performed and the localisation of DOR-GFP and calnexin signals analysed 

using confocal microscopy. Calnexin together with calreticulin promotes the folding of 

glycosylated proteins in the ER and interacts with DOR as shown by Tuusa et al. (Tuusa et al., 

2010a). Indeed, a partial co-localisation of DOR and calnexin can be observed, yet the 

majority of DOR is not localised in the ER under low Ca2+ culture conditions of keratinocytes. 

Under high Ca2+, a similar amount of DOR co-localises with calnexin, indicating a similar 

maturation rate of DOR under both conditions (Figure 14). Therefore, the internalisation 

under low Ca2+ culture conditions might not reflect a lower maturation rate, accompanied with 

less cell surface exposure of DOR, so that other mechanisms might be involved. 

 
Figure 14 - DOR co-localisation study with ER marker Calnexin 

HaCaT cells overexpressing DOR-GFP were cultured for 5 days in either 0.09 mM or 1.2 mM Ca2+ medium (K-
SFM, BPE, EGF) to 80% confluence. Cells were fixed in 4% paraformaldehyde and subjected to 
immunocytochemistry for DOR and ER localisation, using anti-GFP and anti-calnexin antibodies. Nuclei were 
visualized using Hoechst dye. Fluorescence image stacks were obtained at 0.45 m intervals in Z-section with an 
Olympus FV1000 microscope and an UPLSAPO 100X/1.4 NA oil-immersion lens (Olympus, Tokyo, Japan). 
 

It was further reported that the half-life of DOR in the membrane is about 20 h (Petäjä-Repo 

et al., 2000c). To exclude that inefficient membrane localisation, due to high membrane 

turnover with rapid receptor endocytosis, is the reason for internalized receptor in low Ca2+, 

the co-localization of DOR with endosome marker early endosome antigen 1 (EEA1) was 

analysed (Figure 15). A partial co-localisation of DOR with the endosome marker was 
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detected in low Ca2+ cultures. The amount of DOR-GFP positive particles exceeds that of the 

early endosomes strongly. Therefore, co-localisation might represent random events. 

 
Figure 15 - DOR co-localisation study with early endosome marker EEA1 

HaCaT cells overexpressing DOR-GFP were cultured for 5 days in 0.09 mM (K-SFM, BPE, EGF) to 80% 
confluence. Cells were fixed in 4% paraformaldehyde and subjected to immunocytochemistry for DOR and early 
endosomes, using anti-GFP and anti-EEA1 antibodies. Nuclei were visualized using Hoechst dye. Fluorescence 
image stacks were obtained at 0.4 m intervals in Z-section with an Olympus FV1000 microscope and an 
UPLSAPO 100X/1.4 NA oil-immersion lens (Olympus, Tokyo, Japan). 
 

To fully exclude the lysosomal degradation pathway as target of internalised receptor under 

low Ca2+ conditions, further analysis of the associated of DOR-GFP with the lysosome-

associated membrane protein 1 (LAMP1) were carried out. Immunocytochemical staining 

confirmed again only a partial co-localisation. Under both low and high Ca2+ culture 

conditions, similar amounts of DOR and LAMP1 (Figure 16) co-localise as seen before for 

the ER protein calnexin (Figure 14). 

In conclusion, the staining for subcellular DOR distribution confirmed partial localisation of 

DOR with ER and lysosomes, as well as early endosomes. No significant difference of co-

localisation signal could be observed between low and high Ca2+ cultured cells after analysis 

with the Olympus FluoView software. Additional studies are necessary to explore the 

subcellular localisation of overexpressed DOR-GFP in keratinocytes under low Ca2+ culture 

conditions, in order to understand the functionality of the DOR especially in primary 

keratinocytes in culture. 
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Figure 16 - DOR co-localisation study with lysosome marker LAMP1 

HaCaT cells overexpressing DOR-GFP were cultured for 5 days in either 0.09 mM or 1.2 mM Ca2+ medium (K-
SFM, BPE, EGF) to 80% confluence. Cells were fixed in 4% paraformaldehyde and subjected to 
immunocytochemistry for DOR and lysosomes, using anti-GFP and anti-LAMP1 antibodies. Nuclei were 
visualized using Hoechst dye. Fluorescence image stacks were obtained at 0.45 m intervals in Z-section with an 
Olympus FV1000 microscope and an UPLSAPO 100X/1.4 NA oil-immersion lens (Olympus, Tokyo, Japan). 
 
 

III.3. Immediate morphological changes in response to DOR 
activation measured by impedance recording 

 
The classical G protein dependent signalling pathway, activated by DOR, can result in 

morphological changes following second messenger activation. These changes can be 

detected by cellular impedance recording using the xCELLigence System (Roche). HaCaT 

cells were cultured on the surface of integrated microelectrode sensors in the bottom of the 

wells in electronic plates (E-Plates). The presence or absence of cells sensitively and precisely 

affects the electronic and ionic exchange between cell culture media and the microelectrodes. 

Thus, the electrode impedance provides information about the biological status of the cells 

and can monitor morphological changes. On order to test the potential of several DOR ligands 

cells were treated with SNC80, a highly DOR specific agonists, [Met5]-enkephalin, the DOR 

specific endogenous peptide agonist, and naltrindole, the higly DOR selective antagonistThe 

assay system expresses impedance in arbitrary Cell Index (CI) units. The CI at each time point 

is defined as (Rn-Rb)/15; where Rn is the cell-electrode impedance of the well when it contains 
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cells and Rb is the background impedance of the well with the media alone (Abassi et al., 

2004; Fitzsimons et al., 2004; Solly et al., 2004). After HaCaT cells did adhere to the plate 

and the recording stabilized, cells were treated at final concentrations of 100 nM SNC80, 

100 nM [Met5]-enkephalin, 10 M naltrindole or the equivalent concentration of the buffer 

vehicle DMSO. Cell responses were monitored in real-time at one-minute intervals. Initial 

cellular responses were detected within minutes of ligand addition. Maximal responses 

towards SNC80 (Figure 17A) and [Met5]-enkephalin (Figure 17B) were observed during the 

first 35-45 minutes after agonist addition. The addition of agonist resulted in a robust response 

in DOR-overexpressing cells and a slight increase of the CI in control cells in comparison to 

vehicle treated cells. The addition of medium itself and the manipulation of the plate outside 

the incubator affected the CI, but the ligand-mediated effect in DOR-overexpressing cells was 

still significantly above the control. In DOR-overexpressing cells the SNC80 induced increase 

of CI can be reduced by co-administration of naltrindole, but naltrindole itself results in a 

significant increase of the CI, which is most likely as well an effect on the morphology of the 

HaCaT cells. The peak for naltrindole appears after 27 minutes, clearly before the SNC80 

caused maximal response at 40 minutes (Figure 17C). Naltrindole efficiently blocks the 

[Met5]-enkephalin mediated CI changes as well (Figure 17D). The shape of the curve for both 

the GFP control and DOR-overexpressing cells indicates that naltrindole alone influences two 

different signalling mechanisms. After the first peak, a second increase of the CI is observed, 

which starts around 30 minutes after ligand addition and reaches the maximum around 40-

45 minutes. In control cells both the agonists and antagonist change the CI stronger than the 

vehicle control, while naltrindole results in a higher response than SNC80 and [Met5]-

enkephalin (Figure 17E and F). This indicates that both agonist and antagonist influence 

intracellular signalling with an effect on morphology in control cells, possibly through 

endogenously expressed receptors that are present at low levels. 
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Figure 17 - Impedance changes indicate morphological responses to DOR ligand administration 

HaCaT cells overexpressing DOR or control cells were seeded at 4000 cells per well on E-Plates, and the cells 
were continuously monitored for two days to ensure a stable CI measurement. After two days a final 
concentration 100 nM of SNC80, 100 nM [Met5]-enkephalin, 10 M naltrindole or 0.04 % DMSO vehicle 
control were added to the cells without further medium change. Cell response was monitored every 1 min for 3 h. 
All curves are normalized to the time point after the two days of culture exactly before removing the plate for 
addition of ligands. (A) To control or DOR-overexpressing cells SNC80 or vehicle control medium were added. 
In (B) [Met5]-enkephalin was added to control cells or overexpressing cells. (C) The effect of DOR inhibition by 
naltrindole on the SNC80 mediated change of CI in DOR-overexpressing cells was measured and in (D) the 
same inhibitory effect by naltrindole on [Met5]-enkephalin was monitored in DOR-overexpressing cells only. (E) 
and (F) represent the control cells treated with both agonists and the antagonist naltrindole. The graphs represent 
the means of quadruplicates (n = 4) from one experiment (n = 1). Error bars indicate standard deviation.  
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III.4. DOR activation triggers MAPK pathway signalling in 
keratinocytes 

 
That extracellular signal-regulated kinase 1 and 2 (ERK 1/2) are downstream signalling 

targets of several GPCRs, including DOR, is widely accepted in this field of research. The 

majority of studies used CHO (Xu et al., 2010) or HEK293 (Eisinger and Ammer, 2008a; 

Eisinger and Ammer, 2009) cells overexpressing a tagged DOR or neuronal cell lines such as 

NG108-15 (Eisinger and Ammer, 2008b), endogenously expressing high levels of DOR, to 

investigate the intracellular signalling mechanisms. These models were applied to 

keratinocytes by overexpressing the GFP-tagged receptor in two different keratinocyte cell 

lines. HaCaT cells (Boukamp et al., 1988; Schoop et al., 1999) are spontaneously 

immortalised cells, whereas N/TERT-1 cells are immortalized by introducing the expression 

of telomerase reverse transcriptase (TERT) (Dickson et al., 2000b; Natarajan et al., 2006; 

Utikal et al., 2009). Both cell lines have the potential to induce keratinocyte differentiation, 

but N/TERT-1 cells resemble more closely the behaviour of primary keratinocytes in culture. 

Experiments, addressing the question whether the endogenous DOR agonist [Met5]-

enkephalin and the highly DOR specific synthetic alkaloid agonist SNC 80 were able to 

trigger ERK 1/2 signalling, were performed. HaCaT cells overexpressing DOR and control-

transduced cells were treated at different concentrations from 100 nM to 10 M of SNC 80 for 

15 minutes, cells lysed, and subjected to Western blot analysis for phosphorylated ERK 1/2 as 

indicator for activation. A response towards the ligand can only be detected in DOR 

overexpressing cells. Figure 18A shows a solid response of the ERK signal 15 minutes after 

addition of SNC 80, regardless of the concentration applied. This indicates that a 

concentration of 100 nM is sufficient to induce a maximal response in these cells. No 

phosphorylation of ERK 2 can be detected in control cells as seen in Figure 18B. [Met5]-

enkephalin applied only at one concentration of 100 nM induces as well a strong 
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phosphorylation of ERK 2, specifically 

in DOR overexpressing cells but not in 

control cells (Figure 18A).  

Figure 18 - Endogenous and synthetic DOR 
agonists mediate ERK signalling pathway 

activation in keratinocytes 

HaCaT cells stably overexpressing DOR-GFP 
or control transduced cells were cultured until 
80% confluence and then starved in serum free 
medium for 6 h. For (A) and (B) the diluted 
ligand was added at concentrations of 100 nM, 
1 M, and 10 M for 15 min. Cells were lysed 
in modified RIPA buffer and lysates underwent 
protein quantification. 20 g of protein lysate 
were subjected to Western blotting for detection 
of phospho ERK, total ERK and tubulin by 
fluorography using the Odyssey infrared 
imager. Panel (A) shows ERK 2 
phosphorylation in DOR expressing cells after 
SNC 80 mediated activation of the receptor 

whereas control cells in panel (B) display no ERK 2 activation. Samples in panel (C) were treated with 100 nM 
[Met5]-enkephalin for 10 min, then lysed, and subjected to Western blot analysis as for panel A) and B). Only 
DOR cells treated with agonist display specific ERK 2 phosphorylation. 
 

Comparing the magnitude of ERK 2 activation, a difference between both ligands could be 

observed, while the duration was similar (Figure 20C). In HaCaT cells, [Met5]-enkephalin is 

more potent in inducing an ERK 2 phosphorylation than SNC 80. A time course study of ERK 

activation over two hours for SNC 80 and [Met5]-enkephalin shows the maximal response for 

[Met5]-enkephalin five minutes after addition of ligand and for SNC 80 ten minutes after 

addition (Figure 19). The semi-quantitative analysis of the Western blot signal from six 

samples per time point in each group, shows an increase of ERK 2 phosphorylation after 

[Met5]-enkephalin addition of about 16 fold, while SNC 80 leads to only six fold increase 

compared to vehicle controls at time zero. A two-way ANOVA analysis revealed a significant 

difference between the SNC 80 and [Met5]-enkephalin groups at five and ten minutes. In both 

groups, the phosphorylation of ERK 2 decreases fast within 30 minutes, but stays slightly 

above the basal level for at least 60 minutes (Figure 19C). The process of DOR mediated 

ERK activation can be described as transient in HaCaT keratinocyte cells. 
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Figure 19 - DOR activation mediates transient ERK 1/2 signalling in HaCaT keratinocytes with a different 
maximal response for [Met5]-enkephalin and SNC 80 

HaCaT cells stably overexpressing DOR-GFP cells were cultured until 80% confluence and then starved in 
serum free medium for 6 h. Ligands were added at concentrations of 100 nM for indicated times, cells lysed in 
modified RIPA buffer, and lysates underwent protein quantification. 20 g of protein lysate were subjected to 
Western blotting for detection of phospho ERK, total ERK and tubulin by fluorography using the Odyssey 
infrared imager. Panel (A) shows ERK 2 phosphorylation in DOR expressing cells after [Met5]-enkephalin 
mediated activation of the receptor and panel (B) displays ERK 2 phosphorylation in DOR expressing cells after 
SNC 80 treatment. (C) shows the graph of the semi-quantification of ERK phosphorylation over time. Each 
value represents mean of six replicates from two independent experiments. Error bars indicate standard 
deviation. Two-way ANOVA: *** p < 0.001 for time point five and ten minutes. 
 

The second keratinocyte cell line N/TERT-1 shows similar responsiveness towards DOR 

agonists [Met5]-enkephalin and SNC 80. The difference observed, is the magnitude of the 

response, which is lower in N/TERT-1 than in HaCaT cells. A three to four fold increase in 

ERK phosphorylation five minutes after addition of ligand, compared to the six to 15 fold 

increase in HaCaT cells, was observed. In addition, [Met5]-enkephalin has the same potency 

as SNC 80 and the phosphorylation level of ERK decreases fast, within 15 minutes to a basal 

level. Therefore, DOR-overexpressing N/TERT-1 cells show a less pronounced and more 

transient activation of ERK than HaCaT cells (Figure 20). 
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Figure 20 - DOR activation mediates transient ERK 1/2 signalling in N/TERT-1 keratinocytes with a 

similar response for [Met5]-enkephalin and SNC 80 

N/TERT-1 cells stably overexpressing DOR-GFP or control transduced cells were cultured until 80% confluence 
and then starved in serum free medium over night. Ligands were added at concentrations of 100 nM for indicated 
times, cells lysed in modified RIPA buffer, and lysates underwent protein quantification. 20 g of protein lysate 
were subjected to Western blotting for detection of phospho ERK, total ERK and tubulin by fluorography using 
the Odyssey infrared imager. Panel (A) shows ERK 2 phosphorylation in DOR expressing cells after [Met5]-
enkephalin mediated activation of the receptor and panel (B) displays ERK 2 phosphorylation in DOR 
expressing cells after SNC 80 treatment. (C) shows the graph of the semi-quantification of ERK phosphorylation 
over time comparing the [Met5]-enkephalin and SNC 80 mediated response in DOR-overexpressing N/TERT-1. 
Each value represents the mean of three independent experiments. Error bars represent standard deviation. 
 

For further confirmation of a DOR specific ERK activation in keratincoytes, the DOR 

inhibitor naltrindole was used to block DOR activation in the presence of agonists. In both, 

HaCaT and N/TERT-1 cells, a naltrindole concentration of 10 µM is sufficient to fully block 

the SNC80 mediated activation of ERK 2. Antagonist was added five minutes prior to agonist, 

in order to effectively block the receptors. Figure 21A, the immunoblot for phosphorylated 

ERK, shows the increase in phosphorylation ten minutes after addition of SNC 80 and 

reduced phosphorylation signal when naltrindole was co-applied. The statistical analysis after 

quantification of the relative ERK phosphorylation reveals a significant induction by 

application of SNC80 alone and its inhibition by naltrindole co-application (Figure 21B). 
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Figure 21 - DOR mediated ERK signalling in HaCaT cells can be blocked by DOR specific antagonist 

naltrindole 

HaCaT cells stably overexpressing DOR-GFP were cultured until 80% confluence. Cells were starved in serum 
free medium for 6 h. Foetal calf serum (FCS), as positive control, was added for 30 min, naltrindole 5 min prior 
to SNC80 for co-administration, naltrindole alone for 15 min, and SNC 80 for 10 min. Cells were lysed in 
modified RIPA buffer and lysates underwent protein quantification. 20 g of protein lysate were subjected to 
Western blotting for detection of phospho ERK, total ERK and tubulin by fluorography using the Odyssey 
infrared imager. Panel (A) shows the immnunoblot of the ERK 2 phosphorylation in DOR expressing cells and 
panel (B) the graph of the semi-quantification of ERK phosphorylation. Each value represents the mean of nine 
replicates from three independent experiments. Error bars indicate standard deviation. 
One-way ANOVA: *** p < 0.001. 
 

A similar experiment with N/TERT-1 cells gave the same results (Figure 22). Application of 

SNC80 for ten minutes induced ERK phosphorylation in DOR-overexpressing cells, which 

could successfully be blocked by pre-incubation with naltrindole. Additionally, PD98059 was 

included in this experiment. This inhibitor blocks MEK 1 function and therefore inhibits ERK 

activation further downstream in the DOR signalling cascade. With this inhibitor, the DOR 

mediated signalling cascade is blocked to the same degree as with naltrindole, if DOR agonist 

SNC80 was co-applied in DOR-overexpressing cells. In control cells and if only inhibitor was 

added all residual ERK phosphorylation disappeared. This indicates in the likewise a DOR 

specific ERK activation by the DOR agonist SNC80. 
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Figure 22 - DOR mediated ERK signalling in N/TERT-1 cells can be blocked by DOR specific antagonist 

naltrindole and ERK inhibitor PD98059 

N/TERT-1 cells stably overexpressing DOR-GFP or control-transduced cells were cultured until 80% 
confluence. Cells were starved in serum free medium overnight. Vehicle control DMSO was added for 10 min, 
SNC 80 was added for 10 min, naltrindole 5 min prior to SNC80 for co-administration, naltrindole alone for 
15 min, PD98059 30 min prior to SNC80, and PD98059 alone for 40 min. Cells were lysed in modified RIPA 
buffer and lysates underwent protein quantification. 20 g of protein lysate were subjected to Western blotting 
for detection of phospho ERK, total ERK and tubulin by fluorography using the Odyssey infrared imager. Panel 
(A) shows the immnunoblot of the ERK 1/2 phosphorylation in DOR expressing and control cells and panel (B) 
the graph of the semi-quantification of ERK phosphorylation. Each value represents mean from three 
independent experiments. Error bars indicate standard deviation. One-way ANOVA: ** p < 0.01, * p < 0.05. 
 
 

III.5. DOR signalling in keratinocytes inhibits proliferation in vitro 
 
DOR overexpression dramatically changes the phenotype of N/TERT-1 keratinocytes. 

Colonies of DOR-overexpressing N/TERTs are more spread out than control cell colonies 

(Figure 23), and exhibit drastically reduced cell proliferation rates. 

 
Figure 23 - DOR overexpression changes keratinocyte morphology 

A Phase contrast images of control and DOR N/TERT-1 cultures were captured at 20x magnification using a 
Nikon Eclipse TS100 Microscope. 5 days after plating the same amount of N/TERT-1 cells into standard culture 
vessels, DOR-overexpressing cells formed markedly fewer and smaller colonies, consistent with less 
proliferation and an increase in cell size. 
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Cells display more ruffling at the edges, which might, together with the colony spreading, 

reflects an increased migratory activity. Compared to the control cells the size of the 

keratinocytes increases, which is often seen in keratinocytes with reduced proliferation 

capacity. 

Using the INCUCYTE™ Kinetic Imaging System proliferation was monitored over eight 

days, in order to quantify our observations. The same numbers of N/TERT-1 control and 

DOR-overexpressing cells were plated into a 96-well plate. Phase-contrast images were 

automatically captured every hour and processed by the INCUCYTE software, which 

calculated the percentage confluence per sample. 

 
Figure 24 - The DOR inhibits keratinocyte proliferation 

(A) The proliferation curves of DOR-overexpressing and control cells, in either vehicle control medium or 
100 nM SNC80-containing medium were obtained from the images captured hourly with a 10x objective lens by 
the Incucyte machine. The graph depicts the mean  SEM percentage confluence per field of view of one 
representative experiment run in triplicates, per culture condition. (B) Doubling time was calculated in GraphPad 
Prism from the growth curve in A) using a non-linear regression model and is displayed as mean with upper and 
lower limit. The doubling time for DOR-overexpressing cells increases drastically as compared to control cells. 
 

Figure 24A shows the growth curves of both, control cells and DOR-overexpressing cells, 

cultured in the presence of 100 nM SNC80 or vehicle control. While control cells entered an 

exponential growth phase before plateauing after about six days in culture, DOR cells had a 

markedly reduced proliferative capacity. The addition of the DOR ligand SNC80 into the 

culture medium further decreased cell proliferation to almost undetectable levels. 
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Accordingly, the doubling time of DOR-overexpressing cells (24.4 - 25.9 hours) under basal 

conditions was about 1.4 times higher than that of control cells (17.5 - 18.8 hours), and further 

increased to 42.8 - 51.5 hours under SNC80, while control cells were unaffected by this 

treatment (doubling time 17.4 – 17.9 hours) (Figure 24B). 

 

III.6. DOR delays in vitro keratinocyte differentiation 
 
In order to investigate if DOR is involved in epidermal homeostasis the capability of control 

and DOR-overexpressing keratinocytes to differentiate was investigated. The transition from 

basal to spinous epidermal layer keratinocytes is accompanied by suppression of KRT 5 and 

KRT 14 transcripts and the upregulation of KRT 1 and KRT 10 intermediate filaments (Fuchs 

et al., 1980). The changes in expression of KRT 1 and KRT 10 in an in vitro model for 

keratinocyte differentiation using HaCaT and N/TERT-1 cells were analysed. Both cell types 

were grown to confluence before differentiation was induced by growth factor withdrawal in 

the presence of DOR agonists. HaCaT cells were differentiated for up to 48 hours in the 

presence of SNC80. Within six hours, control cells start to induce KRT 1 and KRT 10 

expression and continuously increase the expression level during further differentiation 

(Figure 25A and B) as observed by quantitative real-time PCR. 12 hours after induction of 

differentiation in the presence of SNC80 for both genes, a significant difference between 

control and DOR cells is observed. DOR cells induce KRT 1 with a factor of 1.8, while 

control cells express 3.5 times more KRT 1. A similar trend is observed for KRT 10. This 

difference is lost after additional 12 hours of differentiation when both cells express the same 

amount of KRT 1 and 10. This expression pattern indicates a markedly delayed induction of 

KRT 1 and KRT 10 intermediate filaments upon keratinocyte differentiation in DOR-

overexpressing cells. 
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A different pattern is observed for the differentiation marker IVL (Figure 25C). This early-

cornified envelope gene is normally induced after prolonged differentiation. Indeed an 

induction of about three fold within 48 hours is observed in both control and DOR-

overexpressing cells. Along the way, DOR cells display a first rapid increase of IVL 

expression four hours after induction of differentiation in the presence of SNC80 that is not 

observed in control cells. These changes indicate the involvement of the DOR in the 

differentiation process but the limited differentiation capacity of HaCaT cells does not allow 

further conclusions. 

 
Figure 25 - The DOR alters expression of keratinocyte differentiation related genes in HaCaT 

keratinocytes 

HaCaT cells were grown to confluence and subjected to growth factor withdrawal induced differentiation. RNA 
was extracted at indicated time points and subjected to real-time PCR quantification. (A) In the presence of 
100 nM SNC80 GFP control cells rapidly induce KRT 10 expression while DOR-overexpressing cells do not 
induce the expression within 12 h of incubation. 24 h after addition of ligand and induction of differentiation, no 
difference in KRT 10 expression level between DOR and control cells can be detected. (B) Similar to KRT 10 
expression, in the presence of 100 nM SNC80 GFP control cells rapidly induce KRT 1 expression while DOR-
overexpressing cells start the expression after about 12 h of incubation. 24 h after addition of ligand and induced 
differentiation no difference in KRT 1 expression level between DOR and control cells can be detected. (C) The 
analysis of mRNA expression of IVL in the presence of SNC80 reveals a rapid induction in DOR-overexpressing 
cells after 4 h of incubation before the expression level is equalised with that of the control cells, which show a 
delayed expression of IVL in this experiment. The graphs represent the mean of three independent experiments. 
Error bars indicate standard deviation. t-test results: ** p < 0.01, * p < 0.05. 
 

N/TERT-1 cells, in contrast to HaCaT cells, have a higher competence to undergo the 

complete differentiation process (Dickson et al., 2000a). The changes of KRT 10 and KRT 1 

expression take different courses in N/TERT-1 cells than in HaCaT cells. Therefore, the 

protocol was adjusted accordingly. Additionally, due to the previously observed reduced 

proliferation rate of N/TERT-1 DOR-overexpressing cells, 1.25 times more DOR cells than 
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control cells were plated initially, to start at the same confluence as control cells when 

inducing differentiation. 

 
Figure 26 - The DOR impairs keratinocyte differentiation in N/TERT-1 cells 

N-TERT-1 cells overexpressing DOR, or control cells, were grown to confluence before differentiation was 
induced by removal of growth factors. Cultures were kept under the influence of [Met5]-enkephalin or SNC80 
during further cultivation for up to 10 days. The time course of differentiation marker genes was analysed by 
quantitative real-time PCR and Western blotting. The expression level of (A) KRT 10, (B) KRT 1, and (C) IVL, 
strongly increase from day 4 onwards and for (D) LOR, and (E) FLG from day 7 onwards in control cells but not 
in DOR-overexpressing cells. Data are represented after normalization to RPL13a expression as mean values  
SEM of three independent experiments. Vehicle-treated control cells were used as reference. Two-way ANOVA 
analysis in A) and C), ** p < 0.01 and * p < 0.05 (F) Western blot analysis confirms the delayed induction of 
KRT 10 protein expression in DOR-overexpressing cells compared to control cells. Whole cell lysates from 
confluent cultures (day 0) and day 1, day 4, and day 7 of growth withdrawal-induced differentiation with and 
without addition of 100 nM DOR agonist [Met5]-enkephalin were prepared and analysed by immunoblot for 
KRT 10 expression, with equal loading verified by GAPDH labelling. In DOR-overexpressing cells only 
minimal KRT 10 induction is observed for the duration of the whole time course. (G) N/TERT-1 cells with and 
without DOR overexpression were subjected to differentiation for 7 days under the influence of 100 nM DOR 
agonist SNC80 or vehicle control. Whole cell lysates from confluent cultures analysed for KRT 10 expression by 
immunoblot show delayed KRT 10 expression in DOR-overexpressing cultures under the influence of SNC80 at 
day 4. Equal loading was confirmed by GAPDH labelling 
 

Analysis of the mRNA levels of KRT 10 and KRT 1 by quantitative real-time PCR indicated 

an induction of both transcripts from day one of differentiation. In control cells, continued 

differentiation was associated with further strong upregulation of these transcripts, while 
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DOR-overexpressing cells severely lagged behind in the induction process (Figure 26A and 

B). With advancing differentiation, the mRNA levels of IVL and LOR, as well as FLG 

increased markedly at day seven after induction of differentiation in control cells, but in DOR 

cells only at day 10 was a comparable increase in expression of these genes detected (Figure 

26C – E). 

A delay in KRT 10 induction during early differentiation under the influence of DOR 

activation was also seen at the protein level. The increase in KRT 10 observed in control cells 

at day four and seven of differentiation was not detected in DOR-overexpressing cells, 

indicating that early differentiation is markedly delayed in the presence of the DOR and the 

endogenous agonist [Met5]-enkephalin (Figure 26F). If DOR-overexpressing cells were 

differentiated without addition of agonist, only a minor reduction in KRT 10 protein 

expression compared to control cells was detected (Figure 26F, lane 11-14). Similar results 

were obtained with the exogenous agonist SNC80. Until day four of differentiation, protein 

expression of KRT 10 could substantially be prevented under the influence of SNC80, but at 

day seven only a minor difference in protein level could be detected (Figure 26G, lane 5-8). 

These altered expression patterns, in comparison to control cells, suggest a strong 

involvement of DOR-mediated signalling in the regulation of keratinocyte differentiation. 
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III.7. DOR signalling changes the gene expression profile in 
keratinocytes 

 
Two different gene expression studies were performed. In order to find early response genes 

after activated DOR signalling through SNC80, control and DOR-overexpressing cells were 

treated with 100 nM agonist for four hours. The collected RNA was subjected to microarray 

analysis. A total number of 234 genes were significantly altered, after the interaction of 

SNC80 with the DOR in overexpressing cells, in correlation to control cells. Of these genes, 

only 59 displayed a fold change bigger than 1.5 and only cytidine triphosphate (CTP) 

synthase had a fold change above two. 

Application of the GeneGo software tool indicated, that cell adhesion, motility, and polarity 

pathways, as well as RNA processing networks are strongly linked to our observed expression 

changes. Including all 234 significantly changed genes, POU2F3, with a 1.31 fold decrease of 

expression observed in the microarray, was finally identified as keratin IF regulating factor, 

linked to the modulation of keratinocyte differentiation, and chosen to be further validated. 

In a second gene expression study HaCaT control and DOR-overexpressing cells were 

subjected to 12 hours of [Met5]-enkephalin treatment. 
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Figure 27 - Overview of transcriptome changes after 4h treatment with DOR agonist SNC80 

Hierarchical clustering of 234 genes altered by the DOR-SNC80 interaction using a linkage algorithm was 
performed and visualized in a heat map. Horizontal stripes represent genes, and columns show experimental 
samples. Clustering was performed only on genes, whereas samples were ordered by treatment and cell line. 
Logarithmic values are shown in the heat map using red and green colour codes for up- and downregulation, 
respectively. Black indicates no change. Two groups of genes were extracted. (A) shows the genes that are 
upregulated by the SNC80 effect, which means that they are downregulated in control cells treated with SNC80 
in comparison to vehicle treatment but that DOR-overexpressing cells prevents this downregulation in the 
presence of SNC80. (B) represents genes that are specifically downregulated by SNC80 in DOR-overexpressing 
cells. POU2F3 belongs to this group of genes. 
 

The same analysis looking at the DOR-SNC80 interaction effect as performed for the first 

microarray, was applied to the second one. This time a total number of 117 genes were 

statistically significant altered in their expression pattern. Similar to the first array the 

majority of genes displayed a fold change below two. Seventeen altered genes were common 

in both datasets. This suggests that these genes are true targets of DOR mediated signalling in 

keratinocytes. 

Table 1 - Common genes 
significantly modulated by DOR 
agonists in two independent gene 

expression studies 

The 17 genes reflect different func-
tional categories including structural 
proteins, a MAPK signalling 
cascade regulator, metabolic 
enzymes, transcription factors, ion 
channel, cell surface receptors, 
DNA regulatory factors, a matrix-
degrading enzyme, and a membrane 
transporter and are not well char-
acterized in keratinocyte function. 
 

 
The enrichment analysis of the 12 hour dataset indicated negative regulation of proliferation 

as the most significant cellular signalling network affected. ECM remodelling and cell 

adhesion networks were, similar to the first array, highly enriched in our dataset. Canonical 

pathways influenced by DOR-SNC80 interaction include mainly nucleoside triphosphate 

metabolic pathways, that cannot be directly connected to specific keratinocyte functions. The 

strongest, by DOR mediated signalling regulated transcription factors, are Ets variant gene 4 

gene Fold change 4 h SNC80 Fold change 12 h [Met5]-enkephalin 
ACTN1 1.381 1.284 
CDH2 1.409 1.352 
CTPS 2.154 1.597 
DUSP6 1.577 1.821 
ETV4 1.874 2.765 
ETV5 1.469 2.462 
FBXO32 -1.386 -1.429 
GBP2 -1.605 -1.609 
HIVEP3 1.341 1.35 
KCNJ13 -1.577 -1.963 
LIPG 1.545 1.478 
LRP8 1.802 1.655 
MCM6 1.635 1.583 
MMP12 -1.292 -2.205 
NOLC1 1.539 1.413 
SLC7A11 1.822 1.723 
ZNF367 1.322 1.382 
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(ETV4) and Ets variant gene 5 (ETV5). The regulation of these factors could be validated by 

quantitative real-time PCR but the correlation to functional changes in keratinocytes was not 

yet established. Both gene expression datasets hold the potential for further investigations. 

 
Figure 28 - Overview of transcriptome changes after 12h treatment with DOR agonist [Met5]-enkephalin 

Hierarchical clustering of 117 genes altered by the DOR-SNC80 interaction using a linkage algorithm was 
performed and visualized in a heat map. Horizontal stripes represent genes, and columns show experimental 
samples. Clustering was performed only on genes, whereas samples were ordered by treatment and cell line. 
Logarithmic values are shown in the heat map using red and green colour codes for up- and downregulation, 
respectively. Black indicates no change.  
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III.8. The transcription factor POU2F3 is involved in DOR-mediated 
regulation of keratinocyte differentiation 

 
In order to resolve the involvement of DOR mediated signalling in epidermal homeostasis and 

especially KRT 10 regulation, the analysis of the transcription factor POU2F3 was advanced. 

This protein POU2F3 is involved in the transition from the basal to the spinous keratinocyte 

phenotype, as well as in the regulation of KRT 10 and IVL expression in accord with the 

observed results for the early phase of differentiation in HaCaT cells (Figure 25) (Andersen et 

al., 1993b; Andersen et al., 1997; Welter et al., 1996b). Indeed, in comparison to control cells 

DOR-overexpressing HaCaT (Figure 29A) and N/TERT-1 (Figure 30A) cells showed aberrant 

POU2F3 expression during the process of differentiation. Cells were grown to confluence in 

normal growth medium and differentiation induced by growth factor withdrawal with 

concurrent addition of SNC80 in HaCaT and [Met5]-enkephalin in N/TERT-1 cultures to the 

culture medium. mRNA expression of POU2F3 was analysed by quantitative real-time PCR. 

In HaCaT cells, a significant repression of POU2F3 expression after four hours until eight 

hours after ligand addition can be detected. With advancing differentiation, the repression is 

abrogated and POU2F3 is slightly induced in both control and DOR-overexpressing cells 

(Figure 29A). In HaCaT cells, the observed POU2F3 expression pattern was in accordance 

with the previous observed regulation of KRT 10 and IVL (Figure 25). The literature reported 

a positive effect of POU2F3 on KRT 10 and a negative effect on IVL expression (Andersen et 

al., 1993a; Welter et al., 1996a). The repression of POU2F3 in the HaCaT model system 

therefore showed a decreased KRT 10 and increased IVL expression at the analysed four hour 

time point. 

If the DOR antagonist naltrindole was applied at the same time, the significant 50% reduction 

of POU2F3 mRNA level at four hours after addition of SNC80 could be reversed. This shows 

a clear correlation of DOR activation and POU2F3 mRNA repression (Figure 29B). Further, it 

was of interest if DOR mediated ERK signalling is involved in POU2F3 regulation. For this 
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purpose, the MEK 1 inhibitor PD98059 was added to the culture. In the absence of ERK 

activation SNC80 mediated DOR signalling was no longer able to repress POU2F3 

expression. Furthermore, inhibition of ERK resulted in an induction of POU2F3 expression 

indicating a direct correlation of ERK activity and POU2F3 expression (Figure 29C). 

 
Figure 29 - POU2F3 is an early target gene of DOR mediated ERK activation in HaCaT cells 

(A) HaCaT cells were grown to confluence and subjected to growth factor withdrawal induced differentiation. 
RNA was extracted at indicated time points and subjected to real-time PCR quantification. Within 4 h after 
addition of DOR specific ligand SNC80 to the cultures a strong downregulation of POU2F3 can be observed in 
DOR-overexpressing HaCaT cells while expression in control cells remains unchanged. Within 12 h of 
incubation the expression of POU2F3 goes back to the initial state and further increases while differentiation 
progresses. (B) HaCaT cells were subjected to differentiation in the presence of 100 nM DOR agonist SNC80, 
5 min preincubation with 10 M of the antagonist naltrindole prior to SNC80 addition, the vehicle control or 
antagonist alone. Cells were incubated for 4 h before RNA was extracted and subjected to quantitative real-time 
PCR. Naltrindole could effectively block the SNC80 mediated downregulation of POU2F3. This confirms that 
the regulation of POU2F3 by SNC80 is DOR specific. (C) HaCaT cells were subjected to differentiation in the 
presence of 100 nM DOR agonist SNC80, 30 min preincubation with 20 M of the MEK1 inhibitor PD98059 
prior to SNC80 addition, the vehicle control, or PD98059 alone. Cells were incubated for 4 h before RNA was 
extracted and subjected to quantitative real-time PCR. The inhibition of ERK could effectively reverse DOR 
mediated POU2F3 downregulation, indicating an ERK-dependent, DOR mediated mechanism. At the same time 
control cells subjected to double treatment and DOR cells with inhibitor treatment alone show a 2.5 fold 
induction of POU2F3 mRNA expression. The graphs represent the mean of three independent experiments. Error 
bars indicate standard deviation. t-test results: *** p < 0.001, ** p < 0.01, * p < 0.05. 
 

In N/TERT-1 cells, no effect on POU2F3 expression after four hours of SNC80 treatment in 

DOR-overexpressing cells was observed. This indicates that POU2F3 is not an early target 

gene in N/TERT-1 cells as compared to HaCaT cells. Hence, the protocol for N/TERT-1 cells 

was modified in conjunction with the previously observed time course of KRT 10 expression 

upon induction of differentiation. At day one after induction of differentiation, DOR 

activation was associated with a downregulation of POU2F3 mRNA, while control cells 
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induced POU2F3 1.7 fold compared to day zero expression. The relative mRNA expression 

level of POU2F3 at day seven was only seven fold greater in DOR-overexpressing cells, but 

21 fold increased in control cells (Figure 30A). 

 
Figure 30 - POU2F3 is a late response target gene of DOR-mediated signalling in N/TERT-1 cells 

(A) Keratinocytes were grown to confluence and differentiation was induced by removal of growth factors. 
Cultures were kept under the influence of [Met5]-enkephalin during further cultivation for 10 days. During the 
time course of differentiation, POU2F3 expression was analysed by quantitative real-time PCR. Strong 
differentiation associated induction in control cells can be observed, in contrast to DOR-overexpressing cells. 
Expression is represented after normalization to RPL13a as mean values  SEM of three independent 
experiments. Vehicle-treated control cells were used as reference. Two-way ANOVA analysis, *** p < 0.001. 
(B) Keratinocytes were differentiated for one day in the presence of 100 nM SNC80, 10 M of the DOR-specific 
inhibitor naltrindole, or vehicle control. Expression of POU2F3 was analysed by quantitative real-time PCR and 
relative quantity is represented after normalization to RPL13a expression using the respective vehicle control as 
reference. A successful reversion of DOR mediated repression of POU2F3 by inhibition of DOR signalling 
through naltrindole can be observed. The graph represents the mean  SEM of five independent experiments. t-
test reveals ** p < 0.01 and * p < 0,05. (C) Keratinocytes were differentiated for one day in the presence of 
100 nM SNC80, 20 M of the ERK inhibitor PD98059, or vehicle control. Expression of POU2F3 was analysed 
by quantitative real-time PCR and relative quantity is represented after normalization to RPL13a expression 
using the respective vehicle control as reference. ERK inhibition can partially reverse DOR mediated POU2F3 
repression. ERK inhibition alone leads to an increase of POU2F3 expression. The graph represents the mean  
SEM of four independent experiments. t-test reveals ** p < 0.01. 
 

POU2F3 regulation in N/TERT-1 cells was as well specifically DOR-mediated and could be 

blocked by the DOR antagonist naltrindole. Cells were pre-incubated with 10 M naltrindole 

for five minutes prior to 100 nM SNC80 addition to efficiently block DOR activation. During 

24 hours of incubation, POU2F3 inhibition could be reverted by naltrindole, resulting in 

similar expression levels in control and DOR-overexpressing cells after one day of 

differentiation (Figure 30B). To test whether the regulation of POU2F3 was mediated by ERK 

activation in the same way as in HaCaT cells, we blocked the activation of ERK and analysed 
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again the expression level changes of POU2F3. The prevention of ERK 1/2 activation by pre-

incubation with the MEK 1 inhibitor PD98059 revealed a strong correlation between POU2F3 

expression and ERK 1/2 activity. In DOR-overexpressing cells, PD98059 abolished SNC80-

mediated POU2F3 repression (Figure 30C). The complete inhibition of the ERK 1/2 MAPK 

signalling resulted again in the induction of POU2F3 mRNA expression in both control and 

DOR-overexpressing cells. This indicated, in both keratinocyte cell lines, the positive 

regulation of a POU2F3 repressor by DOR-mediated activation of ERK 1/2, which is released 

upon ERK 1/2 deactivation. 

 

III.9. DOR signalling impairs stratification and homeostasis in a 
reconstructed-epidermis model 

 

To further investigate the influence of the DOR on epidermal regeneration and homeostasis, a 

reconstructed tissue with regular features of epidermal differentiation and morphogenesis was 

generated using organotypic skin cultures (Bell et al., 1983; Stark et al., 1999). Contracted 

collagen lattices with incorporated dermal fibroblasts were used as dermal equivalents and 

either control N/TERT-1 or DOR-overexpressing cells were seeded on top for culture at the 

air-liquid interface, in order to induce stratification, for 14 days. DOR-overexpressing cells, in 

contrast to control cells, exhibited a poor capacity to form a fully-differentiated epidermis 

(Figure 31A). The previously observed slow proliferation rate of DOR-overexpressing cells 

(Figure 24) correlated with an atrophic (thinner) epidermis in organotypic cultures with DOR-

overexpressing N/TERT-1 keratinocytes.  
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Figure 31 - DOR activity results in decreased epidermal thickness and atypical stratification 

Organotypic cultures of N/TERT-1 cells transduced with control or DOR-GFP viruses were generated. 
(A) Haematoxylin and eosin (H&E) staining of organotypic raft cultures showed decreased epidermal 
thickness when DOR was overexpressed. (B) shows the quantification of the epidermal area generated 
by the different cell lines. The graph is generated from three independent experiments with at least two 
duplicates per experiment. Each experiment was normalised to the respective WT control. Error bars 
represent standard deviation. One-way ANOVA revelas * p < 0.05. (C) Immunofluorescence analysis 
of the differentiation marker KRT 10 shows no expression of KRT 10 in the epidermis with two to 
three layers of DOR-overexpressing keratinocytes but strong induction in the suprabasel layers of the 
control. Scale bars represent 50 m. (D) IVL labelling revealed expression in DOR cultures and a 
strong expression in control cells. (E) Corresponding to the proper stratification, PCNA as a marker 
for proliferating cells was expressed in control cultures mainly in the basal layer. On the other side, no 
expression could be detected in DOR organotypic cultures in correlation with the atrophic phenotype. 
Scale bars represent 50 m. 
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Accordingly, proliferating cell nuclear antigen (PCNA) could not be detected in DOR 

cultures, but was present in control cultures (Figure 31D). Immunofluorescence analysis of 

KRT 10 revealed the absence of this early differentiation marker in DOR-overexpressing cells 

(Figure 31B), indicating an impairment of epidermal differentiation, as observed in the 

keratinocyte monolayer differentiation experiments (Figure 26). Although only two to three 

cell layers were present, and despite the absence of KRT 10, a slight expression of IVL was 

detected in DOR-overexpressing organotypic cultures (Figure 31C). This indicates a 

deregulation of epidermal differentiation by DOR signalling if the DOR is active in basal 

keratinocytes. During normal skin homeostasis, the DOR might possibly interfere at the 

transition from spinous to granular layer keratinocytes where KRT 10 expression is switched 

off and IVL expression switched on, which would correlate well with the expression pattern 

detected by in situ hybridisation (unpublished data Mei Bigliardi-Qi). 
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IV.1. Discussion 
 
The human skin is constantly exposed to numerous pathological processes, agents, and events. The 

response to these environmental assaults requires local as well as systemic mechanisms, in order to 

maintain skin and body homeostasis. This is accomplished by the neuro-endocrine system in the skin. 

Numerous studies highlighted the different protagonists of this system, for example the 

catecholaminergic, histaminergic, cannabinoid, cholinergic or steroidergic system, and others 

(Slominski et al., 2012). In the present study, the involvement of the opioidergic system in skin 

homeostasis was confirmed. 

 

DOR functionality in keratinocytes dependents on the state of the cell 

The presence of opioid receptors in human skin has been known for several years, but we are only just 

beginning to understand their function. The tools for detection of endogenous opioid receptor proteins 

have historically been insufficient, leading to a reliance on detection of mRNA expression for tissue 

analysis. In situ hybridisation shows that DOR is predominantly expressed in the more differentiated 

layers of the human epidermis, which correlates well with the expression of the endogenous ligand 

enkephalin. Slominski et al. (Slominski et al., 2011) demonstrated an in vivo compartmentalization of 

[Met5]- and [Leu5]-enkephalin antigens. They observed strong expression in differentiating epidermal 

and follicular keratinocytes in the outer root sheath. Additionally, they saw a selective expression in 

specialized fibroblasts of the perifollicular dermal sheath and follicular papilla, as well as 

myoepithelial cells of the eccrine glands. Further analysis of the regulation of enkephalin expression 

in cultured skin cells upon physical and biological stimuli, revealed an upregulation in response to 

UVB and lipopolysaccharide (LPS) exposure. 

 

The localisation studies of the present manuscript illustrate, that the presence of ligand is not 

sufficient to induce the activation of the DOR in keratinocytes. Under standard keratinocyte culture 

conditions in low Ca2+ medium the majority of receptor is internalised and therefore not available for 

ligand induced cellular signalling. If the receptor was overexpressed in primary keratinocytes, no 
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response towards exogenous ligand SNC80 could be detected, despite the confirmation of solid 

receptor overexpression on mRNA level. Only after reliable localisation of the receptor by fusion to a 

GFP tag and the switch to the keratinocyte cell line HaCaT, which is routinely cultured in high Ca2+ 

medium, the influence of Ca2+ on receptor localisation was detected. The Ca2+ switch experiment in 

Figure 13 revealed that the receptor distribution, either to the cell surface or intracellular 

compartments, is a dynamic process in keratinocytes. The compartmentalisation is reversible by 

changing the Ca2+ concentration and shows a membrane localisation in high Ca2+ medium and an 

intracellular distribution in low Ca2+ medium. The accumulation in areas of the cell membranes with 

cell-cell contact, rather than at free edges of a colony, strongly suggests a function of the DOR in 

paracrine cell-cell communication in keratinocytes. Close proximity to desmosomal or other cellular 

adhesion structures might facilitate the recruitment of DOR interacting proteins and subsequent target 

molecules to modify cytoskeletal dynamics in order to promote cellular migration (Charbaji et al., 

2012; Eisinger and Ammer, 2008a; Huang et al., 2004; Pullikuth et al., 2007; Scott et al., 2006; 

Thomason et al., 2012).  

The exact localisation upon internalisation of the DOR in low Ca2+ medium has not yet been clarified. 

Several studies about the receptor maturation demonstrated the involvement of the endoplasmatic 

reticulum (ER) in quality control, post-translational modification, and subsequent membrane 

localisation (Leskelä et al., 2009; Leskela et al., 2012; Markkanen et al., 2008; Petäjä-Repo et al., 

2000; Petäjä-Repo et al., 2001; Petäjä-Repo et al., 2006). A nonsynonymous single nucleotide 

polymorphism (SNP) (c.80T>G) has been described for the DOR (Gelernter et al., 2000), causing a 

Phenylalanine substitution at position 27 of the amino acid sequence to a Cystein (p.Phe27Cys) in the 

receptor N-terminus. Both lentiviral constructs used for our overexpression studies encode for the 

Cys-27 variant, which was reported to show inherent compromised maturation. The Cys-27 variant 

accumulates in pre-Golgi compartments of the secretory pathway and has impaired targeting to the 

ER-associated degradation following long-term expression. In addition, the cell surface receptors of 

the Cys-27 variant internalized constitutively. However, the pharmacological characteristics and the 

maturation kinetics of this variant, in comparison to the Phe-27 variant, were identical and the current 

database reference sequence encodes for the Cys-27 variant (NM_000911.3: c.80G>T; NP_000902.3: 
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p.Cys27Phe; rs1042114) (Gelernter et al., 2000; Leskelä et al., 2009; Leskela et al., 2012). Based on 

the studies from U.E. Petäjä-Repo’s group, the analysis of the distribution of the DOR-GFP fusion 

protein in keratinocytes in the present manuscript focused on the localisation to ER, endosomes, and 

lysosomes. Immnuofluorescence staining could neither confirm the accumulation of the DOR under 

low Ca2+ conditions in the ER nor in the lysosomal degradation pathway. Co-localisation signal with 

the ER marker calnexin did show an interaction of these two proteins, but the co-localisation signal 

was similar to the high Ca2+ condition, which does not indicate a difference in maturation (Figure 14). 

Furthermore, co-localisation with the early endosome marker EEA1 indicated a rather random co-

localisation of DOR with endosomes, than an accumulation due to constitutive internalisation. A 

lysosomal distribution of DOR-GFP could be demonstrated as well, but only explained the 

localisation of a subpopulation of receptor. In order to convincingly characterize the subcellular 

localisation in low Ca2+ cultured keratinocytes, further studies with cellular organelle marker proteins 

are necessary. Additionally, the exact redistribution behaviour over time and in correlation to the cell 

morphology changes need to be characterised, to explain the differences for DOR-GFP localisation 

under low Ca2+ observed. 

Another point, concerning cellular localisation of the DOR, has to be taken into account as well. The 

localisation of the DOR into large dense-core vesicles (LDCV), which allows stimulus-triggered 

exocytosis of the receptor, has been reported. This could contribute to control the receptor 

functionality (Guan et al., 2005; Wang et al., 2010). In low Ca2+ medium cell-cell contact through 

adherence junctions is reduced, therefore direct communication between cells might be less advanced 

than in high Ca2+ medium, with strong intracellular connections. Cell surface localisation of DOR 

might not be beneficial for the cell under low Ca2+ conditions and is therefore abolished, but could be 

established within an hour, as demonstrated by the Ca2+ shift experiment (Figure 13). Additionally, it 

has been shown, that the GFP tag might interfere with recognition of sorting signals for the LDCV 

localisation of DOR (Wang et al., 2010). This does not explain the differences observed under low 

and high Ca2+ culture conditions. Though, the interaction of DOR and the sarcoplasmatic reticulum 

Ca2+-ATPase 2 (SERCA2b) has been shown to influence receptor membrane localisation. Thereby, a 

low local luminal ER Ca2+ concentration might trigger the interaction with SERCA2b and would 
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delay the folding, until the whole polypeptide has been translated. The DOR precursors associate 

simultaneously with SERCA2b and calnexin in a dynamic manner, that is regulated by Ca2+ 

(Burdakov et al., 2005; Pitonzo et al., 2009; Tuusa et al., 2007; Tuusa et al., 2010). The Ca2+ 

dependent redistribution of the DOR might not be observed for the endogenous receptor because the 

impact of the GFP tag might trigger different maturation mechanisms. This question will be addressed 

further, once the appropriate tools for detection of endogenous opioid receptor proteins are available. 

 

The DOR triggers immediate cellular responses and activation of ERK 1/2 signalling 

The wound healing process is characterized by an acute inflammatory phase, a proliferation phase, 

and a remodelling phase. Several studies have described stimulatory effects of opioid receptors on the 

re-epithelisation process, whereby enhancement of keratinocyte migration was supposed to be a 

crucial function of opioid activity. In vitro both, the endogenous ligand β-endorphin and the 

exogenous ligand morphine, induce keratinocyte migration (Bigliardi et al., 2002; Kuchler et al., 

2010; Wolf et al., 2009). The major second messenger pathways, coupled to the DOR-associated 

signalling, are known to activate some combinations of Ca2+/PLC, β-arrestin/MAPK, and Rho family 

GTPases (Bian et al., 2012; Kam et al., 2003), which subsequently results in cell morphology 

changes. Using the xCELLigence system, variations of the cellular impedance, reflecting 

morphological changes, can be detected in real-time. This system allows the measurement of the 

cumulative effect of multiple signalling pathways (Atienza et al., 2005; Yu et al., 2006). In order to 

confirm the impact of the DOR agonists on keratinocyte morphology and intracellular signalling, this 

technique was applied. The sensitivity of the assay shows clearly, that keratinocytes are very 

responsive to mechanical manipulations, which partially masks the DOR mediated response. However 

both, the endogenous opioid Met5
-enkephalin and the exogenous opioid SNC80, are able to produce 

a solid change of the cell index (CI). The DOR specific antagonist naltrindole significantly reduces 

these changes. On the other side, naltrindole itself has a positive impact on the measurements of the 

CI and might therefore act as partial agonist in certain aspects of the intracellular signalling 

mechanisms of DOR, to influence cell morphology. The xCELLigence system clearly demonstrates 

that DOR activation has a short-term effect on keratinocytes, if they express sufficient amount of 
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receptor on the cell surface. The observed response was maximal after about 40 minutes. The system 

enables to define the time points for selective analysis and could be used to test the properties of new 

substances. However, it does not allow conclusions about the exact mechanisms behind the response. 

 

Therefore, a major part of the present work was to elucidate the molecular signalling mechanisms of 

activated DOR in human keratinocytes. From previous studies in other overexpression systems, for 

example with HEK293 cells, it was known, that DOR activation is capable of causing downstream 

MAPK signalling, and especially ERK 1/2 phosphorylation and activation (Audet et al., 2005; 

Eisinger and Ammer, 2008a; Eisinger and Ammer, 2008b; Eisinger and Ammer, 2009; Fryer et al., 

2001). But different cell types may vary in the composition of downstream molecules and might then 

experience a different response following DOR activation (Chen et al., 2006; Gross et al., 2006; 

Shahabi et al., 2006). The current study reveals, that DOR-mediated signalling in keratinocytes does 

involve the ERK 1/2 MAPK pathway. A transient signal of ERK 1/2 activation was seen both with the 

endogenous DOR peptide agonist Met5
-enkephalin, and the synthetic DOR-specific alkaloid ligand 

SNC80 in two different keratinocyte cell lines. In HaCaT cells Met5
-enkephalin was a stronger 

activator of the ERK 1/2. Because Met5
-enkephalin is a less-selective endogenous peptide agonist 

compared to the highly DOR-selective agonist SNC80, additional activation of -opioid receptor 

subtypes present at low level in HaCaT cells might enhance ERK signalling (Lecoq et al., 2004). 

N/TERT-1 cells show a higher basal ERK activity that might mask the DOR-mediated activation in 

the Western blot analysis, which results in a differently observed ERK response towards the DOR 

agonists. The activation of ERK in DOR-overexpressing cells is clearly receptor mediated, as shown 

by the antagonisation with naltrindole. The activation of other signalling pathways, namely p38 and 

AKT, was excluded by Western blot. The ERK 1/2 pathway is therefore the major pathway activated 

by DOR-mediated second messenger signalling in keratinocytes. The exact profile of second 

messengers involved, has not yet been identified and might include -arrestin-mediated signalling, as 

well as transactivation of EGF receptor, via a PKC and integrin dependent mechanism (Eisinger and 
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Ammer, 2008a). PKC as target molecule of DOR signalling in keratinocytes has been confirmed in 

preliminary experiments but further studies are necessary to define the exact signalling cascade. 

 

The DOR-mediated signalling affects keratinocyte proliferation and differentiation 

A major interest of this project was to investigate the functional consequences of the DOR activation 

in keratinocytes. The data from an earlier report by Nissen et al. suggested an involvement in 

differentiation, through inhibition of transglutaminase type 1 and KRT10 expression. Additionally, 

they observed an inhibition of proliferation in the order of 10-15% by application of [Met5]-

enkephalin to primary keratinocytes (Nissen et al., 1997). The current study now confirms and 

expands these data and enlightens the molecular mechanisms behind this DOR-mediated phenotype. 

The observed effect that DOR-mediated signalling has on N/TERT-1 keratinocyte cultures is 

profound. It not only inhibits proliferation, but also impairs differentiation, leading to a deregulation 

of the epidermal stratification process. The morphological changes of DOR-overexpressing cultures 

reflect the phenotype of differentiating keratinocytes. They appear enlarged and flattened, forming 

fewer colonies in culture. Nevertheless, DOR activated keratinocytes are not inducing differentiation, 

which was confirmed on mRNA and protein level for the early differentiation marker KRT 10 (Figure 

26). Keratinocytes were also not capable of inducing the expression of late differentiation markers 

IVL, LOR, and FLG in vitro. Studies of KRT 10 knock-out mice reported hyperproliferation of basal 

keratinocytes and an increase in KRT 6/16 and KRT 17 expression (Porter et al., 1996; Reichelt et al., 

1997; Reichelt et al., 2002; Reichelt et al., 2004; Wallace et al., 2012). In our in vitro two dimensional 

models KRT 16 was not increasing, which corresponds to their reduced proliferation and correlates 

with the DOR KO mice phenotype of hyperproliferative KRT 6 positive wound edge keratinocytes 

(Bigliardi-Qi et al., 2006). The organotypic culture model indicated the induction of IVL during the 

stratification process and the HaCaT differentiation model clearly showed a short term induction of 

IVL upon DOR activation, while at the same time KRT 10 expression was repressed. In monolayer 

N/TERT-1 and HaCaT cultures a tendency to higher IVL expression in DOR-overexpressing cells 

under basal growth conditions could be observed. This indicates that DOR signalling is involved in 

KRT 10 repression and IVL induction during keratinocyte differentiation, and this might have an 
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impact on the transition from the spinous to the granular keratinocyte phenotype. The observed 

repression of the transcription factor POU2F3 plays a role in this regulation. It has been shown to 

activate KRT 10 and to inhibit IVL expression (Andersen et al., 1993; Welter et al., 1996). During the 

transition from spinous to granular layer the reduced expression of POU2F3 might be the trigger to 

switch off the KRT 10 expression and to induce IVL. Like that DOR regulation can be beneficial to 

the epidermal homeostasis. 

Figure 32 - Model for DOR mediated effect on skin homeostasis 

The opioidergic system might be activated in normal skin by environmental factors and might help maintain the 
epidermal homeostasis. By inhibition of POU2F3 proliferation could be reduced and KRT 10 expression 
repressed, while at the same time IVL expression is induced in the upper epidermal layer. This might serve as a 
protection mechanism, to enhance the epidermal barrier and stop proliferation of basal cells until the 
perturbation is removed. 
 

It is possible, that in our two and three dimensional in vitro models, the altered early differentiation 

phase in DOR-overexpressing N/TERT-1 cells lead to a deregulation of the subsequent differentiation 

processes, abolishing LOR and FLG expression. According to the DOR expression pattern in vivo, the 

early phase might be executed normally, so that DOR only influences subsequent processes during 

epidermal differentiation. DOR-deficient mice showed increased expression of KRT10, possibly 

because of the expression in keratinocytes is not being switched off in their transition to the granular 

layer, leading to an atrophic epidermis (Bigliardi-Qi et al., 2006). 
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N/TERT-1 cells have the ability to differentiate in vitro, but differentiation of the monolayer does not 

reflect the exact in vivo situation. The loss of contact with the basement membrane was shown to be a 

strong trigger for a keratinocytes to commit to differentiation (Adams et al., 1989; Gebhardt et al., 

2006; Watt et al., 2008; Wu et al., 2012). The applied model of confluence induced in vitro 

differentiation, including growth factor withdrawal, does not include this aspect. Of note, this cannot 

be mimicked in two dimensional cell cultures. Suspension induced differentiation would be an 

additional tool, that could help to explain the DOR phenotype (Gandarillas et al., 1999). Our 

monolayer keratinocyte culture represented more closely basal epidermal conditions and might not 

reflect the actual state of a keratinocyte expressing functional DOR. The timeframe of DOR 

expression during differentiation is not necessarily the same as found in the in vitro culture model. 

It has been shown that the loss of p63 is connected to decreased proliferation and significantly 

reduced induction of KRT 10/1 in a HaCaT monolayer keratinocyte culture (Wu et al., 2012). The 

knock-down of p63 triggered an arrest in phase G0/G1 of the cell cycle, without affecting cell death. 

Furthermore, an upregulation of the cell cycle inhibitors p21 and p15 and a downregulation of c-Myc 

expression were observed. The p63 isoform ΔNp63 was thereby identified to indirectly effect c-Myc 

expression, via the Wnt/β-Catenin and Notch pathways. The comparison of genes, altered by either c-

Myc knock-down or p63 knock-down, revealed 71 genes antagonistically regulated. These genes were 

associated with cell migration and cell adhesion and might lead to keratinocyte differentiation, via 

changes of keratinocyte adhesion to the BM. Of these 71 genes we saw four genes regulated in the 

same direction as observed in the Myc knock-down cells. This might indicate that upon DOR 

activation c-Myc activity is down regulated. The bioinformatic tools used for our gene expression 

study indicated indeed that c-Myc was a key factor in the regulation of DOR signalling target genes in 

HaCaT, and might be an important factor in the N/TERT-1 cultures as well. The involvement of DOR 

in keratinocyte migration has been shown in culture systems and direct molecular targets have 

partially been found (Charbaji et al., 2012). The influence on differentiation has partially been 

established with this work, but further analyses are necessary. It would further be of interest to 

investigate, if p63 expression is altered in DOR activated keratinocytes and how other identified 

factors influence keratinocyte differentiation.  
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Another important factor detected in the microarray studies was DUSP6. This protein belongs to a 

class of dual-specificity phosphatases, designated MKPs that dephosphorylate the MAPK protein 

ERK. DUSP6 blocks both, the phosphorylation and enzymatic activation of the MAP kinase ERK2 by 

mitogens. We saw an upregulation of this factor, indicating that the ERK pathway might not induce 

proliferation as a functional consequence of DOR activation. This corresponds as well to the observed 

phenotype in N/TERT-1 cells. 

 

Relevance of the DOR function during the wound healing process 

The work focused further on the transcription factor POU2F3, after it was identified as direct target of 

DOR activation. This protein is a critical factor in the complex regulatory network of differentiation. 

The POU2F3 protein is expressed in two isoforms. The full length isoform, Skn-1a, functions as a 

transcriptional activator, while the other, Skn-1i, is capable of repressing transcription (Andersen et 

al., 1993; Cabral et al., 2003; Hildesheim et al., 1999; Takemoto et al., 2010). POU2F3 has been 

shown to regulate KRT 10 as well as IVL in vitro, two molecules the expression of which is altered in 

DOR-overexpressing cells. It was further suggested that the full length isoform enhances epidermal 

stratification by promoting keratinocyte proliferation (Hildesheim et al., 2001). In correlation with 

Hildesheim et al. we observed low proliferation and reduced POU2F3 expression, accompanied by 

poor stratification in DOR activated keratinocytes. 

Andersen et al. reported that POU2F3-deficient mice showed no obvious deviation from normal skin 

phenotype, probably due to compensatory mechanisms, and so its function was proposed to be more 

important for wound healing (Andersen et al., 1997). Wound edge keratinocytes are more migratory 

and flexible than homeostatic keratinocytes in order to efficiently close the wound. POU2F3 was 

suggested to be repressed in these cells, to enable this phenotype change, and the DOR might be 

involved in this process. DOR-deficient mice experienced delayed wound healing and showed 

hypertrophic wound edges. The wound edge keratinocytes in these mice might not have undergone 

the necessary molecular changes, such as DOR-mediated downregulation of POU2F3, in order to 

migrate properly and close the wound efficiently (Bigliardi-Qi et al., 2006). Further experiments are 

necessary to clarify this connection with DOR activity as well as POU2F3 regulation during wound 
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healing. Further, the relevance of the two different POU2F3 isoforms in the function of DOR 

mediated KRT10 regulation remains to be elucidated. 

During the wound healing process the exchange of soluble mediators between the epidermis and 

dermis compartments is crucial for appropriate wound healing. The cytokine IL-1 has been shown to 

be involved in this interaction. IL-1 produced by keratinocytes increases the PPAR β/γ expression in 

dermal fibroblasts. This activates sIL-1Ra production, a natural antagonist of IL-1 signalling. The 

secreted antagonist will repress the IL-1 effect on keratinocytes and therefore attenuate their 

proliferation, to avoid hyperproliferation at the wound side (Chong et al., 2009). The signalling of IL-

1 was also shown to be involved in MMP regulation, important during the ECM remodelling phase of 

the wound healing process. The induction of the antagonist sIL-1Ra modulates MMP 8 and 13 

expression in fibroblasts and our gene expression studies indicated as well a downregulation of 

MMP12 and MMP13 in HaCaT keratinocytes upon DOR activation. This suggests, that DOR 

downregulates these MMPs and might therefore explain the delayed wound healing in DOR-deficient 

mice, that displayed an increased expression of MMP2 at the wound side. Increased MMP activity 

might alter ECM remodelling and lead to an aberrant migration of the wound edge keratinocytes. 

MMP12 has mainly been described as macrophage elastase and is involved in bacterial clearance 

(Houghton et al., 2009; Lanone et al., 2002). Though, the catalytic domain can recognize and cleave 

skin collagen type I and III (Taddese et al., 2010) and its expression has been described in psoriatic 

lesions (Suomela et al., 2001). MMP13 has been shown to regulate wound granulation tissue and is 

involved in keratinocyte migration, angiogenesis and contraction in mouse skin wounds (Hattori et al., 

2009; Toriseva et al., 2012). If DOR alters the ECM remodelling process and influences the crosstalk 

between keratinocytes and fibroblasts during wound healing, it might help to reduce scar formation by 

fine tuning the wound healing process. The spatio-temporal pattern of DOR activation during wound 

healing might herby play an important role. Rook et al. reported that topical morphine inhibited 

wound closure. They found delayed recruitment of macrophages and myofibroblasts, a prolonged 

inflammatory phase, delayed progression into the proliferative state and increased residual scar areas. 

The initial delay was transient and was made up by an accelerated re-epithelisation (Rook et al., 2007; 

Rook et al., 2008; Rook et al., 2009). Accordingly, in the current study, some organotypic cultures 
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with DOR-overexpressing cells showed reduced contraction of the dermal collagen lattice, which 

indicates an altered dermal-epidermal interaction and less myofibroblast formation. Together with the 

previously described DOR-mediated alterations of keratinocytes, this might indicate that DOR should 

not be activated in the early phases of wound healing, but its activity might be beneficial in the 

remodelling phase of the wound healing. The present study suggests that the DOR is expressed and 

activated in a spatially and temporally controlled manner in human skin cells. Deregulation will lead 

to alterations in epidermal differentiation and wound healing. The application of exogenous 

opioidergic drugs might therefore be helpful if applied to the right target cells and during the correct 

stages of wound healing, but importantly, this study highlights the fact that they may also be 

ineffective or harmful. Wounds are heterogeneous and the knowledge of the exact expression pattern 

of DOR during the normal wound healing process in different models would help to define the right 

moment for opioid treatments in the clinic. These experiments using human keratinocyte cell lines 

prove that opioids are not only involved in pain regulation during wounding but also in processes of 

wound healing and skin homeostasis. 

 

Relevance of the DOR function in skin photoaging 

The functions of DOR suggest that its activity could protect from photoaging. UV radiation modulates 

the release of MMPs and could change the structural integrity of the dermis (Kossodo et al., 2004). 

Destruction of the dermal collagen results in the formation of wrinkles. Slominski et al. described the 

release of the endogenous DOR agonist enkephalin upon UV radiation in cultured keratinocytes 

(Slominski et al., 2011). If at the same time the receptor is functionally active on the keratinocytes, 

this might start a signalling cascade, resulting in reduced MMP activity. This suggests a protective 

mechanism of DOR activity against UV induced aging. At the same time, DOR mediated inhibition of 

differentiation and the growth arrest of keratinocytes might protect from cancer formation. The 

activation of the ERK MAPK pathway can modulate different anti-proliferative events, such as 

apoptosis, autophagy, and senescence, depending on the stimulus and cell type. ERK mediated 

apoptosis and autophagy have been shown in keratinocytes by Lee et al. (Lee et al., 2005; Lee et al., 

2006) in apoptosis models using DNA-damaging agents. Most likely, the intrinsic apoptotic pathway, 
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characterized by the release of cytochrom c from mitochondria and subsequent activation of the 

initiator caspase 9, is involved in this mechanism. Thereby a sustained ERK activity was important, 

which might not be initiated by DOR itself, but by the UV induced DNA damage. DOR signalling 

might modulate the signalling pathway to enhance apoptosis after UV radiation and therefore protect 

from carcinogenic transformations. 

Additionally, ERK kinase activity has been related to induction of senescence. In response to 

oncogenic hyperproliferative signals, primary cells can undergo cell cycle arrest, leading to premature 

oncogene-induced senescence (Collado et al., 2007). This process is often triggered by constitutivly 

active forms of Ras, PAK4, Raf or MEK (Cagnol et al., 2010). Our four hour genexpression study 

indicated a downregulation of B-Raf in DOR activated HaCaT cells, and it would be of interest, if this 

could also be detected in N/TERT-1 cells. N/TERT-1 cells are closer to primary keratinocytes and 

might be more sensitive to oncogene-induced senescence. However, they are p16/INK4a-deficient, 

express TERT, and are not expected to induce senescence (Rheinwald et al., 2002). Keratinocytes 

have been shown to induce senescence independent of the telomere status but this process was 

p16/INK4a- and p53 dependent. However, in human fibroblasts inhibition of p16 or p53 was not 

sufficient to reverse senescence and might indicate that cells do not depend on these factors to induce 

senescence (Kuilman et al., 2008; Michaloglou et al., 2005; Zhuang et al., 2008). 
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Conclusion and Perspectives 

 

The DOR is an important regulator of keratinocyte function, controlling the proliferation-

differentiation state, adhesion and migration of the cells. In the present work, the molecular 

mechanism driving inhibition of keratinocyte differentiation, by stimulation of the DOR, were 

demonstrated. Thereby, the ERK 1/2 MAPK signalling pathway, activated by the DOR, inhibits the 

transcription factor POU2F3. This impairs epidermal stratification by inhibiting proliferation and the 

expression of differentiation-related genes. 

It was hypothesised, that this signalling cascade is involved in spinous-to-granular layer transition of 

keratinocytes during the process of stratification. Furthermore, the spatio-temporal morphological 

change of wound edge keratinocytes could be regulated by this pathway. This process is accompanied 

by further regulatory mechanisms, possibly influencing dermal-epidermal communication and ECM 

remodelling. A combination of several factors will determine the overall effect of the DOR during the 

wound healing process. Other functions, for example during photoaging, could also be assumed. Both, 

the exact involvement in wound healing and photoaging remain to be explored. 

DOR cells are more motile and display altered expression of cellular adhesion molecules in vitro. 

These phenotype changes positively contribute to the wound healing process. Wound models could 

help to further explore these changes in vivo. Because the epidermal-dermal interaction is important 

during wound healing and photoaging, this has to be taken into account for future studies. The MMPs 

altered by the DOR on mRNA level, are supposed to target collagen type I or elastin fibres. It would 

be of interest to investigate alterations of these fibres, during the wound healing process or after UV 

radiation and to establish the correlation to DOR activation. 

The limit of tools for endogenous DOR detection complicates the detailed characterisation of its 

expression pattern and cellular localisation. It is important to understand the in vivo triggers for DOR 

membrane localisation, in order to predict if cells will be responsive to opioid drugs. In certain 

pathological conditions DOR might be deregulated, leading to an enhancement of the symptoms. 
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The present manuscript revealed a Ca2+ dependent cell surface localisation. It was evident that 

N/TERT-1 cultures under low Ca2+ had less pronounced phenotypes. Proliferation was not different 

than in control cells and only a mild delay in keratinocyte differentiation could be detected. There are 

indications that other factors influence DOR function in keratinocytes as well. Our current culture 

conditions involve many unknown factors. In order to move away from the overexpression system, 

towards the detection of endogenous DOR functions in keratinocytes, we need to better understand 

the DOR. Primary keratinocytes in culture are very heterogeneous. Soluble factors and cell-cell 

contacts strongly influence the expression pattern of cell surface receptors, cytokines or hormones. 

Even in vitro, these factors are difficult to control and need therefore to be characterized. In vivo, 

further interaction levels are added to the system. The peripheral nervous system, immune cells and 

fibroblast of the dermis secrete many molecules, altering the keratinocytes microenvironment and 

therefore their state. Fibroblast-keratinocyte co-cultures could help to identify soluble factors. Single 

cell PCR approaches might be used to characterise subpopulations of keratinocytes. There are still 

many unknown variables that need to be resolved, before we can address the effective clinical 

application of opioid treatments in skin therapy. 

 
Figure 33 - Model for keratinocyte modulation upon triggered activation of DOR signalling 

After an external trigger, DOR will be localised to the cell surface and the endogenous agonist enkephalin will 
be secreted. In a paracrine and autocrine mechanism DOR signalling will be activated in keratinocytes leading 
to alterations in gene expression and cell morphological changes. Keratinocytes secrete cytokines, such as IL-1, 
leading to a crosstalk with the dermal compartment and induction of remodelling processes. At the same time 
keratinocytes undergo morphological changes in order to migrate and adhere differently, necessary to efficiently 
respond to the changed environment. 

MMPs MMPs 



108 

 



 

CHAPTER V 

MATERIAL 
AND 

METHODS 
 

 

 

  



Material and Methods  Chapter V 

110 

V. MATERIAL AND METHODS 
 

V.1. Reagents 
 

V.1.1. Chemicals 
 
If not otherwise stated, all standard laboratory chemicals were of standard analytical (p.a.) grade and 

were purchased from Sigma-Aldrich (Switzerland, Singapore), Merck (Switzerland, Singapore), 

Applichem (Singapore), Promega (Switzerland, Singapore) or 1stBase (Singapore).  

Opioid ligands SNC80 and Naltrindole were from Tocris Biosciences and Met-Enkephalin from 

Sigma Aldrich. The MEK 1 inhibitor PD98059 was purchased from Promega. 

 

V.1.2. Reaction kits 
 
The indicated reaction kits were used according to the manufacturer’s instructions. Any changes to the 

protocols are mentioned in the corresponding methods section. The QIAshredder, RNeasy Mini Kit, 

RNase-Free DNase Set, QuantiTect SYBR Green PCR Kits, Effectene Transfection Reagent, and the 

Plasmid Purification Kit were from Qiagen®. The reverse transcription PrimeScript™ RT-PCR Kit 

was purchased from TaKaRa. 

 

V.1.3. Plasmids and constructs 
 
Plasmids and expression vectors used in this study are listed in Table 2. 

Table 2 -  Plasmids and constructs used in this work 
Plasmid Description Source/Reference 
hDOR-GFP in TRIP-PGK-
IRESNEO-WHV 

hDOR with C-terminal fusion to 
GFP 

T. Baumann, M. Bigliardi-Qi 
NCBI entry NM_000911 

psPAX2 Lentiviral packaging Prof. C. Widmann, Lausanne, 
Switzerland 

pMD2.G Lentiviral envelope Prof. C. Widmann, Lausanne, 
Switzerland 

hDOR-GFP in pEZ-Lv122 hDOR with C-terminal fusion to 
GFP 

EX-A1155-Lv122 
GeneCopoeia 
NCBI entry U10504 
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V.1.4. Antibodies 
 
Primary antibodies used in this work are listed in table 3. 

Table 3 - Primary antibodies used in this work 
Antibody Supplier/source Species Clone Reference n° 
α-p44/42 MAPK 
(ERK 1/2) 

Cell Signaling rabbit 
monoclonal 

137F5 4695 

α-Phospho-
p44/42 MAPK 
(ERK 1/2) 
(Thr202/Tyr204) 

Cell Signaling rabbit 
monoclonal 

197G2 4377 

α-GFP abcam rabbit 
polyclonal 

 ab290 

α-Keratin 10 abcam mouse 
monoclonal 

DE-K10 ab9026 

α-Keratin 10 Thermo Fisher Scientific 
(Neomarkers) 

mouse 
monoclonal 

DE-K10 MS-611 

α-Involucrin Thermo Fisher Scientific 
(Neomarkers) 

mouse 
monoclonal 

Sy5 MS-126 

α-PCNA  Santa Cruz Biotechnology rabbit 
polyclonal 

 sc-7907 
(FL-261) 

α-Desmoplakin D. Garrod, University of 
Manchester, UK, 
E. Birgit Lane, IMB, Singapore 

mouse 
monoclonal 

11-5F (Parrish et 
al., 1987); 
 

α-α-Tubulin Sigma-Aldrich mouse 
monoclonal 

DM 1A T9026 

α-Glyceraldehyde 
3-phosphate 
dehydrogenase 
(GAPDH) 

Life Technologies mouse 
monoclonal 

3E8AD9 A21994 

α-Calnexin abcam mouse 
monoclonal 

AF18 ab31290 

α-EEA1 BD Transduction Laboratories; 
Frederic Bard, IMCB, Singapore 

mouse 
monoclonal 

14/EEA1 610457 

α-LAMP-1 Developed by J.T. August and 
J.E.K. Hildreth; Developmental 
Studies Hybridoma Bank developed 
under the auspices of the NICHD 
and maintained by the University of 
Iowa, Department of Biology; 
E. Birgit Lane, IMB, Singapore 

mouse 
monoclonal 

H4A3 (Hildreth et 
al., 1985) 

 

Secondary antibodies 

Secondary antibodies for immunofluorescence staining were from Life Technologies (Molecular 

Probes) goat anti-mouse AlexaFluor 594 conjugated, goat anti-rabbit AlexaFluor 488 conjugated, and 

goat anti-rabbit AlexaFluor 594 conjugated. 

Secondary antibodies for immunoblot were goat anti-mouse IRDye 800 and goat anti-rabbit IRDye 
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700DX purchased from Rockland Immunochemicals as well as goat anti-rabbit AlexaFluor 680 

conjugated from Life Technologies (Molecular Probes). 

 

V.2. Methods 
 

V.2.1. Cultivation of primary fibroblast 
 
Human primary fibroblasts were isolated from infant foreskin. Briefly, the foreskin was trimmed of 

subcutaneous tissue and minced into small pieced using scissors. The tissue was transferred into a 

0.25% dispase (Gibco) solution in Dulbecco’s modified Eagle’s medium (DMEM) and incubated 

overnight at 4 °C. The following day the epidermis was separated from the dermis. The dermis was 

then incubated in 0.25% Trypsin-EDTA (Gibco) at 37 °C for at least 40 min. The digested tissue was 

centrifuged for 10 min at 500 x g and washed once in DMEM medium. The remaining pellet was 

resuspended in 5 ml fibroblast growth medium containing DMEM (Gibco), 10% (v/v) foetal bovine 

serum (J R Scientific, PAA), 100 U/ml penicillin, and 100 g/ml streptomycin (PAA) and platted 1:5 

into separate 10 cm culture vessels. After overnight incubation at 37°C and 5% CO2 medium was 

changed and remaining dermis pieces removed from the culture. Cultures were kept until 80% 

confluence and medium changed every second day. To detach adherent cells they were washed with 

PBS (without Ca2+ and Mg2+) and incubated for up to 5 min with trypsin/EDTA or TrypLE™ Express 

(Gibco) at 37°C. Trypsination was stopped by addition of serum containing culture medium. The 

primary fibroblasts were used until passage 6. 

 

V.2.2. Cultivation of keratinocytes 
 

Primary keratinocytes 

Primary human keratinocytes were isolated from infant foreskin. The foreskin was trimmed of 

subcutaneous tissue and minced into small pieced using scissors. The tissue was transferred into a 

0.25% dispase solution in DMEM and incubated overnight at 4 °C. The following day the epidermis 

was separated from the dermis. The epidermis was then incubated in 0.25% Trypsin-EDTA at 37 °C 

for 30 min. The digested tissue was centrifuged for 10 min at 500 x g and washed once in keratinocyte 
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serum-free medium (K-SFM; Gibco). The remaining pellet was resuspended in 5 ml keratinocyte 

growth medium containing K-SFM (Gibco; 0.09 mM Ca2+), supplemented with 5 ng/ml epidermal 

growth factor (EGF) and 50 g/ml Bovine Pituitary Extract (BPE; Gibco) and platted 1:5 into 10 cm 

culture vessels. After overnight incubation at 37°C and 5% CO2 medium was changed and remaining 

larger pieces removed from the culture. The cells were grown to 70% confluence at 37°C and 5% CO2 

and subcultured using 0.25% Trypsin-EDTA. Trypsinisation was stopped by removing the enzyme 

solution after centrifugation and approximately 1 x 104 per T75 flask were carried as stock. Cells were 

subcultured every 7 days and medium was changed every 2-3 days. The primary keratinocytes were 

used until passage 4. 

 
HaCaT cells 

HaCaT cells (Boukamp et al., 1988) were maintained in DMEM containing 10% (v/v) foetal bovine 

serum, 100 U/ml penicillin, and 100 g/ml streptomycin in a humidified 5% CO2 atmosphere at 37°C. 

To detach adherent cells they were washed with PBS (without Ca2+ and Mg2+) and incubated for up to 

8 min with trypsin/EDTA or TrypLE™ Express at 37°C. Trypsination was stopped by addition of 

serum containing culture medium. Cells were subcultured every 2-3 days.  

 
N/TERT-1 cells 

N/TERT-1 (Dickson et al., 2000; Rheinwald et al., 2002) cells, developed at Dr. J. Rheinwald’s 

laboratory (Harvard Medical School, Boston, MA, USA) are derived from neonatal foreskin and 

immortalized by transfection to express telomerase reverse transcriptase (TERT). They were cultured 

in K-SFM supplemented with 0.2 ng/ml EGF and 25 g/ml BPE and an adjusted Ca2+ concentration 

to 0.4 mM, grown to 50% confluence at 37°C and 5% CO2 and subcultured using TrypLE™ Express. 

Trypsinisation was stopped by removing the enzyme solution after centrifugation and approximately 

1 x 104 per T75 flask were carried as stock. Cells were subcultured every 7 days and medium was 

changed every 2-3 days. 
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V.2.3. Plasmid Purification, cultivation of HEK 293 cells, lentiviral 
production, and viral transduction 

 

Plasmid purification 

For amplification of plasmid DNA the bacterial strain XL1-blue was transformed. Cultures were 

grown at 37°C in LB medium containing the appropriate antibiotic. Plasmids were purified from 

overnight cultures inoculated with a single colony using the Qiagen® plasmid purification kit 

following the manufacturer’s instructions. The DNA concentration was determined by measuring the 

optical density of the sample at a wavelength of 260 nm (OD 260) using a spectrophotometer. 

 

Cultivation of HEK 293 cells 

HEK 293FT and HEK 293Ta cells were cultured in DMEM containing 10% foetal bovine serum, 

MEM Non-Essential Amino Acids (Gibco), and 100 U/ml penicillin and 100 g/ml streptomycin, at 

37°C and 5% CO2. To detach adherent cells they were washed with PBS (without Ca2+ and Mg2+) and 

incubated for up to 2 min with trypsin/EDTA or TrypLE™ Express at 37°C. Trypsination was 

stopped by addition of serum containing culture medium. Cells were subcultured every 2-3 days. 

 

Lentiviral particle production 

Production of recombinant lentiviral particles was modified from the method described by J.Y. Yang 

et al. (Yang et al., 2004). In brief, HEK293FT cells were co-transfected using the calcium phosphate 

DNA precipitation method (Jordan et al., 1996) with 20 g of the lentiviral vector (TRIP-PGK-

IRESNEO-WHV) containing the cDNA of interest (hDOR-GFP), 6 g of the envelope protein-coding 

plasmid (pMD2.G), and 15 g of the packaging construct (psPAX2) in a 10 cm culture dish. 

HEK293Ta cells were transfected with purified 1.5 g of DOR plasmid (GeneCopoeia) and 1 g of 

human lentiviral packaging and envelope vectors (psPax, pMD2.G) using Qiagen® Effectene 

Transfection Reagent, according to manufacturer’s instructions. 48 h after transfection, the virus-

containing medium was harvested and concentrated by ultracentrifugation at 22.000 rpm at 4°C for 2 

hours and 16 min in a Beckman Coulter JS-24.38 rotor. 
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Titration of lentiviral particles 

The titer of the viral stock was determined as described by (Barde et al., 2010). Briefly, target cells 

were transduced with a serial dilution of virus particles in a 12-well plate and incubated for 48 h. Cells 

were then harvested and fixed in 1% formaldehyde in PBS for 5 min. Fixed cells were washed and 

GFP expression was analysed using flow cytometry. Dilutions yielding 1% to 20% of GFP positive 

cells were used for titer calculations. 

T /ml   
 Number of target cells counted at day of plating        P  positi e cells

    

 olume of  iral particles in  ml 
 

 

Transduction of target cells 

Transduction of all keratinocytes (HaCaT and N/TERT-1 cell lines, primary keratinocytes) was 

performed at 30% confluence with a multiplicity of infection of approximately 10, in the presence of 

10 g/ml Polybrene (Millipore). After 24 hours incubation at 37°C in a 5% CO2 humidified 

atmosphere, the viral particle-containing medium was replaced with fresh medium and cells were 

further cultured for at least 48 hours before being used in specific experiments. 

 

V.2.4. Treatment of cells 
 
For ligand treatment keratinocytes were grown in 6-well culture vessels until 90% confluence. Cells 

were starved of growth supplement for 6 h (HaCaT) or overnight (N/TERT-1), due to the different 

media compositions and the corresponding ligand was added for the respective time. Inhibitor 

PD98059 was added 30 min prior to agonist addition and the DOR antagonist Naltrindole 5 min prior 

to agonists. Treatment of cells was at a final concentration of 100 nM for SNC80, 100 nM [Met5]-

enkephalin, 10 M Naltrindole, 20 M PD98059, or DMSO vehicle control. SNC80 and PD98059 

were dissolved in DMSO and [Met5]-enkephalin and Naltrindole in water. DMSO (0.001 – 0.1% 

final) was added to control cells. 
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V.2.5. xCELLigence impedance measurements 
 
A 96-well E-plate was filled with 50 l of complete DMEM per well and the background was 

measured in the xCELLigence machine. 4000 HaCaT cells per well were added in a total volume of 

100 l and cell index was continuously measured every 15 min for 1 h followed by hourly 

measurements for two days. 10 l of diluted ligand was added to the medium and the impedance was 

measured every minute for 3 h and then switched to hourly measurement for continues observation. 

The measurement was normalized to the time point before addition of ligands and the values for the 

cell index generated by the xCELLigence software extracted and analysed using GraphPad Prism 5. 

 

V.2.6. Gene expression analysis 
 
Extraction of total RNA 

After the respective time of the treatment was over, the medium from 6 cm culture vessels containing 

90% confluent HaCaT cells was aspirated and cells were once rinsed with PBS. 1 ml TRIZOL 

(Invitrogen) was added at room temperature and cell lysates collected in an RNase free microtube. 

Lysates were shortly vortexed, frozen in liquid nitrogen, and stored at -80 °C until further extraction. 

Samples were then thawed, 200 l Chloroform added, shaked vigorously by hand for 15 s, and 

incubated at room temperature for 3 min. Microtubes were centrifuged at full speed for 15 min at 4 °C 

and the upper aqueous phase transferred into a new tube. 500 l Chloroform were added to the 

aqueous phase, samples were vortexed, and centrifuged at full speed for 15 min at 4 °C. The upper 

phase was transferred into a fresh tube and subjected to another round of chloroform extraction. To 

the fresh aqueous phase an equal volume of 70% ethanol was added and the solution mixed by 

pipetting. The samples were loaded onto an RNeasy column (Qiagen®) and centrifuged for 15 s at 

10,000 rpm at room temperature. The column was washed with 700 l buffer RW1 from the RNeasy 

Mini Kit (Qiagen®) and centrifuged at 10,000 rpm for 15 s. this washing step was repeated a second 

time. The column was placed into a new collection tube and washed twice with 500 l buffer RPE 

from the RNeasy Mini Kit (Qiagen®). After a final centrifugation for 2 min at 10,000 rpm RNA was 

eluted with 50 l of water and put on ice. The RNA concentration was determined by the optical 
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density of the sample at 260 nm (OD260) using a spectrophotometer and chemical purity determined 

by the ratio of the 260 / 230 nm reading from the spectrophotometer. 

RNA was further purified by sodium acetate precipitation. To 100 l of RNA in water 10 l of 3 M 

sodium acetate, pH 5.2 were added. Further, 2 l Glycogene (5 mg/ml) and 275 l cold 100% ethanol 

were added. Solution was mixed well and incubated at -80 °C for 40 min. Samples were centrifuged 

at 4 °C at full speed for 40 min. Supernatant was removed and pellet washed with 70% ethanol. 

Samples were centrifuged at full speed for 5 min at 4 °C and washed a second time with 70% ethanol. 

After centrifugation and removal of supernatant, the pellet was completely air-dried at room 

temperature, finally resuspended in water, and left on ice for 10 min. Samples were vortexed and 

quick spun and the RNA concentration determined by measuring the optical density of the sample at 

260 nm (OD260) using a spectrophotometer. 

 

Target preparation and hybridisation on microarray 

RNA was further processed by the Lausanne Genomic Technologies Facility to prepare the probes for 

the Affymetrix whole transcriptome microarray analysis. The Ambion® WT Expression Kit was used 

to generate sense strand cDNA from total RNA for further fragmentation and labelling using the 

Affymetrix GeneChip® WT Terminal Labeling Kit according to the manufacturer’s recommendations. 

The processed samples were hybridized on a human gene 1.0 ST array and the generated expression 

profile analysed. Three replicates for each condition (DOR-overexpression vehicle treated, DOR-

overexpression agonist treated, GFP control cells vehicle treated, and GFP control cells agonist 

treated) were scanned, normalized and data transformed to logarithmic scale to the base 2 for 

statistical calculations in a 2x2 factorial design. 

 

Statistical analysis of the microarray data 

A linear model was built with the four experimental groups as factors and the comparisons of interest 

as contrasts were extracted. The adjusted p-values (controlling for FDR, false discovery rate) were 

computed separately for each comparison using the Benjamini-Hochberg method. Comparisons were 
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the DOR effect (DOR.DMSO vs CTL.DMSO), the agonist effect (CTL.agonist vs CTL.DMSO), the 

DOR effect in presence of agonist (DOR.agonist vs CTL.agonist), the agonist effect in presence of 

DOR (DOR.agonist vs DOR.DMSO) and the interaction ((DOR.aonist-DOR.DMSO) vs 

(CTL.agonist-CTL.DMSO)). The adjusted p-value was used to test for significant differential 

expression (p < 0.05). The data received from the interaction comparison were used for subsequent 

studies. The gene enrichment of functional pathways was performed using the MetaCore GeneGo 

software. Hierarchical clustering of expression patters was performed using Cluster 3.0 and JTree 

View programs (Eisen et al., 1998). The interaction ratios were shown by heat map using red and 

green colour codes for up- and down-regulation, respectively. The experiments were ordered by drug 

and cell type in columns of the heat map for visualisation of patterns following treatment with 

agonists. 

 

V.2.7. Extraction of total RNA 
 
Total RNA from cultured cells in a 6-well culture vessel was isolated using the RNeasy Mini Kit 

(Qiagen®) according to the manufacturer’s instructions. The RNA concentration was determined by 

the optical density of the sample at 260 nm (OD260) using a spectrophotometer. If not used 

immediately, the RNA was quick frozen on dry ice or in liquid nitrogen and stored at -80 °C. 

 

V.2.8. Reverse transcriptase PCR (RT-PCR) 
 
Reverse transcription was performed according to the provided manual of the PrimeScript RT reagent 

Kit (TaKaRa). The reaction was performed in a total volume of 20 l, containing 1 g RNA, 25 pmol 

Oligo dT Primer, 50 pmol Random 6 mers, 1X PrimeScript buffer, and PrimeScript RT Enzyme Mix 

I. The reaction mixture was incubated at 37 °C for 20 min, followed by 85 °C for 5 s and cooling to 

4 °C. 
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V.2.9. Quantitative real-time PCR 
 
Quantitative PCR assays were carried out on a real-time PCR detection system (StepOne™ Real-

Time PCR System or 7500 Fast Real-Time PCR System; Applied Biosystems) using Power SYBR 

Green PCR Master Mix (Applied Biosystems) or QuantiFast SYBR Green PCR Kit (Qiagen®) in a 

reaction volume of 20 l, employing approximately 30 ng of cDNA template. To evaluate the 

expression level of human KRT1, KRT10, IVL, and POU2F3 mRNAs, commercially available 

QuantiTect Primer Assays (Qiagen®, reference n° QT00014182, QT00017045, QT00082586, and 

QT00029057) were used. Primers for loricrin (LOR), filaggrin (FLG), Hypoxanthine phosphoribosyl 

transferase 1 (HPRT1), and Ribosomal protein L13a (RPL13a) are listed in table 4. 

The RPL13a expression was used for normalization in all N/TERT-1 experiments and HPRT1 in all 

HaCaT experiments. Quantification was performed using the comparative 2-ΔΔCT method. 

Table 4 - Real-time PCR primer used in this work 
Name Sequence source 
LOR forward 5’-TCA TGA TGC TAC CCG AGG TTT G-3’ (Kovacs et al., 2012) 
LOR reverse 5’-CAG AAC TAG ATG CAG CCG GAG A-3 (Kovacs et al., 2012) 
FLG forward 5’-GAA GAC AAG GAT CGC ACC AC-3’ (Kovacs et al., 2012) 
FLG reverse 5’-ATG GTG TCC TGA CCC TCT TG-3’ (Kovacs et al., 2012) 
RPL13a forward 5’-CTC AAG GTC GTG CGT CTG AA-3’ D. Hohl, Lausanne, 

Switzerland 
RPL13a reverse 5’-TGG CTG TCA CTG CCT GGT ACT-3’ D. Hohl, Lausanne, 

Switzerland 
HPRT1 forward 5’-TGA CAC TGG CAA AAC AAT GCA-3’ D. Hohl, Lausanne, 

Switzerland 
HPRT1 reverse 5’-GGT CCT TTT CAC CAG CAA GCT-3’ D. Hohl, Lausanne, 

Switzerland 
 

V.2.10. Extraction of proteins for Western blot analysis 
 
After the appropriate treatment the reaction was stopped by aspiration of the medium following a two 

times wash step with ice cold PBS. Plates were either frozen in -80 °C and extracted at a later time 

point or immediately subjected to protein extraction. Cells were lysed in RIPA-like lysis buffer, 

comprising 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.47 mM KH2PO4, 1% IGEPAL CA-630, 

0.1% SDS, 0.5% Sodium deoxycholic acid at pH 7.4, freshly supplemented with 1 mM DTT, 1 mM 

PMSF, 10 mM Na3VO4, and 1x protease inhibitor (Roche). 

Proteins were quantified using the Bradford method (Bradford, 1976) with a colorimetric assay using 
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Protein Assay (Bio-Rad) according to the manufacturer’s instructions. 

Protein extracts for keratin detection were prepared by lysis of cells with a buffer containing 10 mM 

TRIS-HCL, 5 mM EDTA, 5 mM EGTA at pH 7.5, supplemented with 4% SDS, 1% Triton X-100, 

160 mM DTT, 0.8 mM PMSF, 0.8 mM Na3VO4, and 1x protease inhibitor. Lysates were boiled for 

5 min at 95 °C and kept at 4 °C until gel electrophoresis. 

 

V.2.11. SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 
 
20 g of protein per cell extract were separated on vertical, discontinuous SDS-polyacylamide gels 

(Laemmli, 1970). Samples were prepared by addition of 6x SDS sample buffer and heating at 95°C 

for 5 min. Depending on the required separation range the acrylamide concentration was adjusted to 

10% or 12% in casting gel buffer. The composition of the stacking gel was 5% acrylamide in stacking 

gel buffer. Electrophoresis was performed with SDS running buffer at 30 mA per gel using Mini-

PROTEAN® electrophoresis chambers (Biorad). The prestained molecular weight marker PageRuler 

Plus (Fermentas) was used as a size reference. 

 

V.2.12. Immunoblot analysis (Western blot) 
 
After protein separation via SDS-PAGE samples were subsequently transferred to a nitrocellulose 

membrane (Bio-Rad) by electroblotting using the wet technique. Blotting was performed at 100 V for 

1 h 32 min with the Mini Trans-Blot® Cell (BioRad). Membranes were next incubated for at least 

30 min in TBS (20 mM TRIS, 150 mM NaCl, pH 7.5) blocking solution, containing 0.1% Tween-20 

and 5% non-fat milk. The primary antibody was added and incubated either for 45 min at room 

temperature or overnight at 4 °C. 

The ERK specific antibodies were incubated with a 1:1000 dilution in TBS containing 0.1% Tween-

20 and 5% BSA overnight at 4°C.  or the  APDH ( : 8   ) , the α-Tubulin (1:2000), and KRT10 

(1:200) antibodies blots were incubated in TBS containing 0.1% Tween-20 and 5% non-fat milk 

overnight at 4°C (KRT10) or for 45 min at room temperature ( APDH, α-Tubulin). Blots were then 

washed with TBS-Tween 0.1%, incubated with the appropriate secondary antibody (1:5000 dilution) 
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for 1 hour at room temperature and subsequently visualized with the Odyssey infrared imaging system 

(LICOR Biosciences). Quantification of the fluorescence signal was done using the Odyssey software 

and normalized to the background signal. Obtained values of integrated intensity were exported to an 

EXCEL file, and relative ERK phosphorylation was calculated by normalization to the total ERK 

signal and the respective vehicle control as reference for each group. 

To reprobe a blotting membrane with a different primary antibody, the membranes were stripped off 

the bound antibodies. They were incubated for 2x 30 min at room temperature in stripping buffer 

containing 25 mM Glycine, 1.5% SDS at pH 2. Following extensive washing with TBS-T for 1 h, the 

membranes were blocked for 45 min in blocking solution before addition of the new primary 

antibody. 

 

V.2.13. Immunocytochemistry and fluorescence microscopy 
 
Primary keratinocytes, HaCaT, or N/TERT-1 cells were seeded into 24-well plates containing glass 

coverslips and subjected to the treatments indicated in the figures. Cells were fixed in 4% 

paraformaldehyde for 15 min at room temperature, washed twice with PBS, permeabilised and 

blocked using 0.3% Triton X-100 and 10% goat serum in PBS for 1 h at room temperature. The 

co erslips were incubated o ernight at 4°C with the corresponding primary antibodies (α-GFP 1:900, 

α-desmoplakin  :    , α-calnexin  : 8  , α-EEA   : 3  , and α-LAMP-1 1:100) diluted in PBS, 5% 

goat serum, 0.1% Triton X-100. After three washes in PBS, coverslips were incubated for 1 h with a 

1:300 dilution of labelled secondary antibodies in PBS. The coverslips were then washed three times 

in PBS and stained with 10 g/ml Hoechst 33258 (Sigma Aldrich), washed twice in PBS and mounted 

onto microscope slides (Fluorescence Mounting Medium, Dako) 

HaCaT cells and primary keratinocytes from Figure were examined by conventional widefield 

fluorescence microscopy using a Zeiss Axiovision Imaging system equipped with a Plan-Neofluar 

40x/1.30 NA oil-immersion lens. 

Confocal images of stained HaCaT cells were captured as z-stacks and projected to a single image 

using an Olympus FV1000 microscope system with an UPLSAPO 100X/1.40 NA or UPLFLN 
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40x/1.3 NA oil-immersion lens. 

 

V.2.14. Immunohistochemistry and confocal microscopy of organotypic 
cultures 

 
Organotypic skin cultures were fixed in 10% neutral buffered formalin. Paraffin embedding, 

sectioning, and haematoxylin and eosin staining was provided by the Institute of Molecular and Cell 

Biology Core Histopathology Laboratory, Singapore. Five micron thick sections were deparaffinised 

and stained with haematoxylin/eosin for morphological analysis. For fluorescence imaging 

deparaffinised sections underwent heat-mediated antigen retrieval in citrate buffer at pH 6 following 

blocking with 10% goat serum in PBS, 0.5% Tween-20 and 1% BSA. Antibodies were subsequently 

added and incubated overnight at 4 °C. Slides were then washed in PBS/0.5% Tween-20 and 

incubated for 1 h with a 1:300 dilution of secondary antibody. After further washing steps, nuclei 

were counterstained with Hoechst dye (see above) for 5 min at room temperature and mounted with 

Dako Fluorescence Mounting Medium. Confocal images were captured as z-stacks and projected to a 

single image using an Olympus FV1000 microscope system with an UPLFLN 40x/1.3 NA oil-

immersion lens and UPLSAPO 20x/0.75 NA dry lens. Haematoxylin and eosin staining was imaged 

using a Ariol high resolution fluorescence and brightfield slide scanner as service by the Institute of 

Molecular and Cell Biology Core Histopathology Laboratory, Singapore. 

 

V.2.15. Incucyte proliferation assay 
 
1000 N/TERT-1 cells per well were plated into a 96-well plate and allowed to adhere overnight. The 

next day, medium was changed to either vehicle control medium or 100 nM SNC80-containing 

medium, and the plate was placed into the Incucyte machine. The machine captured images of the 

cultures every hour with the 10x/1.49 NA dry objective lens. Percentage confluence was calculated 

from the images using the metrics from the Incucyte software. The doubling time was calculated in 

GraphPad Prism 5 from the obtained growth curve using a nonlinear regression model, and is 

displayed as mean with upper and lower limit. 
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V.2.16. Organotypic culture 
 
A dermal equivalent was generated under sterile conditions by preparing a gel containing rat tail 

collagen type I (BD, reference n°354236) and dermal fibroblasts (100,000 cells per ml). 2 ml of this 

suspension were transferred into a cell culture insert (pore size 1 m, BD) in a 6-well plate and 

incubated for three hours at 37 °C and 5% CO2, until solidified. Dermal equivalents were cultured in 

 A D medium: DMEM, and HAM’s   2 medium (3: )  supplemented with     U/ml penicillin, and 

100 g/ml streptomycin (PAA), 10% foetal bovine serum (J R Scientific), 1% Glutamax (Life 

Technologies), 0.4 g/ml Hydrocortisone (Sigma-Aldrich), 5 g/ml Insulin (Sigma-Aldrich), 

1.8 × 10-4 M Adenine (Sigma-Aldrich), 10 ng/ml EGF (Sigma-Aldrich), 5 g/ml Transferrin (Sigma-

Aldrich), and 2 × 10-11 M 3,3’,5-Triiodo-L-thyronine (T3) (Sigma-Aldrich). After 48 h, N/TERT-1 

cells (200,000 per culture) were seeded on top of the dermal equivalent and cultured under submerged 

conditions in FAD medium until a confluent keratinocyte monolayer had developed. Cultures were 

then shifted to air-liquid interface conditions by placing the culture insert into a deepwell plate (BD). 

Medium was changed to FAD medium without EGF supplementation and cultures were grown for 14 

days. Subsequently, cultures were cut in half: one part was fixed in 10% neutral buffered formalin, 

while the other was frozen in Tissue-Tek O.C.T. compound (Sakura, USA) for further analysis. 

 

V.2.17. Quantification of the epidermal area from organotypic cultures 
 
The whole Haematoxylin and eosin stained tissue section was imaged using an Ariol high resolution 

fluorescence and brightfield slide scanner as service by the Institute of Molecular and Cell Biology 

Core Histopathology Laboratory, Singapore. The darker Haematoxylin and eosin staining represents 

the epidermis generated by the respective N/TERT-1 cells. Using ImageJ a threshold was defined to 

exclude all non epidermal tissue from the image and the remaining area was quantified. The 

experiment was performed in duplicates and repeated three times. For each experiment the mean of 

the GFP control and DOR cultures were normalised to the untransduced wild type control and the 

three independent experiments were combined for statistical analysis. A one-way ANOVA analysis 

with a Newman-Keuls post-hoc-test was performed in order to determine the p-value. 
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