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Artificial selection improves pollutant
degradation by bacterial communities

Flor I. Arias-Sánchez 1,2 , Björn Vessman2, Alice Haym2, Géraldine Alberti2 &
Sara Mitri 2,3

Artificial selection is a promising way to improve microbial community func-
tions, but previous experiments have only shown moderate success. Here, we
experimentally evaluate a newmethod that was inspired by genetic algorithms
to artificially select small bacterial communities of known species composition
based on their degradation of an industrial pollutant. Starting from 29 ran-
domly generated four-species communities, we repeatedly grew communities
for four days, selected the 10 best-degrading communities, and rearranged
them into 29 new communities composed of four species of equal ratios
whose species compositions resembled those of the most successful com-
munities from theprevious round. Thebest community after 18 such roundsof
selection degraded the pollutant better than the best community in the first
round. It featured member species that degrade well, species that degrade
badly alone but improve community degradation, and free-rider species that
did not contribute to community degradation. Most species in the evolved
communities did not differ significantly from their ancestors in their pheno-
type, suggesting that genetic evolution plays a small role at this time scale.
These experiments show that artificial selection onmicrobial communities can
work in principle, and inform on how to improve future experiments.

Microbial communities naturally provide us with many ecosystem
functions like digesting inaccessible nutrients or cleaning wastewater.
Being able to design such multi-species communities from scratch to
optimize ecosystem functions would be a major biotechnological
breakthrough, but knowing which species to combine and how such a
choice will affect ecological and evolutionary dynamics and thereby
functional dynamics is a very challenging problem.

A first intuitive approach is to collect candidate species, study
their capacities through genomic and phenotypic analyses and then
combine them in cleverways that are likely to result in high function1–4.
An alternative is to automate the optimizationprocesswhile remaining
blind to the properties of each species. This blind approach can be
taken using artificial selection5,6.

Artificial selection – also known as “directed evolution” or simply
“breeding” – is a powerful approach that takes inspiration fromnatural

selection. Not only has it revolutionized agriculture7, but artificial
selection has also been successfully applied in chemistry to optimize
industrial enzymes8,9, or in pharmacy to reduce HIV drug production
costs10. These success stories have sparked the idea of artificially
selecting microbial communities, promising to enhance human and
ecosystem health, as well as many industrial applications.

In the year 2000, Swenson et al.11,12 published two studies select-
ing natural microbial communities to increase plant biomass, to
degrade an environmental pollutant or to alter the pH of an aquatic
ecosystem. Although selected communities occasionally improved
over time, they also observed improvements in some control lines and
overall, community performance didn’t differ significantly from the
start of the experiments. Many studies have since followed, selecting
for various host effects13–18, production or consumption of
chemicals19–21 or simply for population size22,23. The success of these
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experiments has also been limited6,24, often showing inconsistent
results between repeats or only a moderate increase in function.

One fundamental difficulty with artificially selecting communities
is that selection is applied at the group level – rather than the indivi-
dual level as with conventional breeding – but natural selection con-
tinues to act at the individual level, resulting in little control over the
ecological and evolutionary dynamics occurring within each commu-
nity and within each species5,25,26. This is because individual organisms
within each group go through several generations within each selec-
tion round, with each genotype dividing at a different rate. Over time
then, (i) competition between species may lead to the extinction of
slower-growing species thatmaycontribute to community function6,27,
and (ii) assuming a trade-off between function and growth, competi-
tion within species selects for cheater mutants that do not contribute
to the function and sweep to fixation27,28.

A second problem with the existing approaches lies in how “off-
spring” communities are generated from their “parents” at every
round: parent communities are either simply diluted tomakeoffspring
(low abundant species may go extinct) or pooled together and then
distributed over the offspring communities. Both approaches result in
offspring communities that are very similar to one another, and do not
deviatemuch from the communities at the start of the experiment20,29.
The resulting lack of variability between communities gives little
material for artificial selection to work on. The challenge then is to
develop a selection method that favors cooperation within and
between species, while maintaining between-community variability
and selecting for increased function at the community level.

Here we address these fundamental problems by experimentally
testing whether a novel selection approach called “disassembly
selection” that was inspired by optimization algorithms from the
computational sciences called genetic algorithms30,31 could improve
community performance over the length of a selection experiment.
We have previously compared our approach to existing methods
theoretically29. Here, we implemented disassembly selection experi-
mentally to automatically explore the species composition search
space: we randomly generated communities of known species com-
position, and then repeatedly selected the best-scoring communities,
disassembled their member species and re-assembled new commu-
nities that differed slightly in their composition for the next round
(Fig. 1A). This approach was expected to improve performance while
maintaining between-community variability29. A second goal of our
disassembly approach was to limit competition within communities
and instead select for increased cooperativity. To achieve this and
avoid aggressive species that exclude all others, we penalized com-
munities where species extinctions occur.

We used our approach to find a community that can efficiently
degrade industrial pollutants called Metal Working Fluids (MWFs), a
challenge we have previously studied using a single four-species bac-
terial community32. As this original community could only degrade
44.4% of the MWF on average, we hypothesized that there would be
room for improvement.

After 18 roundsof selectionusing apool of 11 species isolated from
MWF in which 167 combinations of four species were tested, we found
a community that degraded 75.1% of the MWF on average. While this is
significantly better than our original community32, the best community
in the first round, and a random control, the magnitude of the
improvementwas stillmarginal.Wealso separately founda species pair
that performed at least as well as the top community. The lessons
learned with this approach suggest that it can still be simplified,
potentially leading tomoremeaningful improvements in performance.

Results
Degradation efficiency increased over 18 rounds
Briefly, we designed a community selection method where 11 species
were first randomly combined into 29 communities of four species

each, with approximately equal initial abundances. We let these 29
communities grow for four days, scored them according to their
degradation ability while penalizing for species extinctions, “dis-
assembled” the top ten by selective plating, sampled viable cells of
each species and used them to rebuild a new round of 29 communities
that resembled the best-scoring ones. Resemblance was achieved by
either rebuilding the exact same communities as in the previous round
– even with the same starting population sizes for each species – or by
randomly exchanging onemember species in a winning community to
introduce some variability and to ensure that all 11 species remained in
themeta-community.We carried out this procedure 18 times, with one
round per week (Methods, Fig. 1A). To test whether our selection
approach could find communities that degraded better than the ran-
dom species combinations at the start and that this was due to
community-level selection, we included a control treatment where ten
randomly-chosen communities (not based on their degradation
scores) were plated and used to build communities in the next round
(Methods).

In the last round, the five best-degrading communities in the
selection treatment (see Fig. S1 for comparisons of x best, other than
five) scored higher than the top five initial communities from either
treatment (round0: 62.28%± 4.92 vs. round 18 selection: 73.42%± 7.38,
Wilcoxon rank-sum test with continuity correction, df = 15, p =0.012),
and than those in the last round of the random treatment (round 18
random: 63.47%± 5.49, random vs. selection df = 9, p =0.033). In
contrast, the top five from the last round of the random treatment did
not degrade significantly better than the initial communities (random
vs. initial df = 15, p =0.85, Fig. 1B).

Throughout our experiment, we tested 167 different combina-
tions of four species (141 in the selection and 156 in the random
treatment, with some overlap) out of 174 possible permutations of
11 species (some species combinations were avoided in both treat-
ments as the species were indistinguishable using selective plates, see
Methods). The selection treatment tested high-performing commu-
nities more often than the random treatment, and this occurred pre-
ferentially in the later rounds of the experiment (highdensity of purple
dots in top right corner of the selection treatment in Fig. 1C, S2, S3),
showing selection for improved degradation and the maintenance of
high-performing communities. Our approach also continued to
explore the search space by testing many new communities at each
round: in round 18 there were still communities with low degradation
scores (Fig. 1C).

In an effort to estimate the ruggedness of the community “fitness
landscape”4, we next askedwhether the communities with the highest
degradation scores resembled each other in their species composi-
tion, by calculating the Hamming distance to the best community
(number of species that one must exchange to get the same compo-
sition as the best community, Fig. 1D). At first glance, there was no
obvious pattern between the similarity in community composition to
the top community and degradation score. However, the best
5 communities had a distribution of Hamming distances that
was significantly lower than the distribution of distances between
all pairs of communities in our study (Kruskal-Wallis H-test,
p = 3.9 × 10−4, Fig. S4).

Selection reduced extinctions, but did not increase evenness or
total biomass
We first explore whether selection has favored certain community
properties: population growth, community evenness or species sur-
vival. When designing our selection method, we decided to penalize
extinctions by scaling the degradation scores by the fraction of sur-
viving species. We did this firstly to ensure that communities did not
reduce to single species, and secondly to test whether we could select
against competitive species, or even for more cooperative mutants.
Extinctions were quantified in each round by plating 10 communities
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per treatment (see Methods) on selective media on day 4 and com-
paring the presence of each species to how we composed the com-
munity on day 0. The distribution of extinctions per round was
significantly lower in the selection compared to the random control
treatment (Kolmogorov–Smirnov test, p =0.013, Fig. 2A, S5, Table S1).

As a control, we also counted the number of contamination events
(any species that was present at day 4, despite not being inoculated at
day 0), which we did not expect to vary significantly between
the treatments. Indeed, we found no significant difference in con-
tamination events per round between the two treatments
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Fig. 1 | Selection method and its performance. A Illustration of the selection
method (seeMethods for details). Each tube represents a community of 4 species (2
colors drawn for illustrative purposes): 1. Define 29 communities of randomly
drawn species and inoculate each community in MWF+AA. 2. Following growth,
measure degradation score as the difference in pollution load to an abiotic control,
illustrated by the gray field at the top of each tube. 3. Select the communities with
top 10 degradation percents (illustrated by tubes 2 and 5 here) and plate these on
selective media to separate their members. Plating allows to combine degradation
percent with extinctions to calculate community scores. 4. Collect viable cells of
each species from the corresponding community with the highest score and freeze
down. 5a. Generate 29 new communities in proportion to community scores. 5b.
Randomly choose 21/29 of the new communities (illustrated with 4) for species
exchange. Remove one resident species at random and introduce a new species in
its place. Assemble the new communities in the lab using the frozen species from
the previous round and repeat from step 2. B Degradation scores of the 5 best

communities in each round for the selection (blue triangles) and random (orange
circles) treatments, with lines through the average of the 5. C Community com-
position (x-axis) vs. degradation score (hue, color bar) for the best 56 communities
(one third of all 167 tested communities, the full set is shown in Fig. S2) over the 18
rounds of selection (y-axis) in the selection (top panel) and random (bottom panel)
treatments. Communities on the x-axis are ordered by increasing degradation
scores (averaged over all instances of the same species composition). Note that
these are degradation percentages, not final community scores (extinctions not
considered). D Community composition corresponding to panel C, showing the
presence (dark blue) or absence (white/grey) of each species, and illustrating the
difference in composition by the Hamming distance (i.e. the number of substitu-
tions needed to transform a given community to another) to the community with
the highest degradation score at the bottom. Species abbreviations are as listed in
Table 1.
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(Kolmogorov–Smirnov, p = 0.8). Despite this difference, another
explanation could be that fewer extinctions occurred in the selection
than the random treatment because selected communities more often
contained strong growers that promote the survival of others and
increase degradation score (we highlight communities lacking strong
growers in Table S1).

Next, we ask if communities in the selection treatment were more
even than in the random control. We might expect selection to favor
evenness, since species in diverse communities may complement one
another while communities dominated by a single species risk
excluding others that could contribute to degradation. Calculating
evenness as the effective species number relative to itsmaximumvalue
(Methods, Eq. (1)33), the evenness of the 10 communities whose popu-
lations we quantified increased with time in both treatments, but did
not differ significantly between treatments (Fig. 2B, ANCOVA (even-
ness ~ rounds + treatment), treatment: p =0.735, rounds: p <0.001).We
therefore conclude that selectiondidnot favormoreevencommunities
compared to the random treatment.

Finally, we might expect the total biomass in communities to
influence degradation for two reasons: (i) degradation could be the
aggregated effect of individual cells assuming that all species contribute
to degradation, and (ii) as species adapt to the medium, they might
increase their growth rates, which should increase degradation. We
calculated the total population size on day 4 per community at each
round of selection, but found no significant effect of total biomass or
selection treatment on degradation: Total biomass did not correlate
stronglywith time (Spearman’sρ =0.04,0.07, for selection and random,
respectively, Fig. 2C) andwas not significantly different between the two
treatments. Indeed, degradation score did not even correlate with total
biomass (Fig. 2E, Spearman’s ρ= − 0.0062, p =0.904).

In sum, selection seems to have favored communities whose
members are less likely to drive each other extinct, but no other

community features could explain the increase in degradation scores
or the difference between treatments.

Successful communities were composed of good degraders,
their facilitators and freeriders
Noticing that certain species were often found in the winning com-
munities, we next explored which species features were selected and
whether community degradation scores depended on the presence of
specific species or species combinations.

First, we analyzed which species were over- or under-represented
in the meta-community compared to what one would expect by
chance. For each treatment, we quantified how often each species
appeared among plated communities in the last 5 rounds of the
experiment. If a species’ frequency was more than one standard
deviation above or below the frequency one would expect by chance
(18.18), we designate it as over- or under-represented, respectively
(mean± SD = 18.18 ± 11.8; Fig. 3A dashed line, shaded area). Over-
represented species were: Ct, Af and Ac in the selection treatment, and
Pf and Pr in the random treatment, while Ml and At2 were under-
represented in the selection treatment and Ac in the random treat-
ment. The communities that contained the over-represented species
tended to be associated with high degradation scores (Fig. 3A).

Thebest-scoring community in the selection treatment (At1+Ct+Af
+Ac) contained all 3 over-represented species, which partially explains
their over-representation. However, it does not answer how itsmember
species were contributing to the score. High degradation in these
communities could either be due to single species degradingwell, or to
synergistic effects between the species. To find the answer, we grew all
11 species alone and in most pair-wise co-cultures and ranked them
from best to worst degradation. We included four of the best 4-species
communities and all eleven species grown together, as a reference
(Fig. 3B). We observed a wide variation in degradation abilities, and to
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our surprise, all 11 species together ranked 35th (dashed line in Fig. 3B),
which is well below what even single species could achieve.

The best individual degraders were Pf, Ct and At1 (mean degra-
dation: 66%, 58% and 50% respectively), while Af, Ea and At2 were the
worst (mean degradation: 2%, 2% and 4% respectively, Fig. 3B, D).
Interestingly, Af which is one of the worst degraders, was present in
manywinning communities. Thismaybebecausewhen combinedwith
At1, it achieves one of the highest degradation scores (Fig. 3B, D blue
highlight). Compared to their growth in monoculture, At1 promoted
the growth of Af bymore than 3 logs, although Af reduced the growth
of At1 (Fig. 3E blue highlight).

Not all good degraders were over-represented in the selection
treatment, though. Pf and At1 each featured in only 2 of the 10 best
communities (Fig. 1D), despite Pf being the best-performing species
alone and featuring in 8 of the 10 best pairs (Fig. 3B, D). In contrast, Ct
was present in 7 out of the 10 winning communities (Fig. 1D).

We also analyzed which species were most present when extinc-
tions occurred, as we selected against extinctions. In the 20 commu-
nities of the selection treatment where extinctions occurred, the
species most often found were At1, Pr and Pf (13, 12 and 12, respec-
tively, Fig. S5). In 9 of the 20 communities, At1 and Pr were both pre-
sent,whichmay explainwhy theydonot feature together in thebest 10
communities (Fig. 1D), despite being one of the best degrading pairs
(Fig. 3B, D blue highlight). In contrast, only 2 extinction events
occurred in the selection treatment when Ct was present. Even if At1

was often associated with extinctions, it greatly increased the growth
of Af and Pr, resulting in the best-degrading pairs (Fig. 3B, D blue
highlights), of which one (At1 + Af) was present in the winning
community.

The third over-represented species is Ac, which on its own was
one of the worst degraders (mean degradation: 11%). And although its
degradation improved greatly when together with Pf and Ct (mean
degradation: 50% and 46%, respectively), these degradation scores
were lower than what Pf (mean degradation: 66%) and Ct (58%) could
achieve alone. Interestingly, Ac’s growth was also significantly pro-
moted by the three degrader species (Fig. 3E, Ac row, light green
highlight) and while it did not reduce the growth of the degraders
much, it greatly reduced their capacity to degrade, particularly for At1
(mean degradation: 13% as opposed to 50% when grown alone). These
results suggest thatAcmay have acted as a “free-rider” species that got
carried along with the best communities. We tested this idea by
removing Ac from the winning community and observed a reduced
variability in its performance (Fig. 3C). Removing it from the fourth-
best community also significantly increased the community degrada-
tion score (degradation of Ct + Af + Ac + Ea: 30.2 ± 4.5%, vs. Ct + Af + Ea:
47.3 ± 3.5%, t-test, p =0.0012), whereas removing Ct from this com-
munity drastically reduced its degradation score (Af + Ac + Ea:
4.7 ± 1.2%, p < 0.001, Fig. 3C).

In sum, selection appears to have favored communities with at
least one good degrader species, especially if its score could be

Fig. 3 | Representation of species in evolved communities and factors that
might explain it. A Species representation and corresponding percentage of
degradation in the last 5 rounds of the evolution experiment. As bothmeasures can
be quantified in percent, we display them on the same y-axis. The dashed line
represents the average frequency at which we expect to see a given species in the
last 5 rounds by chance, and the shaded area one standarddeviation away from that
average. Points that are outside the shaded area are more or less represented than
expected by chance. The violin plots show the degradation scores of communities
containing that species. B Degradation percent on day 3 in monocultures, pair-
wise co-cultures, top communities and 11 species together, using species taken
from ancestral strains or strains isolated at the end of the random or selection
treatment. Data-points are ordered according to the average degradation % and
interesting cases are highlighted with a colored background and arrows

corresponding to data shown in panels (D) and (E). C Experiment to determine
whether Acmight be a “free-rider” (in 4 technical replicates). Data points in the top
panel show population sizes (log10CFU/ml) of different species and boxplots in the
bottompanel show the distribution of degradation scores at day 3 of co-cultures as
indicated on the x-axis. Each box shows the first, second and third quartiles and the
whiskers the minimum and maximum values. Ac reduces the degradation score of
the communities it is in, or increases their variance. D Matrix of degradation per-
centage in mono- (diagonal elements) and co-cultures of ancestral strains only
(average of dots in panel (B)). EMatrix of population sizes (log10CFU/ml) in mono-
(diagonal elements highlighted with white squares) and pairwise co-cultures of
ancestral strains only. In panels (B), (D) and (E) we highlight interesting cases in
blue and light green that are further discussed in the text. Species abbreviations are
as listed in Table 1.
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enhanced by “weaker” species, as long as they did not cause extinc-
tions. This approachdoes not seem to eliminate free-riders that appear
in the final communities despite their deleterious effects on degrada-
tion scores.

Did the best communities improve compared to their
ancestors?
Up to this point, we have viewed our disassembly selection approach
as away to recombinedifferent species to increasedegradation scores,
but have not considered whether any of the species evolved. To
determine whether the species at the end of the experiment differed
phenotypically from their ancestors, we compared the degradation
and population sizes after 3 days of all 11 species isolated from the
different treatments to their ancestors (Fig. 4A, B). We observed no
significant differences for any species except Ct. Ct isolated from the
selection treatment grew significantly better than its ancestor
(3.8 × 108 ± 2.2 × 108 vs. 3.3 × 107 ± 4.1 × 107, Wilcoxon rank sum, df= 79,
p = 4.72 × 10−16) and than its counterpart isolated from the random
control treatment (9.92 × 107 ± 8.68 × 107, df = 71, p = 1.1 × 10−12). The

strain of Ct from the selection treatment also degraded significantly
worse than its ancestor (51.7 ± 5.2 vs. 56.4 ± 5.5%, df = 79, p =0.00054),
suggesting that it may have evolved to invest more into biomass and
less into degradation, but we do not explore this idea further.

We were also curious whether inter-species interactions had
changed over time. Indeed, we had chosen to conduct this experiment
in growth medium containing casamino acids (see Methods), as we
expected from previous work for competition to be stronger in this
environment compared to MWF without casamino acids32 and we
wondered whether selection could reduce competition.

We first used the population size data of mono- and co-cultures
(Fig. 3E) to estimate interactions in the ancestral species (Fig. 4C). We
then selected isolates of a few pairs (we favored species whose
ancestral interactions were significant and members of the winning
communities) from the random and selection treatments for whichwe
conducted mono- and co-cultures to estimate the interactions
between the evolved species. While some interactions differed after
evolution (Fig. 4D, E), we found little evidence of reduced competition
in the selection treatment, and more generally, no overall pattern

Fig. 4 | Effect of within-species evolution. A Degradation percent or (B) popula-
tion size (log10CFU/ml) of each species on day 3 in three conditions: the ancestral
strains before the experiment, strains harvested after 18 rounds of selection
treatment (S) and after 18 rounds of the random control treatment (R). Data from
mono- (alone) and pairwise co-cultures are shown (with partner). Significant dif-
ferences are calculated using a generalized linearmodel with biological replicate as
random variable and number of species in culture as an explanatory variable, sig-
nificant p-values with a Bonferroni correction for multiple comparisons are shown.
Treatment only had a significant effect on Ct (detailed statistics in main text).
C–E Interactions between ancestral species (C), the species evolved in the random

treatment (D) and the selection treatment (E) defined as the log2 fold-change of the
focal species in CFU/ml of day 3 in co-culturewith the companion species vsmono-
culture. Interactions that were not significant (no significant difference between
growing alone or with companion species) are shaded, p-values were adjusted
using the Benjamini-Hochberg method. Positive (facilitative) interactions are in
blue, while negative interactions are shown in red. White squares are ones that we
did not measure. Overall, we saw very few changes between ancestral and evolved
species (black-bordered squares, quantified in Table S2). Species abbreviations are
as listed in Table 1.
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(Table S2). We therefore conclude that evolution at this timescale has
not had profound effects on the species’ phenotypes.

Discussion
Previous community selection experiments have struggled to show
consistent improvements in community functions compared to
controls6,24.Wehavedevised and tested a selectionmethod to improve
the degradation of MWF pollutants in small synthetic bacterial com-
munities. The disassembly method automatically searches for species
combinations with high degradation scores, while selecting against
species that cause the extinction of other community members. The
best community found using this approach performed significantly
better than the best initial communities (Wilcoxon rank sum test,
p <0.001) and 69% better than the community studied in our previous
work (Fig. S6, Wilcoxon rank sum test, p = 0.007)32.

While this study did not directly compare our artificial community
selection method to previous approaches, we can estimate their per-
formance a posteriori. The most common approach, “propagule
selection”, propagates the best communities in each round through
dilution. To simulate propagule selection, we can imagine that the best
community at round 0 (At1, Sw, Ea, Pr) would have been selected and
propagated further and ask whether it would have improved. The
degradation scores of (At1, Sw, Ea, Pr) throughout the experimentwere
significantly lower than our winning community (At1, Ct, Af, Ac)
(59.57 ± 16.83 versus 75.45 ± 8.43, Wilcoxon rank-sum test, df = 30,
p =0.0002, Fig. S7), suggesting that propagule selection is unlikely to
have outperformed our approach. The second common approach,
“migrant pool selection” combines the best communities and dilutes
themover subsequent rounds. A proxy for this experiment is culturing
all 11 species together, which is wheremigrant pool is eventually likely
to converge. The dashed line in Fig. 3B shows that this community
performs particularly poorly.

Further investigating some of the top communities and many
species pairs revealed that successful degradation could be achieved
by combining strong degraders with other species that might not be
able to survive alone, but enhanced the degradation scorewhenpaired
with the strong degrader. This simple heuristic revealed that the best
overall performancewas achievedby two species in co-culture: At1 and
Af. Adding two more species to this pair (Ct and particularly the free-
rider Ac) increased the variance in community performance, and
combining all 11 species performed poorly (Fig. 3). It appears then that
our optimal community of four species is in fact too rich.

Another key observation is thatdespite our efforts to favorwithin-
species evolution – we sampled many colonies when disassembling
communities through plating to include sufficient within-species
diversity, used a competition-promoting medium, and penalized
extinctions to give room for interactions to evolve to become less
negative or more positive – it did not have a large effect on final
population sizes, degradation abilities or inter-species interactions.
One explanation may be that species are changing their biotic envir-
onment too often for selection to favor any particular interactions. In
agreement with this, the only change we observed is that Ct evolved in
the selection treatment grew better than its ancestor alone (Fig. 4A). It
could be that Ct evolved to include cheater genotypes that invest less
into degradation andmore into growth, althoughwe currently have no
evidence to back this up. The up-side of finding only minor changes is
that one may not need to be too concerned that species will evolve to
become more competitive or invest less into community function, at
least on this time-scale.

Given what we have learned, would we now perform artificial
selectiondifferently?After all, given thatwemeasured thedegradation
of 1044 co-cultures in this study, we could have instead carried out six
replicates of each of the 174 possible 4-species combinations. Of
course, with a larger species pool, testing all possible combinations
would be much more challenging. Furthermore, the improvement

achieved by this proof-of-concept study was significant yet marginal,
and before we can apply our method more widely, it would need to
improve performance by several folds. In addition, the approach was
quite cumbersome andwould not be easy to set up for a new problem.

A first question is whether the artificial selection approach is useful
at all, or whether we could have predicted the composition of the best
community using fewer culture experiments. To explore this question,
we performed an additional analysis using a simple linear model that
predicts the degradation score based on species presence/absence4.
Including the data from all our experiments, the linear model had a
reasonable fit (R2 =0.8) and would have chosen a community that per-
formed relativelywell (degradation score: 69.2%, compared to 75.1%with
ourmethod).However, ifweonlyusedmono- andco-culturedata to train
the model, performance dropped when we tested the model on the
remaining data (R2 =0.26) and the best predicted communities ranged in
performance from 40.3% – 83.1% (Fig. 5A, B). Finally, if we trained the
model onmeasurements from the communities and then tested it on the
mono- and co-culture data, its predictive ability still remained low
(Fig. 5C, R2 =0.32). It would be interesting to determine the minimal
amount of data needed to achieve a good prediction and explore whe-
ther other prediction methods would perform better (e.g.34). Overall,
though, this analysis suggests that this approach would not have easily
identified the best-performing community.

A second lesson could be to focus on the strength of our method
as a search algorithm to efficiently explore the space of possible spe-
cies combinations. Our approach is analogous to a genetic
algorithm30,31 in that solutions are encoded in a “genome” (here the
species composition of each community) whose “phenotype” is mea-
sured (here degradation score plus extinctions) that is subject to
“mutations” (here the exchange of a species for the next round). In
addition, disassembling and reassembling communities allowed each
species to evolve over the course of the experiment. But since species’
phenotypes changed little over the course of the experiment (Fig. 4), it
would be simpler to start communities at every round from frozen
stocks of ancestral cultures and avoid the challenging experimental
step of disassembling communities at each round of selection (as
illustrated in Fig. 5D). We would then no longer need selective media
and itwould suffice to knowwhether specieswent extinct, which could
be achieved through amplicon sequencing. Removing the constraint
of designing selective media would allow us to greatly expand the
species pool, and we would no longer need to avoid any species pairs,
which limited the species combinations in this study. Moreover, by
includingmore species and generatingmore combinations thereof, we
expect the overall performance of the method to improve29. Another
important modification would be to allow community size to change,
as opposed to restricting it to four species as we have done here. This
would involve removing or adding species independently, allowing
communities to grow or shrink in size. This decoupling would increase
the search space of possible combinations, but might find better
solutions, for example by avoiding free-rider species like Ac to estab-
lish in so many communities.

Allowing community size to change automatically would also
answer an important question for community function: how many spe-
cies are actually needed to solve theproblemof interest? In our previous
work32, a mathematical model predicted that in harsher environments,
more species are needed to achieve maximal community function
compared to permissive environments. Experimentally, degradation
saturated at two species in the more permissive MWF with casamino
acids, compared to three species in MWF alone32, which is consistent
with our best solution here having only two species. In hindsight, amore
challenging environment might have shown a stronger improvement
over the experiment and required a larger optimal community.

A final important limitation of our approach is that we fixed the
initial population size of all species at each round, in order to select
against cheater strains that grow quickly without contributing, and to
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improve heritability of the community function27. It would be inter-
esting to see how our best-performing communities would equilibrate
over a few rounds of growth and dilution, when we do not adjust the
initial population sizes. It is conceivable that the performance of the
community at equilibrium would be different. Ideally, community
stability should be part of the community score, although this would
require substantial revision to the selection algorithm.

In summary, we have tested an approach to artificially select
amongst communities composed of different combinations of cul-
turable species. Our approach found a four-species community that is
efficient at degrading MWF pollutants and is superior to the perfor-
mance of all species in our pool grown together. However, the selec-
tion experiment was relatively complex and a smaller community was
also found by testing species pairs and comparing them to thewinning
community. Going forward, we propose a simpler, more effective
approach (Fig. 5D). Even though the challenges of ensuring ecological
and evolutionary stability remain open, we argue that this first proof-
of-concept study supports the blind approach to automate the
breeding of bacterial communities with optimal functions.

Methods
Bacterial species and culture conditions
Weused 11 bacterial species listed in Table 1, whichwere selected from
a pool of 20 natural isolates from MWF (provided by collaborators)
based on our ability to distinguish themon selectivemedia. At1, Ct and
Ml were previously isolated fromMWF32,35,36. At1 was previously tagged
with GFP to allow us to distinguish it on agar plates. Note that Ml
(Microbacterium liquefaciens) was previously referred to as Micro-
bacterium saperdae but a more recent classification has led us to refer

to it differently. At2 was kindly donated by Justine Collier (plant
associated) and the remaining species were isolated from MWF and
kindly donated to us by Peter Küenzi from Blaser Swisslube AG, a
company that produces MWFs. The species were identified at Blaser
Swisslube AG byMALDI-TOF, and confirmed by PCR amplification and
16S gene sequencing. All experiments were performed in 6ml batch
cultures containing 0.5% (v/v) Castrol HysolTM XF MWF (acquired in
2016) diluted in water with added salts, metal traces (Tables 2, 3), and
supplemented with 1% Casamino Acids (Difco, UK). Cultures were
incubated at 28 °C, shaken at 200 rpm.
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Fig. 5 | Alternatives to our proposedmethod. A–C Linearmodel analysis. We use
a linear model (code taken from4) that uses species presence/absence to predict
degradation percent by using (A) all the datawe generated as training and test sets,
or (B) themono- andpairwise co-culturedata as training set and the rest of the data
as test set, or (C) the larger communities as training set and the mono- and pair-
wise co-culture data as test set. Community richness is shown in color. Each dot is
one degradation score measurement, such that biological replicates and technical
replicates, if available, are all represented. R2 shows Pearson’s correlation coeffi-
cient. D Proposing a new artificial selection method. Rather than disassembling

communities, wepropose to use thewinning communities as templates togenerate
the offspring communities in the next round. These communities would then be
seeded by taking the clonal ancestral species from the freezer, such that there
would be nowithin-species evolution over rounds. Step3wouldbe to select the top
10 communities, 4a to generate communities in proportion to their community
scores and 4b to randomly choose 21/29 of the new communities (illustrated with
4) for either species removal or introduction (see white asterisks in step 4, 4a and
4bare shown inone step). Freezer icon createdby SAMDesigns fromNoun Project.

Table 1 | Bacterial species used in the experiment and the
acronyms we use to we refer to them throughout the
manuscript

Species Our acronym

Staphylococcus warneri Sw

Agrobacterium tumefaciens MWF001 At1

Comamonas testosteroniMWF001 Ct

Microbacterium liquefaciens MWF001 Ml

Alcaligenes faecalis Af

Aeromonas caviae Ac

Enterococcus avium Ea

Klebsiella pneumoniae Kp

Pseudomonas fulva Pf

Providencia rettgeri Pr

Agrobacterium tumefaciens C58 At2
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Selective media
We designed 10 selective media that allow the growth of only one or
twoof the 11 species at a time. Somespecies combinations (Ct &At2, Af
& Ct, Ml & Sw,Ml & Ea, Ac & Pf, Ct & Kp) cannot be easily distinguished
on these media, and we avoided combining these species in the
communities of either treatment (Fig. S8A). This means that instead of
the 330 combinations of 4 species out of 11, we have 174 possible
communities, meaning that we are exploring a subset of the possible
search space. Our selective media are generally composed of a rich
base and at least one antibiotic (details in Tables S3 and S4). The
disassembly plates consist of two 24-well plates where we poured
1.5ml of each selective media into 4 wells (as shown in the 24-well
templates in Fig. S8B). Because temperature was helpful to distinguish
some species, we incubated some media at 28 °C and others at 37 °C.
Disassembly was achieved by plating droplets of each diluted com-
munity on all the selectivemedia (moredetails below). For each round,
we prepared the disassembly plates one week in advance and stored
them at 4 °C in the dark until they were used. Every week, the selec-
tivity of the media was verified by inoculating 10 μl droplets from a
dilution series of 2 day old cultures of all 11 ancestral species in square
plates of all selective media.

Artificial Selection
Each round of the selection experiment lasted one week and consisted
of five steps (Fig. 1A): (1) assembling communities and letting them
grow, (2) measuring pollution load, (3) selecting top communities and
disassembling themon agar plates, (4) freezing down species samples,
and (5) generating species compositions for the next round.

Step 1: Community assembly. In each round, we used 60 10ml glass
tubes, 29 were assigned to communities of the selection treatment, 29
to the random treatment and two tubes were abiotic controls. The
number 29 was chosen because we had two racks that fit 30 tubes
each; with two control tubes, each treatment was left with 29 tubes
containing bacteria. The first round startedwith the same 29 randomly
generated communities of 4 species each in the two treatments. These
were drawn such that all 11 species were present in at least one com-
munity and such that species that we cannot separate with selective
plates never appeared in the same community.

Communities for the first roundwere assembled as follows: Single
colonies of each of the 11 species were picked and grown overnight in

5mL of TSB at 28 °C, shaken at 200 rpm. The next day, cultures were
adjusted to an OD600 of 0.05 in 10ml of PBS in a 15ml falcon tube. For
subsequent rounds, similar 15ml tubes containing each of the 11 spe-
cies for each treatment at OD600 = 0.05 were taken from the freezer
(see below) and thawed. The cells of each species were thenwashed by
centrifuging at 3220 rcf for 15minutes and resuspended in 10ml of
MWF+AA medium (see above). For each community culture in the
experiment (29 for each treatment) and the abiotic controls, 6ml of
MWF+AA were prepared in the 10ml glass tubes and 100 μl of each
species were added, yielding a total of 400 μl of four species of similar
relative abundances. All 60 tubes were then incubated at 28 °C and
shaken at 200 rpm for four days.

Step 2: Measuring degradation scores. On day 4, as a proxy for
pollution load, we measured the chemical oxygen demand (COD)
using NANOCOLOR COD tube tests (detection range 1-15 g/l by
Macherey-Nagel (ref: 985 038), see32 for more details). We used these
measurements to calculate degradation scores as (1 − COD4(sample)/
COD4(control)) × 100, i.e. the COD of the community after 4 days
relative to the COD of the abiotic control after 4 days, in percent.
Data shown in Fig. 3C was generated using expired COD tubes, which
might explain why their values are different from those of the other
experiments. However, given that the important comparison is
between treatments within that experiment, we decided not to
repeat it.

Step 3: Selecting and disassembling top communities. We selected
the 10 out of 29 communities with the highest degradation scores from
the selection treatment and 10 out of 29 communities at random from
the random treatment. To disassemble the communities and determine
species’ population sizes, we plated dilutions (10−1, 10−2, 10−4 and 10−6) of
each community onto all selectivemedia (see above, Fig. S8), incubated
the selective plates for two days (either at 28 °C or 37 °C), and counted
colony-forming units (CFUs) for each species. This allowed us to dis-
assemble all community members, estimate population sizes and iden-
tify extinction and contamination events (species that were inoculated
on day 0 but did not appear on their selective media, and species that
were not inoculated in a given community but grew on selective media,
respectively). We penalized extinction by scaling the degradation score
of each community by the fraction of surviving species (contaminants
are not counted) 0< f< 1 (e.g. f=0.5 if only two of the four inoculated
species are detected). The final community score was then calculated as
(1 − COD4(sample)/COD4(control)) × 100× f.

Step 4: Freezing down species. At every round of selection, we froze
down a representative of each species by isolating it from the highest-
scoring community where that species was present. We sampled sev-
eral CFUs from the highest dilution in the relevant selective plate by
adding PBS to the selected well and re-suspending by pipetting. We
then adjusted the OD600 of the samples to 0.05 in a total volume of
10ml of PBS with 25% glycerol, then aliquoted 2 × 1ml for long-term
storage in cryo tubes, 3ml for use in the following round and 5ml as
backup in 15ml falcon tubes and froze all samples at − 80 °C. If a
species went extinct in a round of selection, we recovered it from its
frozen stock collected in the closest previous round.

Step 5: Generating new species compositions. For the following
round of selection, we used a script that calculates a probability dis-
tribution from the community scores of the 10 disassembled com-
munities and generates offspring communities by randomly sampling
29 times with replacement in proportion to this distribution. Com-
munities with higher scores are more likely to be selected. In the ran-
dom control, we sampled 29 times with uniform probability from the
10 disassembled communities.

Table 2 | Phosphate solution (1%) for the MWF+AAmedium as
described in Table 3

Compound Amount

H2O 1000ml

K2HPO4 6g

KH2PO4 6 g

Table 3 | For 600 ml of MWF+AA medium, mix in the above
order, top to bottom

Compound Amount

H2O 405ml

Phosphate solution 60ml

NaCl 1% solution 60ml

Casamino 1% acids solution 60ml

Hutner’s vitamin-free mineral base 12ml

Castrol Hysol 100% 3ml

The phosphate solution is found in Table 2. TheMWF needs to be added carefully, one drop at a
time to allow mixing.

Article https://doi.org/10.1038/s41467-024-52190-z

Nature Communications |         (2024) 15:7836 9

www.nature.com/naturecommunications


To introduce variability into these newly generated communities,
out of the 29 generated communities in each treatment, we randomly
chose 21 to receive an invader species that replaced one of the four
members. Both the invader and the species to be removed were chosen
by uniformprobability, with a few exceptions:We first chose as invaders
species those that were not yet represented in any offspring commu-
nities, adding themto randomreceiving communities; onceall 11 species
were represented at least once in the new communities, we chose the
remaining invaders at random but avoided invading species that were
already present in the receiving community, and species that are indis-
tinguishable from resident species on our selectivemedia. Selection and
invasion thereby result in 2 × 29 lists of four species each, sampled in
proportion to degradation scores (or not for the random treatment) and
with 21/29 of them having exchanged an old community member for a
newone.We then assembled the communities in the lab from the frozen
species record as described above. The script used to automatically
generate offspring communities is written in python 337 and can be
found at https://doi.org/10.5281/zenodo.1278580738.

Comparing ancestral and evolved strains
Following the artificial selection experiment, we conducted follow-up
experiments to better understandwhy the selection algorithm favored
certain species combinations. For each species, the frozen stocks from
round 18 of the selection and random treatments were plated and
incubated. Single colonies were picked and grown overnight in 5mLof
TSB at 28 °C, shaken at 200 rpm. The next day, cultures were adjusted
to an OD600 of 0.05 in 10ml of TSB and grown for a further 3 h. The
cells were then washed at 3220 rcf for 15minutes and resuspended in
10ml of MWF+AA medium. For each culture, 6ml of MWF+AA were
prepared in 10ml glass tubes and 100 μl of each species were added.
These cultures were incubated at 28 °C, shaken at 200rpm for 3 days.
CFUs weremeasured through serial dilution and plating on days 0, 1, 2
and 3 using the appropriate selective media (Fig. S8). We measured
CODs of an abiotic control culture at day0 and 3, and the culture tubes
at day 3. Thedegradation scoreswerecalculated asbefore. To estimate
interactions between species, we grew each strain alone orwith a given
partner strain and compared the population size of each focal strain as
the log2 fold-change in CFU/ml on day 3 in the presence or absence of
the partner species. CFU/ml were quantified on selective media
(Fig. S8), but on round agar plates considering all dilutions, giving
higher resolution compared to the selection experiment. We used LB
agar for Af and Pf instead of their selective media, as requirements
were less stringent (we only needed to count them, not disassemble
them) and there appeared to be differences in growth between the
ancestral and evolved strains on the selective media for those species.
These experiments were performed by two different authors (GA and
BV), which is accounted for in the statistical analysis (see below).

Data analysis
We used the Hamming distance between two communities to quantify
the difference in species composition between them (Fig. 1). The com-
munity is in this case representedby the presence and absenceof eachof
the 11 species, and the Hamming distance is the fraction of species mis-
matches.We used the implementation from the SciPy library in python39.

We calculated evenness as the effective species number, or Hill
number of order 140:

1D= exp �
X

k

pk logðpkÞ
 !

, ð1Þ

divided by itsmaximumvalue (similar to Pielou’s evenness33), where pk
is the relative abundance of species k in the community. Ordinary least
squares regression between evenness and round was calculated using
the python package statsmodels41.

We used parametric and non-parametric tests for significant differ-
ences between groups, preferring the Student’s t-test for the former and
the Wilcoxon rank sum test for the latter, and compared distributions
using the Kolmogorov–Smirnov test. We measured correlations
using Spearman’s ρ and quantified regressions using the ordinary
least-squares implementation in the python library statsmodels41. When
relevant, we corrected for multiple comparisons using the Bonferroni or
the Benjamini-Hochberg method.

To compare the growth and interactions of evolved and ancestral
strains, we took into account that experiments were performed by two
different people. To calculate statistical significant differences in growth
or degradation, experimentalist was taken to be a random factor in a
generalized linear model (glm package in R version 4.2.2 with default
parameters). To calculate interactions (one species growing in mono-
versus pairwise co-culture), we only used data collected by the same
experimentalist. If it was not available (only one person had measured
the mono-cultures), we used this instead (see dataset 1). P-values were
corrected for mutliple comparisons using the Benjamini-Hochberg
method.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data generated in this study have been deposited in the
Zenodo database under https://doi.org/10.5281/zenodo.12784769.

Code availability
All code associated with this manuscript can be found on Zenodo at
https://doi.org/10.5281/zenodo.1278580738.
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