
ARTICLE OPEN

Pervasive alterations of intra-axonal volume and network
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Reciprocal Copy Number Variants (CNVs) at the 16p11.2 locus confer high risk for autism spectrum disorder (ASD) and other
neurodevelopmental disorders (NDDs). Morphometric MRI studies have revealed large and pervasive volumetric alterations in
carriers of a 16p11.2 deletion. However, the specific neuroanatomical mechanisms underlying such alterations, as well as their
developmental trajectory, are still poorly understood. Here we explored differences in microstructural brain connectivity between
24 children carrying a 16p11.2 deletion and 66 typically developing (TD) children between 2 and 8 years of age. We found a large
pervasive increase of intra-axonal volume widespread over a high number of white matter tracts. Such microstructural alterations in
16p11.2 deletion children were already present at an early age, and led to significant changes in the global efficiency and
integration of brain networks mainly associated to language, motricity and socio-emotional behavior, although the widespread
pattern made it unlikely to represent direct functional correlates. Our results shed light on the neuroanatomical basis of the
previously reported increase of white matter volume, and align well with analogous evidence of altered axonal diameter and
synaptic function in 16p11.2 mice models. We provide evidence of a prevalent mechanistic deviation from typical maturation of
brain structural connectivity associated with a specific biological risk to develop ASD. Future work is warranted to determine how
this deviation contributes to the emergence of symptoms observed in young children diagnosed with ASD and other NDDs.
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INTRODUCTION
Rare pathogenic copy number variants (CNVs) confer high risk for
neurodevelopmental disorders (NDDs) such as autism spectrum
disorder (ASD) and schizophrenia. Recurrent hemizygosity (hen-
ceforth deletion) of a ∼600-kilobase (kb) region on the short arm
of chromosome 16 (16p11.2 BP4-BP5) occurs at a frequency of ~3
in 10,000 and has attracted considerable attention as one of the
most frequent genetic high-risk factors associated with ASD
–identified in 1% of cases– and other NDDs [1–3]. The affected
locus encompasses 29 protein-coding genes, several of them
expressed in the brain [4]. Previous studies have associated the
presence of a 16p11.2 deletion with attention deficit and
hyperactivity disorder (ADHD), intellectual disability, language
disorder and obesity [5–7], as well as an increased incidence of
developmental coordination disorders and phonological proces-
sing [8, 9]. Intellectual quotient (IQ) is reduced in 16p11.2 deletion
carriers by about 1.5 SD [10], and ~18% of them are diagnosed
with ASD [6].

The study of brain structure in individuals sharing the same
genetic factor –defined as a ‘genetic-first’ approach– allows the
investigation of a specific neurobiological mechanism underlying
NDDs, regardless of psychiatric diagnosis [11, 12]. A steadily
increasing number of genetic-first neuroimaging studies of
16p11.2 deletion carriers have revealed neuroanatomical abnorm-
alities affecting white matter (WM) tracts [13–18]. Two studies
investigated WM microstructural integrity using diffusion tensor
imaging (DTI) and tract-based spatial statistics (TBSS), demonstrat-
ing that 16p11.2 deletion children exhibit widespread increase of
fractional anisotropy (FA), axial (AD) and mean diffusivity (MD), but
no change in intra-axonal volume fraction (IAVF) [13, 16]. Never-
theless, the inherent limitations of TBSS restrict the inference of
underlying functional and neurobiological implications [19], since
voxel-based methods ignore the brain regions connected by a
given WM tract, and large differences over a fascicle might be
overlooked due to crossings with other unaffected tracts or tracts
with opposite differences.
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We aimed to overcome these limitations and characterize for
the first time the structural connectome of children sharing a
16p11.2 deletion. We derived neuroanatomical signatures of brain
microstructure and network organization in young children
sharing the same biological mechanism predisposing for ASD
and other NDDs. To that end, we used structural connectivity (SC)
methods that evaluate microstructural integrity based specifically
on the delineation of anatomical connections (i.e., streamlines or
axonal trajectories reconstructed from diffusion MRI) [20].
Conventional SC analysis involves the reconstruction of anatomi-
cal pathways connecting gray matter areas, and the computation
of adjacency matrices of various network metrics [21]. Several
techniques have been proposed in recent years to estimate
intrinsic microstructural features of the tissue, such as axonal
density and diameter, by using multicompartment models. Here,
we propose the combined use of the Convex Optimization for
Microstructure Informed Tractography (COMMIT) [22], a novel
framework to reestablish the link between tractography and tissue
microstructure, together with the Stick-Zeppelin-Ball model [23].
SC data obtained using this combined methodology will provide
streamline-specific quantitative microstructural metrics related to
the fraction of restricted diffusion, conventionally linked to the
IAVF [24]. Weighted network properties can then be acquired [25],
and subsequently used to highlight differences in microstructural
network topology [26].
Prior SC studies in ASD children have reported structural over-

connectivity through an early and accelerated abnormal matura-
tion of WM tracts [27, 28], which later decelerates and progresses
into under-connectivity patterns in adolescents and adults [29].
Network inefficiencies in high-risk infants later classified as ASD
have also been detected from 6 months onwards in regions
involved in low-level sensory processing, propagating to higher-
level cognitive regions through neurodevelopmental cascades at
12 and 24 months of age [30]. Heritable SC patterns have also
been observed, as ASD boys have been found to share SC patterns
with their fathers [31]. Despite these considerable advances in the
neurodevelopmental trajectories of microstructural brain archi-
tecture in ASD children, their marked clinical heterogeneity limits
their effect size and likely leads to poor replicability. By combining
microstructural connectivity with a genetic-first approach, the
present study overcomes heterogeneity of groups exclusively
defined by behavioral criteria to dissect alterations of tissue
microstructure and network organization in children sharing the
same biological risk to develop ASD and other NDDs.

SUBJECTS AND METHODS
Participants
MRI data analyzed in this study was acquired from two different cohorts in
Europe and North-America (Table 1): the Service des Troubles du Spectre
de l’Autisme (STSA) at Lausanne University Hospital (CHUV), and the
Searchlight cohort from the Simons Variation in Individuals Project (SVIP)
[32]. Enrollment in the SVIP included referral by clinical genetic centers or
active online registration. Families from the STSA cohort were directly
referred to by their clinical geneticist who had initially established the
presence of a proximal recurrent 600-kb (BP4-BP5; 29.6–30.2 Mb–Hg19)

deletion at the 16p11.2 locus. TD children between 2 and 8 years of age
were recruited from the general population through contact with local
pediatricians and schools, between 2018 and 2021. Exclusion criteria
included prematurity (<36 weeks of gestation), a known neurological
condition or NDD, or a first-degree relative diagnosed with ASD. Each
cohort was approved by its respective ethics review board, and written
informed consent was obtained from STSA and SVIP participants’ legal
representatives before their participation. This study was approved by the
Commission Cantonale d’Ethique de la Recherche sur l’être humain (CER-
VD, Switzerland), with the Project-ID 2018-00599.
The final dataset included 24 children carrying a 16p11.2 CNV deletion

and 66 TD children. 16p11.2 deletion carriers were older than TD children
(6.96 vs. 5.78 years of age, t89= 2.99, p= 0.004), and the proportion of
males was higher in the genetic group (X2(1,90)= 4.0, p= 0.045). There were
no group differences regarding the amount of motion during the diffusion
scan (t89= 0.47, p= 0.64). We used Nonverbal IQ (NVIQ) as the outcome
measure of cognitive level. We pooled NVIQ assessments using the
Wechsler Preschool and Primary Scale of Intelligence (WPPSI-IV) [33], the
5th edition of the Wechsler Intelligence Scale for Children (WISC-V) [34],
the Differential Ability Scales, Second Edition [35] and the Mullen Scales of
Early Learning (MSEL) [36], according to child’s age and ability to comply
with the tests. Children carrying a 16p11.2 deletion showed a 17-point
decrease in NVIQ compared to TD children (t89=−6.04, p= 4e-7).

Data acquisition
The protocol used in the CHUV dataset is detailed here: (https://mcin.ca/
research/neuroimaging-methods/acquisition-protocol). It includes two T1-
weighted 3D brain volumes (0.9mm3 isotropic resolution, 256 × 256 × 192
matrix, GRAPPA acceleration factor of 4, TR/TE= 2300/2.32ms, flip angle
8°), a T2-weighted volume (0.9mm3 isotropic resolution, 256 × 256 × 192
matrix, GRAPPA acceleration factor of 2, TR/TE 3200/408ms), and a multi-
shell diffusion-weighted imaging (DWI) sequence (1.7mm3 isotropic
resolution, 150 × 154 × 87 matrix, slice acceleration factor of 6, TR/
TE= 4100/71ms, 7 directions with b= 300 s/mm2, 15 directions with
b= 650 s/mm2, 30 directions with b= 1000 s/mm2, 60 directions with
b= 2000 s/mm2, and 19 b0 volumes without diffusion weighting). A set of
six b0 volumes was acquired with antero-posterior phase encoding (PE)
while all other volumes were acquired with postero-anterior PE. Children
were scanned without sedation in a Siemens 3 T Prisma scanner (Siemens,
Erlangen, Germany) with a 64-channel coil. Scans were acquired in the
early afternoon to favor naps in younger children. Parents could choose to
administer melatonin to their child 30minutes before the scan to help
induce sleep/relaxation (6 or 10mg for children below or above 6 years,
respectively). Children were trained to remain still during a 15-min mock
scan session prior to the real scan. In the real scan, children watched a
movie of their choice through a mirror placed on the coil helmet.
The protocol of the SVIP dataset consisted of a T1-weighted volume

(1mm3 isotropic resolution, 256 × 256 × 160 matrix, TR/TE= 2,530/1.64ms,
flip angle 7°) and a multi-shell DWI sequence (2mm3 isotropic resolution,
slice dimension of 128×128 voxels, acceleration factor of 2, TE/TR= 80/
10,000ms for 30 directions with b= 1,000 s/mm2 and TE/TR= 119/
13,900ms for 64 directions with b= 3’000 s/mm2). Additional b0 volumes
with no diffusion weighting were acquired at both TE/TR. Children were
scanned at two different sites (University of California Berkeley and
Children’s Hospital of Philadelphia), in 3 T Tim Trio Siemens MRI scanners
(Siemens, Erlangen, Germany), using 32-channel head coils.

Data preprocessing
Figure 1A displays MRI preprocessing pipeline. Diffusion MRI data
preprocessing involved denoising using Local Principal Component

Table 1. Demographics and main characteristics of the Simons Searchlight and STSA datasets used in our study.

Simons Searchlight STSA Combined dataset

16p11.2 TDs 16p11.2 TDs 16p11.2 TDs p-val

N 12 6 12 60 24 66 -

Age (SD) [range] 7.74 (0.8)
[6.08-8.83]

7.37 (0.6)
[6.50-8.08]

6.18 (1.7) [2.84-
8.24]

5.62 (2.0)
[2.30-8.98]

6.96 (1.5) [2.84-
8.83]

5.78 (1.9)
[2.30-8.98]

0.004

Sex (F/M) 3/9 3/3 3/9 31/29 6/18 34/32 0.045

NVIQ (SD) 92.3 (12.3) 102.5 (14.1) 93.2 (13.1) 111.3 (11.7) 92.7 (12.4) 110.5 (12.1) 4e-7

Motion mm (sd) 7.4 (5.1) 7.8 (6.0) 11.8 (8.2) 9.0 (4.8) 9.6 (7.1) 8.9 (4.9) 0.64
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Analysis [37]; Gibbs ringing removal [38]; eddy current, susceptibility
distortions (for subjects with opposite PE scans), subject movement
correction with FSL’s v6.0.1 Eddy tool [39]; and outlier replacement and
slice-to-volume correction [40]. Overall motion was computed as the norm
of Eddy’s root mean square (RMS) output, which is the RMS of the distance
between voxels in each DWI volume and the reference image. The
preprocessed dMRI data was upsampled to 1mm3 isotropic resolution to
improve tractography accuracy [41]. Field inhomogeneity correction was
applied using the N4 algorithm as provided in ANTs [42]. Volumes in the
SVIP dataset that were acquired at longer TE/TR were normalized to match
the shorter TE/TR volumes to compensate for time differences between
volumes (division by the averaged b0 volumes at longer TE/TR, and
multiplication by the b0 at shorter TE/TR to keep anatomical contrast in b0
volumes). Cortical parcellation was performed using FreeSurfer (http://
surfer.nmr.mgh.harvard.edu) in the T1-weighted volume. For subjects with
opposite PE scans (i.e., corrected for susceptibility distortions), the average
b0 volume was linearly registered from DWI to T1 space using a boundary-
based cost function [43]. For subjects without opposite PE scans, the T1
was non-linearly registered to the average b0 volume using ANTs
symmetric diffeomorphic image registration algorithm [44].

Tractography
Tractography was performed using Anatomically Constrained Tractogra-
phy (ACT) [45]. Five million streamlines per subject were generated using
probabilistic tracking with second-order integration over FODs [46]
combined with dynamic seeding from the WM FOD image [47],
backtracking and ACT. ACT uses the tissue probability maps to ensure
that reconstructed streamlines end in GM voxels. Dynamic seeding
generated a set of streamlines (i.e., tractogram) that matched the CSD
image, and backtracking re-tracks streamlines with poor anatomical
termination. Tracked streamlines were further discarded if their length
was longer than 250mm. Quality control was assessed to detect
registration issues, poor segmentation or parcellation by visually checking
the tract density output from MRtrix.

Computation of Intra-axonal volume and structural
connectome
FreeSurfer Desikan-Killiany cortical [48] and Fischl’s subcortical [49]
parcellations were converted to 85 ROIs using MRtrix’s label convert (Fig.
1B). The brain stem was added to the default 84 ROI conversion file to
avoid discarding streamlines projecting to the spinal cord. The initial

tractogram with 5 million streamlines was filtered down to 2.5 million
streamlines using SIFT [50]. The contribution of each streamline to the
dMRI signal was computed using COMMIT [22] and the three-compartment
“Stick-Zeppelin-Ball” model [23]. This microstructure model accounts for
restricted (i.e., water within axons, modeled as “sticks”), hindered (i.e.,
water between axons, modeled as “zeppelins”) and free water (i.e., partial
volume with CSF, modeled as “balls”) compartments to assign weights that
best fit the measured DWI signal. A 85×85 density weighted connectome
was computed by summing the weights of the streamlines connecting
pairs of ROIs, multiplied by the respective streamline lengths [26].
Streamlines were assigned to ROIs by radial search of up to 4 mm. No
threshold was applied to remove weak connections, as recently
recommended for weighted connectivity matrices [51]. Each subject’s
total IAV was computed as the sum of the upper triangular connectivity
matrix. Values in the connectivity matrix were divided by the total sum of
weights, yielding the fraction of restricted signal allocated to connect each
pair of ROIs, with respect to each subject’s brain.

Statistical analysis
Shapiro-Wilk normality tests were conducted to confirm the normality
distributions of the IAV and network metrics (p > 0.21). Group differences
were assessed with an Analysis of CoVariance (ANCOVA) model in R (v4.2.1)
[52]. We used the group factor (16p11.2 or TD) as the main variable, and
age, sex, scanning site, and overall motion during the scan as covariates.
Levene test was used to assess equality of variance. A Generalized Additive
Models for Location, Scale and Shape (GAMLSS) [53, 54] was also fitted
using the Python PCNtoolkit [55], to estimate the typical developmental
growth of total IAV as a function of age with sex, motion and site as
covariates. The effect of age was modeled using 2nd order B-splines with 3
knots, and parameters were fitted using bayesian linear regression. This
normative model was computed using TD data only. We tested for a
significant group effect as well as for a significant group*age interaction in
total IAV. The same procedure was used to study developmental
trajectories of global network metrics (see below).
To further explore how IAV differences might manifest in pairwise –ROI

to ROI– connectivity strengths, we tested for SC differences in each of the
3’570 possible connections. Raw IAV values were compared, as well as IAVF
after normalizing for total IAV. P-values were corrected using False
Discovery Rate (FDR). The Pearson correlation between fascicle length and
effect size was computed to assess whether group differences were
associated with short-range or long-range connections. We tried to
determine which functions were affected by labeling nodes according to

Fig. 1 Pre-processing pipeline and cortex parcellation to generate SC matrices for each subject. A The pipeline includes segmentation and
parcellation of the structural scan (T1), before registration to dMRI space. dMRI data is combined with tissue probability maps to compute
MSMT Constrained Spherical Deconvolution. Tractography generates anatomically-valid streamlines that are then filtered using SIFT and used
as input for the Convex Optimization for Microstructure Informed Tractography (COMMIT). B Cortical representation of the Desikan Atlas used
in this study.

A.M. Maillard et al.

3

Translational Psychiatry           (2024) 14:95 

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu


the 7 functional labels of Yeo atlas (visual, somatomotor, dorsal attention,
ventral attention, limbic, frontoparietal, and default mode network (DMN))
[56], combined with additional labels for cerebellum, basal ganglia and
brainstem. Intra-functional differences were estimated by fitting an
ANCOVA model to the sum of weights of connections linking ROIs
belonging to the same network. Between-network differences were
obtained by summing the weights of connections linking ROIs belonging
to pairs of different networks.
We also tested for differences in the following network node metrics:

node strength, node closeness, node betweenness, node efficiency, node
clustering coefficient, and node participation coefficient. We used
weighted formulations available in the iGraph library [57] (see Supple-
mentary Methods). Node participation coefficients were computed using
Yeo’s functional parcellation of the 85 ROIs, plus cerebellum, basal ganglia
and brainstem as additional labels. P-values for node features were
corrected for multiple comparisons using FDR across the 85 nodes for each
metric. To summarize nodal differences, we performed a probabilistic PCA
on the Cohen d values using pcaMethods R library. We used probabilistic
PCA since the effect-size for betweenness could not be computed for 6
nodes (1.2% of the data). Betweenness could not be computed for these 6
nodes because they did not belong to any shortest path, resulting in the
comparison of two null vectors. Two principal components (PCs) were
generated and their values projected on the pial surface for visual
representation.

RESULTS
Group differences and normative modeling of total IAV
Figure 2A shows the developmental trajectory for global IAV in TD
children as estimated from the GAMLSS fit. All children carrying a
16p11.2 deletion exhibited global IAV values above the median TD
curve. As a result, 16p11.2 deletion carriers present a significant
increase in total IAV (127’458 mm3 vs. 107'034 mm3, F6,83= 21.18,
t(83)= 5.36, p= 7e-7, d= 1.55, Fig. 2B). We did not find a
significant interaction with age (F7,82= 18.3, t(82)=−1.01,
p= 0.32). The variance of IAV was significantly higher in 16p11.2
deletion children (Levene test, p < 0.05).

Mapping of IAV increase in 16p11.2 deletion across structural
and functional networks
Regionally, raw IAV differences in 317 out of 3’570 individual
connections survived FDR correction (Fig. 3A). Specifically, 16p11.2
deletion children showed higher IAV in 293 out of these 317

statistically significant connections. Effect size was significantly
correlated with fascicle length (t(3558)= 2.62, p= 0.001), though
with low correlation coefficient (rho= 0.04). When normalized by
the total IAV, 97 out of 3’570 connections survived FDR correction,
65 of which were associated with increased IAVF in 16p11.2
carriers (Fig. 3B). Top 10 connections with largest effect size are
reported in Table 2; most of them involved intra-hemispheric
connections in the left hemisphere, and both cortico-cortical and
subcortical-cortical connections. Group-wise mean IAVF values,
Cohen’s d and p-values for all statistically significant connections
are available in Supplementary Tables S1 (raw) and S2
(normalized).
Figure 3C depicts statistically significant differences in IAVF

between several functional networks, according to labels of Yeo’s
atlas. Inter-network IAVF in 16p11.2 deletion children was
significantly increased between visual and DMN, as well as
between ventral attention and brain stem, basal ganglia and
limbic networks. On the other hand, IAVF was found to be reduced
between frontoparietal and both limbic and somatomotor
networks, as well as between somatomotor and DMN. Both intra
and inter-functional differences in IAVF are summarized in Table 3.
Finally, Fig. 3D shows the sum of absolute effect sizes computed
from the normalized IAVF connectivity matrix. We observed the
largest cumulated effect size in the left banks of the STS. The left
middle temporal cortex, bilateral isthmus cingulate, right lateral
orbitofrontal, pericalcarine and lingual cortices presented mild
cumulated effect size.

Group differences and developmental trajectories of global
structural network metrics
Global estimates of the developmental growth in TD children for
the analyzed network metrics are presented in Fig. 4. Global
efficiency presented an overall decrease over age with a plateau
between 5 and 7 years (rho = 0.39, p= 0.001), whereas global
closeness exhibited a steadily constant decrease through child-
hood lifespan (rho = 0.3, p= 0.01). Clustering (rho = 0.48,
p= 2.5e-5) and participation (rho = 0.31, p= 0.01) coefficients
showed an overall increase with again a short plateau between 5
and 7 years. The group comparison showed that children with a
16p11.2 deletion exhibited a significant increase in weighted
global efficiency (9.5e-4 compared to 9.23e-4 for TDs, d= 0.80,

Fig. 2 Normative model and group differences for total IAV. A The main curve represents the mean intra-axonal volume as a function of
age, and dotted lines the 2.5 and 97.5 percentiles respectively. The area between the two dotted lines represents values expected to cover
95% of the typically developing population. TD values are reported in blue and 16p11.2 deletion carriers in red. Values were adjusted for the
effect of sex, motion and site as estimated by the GAMLSS model. B Histogram of IAVF values for the two groups, z-scored with respect to the
mean and variance of the TD group after adjusting for age, sex, motion and site. The ANCOVA showed that 16p11.2 carriers had a significant
increase in IAVF with respect to TDs (F-statistic = 21.18 on 6 and 83 degrees of freedom). Cohen’s d on the intra-axonal volume adjusted for
age, sex, motion and site was 1.55.
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t(83)= 2.76, p= 0.007) and global betweenness (116 compared to
114 in TDs, d= 0.64, t(83)= 2.21, p= 0.03).

Mapping and latent dimensions of differences in structural
network organization
Figure 5A shows the top 10 regions with largest effect size for
each of the six network metrics. Out of 85 ROIs considered in this
study, 28 had a significant group difference in at least one of the
six nodal network metrics. Largest differences for each metric
included higher nodal strength in the left parahippocampal cortex
(d= 1.32, t(83)= 4.57, p= 8.6e-4) and higher efficiency in the left
transverse temporal cortex of 16p11.2 deletion children (d= 1.20,
t(83)= 4.13, p= 0.005), together with higher betweenness in the
left superior temporal cortex (d= 1.11, t(83)= 3.82, p= 0.02) and
higher closeness in the left transverse temporal gyrus (d= 1.17,
t(83)= 4.04, p= 0.01). Conversely, TD children exhibited higher

clustering coefficient in the left supramarginal cortex (d=−1.31,
t(83)=−4.54, p= 0.002) and higher participation coefficient in the
right lateral occipital cortex (d=−1.21, t(83)=−4.19, p= 0.006).
The cortical Cohen D map for all significant topological differences
in each of the six network metrics is illustrated in Supplementary
Figure 1. Group mean, Cohen’s d and p-values in each network
metric for all regions with significant group differences are
summarized in Supplementary Table S3.
Finally, a PCA on Cohen’s d values derived from weighted

network metrics delineated the latent dimensions explaining the
abovementioned regional differences. The two PCs captured 43%
and 24% of the variance, respectively. The first latent dimension
(PC1) was highly loaded by closeness, efficiency and nodal
strength, while PC2 was positively loaded by participation
coefficient and negatively loaded by clustering coefficient
(Fig. 5B). The ‘silhouette’ approach determined that 6 clusters

Fig. 3 Distribution of IAV differences across brain connections. Chord diagrams show regional raw (A) and normalized (B) differences in IAV.
Chord color corresponds to the Cohen’s d value obtained from the raw IAV, adjusted for age, sex, motion and site. Brain regions are ordered by
hemisphere and lobe. R right, L left, RS right subcortical, BS brain stem, LS left subcortical, RF right frontal, RP right parietal, RT right temporal,
BS brain stem, LO left occipital. C Chord diagram illustrating significant group differences in IAVF between functional networks. Network labels
were taken from Yeo atlas (visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal, and default mode networks; Yeo
et al. 2011), combined with additional labels for cerebellum, basal ganglia and brainstem. DMN Default Mode Network. D Cortical regions
labeled according to the sum of Cohen’s d computed from the normalized connectivity matrix. For readiness, only the connections with the
20% highest absolute effect sizes are shown. L left, R right.
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best summarized the distribution of brain nodes in the PC1-PC2
plane. Figure 5C depicts the topological distribution of PC1-PC2
clusters. Supplementary Figure S2 shows PC1 and PC2 scores for
each region, represented on the pial surface. Regions with highly
positive PC1 scores –indicating large positive effect sizes
(16p11.2 > TD) on closeness, efficiency and nodal strength–
included the right lateral orbitofrontal, lingual, and pericalcarine
gyrus. Conversely, most negative PC1 scores corresponded to the
left middle temporal, amygdala, and accumbens area. With
respect to PC2, the right temporal pole, parahippocampal, and
lateral occipital gyrus presented highly positive scores, whereas
most negative values included the left supramarginal, isthmus
cingulate and right caudate.

DISCUSSION
In this study, we characterized brain tissue microstructure and
patterns of network organization in young children sharing a
deletion of the 16p11.2 locus, a genetic risk factor predisposing for
ASD and other NDDs. Our results show striking differences
compared to typical neurodevelopmental trajectories of WM
maturation. Children with a 16p11.2 deletion exhibit a large
pervasive increase of intra-axonal volume, widespread over a high
number of WM connections irrespective of fascicle length. Such
microstructural alterations also led to significant changes in brain
network organization. Several functional networks, mainly asso-
ciated with language, motricity and socio-emotional behavior,
were affected. Global developmental trajectories of specific

Table 2. Connection-wise normalized SC differences between 16p11.2 deletion and TD children.

Connection Mean in 16p11.2 Mean in TDs Cohen’s d p-value

Right thalamus - Right caudate 5.04e-03 6.93e-03 −1.95 7e-06

Left lateral orbitofrontal - Left superior frontal 4.69e-04 2.29e-04 1.83 2e-05

Left thalamus - Right lingual 2.38e-04 8.86e-05 1.71 8e-05

Left banks STS - Left putamen 1.19e-04 4.75e-05 1.57 4e-04

Left banks STS - Left isthmus cingulate 1.69e-05 5.66e-06 1.56 4e-04

Left pars opercularis - Left putamen 1.59e-03 9.11e-04 1.47 1e-03

Left inferior parietal - Left precentral 3.94e-04 8.63e-04 −1.46 1e-03

Left cuneus - Left precuneus 1.14e-03 7.18e-04 1.44 1e-03

Right Caudate - Right lateral orbitofrontal 7.18e-04 3.06e-04 1.43 1e-03

Right lateral occipital - Right pericalcarine 1.78e-03 1.26e-03 1.42 2e-03

Mean SC values were computed from normalized values. Cohen’s d were computed after adjusting for the effect of age, sex, motion and sit.

Table 3. Connections within and between functional networks with significant IAVF differences between 16p11.2 deletion and TD children.

Functional connection Mean in 16p11.2 Mean in TDs Cohen’s d p-value

Visual - Visual 8.33e-02 7.54e-02 1.41 3e-04

Basal - Basal 9.58e-02 1.08e-01 -1.14 5e-03

Somatomotor - DMN 4.77e-02 5.16e-02 -1.06 7.9e-03

Limbic - FrontoParietal 4.81e-03 6.59e-03 -0.99 0.01

VentralAttention - Basal ganglia 3.13e-02 2.87e-02 0.95 0.01

Somatomotor - FrontoParietal 6.62e-03 8.18e-03 -0.93 0.02

Visual - DMN 3.13e-02 2.95e-02 0.90 0.02

VentralAttention - Brain-stem 3.93e-03 3.34e-03 0.86 0.02

Cerebellum - Cerebellum 5.21e-02 6.2e-02 -0.81 0.04

VentralAttention - Limbic 9.91e-03 9.44e-03 0.81 0.04

Mean values were computed from the sum of IAVF belonging to the respective connections. Cohen’s d were computed after adjusting for the effect of age,
sex, motion and site.

Fig. 4 Age-related normative changes in global network metrics. The scatterplots show betweeness (A), clustering coefficient (B), closeness
(C), efficiency (D) and participation coefficient (E), as estimated in TD children (blue) by GAMLSS univariate distributional regression modeling.
The full line depicts the estimated median, whereas the dotted lines represent the 2.5 and 97.5 percentiles, respectively. Metric values for
16p11.2 deletion children were later added in red. Each metric is adjusted for sex, motion and site. All parameters were fitted using bayesian
linear regression. Rho Pearson provides a measure of linear correlation between age and metric values. Global strength was not included as its
normalization with respect to total IAV results in constant value for all subjects.
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network properties deviated from typical brain development
already in early childhood. Our findings add to recent direct
neuroanatomical observations in 16p11.2 animal models, and
pinpoint alterations in white matter maturation underlying a
specific biological risk associated with ASD.

Neurobiological interpretations of altered tissue
microstructure
Just as the size and capacity of roadways can regulate the flow of
traffic, microstructural properties of WM tracts determine the
amount and quality of information transmitted between different
brain regions [58]. Here we observed an overall increase of total
IAV in children carrying a 16p11.2 deletion, a putative neuroana-
tomical underpinning of the widespread increase of WM volume
reported in other volumetric studies [15, 17, 59]. Previous work
also hinted at a unique signature of WM microstructural integrity
in 16p11.2 deletion children, namely the joint increase of FA, AD
and MD compared with TD children [13, 16]. This signature differs
from the usual decrease in FA and increase in mean and radial

diffusivity observed in ASD and other NDDs [60, 61]. An increase in
IAV –as observed in our study– would be compatible with an
increase in FA, MD and AD [62, 63], and could represent a
neuroanatomical deviation from typical brain maturation specific
to the pathophysiology of 16p11.2 deletion. Also, a higher IAV can
be associated with a higher number of axons and/or a larger
axonal diameter, both of which could explain increased FA, MD,
and AD. Unfortunately, our diffusion MRI protocol does not allow
to disentangle between these two neuroanatomical substrates; for
that, preclinical MRI scanners with gradient strengths above 300
mT/m would be required [64, 65].
Despite the significant evolutionary distance between rodents

and humans, the alignment between our extensive increase of IAV
and the analogous widespread FA mapping in the 16p11.2
deletion mice serves as compelling evidence supporting the
translational validity of the mouse model [66]. Bertero and
colleagues suggest that altered feedback from the cortex leads
to abnormal maturation of thalamo-cortical projections, a
mechanism previously described by Thompson et al. (2016) [67].

Fig. 5 Distribution and latent dimensions of differences in structural network properties. A Node ranking according to absolute Cohen’s d,
for each of the six network metrics used in the study. Red indicates positive effect sizes, that is, higher metric values in 16p11.2 children than
TD, and vice versa for blue (negative) effect sizes. B Correlation matrix between the six network metrics used in the study, grouped by
hierarchical clustering (left). Loadings of PC1 and PC2 for the six different metrics (middle). K-means clustering of the PC1 and PC2 scores for
the 85 brain nodes used in our study (right). BT betweenness, CC clustering coefficient, CL closeness, EFF efficiency, PART participation
coefficient, STR strength. C K-means clusters projected on the pial surface. Each cortical region is colored according to the clusters reported
in (B).
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Similarly, other studies demonstrated shortened cell cycles of
neuronal progenitor cells in 16p11.2 mice, leading to increased
number of cortico-thalamic neurons [68, 69]. All these neuroana-
tomical observations might be concomitant with the abnormal-
ities in microstructural tissue integrity that we found in 16p11.2
deletion children. One possibility is that the imbalance between
the number of cortico-thalamic and cortico-cortical neurons due
to altered cell cycles could modulate synaptic function and affect
neuronal pruning, possibly deviating axonal growth and projec-
tions to secondary regions. Nevertheless, the interpretation of the
neurobiological alterations underlying changes in WM tissue
microstructure require conclusive validation by histological or
tracing methods.
Our study showed that IAV was largely increased in structural

connections between visual and DMN, while decreased within
basal ganglia and between somatomotor and DMN. These
findings are consistent with previous evidence of reduced long-
range functional coupling between temporal and parietal regions
[66]. We found the largest differences on tissue microstructure in
brain regions generally implicated in language and socio-
emotional behavior, such as the superior and the transverse
temporal gyri [70–72], as well as motor skills associated with
altered microstructural architecture of the bilateral precentral gyri
[73]. However, these are diverse functions that are complex and
heterogeneous, and we do not imply that our findings are specific
to the 16p11.2 locus. Indeed, similar major cortico-cortical
connections exhibited large effects on WM microstructure in
22q11.2 deletion carriers [74]. These observations might indicate a
convergence in altered tissue microstructure across distinct
genetic risk factors [12], but whether these shared structural
differences represent analogous underlying molecular mechan-
isms remains to be clarified. A recent study shows that the
mapping of CNV-related structural alterations aligns well with the
spatial distribution of gene expression in the adult brain [75].
Therefore, developmental trajectories of gene expression in the
brain could provide valuable insights in understanding the altered
structural connectome of 16p11.2 deletion carriers.
Likewise, the intersection between the regions with the largest

increase in IAV and a meta-analysis encompassing all Axis I
psychiatric diagnoses in DSM-IV-TR might offer clues about the
pathophysiological patterns contributing to the risk of psychiatric
diagnoses associated to the 16p11.2 deletion [76]. Furthermore,
this partial overlap supports the additive model account, by which
CNV-related structural alterations confer a risk, but may not be
necessarily associated with a psychiatric diagnosis [77]. Based on
this premise, the presence of a neuropsychiatric disorder may
require supplementary brain alterations and/or other contributing
factors [78]. The fact that these alterations in tissue microstructure
are not strictly dependent on a specific clinical diagnosis suggests
that a deletion of the 16p11.2 locus mediates risk by modulating
the continuum of normative brain structure, as would be expected
as well for intermediate phenotypes related to behavior and
cognition [79]. As opposed to idiopathic conditions, the CNV effect
size that we report on IAV is comparable to those of cognitive and
behavioral phenotypes, suggesting that neuroimaging traits might
serve as mediators for cognitive and behavioral features. None-
theless, our study does not allow to establish causal links between
the WM neuroanatomical abnormalities and corresponding
functional correlates. Further work combining structural quantita-
tive tractography, multimodal neuroimaging and task-based
paradigms is warranted to reveal causal associations between
altered WM microstructural integrity and behavioral correlates.

Implications of altered development of network topology in
16p11.2 children
Beyond individual WM tracts, there is also a growing interest in
characterizing structural networks during early brain development
and quantifying different information-transfer properties [80].

Among these properties, indices of local and global efficiency
characterize the ease of information flow at the local neighbor-
hood and global system levels, respectively [81]. These structural
networks are altered in neuropsychiatric disorders, and changes in
the number and/or the diameter of axons are expected to
influence the conduction velocity of action potentials [82],
therefore disrupting timely orchestrated communication delays
and synchronicity between brain regions [83]. The reconstructed
structural networks of young children carrying a 16p11.2 deletion
exhibited both global and local estimates of altered structural
network topology. We observed a significant increase in weighted
global efficiency and betweenness, potentially reminiscent of the
developmental disconnection theory, already suggested for ASD
and proposing a decreased long-range integration accompanied
by local overconnectivity and decreased functional specialization
in the brain [84].
Network maturation in the first 2 years after birth generally

consists of increased efficiency and network integration,
decreased network segregation and some changes in modularity,
with most major hubs and modules in place by 2 years of age.
Remarkably, our young TD children between 2 and 8 years of age
exhibited a slight decrease of network integration over time –as
illustrated by global efficiency–, while segregation increased –as
illustrated by the global clustering coefficient [25]. Certain
properties of centrality such as betweenness and closeness
decreased between 2 and 8 years, while participation coefficient
increased. In other words, the average brain region typically
becomes less and less central between 2 and 8 years of age, and
its average connectivity to regions outside its functional cluster
increases. We barely identified significant interactions with age on
structural network metrics, suggesting that most microstructural
alterations in 16p11.2 deletion carriers are already present at an
early age. Recently, altered efficiency has been observed in low-
level sensory processing areas at already 6 months of age in
babies at risk for ASD [30]. The same study also shows that
deviation from typical development in toddlers later diagnosed
with ASD leads to reduced efficiency in higher-level frontal
cortices at 12 and 24 months. This postero-anterior cascade
follows GM and WM maturation traits described in typical
development, where primary sensory areas mature before
association and higher-level regions [85–87]. A comparable
process in 16p11.2 deletion carriers could explain the larger effect
that we observed in visual networks, the basal ganglia and
somatomotor areas. As a result, microstructural differences in
higher-level associative regions should increase with age. A
longitudinal study is warranted to confirm this hypothesis, already
pinpointed in previous studies reporting the deviation of early
developmental trajectories of GM maturation in 16p11.2 deletion
and duplication carriers [59].

Limitations
Diffusion tractography has recently been shown to contain high
rates of false positive connections [88]. Our study is not safe from
false-positive connections, even though ACT, SIFT, and COMMIT
were used to reduce false-positives and increase the neuroana-
tomical accuracy of the reconstructed tractograms [22, 45, 50].
Part of the differences in weighted connectivity metrics could be
due to methodological factors, such as T2-dependent properties
which are not considered in the Stick Zeppelin Ball model.
Nonetheless, the abovementioned restraints do not compromise
the reliability of our findings, since the convex formulation of
COMMIT framework effectively combines local tissue properties
with the versatility of classical fiber-tracking algorithms, providing
optimal tractograms that closely resemble known brain anatomy.
T2-dependent effects on network metrics were minimized using
minimum TE to maximize SNR and long enough TRs to ensure no
gradient heating effects. For each diffusion-weighting combina-
tion we acquire additional b= 0 volumes with no diffusion
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weighting to correct for T1 and T2 dependence. Finally, the
sample size of 16p11.2 deletion carriers is limited by the relatively
rare frequency of CNVs in this locus (~1/2000). However, our
results provide robust estimates for CNV effect sizes on brain
microstructure. Our sample size was chosen based on previous
neuroimaging studies on 16p11.2 deletion carriers, enough to
detect similar effect sizes to those observed in these preceding
investigations. Further growth of public datasets will surely
provide more statistical power, but our sample is the largest
available to assess microstructural connectivity and adequate to
detect the large effects associated with 16p11.2 deletion, greatly
reducing the probability of spurious findings.

CONCLUSION
We characterized for the first time the structural connectome of
16p11.2 deletion carriers. We show that the brain of young
children carrying a 16p11.2 deletion exhibits an altered network
organization, as well as a widespread increase of IAV, suggesting a
putatively altered microstructural architecture and synaptic
function such as in 16p11.2 mice models. Our findings provide
evidence of a prevalent mechanistic deviation of typical matura-
tion of brain microstructure associated with a specific biological
risk to develop ASD and other NDDs. Future work should assess
how early individual neuroanatomical alterations relate to ASD
core symptomatology. Tentatively, one possibility is that altera-
tions in structural network organization were associated to early
warning ASD-related phenotypic manifestations. Identifying neu-
roanatomical predictors of the emergence of atypical develop-
mental paths, in precursors such as sensorimotor function, could
lead to earlier signaling of at-risk children and improve
recommendations for timely intervention and parental support.

DATA AVAILABILITY
The STSA dataset is available upon reasonable request to borja.rodriguez-
herreros@chuv.ch. Approved researchers can obtain the SVIP dataset by applying
at https://base.sfari.org. The code used for the analysis is publicly available at https://
github.com/stsa-research.
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