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Abstract. Limit distributions of maxima of dependent Gaussian sequence are different according to the convergence rate of their
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1 INTRODUCTION

For a strictly stationary sequence {Xn, n ≥ 1} the seminal paper [10] derived joint limiting distributions of maxima of
complete and incomplete samples. The sample is often incomplete since observations are missing, which is formalized
by introducing a sequence of indicator random variables {εn, n ≥ 1}, where {εn = 1} means that Xn is observed,
whereas {εn = 0} corresponds to the case Xn is missing. Throughout this paper {εn, n ≥ 1} are independent of
the stationary process {Xn, n ≥ 1}. If F denote the common distribution function of all Xn’s, then the maxima of
incomplete sample Mn(ε), n ≥ 1 is defined by

Mn(ε) =

{
max{Xj , εj = 1, j ≤ n}, if

∑n
j=1 εj ≥ 1,

inf{t : F (t) > 0}, otherwise.
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Exchange Scheme Fellowship within the 7th European Community Framework Programme); Z. Peng has been supported by the National Natural
Science Foundation of China under grant 11171275, the Natural Science Foundation Project of CQ under cstc2012jjA00029
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It is well-known (see e.g., [3]) that if for some norming constants an > 0 and bn ∈ R

lim
n→∞

Fn (anx+ bn) = G(x) ∀x ∈ R, (1.1)

with G being an extreme value distribution of some random variableM, then

lim
n→∞

P
{
a−1n (Mn − bn) ≤ x

}
= G(x), ∀x ∈ R (1.2)

holds with Mn = max1≤i≤nXi under some additional weak dependence conditions. Assume that for some constant
P ∈ [0, 1] the indicator random sequence {εn, n ≥ 1} satisfies

Sn
n

:=

∑n
i=1 εi
n

→ P, in probability (1.3)

as n→∞. The contribution [10] proved that under the conditions D(un, vn) and D′(un),

lim
n→∞

P {Mn(ε) ≤ un,Mn ≤ vn} = H(P, x, y) =: GP(x)G1−P(y) (1.4)

for x < y, where un := anx + bn, vn := any + bn; definitions of D(un, vn) and D′(un) can be found in [5], [7]
and [10]. For the case that (1.3) holds with P a random variable, recently [5] showed that (1.4) still holds with
H(P, x, y) = E

(
GP(x)G1−P(y)

)
.

A closely related work to [10] is contribution [6] which considers a strongly dependent stationary Gaussian random
sequence {Xn, n ≥ 1} with correlation rn = E (X1Xn+1) such that

lim
n→∞

rn lnn = γ ∈ [0,∞). (1.5)

In this case F = Φ the distribution function of a N(0, 1) random variable, and therefore (1.1) holds with norming
constants an and bn given by

an =
1√
2 lnn

, bn =
√
2 lnn− ln lnn+ ln 4π

2
√
2 lnn

. (1.6)

Assuming that (1.5) holds, we have (see [6],[9],[14])

lim
n→∞

P
{
a−1n (Mn − bn) ≤ x

}
= E

(
exp

(
− exp

(
−x− γ +

√
2γW

)))
, (1.7)

where W is a N(0, 1) random variable. Clearly, when γ = 0, the limit distribution in the right-hand side of (1.7) is
the Gumbel distribution Λ(x) = exp(− exp(−x)), x ∈ R which is shown in the seminal paper [1]. Commonly the case
γ = 0 is referred to as the case of weak dependence, since the limit distribution of the maxima of the stationary process
is the same as that of an iid sequence with underlying distribution function Φ.
We expect that for this case, again (1.4) holds under the general settings of [5], which is confirmed in the next section.
If γ > 0, the limiting distribution of the maxima is a mixture distribution different from the Gumbel distribution, and
thus for that case we cannot use the result of [5]. In order to overcome this difficulty we shall borrow some ideas from
[6] which cover the strong dependence case.
In the seminal paper [13] V.I. Piterbarg considered the joint approximation of the maximum of a stationary Gaussian
process over a discrete and continuous grid of points. The results in [6] and [10] are motivated by the ideas and
techniques developed in the aforementioned paper. Therefore, we shall refer in this contribution to the joint limit
distribution of maxima of complete and incomplete samples such as (1.4) as Piterbarg theorem.
In this paper we are concerned only with stationary Gaussian sequences assuming that (1.5) holds with γ ∈ [0,∞].
For the case of a weakly dependent stationary Gaussian sequence {Xn, n ≥ 1}, i.e., condition (1.5) (or the so-called
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Berman condition) holds with γ = 0, then both conditions D(un, vn) and D′(un) hold with the choice of constants
an, bn given by (1.6). Therefore in view of [5] Piterbarg theorem is valid (see Section2).
Our main results show that Piterbarg theorem also holds for the general case that γ ∈ [0,∞]. Furthermore, we
generalize the recent findings of [16] which are motivated by [6]. For some related work on asymptotic behavior of
extremes of Gaussian sequences see [2, 11].
Brief organization of the rest of the paper: Section 2 presents the main results, their proofs are relegated to Section 3.

2 MAIN RESULTS

In the sequel, let {Xn, n ≥ 1} be a standard stationary Gaussian sequence with underlying distribution function Φ and
correlations {rn, n ≥ 1} satisfying the dependence condition (1.5) with γ ∈ [0,∞]. As in the Introduction in order to
derive Piterbarg theorem we shall assume further that the indicator random variables {εn, n ≥ 1} are independent of
the Gaussian sequence and further (1.3) holds. Our first result is closely related to the result of [5].

Theorem 2.1 Suppose that the stationary Gaussian sequence {Xn, n ≥ 1} is independent of indicator sequence {εn, n ≥
1}. If further (1.3) holds with some random variable P , then under the Berman condition

lim
n→∞

P {Mn(ε) ≤ anx+ bn,Mn ≤ any + bn} = E
(
ΛP(x)Λ1−P(y)

)
holds for all real x, y with x < y and constants an and bn given by (1.6).

Note in passing that the Berman condition implies the convergence of sample maxima {Mn, n ≥ 1} (after normalisa-
tion) to a unit Gumbel random variable, whereas the above result implies that

lim
n→∞

P {Mn(ε) ≤ anx+ bn} = E
(
ΛP(x)

)
, ∀x ∈ R

and thus we have the joint convergence in distribution(Mn(ε)− bn
an

,
Mn − bn

an

)
d→ (M̃,M), n→∞, (2.1)

where (M̃,M) have joint distribution function H(P, x, y) which is defined by H(P, x, y) = E
(
ΛP(x)Λ1−P(y)

)
if

x < y and H(P, x, y) = Λ(y) otherwise.
In [6] and later [16] derived the limit of P {Mn −Mn(ε) ≤ anx,Mn(ε)− bn ≤ any} as n → ∞ for any x > 0 and
y ∈ R. By continuous mapping theorem, the joint convergence in (2.1) implies thus the following corollary which
generalizes Theorem 1, Corollary 1, and Theorem 2 in [16].

Corollary 2.2 Under the assumptions of Theorem 2.1, we have the joint convergence in distribution(Mn −Mn(ε)

an
,
Mn(ε)− bn

an

)
d→ (M−M̃,M̃), n→∞. (2.2)

Next we consider strongly dependent Gaussian sequences.

Theorem 2.3 Suppose that the stationary Gaussian sequence {Xn, n ≥ 1} is independent of indicator sequence {εn, n ≥
1} and (1.3) holds with some random variable P . If further (1.5) holds with γ ∈ (0,∞), then for all real x, y with x < y,
we have

lim
n→∞

P {Mn(ε) ≤ anx+ bn,Mn ≤ any + bn} = H(P, x, y),

Lith. Math. J., X(x), 20xx, May 27, 2013,Author’s Version.
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where an and bn are given by (1.6) and

H(P, x, y) = E
(∫ +∞

−∞
exp

(
−Pe−x−γ+

√
2γz − (1− P)e−y−γ+

√
2γz
)
dΦ(z)

)
. (2.3)

Clearly, the above result can be stated as a joint convergence in distribution, i.e., we have again that (2.1) holds with
(M̃,M) which has joint distribution function H(P, x, y) given by (2.3) for all x < y and H(P, x, y) equals the
right-hand side of (1.7) for x ≥ y. Consequently, we obtain the following result which extends Theorem 3 in [16]
where P is considered to be a constant.

Corollary 2.4 Under the assumptions of Theorem 2.3, the joint convergence in distribution in (2.2) holds where (M̃,M)

has the joint distribution function H(P, x, y) given by (2.3).

Remark 1. In view of [6] (see also [12]), the condition (1.5) can be slightly relaxed in the case that γ ∈ (0,∞). The
result of Theorem 2.3 is still valid under the weaker condition stated in Eq. (5) in [6].

It is possible to have a joint convergence of sample maxima and that of incomplete sample maxima even if condition
D′(un) is not satisfied see [10]. As shown therein for a stationary non-Gaussian process related to the storage process,
both maxima are completely dependent, which is a result expected in view of the findings of [4].
Theorem 2.5 below shows that the case for strongly dependent Gaussian sequences satisfying (1.5) with γ = ∞. We
recall first the result known in the literature for the convergence of the sample maxima. Namely, under the following
two conditions

rn is convex with rn = o(1) and (2.4)

(rn lnn)
−1 is monotone with (rn lnn)

−1 = o(1) (2.5)

as n→∞, [8] and [9] showed that with b̃n := (1− rn)
1

2 bn

lim
n→∞

P
{
Mn − b̃n ≤

√
rnx
}
= Φ(x), ∀x ∈ R. (2.6)

An extension of (2.6) to Piterbarg max-discretisation theorem is given in Corollary 2.2 of [15].
Our last result extends the above convergence as follows:

Theorem 2.5 Suppose that the stationary Gaussian sequence {Xn, n ≥ 1} is independent of indicator sequence {εn, n ≥
1} and (1.3) is valid with some random variable P ∈ (0, 1]. If (2.4) and (2.5) hold, then for all real x, y we have

lim
n→∞

P
{
Mn(ε)− b̃n ≤

√
rnx,Mn − b̃n ≤

√
rny
}
= Φ(min(x, y)),

where b̃n := (1− rn)
1

2 bn with bn given by (1.6).

Again we can cast the above result in the framework of joint convergence in distribution stated in (2.1), namely

(Mn(ε)− b̃n√
rn

,
Mn − b̃n√

rn

)
d→ (W,W ), n→∞, (2.7)

where W has N(0, 1) distribution. Consequently, in the language of [6] we have

(Mn(ε)− b̃n√
rn

,
Mn −Mn(ε)√

rn

)
d→ (W, 0), n→∞. (2.8)
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3 FURTHER RESULTS AND PROOFS

In order to prove the main theorems we need some auxiliary results. We borrow the following notation from [5]. Let
un(x) = anx+ bn, x ∈ R and α = {αn, n ≥ 1} be a non-random sequence taking values in {0, 1}. For fixed k let

Ks = {j : (s− 1)m+ 1 ≤ j ≤ sm}, 1 ≤ s ≤ k,

where m = [n/k]. Further, for a random variable P such that 0 ≤ P ≤ 1 a.s., set

Bt,k =

{
ω : P(ω) ∈

{
[0, 1

2k ], t = 0,

( t2k ,
t+1
2k ], 0 < t ≤ 2k − 1

}}
,

and define

Bt,k,α,n = {ω : εj(ω) = αj , 1 ≤ j ≤ n} ∩Bt,k.

In the following C is a positive constant, its value might change in different lines; we use thus C to omit O(1)

notation.

Lemma 1. Let {X∗n, n ≥ 1} be a sequence of independent standard Gaussian random variables. For large n, there exists
a positive integer l such that k < l < m = [n/k] and l = o(n), then for x < y∣∣∣∣∣P {M∗n(α) ≤ un(x),M∗n ≤ un(y)} −

k∏
s=1

P {M∗(Ks, α) ≤ un(x),M∗(Ks) ≤ un(y)}

∣∣∣∣∣ ≤ (4k + 2)l(1− Φ(un(x)))

holds uniformly for all α ∈ {0, 1}n, where M∗n = max{X∗j , 1 ≤ j ≤ n}, M∗(Ks) = max{X∗j , j ∈ Ks},

M∗(Ks, α) =

{
max{X∗j , αj = 1, j ∈ Ks}, if

∑
j∈Ks

αj ≥ 1,

−∞, otherwise,

and

M∗n(α) =

{
max{X∗j , αj = 1, 1 ≤ j ≤ n}, if

∑n
j=1 αj ≥ 1,

−∞, otherwise.

PROOF OF LEMMA 1. First, we classify km integers into 2k consecutive intervals as follows. For large n, let l be an
integer such that k < l < m and l = o(n). Write

Is = {(s− 1)m+ 1, . . . , sm− l}, Js = {sm− l + 1, . . . , sm}

for 1 ≤ s ≤ k, and set

Ik+1 = {(k − 1)m+ l + 1, . . . , km}, Jk+1 = {km+ 1, . . . , km+ l}.

Since {X∗n, n ≥ 1} are independent, using the arguments similar to the proof of Lemma 4.3 in [10], we obtain the
desired result. 2

Lemma 2. Under the conditions of Theorem 2.3 for x < y we have∣∣∣∣P {Mn(α) ≤ un(x),Mn ≤ un(y)} −
∫ +∞

−∞
P {M∗n(α) ≤ vn(x, z),M∗n ≤ vn(y, z)} dΦ(z)

∣∣∣∣
≤ Cn

n∑
k=1

|rk − ρn| exp
(
− u2n(x)

1 + wk

)
Lith. Math. J., X(x), 20xx, May 27, 2013,Author’s Version.
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holds uniformly for all α ∈ {0, 1}n, where vn(x, z) = (1−ρn)−
1

2 (un(x)−ρ
1

2
nz), ρn = γ/ lnn, wk = max{|rk|, ρn} and

some positive constant C.

PROOF OF LEMMA 2. Let {ξn,k, 1 ≤ k ≤ n, n ≥ 1} be a triangular array of standard Gaussian random variables with
equally correlation ρn = γ/ lnn, and define

M ξ
n(α) =

{
max{ξn,j , αj = 1, 1 ≤ j ≤ n}, if

∑n
j=1 αj ≥ 1,

−∞, otherwise,

and M ξ
n = max{ξn,k, 1 ≤ k ≤ n}. By Berman’s inequality (see e.g., [7] or [12])∣∣∣∣P {Mn(α) ≤ un(x),Mn ≤ un(y)} − P

{
M ξ
n(α) ≤ un(x),M ξ

n ≤ un(y)
}∣∣∣∣

≤ Cn

n∑
k=1

|rk − ρn| exp
(
− u2n(x)

1 + wk

)
holds uniformly for all α ∈ {0, 1}n, where wk = max{|rk|, ρn}. According to the proof of Theorem 6.5.1 in [7]

P
{
M ξ
n(α) ≤ un(x),M ξ

n ≤ un(y)
}
=

∫ +∞

−∞
P {M∗n(α) ≤ vn(x, z),M∗n ≤ vn(y, z)} dΦ(z),

where vn(x, z) = (1− ρn)−
1

2 (un(x)− ρ
1

2
nz) and thus the claim follows. 2

Lemma 3. Let {Yn,k, 1 ≤ k ≤ n, n ≥ 1} be a triangular array of standard Gaussian sequences with correlation ρk =

(rk − rn)/(1 − rn) where rk satisfies (2.4) and (2.5) for k = 1, 2, . . . , n. Suppose that {Yn,k, 1 ≤ k ≤ n, n ≥ 1} is
independent of indicator sequence {εn, n ≥ 1}. If further that (1.3) holds with some random variable P ∈ (0, 1], then for
all δ > 0 we have

lim
n→∞

P
{
MY
n (ε) ≤ bn − δr

1

2
n

}
= 0,

where

MY
n (ε) =

{
max{Yn,j , εj = 1, 1 ≤ j ≤ n}, if

∑n
j=1 εj ≥ 1,

−∞, otherwise.

PROOF OF LEMMA 3. Let {Zn,k, 1 ≤ k ≤ n, n ≥ 1}, {Wn,k, 1 ≤ k ≤ n, n ≥ 1} be two triangular arrays of standard
Gaussian sequences with correlations defined by

E (Zn,1Zn,i+1) =

{
ρi, 1 ≤ i ≤ t(n),
ρt(n), i > t(n),

E (Wn,1Wn,i+1) = σi =

{
ρi−ρt(n)

1−ρt(n)
, 1 ≤ i ≤ t(n),

0, i > t(n),

respectively, where t(n) = [n exp
(
−(lnn)1/2

)
]. Suppose that the two Gaussian sequences are independent of the

indicator sequence {εn, n ≥ 1}. Define similarly to above MZ
n (ε) and MW

n (ε) and let η be a standard Gaussian
random variable being independent of {Wn,k, 1 ≤ k ≤ n, n ≥ 1}. Using Slepian’s inequality (see e.g., [12]) we have

P
{
MY
n (α) ≤ bn − δr

1

2
n

}
≤ P

{
MZ
n (α) ≤ bn − δr

1

2
n

}
= P

{
(1− ρt(n))

1

2MW
n (α) + ρ

1

2

t(n)η ≤ bn − δr
1

2
n

}
=

∫ +∞

−∞
P
{
MW
n (α) ≤ (bn − δr

1

2
n − ρ

1

2

t(n)z)(1− ρt(n))
− 1

2

}
dΦ(z)

≤ Φ
(
−δr

1

2
n/(2ρ

1

2

t(n))
)
+ P

{
MW
n (α) ≤ (bn − δr

1

2
n/2)(1− ρt(n))−

1

2

}
.
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Further, using Berman’s inequality we obtain∣∣∣P{MW
n (α) ≤ (bn − δr

1

2
n/2)(1− ρt(n))−

1

2

}
− P

{
M∗n(α) ≤ (bn − δr

1

2
n/2)(1− ρt(n))−

1

2

}∣∣∣
≤ Cn

t(n)∑
i=1

σi exp

(
− (bn − δr

1

2
n/2)2

(1 + σi)(1− ρt(n))

)
=: cn.

Hence by the total probability formula

P
{
MY
n (ε) ≤ bn − δr

1

2
n

}
=

2k−1∑
t=0

∑
α∈{0,1}n

P
{
MY
n (α) ≤ bn − δr

1

2
n

}
P(Bt,k,α,n)

≤ Φ
(
−δr

1

2
n/(2ρ

1

2

t(n))
)
+ P

{
M∗n(ε) ≤ (bn − δr

1

2
n/2)(1− ρt(n))−

1

2

}
+ cn.

By the properties (2.4) and (2.5) of {rn, n ≥ 1}, the following useful facts (see [9], page 9):

lim
n→∞

rn
ρt(n)

=∞, lim
n→∞

bnρt(n)

r
1/2
n

= 0

imply that

lim
n→∞

Φ
(
−δr

1

2
n/(2ρ

1

2

t(n))
)
= 0

and

P
{
M∗n(ε) ≤ (bn − δr

1

2
n/2)(1− ρt(n))−

1

2

}
≤ P {M∗n(ε) ≤ −anA+ bn}

for arbitrary positive number A as n large. By Corollary 1 in [5]

lim sup
n→∞

P
{
M∗n(ε) ≤ (bn − δr

1

2
n/2)(1− ρt(n))−

1

2

}
≤ E

(
ΛP(−A)

)
.

Letting A→∞, we have

lim
n→∞

P
{
M∗n(ε) ≤ (bn − δr

1

2
n/2)(1− ρt(n))−

1

2

}
= 0.

By the arguments of [8] p.187-188 we have that limn→∞ cn = 0, hence the claim follows. 2

PROOF OF THEOREM 2.1. For a stationary Gaussian sequence, the conditions D(un, vn) and D′(un) hold when the
correlations satisfies (1.5) with γ = 0, see Lemma 4.4.1 in [7] for details. Hence, according to Theorem 1.1 in [5],
we obtain the desired result. 2

PROOF OF THEOREM 2.3. Let Ψ(n, x, z) = n(1− Φ(vn(x, z)) with vn(x, z) = (1− ρn)−
1

2 (un(x)− ρ
1

2
nz). Note that∣∣∣∣∣P {Mn(ε) ≤ un(x),Mn ≤ un(y)} − E

(∫ +∞

−∞

k∏
s=1

(
1− PΨ(n, x, z) + (1− P)Ψ(n, y, z)

k

)
dΦ(z)

)∣∣∣∣∣
≤

2k−1∑
t=0

∑
α∈{0,1}n

E

(∣∣∣∣∣ (P {Mn(α) ≤ un(x),Mn ≤ un(y)}

−
∫ +∞

−∞

k∏
s=1

(
1− PΨ(n, x, z) + (1− P)Ψ(n, y, z)

k

)
dΦ(z)

)∣∣∣∣∣ I(Bt,k,α,n)
)

≤ E1 + E2 + E3 + E4,

Lith. Math. J., X(x), 20xx, May 27, 2013,Author’s Version.
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where

E1 =

2k−1∑
t=0

∑
α∈{0,1}n

E

(∣∣∣∣∣P {Mn(α) ≤ un(x),Mn ≤ un(y)}

−
∫ +∞

−∞
P {M∗n(α) ≤ vn(x, z),M∗n ≤ vn(y, z)} dΦ(z)

∣∣∣∣∣ I(Bt,k,α,n)
)
,

E2 =

2k−1∑
t=0

∑
α∈{0,1}n

E

(∫ +∞

−∞

∣∣∣∣∣P {M∗n(α) ≤ vn(x, z),M∗n ≤ vn(y, z)}
−

k∏
s=1

P {M∗(Ks, α) ≤ vn(x, z),M∗(Ks) ≤ vn(y, z)}

∣∣∣∣∣ dΦ(z) I(Bt,k,α,n)
)
,

E3 =

2k−1∑
t=0

∑
α∈{0,1}n

E

(∫ +∞

−∞

∣∣∣∣∣
k∏
s=1

P {M∗(Ks, α) ≤ vn(x, z),M∗(Ks) ≤ vn(y, z)}

−
k∏
s=1

(
1−

t
2kΨ(n, x, z) + (1− t

2k )Ψ(n, y, z)

k

) ∣∣∣∣∣ dΦ(z) I(Bt,k,α,n)
)

and

E4 =

2k−1∑
t=0

∑
α∈{0,1}n

E

(∫ +∞

−∞

∣∣∣∣∣
k∏
s=1

(
1− PΨ(n, x, z) + (1− P)Ψ(n, y, z)

k

)

−
k∏
s=1

(
1−

t
2kΨ(n, x, z) + (1− t

2k )Ψ(n, y, z)

k

)∣∣∣∣∣ dΦ(z) I(Bt,k,α,n)
)
.

Using Lemma 2 and Lemma 6.4.1 in [7], we have

E1 ≤ Cn

n∑
i=1

|ri − ρn| exp
(
− u

2
n(x)

1 + wi

)
→ 0 (3.1)

as n→∞. For E2, according to Lemma 1, we have

E2 ≤ (4k + 2)
l

n

∫ +∞

−∞
Ψ(n, x, z) dΦ(z).

According to the proof of Theorem 6.5.1 in [7], we have vn(x, z) = un(x+ γ −
√
2γz) + o(an), thus

lim
n→∞

Ψ(n, x, z) = exp(−x− γ +
√

2γz) =: h(x, z, γ).

Combing with l = o(n) as n→∞ the dominated convergence theorem yields

lim
n→∞

E2 = 0. (3.2)
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Next, using Lemma 3 in [5], we have

E3 ≤
2k−1∑
t=0

∑
α∈{0,1}n

E

(∫ +∞

−∞

k∑
s=1

∣∣∣∣∣P {M∗(Ks, α) ≤ vn(x, z),M∗(Ks) ≤ vn(y, z)}

−
(
1−

t
2kΨ(n, x, z) + (1− t

2k )Ψ(n, y, z)

k

) ∣∣∣∣∣ dΦ(z) I(Bt,k,α,n)
)

≤
2k−1∑
t=0

∑
α∈{0,1}n

E

(∫ +∞

−∞

k∑
s=1

∣∣∣∣
∑

j∈Ks
αj

m
− t

2k

∣∣∣∣ n(Φ(vn(y, z))− Φ(vn(x, z)))k
dΦ(z) I(Bt,k,α,n)

)

+
1

k

∫ +∞

−∞
(Ψ(n, x, z))2 dΦ(z)

=

2k−1∑
t=0

k∑
s=1

E

(∣∣∣∣∣ ∑
j∈Ks

εj
m
− t

2k

∣∣∣∣∣ I(Bt,k)
)∫ +∞

−∞

n(Φ(vn(y, z))− Φ(vn(x, z)))
k

dΦ(z)

+
1

k

∫ +∞

−∞
(Ψ(n, x, z))2 dΦ(z)

≤
k∑
s=1

(
E

∣∣∣∣∣ ∑
j∈Ks

εj
m
− P

∣∣∣∣∣+ 1

2k

)∫ +∞

−∞

n(Φ(vn(y, z))− Φ(vn(x, z)))
k

dΦ(z)

+
1

k

∫ +∞

−∞
(Ψ(n, x, z))2 dΦ(z)

≤
k∑
s=1

[
2(2s− 1)

(
d

(
Ssm
sm

,P
)
+ d

(
S(s−1)m

(s− 1)m
,P
))

+
1

2k

] ∫ +∞

−∞

Ψ(n, x, z)− Ψ(n, y, z)
k

dΦ(z)

+
1

k

∫ +∞

−∞
(Ψ(n, x, z))2 dΦ(z),

where d(X,Y ) stands for Ky Fan metric, i.e., d(X,Y ) = inf{ε : P {|X − Y | > ε} < ε}. Since limm→∞ d
(
Ssm

sm ,P
)
=

0, taking a limit n→∞ and then m→∞ we obtain

lim sup
n→∞

E3 ≤
1

2k

∫ +∞

−∞
(h(x, z, γ)− h(y, z, γ)) dΦ(z) + 1

k

∫ +∞

−∞
h2(x, z, γ) dΦ(z). (3.3)

For E4, we have

E4 ≤
2k−1∑
t=0

∑
α∈{0,1}n

E

(∫ +∞

−∞

k∑
s=1

∣∣∣∣P − t

2k

∣∣∣∣ Ψ(n, y, z) + Ψ(n, x, z)

k
dΦ(z) I(Bt,k,α,n)

)

=

∫ +∞

−∞
(Ψ(n, y, z) + Ψ(n, x, z)) dΦ(z)

2k−1∑
t=0

E

(∣∣∣∣P − t

2k

∣∣∣∣ I(Bt,k)
)

≤
∫ +∞

−∞

Ψ(n, y, z) + Ψ(n, x, z)

2k
dΦ(z)

→ 1

2k

∫ +∞

−∞
(h(x, z, γ) + h(y, z, γ)) dΦ(z) (3.4)

Lith. Math. J., X(x), 20xx, May 27, 2013,Author’s Version.
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as n→∞. Hence, combining with (3.1)-(3.4), we have

lim sup
n→∞

∣∣∣∣∣P {Mn(ε) ≤ un(x),Mn ≤ un(y)}

−E

∫ +∞

−∞

(
1−
P exp

(
−x− γ +

√
2γz
)
+ (1− P) exp

(
−y − γ +

√
2γz
)

k

)k
dΦ(z)

∣∣∣∣∣
≤ 1

2k−1

∫ +∞

−∞
h(x, z, γ) dΦ(z) +

1

k

∫ +∞

−∞
h2(x, z, γ) dΦ(z).

The claimed result follows by letting k →∞. 2

PROOF OF THEOREM 2.5. We show next that

lim
n→∞

P
{
r
− 1

2
n (Mn(ε)− (1− rn)

1

2 bn) ≤ x
}
= Φ(x), ∀x ∈ R. (3.5)

Let events Bt,k,α,n be defined as before. Since by the assumption P > 0 and the indicator random sequence
{εn, n ≥ 1} is independent of {Xn, n ≥ 1} for any x ∈ R we have

P
{
r
− 1

2
n (Mn(ε)− (1− rn)

1

2 bn) ≤ x
}
=

2k−1∑
t=0

∑
α∈{0,1}n

P (n, α)P(Bt,k,α,n),

where P (n, α) = P
{
r
− 1

2
n (Mn(α)− (1− rn)

1

2 bn) ≤ x
}

. Applying Slepian’s inequality, we have further

P (n, α) =

∫ +∞

−∞
P
{
MY
n (α) ≤ bn + r

1

2
n (1− rn)−

1

2 (x− z)
}
dΦ(z)

≥
∫ +∞

−∞
P
{
M∗n(α) ≤ bn + r

1

2
n (1− rn)−

1

2 (x− z)
}
dΦ(z)

≥ P
{
M∗n(α) ≤ bn + r

1

2
n (1− rn)−

1

2 δ
}
Φ(x− δ)

for any δ > 0. Since limn→∞ a
−1
n r

1/2
n =∞, there exists sufficiently large A such that for all n large

2k−1∑
t=0

∑
α∈{0,1}n

P (n, α)P(Bt,k,α,n) ≥ Φ(x− δ)
2k−1∑
t=0

∑
α∈{0,1}n

P
{
M∗n(α) ≤ bn + r

1

2
n (1− rn)−

1

2 δ
}
P(Bt,k,α,n)

= Φ(x− δ)P
{
M∗n(ε) ≤ bn + r

1

2
n (1− rn)−

1

2 δ
}

≥ Φ(x− δ)P {M∗n(ε) ≤ bn + anAδ}

≥ Φ(x− δ)P {M∗n ≤ bn + anAδ} .

Clearly, since

lim
A→∞

lim
n→∞

P {M∗n ≤ bn + anAδ} = lim
A→∞

exp(− exp(−Aδ)) = 1,

we have

lim inf
n→∞

P
{
r
− 1

2
n (Mn(ε)− (1− rn)

1

2 bn) ≤ x
}
≥ Φ(x− δ).



11

Next, we derive the upper bound. Note that

P (n, α) ≤
∫ +∞

−∞
P
{
MY
n (α) ≤ bn + r

1

2
n (1− rn)−

1

2 (x− z)
}
dΦ(z)

≤ Φ(x+ δ) + P
{
MY
n (α) ≤ bn − r

1

2
n (1− rn)−

1

2 δ
}

implying

P
{
r
− 1

2
n (Mn(ε)− (1− rn)

1

2 bn) ≤ x
}
≤ Φ(x+ δ) + P

{
MY
n (ε) ≤ bn − r

1

2
n (1− rn)−

1

2 δ
}
.

Using Lemma 3 we obtain

lim sup
n→∞

P
{
r
− 1

2
n (Mn(ε)− (1− rn)

1

2 bn) ≤ x
}
≤ Φ(x+ δ),

hence (3.5) follows by letting δ ↓ 0. Next note that for any x, y

pn(x, y) := P
{
r
− 1

2
n (Mn(ε)− (1− rn)

1

2 bn) ≤ x, r
− 1

2
n (Mn − (1− rn)

1

2 bn) ≤ y
}
≤ P

{
r
− 1

2
n (Mn(ε)− (1− rn)

1

2 bn) ≤ x
}

and further for x < y

P
{
r
− 1

2
n (Mn(ε)− (1− rn)

1

2 bn) ≤ x
}

≤ pn(x, y) + P
{
r
− 1

2
n (Mn(ε)− (1− rn)

1

2 bn) ≤ y
}
− P

{
r
− 1

2
n (Mn − (1− rn)

1

2 bn) ≤ y
}

= pn(x, y) + o(1),

where the last claim above follows directly by the fact that (see (2.6))

lim
n→∞

P
{
r
− 1

2
n (Mn − (1− rn)

1

2 bn) ≤ x
}
= Φ(x), ∀x ∈ R.

Consequently, for x < y we have pn(x, y) = P
{
r
− 1

2
n (Mn(ε)− (1− rn)

1

2 bn) ≤ x
}
+ o(1) and thus the proof is

complete. 2
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