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Abstract. Let {Wi(t), t ∈ R+}, i = 1, 2 be two Wiener processes and let W3 = {W3(t), t ∈ R2
+} be a two-parameter

Brownian sheet, all three processes being mutually independent. We derive upper and lower bounds for the boundary non-
crossing probability

Pf = P{W1(t1) +W2(t2) +W3(t) + f(t) ≤ u(t), t ∈ R2
+},

where f, u : R2
+ → R are two general measurable functions. We further show that, for large trend functions γf > 0, asymptoti-

cally, as γ → ∞, Pγf is equivalent to Pγf , where f is the projection of f on some closed convex set of the reproducing kernel
Hilbert Space of the field W (t) = W1(t1) +W2(t2) +W3(t). It turns out that our approach is applicable also for the additive
Brownian pillow.

Keywords: ...Boundary non-crossing probability; reproducing kernel Hilbert space; additive Wiener field; polar cones;
logarithmic asymptotics; Brownian sheet, Brownian pillow.
AMS Classification: Primary 60G70; secondary 60G10

1 INTRODUCTION

Calculation of boundary non-crossing probabilities of Gaussian processes is a key topic of interest for both theoret-
ical and applied probability, see, e.g., [11, 22, 17, 20, 18, 8, 3, 5, 4, 6, 7, 14] and the references therein. Numerous
applications concerned with the evaluation of boundary non-crossing probabilities relate to mathematical finance,
risk theory, queueing theory, statistics, physics among many other fields. Also calculation of boundary non-crossing
probabilities of random fields is of interest in various contexts, see e.g., [19, 10, 12, 21].
In this paper we are concerned with the investigation of boundary non-crossing probabilities of an additive Wiener
field which is defined as the sum of a standard Brownian sheet and two independent Wiener processes. The choice
of the model is quite natural since both the Wiener process and the Brownian sheet appear naturally as limiting
processes when we consider the schemes in the domain of attraction of the Central Limit Theorem. One one hand,
1 Supported partially by the Swiss National Science Foundation project 200021-140633/1 and the project RARE -318984 (a Marie Curie FP7

IRSES Fellowship)
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these processes have continuous trajectories and independent increments, which makes our model very tractable
and flexible. On the other hand, arbitrary functions defined on the positive quadrant, can be decomposed uniquely
into three components, two of them representing its behavior on the axes and the third component being zero on the
axes. Hence any trend function that we can consider here is suitable for our model.

Definition 1.1 Brownian sheet W̃ = {W̃ (t), t ∈ R2
+} is a Gaussian random field with zero mean and covariance

function

E
{
W̃ (t)W̃ (s

}
= (s1 ∧ t1)(s2 ∧ t2).

By the definition, the Brownian sheet is zero on the axes and in what follows we shall consider its continuous
modification.
Let Wi = {Wi(t), t ∈ R+}, i = 1, 2 be two Wiener processes and let W3 = {W3(t), t ∈ R2

+} be a Brownian sheet.
For two measurable functions f, u : R2

+ → R we shall investigate the boundary non-crossing probability

Pf = P
{
f(t) +W (t) ≤ u(t), t ∈ R2

+

}
,

with W an additive Wiener field defined by

W (t) = W1(t1) +W2(t2) +W3(t), t ∈ R2
+, (1.1)

where we assume that W1,W2,W3 are mutually independent. Clearly, the additive Wiener field W is a centered
Gaussian random field with covariance function

E {W (s)W (t)} = s1 ∧ t1 + s2 ∧ t2 + (s1 ∧ t1)(s2 ∧ t2), s = (s1, s2), t = (t1, t2). (1.2)

For our study we shall modify some techniques applied for Brownian pillow. To be more precise, we can not apply
the methods proposed for Brownian pillow from [2, 3, 12] since they are based on the fact that it vanishes on some
rectangle. Therefore, we modify essentially the methods to meet the properties of our model, and in that context
some additional conditions are introduced in our main result.
As it is commonly the case for random fields, also for the additive Wiener field explicit calculations of boundary
non-crossing probabilities are not available even for the case that both f, u are constants, see e.g., [10]. Therefore
in our analysis we shall derive upper and lower bounds considering general measurable functions u and function
f from the reproducing kernel Hilbert space (RKHS) of W denoted by H2,+. We shall consider some general
measurable functions u and trend functions f from the RKHS of W denoted by H2,+.
In order to determine H2,+ we need to recall first the corresponding RKHS’s of W1, W2 and W3. It is well-known
(see e.g., [1]) that the RKHS of the Wiener process W1, denoted by H1, is characterized as follows

H1 =
{
h : R+ → R

∣∣h(t) = ∫
[0,t]

h′(s)ds, h′ ∈ L2(R+, λ1)
}
,

with the inner product ⟨h, g⟩ =
∫
R+

h′(s)g′(s)ds and the corresponding norm ∥h∥2 = ⟨h, h⟩. It is also well-known
that the RKHS of the Brownian sheet W3, denoted by H2, is characterized as follows

H2 =
{
h : R2

+ → R
∣∣h(t) = ∫

[0,t]
h′′(s)ds, h′′ ∈ L2(R2

+, λ2)
}
,

with the inner product ⟨h, g⟩ =
∫
R2

+
h′′(s)g′′(s)ds and the corresponding norm ∥h∥2 = ⟨h, h⟩. Here the symbols λ1

and λ2 stand for the Lebesgue measures in the R1
+ and in R2

+, respectively. As shown in Lemma 4 in Appendix the
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RKHS corresponding to the covariance function of the additive Wiener field W given in (1.2) is

H2,+ =
{
h : R2

+ → R
∣∣h(t) = h1(t1) + h2(t2) + h3(t), where hi ∈ H1, i = 1, 2 and h3 ∈ H2

}
(1.3)

equipped with the inner product

⟨h, g⟩ =
∫
R+

h′1(s)g
′
1(s)ds+

∫
R+

h′2(s)g
′
2(s)ds+

∫
R2

+

h′′(s)g′′(s)ds (1.4)

and the corresponding norm ∥h∥2 = ⟨h, h⟩. For simplicity we used the same notation for the norm and the inner
product of H1,H2 and H2,+. Note that in the case when h ∈ H2 ∩ C2(R2) we have that h′′(u, s) = ∂2h(u,s)

∂u∂s , and
it is the motivation for the notation h′′.
As in [13], a direct application of Theorem 1’ in [15] shows that for any f ∈ H2,+ we have∣∣∣Pf − P0

∣∣∣ ≤ 1√
2π
∥f∥. (1.5)

Clearly, the above inequality provides a good bound for the approximation rate of Pf by P0 when ∥f∥ is small.
Recall that P0 cannot be calculated explicitly, however it can be determined with a given accuracy by using
simulations. More generally, if we want to compare Pf and Pg for g ∈ H2,+ and g ≥ f , we obtain further (by
Theorem 1’ in [15]) that

Φ(α− ∥g∥) ≤ Pg ≤ Pf ≤ Φ(α+ ∥f∥), (1.6)

where Φ is the distribution of an N(0, 1) random variable and α = Φ−1(P0) is a finite constant. When f ≤ 0, then
we can take always g = 0 above. If f(t0) > 0 for some t0 with non-negative components, then the last inequalities
are useful when ∥f∥ is large. Indeed, for any g ≥ f, g ∈ H2,+ using (1.6) we obtain as γ → ∞

lnPγf ≥ lnΦ(α−⟩γg) ≥ −(1 + o(1))
γ2

2
∥g∥2,

hence

lnPγf ≥ −(1 + o(1))
γ2

2
∥f∥2, γ → ∞, (1.7)

where f (which is unique and exists) satisfies

min
g,f∈H2,+,g≥f

∥g∥ = ∥f∥ > 0. (1.8)

In Section 2 we identify f with the projection of f on a closed convex set of H2,+, and moreover we show that

lnPγf ∼ lnPγf ∼ −γ2

2
∥f∥2, γ → ∞. (1.9)

Our results in this paper are of both theoretical and practical interest. Furthermore, our approach can be applied
when dealing instead of the additive Wiener sheet W with the linear combinations of W1,W2,W3. Additionally,
the techniques developed in this contribution are applicable also for the evaluations of boundary non-crossing
probabilities of the additive Brownian pillow, i.e., when W1,W2 are independent Brownian bridges and W3 is a
Brownian pillow. For the later case our results are more general than those in [12].
Organization of the paper is as follows: We continue below with preliminaries followed then by a section con-
taining the main result. In Appendix we present three technical lemmas. Lemma 3 contains Itô’s formula for the

, X(x), 20xx, July 10, 2014,.
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product of two fields in the plane, one of them being the Brownian sheet and the another one having bounded vari-
ation. Lemma 4 states that the RKHS of W is determined uniquely, whereas Lemma 5 describes the asymptotic
behavior of h′′ for h from the closed convex subset of H2,+ that is used for projection.

2 Preliminaries

Recall that in this paper bold letters are reserved for vectors, so we shall write for instance t = (t1, t2) ∈ R2
+ and

λ1 and λ2 denote the Lebesgue measures on R+ and R2
+, respectively whereas ds and ds mean integration with

respect to these measures.

2.1 Expansion of one-parameter functions

The results of this subsection were formulated in a different form in e.g., [2, 14, 12]. However we shall introduce
some modifications (re-writing for instance V1 below) which are important for the two-parameter case. From the
derivations below it will become clear how to obtain expansion of multiparameter functions of two components,
one of which is the “analog of the smallest concave majorant” and the other one is a negative function. Specifi-
cally, when studying the boundary crossing probabilities of the Wiener process with a deterministic trend h ∈ H1,
then it has been shown (see [4]), that the smallest concave majorant of h solves (1.8) and determines the large
deviation asymptotics of this probability. Moreover, as shown in [14] the smallest concave majorant of h, which
we denote by h, can be written analytically as the unique projection of h on the closed convex set

V1 = {h ∈ H1

∣∣h′(s) is a non-increasing function}

i.e., h = PrV1
h. Here we write PrAh for the projection of h on some closed set A also for other Hilbert spaces

considered below. In the following for a given real-valued function φ we denote its one-parameter increment
∆1

sφ(t) = φ(t)− φ(s) , 0 ≤ s ≤ t < ∞. With this notation we can re-write V1 as

V1 = {h ∈ H1

∣∣∆1
sh

′(t) ≤ 0 , 0 ≤ s ≤ t < ∞}.

Lemma 1. Let Ṽ1 = {h ∈ H1

∣∣ ⟨h, f⟩ ≤ 0 for any f ∈ V1} be the polar cone of V1 and let h ∈ H1.

(i) If h ∈ Ṽ1, then h ≤ 0.

(ii) We have ⟨PrV1
h, PrṼ1

h⟩ = 0 and further

h = PrV1
h+ PrṼ1

h. (2.1)

(iii) If h = h1 + h2, h1 ∈ V1, h2 ∈ Ṽ1 and ⟨h1, h2⟩ = 0, then h1 = PrV1
h and h2 = PrṼ1

h.

(iv) The unique solution of the minimization problem ming≥h,g∈H1
∥g∥ is h = PrV1

h.

Proof Let h ∈ Ṽ1 and define A = {s ∈ R+ : h(s) > 0}. Fix T > 0 and consider the function v such that

v′(s) =

∫
[s,T ]

h(u)1u∈Adu1s≤T .
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For any 0 ≤ s ≤ t < ∞ we have ∆1
sv

′(t) = −
∫
[s∧T,t∧T ] h(u)1u∈Adu ≤ 0 and further

∫
R+

|v′(s)2|ds =

∫
[0,T ]

(∫
[s,T ]

h(u)1u∈Adu
)2

ds

≤ T 2

∫
[0,T ]

h2(u)du

= T 2

∫
[0,T ]

(∫
[0,u]

h′(s)ds
)2

du

≤ T 4

∫
R+

(h′(s))2ds

< ∞.

Consequently, v′ ∈ L2(R+, λ1), v(s) =
∫
[0,s] v

′(u)du ∈ H1 and further v ∈ V1. Therefore,

0 ≥ ⟨h, v⟩

=

∫
R+

h′(s)v′(s)ds (2.2)

=

∫
[0,T ]

h′(s)

∫
[s,T ]

h(u)1u∈Aduds

=

∫
[0,T ]

h(u)1u∈A

∫
[0,u]

h′(s)dsdu

=

∫
[0,T ]

h2(u)1u∈Adu (2.3)

implying that 1u∈A = 0 a.e. λ1, in other words, h(u) ≤ 0 a.e. λ1. However, h is a continuous function and
therefore h(u) ≤ 0 for any u.
Statements (ii) and (iii) follow immediately from [14] and are valid for any Hilbert space.
(iv) Write

f = h+ φ = h+ φ+ h− h = h+ φ+ PrṼ1
h

and suppose that f ∈ H1 and φ ≥ 0. Note that for any function g ∈ V1 its derivative g′ is non-increasing
therefore g′ is non-negative and limt→∞ g′(t) = 0. Since φ ≥ 0, then for any sequence tn → ∞ we have

lim
n→∞

φ(tn)h
′(tn) ≥ 0,

which implies

⟨h, φ⟩ =

∫
R+

h′(u)φ′(u)du

= lim
n→∞

∫
[0,tn]

h′(u)φ′(u)du

= lim
n→∞

(
φ(tn)h

′(tn)−
∫
[0,tn]

φ(u)d(h′(u))
)

≥ lim
n→∞

(
−
∫
[0,tn]

φ(u)d(h′(u))
)

≥ 0. (2.4)

, X(x), 20xx, July 10, 2014,.
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Consequently,

∥f∥2 = ∥h+ φ∥2 = ∥h+ φ+ PrṼ1
h∥2

= ∥h∥2 + 2⟨h, φ⟩+ 2⟨h, PrṼ1
h⟩+ ∥φ+ PrṼ1

h∥2

= ∥h∥2 + 2⟨h, φ⟩+ ∥φ+ PrṼ1
h∥2

≥ ∥h∥2

establishing the proof.

2.2 Expansion of two-parameter functions

For some given function φ : R2
+ → R we define

∆sφ(t) = φ(t)− φ(s1, t2)− φ(t1, s2) + φ(s),

∆1
sφ(t1, s2) = φ(t1, s2)− φ(s), ∆2

sφ(s1, t2) = φ(s1, t2)− φ(s).

In our notation s = (s1, s2) ≤ t = (t1, t2) means that s1 ≤ t1 and s2 ≤ t2. Define the closed convex set

V2 = {h ∈ H2

∣∣∆sh
′′(t) ≥ 0, ∆1

sh
′′(t1, s2) ≤ 0, ∆2

sh
′′(s1, t2) ≤ 0 for any s ≤ t and t ∈ R2

+} (2.5)

and let Ṽ2 be the polar cone of V2, namely

Ṽ2 = {h ∈ H2

∣∣⟨h, v⟩ ≤ 0 for any v ∈ V2}.

Below we derive the expansion for two-parameter functions. Since the results are very similar to the previous
lemma, we shall prove only those statements that differ in details from Lemma 1.

Lemma 2. (i) If h ∈ Ṽ2, then h ≤ 0.

(ii) For any h ∈ H2 we have ⟨PrV2
h, PrṼ2

h⟩ = 0 and

h = PrV2
h+ PrṼ2

h.

(iii) If h = h1 + h2, h1 ∈ V2, h2 ∈ Ṽ2 and ⟨h1, h2⟩ = 0, then h1 = PrV2
h and h2 = PrṼ2

h.

(iv) For any h ∈ H2 the unique solution of the minimization problem ming≥h,g∈H2
∥g∥ is h = PrV2

h.

Proof We prove only statement (i). Denote T = (T, T ), T > 0 and consider the function v with

v′′(s) =

∫
[s,T]

h(u)1u∈Adu1s≤T,

where A = {s ∈ R2
+

∣∣h(s) ≥ 0}. Then for any 0 ≤ s ≤ t

∆1
sv

′′(t1, s2) = −
∫
[s∧T,(t1∧T,T )]

h(u)1u∈Adu ≤ 0,

∆1
sv

′′(s1, t2) = −
∫
[s∧T,(T,t2∧T )]

h(u)1u∈Adu ≤ 0,

∆2
sv

′′(t) =

∫
[s∧T,t∧T]

h(u)1u∈Adu ≥ 0.
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Furthermore, ∫
R2

+

|v′′(s)2|ds =

∫
[0,T]

(∫
[s,T]

h(u)1u∈Adu
)2

ds

≤ T 4

∫
[0,T]

h2(u)du

= T 4

∫
[0,T]

(∫
[0,u]

h′′(s)ds
)2

du

≤ T 8

∫
R2

+

(h′′(s))2ds

< ∞.

Consequently,

v′′ ∈ L2(R2
+, λ2), v(s) =

∫
[0,s]

v′′(u)du ∈ H2

and further v ∈ V2. Similarly to (2.2) we conclude that 1u∈A = 0 a.e. λ2. Other details follow as in the proof
of Lemma 1.
Since we are going to work with functions f in H2,+ we need to consider the projection of such f on a suitable
closed convex set. In the following we shall write f = f1 + f2 + f3 meaning that f(t) = f1(t1) + f2(t2) + f3(t)

where f1, f2 ∈ H1 and f3 ∈ H2. Note in passing that this decomposition is unique for any f ∈ H2,+. Define
the closed convex set

V2,+ = {h = h1 + h2 + h3 ∈ H2,+

∣∣h1, h2 ∈ V1, h3 ∈ V2}

and let Ṽ2,+ be the polar cone of V2,+ given by

Ṽ2,+ = {h ∈ H2,+

∣∣⟨h, v⟩ ≤ 0 for any v ∈ V2,+}

with inner product from (1.4). It follows that for any h = h1 + h2 + h3 ∈ Ṽ2 we have hi ≤ 0, i = 1, 2 and
h3 ≤ 0. Furthermore, ⟨PrV2,+

h, Pr
Ṽ2,+

h⟩ = 0 and

h = PrV2,+
h+ Pr

Ṽ2,+
h. (2.6)

Analogous to Lemma 2 we also have that for h = f + g, f ∈ V2,+, g ∈ Ṽ2,+ such that ⟨f, g⟩ = 0, then
f = PrV2,+

h and g = Pr
Ṽ2,+

h. Moreover, the unique solution of (1.8) is

h = PrV2,+
h = PrV1

h1 + PrV1
h2 + PrV2

h3. (2.7)

3 Main Result

Consider two measurable two-parameter functions f, u : R2
+ → R. Suppose that f(0) = 0 and set

f1(t1) := f(t1, 0), f2(t2) := f(0, t2), f3(t) := f(t)− f(t1, 0)− f(0, t2)),

hence we can write f(t) = f(t1, 0) + f(0, t2) + (f(t)− f(t1, 0)− f(0, t2)). Let fi ∈ H1, i = 1, 2 and f3 ∈ H2.
Recall their representations fi(t) =

∫
[0,t] f

′
i(s)ds, f ′

i ∈ L2(R+, λ1), i = 1, 2, and f3(t) =
∫
[0,t] f

′′
3 (s)ds, f ′′

3 ∈
L2(R2

+, λ2). We shall estimate the boundary non-crossing probability

Pf = P
{
f(t) +W (t) ≤ u(t), t ∈ R2

+

}
.

, X(x), 20xx, July 10, 2014,.
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In the following we set fi = PrV1
fi, i = 1, 2 and f3 = PrV2

f, f = PrV2,+
f and define

f13(t) = f1
′(t)− f3

′′(t, 0), f23(t) = f2
′(t)− f3

′′(0, t).

Note that due to the definition of the set V2, see (2.5),

∆sf3
′′(t) ≥ 0, ∆1

sf3
′′(t1, s2) ≤ 0, ∆2

sf3
′′(s1, t2) ≤ 0 for any s ≤ t and t ∈ R2

+.

In general, the choice of the set V2 is the key point of the whole work because we can easily integrate w.r.t.
f3

′′ both in each one-parameter direction and in the plane in Riemann-Stieltjes sense. Indeed, f3′′ is decreasing
in each coordinate and is increasing in two-parameter sense. We state next our main result:

Theorem 1. Let the following conditions hold:

(i) both functions f13(t) and f23(t) are non-increasing in their arguments;
Riemann-Stieltjes integrals

∫
[0,x] u(x, t)dt(f3

′′(x, t)),
∫
[0,x] u(s, x)ds(f3

′′(s, x)),
∫
R+

u(t, 0)df13(t),∫
R+

u(0, t)df23(t) and
∫
R2

+
u(t)df3

′′(t) exist (as the integrals with respect to monotonic functions);

(ii)

lim
t→∞

u(t, 0)f13(t) = lim
t→∞

u(0, t)f23(t) = 0, lim
t1,t2→∞

u(t)f3
′′(t) = 0, (3.1)

lim
x→∞

∫
[0,x]

u(x, t)dt(f3
′′(x, t)) = lim

x→∞

∫
[0,x]

u(s, x)ds(f3
′′(s, x)) = 0. (3.2)

Then we have

Pf ≤ Pf−f exp

(
−
∫
R+

u(t, 0)df13(t)−
∫
R+

u(0, t)df23(t) +

∫
R2

+

u(t)df3
′′(t)− 1

2
∥f∥2

)
.

Remark 1. Any function f ∈ H2,+ starts from zero. Therefore f can not be a constant unless f ≡ 0 but this
case is trivial.

Remark 2. Condition (ii) of the theorem means that asymptotically the shifts and their derivatives are negligible
in comparison with function u. It is the generalization of the corresponding conditions for the Brownian
bridge and Brownian pillow that are defined on a compact sets so that the corresponding condition holds
automatically.

Proof Denote by P̃ a probability measure that is defined via its Radon-Nikodym derivative

dP

dP̃
=
∏
i=1,2

exp
(
− 1

2
∥fi∥2 +

∫
R+

f ′
i(t)dW

0
i (t)

)
exp

(
− 1

2
∥f3∥2 +

∫
R2

+

f ′′
3 (t)dW

0
3 (t)

)
.

According to the Cameron-Martin-Girsanov theorem, W 0
i (t) = Wi(t) +

∫
[0,t] f

′
i(s)ds, i = 1, 2 are independent

Wiener processes and W 0
3 (t) = W3(t) +

∫
[0,t] f

′′
3 (s)ds is a Brownian sheet w.r.t. the measure P̃ being further

independent of W 0
1 ,W

0
2 . Denote 1u{X} = 1{X(t) ≤ u(t), t ∈ R2

+} and

W 0(t) = W 0
1 (t1) +W 0

2 (t2) +W 0
3 (t).
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Since ∥f∥2 = ∥f1∥2 + ∥f2∥2 + ∥f3∥2, then using further (2.6) and (2.7) we obtain

Pf

= E

1u

( ∑
i=1,2

(Wi(t) + fi(t)) +W3(t) + f3(t)
)

= EP̃

(
dP

dP̃
1u

(
W 0(t)

))

= exp
(
− 1

2
∥f∥2

)
E

{
exp

(∫
R+

f ′
1(t)dW

0
1 (t) +

∫
R+

f ′
2(t)dW

0
2 (t) +

∫
R2

+

f ′′
3 (t)dW

0
3 (t)

)
1u

(
W 0(t)

)}
= exp

(
− 1

2
∥f∥2

)
×E

{∏
i=1,2

exp
(
− 1

2
∥PrṼ1

fi∥2 +
∫
R+

PrṼ1
f ′
i(t)dW

0
i (t)

)
exp

(
− 1

2
∥Pr

Ṽ2
f3∥2 +

∫
R2

+

Pr
Ṽ2
f3

′′(t)dW 0
2 (t)

)
× exp

( ∑
i=1,2

∫
R+

fi
′(t)dW 0

i (t) +

∫
R2

+

f3
′′(t)dW 0

2 (t)
)
1u

(
W 0(t)

)}
.

Now we only need to re-write

∑
i=1,2

∫
R+

fi
′(t)dW 0

i (t) +

∫
R2

+

f3
′′(t)dW 0

3 (t) =
∑
i=1,2

∫
R+

fi
′(t)dW 0

i (t) +

∫
R2

+

f3
′′(t)dW 0(t).

In order to re-write
∫
R+

f1
′(t)dW 0

1 (t), we mention that in this integral dW 0
1 (t) = d1W

0
1 (t) = d1(W

0(t, 0)),
therefore on the indicator 1u{

∑
i=1,2W

0
i (t) +W 0

3 (t)} = 1u{W 0(t)} under conditions of the theorem we have
the relations ∫

R+

f1
′(t)dW 0

1 (t) = lim
n→∞

∫
[0,n]

f1
′(t)dW 0

1 (t)

= lim
n→∞

(
f1

′(n)W 0(n, 0) +

∫
[0,n]

W 0(t, 0)d(−f1
′)(t)

)
.

(3.3)

Similarly, ∫
R+

f2
′(t)dW 0

2 (t) = lim
n→∞

(
f2

′(n)W 0(0, n) +

∫
[0,n]

W 0(0, t)d(−f2
′)(t)

)
. (3.4)

Further, by Lemma 3, for n = (n1, n2)

∫
R2

+

f3
′′(t)dW 0(t) = lim

n1,n2→∞

(
f3

′′(n)W 0(n)− f3
′′(n1, 0)W

0(n1, 0)− f3
′′(0, n2)W

0(0, n2)

+

∫
[0,n]

W 0(t)df3
′′(t) +

∫
[0,n1]

W 0(s, n2)ds(−f3
′′(s, n2)) +

∫
[0,n2]

W 0(n1, t)dt(−f3
′′(n1, t))

+

∫
[0,n1]

W 0(s, 0)ds(f3
′′(s, 0)) +

∫
[0,n2]

W 0(0, t)dt(f3
′′(0, t))

)
.

(3.5)

Combining (3.3)–(3.5), using conditions (i)-(ii) and Lemma 5 we conclude that all values f3
′′(n), f13(n) =

f1
′(n)−f3

′′(n, 0) and f23(n) = f2
′(n)−f3

′′(0, n) are non-negative, therefore we get that on the same indicator

, X(x), 20xx, July 10, 2014,.
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∑
i=1,2

∫
R+

fi
′(t)dW 0

i (t) +

∫
R2

+

f3
′′(t)dW 0(t) ≤ lim

n1,n2→∞

(
f3

′′(n)u(n) + f13(n1)u(n1, 0)

+f23(n2)u(0, n2) +

∫
[0,n]

u(t)df3
′′(t) +

∫
[0,n]

u(s, n)ds(−f3
′′(s, n)) +

∫
[0,n2]

u(n1, t)dt(−f3
′′(n1, t))

+

∫
[0,n1]

u(s, 0)ds(−f13)(s) +

∫
[0,n2]

u(0, t)dt(−f23)(t)

)

≤
∫
R2

+

u(t)df3
′′(t) +

∫
R+

u(s, 0)ds(−f13)(s) +

∫
R+

u(0, t)dt(−f23)(t).

(3.6)

Further conclusions are similar to [2].
If u is bounded, then according to Lemma 5 condition (ii) above is satisfied. Hence, applied for u(s, t) =

u > 0, s, t ≥ 0 combined with (1.7) the above theorem implies the following result.

Corollary 1. If f ∈ H2,+ is such that f(t0) > 0 for some t0 with non-negative components, then (1.9) holds,
provided that condition (i) is valid.

Remark 3. a) Our results can be generalized to higher dimensions. We only mention that in the case of
n-parameter functions we have to define similarly all the differences ∆k

sf(t), 1 ≤ k ≤ n and the space

Vn = {h ∈ H2
n

∣∣(−1)k∆k
sh(t) ≥ 0, for any s ≤ t, 1 ≤ k ≤ n}.

b) The case of linear combinations of Wi’s can be treated with some obvious modifications.
c) Consider the additive Brownian pillow

B(t1, t2) = B1(t1) +B2(t2) +B3(t1, t2), t1, t2 ∈ [0, 1],

which is constructed similarly to the additive Wiener field; here B1, B2 are two independent Brownian bridges
and B3 is a Brownian pillow being further independent of B1, B2. The RKHS’s of B,B1, B3 are almost the
same as W,W1,W3 with the only differences that the corresponding functions are defined on [0, 1]2 or [0, 1]

and the functions are zero on the boundaries of these intervals. The closed convex spaces V1, V2 and V3 are
then defined similarly as in Section 2, and thus all the results above hold for the additive Brownian pillow by
simply changing the conditions for f and u accordingly. Note that compared to [12] we do not need to put
restrictions on f . Thus the results obtained by our approach here are more general.

4 Appendix

Let A ∈ H2 be a two-parameter non-random function. If A ∈ Ṽ2, then A is non-increasing as function of any
one-parameter variable and non-decreasing as a function of two variables. Then for the additive Wiener field
W = {W (t) = W1(t1) +W2(t2) + W3(t), t ∈ R2

+} and for any T = (T, T ) there exist two integrals of the
first kind (according to the classification from the papers [9, 23] and [24]),

∫
[0,T]A(u)dW (u) that is standard

integral of non-random function with respect to a Gaussian process, or Itô integral, which are the same in
this case because ∫

[0,T]
A(u)dW (u) =

∫
[0,T]

A(u)dW3(u),
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and
∫
[0,T]W (u)dA(u) that is the Riemann-Stieltjes integral. We argue only for the existence of the integral∫

[0,T]A(u)dW (u) because the existence of the integral
∫
[0,T]W (u)dA(u) is evident, due to the continuity

of the trajectories of the Wiener field. Indeed, such function A attains its maximal value at 0. Therefore∫
[0,T]A

2(s)ds ≤ A(0)T 2 which implies that
∫
[0,T]A(u)dW3(u) is correctly defined as Itô integral. Moreover,

denote the increments

∆1
ik,nX = ∆1(

T (i−1)

n
,T (k−1)

n

)X(Ti
n
,
T (k − 1)

n

)
and

∆2
ik,nX = ∆1(

T (i−1)

n
,T (k−1)

n

)X(T (i− 1)

n
,
Tk

n

)
,

where X = A,W . Then there exist two integrals of the second kind

∫
[0,T]

diA(u)djW (u), i = 1, 2, j = 3− i

that are defined as the limits in probability of integral sums where for example,

∫
[0,T]

d1A(u)d2W (u) = lim
n→∞

∑
1≤i,k≤n

∆1
ik,nA∆2

ik,nW.

Lemma 3. Let A ∈ Ṽ2 be a two-parameter non-random function and let W = {W (t), t ∈ R2
+} be an additive

Wiener field. Then for any T = (T, T ) we have the following version of integration-by-parts formula:

∫
[0,T]

A(s)dW (s) = A(T)W (T)−A(T, 0)W (T, 0)−A(0, T )W (0, T ) +

∫
[0,T]

W (s)dA(s)

+

∫
[0,T ]

W (s, T )ds(−A(s, T )) +

∫
[0,T ]

W (T, t)dt(−A(T, t))

+

∫
[0,T ]

W1(s)ds(A(s, 0)) +

∫
[0,T ]

W2(t)ds(A(0, t)).

Proof The standard one-parameter Itô formula yields

∫
[0,T ]

A(s, T )dsW (s, T ) = A(T)W (T)−A(0, T )W (0, T )−
∫
[0,T ]

W (s, T )dsA(s, T ).

Using further the generalized two-parameter Itô formula (see e.g., [16]), we obtain

∫
[0,T ]

A(s, T )dsW (s, T ) =

∫
[0,T ]

A(s, 0)dW1(s) +

∫
[0,T]

A(s)dW (s) +

∫
[0,T]

d1W (t)d2A(t),

and similarly

∫
[0,T ]

W (T, t)dtA(T, t) =

∫
[0,T ]

W (0, t)dtA(0, t) +

∫
[0,T]

W (s)dA(s) +

∫
[0,T]

d1W (t)d2A(t).

, X(x), 20xx, July 10, 2014,.
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From the last three equalities above we immediately get that∫
[0,T]

A(s)dW (s) =

∫
[0,T ]

A(s, T )dsW (s, T )−
∫
[0,T]

d1W (t)d2A(t)−
∫
[0,T ]

A(s, 0)dW1(s)

=

∫
[0,T ]

A(s, T )dsW (s, T )−
∫
[0,T ]

W (T, t)dtA(T, t)

+

∫
[0,T]

W (s)dA(s) +

∫
[0,T ]

W (0, t)dtA(0, t)−
∫
[0,T ]

A(s, 0)dW1(s)

= A(T)W (T)−A(T, 0)W (T, 0)−A(0, T )W (0, T ) +

∫
[0,T]

W (s)dA(s)

+

∫
[0,T ]

W (s, T )ds(−A(s, T )) +

∫
[0,T ]

W (T, t)dt(−A(T, t))

+

∫
[0,T ]

W1(s)ds(A(s, 0)) +

∫
[0,T ]

W2(t)ds(A(0, t))

establishing the proof.

Lemma 4. The RKHS of the covariance function of the additive Wiener field W coincides with H2,+ given in (1.3).

Proof If the function h : R2
+ → R admits the representation

h(t) =
∑
i=1,2

hi(ti) + h3(t), (4.1)

where hi ∈ H1, i = 1, 2 and h3 ∈ H2, then the representation (4.1) is unique. This claim follows immediately
if we put ti = 0, i = 1, 2. In view of (1.2) the claim follows by Theorem 5, p.24 in [1].
Consider the subspace V1 = {h ∈ H1

∣∣∆1
sh

′(t) ≤ 0 , 0 ≤ s ≤ t < ∞}. Clearly, for any h ∈ V1 we have that
h′(t) ↓ 0 as t → ∞. Now we establish similar fact for the subspace

V2 = {h ∈ H2

∣∣∆sh
′′(t) ≥ 0, ∆1

sh
′′(t1, s2) ≤ 0, ∆2

sh
′′(s1, t2) ≤ 0 for any s ≤ t and t ∈ R2

+}.

Lemma 5. If h ∈ V2 is such that
∫
R+

(h′′(s, 0))2ds < ∞ and
∫
R+

(h′′(0, t))2dt < ∞, then h′′(s, t) ↓ 0 as s → ∞ for
any t ∈ R+, h′′(s, t) ↓ 0 as t → ∞ for any s ∈ R+, and h′′(s, t) ↓ 0 as s, t → ∞.

Proof Note that it is sufficient to establish the first claim. Since h ∈ V2, then
∫
R2

+
(h′′(s, t))2dsdt < ∞

implying that
∫
R+

(h′′(s, t))2ds < ∞ for a.e. t. Furthermore, h′′(s, t) is non-increasing in s therefore for such
t we have h′′(s, t) ↓ 0 as s → ∞ and it follows from the assumption that h′′(s, 0) ↓ 0 as s → ∞. Since it is
non-increasing in t, we get such convergence for any t, hence the claim follows.
Acknowledgment: We would like to thank three referees for numerous comments and suggestions which
improved our manuscript.
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