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Single-cell analyses allow uncovering cellular heterogeneity,

not only per se, but also in response to viral infection. Similarly,

single cell transcriptome analyses (scRNA-Seq) can highlight

specific signatures, identifying cell subsets with particular

phenotypes, which are relevant in the understanding of virus–

host interactions.
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Introduction
Recent technological advances coupled with mathematical

modeling and computer science revolutionized the field of

biology. Indeed, deep sequencing of the whole human

genome in 2001 signed a first milestone in the ‘omics era’

[1,2]. From that point on, lot of efforts have been devoted to

develop new chemistries and devices with high throughput

capacity, such as Next Generation Sequencing (NGS) and

Mass Spectrometry (MS), and to bring them to basic and

clinical research [3��,4]. The combination of multiple omics

is known today as the ‘integrome’ and should allow a better

and more comprehensive understanding of biological pro-

cesses or diseases [5].

To date, a series of state of the art techniques is available for

studies at population level resolution, with many biological

applications, including cancer [6], stem cells [7], and infec-

tious diseases [8,9]. These omic studies are likely to be

valuable assets for personalized medicine [10–12].

Although essential and informative, population studies

have some limitations as they contain a mixture of cells.

As such, these cells can appear on one hand as being

similar or homogeneous for some parameters, such as cell

size or shape, tissue localization, protein expression or cell
www.sciencedirect.com 
type subset. On the other hand, a cell population can also

appear heterogeneous for some other parameters, such as

cell cycle or metabolic activation. Thus, analyses at the

cell population level may average and minimize individual

cellular differences, potentially masking rare cells or cell

subsets with a significant specific phenotype [13�]. Illus-

trations of this can be found in cancer, where heterogene-

ity in intra-tumor cells at genetic, epigenetic and pheno-

typic level can lead to resistance in cancer therapies, as

well as in infectious diseases where cell heterogeneity can

reveal differential susceptibility to infections or different

immunological responses [14��,15,16]. In order to start

investigating this cellular heterogeneity, single-cell anal-

yses were initially performed using imaging techniques

and further developed to benefit from sequencing tech-

nologies [14��,17]. Single-cell analyses bring up several

technical challenges, including single cell isolation, han-

dling minimal amounts of biological sample (6 pg of DNA,

10 pg of RNA), and data normalization and analysis [5,17–

22]. Nowadays, an array of kits and methods are available,

overcoming these challenges and allowing single cell

omics analyses (reviewed in [23–26]).

Characterization of cell heterogeneity in the field of

virology is obviously of great interest as it is likely

impacting virus replication cycle and thus infection out-

come. Indeed, the success of viral replication is highly

dependent on its host, as viruses adapted to exploit the

cell machinery to their own benefit. Interestingly, achiev-

ing universal infection in a given cell population is quite

rare. Two non-mutually exclusive hypotheses can explain

this unequal susceptibility to infection: (i) viral heteroge-

neity, that is, the presence of a mixture of competent,

mutated and defective viral particles, displaying differ-

ences in infection ability, and (ii) cellular heterogeneity,

that is, the presence of a mixture of cells with differences

in metabolism, composition, activation status or cell cycle,

resulting in specific cellular environments shaping virus

progression success throughout the cell. In this perspec-

tive, single-cell analyses represent novel opportunities to

identify specific cellular and molecular features promot-

ing or in contrast restricting virus replication, thereby

adding to the understanding of virus–host interactions, as

well as providing new targets to inhibit viral replication.

To date, only a limited amount of single cell studies in

virology have been published (reviewed in [14��,27]).

Initial studies used single-cell technologies to explore

virus evolution, through methods including fluorescent
Current Opinion in Virology 2018, 29:39–50
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reporters, FACS analysis and sorting, as well as time lapse

microscopy (recently reviewed in [27]), and it is only

recently that transcriptome analyses at single cell level

started to uncover cell subsets with specific response to

viral infection. In this review, we will focus on the

prominent role of single-cell RNA-Seq (scRNA-Seq) in

virus–host interactions. In particular, we will provide an

overview of the complete scRNA-Seq workflow as well as

studies using this technology to identify specific features

relevant for virus–host interactions.

Transcriptome analysis: single cell RNA-Seq
workflow
The scRNA-Seq analysis pipeline can be divided in three

essential steps (Figure 1): (i) single cell isolation, (ii)

RNA-Seq procedure, that is, RNA extraction, reverse

transcription (RT), library preparation and sequencing,

and (iii) data analysis.

Single cell isolation

In order to perform single-cell RNA-Seq (scRNA-Seq)

the first trivial step is to isolate single cells. To date single

cell isolation methods can be divided according to two

criteria: (i) the cell isolation capacity, that is, high or low

throughput, depending of the level of automation and (ii)

the cell selection method, that is, blind selection without

any a priori or biased selection according to a specific

parameter (Table 1). For example, some high throughput

technologies such as Fluorescence Activated Cell Sorting

(FACS) and Magnetic Activated Cell Sorting (MACS)

allow a biased selection of the cell population based either

on cell size and shape or on the expression of specific cell

surface markers, while microfluidics-based and microdro-

plets-based technologies allow unbiased separation of

single cells. Similarly, low throughput techniques that

require micromanipulation, such as manual cell picking or

Laser Capture Microdissection (LCM), also allow biased

cell selection based on a specific cell morphology or the

expression of a fluorescence marker. By contrast, limiting

dilution-based methods are unbiased. (For more informa-

tion on the isolation methods, please refer to [27–

29,30��].)

RNA-Seq procedure: RNA extraction, reverse

transcription, library preparation, and sequencing

Standard protocols for library preparation have been

optimized to use only a few ng (10–100 ng) of starting

DNA material. However, one single cell contains on

average only �10 pg of total RNA. Therefore, workflows

for RNA extraction and library preparation were adapted

and optimized to work with single-cell material.

Isolated single cells need first to be lysed in order to

access RNA. This step can be performed through dedi-

cated automated devices (such as fluidigm C1, 10X geno-

mics chromium, ddSEQ single-cell isolator), or manually,

using commercially available kits (such as GenEluteTM
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Single Cell RNA Purification Kit (Sigma) or Single Cell

Lysis Kit (Thermo Scientific)). Alternatively, manual cell

lysis and total RNA purification can be performed simul-

taneously using resin-based columns (e.g. Single Cell

RNA Purification Kit (NorGen Biotek Corp), PicoPure1
RNA Isolation Kit (Thermo Scientific)) or magnetic bead

separation (e.g. 5 min Single Cell RNA Extraction Kit

(Biofactories)). Afterwards, RNA is enriched for mRNA,

either by polyA selection or more rarely by ribosome

depletion (Table 2, Figure 1) [31,32]. The enriched

RNA fraction is then usually reverse transcribed with

modified oligodT primer through different protocols,

either polyA tailing or template switching. During the

RT step, some protocols allow tagging of single molecules

with unique molecular identifiers (UMI), which are ran-

dom hexanucleotides that can be used to quantify more

precisely the number of initial mRNA molecules present

in one single cell [33,34]. Following reverse transcription,

cDNA is amplified by in vitro transcription or by PCR.

The amplified cDNA library is then used for library

preparation and high throughput sequencing (currently

most protocols use Nextera for library preparation and

Illumina as a sequencing platform) (for additional infor-

mation on RNA-Seq procedures, please refer to

[3��,15,23,25,29,35,36��,37�]).

Single-cell data analysis

As every single cell is unique, it is not possible to perform

experimental replicates and assess noise. It is thus essen-

tial to have some quality controls to ensure data reliabil-

ity. This can be achieved by adding synthetic mRNAs of

known sequence and amount, such as External RNA

Controls Consortium (ERCC) RNA spike-ins, to each

cell lysate. The number of reads recovered from the

spike-ins will provide information about inter-sample

technical variability [3��,25,38�,39].

It has been recently shown that sequencing errors in UMI

sequence are common [34], and may thus bias transcript

quantification when used. To minimize the error rate of

UMI during sequencing, Lau et al. developed a new

approach consisting in building a high error resistant

exponentially-expanded barcodes (EXBs) with giga-scale

diversity and introduce them into double strand cDNA by

mean of a transposase [40]. Multiple packages for single-

cell data analysis are already available and many compu-

tational tools are being developed to improve current

analyses in order to handle bona fide cell-to-cell variation

and technical noise [38�,39,41,42,43��,44,45��,46]. Most

of these analyses rely on cell-to-cell vicinity, or transcrip-

tome similarity, thereby allowing a neighborhood-based

graphical representation of individual cells, such as Prin-

cipal Component Analysis (PCA) or t-distributed Stochas-

tic Neighbor Embedding (t-SNE) plots. These plots are

commonly used as they allow easy and intuitive visuali-

zation of cell heterogeneity and cell clusters that can be

further analyzed by differential expression analysis.
www.sciencedirect.com
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Figure 1

Specific Transcriptional and
Molecular Signatures

Current Opinion in Virology

Identification of specific cell signatures using single-cell RNA-seq and phenotypic analyses. The whole analysis pipeline can be divided in five

steps. (i) Cells infected at population level are separated and isolated as single cells. (ii) Each individual cell is processed for RNA-Seq, requiring

RNA extraction, reverse transcription (RT) with optional unique molecular identifier (UMI) barcoding, library preparation and amplification, and

www.sciencedirect.com Current Opinion in Virology 2018, 29:39–50
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Table 1

Single cell isolation method.

Throughput Technique Cell selection Parameters of population

enrichment

Number of cells Final volume/

cell

High FACS Biased Cell morphology/size, specific cell

surface marker expression, reporter

gene expression

Hundreds Microliters

MACS Biased Specific cell surface marker

expression

Hundreds Microliters

Microfluidics (i.e. Fluidigm C1, 10X

genomics chromium)

Unbiased – Hundreds to

thousands

Nanoliters

Microdroplets (i.e. ddSEQ Single-Cell

Isolator)

Unbiased – Thousands Nanoliters

Low Micromanipulation (manual cell picking,

laser capture microdissection)

Biased Cell morphology reporter gene

expression

Tens Microliters

Limiting dilution Unbiased – Tens Microliters
In conclusion, transcriptome analysis at single-cell level

(scRNA-Seq) can reveal cell heterogeneity in a cell

population, thereby highlighting the existence of one

or multiple discrete cell clusters with specific gene

expression profiles.

Identification of a cell-specific transcriptional
signature correlating with a specific
phenotype in response to viral infection
Although valuable, scRNA-Seq alone does not provide

any information on the association and relevance of a

specific cell cluster (with a specific gene expression

signature) with a specific cell phenotype. For this pur-

pose, identification and assessment of a specific pheno-

type in response to viral infection is required.

Phenotypic analyses usually rely, either on the expression of

a virus reporter gene or a specific cellular gene, or on the

activity of a specific cellular protein (Figure 1). Further-

more, phenotypic analyses can be performed either at

single-cell level associated with scRNA-Seq or at population

level independently of scRNA-Seq. Indeed, assessment of

the phenotype of interest on the same single cell that will be

lysed and processed for scRNA-Seq allows for direct over-

lapping of transcriptome and phenotype, thereby providing
(Figure 1 Legend Continued) finally sequencing. (iii) Sequencing reads are

sequences to assess abundance and structure of transcripts, thereby defini

transcriptomic analyses can be performed to inform about data structure an

Distributed Stochastic Neighbor Embedding (t-SNE) or Principal Componen

provide specific gene expression profiles. Finally, single cell transcriptomes

RT-qPCR analyses. These three first steps characterize the process for sing

cellular heterogeneity in a cell population, that is, identifying one or multiple

direct association with corresponding scRNA-Seq) or using two cell popula

transcriptome analyses. Phenotypic analyses include assessment of protein

immunofluorescence or western blots, or assessment of protein activity stu

(channels) or translocation assays (metabolites). The analysis of specific ph

displaying different levels of protein expression or activity) or differences be

transcriptomic data and phenotypical analyses should help identifying spec

defined transcriptional and molecular signature.
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a direct and straightforward association between gene

expression signature and specific phenotype. This is possi-

ble if single cells are first characterized by FACS or by

microscopy for the expression of a fluorescent reporter gene

before scRNA-Seq for example. Alternatively, specific phe-

notypes of interest need to be first characterized at popula-

tion level. In this case, it will be helpful to identify two cell

populations with extreme opposite phenotypes. For exam-

ple, a cell population A is more permissive than a cell

population B. Single-cell analysis of the two cell populations

may then reveal imbalanced cell clustering, correlating with

the observed phenotypes. For example, the cell population

A contains a higher proportion of cells in cluster 3 and only

few cells in the other two clusters, while cell population B

contains only a few cells in cluster 3 and a higher proportion

of cells in the other clusters. Cells in cluster 3 will thus

represent permissive cells and will be characterized by a

specific transcriptional signature.

In conclusion, joint analysis of scRNA-Seq profiles and

phenotype assessment brings additional and valuable

information, as it allows correlating a specific cell phe-

notype to a transcriptional signature (Figure 1). These

analyses should help identifying novel biomarkers spe-

cific for viral phenotypes.
 further processed and aligned to host and virus genome reference

ng the gene expression profile of each single cell. Multiple

d cell heterogeneity using dimensionality reduction plots, such as t-

t Analysis (PCA). Cell clustering and differential expression analysis can

 can be compared to cell population transcriptome or to quantitative

le-cell transcriptomic analysis, allowing mostly revealing the level of

 cell subpopulations. (iv) Phenotypic analyses at single cell level (with

tions with extreme opposite phenotypes can complement

 expression level and localization, using FACS staining,

dies, using assays quantifying enzymatic activity, transport activity

enotypes should also reveal single cell heterogeneity (i.e. single cells

tween multiple cell populations. (v) Finally, correlation analysis between

ific cell subsets displaying a specific phenotype and characterized by a

www.sciencedirect.com
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Table 2

ScRNA-Seq workflow.

RNA-Seq procedurea Advised single

cell isolation method

Starting material RT UMIb Amplification cDNA coverage

mRNA-Seq

(Tang’s method) [61��]
Any PolyA selected RNA PolyA Tailing No PCR Full-length with 30-end biases

Quartz-Seq [62] Any PolyA selected RNA PolyA Tailing No PCR Full-length with 30-end biases

SC3-Seq [63] Any PolyA selected RNA PolyA Tailing No PCR Full-length with 30-end biases

SUPer-Seq [31] Any Ribosome depleted RNA Poly-dA Tailing No PCR Full-length

MATq-Seq [32] Any Ribosome depleted RNA Poly-dC Tailing Yes PCR Full-length

SMART-Seq [64] Any PolyA selected RNA Template Switching No PCR Full-length

SMART-Seq 2 [65] Any PolyA selected RNA Template Switching No PCR High coverage full-length

STRT-Seq [66] Microdroplet PolyA selected RNA Template Switching Yes PCR Fragments <500 bp 50-end
(TSS) biases

Drop-Seq [67] Microdroplet PolyA selected RNA Template Switching No PCR Strong 30 end biases

Cel-Seq [68] Microdroplet PolyA selected RNA PolyA Tailing Yes In vitro transcription (IVT)-based Strong 30 end biases

Cel-Seq 2 [69] Microdroplet PolyA selected RNA PolyA Tailing Yes In vitro transcription (IVT)-based Strong 30 end biases

In-Drop [70] Microdroplet PolyA selected RNA PolyA Tailing Yes In vitro transcription (IVT)-based Strong 30 end biases

MARS-Seq [71] Microdroplet PolyA selected RNA PolyA Tailing Yes In vitro transcription (IVT)-based Strong 30 end biases

a SC3-Seq (single-cell mRNA 3-prime end sequencing); MATq-Seq (multiple annealing and dC-tailing-based quantitative single-cell RNA-Seq); SMART-Seq (Switching mechanism at 5’ End of RNA

Template); STRT-Seq (Single cell tagged reverse transcription sequencing); Cel-Seq (Cell Expression by Linear amplification); MARS-Seq (Massive parallel RNA single cell sequencing framework).
b Unique Molecular Identifiers.
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Single-cell RNA-Seq in virology
To date, a few single-cell RNA-Seq studies have been

performed, investigating virus or cell diversity (Table 3).

In 2013, McWilliam Leitch and McLauchlan published

the first scRNA-Seq analysis in virology, aiming at explor-

ing the heterogeneity of Hepatitis C virus (HCV) qua-

sispecies and assessing their fitness [47]. They isolated

16 Huh7 single cells that express constitutively JFH1_2a

subgenomic replicon, extracted total RNA and amplified

a 708 bp-specific N5B region by RT-qPCR. The PCR

products were then cloned and 20 clones per single cell

were sequenced, providing a total of 320 viral sequences.

They showed that one single cell harbored on average

113 copies of viral RNA and that the sequence of HCV

quasispecies differed extensively among cells, with some

single cells displaying only WT viral RNA sequences

while others contained up to four different viral RNA

sequences, and diverse mutations. These data

highlighted the co-existence of multiple quasi-species

within the same single cell, suggesting distinct individual

viral evolution, likely due to mutations introduced during

genome replication by the error-prone RNA-dependent

RNA polymerase. Furthermore, fitness analysis of three

major variants was compared to the prevalent WT repli-

con and showed that the best replicative fitness was

displayed by the WT replicon, consistent with a selective

advantage for WT replication and its high prevalence.

In 2015 Wu et al. developed a dedicated pipeline called

mRNA amplification and library construction system

(MIRALCS) to investigate both cellular and viral RNA

of the tumoral HeLa S3 cell line, originally transformed

by Human Papilloma Virus (HPV) [48]. scRNA-Seq

analysis revealed a high degree of heterogeneity among

individual virus-infected cells. In particular, they identi-

fied alternative splicing of HPV genome, resulting either

in internal E6 splicing leading to a truncated and non-

functional E6 protein, or in aberrant HPV-host sequence

fusion transcripts. Furthermore, coupling transcriptomic

data with co-expression analysis identified a set of

283 genes co-regulated with E6 and E7, representing

novel potential HPV interactors.

Tsioris et al. used microengraving to identify and capture

West Nile Virus (WNV)-specific actively secreting and

memory B cells isolated from 11 WNV-infected individ-

uals, followed by single cell RT-PCR and sequencing of

WNV-specific antibodies (V, D, J, CDR3 sequences of

heavy and light immunoglobulin chains) [49,50]. They

successfully identified and isolated 98 WNV-specific cells

out of thousands of cells and identified complete antibody

sequence from 19 single cells. Phenotypic analyses were

carried out to characterize the diverse antibodies, using

Plaque Reduction Neutralization Assay and binding affin-

ity to WNV Envelope protein. This strategy successfully

led to the identification of four novel WNV neutralizing

antibodies.
Current Opinion in Virology 2018, 29:39–50 
Afik et al. developed T cell receptor (TCR) Reconstruc-

tion Algorithm for Paired-End Single cell (TRAPeS), an

algorithm facilitating reconstruction of full-length TCR

sequences from scRNA-Seq-derived short reads, in order

to investigate TCR heterogeneity among CD8+ T cells

[51]. Their analysis revealed that naı̈ve CD8+ T cells

expressed distinct TCR, thereby suggesting a heteroge-

neous population, while effector memory CD8+ T cells

displayed some levels of oligoclonality. Similarly, virus-

exposed CD8+ T cells, during vaccination protocols or

chronic infections, presented various degrees of heteroge-

neity. Indeed, Yellow Fever Virus (YFV) and Hepatitis C

virus (HCV)-exposed CD8+ T cells (short-term exposure

during vaccination protocol) displayed higher levels of

TCR heterogeneity than cytomegalovirus (CMV)-

exposed cells (long-term exposure during persistent infec-

tion). These data suggest that TCR heterogeneity and cell

oligoclonality were negatively correlated and depended on

the duration of virus exposure. ScRNA-Seq data of 353 sin-

gle cells were further explored to assess cell heterogeneity

of CMV and YFV-exposed CD8+ T cells. The analysis

clearly separated clusters of naı̈ve CD8+ T cells, effector

CD8+ T cells and CMV-specific CD8+ T cells. By con-

trast, YFV-specific CD8+ T cells displayed some cellular

heterogeneity, with one effector memory-like subpopula-

tion and one naı̈ve-like subpopulation. Further analysis

revealed that YFV-specific CD8+ T cell subpopulations

were associated with a distinct TCR sequence, displaying

longer CDR3 sequences in the naı̈ve-like subset.

Recently, two studies used scRNA-Seq to investigate

Zika virus (ZIKV)-mediated neuropathogenesis [52,53].

First, Nowakosky and colleagues used scRNA-Seq to

characterize the gene expression profile of multiple cell

types of the developing human cortex, in order to corre-

late ZIKV tropism and pathogenesis [52]. In particular,

they evaluated the expression of 23 gene candidates

potentially involved in ZKV across cell types and identi-

fied AXL as being highly expressed in radial glial cells, in

astrocytes, in microglia and in endothelial cells. Further

analysis of AXL expression was performed by immuno-

staining of multiple tissues, including iPSC-derived cere-

bral organoids, highlighting AXL expression in radial glia

(ventricular zone staining) and neural stem cells. AXL

expression pattern seemed thus consistent with cells

susceptible to ZIKV infection and cerebral lesions (micro-

cephaly and ocular lesions), further arguing for a possible

role of AXL in ZIKV entry.

Onorati et al. established cells lines derived from neuroe-

pithelial stem (NES) cells isolated from primary neocortex

(NCX) or from spinal cord (SC) in order to investigate ZIKV

infection success according to tropism and gene expression

profile (scRNA-Seq) [53]. They confirmed previous data

showing high expression of AXL in NES cells and radial

glial cells, as well as preferential localization of ZIKV-

infected cells at the ventricular zone. ZIKV infection of
www.sciencedirect.com
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Table 3

ScRNA-Seq studies in virology.

Virusa Cell type Single cell

isolation

Nb of single

cells analyzed

RNA sample RNA-Seq

method

Additional

transcriptomic

analysis

Phenotypic analysis Reference

HCV Huh-7 cell line,

expressing JFH-1_2a

strain

Limiting

dilution

16 vRNA RNA

extraction:

RNeasy micro

kit (Qiagen);

gene-specific

qRT-PCR

(N5B); Cloning

into

sequencing

vectors

Bulk RNA-Seq; RT

qPCR

Replicative fitness

analysis

McWilliam

Leitch and

McLauchlan,

2013 [47]

Key findings/outcome:

– Presence of an average of 113 copies of HCV replicons per cell

– Assessment of viral sequence heterogeneity (i.e. viral quasispecies) in each single cell, present at various frequencies

– Distinct single cells provide local compartments with different selective environments shaping distinct viral sequence evolution

– The predominant quasispecies in each single cell was the one displaying the best fitness

HPV HeLa S3 cell line,

transformed by HPV

infection

MIRALCS 40 Cell RNA and

vRNA

MIRALCS;

SMART-Seq2

(modified)

Bulk RNA-Seq RT-

qPCR;

Transcriptomic co-

expression analysis

Cell cycle Wu et al.,

2015 [48]

Key findings/outcome:

– Average number of mRNA molecules in HeLa S3 was 152 000

– Cell heterogeneity at cell cycle (G2/M and non-G2/M cells)

– Cell heterogeneity at the transcriptome level, with differences in gene expression, alternative splicing isoforms, and fusion transcripts

– Splice variant heterogeneity in HPV sequences, resulting in truncated E6 proteins or in HPV-host chimeric transcripts

– Identification of 283 E6–E7 co-regulated genes as novel candidates potentially interacting with HPV proteins

WNV Primary memory B

cells and antibody-

secreting cells,

isolated from infected

individuals

Micro-

engraving

19 Cell RNA

(antibody

coding

sequence: V,

D,J; CDR3)

Micro-

engraving;

gene-specific

single-cell RT-

PCR

Bulk RNA-Seq Immunoassay to

identify WNV-specific

cells

WNV Ab

characterization

(Plaque reduction

neutralization assay,

Immunoblot and

antigen affinity

assays).

Humoral response

analysis

Tsioris et al.,

2015 [49]

Key findings/outcome:

– Identification of four novel WNV neutralizing antibodies, with determined coding sequence

– Frequency assessment of WNV-specific B cells (�30 cells per 100 000 peripheral blood mononuclear cells)

– Persistence of WNV antibodies and no predictive value for disease severity
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Table 3 (Continued )

Virusa Cell type Single cell

isolation

Nb of single

cells analyzed

RNA sample RNA-Seq

method

Additional

transcriptomic

analysis

Phenotypic analysis Reference

YFV

CMV

HCV

Human and murine

CD8+ T cells

FACS sorting 513 Cell RNA (TCR

repertoire)

SMART-Seq2 Bulk RNA-Seq Single cell Surface

marker expression

(FACS); Tetramer

binding assay

(fluorescence

staining)

Afik et al.,

2017 [51]

Key findings/outcome:

– Analysis of TCR repertoire diversity

– Naı̈ve CD8+ T cells express unique TCR, YFV- and HCV-specific CD8+T cells displayed a higher TCR repertoire diversity compared to CMV-specific CD8+ T cells

which are oligoclonal (poor TCR diversity)

– Correlation between TCR diversity, oligoclonality, and duration of virus exposure

– Identification of two YFV-specific CD8+ T cell subsets (effector memory-like and naı̈ve-like)

– Correlation between YFV-specific CD8 +T cells differentiation state and CDR3 length (naı̈ve cells have longer CDR3 sequences)

ZIKV Primary cells from

human cortex

(astrocytes, radial

glia, intermediate

progenitor cells,

neurons), iPSC-

derived cerebral

organoids

Micro-

dissection

and Fluidigm

715 Cell RNA SMARTer1
UltraTM Low

RNA Kit

Immunostaining of

candidate markers

(immunohisto-

chemistry)

Nowakoski

et al.,

2015 [52]

Key findings/outcome:

– Expression of AXL, a candidate gene involved in ZIKV entry, in radial glia, astrocytes, endothelial cells and microglia

– Characterization of AXL expression in cerebral and organoid samples

ZIKV Neuroepithelial stem

(NES) cells

Neurocortical cells

and Radial Glia Cells

Fluidigm 1009 Cell RNA SMARTer1
UltraTM Low

RNA Kit

Immuno-

fluorescence

staining; Immunoblot;

Immunoelectron

microscopy

Onorati et al.,

2016 [53]

Key findings/outcome:

– Establishment and scRNA-Seq characterization of neuroepithelial stem (NES) cell lines as model for in vitro ZIKV studies

– Expression and localization analysis of AXL and TYRO3, genes potentially involved in ZIKV entry in NES cells and Radial Glia

– ZIKV may impair mitosis and survival of NES cells by inducing the relocation of pTBK1 from mitotic centrosomes to mitochondria

CMV Glioblastoma tumors

and glioblastomacell

lines

Sequences

downloaded

from previous

study ([55],

SMART-Seq)

854 Cell RNA and

vRNA

Bulk RNA-Seq Johnson et al.,

2017 [54]

Key findings/outcome:

– Lack of CMV expression in glioblastoma tumors and cell lines
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Table 3 (Continued )

Virusa Cell type Single cell

isolation

Nb of single

cells analyzed

RNA sample RNA-Seq

method

Additional

transcriptomic

analysis

Phenotypic analysis Reference

HIV Dendritic Cells (DCs)

from HIV-1 Elite

Controller (EC)

individuals

FACS sorting 139 Cell RNA FACS analysis on

surface marker;

Functional

characterization of

DCs; Validation on

healthy cDCs

Martin-Gayo

et al.,

2016 [56]

Key findings/outcome:

– Presence of 3 clusters in cDCs from Elite controllers

– Characterization of a highly functional subset of cDCs with antiviral profile (high expression of Interferon-stimulated genes, costimulatory molecules and cytokines

– High expression of CD64 and PD-L1, correlating with improved immune response to HIV

HIV Primary CD4+T cells,

with extreme

phenotypes of HIV

permissiveness (high

vs low permissive

cells)

Fluidigm 166 Cell RNA SMART-Seq2 Bulk RNA-Seq Immunoprofiling; Cell

surface protein

expression (FACS

immunoprofiling);

Activation assays;

Infection assays

Rato et al.,

2017 [57]

Key findings/outcome:

– CD4+ T cell heterogeneity was driven by T cell activation

– Cell heterogeneity appeared as a continuum of transcriptional cell states rather than distinct clusters

– Correlation analysis of scRNA-Seq, protein expression, activation and permissiveness to HIV identified markers of HIV permissiveness

– HIV permissive cells displayed low levels of genes involved in interferon I pathway or in defense response pathway

HIV Primary model of

latently infected CD4

+ T cells

Fluidigm 224 Cell RNA and

vRNA

SMART-Seq2 Bulk RNA-Seq Fluorescence based

protein expression

analysis (FACS and

microscopy)

Golumbeanu

et al.,

2017 [58]

Key findings/outcome:

– Latent CD4+ T cells were heterogeneous, with two distinct cell clusters

– Latent CD4+ T cells displayed differential response to TCR-mediated stimulation

– Transcriptional heterogeneity was linked to viral reactivation potential

a HCV: Hepatitis C Virus; HPV: Human Papilloma Virus; WNV: West Nile Virus; ZKV: Zika Virus; CMV: Cytomegalovirus; YFV: Yellow Fever Virus; HIV: Human Immunodeficiency Virus.
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organotypic brain slices confirmed the absence of infected

cells in the cortical plate and the preferential infection of

cells residing in the ventricular zone such as radial glial cells.

Over time, a progressive disruption of radial glia scaffold

and disorganization of the neocortical structure was

observed, consistent with brain damage. They also investi-

gated the role of TNAK-binding kinase 1 (TBK1), previ-

ously involved in innate immunity and cell proliferation, in

NES cell growth arrest and cell death. Although scRNA-

Seq data did not reveal any difference in TBK1 gene

expression, fetal cortex analyses revealed a higher level

of phosphorylated TBK1 (pTBK1) in the ventricular zone.

Furthermore, ZIKV infection relocated pTBK1 from

mitotic centrosomes to the mitochondria in NES-infected

cells, resulting in mitosis disruption and increased cell

death, and consistent with ZIKV-mediated cerebral lesions.

Johnson et al. performed scRNA-Seq on glioblastoma

tumors and glioblastoma cell lines, previously reported

to be heterogenous, in order to investigate a possible role

of CMV infection in glioblastoma [54,55]. The analysis of

854 single cells failed to detect CMV transcripts, suggest-

ing either the absence or the rarity of CMV sequences.

Therefore, these data indicated that glioblastoma tumors

may not contain active CMV.

Recent studies on the Human Immunodeficiency Virus

(HIV) used single-cell RNA-Seq to identify the transcrip-

tional signature of specific cell subsets, such as dendritic

cells from elite controllers, highly permissive CD4+ T cells

or inducible latently infected CD4+ T cells [56–58]. Mar-

tin-Gayo et al. characterized conventional dendritic cells

(cDCs) isolated from elite controllers, at the single-cell

level, in order to understand if these cells contributed to

the improved response observed in these individuals

[56,59]. Using scRNA-Seq, they identified three cDC

subsets after HIV exposure: one subset similar to control

unexposed cells, one subset of exposed cDCs, and a third

exposed cDC subset with a different expression profile,

showing upregulated antiviral response (interferon-stimu-

lated genes and cytokines) and effective antigen-presenting

properties. This third functional subset was enriched in

elite controllers compared to chronic progressors and unin-

fected individuals, and may thus contribute to the improved

immunological control observed in elite controllers.

Rato et al. identified two CD4+ T cell populations (iso-

lated from two individuals) that, upon TCR-mediated

stimulation, displayed high and low permissiveness to

HIV infection [57]. scRNA-Seq analysis of non-infected

activated CD4+ T cells revealed transcriptional hetero-

geneity, with individual cells reflecting a continuum of

cell states and correlating with cellular activation status.

High permissive cells contained more individual cells

with successful activation profile than low permissive

cells. Analysis of cell surface protein expression was

further assessed by FACS and correlated with
Current Opinion in Virology 2018, 29:39–50 
permissiveness to HIV. Correlation analysis of scRNA-

Seq, cell activation, protein expression and HIV permis-

siveness identified candidate cellular markers marking

HIV permissive cells. A few of these biomarkers were

further validated as biomarkers of HIV permissiveness.

Subsequent transcriptome analysis of biomarker-sorted

cell subpopulations identified specific transcriptional fea-

tures associated with supported viral replication. In par-

ticular, highly permissive cells displayed downregulated

expression of 95 genes involved in antiviral response.

Using a similar approach, Golumbeanu et al. investigated

the cell heterogeneity of HIV-infected cells during latent

and activated stages, in a primary model of latently

infected CD4+ T cells [58,60]. Using a virally-encoded

fluorescent reporter gene to assess successful induction of

HIV expression coupled with scRNA-Seq analysis,

Golumbeanu et al. identified two cell subsets, with differ-

ential responsiveness to cell stimulation and HIV reacti-

vation. One cell cluster displayed globally higher gene

expression levels, and was more susceptible to cellular

stimulation and HIV expression than the other cell cluster.

Differential expression analysis also identified a 134 gene-

specific signature to discriminate the two cell subsets.

Conclusions
Overall, scRNA-Seq is a powerful technique allowing

characterizing cellular heterogeneity within a cell popu-

lation. Association of transcriptome profilings with spe-

cific cellular phenotypes may help identifying specific

proteins or biomarkers of interest involved in virus–host

interactions, such as antibodies, TCR, virus receptor or

cell-specific biomarkers.

Current analyses capture a unique snapshot of a single-

cell gene expression profile at a specific time point, and do

not allow manipulation of a single cell with follow-up

analyses over time. Future technical improvements may

possibly overcome this limitation, at least partially. Fur-

thermore, development of novel protocols allowing simul-

taneous analysis of multiple molecular molecules, such as

DNA, RNA and proteins, within the same individual cell

would provide an additional step toward a more compre-

hensive ‘single-cell integrome’, which will likely be

instrumental to further our understanding of viral repli-

cation and virus–host interactions.
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