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b Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 
c Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, 
Copenhagen, Denmark 
d Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland   

A R T I C L E  I N F O   

Keywords: 
T2 

Transverse relaxation 
Powder averaging 
Spherical mean 
Spherical variance 
Diffusion 
MRI 
Axon 
Dot 

A B S T R A C T   

In magnetic resonance imaging, the application of a strong diffusion weighting suppresses the signal contribu
tions from the less diffusion-restricted constituents of the brain’s white matter, thus enabling the estimation of 
the transverse relaxation time T2 that arises from the more diffusion-restricted constituents such as the axons. 
However, the presence of cell nuclei and vacuoles can confound the estimation of the axonal T2, as diffusion 
within those structures is also restricted, causing the corresponding signal to survive the strong diffusion 
weighting. We devise an estimator of the axonal T2 based on the directional spherical variance of the strongly 
diffusion-weighted signal. The spherical variance T2 estimates are insensitive to the presence of isotropic con
tributions to the signal like those provided by cell nuclei and vacuoles. We show that with a strong diffusion 
weighting these estimates differ from those obtained using the directional spherical mean of the signal which 
contains both axonal and isotropically-restricted contributions. Our findings hint at the presence of an MRI- 
visible isotropically-restricted contribution to the signal in the white matter ex vivo fixed tissue (monkey) at 
7T, and do not allow us to discard such a possibility also for in vivo human data collected with a clinical 3T 
system.   

1. Introduction 

One of the fundamental goals in magnetic resonance imaging (MRI) 
is the production of brain maps that provide, at each voxel, the quan
tification of the proportions and of the biophysical characteristics of the 
constituents of the brain’s tissue microstructure, such as neuronal cell 
bodies, axons, myelin, oligodendrocytes, astrocytes, etc. [1]. This 
quantification holds the promise of identifying biomarkers that are 
sensitive to the presence and type of alterations and/or pathology. For 
this, it is fundamental to obtain specific measurements of the charac
teristics of each tissue constituent. Multi-compartmental biophysical 
modeling of the MRI signal has often been used for this purpose, how
ever it entails challenges with regards to the estimation of the unknown 
values of the model parameters [22]. To partially obviate this issue, 
research has focused on using particular acquisition regimes to measure 

a signal that retains the information from only a few key tissue con
stituents, such as the axons in the white matter tissue [23,31,44]. In 
particular, by using a strong diffusion weighting – generally summarized 
by a high b-value (b) – it is possible to measure a signal that almost 
entirely contains contributions from the compartments where water 
diffusion is more restricted. In this context, the term restricted is loosely 
used to indicate apparent low diffusivity and does not necessarily imply 
a specific type of diffusion process [46]. In white matter, since diffusion 
inside of axons is assumed to be more restricted than that outside of 
them (extra-axonal), a “sufficiently high” b-value leads to a diffusion 
signal for which the spherical mean over the acquired diffusion gradient 
directions mainly contains signal contributions from spin-bearing water 
particles inside of axons. In order to measure one key magnetic property 
of the axons, the axonal transverse relaxation time T2a, McKinnon and 
Jensen [31] used this principle in combination with a transverse 
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relaxation experiment. Their method consisted of observing the decay of 
the spherical mean of the strongly diffusion-weighted signal due to 
transverse relaxation, from which it is possible to estimate the axonal T2. 

Microscopy studies have however revealed that axons may not be the 
only constituents of the white matter tissue microstructure that are 
characterized by a restricted diffusion process. For instance, Andersson 
et al. [5] illustrate the presence of vacuoles and of clusters of cell nuclei 
that have sizes compatible with restricted diffusion. Therefore, 
spin-bearing water particles diffusing within these structures would still 
contribute to the strongly diffusion-weighted MRI signal, and would 
therefore bias the measurement of the axonal T2 calculated from the 
transverse relaxation of the spherical mean. Indeed, the presence of 
vacuoles and cell nuclei may be the source of a diffusion-restricted and 
isotropic contribution to the signal that survives at high b-values. It is 
therefore fundamental to have an estimator of the axonal T2 that is less 
biased by the presence of these isotropically-restricted signal contribu
tions. This could enable a more accurate multi-compartmental modeling 
of the white matter tissue microstructure, where it is known that a small 
bias in the estimation of one parameter can cause biases in the estima
tion of all of the others. For instance, the assignment of an incorrect 
value of the axonal T2 can confound the estimation of anatomically 
relevant estimates such as the compartmental volume fractions, poten
tially having consequences for clinical interpretability. In addition, the 
comparison of the estimates from this unbiased estimator with those 
based on the spherical mean provides a new way to investigate the 
long-debated detectability of such isotropically-restricted signal 
contributions. 

The presence of an isotropically-restricted signal contribution – 
possibly arising from spherical/cellular-like structures in the brain’s 
white matter – has been considered in the literature [37], often in the 
form of a “dot” signal contribution corresponding to pools of apparently 
immobile water [2,32,14,47]. However, the existence of this 
zero-diffusion contribution to the diffusion signal is debated: 
isotropically-restricted contributions have been deemed negligible in 
the context of clinical acquisitions [11], or in non-fixed tissue [44]. Tax 
et al. [40] identified an isotropic and restricted (although less so than a 
dot) contribution to the strongly diffusion-weighted signal in some 
white matter regions. 

Inspired by this debate, and with the aim of obtaining unbiased 
axonal T2 estimates, we propose to calculate the axonal transverse 
relaxation time from the directional spherical variance of the strongly 
diffusion-weighted signal which is, as we show, insensitive to the pres
ence of isotropically-restricted contributions (dot or not). The T2 esti
mated from the spherical variance is indeed uniquely determined by 
anisotropic contributions to the measured directional signal, which in 
white matter are mainly represented by axons. Using data collected with 
a pre-clinical 7T MRI scanner from ex vivo fixed brain tissue of a Vervet 
monkey, and data collected with a clinical 3T MRI system from healthy 
human volunteers, we present evidence of the differences between the 
estimates of axonal T2 when using the spherical mean as compared to 
when unbiased estimates are obtained from the spherical variance. 

2. Materials and methods 

2.1. Spherical mean T2 

The method proposed by McKinnon and Jensen [31] uses a pulsed 
gradient spin echo (PGSE) [38] sequence with b-value of 5000 or 
6000 s/mm2 to collect data along different gradient directions and for 
two distinct echo times, TE1 and TE2. The indicated b-values result from 
of a prediction based on the expected in vivo diffusivities at 37◦C in the 
white matter and are chosen to ensure that the contribution of the 
extra-axonal water to the signal is negligible. More recently, a b-value of 
4000 s/mm2 was deemed sufficient [33]. In ex vivo scenarios, where the 
diffusivities are much lower, the b-value to choose has been indicated to 
be greater than or equal to 20,000 s/mm2 [44]. Using such a high 

b-value, the axonal transverse relaxation was calculated by considering 
the spherical mean across the directions as 

T2m = (TE2 − TE1)/log(mean{S(TE1, b)}/mean{S(TE2, b)}) (1)  

where the echo times need to be high enough to allow the contributions 
from myelin water to be neglected, and where 

mean{S(TE, b)} =
1
N

∑N

i=1
S(TE, b, n→i) (2)  

with n→i being the i-th gradient direction among the N acquired ones. 
Eq. (1) implicitly assumes that the only tissue constituents contrib

uting to the strongly diffusion-weighted signal are axons. However, if in 
addition to axonal signal contributions there also are isotropically- 
restricted contributions coming, for instance, from cell nuclei and/or 
vacuoles, the estimated T2 would be biased. 

2.2. Spherical variance T2 

The spherical variance is the variance of signal samples acquired 
along many directions on a diffusion shell with fixed b-value. Intuitively, 
the variance is only influenced by contributions to the signal that vary 
directionally, i.e. it is not influenced by isotropic components as these 
only contribute to the mean of the signal. The directional signal 
measured in a voxel at a “high enough” b-value, e.g. b = 4000 s/mm2 in 
vivo or b = 20,000 s/mm2 ex vivo, can be formulated as 

S
(
TE, b, n→

)
≈ fisoSiso

(
b, n→

)
e− TE/T2iso + faSa

(
b, n→

)
e− TE/T2a (3)  

where for simplicity only one isotropic (iso) and one axonal (a) 
compartment are considered with the respective signal fractions (vol
ume fractions modulated by proton density and longitudinal relaxation), 
fiso and fa, diffusion attenuations, Siso(⋅) and Sa(⋅), and transverse 
relaxation times, T2iso and T2a. The sample spherical variance is then 
formulated as 

var{S(TE, b)} =
1
N
∑N

i=1

(

S(TE, b, n→i) −
1
N
∑N

k=1
S(TE, b, n→k)

)

2

=
f 2
a

N
e− 2TE/T2a

∑N

i=1

(

Sa(b, n→i) −
1
N
∑N

k=1
Sa(b, n→k)

)

2

(4)  

where we have used the fact that an isotropic compartment displays a 
signal decay in each direction that is equal to the average across all 
directions, that is 

Siso(b, n→i) =
1
N
∑N

k=1
Siso(b, n→k), ∀i = 1, ..,N. (5)  

The relation in Eq. (4) leads to the estimation of the axonal transverse 
relaxation time without the influence of isotropic compartments as 

T2v = T2a = 2(TE2 − TE1)/log(var{S(TE1, b)}/var{S(TE2, b)}) (6)  

where all the unknowns in Eq. (4) cancel each other when dividing the 
spherical variances for two different echo times (at fixed b-value), 
except for the exponential terms that account for the dependency on the 
axonal T2a. 

When assuming the presence of isotropic compartments that 
contribute to the spherical mean signal, Eq. (1) is no longer a valid 
estimator of the axonal transverse relaxation time, T2a, as it assumes an 
“axon-only” model of the strongly diffusion-weighted signal. The use of 
Eq. (6), based on the spherical variance, leads to an unbiased estimation 
of the axonal T2 also when isotropic compartments are present because it 
only accounts for anisotropic contributions to the strongly diffusion- 
weighted signal, such as those coming from axons. 

The variance of the signal is however more sensitive to noise. The 
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noise variance, in the case of zero-mean Gaussian distributed noise with 
variance σ2, is an additive term to the true variance, i.e the measured 
variance is var{S(TE, b)} + σ2. In the absence of a perfect knowledge of 
the noise variance, it is therefore essential to perform denoising to 
attenuate noise before using Eq. (1). To mitigate the issues related to the 
additive noise variance, should the denoising not remove the noise 
entirely, it is convenient to use approximation and eventually regulari
zation. A typical strategy for doing so is to approximate the signal on a 
shell with spherical harmonics, and eventually apply Laplace-Beltrami 
regularization [10]. The spherical harmonics expansion of the signal is 

S(TE, b, n→) =
∑L

l=0,even

∑l

m=− l
clm(TE, b)Ym

l ( n→) (7)  

where Ym
l ( n→) are the real spherical harmonics basis functions of order l 

and m – the l-order subscript only admits even values because of the 
antipodal symmetry of the diffusion signal – and where clm(TE, b) are the 
corresponding coefficients, see the supplementary material in Zucchelli 
et al. [48] for a definition. Laplace-Beltrami regularization is particu
larly suitable for this kind of applications as the higher order co
efficients, associated to high frequency oscillations such as noise, are 
more penalized than lower order coefficients. The use of regularization 
implies selecting the amount of smoothing, which is typically controlled 
by a meta-parameter, λ [10]. The spherical variance used to evaluate Eq. 
(6) can then be calculated as [48] 

var{S(TE, b)} =
1

4π
∑L

l=2,even

∑l

m=− l
clm(TE, b)2 (8)  

which only uses the coefficients with l ≥ 2 thus excluding the zeroth 
coefficient that only encodes for the spherical mean of the signal. In 
addition to noise attenuation, the use of the spherical harmonics 
expansion offers the advantage of allowing more flexible acquisitions 
with regards to the diffusion gradient directions. 

Looking at Eq. (3) it appears evident that to estimate the axonal 
transverse relaxation time, T2a, one could remove the spherical mean 
from the overall signal, to remain with only a reminder of the leftover 
anisotropic signal contributions. With that, it would be possible to 
perform a T2 estimation for each pair of signal samples collected with 
the same b-value along collinear directions at different echo times. This 
clearly constrains the acquisitions to be performed along the same di
rections, and would directly suffer from any misregistration errors 
across the collected images. Nevertheless, this approach leads to more 
instability or more bias in the presence of residual noise after denoising 
compared to using the spherical variance (see Appendix A). 

2.3. Interpreting the T2 estimates 

The b-value used for the acquisition and the type of estimation (e.g. 
mean or variance) have a direct impact on which constituents of the 
tissue microstructure contribute to the T2 estimate. Eq. (1) can be used to 
calculate the T2 at b = 0, which is referred to as the b = 0 average T2, or 
at “high” b-value, i.e. T2m. Eq. (6) is used to estimate the T2 only at a non- 
zero b-value, T2v. In white matter, these different estimates of the 
transverse relaxation time differ in that  

• the spherical variance T2v calculated at high b-value accounts only for 
anisotropic, e.g. axonal, contributions from restricted compartments;  

• the spherical variance T2v calculated at lower (non-zero) b-value 
additionally accounts for the anisotropic contributions from less 
restricted anisotropic compartments, e.g. the extra-axonal water;  

• the spherical mean T2m calculated at high b-value accounts for all 
contributions from restricted compartments, e.g. from both axons 
and cell nuclei and/or vacuoles (or generally isotropically-restricted 
compartments); 

• the spherical mean T2m calculated at lower (non-zero) b-value addi
tionally accounts for contributions from isotropic compartments 
where diffusion is not (or is less) restricted, and from the extra- 
axonal water;  

• the b = 0 average T2 accounts for similar contributions to those 
determining the spherical mean T2m calculated at lower b-value with 
the addition of even less restricted compartments. 

We finally note that the T2 estimates based on the spherical mean, unlike 
those based on the spherical variance, can be more affected by partial 
volume contamination with isotropic signal contributions from the gray 
matter (GM) and the cerebrospinal fluid (CSF). 

2.4. Ex vivo data 

Data was collected from an ex vivo fixed Vervet (Chlorocebus 
aethiops) monkey brain, obtained from the Montreal Monkey Brain 
Bank. The monkey, cared for on the island of St. Kitts, had been treated 
in line with a protocol approved by The Caribbean Primate Center of St. 
Kitts. The brain had previously been prepared and stored according to 
Dyrby et al. [12]. The data was collected with a Bruker Biospec 70/20 
7.0 T scanner (Billerica, Massachusetts, USA) using a quadrature RF coil 
(300 MHz). The brain was let to reach room temperature and to me
chanically stabilize prior the start of the acquisition. The acquisition was 
conducted using a constant air flow directed towards the brain to avoid 
short-term instability artifacts [12]. A single-line readout PGSE 
sequence with pulse duration δ = 9.6 ms and separation Δ = 17.5 ms 
was used to collect the data organized in five shells with 
b = 4000 s/mm2, 7000 s/mm2, 23,000 s/mm2, 27,000 s/mm2, and 31, 
000 s/mm2 each containing the same 96 directions which were obtained 
by electrostatic repulsion [25], plus b = 0 images. One dataset was 
collected at echo time TE = 35.5 ms and the other at TE = 45.5 ms. We 
expect mild contamination from myelin at these echo times. Assuming a 
myelin T2mye = 11 ms [8] and an axonal T2a = 30 ms, at TE = 35.5 ms a 
ratio between myelin volume fraction and axonal volume fraction of 1/2 
(g-ratio ≈ 0.82) would lead to approximately a 6% myelin signal 
contribution, while a ratio of 1/4 (g-ratio ≈ 0.89) would lead to an 
approximately 3% myelin signal contribution. At TE = 45.5 ms the ex
pected myelin signal contributions reduce to approximately 3.5% and 
1.8% respectively. The percentage contributions of the myelin water are 
actually expected to be lower than those values since the myelin trans
verse relaxation time reported previously is related to in vivo tissue at 3T 
and it might decrease with increased field strength (7T) and due to the 
lower temperature and to the formalin fixation [9]. The estimated SNR 
in WM was around 40. Images were collected with a repetition time of 
TR = 3500 ms, at a 0.5 mm isotropic resolution, and with an image 
matrix of 256 × 128 × 30 voxels. Total scan time was of approximately 
6 days. With long acquisition times, magnet drift, i.e. B0 drift, can 
introduce blurring in the image. We estimated that with a B0 drift of 
0.05 T/hour, a bandwidth of 20 kHz, and a 256 pixels isotropic image 
matrix the time required before achieving a one voxel drift is about 16 
hours. To reduce the introduction of drift, we acquired each shell with 
separate shorter acquisitions, applying a frequency adjustment before 
each acquisition. Visual inspection revealed no need to perform regis
tration between the different shells. 

2.5. Human clinical data 

Data was collected from a 27 year old female (sbj1) and a 34 year old 
male (sbj2) healthy volunteer. For the latter, a retest was performed 
(sbj2r) two weeks after the first acquisition. The acquisition and the 
protocol were authorized by the Danish ethical commission of Region 
Hovedstaden (Journal-nr.: H-21022514). Data was acquired using a 
Siemens 3T Prisma MRI system (Siemens Heathineers, Erlangen, Ger
many) using a 64-channel head coil. A monopolar pulse (PGSE) was used 
for collecting data organized in two shells with b = 1000 s/mm2 and 
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5000 s/mm2, each containing the same 96 directions which were ob
tained as done for the ex vivo data. Non-weighted (b = 0) images were 
collected with reversed phase-encode blips, resulting in pairs of images 
with distortions going in opposite directions for the correction of the 
susceptibility-induced off-resonance field in the whole dataset. One 
dataset was collected at echo time TE = 80 ms and the other at 
TE = 89 ms. For the shell with b = 5000 s/mm2 an additional dataset 
was acquired with TE = 85 ms. Finally, another shell with b = 2500 s/ 
mm2 and TE = 80 ms was acquired for the estimation of the fiber 
orientation distribution function (fODF) to be used in the analysis. The 
MRI scanner automatically adapts the pulse length and separation of the 
PGSE sequence depending on the prescribed echo time as also reported 
in McKinnon and Jensen [31]. Therefore, the echo time range [80,89]ms 
was chosen as it minimizes the difference in diffusion time between the 
b = 5000 s/mm2 data collected with different echo times while still 
guaranteeing an observable decay due to relaxation. The datasets were 
then collected at (TE[ms], δ[ms], Δ[ms]) (80, 24.08, 39.1), (85, 26.58, 
41.6), and (89, 28.68, 43.6) where the values are rounded to the second 
decimal. Using simulations, we verified that the differences in spherical 
mean diffusion decay due to the different timings across the three 
datasets are below 0.02% of the non-weighted signal when considering 
axons with diameter 3μm or lower. Images were collected with a repe
tition time of TR = 3840 ms, at a 2.3 mm isotropic resolution, 
multi-band factor 3, and with an image matrix of 88 × 90 × 74 voxels. 
The total scan time was of approximately 56 minutes per subject. 

2.6. Data processing 

The data was denoised using the method described by Ma et al. [29] 
with a window size of 3 voxels. This denoising is based on the estimation 
of the noise variance in association with a Rician variance stabilization 
technique [16], after which optimal shrinkage with respect to the mean 
squared error [18] is applied to the singular values extracted from local 
3D isotropic patches of data with side determined by the chosen window 
size. The denoising removes the Rician bias and increases the SNR of the 
images. After denoising, Gibbs ringing removal according to Kellner 
et al. [26] was applied using the implementation available in MRtrix3.1 

While for the ex vivo data a visual inspection revealed that image 
registration was not necessary, for the in vivo human data a registration 
was performed using FSL’s eddy [4] after using FSL’s topup which was 
used to estimate the susceptibility-induced off-resonance field from the 
pairs of b = 0 images collected with reversed phase-encode blips [3,35]. 

The evaluation of Eqs. (1), (2), (4), and (6) was carried out using 
NumPy2 [19]. When more than two echo times were available, the 
estimation of the T2 values was performed by using the SciPy3 [45] 
implementation of differential evolution [39] to minimize objective 
functions corresponding to Eqs. (1) and (6) while considering the mean 
squared error over the possible non-repeated combinations of echo times 
for TE1 and TE2. The visualization of the results was performed with 
Matplotlib4 [21]. 

2.7. Synthetic data 

Synthetic data was generated based on the acquisition protocol for 
the ex vivo acquisition, with diffusion parameters set to values in line 
with fixed tissue at room temperature. To simulate the data we first 
estimated the tissue signal fractions for white matter (WM), gray matter 
(GM), and cerebrospinal fluid (CSF) using the multi-shell multi-tissue 
constrained spherical deconvolution framework [24] in its generalized 

version implemented in the Dmipy5 library [15]. The fiber orientation 
distribution function (fODF) associated to the WM compartment was 
estimated with spherical harmonics up to order L = 8, using the shells 
with b = 4000 s/mm2 and b = 7000 s/mm2. The signal fractions were 
used to regenerate the synthetic brain dataset. For WM, three com
partments were simulated: an axonal compartment with volume fraction 
of 0.6, an extra-axonal compartment with volume fraction 0.3, and an 
isotropically-restricted (spherical) compartment with volume fraction of 
0.1. The axonal and extra-axonal compartments were simulated with 
axisymmetric tensors. The axonal compartment had parallel and 
perpendicular diffusivities of 2e − 10 m2/s and 3.5e − 11 m2/s, and the 
extra-axonal one of 6e − 10 m2/s and 1.5e − 10 m2/s respectively. 
Values were chosen to ensure a more rapid decay of the extra-axonal 
spherical mean signal as compared to the axonal one. Because of the 
unknown nature of some parameter values, some informed guesses have 
guided our choices. However, the exact values of the simulated pa
rameters do not significantly affect the subsequent analysis which can be 
considered general with respect to the axonal and isotropic transverse 
relaxation times. The isotropically-restricted compartment was simu
lated as isotropic Gaussian diffusion with diffusivity 1e − 11 m2/s. GM 
and CSF were simulated as isotropic Gaussian diffusion components 
with diffusivities 7e − 10 m2/s and 9e − 10 m2/s respectively. The 
transverse relaxation times were fixed to 30 ms (axonal), 50 ms 
(extra-axonal), 80 ms (GM), and 500 ms (CSF). The 
isotropically-restricted compartment was simulated with T2iso = 50 ms. 
Rician noise was applied to the ground-truth data according to a 
signal-to-noise ratio (SNR). This was defined as the ratio between the 
median value of the intensity of the b = 0 volume over the white matter 
and the standard deviation of the additive complex Gaussian noise from 
which the Rician volumes are generated. Two SNRs were tested, 
SNR = 40 and SNR = 20. The synthetic datasets were then denoised 
using the same strategy used for the acquired data and no further pro
cessing was performed. 

3. Results 

3.1. Simulations 

The experiments based on synthetic data are designed to illustrate 
the potential bias arising from estimating of the axonal transverse 
relaxation time T2a based on the spherical mean (Eq. (1)) in the presence 
of an isotropically-restricted compartment, and to evaluate the robust
ness of the estimates based on the spherical variance. Fig. 1 illustrates 
the obtained T2 maps (T2a = 30 ms) calculated at b = 23,000 s/mm2. 
The changes across the maps obtained for different SNRs highlight the 
impact of the residual noise (after denoising) which leads to a high 
variability in the estimates. 

The histograms shown in Fig. 2 reveal that the spherical mean (T2m) 
estimates are centered around a value in between the axonal transverse 
relaxation time and that of the isotropically-restricted compartment. 
This indicates that the bias is induced by the presence of the 
isotropically-restricted compartment which, despite the small volume 
fraction, has a relevant signal contribution at high b-value. Indeed, the 
spherical variance estimates (T2v) are centered closer to the axonal T2a 
value. On the other hand, the spherical mean T2 estimates show a 
smaller variance compared to the spherical variance T2 estimates, 
indicating a higher stability. 

The accuracy (mode of the distribution) and stability (variance of the 
distribution) of the spherical variance estimator improve as the SNR 
increases and as the b-value decreases (from 31,000 s/mm2 to 23,000 s/ 
mm2 as shown in Fig. 2). The improved performance as the b-value re
duces is explained by an increased spherical variance of the signal as 
compared to the variance contribution arising from the residual noise. A 

1 https://www.mrtrix.org/  
2 https://numpy.org/  
3 https://www.scipy.org/  
4 https://matplotlib.org/ 

5 https://github.com/AthenaEPI/dmipy 
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weaker diffusion weighting incurs less signal decay, thus the noise 
variance – which is substantially constant across b-values – represents a 
smaller fraction of the total variance of the signal and therefore has less 
impact. This can be observed from the plots of the absolute T2 estimation 
error on the right side of Fig. 2. The absolute error reduces with the 
increasing ground-truth variance of the signal (third column) and this in 
turn increases when reducing the b-value (see differences in the x axis 
coordinate values between the cases of b = 31,000 s/mm2 and 
b = 23,000 s/mm2). As shown in the second column of Fig. 2, similar 
results are obtained when observing the trend of the error with respect 
to fractional anisotropy (FA) [7] – correlated to the spherical variance 
[48] – which was calculated using the lower shells (b = 4000 s/mm2 and 
b = 7000 s/mm2) of the ground-truth data with Dipy 6 [17]. 

Since the spherical variance of the ground-truth signal is expected to 
considerably reduce in the presence of multiple fibers with different 
orientations, we classified the white matter voxels based on the number 
of detected fibers using the constrained spherical deconvolution method 
[42] and peak detection implemented in Dipy using a minimum peaks 
separation angle of 25◦ as typically done. As expected, the spherical 
variance is lower for voxels with multiple fibers and, consequently, the 
error is higher. It is important to note that this is purely an effect due to 
the presence of residual noise. In other words, as long as the spherical 
variance is different from zero it is possible to accurately measure the 
axonal T2a on noise-free data. 

The use of Laplace-Beltrami regularization for computing the 
spherical variance ( histograms in Fig. 2) is beneficial for the stability 
but can result in a mild bias as seen from the modes of the distributions 

that are slightly misaligned with T2a. It is non-trivial to choose an 
amount of regularization in this setup. We found that the use of spherical 
harmonics, without regularizing, suffers less from this biasing effect. 
Moreover, depending on the selected order of the expansion, the use of 
spherical harmonics can provide an approximation of the directional 
signal which can diminish the effects of the residual noise. In the light of 
these considerations, this last strategy will therefore be adopted for the 
in vivo data. 

Overall, the simulation results suggest that to estimate the axonal 
transverse relaxation time, a trade-off between bias and variance of the 
estimators is necessary. While the spherical variance T2 estimator is less 
biased by the presence of isotropically-restricted compartments, the 
corresponding estimates suffer from a higher variability. Moreover, 
higher reliability of the estimates is achieved in voxels where the noise- 
free spherical variance is higher, i.e. where the presence of residual 
noise has less impact. Therefore, estimates are more reliable in voxels 
with single fiber bundles, high axonal volume fraction, low orientational 
dispersion, and at lower b-values. 

3.2. Ex vivo data 

The trends of the T2 estimates are analyzed as a function of the values 
of other diffusion descriptors derived from diffusion tensor imaging 
(DTI). In particular, we focus on fractional anisotropy (FA) and on the 
angle between the main diffusion orientation and the B0 field direction, 
similarly to what previously done by McKinnon and Jensen [31]. The 
value of FA is influenced by several factors, such as the presence of 
multiple fibers, the presence of cell-like/spherical isotropic compart
ments, and the partial voluming with isotropic tissue components such 
as gray matter (GM) and cerebrospinal fluid (CSF). In the analysis we try 

Fig. 1. Synthetic data. Maps of axonal T2 estimates (ms) calculated with different methods at b = 23,000 s/mm2 for SNR 20 and 40 on simulated data (Section 2.7). 
The left-most column reports the T2 estimates based on the spherical mean, the central one those based on the spherical variance, and the right-most one the es
timates based on the spherical variance estimated using the spherical harmonics expansion (L = 10) with a Laplace-Beltrami regularization amount of λ = 0.003. The 
ground-truth axonal T2a is 30 ms. 

6 https://dipy.org/ 
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to isolate only the dependency of FA on the presence of 
cell-like/spherical isotropic compartments by (a) performing the anal
ysis on a conservative white matter mask to minimize the probability of 
partial voluming effects; (b) using high b-value data when possible, such 
that GM and CSF contributions attenuate almost entirely; (c) including 
voxels where only a single fiber is detected. 

3.2.1. Average, spherical mean, and spherical variance T2 
The second and third columns of Fig. 3 illustrate the maps of the 

axonal T2 obtained, at high b-value, from the spherical mean (T2m) and 
from the spherical variance (T2v), along with their differences (last two 

columns). The figure also illustrates the average T2 calculated on the 
b = 0 data (first column) using Eq. (1). The T2v maps show less partial 
volume effects compared to the average (b = 0) T2 and T2m. The dif
ference maps also reveal that the order of the T2v and T2m estimates 
changes regionally. 

3.2.2. Regional variability of T2 estimates 
In regions of high fractional anisotropy (e.g. FA > 0.75) the spherical 

variance leads to higher T2 estimates compared to those obtained with 
the spherical mean. From Fig. 4b− d it is possible to observe that as FA 
increases, the spherical mean T2 estimates shift towards the values of the 

Fig. 2. Performance on synthetic data for various estimators of the axonal transverse relaxation time for SNR 20 and 40 and for different b-values (b = 31,000 s/mm2 

and b = 23,000 s/mm2). The histograms compare the distributions of the estimates for the spherical variance (eventually regularized using Laplace-Beltrami with 
λ = 0.003) and spherical mean estimators. The values of the axonal and isotropic compartment transverse relaxation times are indicated with vertical lines. Plots on 
the right hand side illustrate the absolute error in the axonal T2 estimation achieved with the spherical variance (non-regularized), T2v, and with the spherical mean, 
T2m. Thick lines represent the median error, whereas thinner lines indicate the 25th and 75th percentiles of the absolute error distributions. In the case of the 
spherical variance, the error lines are color coded depending on the number of fibers detected in the voxels. The error is plotted as a function of the ground-truth 
values of FA (second column) and spherical variance (third column) of the synthetic data. The performance of all estimators increase as the SNR increases and as the 
b-value reduces. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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spherical variance estimates and slightly underestimate them for 
FA ≥ 0.75. Globally, however, the spherical variance estimates are 
slightly lower than those from the spherical mean, as illustrated in 
Fig. 4a which reports histograms calculated over a conservative white 
matter mask. The variance of the distribution is larger for the spherical 
variance estimates, possibly because of the presence of residual noise. 
Supplemental Fig. S1 illustrates a more complete picture where the 
histogram of the spherical variance, mean, and average (b = 0) T2 esti
mates are reported for each FA range and number of detected fibers. 
While observing that at low FA values the spherical variance estimates 
seem to be more unstable, at FA ≥ 0.2 the trends described for the single 
fiber voxels in the bottom histograms of Fig. 4 are also verified for the 
voxels with multiple fibers, (third and fourth columns of Fig. S1), and 
globally for the whole white matter (first column of Fig. S1). These re
sults summarize what illustrated in the last column of Fig. 3 

The results illustrated in Fig. 4b show that the spherical mean T2m 
estimates have a clear decreasing trend as a function of FA, while such a 
trend is less clear for the spherical variance estimates, T2v. The change of 
T2m estimates as a function of FA could be induced by two factors: (a) the 
values of FA in white matter voxels with only one fiber are determined 

by the change in the quantity of isotropic compartments or by the 
change in axonal orientational dispersion, either of which is also causing 
the change in the measured T2; (b) the values of higher FA are associated 
with regions of the brain where the fibers present a specific alignment 
with respect to the B0 field direction (e.g. 90◦ in the corpus callosum) 
thus causing a lower value of the estimated T2 due to susceptibility ar
tifacts, which can be particularly relevant at 7T [34]: although this 
should influence equally spherical mean and variance based estimates, 
there might be some unexpected differences. In Fig. 5 the median values 
of the estimated T2 distributions from both the spherical mean and 
variance are plotted as a function of the detected angle between the 
main diffusion direction (calculated with DTI) and the direction of the 
B0 field, and for different ranges of FA values (top-right image). For 
completeness, the histograms of the direction as a function of FA is re
ported in the top-left corner of Fig. 5. The localization of the selected 
voxels based on the selected FA ranges is shown in the maps at the 
bottom of the same figure. Of these voxels, only those where only one 
fiber was detected were used. This was done to exclude that the trend 
could be caused by substantial differences of axonal T2 for different 
bundles crossing within voxels, since the presence of such differences 

Fig. 3. Ex vivo data. The average (b = 0), spherical mean (T2m, b = 23,000 s/mm2) and spherical variance (T2v, b = 23,000 s/mm2) transverse relaxation time es
timates (ms), and the difference maps (last two columns) in a conservative white matter mask, eventually considering only voxels with FA > 0.75 (last column). 
Three different axial slices are shown (rows). 
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was suggested before [6]. 
The results confirm the presence of a dependency of T2 values with 

respect to the angle between the fibers and the main magnetic field di
rection. Indeed, the median values of the estimates decrease of about 
2− 3 ms while passing from a 30◦ to a 90◦ angle. Nevertheless, the 
spherical mean T2m estimates appear to have a stronger dependency on 
FA than on fiber orientation, with the estimated median T2 for low/high 
FA values differing by as much as 6 ms. This does not seem to be the case 
(or at least it is to a lesser extent) for the spherical variance T2v esti
mates. Therefore, changes in T2m appear to be related to changes in FA, 
which in turn could be determined by the change in quantity of isotropic 
compartments or by differences in the axonal orientational dispersion. 
However, the spherical variance T2v estimates, which are insensitive to 
the presence of isotropic compartments but equally affected by orien
tational dispersion, show less variability with respect to FA. Hence, the 
difference in the extent of the variations of T2m and T2v estimates with 
respect to FA could better be explained by the presence of isotropic 
compartments rather than the occurrence of orientational dispersion of 
axons. 

3.2.3. The extra-axonal compartment 
The T2 of the extra-axonal water may be qualitatively observed by 

relating the average (b = 0) T2 estimates with those obtained via the 
spherical mean and the spherical variance estimators at b = 23,000 s/ 
mm2. In white matter, the average (b = 0) T2 is determined by all of the 
compartments (axonal, isotropic, and extra-axonal). In regions 

characterized by a medium range FA (0.2 ≤ FA < 0.8), the average 
(b = 0) T2 estimates have values that are intermediate between the 
lower spherical variance and the higher spherical mean ones (Fig. 4b). 
Since the high b-value spherical mean and the average (b = 0) T2 esti
mates should mainly differ by the contributions of the extra-axonal 
water, the results suggest that the extra-axonal water has lower trans
verse relaxation time than the combination of axonal and isotropically- 
restricted compartments. 

A more direct way to determine the order of T2 values between the 
axonal and the extra-axonal water is to observe the spherical variance 
estimates as a function of the b-value. Indeed, the estimates of the 
spherical variance T2 at a low b-value should be contaminated by 
anisotropic contributions from the extra-axonal water. In other words, 
the spherical variance T2 estimates calculated at b = 4000 s/mm2 will 
account for both the axonal and extra-axonal water contributions (both 
anisotropic), while the estimates calculated at b = 23,000 s/mm2 should 
mainly account for the axonal water contribution. The right-side histo
grams in Fig. 6 illustrate the distributions of the spherical variance T2v 
estimates as a function of the b-value. These were also calculated only 
accounting for WM voxels where only one fiber was detected. While 
illustrating that there substantially are no differences between the esti
mates in the high b-value regime (for b = 23,000, 27,000, and 31,000 s/ 
mm2), the results show that at b = 4000 s/mm2 the estimated variance- 
based transverse relaxation times are lower. This is visually illustrated 
by the corresponding difference maps below. This would indicate that 
the extra-axonal water T2 is lower than the axonal T2. However, this 

Fig. 4. Ex vivo data. Histograms of the average (b = 0), spherical variance (T2v) and spherical mean (T2m) transverse relaxation time calculated within a conservative 
white matter mask. The spherical variance and spherical mean estimates were calculated at b = 23,000 s/mm2 (top left). Variations of estimates as a function of FA 
(top right). Bottom, histograms as in the top left image calculated for different FA thresholds for the spherical variance (left) and spherical mean (right). 
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trend – although generally confirmed in most WM regions – is opposite 
to what found for the spherical mean T2 in the WM regions with high FA 
as illustrated by the corresponding difference maps of Fig. 6. This 
inverted trend could be the effect of the presence of other compartments 
contributing to the low b-value spherical mean signal in addition to the 
isotropically-restricted one. 

3.3. In vivo human data 

The analysis performed for the ex vivo monkey data was replicated 
for the in vivo human data. In particular, the derived T2 maps are shown 
in Fig. 7, using a white matter mask defined over the voxels where 
FA > 0.25. We note a prevalence of voxels where the spherical variance 
T2v (third column) is higher than both the average (b = 0) T2 (first col
umn) and the spherical mean T2m (second column), as also illustrated by 
the difference maps in the fourth column of the figure. In some voxels, 
the extent of the differences approaches 50 ms (fourth column). By 
comparing the high b-value spherical variance T2 estimates with those 
based on the spherical mean it is possible to deduce that isotropically- 
restricted compartments have lower T2 values than the axonal com
partments in the red-colored regions of the maps illustrated in the fourth 
column of Fig. 7. This trend, however, shows local differences. 

The T2v estimates have been obtained from spherical variances 
calculated from the spherical harmonics coefficients for an expansion up 
to order L = 8 without applying any regularization. The spherical 

variance T2 estimates show a lower stability than those based on the 
spherical mean, which can be attributed to the concomitant effects of 
low (noise-free) spherical variance and to residual noise, as described 
previously. To cope with this, we have attempted a smoothing technique 
where for each voxel the two neighboring voxels with the most similar 
signal (according to the mean squared differences) were additionally 
used to fit the voxel’s T2v value, similarly to what done in Alexander 
et al. [2]. Figs. 8 and 10 illustrate the results of the quantitative analysis. 
We observe that the smoothing reduces the variability of the estimates 
although substantially preserving the shape of the distribution. 

The right-side panel of Fig. 8 shows the histograms illustrating the 
effect of increasing b-value for the spherical mean and spherical vari
ance T2 estimates. These trends show similarities with the ex vivo results, 
as also illustrated for subject 1 in Fig. 9, although the variability of the 
estimates does not allow us to draw more general conclusions (see 
Supplemental Fig. S2). 

The T2 estimates have a dependency on the anisotropy (see the in
fluence of FA in Fig. 10). Compared to the ex vivo case, where the 
spherical mean T2 estimates decrease with FA, for the in vivo case all the 
T2 estimates have an increasing trend with FA. As for the ex vivo case, the 
panel reporting the effect of the angle of the fiber with respect to the B0 
field direction illustrates decreasing trends of the T2 estimates as the 
angle increases. It has to be noted that in Fig. 10 the trends are indicated 
by the mode of the distributions, since the spherical variance distribu
tions are asymmetric, as illustrated in Fig. 8, which was not the case for 

Fig. 5. Ex vivo data. In the top-right, the dependency of the spherical mean (T2m, b = 23,000 s/mm2), spherical variance (T2v, b = 23,000 s/mm2), and average 
(b = 0) T2 estimates (dots) as a function of the angle between the main diffusion direction (estimated with DTI) and the direction of the B0 field, shown for different 
ranges of fractional anisotropy (FA) values. Dashed lines correspond to the median values for T2m, continuous lines to T2v, whereas the dots indicate the median 
values of the b = 0 average estimates. The gray shaded areas indicate the 25th to 75th percentile ranges corresponding to the latter estimates. On the left, the 
histograms of the angles for different ranges of FA. Below, maps show the detected angle (in degrees) overlaid to the FA map in WM (left-most map) and for different 
ranges of FA. 
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the ex vivo results where the median of the distributions was a good 
estimate of the mode. The estimation of the mode is based on a cubic 
interpolation of the histogram to find the peak of the distributions: these 
estimates are less stable and precise than the median and this can be 
reflected in seemingly more unstable lines. 

Although the histograms in Fig. 8 show that the distributions of the 
different estimates of T2 are different, the panel about the influence of 
FA in Fig. 10 illustrates that the mode of the distributions are well- 
aligned and close to each other. This is the case also for the average 
(b = 0) T2 estimates. 

4. Discussion 

In the presence of an isotropically-restricted compartment in the 
white matter, the axonal T2 estimator based on the spherical variance of 
the strongly diffusion-weighted MRI signal provides an unbiased esti
mation of the axonal transverse relaxation time, as opposed to the 
estimator based on the spherical mean. Indeed, the spherical variance T2 
estimator is designed to be insensitive to tissue structures characterized 
by an isotropic contribution to the diffusion-weighted MRI signal, which 
has been demonstrated on simulated data. In the high b-value regime, 
therefore, differences between the T2 estimates obtained from the 

Fig. 6. Ex vivo data. As the b-value increases, the least restricted anisotropic compartments (e.g. the extra-axonal one) cease to contribute to the estimated spherical 
variance T2v (right). Changes between the gray histogram (step-filled) and the colored ones (step) are then only determined (in theory) by the disappearance of the 
least restricted tissue components from the signal. A similar trend is observed for the spherical mean estimates (left) histograms which is however inverted in high FA 
regions. The histograms for b > 0 were calculated only accounting for WM voxels where only one fiber bundle was detected. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

M. Pizzolato et al.                                                                                                                                                                                                                              



Magnetic Resonance Imaging 86 (2022) 118–134

128

spherical variance and from the spherical mean of the signal have to be 
attributed uniquely to the presence of isotropically-restricted compart
ments. Since the spherical mean and spherical variance T2 estimators 
provide different estimates of T2 in both ex vivo fixed tissue and in vivo 
human brain, it is not possible to discard the presence of a detectable 
isotropically-restricted signal contribution such as that possibly associ
ated to the cell nuclei or vacuoles identified by Andersson et al. [5]. 
These results complement existing knowledge [11,44,40] and add to the 
discussion on the presence of the so-called “dot” compartment which is, 
by definition, an extreme case of an isotropically-restricted compart
ment where water appears to be immobile. Our analysis, however, does 
not allow for assessing the eventual dot-like nature of the 
isotropically-restricted compartment. Moreover, differences between 
the estimates need to be analyzed also in the light of the performance of 
the estimators with respect to noise. 

The differences between the spherical variance and spherical mean 
T2 estimates were more uniform for the ex vivo fixed data collected with 

the pre-clinical 7T MRI system which provided a higher SNR compared 
to the 3T clinical system. The use of smoothing on the human data 
revealed substantially the same distributions of the spherical variance T2 
estimates as to when smoothing was not used, which indicates that the 
amount of noise may not be the main factor determining the shape of the 
distribution. However, some doubts remain with regards to whether the 
differences between the spherical variance and the spherical mean T2 
estimates are episodic, e.g. related to the specific local configurations of 
the white matter tissue or to the presence of residual partial voluming. 
These doubts are also motivated by the similarities of the modal values 
of the estimates illustrated, for the in vivo data, in Figs. 8 and 10. 

The detectability of the eventual presence of an isotropically- 
restricted compartment by means of the difference between spherical 
mean and spherical variance T2 estimates is only possible whenever such 
compartment is characterized by a different T2 compared to the axonal 
compartment. In the high SNR ex vivo data, the spherical mean and 
variance T2 estimates differed by a few milliseconds as illustrated in 

Fig. 7. In vivo human data. Estimates of T2 for regions with FA > 0.35 for the different acquisitions. The smoothed versions of T2v maps are reported. Rows 
correspond to different subjects and/or repetitions. 
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Fig. 3. If differences of similar extent were to be expected for the in vivo 
human tissue it may be possible that these would be below the sensi
tivity achievable with the collected data. Small detectable absolute 
differences do not imply that the differences between the axonal and the 
isotropically-restricted T2 values are also small. As illustrated by the 
simulation results of Fig. 2, the absolute differences observed between 
the spherical mean and spherical variance T2 values are lower than the 
actual difference between the compartmental T2 values and are modu
lated by the compartmental volume fractions. 

In summary, based on the collected data, the comparison between 
the spherical variance and spherical mean T2 estimates in the strongly 
diffusion-weighted regime did not rule out the presence of a detectable 
isotropically-restricted compartment in the living human white matter 
tissue, while it strongly hinted to its presence in fixed ex vivo tissue. The 
proposed spherical variance T2 estimator should however be considered 
for the more general problem of estimating the T2 of anisotropic struc
tures and could be integrated in the optimization procedures of multi- 
compartmental biophysical models. 

4.1. Sensitivity to residual noise 

In the presence of an isotropically-restricted compartment in the 
white matter, the axonal T2 estimator based on the spherical variance of 
the diffusion-weighted MRI signal provides an unbiased estimation as 
opposed to the estimator based on the spherical mean. The performance 
of both estimators on noise-free data is theoretically unaffected by the 

Fig. 8. In vivo human data. Histograms of T2 estimates for the different acquisitions. On the right, histograms showing the influence of b-value on the estimates 
(spherical mean T2m in the left column and spherical variance T2v in the right one). Note that for subject 2 the mode of the spherical variance is hidden behind that of 
its smoothed version. 

Fig. 9. In vivo human data (sbj1). Differences between estimates calculated at 
b = 5000 s/mm2 and b = 1000 s/mm2 for the dataset corresponding to subject 
1, in the case of spherical mean (left) and spherical variance (right) estimators. 
A more complete view is illustrated in the Supplemental Fig. S2 where the 
variability in the results can be better appreciated. 
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number of acquired directions. Indeed, admitted that the extra-axonal 
signal is completely suppressed, the bias on the calculated spherical 
mean and variance caused by suboptimal sampling over directions 
cancels out when computing the ratios across the different echo times in 
Eqs. (1) and (6). However, the presence of noise can cause some 
important differences. The use of the spherical variance poses more 
challenges in terms of sensitivity to noise since the noise variance adds 
directly to the ground-truth spherical variance. The spherical mean 
benefits instead from a higher effective signal-to-noise ratio since it is 
the result of an averaging procedure. As a consequence, increasing the 
number of directions is beneficial for spherical mean T2m estimates while 
it may allow a better repeatability of estimates for the spherical variance 
T2v since the noise variance can be better quantified and reproduced 
with more samples. In order to reduce the bias induced by noise on 
spherical variance estimates it can be beneficial to use a spherical har
monics expansion, even without applying regularization. Indeed, the 
approximation of the directional signal on a shell can help remove the 
influence of the residual noise after denoising. However, such residual 
noise is likely to be correlated spatially and along the various diffusion 
gradient directions which can be less than ideal for the assumptions 
behind the linear least squares approximation of the signal with spher
ical harmonics. Moreover, as for the spherical mean T2 estimator, the 
presence of a residual Rician bias could affect also the estimated T2 
values from the spherical variance estimator. 

The simulations have shown that the stability of the spherical vari
ance T2 estimates reduces with the increasing b-value and number of 

fibers crossing within a voxel (Fig. 2). More precisely, the stability is 
related to the amount of spherical variance of the noise-free directional 
signal, which in turn depends on the above mentioned factors, on axonal 
orientational dispersion, and on the axonal volume fraction. All these 
factors make of the spherical variance T2 a low sensitivity estimator, 
especially when considering the high b-value regime, although it can 
offer some advantages in terms of insensitivity to partial voluming ef
fects (which could be especially useful at low diffusion weightings). The 
presence of residual noise has repercussions on the intra- and inter- 
subject variability of the spherical variance estimates, which will need 
further assessment by using more subjects and different acquisition 
protocols, field strengths, and MRI scanners. It is likely, however, that 
the accuracy and stability of the estimates will improve with the 
development of more performing denoising methods. 

4.2. Directional dependence of T2 estimates 

For both ex vivo (7T) and in vivo (3T) datasets we found that the 
axonal T2, estimated with either the spherical mean or the spherical 
variance estimators at high b-value, was correlated with the angle be
tween the direction of the WM fiber bundle and the direction of the B0 
field. In particular, the estimated T2 decreased with the increasing angle 
and lower values were identified for a 90◦ angle [34]. A similar direc
tional dependence has also been illustrated by McKinnon and Jensen 
[31] for the spherical mean of the strongly diffusion-weighted signal. 
Using relaxometry, Birkl et al. [8] detected an analogous dependence of 

Fig. 10. In vivo human data. Trend of the estimates as a function of FA on the left, and as a function of FA and of the detected angle (DTI) between the fibers and the 
B0 field direction on the right. In all plots, thick lines report the estimated mode of the distributions (thin lines report the percentiles). 
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the T2 values of both myelin and axonal/extra-axonal water. However, 
using a tiltable RF coil system Tax et al. [41] attributed this dependence 
to the extra-axonal compartment instead of the axonal one. If that is the 
case, then it would be necessary to reconsider which is the surviving 
compartment in the high b-value regime, the axonal or the extra-axonal 
one. The identification of the axonal compartment as the “more” 
restricted one, and of the extra-axonal compartment as the “less” 
restricted one, is based on common assumptions in the field as it is 
supported by theoretical considerations on the geometry of the axonal 
space, such as its “stick-like” interpretation. In fact, although there are 
geometrical arguments for the axonal compartment being the most 
restricted, the determination of which compartment’ signal “survives” at 
strong diffusion weightings should take in consideration other factors, 
such as the intrinsic diffusivities of the two media. The use of axonal and 
extra-axonal terminology in this work should therefore be taken with 
these considerations in mind. Even if the extra-axonal space is less 
restricted than the axonal one, it is still possible that with the adopted 
b-values there still are non-negligible contributions from the former to 
the measured signal. 

4.3. Regional dependence of T2 estimates 

Despite showing different overall trends, results on ex vivo fixed 
tissue and on in vivo tissue support the existence of a correlation between 
the measured fractional anisotropy and the estimated T2 which is not 
linked to the presence of correlation between T2 and the angle that fibers 
make with the B0 field direction. At the end of Section 3.2.2 we exam
ined the possibility that the changes in anisotropy, and the correlated 
changes in T2, might be more related to the presence of isotropically- 
restricted compartments rather than to the change in axonal disper
sion. This consideration was supported by the observation that in ex vivo 
data the spherical mean T2m seemed to vary more than the spherical 
variance T2v as a function of FA. However, the in vivo results in Fig. 10 
support the opposite analysis. While the logical step would be to try to 
correlate the changes in FA with the amount of axonal dispersion, the 
estimation of the axonal dispersion would be biased unless accounting 
for the presence of isotropic compartments. The simultaneous charac
terization of isotropically-restricted compartments and orientation 
dispersion is challenging and would require further research. Therefore, 
this remains an open question for future work to which multi- 
compartmental modeling and/or higher SNR in vivo data could help 
find an answer. 

4.4. Non-ideal human in vivo data 

We could not specify the pulse gradient strength, duration, and 
separation of the PGSE sequence used in the clinical 3T scanner, like in 
the case of McKinnon and Jensen [31]. The sequence we used adapts the 
pulse duration and separation to the specified echo time, thus changing 
the diffusion-weighting although providing the same b-value (e.g. 
5000 s/mm2). This led us to adopt a small echo time spacing to keep the 
diffusion weighting between the two different acquisitions as homoge
neous as possible. Considering a minimum echo time of 80 ms, the 
adopted echo time spacing of 9 ms provides an attenuation of the signal 
between 12 to 16.5% when considering an axonal T2 of 70 and 50 ms 
respectively, as compared to a 23 to 30% with a double spacing of 18 ms 
which is more similar to that used by McKinnon and Jensen [31]. The 
chosen echo time spacing, on the other hand, provided a higher effective 
SNR. Our axonal T2 estimates, with particular regard to those based on 
the spherical mean, are centered around values in the lower range of the 
estimates obtained by previous works in the literature which range be
tween 50 ms and 110 ms [41] and generally have modal values – 
depending on the white matter region – around 70 to 85 ms. The modal 
values we report are located around 65 ms. The difference between the 
studies may reside in numerous factors such as the adopted echo time 
spacing, the effective SNR, the type of denoising and Rician unbiasing, 

modeling assumptions and model complexity, the latter also influencing 
the robustness of parametric estimates. 

4.5. The assumption of a single T2 compartment 

Reference has often been made to the estimation of a unique T2 value 
from signal containing contributions from multiple compartments, such 
as the case of the average (b = 0) T2. This was motivated by observing 
that in synthetic data the presence of an additional compartment shifts 
the estimated T2 towards higher or lower values when having a higher or 
lower T2 compared to a reference compartment. It is however important 
to note that in these cases the estimated T2 should be considered as 
biased. This is indeed the reason for using the spherical variance esti
mator instead of that based on the spherical mean. Nevertheless, dif
ferences between T2 estimators (eventually biased) reveal that there are 
different compartmental contributions to the signal, which is the main 
method we used to assert the differences in the results. However, the 
reasoning about the relative order between the T2 values of the axonal, 
extra-axonal, and isotropically-restricted compartments should be 
considered as only indicative, and a more thorough assessment remains 
to be done perhaps with the use of multi-compartmental biophysical 
modeling across all the b-values [43]. Moreover, the regional depen
dence of the differences between the average (b = 0) T2, the spherical 
mean T2m, and the T2v makes it difficult to derive a general rule for the 
order of the compartmental transverse relaxation times. Additionally, in 
the presence of a coherent axonal organization and dense packing, such 
as in the corpus callosum, it is possible that the restriction of diffusion in 
the extra-axonal space is very high. In such a scenario, therefore, a 
strong diffusion weighting would not entirely suppress the signal com
ing from the extra-axonal water, which would contribute to the 
measured transverse relaxation time. The similarity between the aver
aged (b = 0) and the high b-value T2 estimates in the corpus callosum (e. 
g. high FA region in Fig. 4b) could be indicative of the occurrence of such 
phenomenon. 

In the presence of multiple fiber bundles, it is possible to expect that 
each bundle has different relaxation properties [6]. The axonal T2 esti
mates obtained using the spherical mean or the spherical variance can 
only account for the mean value of T2 across the whole axonal popula
tion within a voxel. Although accounting for the differences between 
fiber populations at a voxel level entails the design of more complex and 
likely more challenging models, we believe that it would be an impor
tant extension for obtaining a more complete picture of the 
microstructure. 

4.6. The unknown impact of fixation 

The microstructural properties of the ex vivo tissue could differ from 
those of the living tissue due to the effects of both the post mortem state 
and fixation. Andersson et al. [5] suggest, for instance, that the fixation 
could be the cause of the vacuolation of the tissue. This could exacerbate 
the isotropic contributions to the diffusion-weighted signal compared to 
the natural contributions in the living tissue. However, the presence of 
cellular components in the living white matter tissue is well-established. 
Moreover, the presence of cells and microglia can also be related to the 
occurrence of inflammation or other types of pathological conditions 
[30,20]. Nevertheless, the results for fixed tissue cannot be directly 
compared to those in vivo. Indeed, Birkl et al. [9] report an approxi
mately 30% decrease of the T2 values in white matter due to the fixation 
involving the use of formalin. Use of saline washing of the tissue after 
fixation may however help to partly regain the T2 values in white matter 
[27,13]. Additionally, the effects of fixation may be inhomogeneous 
across tissue constituents. Fixation and post mortem may then explain the 
discrepancies between ex vivo and in vivo results, such as the decreasing 
and increasing trends of the T2 estimates as a function of FA. 
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4.7. Other diffusion-related considerations 

The signal model assumed in Eq. (3) offers a rather simplistic view of 
the diffusion process in the strongly diffusion-weighted regime. First of 
all, it assumes that the anisotropic signal contributions are uniquely 
determined by the axonal compartment. However, it is natural to expect 
that cell nuclei and vacuoles deviate from a perfect spherical shape, as 
also measured by Andersson et al. [5]. Nevertheless, the anisotropic 
contribution to the signal from these structures is expected to be negli
gible compared to that of the axons. Secondly, the model in Eq. (3) as
sumes a tissue microstructure where barriers, such as cellular and axonal 
membranes, are completely impermeable to the passage of spin-bearing 
water particles. However, permeability is a relevant phenomenon [36] 
especially when considering relatively long diffusion times (often asso
ciated to long echo times) such as those used for the in vivo clinical data 
[28]. This is only the most evident reason why T2 estimates might be 
different with different acquisition setups where any of the pulse 
gradient strength, duration, separation, echo time, or repetition time 
should change. Interesting future work could therefore investigate the 
changes in spherical mean and spherical variance T2 as a function of the 
different acquisition setups. 

4.8. Possible sources of isotropically-restricted signal contributions 

White matter contains structures that can produce an isotropically- 
restricted signal contribution, such as the bodies of fibrous astrocytes 
and oligodendrocytes, and microglia. In principle, all cellular organelles 
having a membrane with a sufficiently low permeability in relation to 
the adopted diffusion time may contribute. Andersson et al. [5] reported 
the presence (volume fractions) of 1.5% of vacuoles and 4.6% of cell 
clusters in their segmentation of synchrotron X-ray 
Nano-Holotomography data from the monkey brain splenium. The 
percentage of spheroidal structures is likely to be larger than that re
ported as it is possible to suppose that numerous smaller structures could 
not be segmented. Veraart et al. [44] report estimates of immobile water 
signal fraction in the corpus callosum of fixed rat brain tissue to be 
around 13%. 

5. Conclusion 

The calculation of T2 using the spherical variance of the diffusion- 

weighted MRI signal acquired over shells having different echo times 
is insensitive to the presence of isotropic components of the tissue 
microstructure. When using strong diffusion weightings that suppress 
the signal coming from the less restricted diffusion compartments of the 
microstructure within a voxel, such as the extra-axonal space, the 
spherical variance T2 estimates are mainly influenced by the axonal (or 
the more restricted anisotropic) compartment while the spherical mean 
T2 estimates would still contain contributions from isotropically- 
restricted compartments. The results of the comparison between 
spherical variance and spherical mean T2 estimates do not allow us to 
discard the presence of one or more MRI-visible isotropically-restricted 
signal compartments in the white matter. A high signal-to-noise ratio of 
the acquired signal is crucial for using the spherical variance to estimate 
the axonal T2, and the improvement of denoising methods will allow for 
more robust estimates in the future. The use of spherical variance T2 
estimates could be a complementary yet fundamental asset in the 
characterization of the white matter tissue and for microstructural 
modeling, with foreseeable applications in the detection and charac
terization of pathology. 
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Appendix A. Naive estimators 

We compare two different naive estimators, one based on the average of the T2 estimates across all the diffusion gradient directions and one based 
instead on the median. Let us define the signal 

A(TE, b, n→) = S(TE, b, n→) − mean{S(TE, b)} (9)  

then 

T̂
mean
2 =

1
N

∑N

i=1
(TE2 − TE1)

/

log[A(TE1, b, n→i)/A(TE2, b, n→i)] (10)  

T̂
median
2 = median{(TE2 − TE1)/log[A(TE1, b, n→i)/A(TE2, b, n→i)], ∀i ∈ {1,…,N} }. (11)  

The maps obtained with the different estimators are reported in Fig. 11, while the corresponding histograms are shown in Fig. 12. For the directional 
median estimator, the directions corresponding to a measured T2 decay outside the [10, 100]ms range were excluded from the final T2 estimates to 
improve stability. Similarly, for the directional mean estimator different ranges were tested: [10, 70], [10, 100], and [10, 200] ms. 
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Fig. 11. Synthetic data. Maps of axonal T2 estimates (ms) calculated at b = 23,000 s/mm2 for SNR 20 and 40 on simulated data with the naive directional median 
and mean estimators. For all, the range of thresholded T2 values is specified in square brackets. The ground-truth axonal T2 was 30 ms. 

Fig. 12. Synthetic data. Performance of the naive estimators compared to the spherical variance and spherical mean ones. The numbers 1, 2, and 3 for the directional 
mean estimates correspond to different admissible ranges for the T2 values similarly to what indicated in the corresponding maps of Fig. 11. In particular 1=[10, 70] 
ms, 2=[10, 100] ms, and 3=[10, 200] ms. Similarly, for the directional median estimator the range was fixed to [10, 100 ms]. 

The results indicated that while the directional median estimator shows better stability than that based on the spherical variance, it also shows 
lower accuracy leading to slightly more biased estimates. The directional mean estimator was instead found to be very sensitive to the imposed in
terval ranges. These results suggest that in order to estimate the axonal transverse relaxation time it is better to use the spherical variance estimator. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mri.2021.11.012. 
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