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During rest, brain activity is synchronized between different regions widely distributed 

throughout the brain, forming functional networks. However, the molecular mechanisms 

supporting functional connectivity remain undefined. We show that functional brain networks 

defined with resting-state fMRI can be recapitulated using measures of correlated gene 

expression in a post-mortem brain tissue dataset. The set of 136 genes we identify is significantly 

enriched for ion channels. Polymorphisms in this set of genes significantly impact resting-state 

functional connectivity in a large sample of healthy adolescents. Expression levels of these genes 

are also significantly associated with axonal connectivity in the mouse. The results provide 

convergent, multimodal evidence that resting-state functional networks correlate with the 

orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. 

 

Functional brain networks, as detected by resting-state fMRI, are linked to the correlated 

expression of dozens of neurotransmitter and ion channel-related genes. 

 

Brain activity at rest exhibits intrinsic low-frequency synchronization between anatomically 

distinct brain regions(1). When observed with functional magnetic resonance imaging (fMRI), 

this coherence between regions (functional connectivity) defines 15-20 brain networks associated 

with such canonical functions such as vision, language, episodic memory, and spatial 

attention(2–4). These functional networks are disrupted in several neurodegenerative and 

neuropsychiatric diseases(5), and may constitute the maps followed by neurodegenerative 

diseases marching, trans-synaptically across the brain(6). While it has been shown that 

connectivity within the default-mode network (DMN)(7) and topological measures of whole-



brain networks(8) are heritable, the set of genes promoting functional connectivity remains 

unknown. To pursue this question, we applied a network modeling approach to both 

neuroimaging and gene expression data.  

Using resting-state fMRI data from 15 healthy right-handed subjects (8 females, age 

range 18-29), we computed 14 well-known and reproducible functional networks(9) (Fig. S1) by 

using independent component analysis (ICA). We then mapped samples from the Allen Institute 

for Brain Science (AIBS) human microarray dataset(10) (six subjects, two contributed both 

hemispheres, four contributed one hemisphere, one female, age range 24-57, totaling 3,702 brain 

samples; Table S1) to these networks by using normalized Montreal Neurological Institute 

(MNI) coordinates. To avoid biases due to gross transcriptional dissimilarities in different brain 

regions, we excluded basal ganglia, cerebellum, and deep gray matter (including hippocampus), 

leaving only cortex samples (Data File S1). This removed the basal ganglia network, leaving 13 

networks.  Of 1777 cortex samples, 501 were mapped to the 13 functional networks, and 1276 to 

“non-network” regions of the brain. We focused the analysis on four large non-overlapping 

networks: dorsal default-mode (dDMN), salience, sensorimotor, and visuospatial (Fig. 1A), 

comprising 241 samples total. These four networks were chosen because they are well-

characterized in the imaging literature (2, 11–14), consist of non-contiguous regions in both 

hemispheres, and have adequate coverage in the AIBS data (Fig. 1B).  



[Figure 1 here] 

Fig. 1 Functional networks in MRI and gene expression data. 

A The four functional networks of interest. red: dorsal default-mode, yellow: salience, green: 

visuospatial, blue: sensorimotor. B AIBS brain samples assigned to their corresponding 

functional network. Full circles are samples assigned to the four networks of interest, empty 

circles show samples in the 9 other networks, dots show non-network AIBS samples 

 

We used the transcriptional similarity of gene expression profiles between brain tissue 

samples to define correlated gene expression networks. In mouse brains, transcriptional 

similarity reflects cytoarchitecture(15), but in human brains the differences are more subtle 

across the neocortex(10). As opposed to gene co-expression networks, which quantify gene-gene 

relationship across tissue samples(16), a correlated gene expression network quantifies tissue-

tissue relationships across genes. Nodes were defined by brain tissue samples (Fig. 1B); edges 

were weighted by similarity between vectors of gene expression values at each sample. After 

preprocessing and assigning one probe for each of the 16,906 genes(17) (Data File S2), we 

measured expression similarity by Pearson correlation(17), setting negative correlations to zero. 

Then we asked whether there are observable genetic correlates for the functional network 

organization: are gene expression correlations in functionally grouped regions higher than can be 

expected by chance? 

We defined the strength fraction in functional networks as a measure of the relationship 

between correlated gene expression within and outside the set of functional networks of interest. 

Denoting W the sum of all edge weights within all functional networks, Wi the sum of weights 



within the 4 functional networks of interest, and T the brain graph’s total strength (sum of all 

edge weights linking the full 1777-nodes graph), the strength fraction is S=Wi/(T-W). Higher 

values of S mean the samples in the set of functional networks are more similar to each other, 

relative to the remaining brain regions (Fig. S2). Significance was assessed using permutation 

testing(18), randomly reshuffling 10,000 times the sample-to-network assignment in the full 

1777-nodes graph. In addition to considering only cortex samples, to avoid biasing results 

towards similar tissues(10), before computation, we removed edges linking two samples 

belonging to the same tissue class (defined by regional ontology: Fig. S3, Table S4). Grouping 

gene expression samples according to functional networks yielded a higher strength fraction than 

other groupings of samples: the spatial organization of functional networks corresponded to 

regions that have more highly correlated gene expression than expected by chance (p < 10-4). 

Given that we used only cortical samples, that we removed edges linking tissues of the same 

class, and that functional networks are spatially distributed, this finding cannot emerge from 

spatial proximity or gross tissue similarity. 

We next sought to identify which genes, specifically, drive the relationship between 

correlated gene expression and functional networks. We computed the marginal influence of 

each gene on strength fraction of all four functional networks together(17), and ranked genes 

across all six different two-way splits of the six subjects(17). Then, we computed list overlap 

statistics(19) between the two brain subgroups at a false discovery rate (FDR) of 5%. Combining 

results from six splits, the final list was obtained via stability selection(20), selecting genes that 

appear in the majority of splits (four or more out of six). This resulted in a consensus list of 136 

genes (Table S2).  



We validated our findings in vivo (supplementary online text), using paired genome-wide 

single nucleotide polymorphism (SNP) data and resting state fMRI (rs-fMRI) recordings in N = 

259 14 year olds (126 females) from the IMAGEN database(21), which has more subjects but 

not all were usable(17) (Data File S3). The strength fraction for the combined four networks in 

the rs-fMRI data was computed for every subject (as in the AIBS gene expression data), and 

used as a quantitative imaging phenotype in a genome-wide association study (GWAS)(Fig. S4), 

correcting for several covariates including motion. We computed a Z-statistic(22) for the 

enrichment of p-values in the consensus list. Genetic variation in the consensus list was 

significantly associated with in-vivo rs-fMRI strength fraction (Z = 2.55, p = 0.006). Thus, not 

only gene expression levels but also common polymorphisms in the consensus genes were 

related to the strength of functional networks. Subjects at both ends of the spectrum of multilocus 

genetic scores (representing the multiallelic effect of the genes in the consensus list on the 

functional connectivity phenotype(17)) showed definite differences in functional connectivity 

strength mostly within the functional networks themselves, but also between the functional 

networks (Figs. 2, S5). 

 



[Figure 2 here] 

Fig. 2: In-vivo functional connectivity differences related to the consensus gene list. 

Difference in in-vivo functional connectivity between the averages of the top 20 and the bottom 

20 subjects in IMAGEN, ranked by genotype score with respect to the consensus list of genes. A 

Difference matrix sorted by functional network (correlation differences smaller than |0.05| not 

shown). Positive values indicate connections that are stronger in high genotype score subjects, 

negative values the opposite. Connections are mostly increased within functional networks, but 

also between some functional networks. B MNI space sagittal view of within-network 

connections that are stronger in high genotype score subjects. Regions (disks) are coded 

according to the functional network they belong to: red: dorsal default-mode, yellow: salience, 

green: visuospatial, blue: sensorimotor. Connections (lines) are color-coded to their functional 

networks. C Same, for connections that are stronger in low genotype score subjects. The 

majority of connections are strengthened in high genotype score subjects. 

 

We next investigated the relationship between our gene list and the connectivity of 

axonal projections underlying functional networks. We used the Allen Institute mouse brain atlas 

(15), which offers finely sampled whole-genome expression data, together with a recent meso-

scale model of mouse connectivity derived from the Allen Mouse Brain Connectivity Atlas 

(AMBCA) (23). To match human data, we focused on the mouse isocortex, and used a 38-region 

parcellation (23) (Fig. 3A). With 57 mouse orthologs for our consensus gene list, we obtained a 

correlated gene expression network, representing transcriptional similarity between these 38 

regions. We computed a normalized, symmetric connectivity matrix from the significant 

connections in the ipsilateral connectivity model of the AMBCA(17).  We tested the association 



between mouse connectivity graph and transcriptional similarity graph (Figs. 3B, 3C) using a 

modified Mantel procedure, whereby we randomly selected gene subsets of the same size as our 

ortholog consensus list 10,000 times to obtain a null distribution. The correlation between 

transcriptional similarity in these 38 meso-scale isocortex regions and their axonal connectivity 

was significantly higher when using our list than expected by chance (p = 0.011, or p = 0.022 

when using the contralateral connectivity model). 

 

[Figure 3 here] 

Fig. 3: Mouse meso-scale connectivity and transcriptional similarity. 

A Mouse isocortex parcellated into 38 regions (23);B corresponding symmetrized, thresholded, 

and normalized ipsilateral axonal connectivity weights; C transcriptional similarity (genetic 

correlation) using our consensus list of genes.  

 

Finally, we categorized the consensus gene list using Gene Ontology (GO), by computing 

statistical overrepresentation for Biological Processes (BP), Cellular Component (CC), and 

Molecular Function (MF) with the Database for annotation, visualization and integrated 

discovery (DAVID) 6.7(24). The only significant MF annotation (p < 0.05, Benjamini-Hochberg 

False Discovery Rate (FDRBH)-corrected) related to ion transport. No BP annotation was 

significant. Four out of six significant CC annotations (p < 0.03 FDRBH) concerned ion channels, 

in particular involving sodium channels such as SCN4B or receptors such as GABRA5 (Full 

annotation list: Tables S5, S6). Significant associations with 9 diseases, including Alzheimer’s 

disease and schizophrenia (p < 0.05 FDRBH), which are network disorders, were also found 



(Table S10). We validated annotations in-vivo on IMAGEN data, by restricting the analysis to 

these 7 significant GO terms. Genetic variation in all but 1 GO term was significantly associated 

with in vivo functional connectivity (Z > 4.02, p < 2.8x10-5 uncorrected; Table S9). Using a 

mouse transcriptome database(25), we also found that 39 mouse orthologs from our list were 

significantly enriched in neurons, 19 in astrocytes, and 14 in oligodendrocytes (76 were not 

significantly overexpressed in any of these 3 cell types). This suggests that the relationship 

between gene expression and spatial organization into functional networks may be due to 

neuronal processes more than to support cell or white matter processes. 

Functional networks are fundamental to many brain processes in humans. Here we 

showed that network strength was correlated with the expression of genes tightly linked to 

synaptic function. The preservation of the association between functional networks and gene 

expression across the lifespan (IMAGEN: 14 year olds, AIBS: 24-55) is remarkable, and could 

be partly explained by the relative stabilization of inter-regional transcriptional similarity from 

adolescence onwards(26). Genes in our list may also play a role in certain diseases: some are 

implicated in brain disorders like Alzheimer and schizophrenia(27) whose pathogenesis is 

thought to relate, in part, to aberrant connectivity.  Beyond humans, it appears that similar 

mechanisms extend to lower animals, because our list is significantly associated with mouse 

neural connectivity, and several gene functions from our list were found in a study examining 

genes supporting neural connectivity in rodents(28) (Tables S3, S7, S8). Thus, our results show 

that across developmental stages and species, functional connectivity in brain networks is 

integrally linked to the machinery of synaptic communication. 
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