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Abstract. The persistence over space and time of flash flood
disasters – flash floods that have caused either economical
losses or loss of life or both – is a diagnostic measure of
areas subjected to hydrological risk. The concept of persis-
tence can be assessed via clustering analyses, performed here
to analyze the national inventory of flash flood disasters in
China that occurred in the period 1950–2015. Specifically,
we investigated the spatiotemporal pattern distribution of the
flash flood disasters and their clustering behavior by using
both global and local methods: the first based on Ripley’s
K function, and the second on scan statistics. As a result,
we could visualize patterns of aggregated events, estimate
the cluster duration and make assumptions about their evolu-
tion over time, also with respect to the precipitation trend.
Due to the large spatial (the whole Chinese territory) and
temporal (66 years) scale of the dataset, we were able to
capture whether certain clusters gather in specific locations
and times but also whether their magnitude tends to increase
or decrease. Overall, the eastern regions in China are much
more subjected to flash flood disasters compared to the rest

of the country. Detected clusters revealed that these phenom-
ena predominantly occur between July and October, a pe-
riod coinciding with the wet season in China. The number
of detected clusters increases with time, but the associated
duration drastically decreases in the recent period. This may
indicate a change towards triggering mechanisms which are
typical of short-duration extreme rainfall events. Finally, be-
ing flash flood disasters directly linked to precipitation and
their extreme realization, we indirectly assessed whether the
magnitude of the trigger itself has also varied through space
and time, enabling considerations in the context of climatic
change.

1 Introduction

Flash floods are among the most destructive surface pro-
cesses around the world, especially in mountainous areas
(Au, 1998; Borga et al., 2011; Gomez and Kavzoglu, 2005;
Jonkman, 2005). They are mainly initiated by rapid and in-
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tense rainfall, often discharged in few hours (e.g., Borga
et al., 2007; Bout et al., 2018; He et al., 2018; Lóczy et al.,
2012), and by complex interactions of the climatic conditions
with topography and hydrology (e.g., Hatheway et al., 2005).
Because of the very rapid rise in water levels caused by flash
floods, it is challenging to take timely and effective actions to
contain the associated damage. Flash flood disasters are es-
sentially flash floods that have caused losses either in terms
of human lives or economy or both (Gaume et al., 2009;
Jonkman and Kelman, 2005; Kelman and Spence, 2004). In
China, approximately 70 % of the total area is covered by
mountains and hills, which exposes a substantial surface of
the national territory to flash flood disasters’ risk (Liu et al.,
2018). Additionally, the more frequent extreme precipitation
associated with climate change has increased the number of
flash flood disasters in recent decades (Sampson et al., 2015).

The susceptibility to hydro-geomorphological processes is
commonly assessed by considering only the spatial distri-
bution of observed events (Cama et al., 2015, 2017; San-
tangelo et al., 2012; Zaharia et al., 2017). However, this
is purely a convenient assumption from the modeling per-
spective. Recently, a growing amount of evidence indicates
that these events tend to aggregate in space conditioned
by the temporal variability, attesting to an interaction be-
tween space and time on event frequency and distribution
(Gariano and Guzzetti, 2016; Kouli et al., 2010; Zhang and
Cong, 2014; Fuchs et al., 2015; Merz et al., 2016; Tonini
and Cama, 2019). In other words, when an event occurs at
a specific location, a temporary increase in the probability
that other events will cluster at nearby locations should be
accounted for. This increase in probability can be captured
through clustering analyses, and various examples already
exist in the literature where this has been done at different
spatial and temporal scales and via different analytical ap-
proaches. Notably, this type of application spans many ar-
eas of natural hazards and has become mainstream in the
case of seismicity (e.g., Fischer and Horálek, 2003; Geor-
goulas et al., 2013; Varga et al., 2012; Woodward et al., 2018;
Yang et al., 2019), joint sets, and their orientation in rock
outcrops (e.g., Tokhmechi et al., 2011; Zhan et al., 2017),
groundwater monitoring (Chambers et al., 2015), wildfires
(e.g., Orozco et al., 2012; Costafreda-Aumedes et al., 2016;
Fuentes-Santos et al., 2013; Tonini et al., 2017) and land-
slides (e.g., Lombardo et al., 2018, 2019; Tonini and Cama,
2019). In the specific case of flooding, Zhao et al. (2014)
used the projection pursuit theory to cluster spatial data and
to build a dynamic risk assessment model for flood disas-
ters. Moreover, Renard (2017) detected flood vulnerability
accounting for clustering effects in key areas with high flood
risk. Pappadà et al. (2018) also investigated the flood risks in
a given region and identified clusters where the floods show
a similar behavior with respect to multivariate criteria. Gu
et al. (2016a, b) indicated that the floods in Tarim River basin
showed evident interannual clustering pattern. Another ex-
ample can be found in Merz et al. (2016) in which the authors

analyzed the interannual and intra-annual flood clustering in
Germany. All these examples confirm a substantial scientific
interest in recent years dedicated to investigate the clustering
behaviors of flash floods and the associated risk and, more
generally, to concurrently analyze their spatial and temporal
persistence. However, despite the scientific efforts, detecting
flash flood patterns at long temporal scale is still scarce in
the literature mainly because of technical limitations. In fact,
limited information and records are available in digital form
reporting locations and dates of flash floods (and flash flood
disasters), especially over long periods. Nevertheless, very
recent advances in data collection and sharing techniques
are gradually filling this gap, and an increasing number of
databases are being published and made available to the sci-
entific community with the records of historical and hydro-
geomorphological disasters at the global, continental or re-
gional scale over long periods (Gourley et al., 2013; Haigh
et al., 2017; Vennari et al., 2016; Liu et al., 2018; Archer
et al., 2019; de Bruijn et al., 2019; Jessee et al., 2020; Wood
et al., 2020). Among these, Chinese historical inventories of
flash flood disasters are a precious source of information al-
lowing us to investigate their spatiotemporal pattern distribu-
tion and evolution. Furthermore, this information can be re-
lated to the geomorphological settings of the area and the me-
teorological conditions to detect triggering factors, highlight
the more vulnerable areas, and prevent and forecast their ef-
fects in the future.

Typically, flash flood disasters (as with many other hydro-
geomorphological disasters) can be considered as a stochas-
tic point process (Stoyan, 2006) acting in both spatial and
temporal dimensions (e.g., Lombardo et al., 2020). Point
patterns can be analyzed in terms of their random distribu-
tion, dispersion and clustering behavior (Merz et al., 2016;
Tonini and Cama, 2019). Several methods can be imple-
mented to deal with stochastic properties. Some classic mod-
els, such as Moran’s I (Moran, 1950), Ripley’s K function
(Ripley, 1977), fractal dimension (Lovejoy et al., 1986) and
Allan factor (Allan, 1966), have been used to detect clus-
tering behavior in space and in time. Representative models
for local clustering analysis (i.e., allowing us to detect clus-
ters and their specific location) include geographical analy-
sis machine (GAM; Openshaw et al., 1987), Turnbull’s clus-
ter evaluation permutation procedure (CEPP; Turnbull et al.,
1990), scan statistics (Kulldorff, 1997), and DBSCAN (Ester
et al., 1996). For flash floods, which are triggered by storms,
the temporal dependency among persistent events is mainly
driven by climatic and meteorological conditions. However,
global cluster indicators only take into consideration one
dimension, disregarding the interaction between space and
time. In this sense, spatiotemporal scan statistics is a good
tool to detect clusters since it allows us to identify statisti-
cally significant excess of observations thanks to a moving
cylindrical window that scans all locations both in space and
time (Kulldorff et al., 1998).
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Therefore, it is especially useful to investigate large spa-
tiotemporal inventories of hydro- and geomorphological pro-
cesses, such as flash floods. Indeed, the detection of clusters
originated by events closer both in space and in time can be
more informative that the simple investigation of their purely
temporal and purely spatial pattern distribution. For example,
understanding the duration of the spatiotemporal clusters of
flash floods is a key tool to investigate their dynamics and to
highlight more vulnerable areas and frame periods.

In light of this, the main objective of the present research
is to explore the pattern distribution of flash flood disasters
which have caused life or economic losses in China over a
66-year period (daily data from 1950 to 2015). Firstly, Rip-
ley’s K function was applied to explore the deviation of flash
flood disasters from a random process. Results allow to as-
sess at which spatial and temporal scale events are clustered.
Then, a local cluster indicator, namely scan statistics, was
implemented to map statistically significant spatiotemporal
clusters. To the best of our knowledge, this study represents
the first attempt of investigating the spatiotemporal cluster
behavior of flash flood disasters affecting a huge area, such
as the entire Chinese territory. Moreover, the volume of the
data that we analyzed represents an additional challenge, al-
lowing us to provide useful insights on flood dynamics over a
large spatiotemporal domain and enabling considerations in
the context of climatic change. To this end, we finally com-
pared the dynamic of the clusters, detected from the early to
the recent period, with the extreme rainfall evolution, com-
puted each 10 years, which is assumed to be local climatic
proxy factors.

2 Material and methods

2.1 Data description

2.1.1 Study area

China lies between latitudes 18 and 54◦ N and longitudes 73
and 135◦ E. With an area of about 9.6 million square kilo-
meters, it is the world’s third-largest country. The landscape
varies significantly across this vast area, ranging from the
Gobi and Taklamakan deserts in the north to the subtropi-
cal forests in the wetter south. The eastern plains and south-
ern coasts are the location of most of China’s agricultural
land and settlements. The southern areas consist of hilly and
mountainous terrain. The west and north of the country are
dominated by sunken basins (such as the Gobi and the Tak-
lamakan deserts), towering massifs and rolling plateaus, in-
cluding part of the highest tableland on earth, the Tibetan
Plateau. Based on its topography, China can be divided into
six homogeneous geomorphological macro-regions (Wang
et al., 2020): eastern plain, southeastern hills, southwestern
mountains, north-central plateaus, northwestern basins and
Tibetan Plateau. Mountains (33 % of the territory), plateaus

(26 %) and hills (10 %) together account for nearly 70 % of
the entire surface.

In recent years, the precipitation intensity has shown an
increasing trend over China (Zhang and Cong, 2014). Influ-
enced by the East Asian summer monsoon and the geomor-
phologic settings, the climatic condition across the whole
country varies considerably (Wu et al., 2019). In general,
the wet season in China lasts from May to September (Song
et al., 2011b). In the eastern area, the annual rainfall de-
creases from south to north with an average annual precip-
itation that ranges from 250 to 750 mm (Zhang et al., 2007).
In the west and central part of North China, due to its far dis-
tance away from an ocean, the climate tends to be more arid,
and the landscape transitions to large deserts. The Tibetan
Plateau is characterized by wet and humid summers with
cool and dry winters. More than 60 %–90 % of the annual to-
tal precipitation falls between June and September (Xu et al.,
2008).

2.1.2 Flash flood disaster inventory

The dataset used in this study has been collated and made
accessible for the present research as part of a national ef-
fort carried out by the Chinese Institute of Water Resources
and Hydropower Research (Liu et al., 2018). It reports flash
flood occurrences in China from 1950 until 2015, together
with available information, namely longitude and latitude,
date, fatalities, and economic losses. Due to the lack of spe-
cific terminology or detailed descriptions of the disaster pro-
cess in the database, the data do not differentiate the initial
mechanism, be it water floods or debris floods/flows (e.g.,
Fernández and Lutz, 2010; Gartner et al., 2014). The only
common information is that for each specific case, a large
amount of overland flows, mixed with an unspecified solid
fraction, rapidly flooded a given area with disastrous effects
(e.g., Pierson et al., 1987; Chang et al., 2011).

To better understand the spatiotemporal dynamics of flash
floods and associated disasters, as well as the relationship
with the triggering factors, the date of occurrence is of vital
importance. Therefore, for consistency reasons, we consid-
ered only the records whose metadata contained a full tem-
poral description (year–month–day) resulting in a subset of
32 473 flash flood disasters (accounting for 68 % of the entire
dataset) precisely located in space and time (Fig. 1).

2.2 Methodological overview

2.2.1 Spatiotemporal K function

Ripley’s K function (K(s)) is largely applied in environmen-
tal studies to analyze the pattern distribution of spatial point
processes and to detect deviation from spatial randomness.
K(s) allows us to determine if a set of mapped punctual events
show a random, dispersed or cluster distribution pattern over
increasing distance values (Ripley, 1977). It is computed as
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Figure 1. Spatiotemporal distribution of flash flood disasters in China.

the ratio between the expected number of events falling at a
distance r from an arbitrary event and the average number
of points per unit area, corresponding to the intensity of the
spatial point process (λ). In the same way, it is possible to de-
fine the temporal K function (K(t)) allowing us to assess the
randomness of events in time. The spatiotemporal K function
(K(s, t)) is a generalization of the univariate Ripley’s K func-
tion which allows us to test for the independence between
two variables, space (s) and time (t). Therefore, the K(s, t)
is a suitable tool to investigate the clustering behavior of a
set of events occurring in a given area at a given time. For a
point process X with intensity λ, according to Eq. (1), it is
defined as the number of expected further events (E) occur-
ring within a distance r and time t from an arbitrary event u,
where a defines the contouring circle.

K(s, t) = 1/λ×E[n(X∩ a(u, r, t)u)|u ∈X] (1)

To illustrate the interaction between space and time, it can
be useful to evaluate the value D(s, t) defining the difference
between the spatiotemporal K function and the product of the
purely spatial and the purely temporal K function (see Eq. 2).

D(s, t) =K(s, t)−K(s)×K(t) (2)

If space and time are independent variables, this value
equals zero. Otherwise, positive values of D(s, t) indicate
the interaction among events in space and in time. In other

words, events closer in space are more likely to occur in a
closer time. In contrast, the negative values mean a dispersed
pattern.

In this study, spatiotemporal K function analyses were per-
formed with the package “Spatial and Space-Time Point Pat-
tern Analysis” (splancs; Rowlingson and Diggle, 2017) in R
(R Core Team, 2019).

2.2.2 Spatiotemporal scan statistics

Scan statistics was originally developed by Naus (1965a, b)
to detect clusters in a 1D point process. Subsequently Kull-
dorff (1997) extended this approach to multi-dimensional
point processes, introducing the use of scanning win-
dows. The procedure was implemented with free software,
SaTScan™ (https://www.satscan.org/, last access: 25 April
2020), which can handle a purely spatial, purely temporal
or spatiotemporal dataset and includes different probability
models depending on the nature of the data and the scope of
the research (e.g., for prospective or retrospective cluster de-
tection). In the purely spatial case, the aim of scan statistics is
the early detection of clusters, allowing us to map them and
to assess their statistical significance. Moving windows scan
the region, increasing their radius up to a fixed limit (Rmax),
and count the number of events falling inside and outside
the area. The probability that a window contains more ob-
servations than expected is assessed via the likelihood ratio
through a comparison with the background population. Then,
the null hypothesis of randomness is tested via Monte Carlo
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simulations, based on repeated random sampling. The spa-
tiotemporal scan statistics use cylinders instead of circular
windows, in which the height of the cylinder accounts for the
temporal dimension.

In order to deal with flash floods, the retrospective spa-
tiotemporal permutation scan statistics (STPSS; Kulldorff
et al., 2005) seems to be the most adequate model. Indeed,
for environmental processes, the definition of the background
population at risk needed for the statistical significance as-
sessment of the detected clusters is quite problematic. STPSS
assesses the expected number of cases using only the ob-
served cases by permutation, supposing that each event has
the same probability for all the times. Computationally, if C
is the total number of observed cases and czd the number of
cases observed in a specific zone z and on a day d, the ex-
pected number of cases per zone and day (µzd) is equal to
the following:

µzd =
1
C

(∑
z
czd

)(∑
d
czd

)
. (3)

It follows that, for a spatiotemporal cylinder A, the ex-
pected number of cases µA can be estimated as the sum of
each µzd inside the cylinder A:

µA =
∑

z, d∈A
µzd. (4)

If CA is the number of observed cases in A, considered as
Poisson-distributed with mean µA, the Poisson generalized
likelihood ratio (GLR) can be computed as follows:

GLR=
(
cA

µA

)cA
(
C− cA

C−µA

)C−cA

. (5)

This ratio is calculated and maximized for every possible
scanning cylinder. The cylinder with the highest GLR value
is the most likely cluster, that is, the cluster least likely to
be due to chance, while the following are secondary clus-
ters. Then, Monte Carlo simulations are performed, and the
statistical significance (p value) of the detected clusters can
be assigned by comparing the rank (R) of GLR from the
real dataset with the GLR from the simulated one. Thus, the
p value can be estimated by dividing R by the number, plus
1, of performed simulations.

3 Results

3.1 Deviation from a random process

In the present study, the spatiotemporal K function was used
to assess the global cluster behavior of flash flood disasters
generated by the interaction between these two variables. To

this end, the perspective 3D plot of D(s, t) represents a use-
ful visual tool allowing us to estimate the distribution pat-
tern of events along the spatial and the temporal dimensions.
In more details, positive values attest to a cluster distribu-
tion, while values close to zero indicate a random pattern
with no interaction between space and time. In our case, the
3D plot (Fig. 2) shows that at any distance, from hundreds to
thousands of meters and from a few years to decades, flash
flood disasters display a cluster behavior, which is more pro-
nounced at increasing distance values. In addition, the spa-
tiotemporal K function was computed considering individ-
ually the southeastern and the northwestern areas in China,
given that the first corresponds to the rainiest zone, highly
affected by flash floods, while the second is predominantly
desert. The result is that (Fig. 3) in southeastern China (panel
a) clusters arise at a shorter spatial distance and closer in time
than in northwestern China (panel b). As regards the tempo-
ral dimension, the two areas show a similar cluster behavior,
with a strong attraction among events up to 10 years and then
lasting in time with a more relaxed clustering behavior.

To summarize, the spatiotemporal K function reveals a de-
viation of flash flood disasters and associated spatiotemporal
pattern distribution from a random process at specific scales,
measured and quantified both in space, as distance values,
and in time, as yearly periods. These values can provide a
useful indication to set up the parameters for further cluster-
ing algorithms, acting at local scale such as, for example, the
spatiotemporal scan statistics.

3.2 Spatiotemporal cluster detection

3.2.1 Cluster parametrization and their spatial
distribution

Scan statistics were performed to detect spatiotemporal clus-
ters of flash flood disasters. The size and the duration of the
detected clusters are influenced by the input parameters of
the scanning windows, namely the maximum radius (Rmax),
the maximum temporal duration (Tmax) and the time aggrega-
tion (Tagg). Indeed, values of Rmax exceeding the 50 % of the
total area or, for Tmax, the 50 % of the entire study period can
result in an exceptionally low rate outside the scanning win-
dow rather than detecting an exceptionally high rate inside.
Tagg is used to adjust the aggregation of the data over time
and allows us to adjust for cyclic temporal trends: for exam-
ple, a time aggregation of 1 year automatically adjusts for the
seasonal variability, while the contrary happens with monthly
aggregations. Moreover, both spatial and temporal aggrega-
tions can highly reduce the computer processing time. Differ-
ent values for Rmax were tested for the southeast and north-
west areas in China, as suggested by looking at the respective
perspective 3D plot. Nevertheless, the performed analyses in-
dicated that the effect on the detected clusters were negligi-
ble and that finally the distribution of spatiotemporal clusters
of flash flood disasters in the country can be analyzed as a
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Figure 2. Perspective 3D plot of flash flood disasters in China during 1950–2015 (a) with a zoom up to 2000 km (b).

Figure 3. Perspective 3D plot of flash flood disasters in southeast (a) and northwest China (b).

whole. A set of possible combinations of Rmax and Tmax was
tested, while Tagg was initially fixed to 1 year.

More specifically, since results of the K function revealed
that flash flood disasters in the study area and investigated pe-
riod are globally clustered even at short distances, we chose
Rmax of 100, 200 and 300 km and Tmax equal to 1, 3 and
5 years. The choice for Rmax is corroborated by Zhang et al.
(2010) who report measurements constantly less than 500 km
for the radius of typical convective storms in the Chinese
mainland which can trigger flash floods. Results of STPSS
for each of the nine combinations of these parameters are
shown in Fig. 4.

As shown in Table 1, the largest variation in the number of
detected clusters is mainly associated with Rmax rather than
with Tmax; as Rmax increases, the number of detected clusters
decreases. Indeed, large Rmax values affect the detection of
clusters acting at a fine scale by merging small cluster close
each others into big ones or eventually by neglecting very
small flash flood aggregations. Conversely, very large clus-
ters, acting at a coarse spatial scale, are detected for any value
of Rmax, as can be geographically visualized in the south-
easternmost sector of China (Fig. 4). Changes in Tmax have

Table 1. Number of detected spatiotemporal clusters of flash flood
disasters in China during 1950–2015 using different parameters, as
indicated.

Rmax (km)
Tmax (year)

1 3 5

100 131 128 130
200 85 77 75
300 58 54 53

almost no effect on the number of detected clusters since,
even allowing for a maximum duration of 5 years, almost all
the clusters do not exceed the duration of 1 year.

To confirm this finding, we computed the temporal dura-
tion of the first 10 clusters of flash flood disasters detected by
applying a Tmax equal to 3 years and for the three models, de-
fined by using values of Rmax equal to 100, 200 and 300 km
(Table 2). Results confirm that cluster duration, expressed as
start and end dates, never exceeds 1 year. The most signifi-
cant cluster (ranked as ID= 1) is the same for any model and
is dated to 1975. Secondary clusters (just from the second to
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Figure 4. Significant (p < 0.005) spatiotemporal clusters of flash flood disasters in China during 1950–2015.

the tenth) are almost the same using Rmax of 200 or 300 km,
while, reducing the radius to 100 km, their size and ranking
can change due to the merging of small clusters into bigger
ones. Finally, it is worth noting that the top 10 clusters are
well distributed over the entire study period, with the oldest
one detected between 1963 and 1969 and the latest in 2010.

We opted to carry out additional analyses using a Tagg of 3
months (hereafter referred as “monthly model”). Results are
shown in Fig. 5 where information on the spatial distribution
of the detected clusters is shown. Overall, the clusters chiefly
appear along the main river systems in China, namely the
Yangtze, the Yellow, the Pearl and the Yarlung Zangbo rivers.
In addition, some clusters stand out on high mountains, such
as the Qinling-Daba and the Changbai mountains.

3.2.2 Temporal characterization of detected clusters

It emerges that clusters detected by using the different pa-
rameters for the scanning cylinders overlap both in space
and in time. Therefore, in the present analysis, seeking to
investigate in more details the years of occurrence and the

temporal duration of detected clusters of flash floods, only
results from the model with Rmax = 200 km, Tagg = 1 year
and Tmax = 3 years are presented. Considering all the statis-
tically significant clusters, they emerged during almost each
year of the investigated period but are more frequently start-
ing from 1980. The relative small number of clusters de-
tected between 1950 and 1980 may imply that the data ac-
quisition and reporting in the Chinese database of hydro-
morphological disasters were not fully operational at the
time. Conversely, from 1980 to the present day the Chinese
database has evolved into a mature and detailed geographic
information system. Another factor explaining this distribu-
tion can be the more frequent extreme precipitation observed
in recent decades, which could have increased the frequency
of flash flood disasters in this last period. The precipitation
regime can also explain the variation in the duration of the
detected clusters. Indeed some clusters have a temporal ex-
tent up to 3 years, which could result from a persistent pre-
cipitation pattern over a delimited prone area.

To highlight the influence of the seasonal variability in
cluster detection, we carried out additional analyses using

https://doi.org/10.5194/nhess-21-2109-2021 Nat. Hazards Earth Syst. Sci., 21, 2109–2124, 2021
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Table 2. Temporal duration of the first 10 clusters of flash flood disasters detected via three different models (left: Rmax = 100 km; center:
Rmax = 200 km; right: Rmax = 300 km).

ID Radius Start date End date ID Radius Start date End date ID Radius Start date End date

1 81.04 1975/1/1 1975/12/31 1 81.04 1975/1/1 1975/12/31 1 81.04 1975/1/1 1975/12/31
2 64.51 2010/1/1 2010/12/31 2 146.06 1998/1/1 1998/12/31 2 146.06 1998/1/1 1998/12/31
3 60.73 2006/1/1 2006/12/31 3 64.51 2010/1/1 2010/12/31 3 64.51 2010/1/1 2010/12/31
4 72.76 2010/1/1 2010/12/31 4 60.73 2006/1/1 2006/12/31 4 60.73 2006/1/1 2006/12/31
5 94.42 1998/1/1 1998/12/31 5 72.76 2010/1/1 2010/12/31 5 72.76 2010/1/1 2010/12/31
6 73.13 1969/1/1 1969/12/31 6 73.13 1969/1/1 1969/12/31 6 73.13 1969/1/1 1969/12/31
7 56.67 1963/1/1 1963/12/31 7 176.96 1982/1/1 1982/12/31 7 176.96 1982/1/1 1982/12/31
8 49.51 1996/1/1 1996/12/31 8 70.57 1984/1/1 1984/12/31 8 70.57 1984/1/1 1984/12/31
9 70.57 1984/1/1 1984/12/31 9 129.06 1996/1/1 1996/12/31 9 157.14 2010/1/1 2010/12/31
10 35.27 1987/1/1 1987/12/31 10 157.14 2010/1/1 2010/12/31 10 56.18 1960/1/1 1960/12/31

Figure 5. Significant (p < 0.005) spatiotemporal clusters of flash flood disasters occurring in China during 1950–2015 (Rmax = 200 km,
Tmax = 3 years, Tagg = 3 months).

a Tagg of 3 months (hereafter referred as monthly model).
As shown in Fig. 5, the detected clusters are spread along the
main river systems in China, namely the Yangtze, the Yellow,
the Pearl and the Yarlung Zangbo rivers. In addition, some
clusters stand out on high mountains such as the Qinling-
Daba and the Changbai mountains.

Forcing the model parameterization to aggregate over 3
months allows us to investigate potential seasonal effects. In-
deed, even if the maximum temporal duration is still 1 year,
looking at the 10 most significant clusters detected under the

monthly model (Table 3), the result is that all of them have
a duration of 3 (six clusters) or 6 (four clusters) months. No-
tably, almost every cluster (nine clusters) encompasses the
period from July to September, with an earlier start date (in
April) for the ones which have a longer duration.

To visualize the seasonality trend, we summarized these
results using a cyclic representation (Fig. 7). The majority
of the cluster have a 3-month duration, concentrated in the
period between July and October. Furthermore, clusters of 6-
month temporal duration are most likely to occur from Jan-
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Figure 6. Temporal duration of flash flood disaster clusters detected via the “yearly model” (Rmax = 200 km, Tagg = 1 year, Tmax = 3 years).

Table 3. Temporal duration of the first 10 clusters of flash flood
disasters detected via the monthly model (Rmax = 200 km, Tmax =
1 year, Tagg = 3 months).

ID Radius Start date End date

1 54.88 2010/10/1 2010/12/31
2 81.04 1975/4/1 1975/9/30
3 72.76 2010/7/1 2010/9/30
4 146.06 1998/4/1 1998/9/30
5 60.73 2006/7/1 2006/9/30
6 73.13 1969/4/1 1969/9/30
7 178.05 1982/7/1 1982/9/30
8 199.88 1996/4/1 1996/6/30
9 157.14 2010/7/1 2010/9/30
10 67.05 1984/4/1 1984/9/30

uary to July or from April to October. As for clusters with
9-month temporal duration, these mostly cover the period of
July–August–September, irrespective of the starting month.
Ultimately, as noticed for the yearly model, many more clus-
ters were also detected in the monthly model in the recent
period. Overall, the vast majority of flash flood disaster clus-
ters happened between July and October, a period coinciding
with the wet season in China.

3.2.3 Clusters pattern evolution at decadal scale

The previous analyses allowed us to detect yearly and sea-
sonal clusters. However, environmental changes usually act
on a longer time span. To better investigate this factor, we
considered a temporal subdivision of the dataset into six sub-
sets, each one lasting 10 years (starting from 1956). Each
subset was analyzed separately using the following param-

Figure 7. Seasonal effect of flash flood disaster clusters detected
via the monthly model (Rmax = 200 km, Tmax = 1 year, Tagg =
3 months).

eter for the scanning widows: Rmax = 200 km and Tmax =

1 year, while no temporal aggregation was applied. This
allowed us to precisely evaluate the temporal duration of
each cluster, given as number of days between the earli-
est and the latest flash flood single event within a cluster.
As shown in Fig. 8, the number of detected clusters in-
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creases from the early to recent periods. These are compared
with the rainfall distribution derived from the daily rainfall
data provided by the China Meteorological Administration
(http://data.cma.cn/, last access: 30 November 2020). In the
present study, only the weather stations (a total of 699 rain
gauges) with complete data for the period 1955–2015 were
considered. From these, we computed the extreme precip-
itation as follows. Out of the rainfall records available per
weather station, we initially extracted 5 % of the time se-
ries corresponding to the rainfall values greater than the 95th
percentile (Karl and Easterling, 1999; Klein Tank and Kön-
nen, 2003). Then we cumulated these values per station over
decadal time periods corresponding to 1956–1965, 1966–
1975, 1976–1985, 1986–1995, 1996–2005 and 2006–2015.
From these cumulated extreme rainfall values per station and
per decade, we computed the mean over the 10-year time
span and then interpolated over the whole spatial domain un-
der consideration via a ordinary kriging. The data were re-
gionalized on a 2 km× 2 km lattice. The procedure returned
six maps of the mean extreme events per decade over the
Chinese territory. The result is that flash-flood-detected clus-
ters are mainly located in the southeasternmost humid re-
gions in every period. However, in the last 2 decades, clus-
ters appear also in the northwestern arid regions. Even if the
rainfall distribution, averaged over each decade, does not al-
low to discover clear changes along the subsequent periods,
these newly detected clusters can be due to the intensifica-
tion of the extreme rainfall events occurring in the area in
recent periods. This assumption is confirmed by the statis-
tics on cluster duration (Fig. 9). From the boxplot summariz-
ing the descriptive statistics it is evident that the median val-
ues of cluster durations tend to slightly decrease from 46 d
(1956–1965) to 17 d (1986–1995) and stabilize at a value
around 20 d in the last 2 decades. At the same time, the over-
all duration, measured as the difference between the maxi-
mum and the minimum value, is higher in the late periods
(140 d in 1956–1965 and 93 and 74 d respectively in the 2
following decades) than in the early periods (about 65 d for
the last 2 decades). This is even more evident looking at the
inter-quantile ranges, which decrease with time. To resume,
from these analyses, the result is that the number of detected
clusters globally increases in time, but their duration drasti-
cally decreases in the recent period.

Spatiotemporal clusters of flash flood disasters detected
in China by decade were further assembled in a unique im-
age. To this end, the centroid of each cluster (with reference
to Fig. 8) was extracted and intersected with the catchment
boundaries. Then, we computed the total number of clusters
per catchment (Fig. 10a), as well as the average interval of
time at which two consecutive clusters were detected in the
same catchment (Fig. 10b). The result is that the catchments
mainly affected by clusters of flash floods throughout several
decades are mainly located in the southeast sector and essen-
tially in the coastal mountains and that, on average, most of
the clusters occur within an interval of 10–20 years.

4 Discussions

The present study aims at exploring the spatiotemporal clus-
tering characteristics, in terms of spatial location and tem-
poral duration, of flash flood disasters in China. For this
purpose, we analyzed the official historical inventory, which
covers several decades from 1950 to 2015. Results are inter-
preted with a particular regard to the extreme rainfall distri-
bution, these two processes being highly related (Wei et al.,
2018). Actually the spatiotemporal pattern distribution of
flash floods can also be induced by the geomorphological set-
ting of the area and by anthropogenic pressures, such as land
use and land cover changes (Yang and Tian, 2009). However,
in the present study we are considering both the spatial and
the temporal dimensions with the aim of detecting clusters
occurring as a consequence of the interaction between these
two variables. Therefore, these clusters are likely related to
dynamic factors such as rainfall, which is the only triggering
factor that covers and varies across the same spatiotempo-
ral domain as the clusters themselves. Thus, our results are
interpreted and discussed on the basis of this hypothesis.

The spatiotemporal K function computed first reveals a de-
viation of flash flood disasters from a random process at spe-
cific scales, measured and quantified both in space, as dis-
tance values, and in time, as yearly periods. Nevertheless this
indicator can not provide the location at which clusters ap-
pear or their duration. To this end, the spatiotemporal permu-
tation scan statistics was then performed. Results allowed us
to identify statistically significant clusters, together with the
start and end date of their occurrence, and to detect areas and
periods more susceptible to flash flood disasters. We opted
for a set of possible combinations for the maximum spatial
and temporal extension of the scanning windows, while dates
were aggregated both at yearly and at seasonal scales (i.e.,
over 3 months). Among the dozens or even hundreds of clus-
ters detected by the different models, the top 10 most sig-
nificant clusters resulting from the yearly model were ana-
lyzed in detail. These appears to be almost the same for any
increasing value of Rmax even if their size and ranking can
change. This is a consequence of the fact that small clusters
detected when using an Rmax of 100 km can merge into big-
ger clusters when Rmax increases at 200 and 300 km. As for
the occurrence time, these top 10 clusters are well distributed
over the entire study period, with the earliest one dated to
1963 and the latest to 2010. Results of the monthly model
show that the top 10 most significant clusters have a duration
of 3 (six clusters) or 6 (four clusters) months. Notably, almost
every cluster encompasses the period from July to Septem-
ber, coinciding with the wet season in China, with an earlier
start date (in April) for the clusters that have a longer dura-
tion. The same behavior can be observed for the subsequent
secondary clusters detected under the monthly model which,
in addition, reveals an increasing number of clusters detected
in the recent period.
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Figure 8. Significant (p < 0.005) spatiotemporal clusters of flash flood disasters in China every 10 years. The size of the circles indicates
the spatial coverage of the flash flood clusters we detected.

Figure 9. Boxplots summarizing the descriptive statistics of the du-
ration of clusters reported in Fig. 8.

Overall, clusters are chiefly located along the main river
systems in China (the Yangtze, the Yellow, the Pearl and the
Yarlung Zangbo rivers). In addition, some clusters stand out
on high mountains such as the Qinling-Daba and the Chang-
bai mountains.

Finally, to monitor the cluster pattern evolution, data were
grouped and analyzed by decade. As for the previous analy-
ses, detected clusters are mainly located in the southeastern-
most humid regions in every period. However, in the last 2
decades, clusters appear also in the northwestern arid re-
gions. These newly detected clusters can be due to the in-
tensification of the extreme rainfall events occurring in the
area in recent periods as a consequence of climate change
(Song et al., 2011a). This important fact is confirmed by

checking the descriptive statistics of the duration of clusters:
globally, the number of detected clusters increases in time,
but the duration drastically decreases in recent periods, in-
dicating a possible activation induced by short-duration ex-
treme rainfall events. Another factor that can induce flash
floods in China is the tropical cyclones (Hu et al., 2018).
Indeed, it is well known that tropical cyclones induce tor-
rential rain which is a major trigger of catastrophic flood
hazards in many coastal regions around the world (Rappa-
port, 2000; Dare et al., 2012; Zhang et al., 2019). A recent
study by Lai et al. (2020) shows that slow-moving tropical
cyclones, characterized by lower translation speed, occurred
more frequently after 1990 in the Pearl River Delta in south-
ern China. In addition, their findings suggest that these cy-
clones tend to elevate local rainfall totals and thus impose
greater flood risks at the regional scale. Essentially cluster re-
sults have increased in number in the last 3 decades, but their
duration drastically decreases in the recent period, indicat-
ing a possible activation induced by short-duration extreme
rainfall events.

As the spatial distribution of detected clusters is con-
cerned, our analyses revealed that the more affected catch-
ments with frequent clusters are mainly located in the south-
east sector and essentially in the coastal mountains. China is
indicated as one of the hotspots with a global flood-exposed
coastal population (Van Coppenolle and Temmerman, 2020).
Therefore, we can assume that these catchments are exposed
at the highest potential risk across the whole Chinese terri-
tory also in the short- to long-term future. In addition, catch-
ments with clusters occurring within a short interval (5 to 10
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Figure 10. Number of times a cluster has been detected per catchment and by decade (a). Average time interval between two clusters detected
over the same catchment by decade (b).

years) may also pose a relevant threat, especially in the near
future.

In the present study spatiotemporal clusters of flash floods
were detected chiefly on the basis of two parameters (Rmax
and Tmax) without featuring terrain attributes, precipitation
regimes and anthropogenic pressure. However, these factors
may have played and may still play a significant role in ex-
plaining the distribution of flash flood disasters. For instance,
the approach we adopted may over rely on spatial distances
to detect clusters. In fact, the natural landscape has moun-
tain belts that can act as orographic barriers to the incom-
ing cloudbursts, effectively limiting the rainfall distribution
– hence flash flood occurrences – on one or the other side of
a catchment divide (at various scales). As for the temporal
scale, due to the large time span, the detected temporal pat-
terns may reflect more information due to long-term climatic
variations rather than specific conditions. For this reason, we
are planning to extend our spatiotemporal cluster analyses to
more complex models which can concurrently capture multi-
variate contributions featuring environmental effects even at
the latent level (Lombardo et al., 2018, 2019).

5 Conclusions

In this work, we explore the national archive of flash flood
disasters in China from 1950 to 2015. The term “disaster”
is meant to describe the destructiveness of the flash floods,
since each record in this archive has produced economic
losses, loss of life or both.

The clustering procedure highlighted distinct spatial and
temporal patterns at different scales. For instance, the sta-
tistically significant clusters of flash flood disasters detected
in the present study occur in specific areas and have a char-
acteristic duration which closely follow the extreme rainfall
patterns. The performed analyses allowed us to distinguish

between seasonal, yearly and even long-term persistent flash
flood behaviors. The persistence of disasters is crucial infor-
mation because it indicates the risk that a community may
undergo in response to a flash flood. Moreover, we stud-
ied the cycle of such disasters with particular emphasis on
their repeated occurrence per catchment and by decade. As
a result, we highlighted that the southeasternmost sector of
China is subjected to a much larger number of flash flood
clusters compared to the rest of the country. However, in
terms of how these clusters are manifested through time with
regards to their average re-occurrence time, the catchments in
the southeastern sector suffer from flash floods as frequently
as the rest of the central and eastern sectors of the country.
This complementary information can be further used in rela-
tion to engineering and structural design. In fact, infrastruc-
ture is usually built to sustain the damage of an event of a
certain return time. In our analyses we show that at catch-
ment level, the very same area can be affected by clusters at
least two up to six times in the last 60 years, considering a
time unit of 10 years. This may suggest locally tailored struc-
tural improvements which may lengthen the life expectancy
of specific infrastructure, as well as reduce the number of
victims.

We would like to stress that, as advanced as it may be,
our clustering framework is essentially a descriptive tool, and
yet, the amount of information one can draw from a descrip-
tive tool can be extremely valuable. Nowadays, the hazard
community’s effort is mainly dedicated to predictive mod-
eling of various natures and purposes, thus leaving under-
explored or even unexplored some basic concepts and inter-
pretative conclusions that data description and visualization
can provide. Long time series of national hazard phenomena
are one of these examples in which studying variations over
space and time can highlight very important environmental
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dynamics even in the direction of climate change and its im-
plications.
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